WO2020261734A1 - Outdoor unit of refrigeration cycle device - Google Patents

Outdoor unit of refrigeration cycle device Download PDF

Info

Publication number
WO2020261734A1
WO2020261734A1 PCT/JP2020/017206 JP2020017206W WO2020261734A1 WO 2020261734 A1 WO2020261734 A1 WO 2020261734A1 JP 2020017206 W JP2020017206 W JP 2020017206W WO 2020261734 A1 WO2020261734 A1 WO 2020261734A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
receiver
condensers
receivers
outdoor unit
Prior art date
Application number
PCT/JP2020/017206
Other languages
French (fr)
Japanese (ja)
Inventor
裕昭 渡邉
光輔 小澤
憲二郎 松本
允嗣 村瀬
Original Assignee
東芝キヤリア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝キヤリア株式会社 filed Critical 東芝キヤリア株式会社
Priority to JP2021527415A priority Critical patent/JP7198355B2/en
Priority to CN202090000588.XU priority patent/CN217058027U/en
Publication of WO2020261734A1 publication Critical patent/WO2020261734A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/46Component arrangements in separate outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/02Compression machines, plants or systems, with several condenser circuits arranged in parallel

Definitions

  • An embodiment of the present invention relates to an outdoor unit of a refrigeration cycle device.
  • the refrigeration cycle device circulates refrigerant by connecting an outdoor unit such as a refrigerator (condensin unit) and an indoor unit such as a showcase or an air conditioner with a pipe.
  • an outdoor unit such as a refrigerator (condensin unit)
  • an indoor unit such as a showcase or an air conditioner
  • the refrigerant may be in a gas-liquid mixed state on the outlet side of the condenser
  • the supercooler arranged on the rear side of the condenser is used.
  • the outdoor unit may be equipped with multiple condensers. Then, depending on the specifications of the load device such as the indoor unit to be connected and the pipe length, a large-capacity receiver may be required to receive the refrigerant supplied from the plurality of condensers.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is a refrigeration cycle apparatus capable of easily transporting a liquid refrigerant to the rear stage side of a condenser in a configuration including a plurality of condensers. To provide the outdoor unit of.
  • the outdoor unit of the refrigeration cycle apparatus of the embodiment includes a plurality of condensers and a plurality of receivers provided in the same number as the plurality of condensers and connected to the outlets of the respective condensers, and a plurality of condensers.
  • the vessels are connected to each other on the inlet side of the refrigerant and individually connected to the corresponding receivers on the outlet side of the refrigerant, with the plurality of receivers below the inlet of the refrigerant in the installed state.
  • Refrigerant outlets are provided and are connected to each other on the refrigerant outlet side.
  • the figure which shows typically the structure of the refrigerating cycle apparatus in embodiment The figure which shows the structure of the receiver schematically
  • the refrigeration cycle device 1 of the present embodiment includes an outdoor unit 2 and an indoor unit 3 as a load device.
  • the outdoor unit 2 and the indoor unit 3 are connected by an external pipe 4 through which a refrigerant circulates.
  • a refrigerating cycle device 1 for air conditioning is assumed, but the outdoor unit 2 can be used by a so-called refrigerating machine (condensining unit) for cooling equipment, cooling articles in a showcase, and the like. It can also be applied to the above applications.
  • FIG. 1 shows an example in which one indoor unit 3 is provided for simplification of the description
  • a configuration in which a plurality of load devices are connected may be provided, such as by providing a plurality of indoor units 3.
  • the outdoor unit 2 and the indoor unit 3 are also connected by electrical wiring for control.
  • the outdoor unit 2 includes a plurality of condensers 6, the same number of receivers 7 as the condensers 6, and one supercooler 8 in the housing 5.
  • the condenser 6 is composed of a so-called fin tube type heat exchanger, and is configured to have the same size in the present embodiment. That is, a plurality, for example, three (see FIG. 3) condensers 7 having the same dimensions, the same capacity, and the same heat exchange area are provided.
  • Each condenser 6 is connected in parallel to each other via a branch pipe 20 on the inlet side of the refrigerant shown as “IN” in FIG. 1, and corresponds to a receiver on the outlet side of the refrigerant shown as “OUT” in FIG.
  • the liquid vessel 7 and the refrigerant pipe 21 are individually and directly connected to each other.
  • the refrigerant flowing out from each condenser 6 flows into one corresponding receiver 7.
  • the refrigerant flowing out of the condenser 6 may be in a gas-liquid mixed state.
  • the liquid receiver 7 is formed in a substantially cylindrical shape, and is provided with an inlet for the refrigerant shown as “IN” in FIG. 1 on the upper side in the installed state, and “OUT” in FIG. 1 below the inlet. There is an outlet for the refrigerant shown as.
  • each receiver 7 has a body length of 600 mm to 700 mm and an outer shape (D) of which does not exceed 160 mm. Further, since the plurality of receivers 7 are provided, the volume required for each receiver 7 is also reduced. Therefore, each receiver 7 is classified into a pipe and a simple container under the High Pressure Gas Safety Act. That is, the pressure resistance can be improved by making the volume relatively small.
  • the receivers 7 are connected to each other on the outlet side of the refrigerant.
  • a supercooler 8 connected via a merging pipe 22 is provided on the outlet side of the liquid receiver 7.
  • the supercooler 8 is composed of a so-called fin tube type heat exchanger, and the refrigerant flowing out from each receiver 7, that is, the liquid among the refrigerants separated into gas and liquid inside each receiver 7.
  • the refrigerant in the state flows in. That is, the refrigerant is conveyed in a liquid state to the supercooler 8 provided on the rear side of the condenser 6.
  • the refrigerant that has passed through the supercooler 8 is conveyed to the indoor unit 3 through the external pipe 4.
  • the indoor unit 3 includes an expansion device 13, an indoor heat exchanger 3a, a blower fan 3b, an indoor control unit 3c, and the like.
  • the indoor heat exchanger 3a functions as an air-conditioning evaporator that evaporates the refrigerant decompressed by the expansion device 13.
  • the configuration of the indoor unit 3 is an example, and the present invention is not limited to this.
  • the refrigerant that has passed through the indoor unit 3 is returned to the outdoor unit 2 through the external pipe 4.
  • the outdoor unit 2 is provided with an accumulator 9, two compressors 10 connected in parallel, an oil separator 11, a control unit 12, and the like.
  • the refrigerant returned to the outdoor unit 2 through the external pipe 4 is compressed by the two compressors 10 in a gas-liquid separated state by the accumulator 9, and after the oil is removed by the oil separator 11, the branch pipe 20 is connected. It flows into each condenser 6 through.
  • each condenser 6 has the same heat exchange performance, that is, the shape and the like are almost the same. Therefore, the refrigerant that has passed through the oil separator 11 flows evenly into each condenser 6. In addition, almost the same includes a state in which they match and a state in which they are within a predetermined allowable range. Then, each device is controlled by the control unit 12 provided in the outdoor unit 2 and the indoor control unit 3c provided in the indoor unit 3, and the refrigerant circulates between the outdoor unit 2 and the indoor unit 3. By doing so, the refrigeration cycle device 1 is operating.
  • the refrigerant may be in a gas-liquid mixed state on the outlet side of the condenser 6, while it is arranged on the rear side of the condenser 6 in order to efficiently use the refrigeration cycle device 1. It is desirable to transport the refrigerant in a liquid state to the supercooler 8.
  • the refrigerant in the gas-liquid mixed state is transferred from one condenser 6 to the plurality of receivers 7, or from the plurality of condensers 6 to a plurality of liquid receivers. It is difficult to evenly distribute gas and liquid to the vessel 7.
  • the liquid refrigerant is conveyed to the rear stage side of the condenser 6 without increasing the capacity of the receiver 7. I am trying to be able to do it.
  • the outdoor unit 2 of the present embodiment includes a plurality of condensers 6 and a plurality of liquid receivers 7.
  • Each condenser 6 is connected to one receiver 7. That is, the path between the condenser 6 and the liquid receiver 7 is not provided with a mechanism, structure or member for distributing the refrigerant or adjusting the flow rate, and is directly connected by the refrigerant pipe 21.
  • the plurality of refrigerant pipes 21 are formed with substantially the same pipe length, and even the longest one is preferably twice or less the shortest refrigerant pipe 21.
  • gas-liquid mixing is different from, for example, when the refrigerant is distributed from one condenser 6 to a plurality of receivers 7 or the refrigerant is distributed from a plurality of condensers 6 to one receiver 7. It is possible to eliminate the need to arrange a valve or the like that evenly distributes the gas and liquid of the refrigerant in the state.
  • each receiver 7 is provided with a refrigerant outlet below the refrigerant inlet in the installed state. Therefore, the liquid refrigerant is accumulated on the outlet side of the receiver 7 due to gravity, and the liquid refrigerant flows out to the rear side of the receiver 7.
  • each condenser 6 has the same heat exchange performance and each receiver 7 is formed to have substantially the same size (capacity) and shape (dimension), each liquid receiver 7 is formed.
  • the liquid refrigerant flows out from the vessel 7 at almost the same flow rate. Therefore, for the supercooler 8 connected to the outlet side of the plurality of receivers 7 connected to each other, even if the refrigerant is not distributed on the outlet side of the receiver 7, the refrigerant can be used. Even if the flow rate is not adjusted, the liquid refrigerant that has evenly flowed out from each receiver 7 is supplied.
  • each receiver 7 can be relatively reduced as compared with the case where one receiver 7 is provided. As a result, the size of the manufacturing equipment is less likely to be restricted, and manufacturing can be easily performed. Further, by dispersing the receivers 7 and setting the dimensions and capacities of the receivers 7 to a predetermined value or less, the pressure resistance of the device can be increased and the safety can be enhanced. In particular, for example, it is possible to form the receiver 7 in a size classified as a pipe or a simple container under the High Pressure Gas Safety Act, and the High Pressure Gas Safety Act compared with the case of a size classified as a pressure vessel. The conditions for complying with are relaxed.
  • the body length of the receiver 7 for storing the refrigerant having a compressor discharge pressure of 0.2 MPa or more is 1000 mm or less, and the inner diameter is 200 mm or less.
  • the product By setting the product to 0.04 m ⁇ 3 or less, it can be treated as a simple container under the High Pressure Gas Safety Act. That is, by using the receiver 7 that meets such conditions, pressure resistance can be ensured, safety tests performed at the time of manufacturing can be simplified, and the entire manufacturing process can be made efficient. , Manufacturing cost can be reduced.
  • a condenser 6, a compressor 10, an accumulator 9, a compressor 10, an oil separator 11, a control unit 12, and the like are housed in the housing 5 of the outdoor unit 2. ing.
  • the large receiver is arranged on the side surface of any of the condensers 6, that is, on the air passage, and the heat exchange of the condenser 6 is performed.
  • the heat exchange performance of each condenser 6 may vary.
  • the supercooler 8 is provided without providing a structure for distributing the refrigerant or adjusting the flow rate. It is possible to properly convey the refrigerant in a liquid state.
  • the outdoor unit 2 includes a plurality of condensers 6 and a plurality of receivers 7 provided in the same number as the plurality of condensers 6 and connected to each condenser 6 on a one-to-one basis. ..
  • the plurality of condensers 6 are connected to each other on the inlet side of the refrigerant and are individually connected to the corresponding receivers 7 on the outlet side of the refrigerant, and the plurality of receivers 7 are connected to each other.
  • the refrigerant outlet is provided below the inlet in the installed state.
  • the refrigerant flows out from one condenser 6 to one receiver 7, so there is no need to distribute the refrigerant or adjust the flow rate. Therefore, in the configuration including the plurality of condensers 6, the liquid refrigerant can be easily conveyed to the rear stage side of the condensers 6.
  • the outdoor unit 2 is equipped with a supercooler 8. Then, the supercooler 8 is connected to the outlet side of a plurality of receivers 7 connected to each other. As a result, the refrigerant in a liquid state is supplied to the supercooler 8, and the refrigeration cycle device 1 can be efficiently used.
  • the outdoor unit 2 does not have a mechanism, structure or member for distributing the refrigerant or adjusting the flow rate in the path between the condenser 6 and the liquid receiver 7. As a result, the piping and structure are not complicated.
  • a plurality of condensers 6 are formed to have the same capacity to have a common heat exchange performance, and a plurality of receivers 7 are formed to have the same capacity.
  • the capacity ratio of the capacity of the condenser 6 and the capacity of the receiver 7 is formed to be the same in the plurality of condensers 6 and the plurality of receivers 7 connected in a one-to-one manner. Has been done.
  • the volume ratio is also configured to be a: b.
  • the outdoor unit 2 is used as a so-called refrigerator (condensin unit) for equipment requiring cooling or for cooling and air conditioning is shown, but cooling (cooling) operation is performed by providing a three-way valve or the like that changes the flow of the refrigerant. It can also be used for so-called outdoor units capable of heating (heating) operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

An outdoor unit 2 of a refrigeration cycle device 1 comprises: a plurality of condensers 6; and a plurality of liquid receivers 7, provided in the same number as the plurality of condensers 6, and which are respectively connected to outlets of the condensers 6. The plurality of condensers 6 are connected to each other at the refrigerant inlet side, and are individually connected to each of the corresponding liquid receivers 7 at the refrigerant outlet side. Each of the plurality of liquid receivers 7 is provided with a refrigerant outlet which is farther below the refrigerant inlet, in an installed state.

Description

冷凍サイクル装置の室外機Outdoor unit of refrigeration cycle equipment
 本発明の実施形態は、冷凍サイクル装置の室外機に関する。 An embodiment of the present invention relates to an outdoor unit of a refrigeration cycle device.
 冷凍サイクル装置は、冷凍機(コンデンシングユニット)等の室外機とショーケースや空調機等の室内機との間を配管で接続して冷媒を循環させている。このとき、凝縮器の出口側においては、冷媒が気液混合状態になることがあるものの、冷凍サイクル装置を効率的に利用するためには、凝縮器の後段側に配置される過冷却器に対して冷媒を液体状態で搬送することが望ましい。そのため、一般的には、例えば特許文献1に示されているように凝縮器の出口側に受液器を設けることで、後段側に冷媒を液体状態で搬送するようにしている。この受液器は、例えばレシーバなどとも称されるものである。 The refrigeration cycle device circulates refrigerant by connecting an outdoor unit such as a refrigerator (condensin unit) and an indoor unit such as a showcase or an air conditioner with a pipe. At this time, although the refrigerant may be in a gas-liquid mixed state on the outlet side of the condenser, in order to efficiently use the refrigeration cycle device, the supercooler arranged on the rear side of the condenser is used. On the other hand, it is desirable to transport the refrigerant in a liquid state. Therefore, in general, for example, as shown in Patent Document 1, a liquid receiver is provided on the outlet side of the condenser so that the refrigerant is conveyed to the subsequent stage side in a liquid state. This receiver is also called, for example, a receiver.
特開2012-67985号公報Japanese Unexamined Patent Publication No. 2012-67985
 ところで、室外機に複数の凝縮器が設けられることがある。そして、接続される室内機などの負荷装置の仕様や配管長によっては、複数の凝縮器から供給される冷媒を受液するために、大容量の受液器が必要になることがある。 By the way, the outdoor unit may be equipped with multiple condensers. Then, depending on the specifications of the load device such as the indoor unit to be connected and the pipe length, a large-capacity receiver may be required to receive the refrigerant supplied from the plurality of condensers.
 しかしながら、受液器は、例えば高圧ガス保安法への対応や製造設備の大きさの制約などによって、単純に大容量化することが困難な場合がある。また、単に受液器の数を増やして必要とされる容量を確保するとしても、複数の受液器に対して気液を均等に分配することは困難である。すなわち、受液器を大容量化する際には、製造上の困難性や構造の複雑化を招くおそれがある。 However, it may be difficult to simply increase the capacity of the receiver due to, for example, compliance with the High Pressure Gas Safety Act and restrictions on the size of manufacturing equipment. Further, even if the number of receivers is simply increased to secure the required capacity, it is difficult to evenly distribute gas and liquid to a plurality of receivers. That is, when the capacity of the receiver is increased, there is a risk of manufacturing difficulty and complication of the structure.
 本発明は、上記した事情に鑑みてなされたものであり、その目的は、複数の凝縮器を備える構成において、凝縮器の後段側に液体状態の冷媒を容易に搬送することができる冷凍サイクル装置の室外機を提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is a refrigeration cycle apparatus capable of easily transporting a liquid refrigerant to the rear stage side of a condenser in a configuration including a plurality of condensers. To provide the outdoor unit of.
 実施形態の冷凍サイクル装置の室外機は、複数の凝縮器と、複数の凝縮器と同数設けられ、それぞれの凝縮器の出口に接続されている複数の受液器と、を備え、複数の凝縮器は、冷媒の入口側で互いに接続されているとともに、冷媒の出口側で対応する受液器と個別に接続されており、複数の受液器は、冷媒の入口よりも設置状態における下方に冷媒の出口が設けられており、冷媒の出口側で互いに接続されている。 The outdoor unit of the refrigeration cycle apparatus of the embodiment includes a plurality of condensers and a plurality of receivers provided in the same number as the plurality of condensers and connected to the outlets of the respective condensers, and a plurality of condensers. The vessels are connected to each other on the inlet side of the refrigerant and individually connected to the corresponding receivers on the outlet side of the refrigerant, with the plurality of receivers below the inlet of the refrigerant in the installed state. Refrigerant outlets are provided and are connected to each other on the refrigerant outlet side.
実施形態における冷凍サイクル装置の構成を模式的に示す図The figure which shows typically the structure of the refrigerating cycle apparatus in embodiment 受液器の構成を模式的に示す図The figure which shows the structure of the receiver schematically 受液器の設置態様の一例を模式的に示す図The figure which shows an example of the installation mode of the receiver schematically.
 以下、実施形態について図面を参照しながら説明する。
 図1に示すように、本実施形態の冷凍サイクル装置1は、室外機2と、負荷装置としての室内機3とを備えている。これら室外機2と室内機3との間は、冷媒が循環する外部配管4によって接続されている。本実施形態では、空調用の冷凍サイクル装置1を想定しているが、室外機2は、機器の冷却やショーケースにおける物品の冷却用など、いわゆる冷凍機(コンデンシングユニット)が対応可能な他の用途にも適用することができる。
Hereinafter, embodiments will be described with reference to the drawings.
As shown in FIG. 1, the refrigeration cycle device 1 of the present embodiment includes an outdoor unit 2 and an indoor unit 3 as a load device. The outdoor unit 2 and the indoor unit 3 are connected by an external pipe 4 through which a refrigerant circulates. In this embodiment, a refrigerating cycle device 1 for air conditioning is assumed, but the outdoor unit 2 can be used by a so-called refrigerating machine (condensining unit) for cooling equipment, cooling articles in a showcase, and the like. It can also be applied to the above applications.
 なお、図1では説明の簡略化のために1つの室内機3を備える例を示しているが、複数の室内機3を設けるなど、負荷装置が複数接続される構成とすることもできる。また、図示は省略するが、室外機2と室内機3との間は、制御用の電気配線によっても接続されている。 Although FIG. 1 shows an example in which one indoor unit 3 is provided for simplification of the description, a configuration in which a plurality of load devices are connected may be provided, such as by providing a plurality of indoor units 3. Although not shown, the outdoor unit 2 and the indoor unit 3 are also connected by electrical wiring for control.
 室外機2は、筐体5内に、複数の凝縮器6と、凝縮器6と同数の受液器7と、1つの過冷却器8などを備えている。凝縮器6は、いわゆるフィンチューブ型の熱交換器で構成されており、本実施形態では同じ大きさに構成されている。すなわち、同一の寸法で構成され、同一の容量と、同一の熱交換面積を有する凝縮器7が複数、例えば3つ(図3参照)設けられている。各凝縮器6は、図1に「IN」として示す冷媒の入口側において分岐配管20を介して互いに並列接続されているとともに、図1に「OUT」として示す冷媒の出口側において、対応する受液器7と冷媒配管21によって個別に直接接続されている。 The outdoor unit 2 includes a plurality of condensers 6, the same number of receivers 7 as the condensers 6, and one supercooler 8 in the housing 5. The condenser 6 is composed of a so-called fin tube type heat exchanger, and is configured to have the same size in the present embodiment. That is, a plurality, for example, three (see FIG. 3) condensers 7 having the same dimensions, the same capacity, and the same heat exchange area are provided. Each condenser 6 is connected in parallel to each other via a branch pipe 20 on the inlet side of the refrigerant shown as “IN” in FIG. 1, and corresponds to a receiver on the outlet side of the refrigerant shown as “OUT” in FIG. The liquid vessel 7 and the refrigerant pipe 21 are individually and directly connected to each other.
 つまり、各凝縮器6から流出した冷媒は、対応する1つの受液器7に流入する構成となっている。このとき、凝縮器6から流出する冷媒は、気液混合状態になっていることがある。この受液器7は、概ね円筒状に形成されており、設置状態における上方側に、図1に「IN」として示す冷媒の入口が設けられ、入口よりも下方側に図1に「OUT」として示す冷媒の出口が設けられている。 That is, the refrigerant flowing out from each condenser 6 flows into one corresponding receiver 7. At this time, the refrigerant flowing out of the condenser 6 may be in a gas-liquid mixed state. The liquid receiver 7 is formed in a substantially cylindrical shape, and is provided with an inlet for the refrigerant shown as “IN” in FIG. 1 on the upper side in the installed state, and “OUT” in FIG. 1 below the inlet. There is an outlet for the refrigerant shown as.
 そのため、図2に示すように、矢印F1にて示すように凝縮器6側から気液混合状態の冷媒が受液器7に流入すると、重力によって液体状態の冷媒(R)が受液器7の下方側に溜まることになる。つまり、冷媒は、受液器7の内部において気液分離される。そして、出口側に溜まった液体状態の冷媒は、矢印F2にて示すように、出口を通って受液器7から流出する。これにより、受液器7の後段側に液体状態の冷媒が搬送される。 Therefore, as shown in FIG. 2, when the refrigerant in the gas-liquid mixed state flows into the liquid receiver 7 from the condenser 6 side as shown by the arrow F1, the liquid refrigerant (R) is transferred to the liquid receiver 7 by gravity. It will accumulate on the lower side of. That is, the refrigerant is gas-liquid separated inside the receiver 7. Then, the liquid refrigerant accumulated on the outlet side flows out from the liquid receiver 7 through the outlet as shown by the arrow F2. As a result, the liquid refrigerant is conveyed to the rear side of the receiver 7.
 このとき、各受液器7は、胴長さが600mm~700mm、その外形(D)が、160mmを超えない大きさに形成されている。また、複数の受液器7を設ける構成としたことにより、それぞれの受液器7に必要となる容積も小さくなっている。そのため、各受液器7は、高圧ガス保安法においては配管や簡易的な容器に区分されるものとなっている。すなわち、比較的小さな容積とすることで、耐圧性能を向上させることができる。各受液器7は、冷媒の出口側において互いに接続されている。 At this time, each receiver 7 has a body length of 600 mm to 700 mm and an outer shape (D) of which does not exceed 160 mm. Further, since the plurality of receivers 7 are provided, the volume required for each receiver 7 is also reduced. Therefore, each receiver 7 is classified into a pipe and a simple container under the High Pressure Gas Safety Act. That is, the pressure resistance can be improved by making the volume relatively small. The receivers 7 are connected to each other on the outlet side of the refrigerant.
 受液器7の出口側には、合流配管22を介して接続される過冷却器8が設けられている。過冷却器8は、いわゆるフィンチューブ型の熱交換器で構成されており、各受液器7から流出した冷媒、つまりは、各受液器7の内部において気液分離された冷媒のうち液体状態の冷媒が流入する。すなわち、凝縮器6の後段側に設けられる過冷却器8には、冷媒が液体状態で搬送される。 A supercooler 8 connected via a merging pipe 22 is provided on the outlet side of the liquid receiver 7. The supercooler 8 is composed of a so-called fin tube type heat exchanger, and the refrigerant flowing out from each receiver 7, that is, the liquid among the refrigerants separated into gas and liquid inside each receiver 7. The refrigerant in the state flows in. That is, the refrigerant is conveyed in a liquid state to the supercooler 8 provided on the rear side of the condenser 6.
 過冷却器8を経由した冷媒は、外部配管4を通って室内機3に搬送される。室内機3は、膨張装置13、室内側熱交換器3a、送風ファン3b、および室内側制御ユニット3cなどを備えている。本実施形態の場合、室内側熱交換器3aは、膨張装置13により減圧された冷媒を蒸発させる空調用の蒸発器として機能する。ただし、室内機3の構成は一例であり、これに限定されない。 The refrigerant that has passed through the supercooler 8 is conveyed to the indoor unit 3 through the external pipe 4. The indoor unit 3 includes an expansion device 13, an indoor heat exchanger 3a, a blower fan 3b, an indoor control unit 3c, and the like. In the case of the present embodiment, the indoor heat exchanger 3a functions as an air-conditioning evaporator that evaporates the refrigerant decompressed by the expansion device 13. However, the configuration of the indoor unit 3 is an example, and the present invention is not limited to this.
 室内機3を経由した冷媒は、外部配管4を通って室外機2に戻される。この室外機2には、アキュムレータ9、並列に接続された2つの圧縮機10、オイルセパレータ11、および制御ユニット12などが設けられている。外部配管4を通って室外機2に戻された冷媒は、アキュムレータ9によって気液分離された状態で2つの圧縮機10によって圧縮され、オイルセパレータ11で油分が除去された後、分岐配管20を介して各凝縮器6に流入する。 The refrigerant that has passed through the indoor unit 3 is returned to the outdoor unit 2 through the external pipe 4. The outdoor unit 2 is provided with an accumulator 9, two compressors 10 connected in parallel, an oil separator 11, a control unit 12, and the like. The refrigerant returned to the outdoor unit 2 through the external pipe 4 is compressed by the two compressors 10 in a gas-liquid separated state by the accumulator 9, and after the oil is removed by the oil separator 11, the branch pipe 20 is connected. It flows into each condenser 6 through.
 このとき、各凝縮器6は、同等の熱交換性能を備えたもの、つまりは、その形状などがほぼ同一のものとなっている。そのため、オイルセパレータ11を経由した冷媒は、各凝縮器6に均等に流入することになる。なお、ほぼ同一とは、一致する状態および予め定められている許容範囲内に納まっている状態を含んでいる。そして、室外機2に設けられている制御ユニット12と、室内機3に設けられている室内側制御ユニット3cとによって各機器が制御され、室外機2と室内機3との間を冷媒が循環することにより冷凍サイクル装置1が動作している。 At this time, each condenser 6 has the same heat exchange performance, that is, the shape and the like are almost the same. Therefore, the refrigerant that has passed through the oil separator 11 flows evenly into each condenser 6. In addition, almost the same includes a state in which they match and a state in which they are within a predetermined allowable range. Then, each device is controlled by the control unit 12 provided in the outdoor unit 2 and the indoor control unit 3c provided in the indoor unit 3, and the refrigerant circulates between the outdoor unit 2 and the indoor unit 3. By doing so, the refrigeration cycle device 1 is operating.
 次に、上記した構成の作用について説明する。
 前述のように、凝縮器6の出口側においては、冷媒が気液混合状態になることがある一方、冷凍サイクル装置1を効率的に利用するためには、凝縮器6の後段側に配置される過冷却器8に対して冷媒を液体状態で搬送することが望ましい。
Next, the operation of the above configuration will be described.
As described above, the refrigerant may be in a gas-liquid mixed state on the outlet side of the condenser 6, while it is arranged on the rear side of the condenser 6 in order to efficiently use the refrigeration cycle device 1. It is desirable to transport the refrigerant in a liquid state to the supercooler 8.
 ただし、受液器7は、例えば耐圧に関する安全性への対応や製造設備の大きさの制約などによって、単純に大容量化することが困難な場合がある。また、単に受液器7の数を増やしても、気液混合状態の冷媒を、1つの凝縮器6から複数の受液器7に対して、または、複数の凝縮器6から複数の受液器7に対して気液を均等に分配することは困難である。 However, it may be difficult to simply increase the capacity of the receiver 7 due to, for example, safety measures related to pressure resistance and restrictions on the size of manufacturing equipment. Further, even if the number of the receivers 7 is simply increased, the refrigerant in the gas-liquid mixed state is transferred from one condenser 6 to the plurality of receivers 7, or from the plurality of condensers 6 to a plurality of liquid receivers. It is difficult to evenly distribute gas and liquid to the vessel 7.
 そこで、本実施形態では、以下のようにして、複数の凝縮器6を備える構成において、受液器7の大容量化を招くことなく、凝縮器6の後段側に液体状態の冷媒を搬送することができるようにしている。 Therefore, in the present embodiment, as described below, in the configuration including the plurality of condensers 6, the liquid refrigerant is conveyed to the rear stage side of the condenser 6 without increasing the capacity of the receiver 7. I am trying to be able to do it.
 上記したように、本実施形態の室外機2は、複数の凝縮器6と複数の受液器7とを備えている。そして、各凝縮器6は、1つの受液器7にそれぞれ接続されている。すなわち、凝縮器6と受液器7との間の経路には、冷媒の分配用または流量調整用の機構、構造あるいは部材を配置しておらず、冷媒配管21により直接接続されている。ここで、複数の冷媒配管21は、それぞれ略同一の配管長で形成されていることが好ましく、最長のものでも、最短の冷媒配管21の2倍以下であることが好ましい。 As described above, the outdoor unit 2 of the present embodiment includes a plurality of condensers 6 and a plurality of liquid receivers 7. Each condenser 6 is connected to one receiver 7. That is, the path between the condenser 6 and the liquid receiver 7 is not provided with a mechanism, structure or member for distributing the refrigerant or adjusting the flow rate, and is directly connected by the refrigerant pipe 21. Here, it is preferable that the plurality of refrigerant pipes 21 are formed with substantially the same pipe length, and even the longest one is preferably twice or less the shortest refrigerant pipe 21.
 これにより、例えば1つの凝縮器6から複数の受液器7に対して冷媒を分配したり、複数の凝縮器6から1つの受液器7に冷媒を分配した場合とは異なり、気液混合状態の冷媒の気液を均等に分配する弁等を配置する必要性そのものを無くすことができる。 As a result, gas-liquid mixing is different from, for example, when the refrigerant is distributed from one condenser 6 to a plurality of receivers 7 or the refrigerant is distributed from a plurality of condensers 6 to one receiver 7. It is possible to eliminate the need to arrange a valve or the like that evenly distributes the gas and liquid of the refrigerant in the state.
 このとき、各受液器7は、設置状態において、冷媒の入口よりも下方に冷媒の出口が設けられている。そのため、受液器7の出口側には、重力によって液体状態の冷媒が溜まることになることから、受液器7の後段側に液体状態の冷媒が流出することになる。 At this time, each receiver 7 is provided with a refrigerant outlet below the refrigerant inlet in the installed state. Therefore, the liquid refrigerant is accumulated on the outlet side of the receiver 7 due to gravity, and the liquid refrigerant flows out to the rear side of the receiver 7.
 そして、各凝縮器6は同等の熱交換性能を備えたものであり、また、各受液器7はほぼ同じ大きさ(容量)と形状(寸法)に形成されていることから、各受液器7からは、ほぼ同じ流量で液体状態の冷媒が流出する。そのため、互いに接続されている複数の受液器7の出口側に接続されている過冷却器8に対しては、受液器7の出口側において冷媒の分配を行わなくても、また、冷媒の流量調整を行わなくても、各受液器7から均等に流出した液体状態の冷媒が供給される。 Since each condenser 6 has the same heat exchange performance and each receiver 7 is formed to have substantially the same size (capacity) and shape (dimension), each liquid receiver 7 is formed. The liquid refrigerant flows out from the vessel 7 at almost the same flow rate. Therefore, for the supercooler 8 connected to the outlet side of the plurality of receivers 7 connected to each other, even if the refrigerant is not distributed on the outlet side of the receiver 7, the refrigerant can be used. Even if the flow rate is not adjusted, the liquid refrigerant that has evenly flowed out from each receiver 7 is supplied.
 これにより、受液器7と過冷却器8との間の経路においても、冷媒の分配用または流量調整用の機構、構造あるいは部材を配置する必要なく、液体状態の冷媒を過冷却器8に搬送することが可能となり、冷凍サイクル装置1を効率的に利用することができる。 As a result, even in the path between the receiver 7 and the supercooler 8, it is not necessary to arrange a mechanism, structure or member for distributing the refrigerant or adjusting the flow rate, and the liquid refrigerant can be transferred to the supercooler 8. It becomes possible to carry, and the refrigeration cycle device 1 can be used efficiently.
 また、受液器7を複数設ける構成としたことにより、1つ設ける場合と比べて各受液器7の大きさを相対的に小さくすることができる。これにより、製造設備の大きさの制約を受けにくくなり、製造を容易に行うことが可能となる。また、受液器7を分散させ、各受液器7の寸法・容量を所定以下とすることで、機器としての耐圧性を高め、安全性を高めることができる。特に例えば高圧ガス保安法における配管や簡易的な容器に分類される大きさに受液器7を形成することも可能になり、圧力容器に分類される大きさの場合と比べて高圧ガス安全法を遵守する際の条件が緩和される。 Further, by providing a plurality of receivers 7, the size of each receiver 7 can be relatively reduced as compared with the case where one receiver 7 is provided. As a result, the size of the manufacturing equipment is less likely to be restricted, and manufacturing can be easily performed. Further, by dispersing the receivers 7 and setting the dimensions and capacities of the receivers 7 to a predetermined value or less, the pressure resistance of the device can be increased and the safety can be enhanced. In particular, for example, it is possible to form the receiver 7 in a size classified as a pipe or a simple container under the High Pressure Gas Safety Act, and the High Pressure Gas Safety Act compared with the case of a size classified as a pressure vessel. The conditions for complying with are relaxed.
 特に、圧縮機により冷媒を圧縮する冷凍サイクル装置の室外機において、圧縮機吐出圧力が0.2MPa以上の冷媒を貯留する受液器7の胴部長さを1000mm以下、内径を200mm以下とし、内容積を0.04m^3以下とすることで、高圧ガス保安法における簡易的な容器として扱うことができる。すなわち、このような条件に適合する受液器7とすることで、耐圧性を確保することができるとともに、製造時に行う安全性試験なども簡素化でき製造工程全体を効率的にすることができ、製造コストを低減することができる。 In particular, in the outdoor unit of the refrigeration cycle device that compresses the refrigerant with a compressor, the body length of the receiver 7 for storing the refrigerant having a compressor discharge pressure of 0.2 MPa or more is 1000 mm or less, and the inner diameter is 200 mm or less. By setting the product to 0.04 m ^ 3 or less, it can be treated as a simple container under the High Pressure Gas Safety Act. That is, by using the receiver 7 that meets such conditions, pressure resistance can be ensured, safety tests performed at the time of manufacturing can be simplified, and the entire manufacturing process can be made efficient. , Manufacturing cost can be reduced.
 また、機器使用のための据え付け後においても定期的な保安検査を簡素化または検査実施不要とすることができ、機器としての運用コストを低減することが可能となる。
 また、このように分散された受液器7に対応させて、凝縮器6を分散し各受液器7に対して1対1で接続し構成することで、冷媒の分流性も向上させることができ、冷凍サイクルシステムとしての動作が円滑なものとなる。
In addition, regular security inspections can be simplified or inspections do not need to be performed even after installation for use of the equipment, and the operating cost of the equipment can be reduced.
Further, by corresponding to the liquid receivers 7 dispersed in this way, the condenser 6 is dispersed and connected to each liquid receiver 7 on a one-to-one basis, so that the flow rate of the refrigerant can be improved. The operation as a refrigeration cycle system becomes smooth.
 また、受液器7を小型化することにより、室外機2の内部での配置の自由度を高めることができる。そして、配置の自由度が高まることにより、室外機2の性能の低下を抑制することが可能になる。具体的には、図3に示すように、室外機2の筐体5内には、凝縮器6、圧縮機10、アキュムレータ9、圧縮機10、オイルセパレータ11、および制御ユニット12などが収容されている。 Further, by downsizing the liquid receiver 7, the degree of freedom of arrangement inside the outdoor unit 2 can be increased. Then, by increasing the degree of freedom of arrangement, it becomes possible to suppress the deterioration of the performance of the outdoor unit 2. Specifically, as shown in FIG. 3, a condenser 6, a compressor 10, an accumulator 9, a compressor 10, an oil separator 11, a control unit 12, and the like are housed in the housing 5 of the outdoor unit 2. ing.
 このとき、仮に大型受液器を1つ設ける構成の場合には、大型受液器がいずれかの凝縮器6の側面つまりは風路上に配置されることになり、その凝縮器6の熱交換性能の低下を招くおそれがある。換言すると、大型受液器を1つ設ける構成の場合、各凝縮器6の熱交換性能にばらつきを生じさせるおそれがある。 At this time, in the case of a configuration in which one large receiver is provided, the large receiver is arranged on the side surface of any of the condensers 6, that is, on the air passage, and the heat exchange of the condenser 6 is performed. There is a risk of performance degradation. In other words, in the case of a configuration in which one large receiver is provided, the heat exchange performance of each condenser 6 may vary.
 これに対して、小型の各受液器7を複数設ける構成の場合には、図3に示すように、例えば図示左方側の2つの凝縮器6に対して均等な位置関係に配置することなどが容易となり、凝縮器6の熱交換性能にばらつきが生じるおそれを低減できる。そして、凝縮器6の熱交換性能にばらつきが生じなければ、対応する各受液器7に冷媒が同様に流入するとともに、各受液器7からは冷媒が均等に流出することになる。そのため、複数の凝縮器6および複数の受液器7によって一時的に冷媒の経路が分岐している場合であっても、冷媒の分配用や流量調整の構造などを設けることなく過冷却器8に適切に液体状態の冷媒を搬送することができる。 On the other hand, in the case of a configuration in which a plurality of small receivers 7 are provided, as shown in FIG. 3, for example, they are arranged evenly with respect to the two condensers 6 on the left side of the drawing. Etc. can be facilitated, and the possibility that the heat exchange performance of the condenser 6 varies can be reduced. If the heat exchange performance of the condenser 6 does not vary, the refrigerant will flow into the corresponding receivers 7 in the same manner, and the refrigerant will flow out evenly from the receivers 7. Therefore, even when the refrigerant path is temporarily branched by the plurality of condensers 6 and the plurality of liquid receivers 7, the supercooler 8 is provided without providing a structure for distributing the refrigerant or adjusting the flow rate. It is possible to properly convey the refrigerant in a liquid state.
 以上説明した実施形態によれば、次のような効果を得ることができる。
 室外機2は、複数の凝縮器6と、複数の凝縮器6と同数設けられ、それぞれの凝縮器6に対して1対1で接続されている複数の受液器7と、を備えている。そして、複数の凝縮器6は、冷媒の入口側で互いに接続されているとともに、冷媒の出口側で対応する受液器7と個別に接続されており、複数の受液器7は、冷媒の入口よりも設置状態における下方に冷媒の出口が設けられている。
According to the embodiment described above, the following effects can be obtained.
The outdoor unit 2 includes a plurality of condensers 6 and a plurality of receivers 7 provided in the same number as the plurality of condensers 6 and connected to each condenser 6 on a one-to-one basis. .. The plurality of condensers 6 are connected to each other on the inlet side of the refrigerant and are individually connected to the corresponding receivers 7 on the outlet side of the refrigerant, and the plurality of receivers 7 are connected to each other. The refrigerant outlet is provided below the inlet in the installed state.
 これにより、1つの凝縮器6からは1つの受液器7に対して冷媒が流出することになるため、冷媒の分配や流量調整を行う必要が無い。したがって、複数の凝縮器6を備える構成において、凝縮器6の後段側に液体状態の冷媒を容易に搬送することができる。 As a result, the refrigerant flows out from one condenser 6 to one receiver 7, so there is no need to distribute the refrigerant or adjust the flow rate. Therefore, in the configuration including the plurality of condensers 6, the liquid refrigerant can be easily conveyed to the rear stage side of the condensers 6.
 また、受液器7を複数設ける構成としたことにより、1つの受液器7の容積を小さくすることが可能になる。したがって、受液器7の大容量化を招くこともない。さらに、筐体5内への配置の自由度が高まることから、例えば1つの凝縮器6に対してその風路を塞ぐような状況を回避することができ、熱交換性能がばらつくことなどを抑制できる。 Further, by providing a plurality of receivers 7, it is possible to reduce the volume of one receiver 7. Therefore, the capacity of the receiver 7 is not increased. Further, since the degree of freedom of arrangement in the housing 5 is increased, it is possible to avoid a situation in which one condenser 6 blocks the air passage, and it is possible to suppress variations in heat exchange performance. it can.
 室外機2は、過冷却器8を備えている。そして、過冷却器8は、互いに接続されている複数の受液器7の出口側に接続されている。これにより、過冷却器8には液体状態の冷媒が供給されるようになり、冷凍サイクル装置1を効率的に利用することができる。 The outdoor unit 2 is equipped with a supercooler 8. Then, the supercooler 8 is connected to the outlet side of a plurality of receivers 7 connected to each other. As a result, the refrigerant in a liquid state is supplied to the supercooler 8, and the refrigeration cycle device 1 can be efficiently used.
 室外機2は、凝縮器6と受液器7との間の経路には、冷媒の分配用または流量調整用の機構、構造あるいは部材を配置しない。これにより、配管や構造の複雑化を招くことがない。 The outdoor unit 2 does not have a mechanism, structure or member for distributing the refrigerant or adjusting the flow rate in the path between the condenser 6 and the liquid receiver 7. As a result, the piping and structure are not complicated.
 室外機2は、複数の凝縮器6が同一容量に形成されており、共通する熱交換性能となっているとともに、複数の受液器7が同一容量に形成されている。これにより、冷媒の経路が一時的に分岐する場合において、各経路の冷媒流量を均等にすることができる。
 また、換言すると凝縮器6の容量と、受液器7の容量との容量比が、1対1で接続される複数の凝縮器6と複数の受液器7とで同一の容量比に形成されている。すなわち、1つの凝縮器6の容量aとし、この凝縮器6の出口に接続される受液器7の容量bとする場合、その他の対に接続された凝縮器6と受液器7との容積比もa:bとなるように構成されている。
In the outdoor unit 2, a plurality of condensers 6 are formed to have the same capacity to have a common heat exchange performance, and a plurality of receivers 7 are formed to have the same capacity. As a result, when the refrigerant paths are temporarily branched, the refrigerant flow rates in each path can be made uniform.
In other words, the capacity ratio of the capacity of the condenser 6 and the capacity of the receiver 7 is formed to be the same in the plurality of condensers 6 and the plurality of receivers 7 connected in a one-to-one manner. Has been done. That is, when the capacity a of one condenser 6 is set and the capacity b of the receiver 7 connected to the outlet of the condenser 6 is set, the condenser 6 and the receiver 7 connected to the other pair The volume ratio is also configured to be a: b.
 実施形態では室外機2を要冷機器用または冷房空調用のいわゆる冷凍機(コンデンシングユニット)として用いる例を示したが、冷媒の流れを変える三方弁などを設けることにより、冷却(冷房)運転と加熱(暖房)運転とが可能ないわゆる室外機に用いることもできる。 In the embodiment, an example in which the outdoor unit 2 is used as a so-called refrigerator (condensin unit) for equipment requiring cooling or for cooling and air conditioning is shown, but cooling (cooling) operation is performed by providing a three-way valve or the like that changes the flow of the refrigerant. It can also be used for so-called outdoor units capable of heating (heating) operation.
 以上、本発明の幾つかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although some embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.

Claims (5)

  1.  複数の凝縮器と、
     複数の前記凝縮器と同数設けられ、それぞれの前記凝縮器の出口に接続されている複数の受液器と、を備え、
     複数の前記凝縮器は、冷媒の入口側で互いに接続されているとともに、冷媒の出口側で対応する前記受液器と個別に接続されており、
     複数の前記受液器は、冷媒の入口よりも設置状態における下方に冷媒の出口が設けられており、冷媒の出口側で互いに接続されている冷凍サイクル装置の室外機。
    With multiple condensers
    A plurality of receivers provided in the same number as the plurality of the condensers and connected to the outlets of the respective condensers are provided.
    The plurality of the condensers are connected to each other on the inlet side of the refrigerant and individually connected to the corresponding receivers on the outlet side of the refrigerant.
    The plurality of the receivers are outdoor units of a refrigeration cycle device in which a refrigerant outlet is provided below the refrigerant inlet in the installed state and is connected to each other on the refrigerant outlet side.
  2.  過冷却器を備え、
     前記過冷却器は、互いに接続されている複数の前記受液器の出口側に接続されている請求項1記載の冷凍サイクル装置の室外機。
    Equipped with a supercooler
    The outdoor unit of the refrigeration cycle apparatus according to claim 1, wherein the supercooler is connected to the outlet side of a plurality of the receivers connected to each other.
  3.  前記凝縮器と前記受液器との間の経路が冷媒配管により直接接続されている請求項1または2記載の冷凍サイクル装置の室外機。 The outdoor unit of the refrigeration cycle apparatus according to claim 1 or 2, wherein the path between the condenser and the liquid receiver is directly connected by a refrigerant pipe.
  4.  前記凝縮器の容量と、前記受液器の容量との容量比が、1対1で接続される複数の前記凝縮器と複数の前記受液器とで同一の容量比に形成されている請求項1から3のいずれか一項記載の冷凍サイクル装置の室外機。 A claim in which the capacity ratio of the capacity of the condenser and the capacity of the receiver is formed to be the same capacity ratio between the plurality of condensers connected in a one-to-one manner and the plurality of receivers. The outdoor unit of the refrigeration cycle apparatus according to any one of items 1 to 3.
  5.  複数の前記凝縮器は、同一容量のものであり、
     複数の前記受液器は、同一容量に形成されている請求項1から4のいずれか一項記載の冷凍サイクル装置の室外機。
    The plurality of the condensers have the same capacity.
    The outdoor unit of the refrigeration cycle apparatus according to any one of claims 1 to 4, wherein the plurality of receivers have the same capacity.
PCT/JP2020/017206 2019-06-25 2020-04-21 Outdoor unit of refrigeration cycle device WO2020261734A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021527415A JP7198355B2 (en) 2019-06-25 2020-04-21 Outdoor unit of refrigeration cycle equipment
CN202090000588.XU CN217058027U (en) 2019-06-25 2020-04-21 Outdoor unit of refrigeration cycle device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019117288 2019-06-25
JP2019-117288 2019-06-25

Publications (1)

Publication Number Publication Date
WO2020261734A1 true WO2020261734A1 (en) 2020-12-30

Family

ID=74060061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/017206 WO2020261734A1 (en) 2019-06-25 2020-04-21 Outdoor unit of refrigeration cycle device

Country Status (3)

Country Link
JP (1) JP7198355B2 (en)
CN (1) CN217058027U (en)
WO (1) WO2020261734A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116202244A (en) * 2022-12-22 2023-06-02 珠海格力电器股份有限公司 Heat exchange device, air conditioner, control method and device of air conditioner and air conditioning system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS529938U (en) * 1975-07-09 1977-01-24
JP2009228975A (en) * 2008-03-24 2009-10-08 Hitachi Appliances Inc Remote condenser type air conditioner
JP2013195016A (en) * 2012-03-21 2013-09-30 Daikin Industries Ltd Outdoor multi-type air conditioning device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS529938U (en) * 1975-07-09 1977-01-24
JP2009228975A (en) * 2008-03-24 2009-10-08 Hitachi Appliances Inc Remote condenser type air conditioner
JP2013195016A (en) * 2012-03-21 2013-09-30 Daikin Industries Ltd Outdoor multi-type air conditioning device

Also Published As

Publication number Publication date
JPWO2020261734A1 (en) 2021-12-02
CN217058027U (en) 2022-07-26
JP7198355B2 (en) 2022-12-28

Similar Documents

Publication Publication Date Title
US11555618B2 (en) Multi-zone variable refrigerant flow heating/cooling unit
US10393418B2 (en) Air-conditioning apparatus
US9970693B2 (en) Refrigeration cycle apparatus
CN108474596A (en) Oil is carried out using variable speed in multi-compressor system to match
US10203171B2 (en) Adjustable multi-pass heat exchanger system
US11112157B2 (en) Suction conduit flow control for lubricant management
EP3812662A1 (en) Air conditioning system
US10323868B2 (en) Multi-coil microchannel evaporator
WO2020261734A1 (en) Outdoor unit of refrigeration cycle device
KR20170062160A (en) refrigerator
KR102104893B1 (en) Evaporator and Turbo chiller comprising the same
WO2011072679A1 (en) A vapour compression system with split evaporator
US9939179B2 (en) Cascading oil distribution system
WO2020250952A1 (en) Air conditioner
EP3792568B1 (en) Refrigeration cycle device
JP3894222B2 (en) Refrigeration equipment
AU2021268402B2 (en) Oil management system for multiple compressors
KR102047688B1 (en) Evaporator and Turbo chiller comprising the same
US11846457B2 (en) Transportation refrigeration modular unit
JP2021081138A (en) Heat source machine for refrigeration cycle device
CA2919464A1 (en) Thermosyphon configuration for cascade refrigeration systems
JP2013245857A (en) Refrigeration device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20830568

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021527415

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20830568

Country of ref document: EP

Kind code of ref document: A1