WO2020261653A1 - Porous body, method for producing porous body, method for transplanting porous body, and cell support - Google Patents

Porous body, method for producing porous body, method for transplanting porous body, and cell support Download PDF

Info

Publication number
WO2020261653A1
WO2020261653A1 PCT/JP2020/008957 JP2020008957W WO2020261653A1 WO 2020261653 A1 WO2020261653 A1 WO 2020261653A1 JP 2020008957 W JP2020008957 W JP 2020008957W WO 2020261653 A1 WO2020261653 A1 WO 2020261653A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous body
base material
template
sacrificial template
producing
Prior art date
Application number
PCT/JP2020/008957
Other languages
French (fr)
Japanese (ja)
Inventor
優史 丸山
広貴 佐久間
正樹 松森
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2020261653A1 publication Critical patent/WO2020261653A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/16Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/20Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/24Collagen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus

Definitions

  • cell scaffolding materials are required to have low toxicity and performance that does not inhibit cell function. Further, it is necessary to have a structure in which the cells are stably supported and do not fall off, oxygen and nutrients are sufficiently supplied to the supported cells, and waste products from the cells are appropriately excreted. In addition, it is required to have a high porosity so that it can be integrated with a living tissue after transplantation, and to have a property of being easily processed and molded into a desired shape.
  • Patent Document 1 describes a technique using a phase separating agent that is compatible with an olefin polymer and phase-separates from a cured product of the olefin polymer.
  • Patent Document 2 describes a method for preparing a bioreabsorbable dressing using sieved Porogen particles.
  • the present invention has a three-dimensional network structure of communication holes and is useful as a cell scaffold or a biocompatible material, a porous body, a method for producing a porous body, a method for transplanting a porous body, and the like. It is an object of the present invention to provide a cell carrier using.
  • the cell carrier according to the present invention includes the porous body and cells supported on the porous body.
  • a large number of communication holes 20 form a three-dimensional network structure in the base material. Due to the network structure of a large number of communication holes 20, it is possible to comprehensively introduce cells into the deep part of the porous body 1 and to supply sufficient oxygen and nutrients to the cells supported in the deep part. become.
  • the three-dimensional network structure includes a structure in which the communication holes 20 intersect each other, a structure in which the communication holes 20 are oriented in the same direction or in different directions without intersecting each other, and a structure in which these structures are mixed. Etc. are included.
  • the porous body 1 according to the present embodiment is manufactured by using a sacrificial template 120 (see FIG. 1D) for molding a communication hole 20 having a desired shape and structure.
  • the sacrificial template 120 is removed after molding the communication holes 20 and does not constitute the finished product of the porous body 1.
  • a long precipitate having a large aspect ratio (ratio of length to diameter) in the vertical cross-sectional view is generated in the medium and used for forming the communication hole 20.
  • the sacrificial templates can be easily contacted with each other in the precursor solution, precursor powder, etc. used for producing the porous body. Can be made to. Further, by aligning the shapes of a large number of sacrificial templates, it is possible to stably form a large number of communication holes having a high uniformity in diameter (inner width) and a constant shape.
  • FIG. 1A shows a state in which the precursor solution 100 containing the raw material of the sacrificial template 120 is prepared in the liquid tank.
  • FIG. 1B shows a state in which the nucleus 110 of the sacrificial template 120 is formed in the precursor solution 100.
  • FIG. 1C shows a state in which a long sacrificial template 120 having a large aspect ratio is precipitated in the precursor solution 100.
  • FIG. 1D shows the sacrificial template 120 forming a three-dimensional network structure obtained from the precursor solution 100.
  • the liquid tank containing the precursor solution 100 is the outer shape of the porous body 1 to be manufactured as long as the three-dimensional structure of the sacrificial template 120 fits. It may have the same shape as the above, that is, a shape that functions as a molding mold for the porous body 1, or may have a shape different from the outer shape of the porous body 1 to be manufactured.
  • the sacrificial template 120 can be formed of any of low molecular weight compounds, high molecular weight compounds, inorganic compounds, metals and the like.
  • the precursor solution 100 when the sacrificial template 120 is formed of a low molecular weight compound, when it is formed of a high molecular weight compound such as a low molecular weight compound which is a raw material, or when it is formed of an inorganic compound such as a monoma, a prepolymer, or a high molecular weight compound.
  • a metal such as a metal salt or a metal alkoxide
  • the metal salt, the metal oxide or the like can be prepared by dissolving and dispersing each in an appropriate solvent.
  • the core 110 of the sacrificial template 120 and the long sacrificial template 120 having a large aspect ratio have an appropriate number density required for forming the communication holes 20 in the precursor solution 100. It can be precipitated as follows. Although the spherical nucleus 110 is shown in FIG. 1B, the form of precipitation is not limited to crystallization from the liquid phase, but may be phase separation of solid components such as spherical, fibrous, and amorphous. Good. As an operation for precipitating the solid component, an appropriate operation can be used depending on the type of the raw material of the sacrificial template 120.
  • low molecular weight compounds include urea, urea derivatives, thiourea, and thiourea derivatives.
  • the derivative include phenyl (thio) urea, alkyl-substituted phenyl (thio) urea, alkoxy-substituted phenyl (thio) urea, benzoyl (thio) urea, benzyl (thio) urea, and substituted derivatives thereof.
  • water can be used as the solvent.
  • These compounds are highly temperature dependent for solubility in water and can form a crystalline sacrificial template 120. Therefore, the number density of the core 110 of the sacrifice template 120 and the shape of the sacrifice template 120 can be easily controlled. Further, since water serves as a good solvent, the polarity of the precursor solution 100 can be easily adjusted by adjusting the amount of the poor solvent added.
  • the metal forming the sacrificial template 120 a metal forming a metal salt having high solubility and a metal having a large reduction potential are preferable. With such a metal, the number density of the core 110 of the sacrificial template 120 and the shape of the sacrificial template 120 can be precisely controlled by changing the redox potential of the precursor solution 100.
  • Examples of the solvent of the precursor solution 100 include water, alcohols such as methanol, ethanol and isopropyl alcohol, ethers such as diethyl ether and dibutyl ether, ketones such as acetone, methyl ethyl ketone and cyclohexanone, ethyl acetate and the like.
  • Fatty acid esters aromatic hydrocarbons such as benzene, toluene, xylene, and dichlorobenzene, aliphatic hydrocarbons such as hexane, cyclohexane, and dodecane, chloroform, dichloroethane, dimethylfuran, dimethylsulfoxide, dimethylacetamide, Various solvents such as dimethylformamide, N-methyl-2-pyrrolidone, tetrahydrofuran and acetonitrile and supercritical fluids can be used.
  • a base material or the like for controlling the direction of crystal growth of the sacrificial template 120, the frequency of formation of the nuclei 110, the orientation of crystals and molecules, and the like can be put into the liquid tank containing the precursor solution 100.
  • an inner surface structure or the like for controlling these.
  • the base material and the inner surface structure for example, one having a predetermined crystal face exposed, or one having undergone surface treatment such as attachment of a substance such as metal or chemical modification can be used.
  • the sacrificial template 120 preferably has an aspect ratio (ratio of length to diameter) of 10 or more in a vertical cross-sectional view.
  • the aspect ratio of the sacrifice template 120 is defined as the ratio of the mean length of the straight line portion to the mean diameter.
  • the aspect ratio is calculated only for the linear portion excluding the non-linear portion when the sacrificial template 120 forms the non-linear portion.
  • the average value of the length and the diameter is calculated from the measurement results of the precipitates having a predetermined number of samples or more and the measurement results of the arbitrary part of the straight part as the measurement point.
  • FIGS. 2A to 2B show an example in which the base material layer 10 is formed in the liquid phase
  • the base material layer 10 can be used for the type of raw material of the sacrificial template 120 and the type of raw material for the base material.
  • it may be formed in the gas phase by using spraying of the precursor solution or the like, or may be formed in the packed phase by using sintering, welding or the like of the precursor powder.
  • the base material layer 10 can impart biocompatibility to the porous body 1, and is a polymer compound or an inorganic compound as long as the immobilization of the shape of the communication hole 20 by the sacrificial template 120 and the removal of the sacrificial template 120 are not hindered.
  • Metal, etc. can be used.
  • the precursor solution 200 when the base material layer 10 is formed of a polymer compound, when it is formed of an inorganic compound such as monoma, prepolyma, or polymer compound, or when it is formed of a metal such as a metal salt or metal alkoxide, it is a metal salt.
  • Metal oxidants and the like can be prepared by dissolving and dispersing each in an appropriate solvent.
  • any of a sol-gel method, a liquid phase method, a solid phase method and the like can be used.
  • a method of chemically reducing and precipitating the metal with a reducing agent, a method of electrochemically reducing and precipitating the metal, and the like can be used.
  • the base material layer 10 As a method for forming the base material layer 10, an appropriate method using the solidification of the base material raw material, the curing reaction, or the like can be used depending on the type of the base material raw material.
  • a material that causes precipitation or adsorption on the surface of the sacrificial template 120 may be used.
  • the base material of the porous body 1 may be formed of a material having bioabsorbability, or may be formed of a material having no bioabsorbability. If the material has bioabsorbability, when the porous body 1 is transplanted into a living body, the porous body 1 is decomposed with the passage of time, so that it is not necessary to remove the transplanted porous body 1 after use. Become. If the material has bioabsorbability, the communication hole 20 may disappear in the living body at an early stage, but if the inside of the communication hole 20 is covered with endothelial cells or the like, the shape of the communication hole 20 may be maintained.
  • the material does not have bioabsorbability, it is necessary to remove the porous body 1 after use, but since the communication holes 20 are difficult to disappear in the living body, the function of the porous body 1 can be maintained for a long period of time. Can be maintained.
  • proteins, peptides and polyamino acids include collagen, gelatin, ⁇ -polylysine, ⁇ -polylysine, polyglutamic acid, polyaspartic acid, fibrin, fibroin and the like.
  • polysaccharide include chitin and chitosan.
  • polyester include polylactic acid, polycaprolactam, polydioxanone, polyglycolic acid, polyhydroxybutyrate and the like.
  • the base material of the porous body 1 may be blended with a filler for various purposes such as increasing the strength, reducing the weight of the porous body 1, increasing the amount, and preventing blocking.
  • the filler may have a spherical shape, a plate shape, a flake shape, a needle shape, a fibrous shape, an indefinite shape, or the like, a solid shape, or a hollow shape.
  • the filler can be blended, for example, by forming the base material layer 10 in a state of being dispersed in the precursor solution 200.
  • fillers include silica, alumina, zirconia, talc, clay, mica, graphite, carbon black, carbon fiber, glass, glass fiber, glass balloon, silas balloon, calcium carbonate, magnesium carbonate, aluminum hydroxide, and hydroxide.
  • examples thereof include magnesium, titanium oxide, iron oxide, calcium oxide, magnesium oxide, cellulose fiber, aramid fiber, and polyamide fiber.
  • the complex of the formed sacrificial template 120 and the base material layer 10 is taken out from the liquid tank containing the precursor solution 200, if necessary, and chamfered and cut out for the purpose of improving the removability of the sacrificial template 120. It can also be processed.
  • the removing step in order to remove the sacrificial template 120 from the base material layer 10 formed around the sacrificial template 120, an operation of adjusting the state / property of the sacrificial template 120 is performed.
  • a porous body 1 having communication holes 20 whose shape is fixed by the base material layer 10 is obtained.
  • a method of removing the sacrificial template 120 for example, a method of melting the sacrificial template 120, a method of heat melting, a method of sublimation, a method of chemical reaction decomposition, a combination thereof, etc., depending on the type of the raw material of the sacrificial template 120, etc. Can be used.
  • the removal rate of the sacrifice template 120 when removing the sacrifice template 120 is not particularly limited.
  • the removal rate of the sacrificial template 120 is preferably 90% or more, more preferably 95% or more, still more preferably 98% or more, from the viewpoint of increasing the porosity of the porous body. ..
  • the removal rate of the sacrificial template 120 can be determined as the dry weight of the porous body 1 from which the sacrificial template 120 has been removed with respect to the dry weight of the composite of the sacrificial template 120 and the base material layer 10.
  • the aspect ratio of the communication hole 20 is defined as the ratio of the average length of the straight line portion to the average diameter.
  • the aspect ratio is calculated only for the straight portion excluding the non-linear portion.
  • the average value of the length and the diameter is calculated from the measurement results of the communication holes 20 and the portions having a predetermined number of samples or more, with an arbitrary portion of the straight portion as a measurement point.
  • the aspect ratio of the communication hole 20 does not have to be the same as the aspect ratio of the sacrificial template 120 used, and the base material may be partially poorly formed, deformed, broken, or swollen.
  • the volume ratio of the communication holes 20 having an aspect ratio of 10 or more is preferably 50% by volume or more, preferably 60 volumes, based on the total volume of all the pores existing in the base material. It is more preferably 70% by volume or more, and further preferably 70% by volume or more.
  • the volume fraction of the communication holes 20 having a large aspect ratio is high, a large number of communication holes 20 have a high uniformity of diameter (inner width) and a network structure having many straight portions. Therefore, it is possible to prevent the cells introduced into the communication hole 20 from staying at a specific location and causing a difference in the supply of oxygen / nutrients and the release of waste products.
  • the communication hole 20 is not particularly limited in the average length, the average diameter, the cross-sectional shape, the bending angle / curvature of the non-linear portion, and the like.
  • the average length, average diameter, cross-sectional shape, bending angle / curvature of the non-linear portion of the communication hole 20 can be determined by the application of the porous body 1, the function of the communication hole 20, the type of raw material of the base material, and the porous body 1. It can be provided under appropriate conditions depending on the type of cells to be carried.
  • the communication hole 20 When the communication hole 20 is used as a capillary-like structure for the purpose of transporting small molecules, it is preferable to provide the communication hole 20 so that the average diameter is 10 ⁇ m or more and 1000 ⁇ m or less. With such a diameter, the communication hole 20 can transport only small molecules such as oxygen and nutrients without passing through large cells, and the cells supported in the three-dimensional network structure are biased. It becomes difficult for it to fall off.
  • the porosity of the porous body 1 is preferably 20% or more, more preferably 30% or more, still more preferably 50% or more.
  • the porosity of the porous body 1 is preferably 99% or less, more preferably 95% or less, still more preferably 90% or less.
  • the higher the porosity of 20% or more the larger the amount of cells supported on the porous body 1.
  • the supply of oxygen and nutrients and the release of waste products are improved.
  • the lower the porosity is 99% or less, the easier it is to secure the mechanical strength of the porous body 1.
  • the base material when the base material is a charged material, electrostatic interaction, etc., the base material has a reactive functional group, covalent bond, etc., the base material is a hydrophobic material. In some cases, hydrophobic interactions and the like can be utilized, respectively. Further, when the base material is a material having a molecular recognition site that specifically binds to a specific molecule, a molecule that is specifically recognized can be used.
  • the chemical modification treatment can be performed by various methods such as a coating coating method, a dip coating method, and a spray coating method. The chemical modification treatment may be carried out using one kind of component or a plurality of kinds of components.
  • Physiologically active substances such as growth factors, differentiation factors, hormones and cytokines, antibacterial components such as silver nanoparticles, antioxidant components such as glutathione, vitamin E, catalase and peroxidase, active oxygen trapping components, active oxygen decomposing components and , Metal peroxides, sustained-release oxygen components such as urea hydrogen peroxide, anti-inflammatory components, anti-fibrotic components and the like.
  • a blocking agent for the functional group of the base material can also be used.
  • the blocking agent include ethanolamine for an activated carboxyl group, a glycidyl group and the like. When a blocking agent is used, it is possible to prevent contamination of the porous 1 due to adsorption / bonding of unnecessary components.
  • FIGS. 4A to 4E are diagrams schematically showing another example of a method for producing a porous body.
  • the porous body 1 has a precipitation step (see FIGS. 4A to 4C), a base material layer forming step (see FIG. 4D), and a removing step (see FIG. 4E). It can also be performed continuously in the same liquid tank.
  • the precursor solution 300 a solution containing the raw material of the base material in addition to the raw material of the sacrificial template 120 is used.
  • FIG. 4A shows a state in which a precursor solution 300 containing the raw material of the base material in addition to the raw material of the sacrificial template 120 is prepared in the liquid tank.
  • FIG. 4B shows a state in which the nucleus 110 of the sacrificial template 120 is formed in the precursor solution 300.
  • FIG. 4C shows a state in which a long sacrificial template 120 having a large aspect ratio is precipitated in the precursor solution 300.
  • FIG. 4D shows a state in which the base material layer 10 is formed around the sacrificial template 120.
  • FIG. 4E shows a state in which the sacrificial template 120 is removed from the composite of the sacrificial template 120 and the base material layer 10.
  • the precursor solution 300 can be prepared in a liquid tank having an appropriate shape.
  • 4A to 4E show a method of forming a base material layer 10 having a thickness such that the outline of the sacrificial template 120 can be seen around the prepared sacrificial template 120.
  • the base material layer 10 may be formed in a bulk shape that fills the periphery of the sacrificial template 120 or between adjacent sacrificial templates 120.
  • the liquid tank in which the precursor solution 300 is placed may have the same shape as the outer shape of the porous body 1 to be manufactured, that is, a shape that becomes a molding mold of the porous body 1, or the porous body 1 to be manufactured. The shape may be different from the outer shape of.
  • the raw material of the sacrificial template 120 and the raw material of the base material may be appropriately combined as long as the precipitation conditions are different from each other and the sacrificial template 120 can be removed.
  • a water-soluble low-molecular-weight compound such as urea, a urea derivative, thiourea, a thiourea derivative, or myoban is used as a raw material for the sacrificial template 120, and a protein / peptide / polyamino acid, an acrylic resin, or many other as a raw material for the base material.
  • FIGS. 5A to 5E are diagrams schematically showing another example of a method for producing a porous body.
  • the porous body 1 can also be produced by using a template material 150 having a different shape and forming method from the long sacrificial template 120 having a large aspect ratio.
  • the template material 150 is used to mold the internal space 50 having a desired shape and structure in the base material of the porous body 1.
  • a template material 150 different from the sacrificial template 120 is put in the medium and the sacrificial template 120 is deposited, a long communication hole 20 having a large aspect ratio and an internal space communicating with the plurality of communication holes 20 are formed in the base material.
  • a porous body 1 having 50 and 50 is obtained.
  • the internal space 50 is provided in a structure completely covered with the base material of the porous body 1, but the internal space 50 may be provided in a structure communicating with the outside. ..
  • FIG. 5A shows a state in which the precursor solution 300 containing the raw material of the base material in addition to the raw material of the sacrificial template 120 and the template material 150 are prepared in the liquid tank.
  • FIG. 5B shows a state in which the nucleus 110 of the sacrificial template 120 is formed in the precursor solution 300.
  • FIG. 5C shows a state in which a long sacrificial template 120 having a large aspect ratio is precipitated in the precursor solution 300.
  • FIG. 5D shows a state in which the base material layer 10 is formed around the sacrificial template 120 and the template material 150.
  • FIG. 5E shows a state in which the sacrificial template 120 and the template material 150 are removed from the composite of the sacrificial template 120, the template material 150, and the base material layer 10.
  • the precursor solution 300 containing the raw material of the base material in addition to the raw material of the sacrificial template 120 and the template material 150 can be prepared in a liquid tank having an appropriate shape.
  • a liquid tank having the same shape as the outer shape of the porous body 1 to be manufactured that is, a shape that becomes a molding mold for the porous body 1
  • a liquid tank having a shape different from the outer shape of the porous body 1 to be manufactured may be used.
  • the template material 150 can be formed of any of a polymer compound, an inorganic compound, a metal, and the like as long as it can be removed from the precursor solution 300 after the sacrificial template 120 is precipitated.
  • the shape, size, texture, etc. of the template material 150 are not particularly limited.
  • the template material 150 can be prepared as a preformed molded product using the same material as the sacrificial template 120 or a material different from the sacrificial template 120.
  • polystyrene, polysaccharides and the like are preferable.
  • the polysaccharide include agarose, hydroxyethyl cellulose, hydrokipropyl cellulose and the like.
  • a solvent such as toluene or limonene.
  • a polysaccharide it is often easily dissolved in a solvent such as water or warm water, so that the template material 150 can be easily removed.
  • the core 110 of the sacrificial template 120 and the long sacrificial template 120 having a large aspect ratio are necessary for forming the communication holes 20 in the precursor solution 300 and on the surface of the template material 150. It can be precipitated so as to have an appropriate number density.
  • the spherical nucleus 110 is shown in FIG. 5B, the form of precipitation is not limited to crystallization from the liquid phase, but may be phase separation of solid components such as spherical, fibrous, and amorphous. Good.
  • an appropriate operation can be used depending on the type of the raw material of the sacrificial template 120.
  • the template material 150 may be provided with a surface structure for controlling the direction of crystal growth of the sacrificial template 120, the frequency of formation of nuclei 110, the orientation of crystals and molecules, and the like.
  • a surface structure for example, a structure in which a predetermined crystal plane is exposed, or a structure in which a substance such as a metal is attached or a surface treatment such as chemical modification is applied can be used.
  • the sacrificial template 120 can be deposited on the surface of the template material 150, so that the porous body 1 in which the communication holes 20 are connected to the internal space 50 can be obtained.
  • the sacrifice template 120 is a structure having a three-dimensional network structure by connecting long straight parts having a large aspect ratio or long straight parts having a large aspect ratio in a vertical cross-sectional view. Therefore, the precipitate can be grown and formed in the precursor solution 100 so that a complex in contact with or entangled with the template material 150 is formed.
  • the prepared sacrificial template 120 and the template material 150 can be taken out from the liquid tank containing the precursor solution 300 and subjected to cleaning treatment, drying treatment and the like, if necessary.
  • the shapes of the communication holes 20 and the internal space 50 are fixed by covering the periphery of the sacrificial template 120 and the template material 150 to some extent, and the porous body 1
  • it may be formed so as to cover the entire sacrificial template 120 or the template material 150, or may be formed so as to cover only a part of the sacrificial template 120 or the template material 150. .. In FIGS.
  • the bulk-shaped base material layer 10 that completely fills the periphery of the prepared sacrificial template 120 and the template material 150 is formed, but the contours of the sacrificial template 120 and the template material 150 can be seen.
  • a base layer 10 having a thickness may be formed.
  • the sacrificial template 120 and the template material 150 are removed from the composite of the sacrificial template 120, the template material 150, and the base material layer 10, and if necessary, a drying treatment, a polymerization treatment, a cross-linking treatment, and foaming are performed.
  • a porous body 1 in which the communication holes 20 having the desired shape and structure and the internal space 50 are formed can be obtained.
  • the communication holes 20 of the porous body 1 are formed by connecting long pores having a large aspect ratio or long pores having a large aspect ratio in a vertical cross-sectional view, and are formed with respect to the internal space 50. It becomes a connected three-dimensional network structure.
  • the produced porous body 1 can be subjected to cleaning treatment, drying treatment, surface treatment, molding processing and the like, if necessary.
  • FIGS. 6A to 6C are diagrams schematically showing specific examples of a method for producing a porous body.
  • the porous body 1 can also form a blood vessel-like structure by the communication holes 20 so as to have high compatibility with the living body to be transplanted.
  • 6A to 6C show an example in which an artificial organ is formed by using a columnar template material 160 having a shape and a different forming method from the long sacrificial template 120 having a large aspect ratio.
  • FIG. 6A shows a state in which the columnar template material 160 is arranged in the molding die 500 for molding the porous body 1 into a desired outer shape.
  • FIG. 6B shows a state in which the base material layer 10 is formed around the sacrificial template 120 and the columnar template material 160.
  • FIG. 6C shows a state in which the sacrificial template 120 and the columnar template material 160 are removed from the composite of the sacrificial template 120, the columnar template material 160, and the base material layer 10, and the molding die 500 is removed.
  • the mold 500 can be formed of any of glass, plaster, soft resin, hard resin, ceramic, metal and the like.
  • an artificial organ-like molding die is shown as an example of the molding die 500.
  • the molding die 500 may be provided as a closed mold or a split mold as long as the columnar template material 160 can be attached and the sacrificial template 120 and the columnar template material 160 can be removed.
  • the joint piece 40 can be provided in a tubular shape, a split tubular shape, or the like according to the molding die 500.
  • the mold 500 is a material that can be easily crushed such as plaster, a material that can be easily deformed such as a soft resin, a material that can dissolve the mold 500 itself, and a material that can heat-melt the mold 500 itself. It is preferable to form by the above. Further, the mold release agent may be applied to the inner surface of the molding die 500.
  • a three-dimensional modeling method an appropriate method such as powder sintering modeling, resin melt modeling, stereolithography, and inkjet modeling can be used depending on the type of material of the molding die 500.
  • a molding die 500 having a hollow structure, an internal independent structure, and the like, and a molding die 500 suitable for attaching a columnar template material 160 and the like can be accurately and stably manufactured.
  • the columnar template material 160 is fitted and supported by the joint piece 40, and is arranged so as to substantially traverse the inside of the molding die 500.
  • a columnar space 60 having a shape and structure substantially traversing the porous body 1 is formed, so that an arterial-like / vein-like blood vessel-like structure is formed in the porous body 1. be able to.
  • the columnar template material 160 has a diameter larger than that of the communication hole 20, and the shape, size, texture, and the like are not particularly limited as long as the columnar template material 160 has a shape and structure that substantially traverses the porous body 1.
  • the columnar template material 160 can be prepared as a preformed molded body using the same material as the sacrificial template 120 or a material different from the sacrificial template 120.
  • the sacrifice template 120 is a structure having a three-dimensional network structure by connecting long straight parts having a large aspect ratio or long straight parts having a large aspect ratio in a vertical cross-sectional view. Therefore, the precipitate can be grown and formed in the precursor solution so that a complex in contact with or entangled with the columnar template material 160 is formed in the molding die 500.
  • the sacrificial template 120 and the columnar template material 160 are removed from the composite of the sacrificial template 120, the columnar template material 160, and the base material layer 10, and if necessary, a drying treatment, a polymerization treatment, and a cross-linking treatment are performed.
  • a porous body 1 in which the communication holes 20 having the desired shape and structure and the columnar space 60 are formed can be obtained.
  • the communication holes 20 of the porous body 1 are formed by connecting long pores having a large aspect ratio or long pores having a large aspect ratio in a vertical cross-sectional view, and are formed with respect to the columnar space 60. It becomes a connected three-dimensional network structure.
  • the molding die 500 can be separated / removed from the porous body 1 by leaving the bonded piece 40 in a state of being bonded to the base material.
  • the junction piece 40 can be formed of, for example, a biocompatible material such as polytetrafluoroethylene or polyester. When such a joint piece 40 is provided, the joint piece 40 can function as an artificial blood vessel.
  • FIG. 7A shows a state in which the porous body 1 is transplanted into a living body in which the blood vessel 80 is present.
  • FIG. 7B shows a state in which the blood vessel 80 at the transplant destination and the junction piece 40 of the porous body 1 are connected.
  • the porous body 1 can be surgically anastomosed to the blood vessel 80 to be transplanted via the junction piece 40 bonded to the base material.
  • a porous body 1 When such a porous body 1 is connected to the blood vessel 80 of the transplant destination, the blood vessel-like structure formed by the communication hole 20 and the columnar space 60 becomes a part of the blood circulation pathway on the living body side, so that the porous body 1 is formed. Blood flow to the supported cells is ensured. Therefore, the engraftment rate of cells supported on the porous body 1 and the function of cells can be improved.
  • the transplanted device can be transplanted into a human body or an animal body other than humans to function as a cell device, a bioreactor, or the like in the living body.
  • the transplant device is transplanted, if the communication hole 20 is connected to the circulatory system such as the blood vessel of the transplant destination, the three-dimensional network structure of the porous body 1 can be effectively used as a substance transport route.
  • cell devices and bioreactors can also be used in vitro.
  • Other elements to be composited include a base material for controlling the direction of crystal growth of the sacrificial template 120, the frequency of formation of nuclei 110, the orientation of crystals and molecules, and a reinforcing material for reinforcing the shape of the porous body 1.
  • Sensors that measure the external and internal environment of the porous body 1, batteries that supply power to electronic components in the device, electrodes used for electrical stimulation of sensor components and living organisms, and porous bodies. 1 Heater that adjusts the external environment and internal environment, chips that function the device, drug sustained-release agents that can administer drugs to living organisms, oxygen sustained-release agents that supply oxygen to cells carried in the device, etc. Can be mentioned.
  • cells may be introduced in vitro before transplantation, or cells may be introduced in vivo after transplantation. If the porous body 1 is provided with a communication hole 20 capable of allowing cells to enter, the recipient cells can migrate and adhere to the inside of the porous body 1 even after transplantation. , Can function as a cell scaffold in vivo.
  • the type, origin, morphology, etc. of the cells to be supported are not particularly limited.
  • the cells may be any of primary cells collected directly from a tissue or the like, pre-cultured cultured cells, proliferative cell lines, recombinant cells, ES cell-derived cells, iPS cell-derived cells, or the like. .. Further, it may be a single free cell or a cell aggregate (spheroid).
  • cells include vascular endothelial cells, hepatocytes, bile duct cells, renal cells, mesenchymal stem cells, nerve cells, pancreatic islands, pancreatic ⁇ cells, pancreatic ⁇ cells, established ⁇ cells, established ⁇ cells, and the like. Examples include pancreatic cells.
  • the cells to be supported may be adherent cells or floating cells, but adherent cells are preferable because they are easily retained in the porous body 1.
  • the base of the porous body is based on the sacrificial template having a large aspect ratio precipitated in the medium. Since the material is provided with communication holes formed by pores having a large aspect ratio, cells can be supported densely and discretely inside the porous body, and the cells can be maintained healthy for a long period of time. ..
  • the outer shape of the porous body and the shape and structure of the communication holes can be freely shaped according to the space and application of the transplant destination, and such modeling can be easily performed.
  • excellent substance permeability can be obtained even when cells are not supported. Therefore, a method for producing a porous body having three-dimensional network-structured communication holes and useful as a cell scaffold or a biocompatible material, a method for transplanting a porous body, and a cell carrier using the same can be obtained. ..
  • the present invention is not limited to the above-described embodiments and modifications, and various modifications can be made without departing from the spirit of the present invention.
  • the present invention is not necessarily limited to those having all the configurations included in the above-described embodiments and modifications.
  • Part of the configuration of a certain embodiment or modification is replaced with another configuration, a part of the configuration of a certain embodiment or modification is added to another configuration, or a configuration of a certain embodiment or modification. You can omit a part of.
  • Example 1 a porous body was prepared using thiourea as a raw material for a sacrificial template and a crosslinked product of polyamine and polycarboxylic acid as a base material for the porous body.
  • Thiourea (0.9 g), ⁇ -polylysine (0.1 g), and polyacrylic acid (0.2 g) were added to 4 mL of water, and this solution was heated to 80 ° C. to obtain a uniform solution. Then, this solution was cooled to precipitate acicular crystals of thiourea, which is a sacrificial template. Subsequently, the solution in which the sacrificial template was precipitated was freeze-dried to remove the solvent, and a substrate layer composed of ⁇ -polylysine and polyacrylic acid was formed around the acicular crystals of thiourea.
  • the porosity of the porous body according to Example 1 was 60%.
  • the average aspect ratio of the communication holes in the porous body was 20.
  • the porous body according to Example 1 was surface-modified by the following procedure. A 0.1% by mass ⁇ -polylysine solution was added to the prepared porous body, and the mixture was allowed to stand at room temperature for 12 hours to introduce ⁇ -polylysine by electrostatic interaction on the surface where excess carboxylic acid was present. .. It was confirmed that ⁇ -polylysine did not dissociate from the surface of the porous body even when washed with a phosphate buffer having a pH of 7.4.
  • Example 2 a porous body was prepared using urea as a raw material for the sacrificial template and a crosslinked body of an acrylic polymer as a base material for the porous body.
  • the porous body according to Example 2 was surface-modified by the following procedure. A 1% by mass gelatin solution was added to the prepared porous body, and the mixture was reacted at 60 ° C. for 12 hours to introduce gelatin on the surface where the glycidyl group was present by reaction with an amine.
  • Example 3 a porous body was prepared using phenylurea as a raw material for the sacrificial template, a crosslinked body of modified collagen as a base material for the porous body, and expanded polystyrene as a template material for molding the internal space. ..
  • Phenylurea (0.7 g) was added to 4 mL of water, and this solution was heated to 80 ° C. to obtain a uniform solution. Then, this solution was cooled to precipitate acicular crystals of phenylurea, which is a sacrificial template. Subsequently, the solvent is removed from the solution in which the sacrificial template is precipitated, a mixed solution of collagen and sodium chloride at 4 ° C. is added to a container filled with the sacrificial template, and the mixture is heated to 37 ° C. to gel. It was. Then, this gel was freeze-dried to remove the solvent, and a base material layer made of collagen was formed around the acicular crystals of phenylurea.
  • the complex of the sacrificial template and the base material layer was treated with methanol to denature collagen and elute the sacrificial template phenylurea. Then, it was treated with a cross-linking agent to cross-link the denatured collagens.
  • the porous base material obtained in the container was washed with water to obtain a porous body.
  • the porosity of the porous body according to Example 3 was 60%.
  • the average aspect ratio of the communication holes in the porous body was 30.
  • Example 4 a porous body having a blood vessel-like structure (see FIG. 6C) having a molded outer shape was produced by using a molding die three-dimensionally molded using a 3D printer and a columnar template material.
  • the complex of the sacrificial template and the substrate layer was treated with a methanol solution of DMT-MM as a condensing agent to crosslink ⁇ -polylysine and polyacrylic acid. Then, the complex of the sacrificial template and the base material layer was treated with methanol to elute the sacrificial template thiourea.
  • the porous body obtained in the container is taken out by crushing a plaster mold, the surface of the porous body is coated with a coating solution in which highly viscous silicone macromonoma is dissolved, and the monoma is polymerized and cured to obtain the porous body. It was.
  • Example 5 a cell carrier was prepared using the porous body according to Example 1 which had undergone surface modification and cells.
  • the surface-modified porous body according to Example 1 cells, and medium were placed in a deep dish. Then, the dish was swirled and stirred at a rotation speed of 30 rpm for 12 hours to introduce cells into the porous body. After the cells had settled inside the porous body, the swirling stirring was stopped and the culture was started in a static culture. During the static culture, the medium was exchanged every two days, and the number of cells in the collected medium was determined based on the glucose consumption.
  • the gypsum mold was heated to 60 ° C. in the same manner as in Example 4, and a mixed solution containing acicular magnesium salt, glycidyl methacrylate, ethylene glycol dimethacrylate, and a thermal polymerization initiator was injected. As a result, acicular magnesium salts aggregated around the columnar template material near the site where the mixed solution was injected.
  • the gypsum mold was heated to polymerize the monoma acrylate, and then the acicular magnesium salt was eluted and then the gypsum mold was crushed, the vicinity of the site where the acicular magnesium salt was agglomerated was of mechanical strength. Damaged due to lack.
  • the bottom side of the plaster mold was filled with needle-shaped magnesium salt, while the other parts were not filled with needle-shaped magnesium salt.
  • Comparative example 3 In Comparative Example 3, similarly to Example 3, phenylurea was used as a raw material for the sacrificial template, and a crosslinked product of modified collagen was used as a base material for the porous body, and a short sacrificial template having a small aspect ratio was precipitated to be porous. A template was prepared.
  • Phenylurea (0.7 g) and calcium chloride for growing phenylurea crystals to a low aspect ratio were added to 4 mL of water, and this solution was heated to 80 ° C. to obtain a uniform solution. Then, this solution was cooled to precipitate acicular crystals of phenylurea, which is a sacrificial template. As a result, the distribution of the sacrificial template in solution was biased. Subsequently, the solvent is removed from the solution in which the sacrificial template is precipitated, a mixed solution of collagen and sodium chloride at 4 ° C. is added to a container filled with the sacrificial template, and the mixture is heated to 37 ° C. to gel. It was.
  • this gel was freeze-dried to remove the solvent, and a base material layer made of collagen was formed around the acicular crystals of phenylurea. Then, the complex of the sacrificial template and the base material layer was treated with methanol to denature collagen and elute the sacrificial template phenylurea. Then, it was treated with a cross-linking agent to cross-link the denatured collagens.
  • the porous base material obtained in the container was washed with water, the porous body collapsed due to lack of mechanical strength.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Materials Engineering (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Virology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Dispersion Chemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Materials For Medical Uses (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention provides: a porous body which has communicating holes having a three-dimensional net-like structure and is useful as a scaffold for cells or a biocompatible material; a method for producing a porous body; a method for transplanting a porous body; and a cell support using the porous body. A porous body (1) has communicating holes (20) formed in a base material, wherein each of the communicating holes (20) is formed from pores each having an aspect ratio of 10 or more or is formed by the connection of the pores, and the base material is formed from a biocompatible material. A method for producing a porous body comprises the steps of: precipitating sacrificial templates (120) each having an aspect ratio of 10 or more in a medium; forming a base material layer (10) that serves as a base material around the sacrificial templates (120); and removing the sacrificial templates (120) from the formed base material layer (10). A method for transplanting a porous support comprises transplanting the porous body (1) into the body of a non-human animal. A cell support comprises the porous body (1) and cells supported on the porous body (1).

Description

多孔質体、多孔質体の製造方法、多孔質体の移植方法及び細胞担体Porous body, method for producing a porous body, method for transplanting a porous body, and a cell carrier
 本発明は、細胞足場や生体適合性材料として有用な多孔質体、多孔質体の製造方法、多孔質体の移植方法、及び、これを用いた細胞担体に関する。 The present invention relates to a porous body useful as a cell scaffold or a biocompatible material, a method for producing a porous body, a method for transplanting a porous body, and a cell carrier using the same.
 再生医療の分野では、臓器や組織の機能低下や喪失に対し、人工臓器や人工組織を移植する治療・処置が行われている。人工臓器や人工組織としては、移植先の生体内で移植細胞の働きを利用するものがある。ある種の細胞移植療法では、内分泌系細胞やパラクライン効果を示す細胞が患者の体内に移植されている。このような移植細胞を担持する細胞デバイスには、細胞接着や増殖の足場となる細胞足場材料が用いられている。 In the field of regenerative medicine, treatments and treatments for transplanting artificial organs and tissues are performed for functional deterioration and loss of organs and tissues. Some artificial organs and artificial tissues utilize the function of transplanted cells in the living body of the transplant destination. In some types of cell transplantation, endocrine cells and cells that exhibit a paracrine effect are transplanted into the patient's body. A cell scaffold material that serves as a scaffold for cell adhesion and proliferation is used as a cell device that supports such transplanted cells.
 一般に、細胞足場材料は、低毒性であり、細胞の機能を阻害しない性能が求められる。また、細胞が安定に担持されて脱落せず、担持される細胞に酸素・栄養が十分に供給され、且つ、細胞からの老廃物が適切に排泄されるような構造が必要になる。また、移植後に生体組織と一体化できるように高い空隙率を持つことや、目的の形状に容易に加工・成形できる性質も要求される。 In general, cell scaffolding materials are required to have low toxicity and performance that does not inhibit cell function. Further, it is necessary to have a structure in which the cells are stably supported and do not fall off, oxygen and nutrients are sufficiently supplied to the supported cells, and waste products from the cells are appropriately excreted. In addition, it is required to have a high porosity so that it can be integrated with a living tissue after transplantation, and to have a property of being easily processed and molded into a desired shape.
 従来、細胞足場材料としては、ハイドロゲルが広く検討されている。ハイドロゲルを加工・成形する手段としては、ゲルを用いた造形を行うゲル3Dプリンタも開発されている。しかし、ハイドロゲルは、細胞の高密度化に適してなく、担持させる細胞に対してデッドボリュームが大きくなる欠点がある。また、物質拡散特性が必ずしも優れていないため、酸素・栄養の供給性や老廃物の排泄性が悪く、細胞機能の発揮に不利である。 Conventionally, hydrogel has been widely studied as a cell scaffolding material. As a means for processing and molding a hydrogel, a gel 3D printer that performs modeling using a gel has also been developed. However, hydrogels are not suitable for densifying cells and have a drawback that the dead volume becomes large with respect to the cells to be supported. In addition, since the substance diffusion characteristics are not always excellent, the supply of oxygen and nutrients and the excretion of waste products are poor, which is disadvantageous for the exertion of cell functions.
 細胞足場材料としては、樹脂等の基材中に多数の連通孔を設けた多孔質体も検討されている。多孔質体は、細胞の高密度化に有利であり、細胞デバイスの占有体積を小さくするのに適している。また、物質拡散特性に優れているため、酸素・栄養の供給性や老廃物の排泄性の点でも有利である。しかし、多孔質体は、3Dプリンタを用いるようなボトムアップによる造形に適していないため、目的の形状に加工・成形するのは容易ではない。 As a cell scaffold material, a porous body having a large number of communication holes in a base material such as resin is also being studied. Porous bodies are advantageous for densifying cells and are suitable for reducing the occupied volume of cell devices. In addition, since it has excellent substance diffusion characteristics, it is also advantageous in terms of oxygen / nutrient supply and excretion of waste products. However, since the porous body is not suitable for bottom-up molding such as using a 3D printer, it is not easy to process and mold it into a desired shape.
 従来、多孔質体を形成する方法としては、気孔を型取りする犠牲テンプレート(ポロジェン)を樹脂原料中に加え、樹脂を重合させた後に、犠牲テンプレートを取り除いて気孔を形成する方法が知られている。 Conventionally, as a method of forming a porous body, a method of adding a sacrificial template (porogen) for molding pores to a resin raw material, polymerizing the resin, and then removing the sacrificial template to form pores has been known. There is.
 例えば、特許文献1には、オレフィン系ポリマに対して相溶性であり、オレフィン系ポリマの硬化体と相分離する相分離化剤を用いる技術が記載されている。また、特許文献2には、篩にかけたポロジェン粒子を用いて生体再吸収性ドレッシングを調製する方法が記載されている。 For example, Patent Document 1 describes a technique using a phase separating agent that is compatible with an olefin polymer and phase-separates from a cured product of the olefin polymer. Further, Patent Document 2 describes a method for preparing a bioreabsorbable dressing using sieved Porogen particles.
特開2012-124434号公報Japanese Unexamined Patent Publication No. 2012-124434 特表2010-508977号公報Special Table 2010-508977
 基材中に外部と連通した連通孔を設けた多孔質体は、連通孔内に細胞を導入することによって細胞足場として用いることができる。しかし、多孔質体を細胞足場として用いる場合、細胞を高密度に担持できる性能や、担持させた細胞を長期間にわたって維持できる性能が必要になる。連通孔は、担持される細胞が密集せずに分散し、個々の細胞に対して十分な酸素・栄養が供給されるように、多孔質体の全体にわたって離散的な網目構造の開気孔を形成していることが望まれる。連通孔の径は、細胞が深部まで到達可能であり、且つ、深部に細胞接着した後に容易に脱落しない程度であることが望まれる。 A porous body having communication holes communicating with the outside in the base material can be used as a cell scaffold by introducing cells into the communication holes. However, when a porous body is used as a cell scaffold, it is necessary to have the ability to support cells at high density and the ability to maintain the supported cells for a long period of time. The communication pores form discrete network-structured stomata throughout the porous body so that the supported cells are dispersed without being densely packed and sufficient oxygen and nutrients are supplied to the individual cells. It is desirable to do. It is desired that the diameter of the communication hole is such that the cells can reach the deep part and do not easily fall off after the cells adhere to the deep part.
 また、基材中に外部と連通した連通孔を設けた多孔質体は、細胞足場ではなく、人工組織等の生体適合性材料として用いることもできる。しかし、多孔質体を生体適合性材料として用いる場合、生体との共存のために、高度な物質透過性を要求される場合がある。多孔質体を細胞デバイスの部品、循環器系への補助デバイス、フィルタ等として用いる場合、連通孔が3次元的に網目構造を形成しているような物質透過性が高い構造が望まれる。 Further, a porous body having communication holes communicating with the outside in the base material can be used as a biocompatible material such as an artificial tissue instead of a cell scaffold. However, when a porous body is used as a biocompatible material, a high degree of substance permeability may be required for coexistence with a living body. When the porous body is used as a component of a cell device, an auxiliary device to the circulatory system, a filter, or the like, a structure having high substance permeability such that the communication holes form a three-dimensional network structure is desired.
 しかし、このような形状・構造の連通孔と、多孔質体の目的に応じた所望の外形とを、適切に成形して両立させることは容易でない現状がある。従来一般的なポロジェン粒子を用いた造形技術や、3Dプリンタを用いたボトムアップの造形技術では、多孔質体を所望の外形に成形しつつ適切な形状・構造の連通孔を形成するのが困難である。多孔質体が複雑形状になるほど、また、多孔質体のデッドボリュームを小さくしようとするほど、多孔質体の成形は難しくなり、有用な細胞足場や生体適合性材料が得られなくなっている。 However, there is a current situation in which it is not easy to appropriately mold and balance the communication holes having such a shape and structure and the desired outer shape according to the purpose of the porous body. It is difficult to form communication holes with an appropriate shape and structure while molding a porous body into a desired outer shape by conventional modeling technology using general Porogen particles and bottom-up modeling technology using a 3D printer. Is. The more complicated the shape of the porous body and the more the dead volume of the porous body is reduced, the more difficult it becomes to form the porous body, and the more useful cell scaffolds and biocompatible materials cannot be obtained.
 そこで、本発明は、3次元的な網目構造の連通孔を有し、細胞足場や生体適合性材料として有用な多孔質体、多孔質体の製造方法、多孔質体の移植方法、及び、これを用いた細胞担体を提供することを目的とする。 Therefore, the present invention has a three-dimensional network structure of communication holes and is useful as a cell scaffold or a biocompatible material, a porous body, a method for producing a porous body, a method for transplanting a porous body, and the like. It is an object of the present invention to provide a cell carrier using.
 前記課題を解決するために本発明に係る多孔質体は、基材中に連通孔を有する多孔質体であって、前記連通孔は、アスペクト比が10以上である細孔、又は、当該細孔の連結によって形成されており、前記基材は、生体適合性を有する材料で形成されている。 In order to solve the above problems, the porous body according to the present invention is a porous body having communication holes in the base material, and the communication holes are pores having an aspect ratio of 10 or more, or the fine particles. It is formed by connecting the pores, and the base material is made of a biocompatible material.
 また、本発明に係る多孔質体の製造方法は、基材中に連通孔を有する多孔質体の製造方法であって、アスペクト比が10以上である犠牲テンプレートを媒体中に析出させる工程と、前記犠牲テンプレートの周囲に前記基材となる基材層を形成する工程と、形成された前記基材層中から前記犠牲テンプレートを除去する工程と、を含む。 Further, the method for producing a porous body according to the present invention is a method for producing a porous body having communication holes in a base material, which comprises a step of precipitating a sacrificial template having an aspect ratio of 10 or more in a medium. A step of forming a base material layer to be the base material around the sacrificial template and a step of removing the sacrificial template from the formed base material layer are included.
 また、本発明に係る多孔質担体の移植方法は、前記の多孔質体を、ヒトを除く動物の体内に移植する。 Further, in the method for transplanting a porous carrier according to the present invention, the above-mentioned porous body is transplanted into the body of an animal other than humans.
 また、本発明に係る細胞担体は、前記の多孔質体と、前記多孔質体に担持された細胞と、を備える。 Further, the cell carrier according to the present invention includes the porous body and cells supported on the porous body.
 本発明によれば、3次元的な網目構造の連通孔を有し、細胞足場や生体適合性材料として有用な多孔質体、多孔質体の製造方法、多孔質体の移植方法、及び、これを用いた細胞担体を提供することができる。 According to the present invention, a porous body having three-dimensional network-structured communication holes and useful as a cell scaffold or a biocompatible material, a method for producing a porous body, a method for transplanting a porous body, and the like. A cell carrier using the above can be provided.
多孔質体の製造方法(析出工程)の一例を模式的に示す図である。It is a figure which shows typically an example of the manufacturing method (precipitation step) of a porous body. 多孔質体の製造方法(析出工程)の一例を模式的に示す図である。It is a figure which shows typically an example of the manufacturing method (precipitation step) of a porous body. 多孔質体の製造方法(析出工程)の一例を模式的に示す図である。It is a figure which shows typically an example of the manufacturing method (precipitation step) of a porous body. 多孔質体の製造方法(析出工程)の一例を模式的に示す図である。It is a figure which shows typically an example of the manufacturing method (precipitation step) of a porous body. 多孔質体の製造方法(基材層形成工程)の一例を模式的に示す図である。It is a figure which shows typically an example of the manufacturing method (base material layer formation process) of a porous body. 多孔質体の製造方法(基材層形成工程)の一例を模式的に示す図である。It is a figure which shows typically an example of the manufacturing method (base material layer formation process) of a porous body. 多孔質体の製造方法(除去工程)の一例を模式的に示す図である。It is a figure which shows typically an example of the manufacturing method (removal process) of a porous body. 多孔質体の製造方法(除去工程)の一例を模式的に示す図である。It is a figure which shows typically an example of the manufacturing method (removal process) of a porous body. 多孔質体の製造方法の別例を模式的に示す図である。It is a figure which shows another example of the manufacturing method of a porous body schematically. 多孔質体の製造方法の別例を模式的に示す図である。It is a figure which shows another example of the manufacturing method of a porous body schematically. 多孔質体の製造方法の別例を模式的に示す図である。It is a figure which shows another example of the manufacturing method of a porous body schematically. 多孔質体の製造方法の別例を模式的に示す図である。It is a figure which shows another example of the manufacturing method of a porous body schematically. 多孔質体の製造方法の別例を模式的に示す図である。It is a figure which shows another example of the manufacturing method of a porous body schematically. 多孔質体の製造方法の別例を模式的に示す図である。It is a figure which shows another example of the manufacturing method of a porous body schematically. 多孔質体の製造方法の別例を模式的に示す図である。It is a figure which shows another example of the manufacturing method of a porous body schematically. 多孔質体の製造方法の別例を模式的に示す図である。It is a figure which shows another example of the manufacturing method of a porous body schematically. 多孔質体の製造方法の別例を模式的に示す図である。It is a figure which shows another example of the manufacturing method of a porous body schematically. 多孔質体の製造方法の別例を模式的に示す図である。It is a figure which shows another example of the manufacturing method of a porous body schematically. 多孔質体の製造方法の具体例を模式的に示す図である。It is a figure which shows typically the specific example of the manufacturing method of a porous body. 多孔質体の製造方法の具体例を模式的に示す図である。It is a figure which shows typically the specific example of the manufacturing method of a porous body. 多孔質体の製造方法の具体例を模式的に示す図である。It is a figure which shows typically the specific example of the manufacturing method of a porous body. 多孔質体の血管への吻合について説明する図である。It is a figure explaining the anastomosis of a porous body to a blood vessel. 多孔質体の血管への吻合について説明する図である。It is a figure explaining the anastomosis of a porous body to a blood vessel.
 以下、本発明の一実施形態に係る多孔質体、多孔質体の製造方法、多孔質体の移植方法、及び、これを用いた細胞担体について説明する。なお、以下の説明は本発明の具体的な実施形態を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更及び修正が可能である。以下の各図において共通する構成については同一の符号を付し、重複した説明を省略する場合がある。 Hereinafter, the porous body according to the embodiment of the present invention, the method for producing the porous body, the method for transplanting the porous body, and the cell carrier using the porous body will be described. It should be noted that the following description shows specific embodiments of the present invention, and the present invention is not limited to these descriptions, and those skilled in the art are skilled in the art within the scope of the technical idea disclosed in the present specification. Various changes and modifications can be made by. The same reference numerals may be given to common configurations in the following figures, and duplicate description may be omitted.
<多孔質体>
 本実施形態に係る多孔質体1(図3B参照)は、多孔質体1の本体を構成する基材中に、多孔質体1の外部と連通した多数の連通孔20を有する。連通孔20は、縦断面視におけるアスペクト比(長さと径との比)が大きい長尺の細孔、又は、アスペクト比が大きい長尺の細孔同士の連結によって形成される。
<Porous medium>
The porous body 1 according to the present embodiment (see FIG. 3B) has a large number of communication holes 20 communicating with the outside of the porous body 1 in the base material constituting the main body of the porous body 1. The communication hole 20 is formed by connecting long pores having a large aspect ratio (ratio of length to diameter) in a vertical cross-sectional view, or long pores having a large aspect ratio.
 多孔質体1において、多数の連通孔20は、基材中に3次元的な網目構造を形成している。多数の連通孔20による網目構造により、多孔質体1の深部に対して細胞を網羅的に導入したり、深部に担持させた細胞に対して十分な酸素・栄養を供給したりすることが可能になる。なお、3次元的な網目構造としては、連通孔20同士が交差する構造の他に、連通孔20同士が交差することなく同方向又は異方向に配向した構造や、これらの構造が混在した構造等が含まれる。 In the porous body 1, a large number of communication holes 20 form a three-dimensional network structure in the base material. Due to the network structure of a large number of communication holes 20, it is possible to comprehensively introduce cells into the deep part of the porous body 1 and to supply sufficient oxygen and nutrients to the cells supported in the deep part. become. The three-dimensional network structure includes a structure in which the communication holes 20 intersect each other, a structure in which the communication holes 20 are oriented in the same direction or in different directions without intersecting each other, and a structure in which these structures are mixed. Etc. are included.
 本実施形態に係る多孔質体1は、所望の形状・構造の連通孔20を型取りするための犠牲テンプレート120(図1D参照)を用いて製造される。犠牲テンプレート120は、連通孔20を型取りした後に除かれ、多孔質体1の完成品を構成しない。犠牲テンプレート120としては、縦断面視におけるアスペクト比(長さと径との比)が大きい長尺の析出物が、媒体中に生成されて連通孔20の形成に用いられる。 The porous body 1 according to the present embodiment is manufactured by using a sacrificial template 120 (see FIG. 1D) for molding a communication hole 20 having a desired shape and structure. The sacrificial template 120 is removed after molding the communication holes 20 and does not constitute the finished product of the porous body 1. As the sacrificial template 120, a long precipitate having a large aspect ratio (ratio of length to diameter) in the vertical cross-sectional view is generated in the medium and used for forming the communication hole 20.
 図1A~図1D、図2A~図2B及び図3A~図3Bは、多孔質体の製造方法の一例を模式的に示す図である。
 図1A~図1D、図2A~図2B及び図3A~図3Bに示すように、本実施形態に係る多孔質体の製造方法は、アスペクト比が大きい長尺の犠牲テンプレート120を媒体中に析出させる析出工程(図1A~図1D参照)と、犠牲テンプレート120の周囲に多孔質体の基材となる基材層10を形成する基材層形成工程(図2A~図2B参照)と、犠牲テンプレートの周囲に形成された基材層10中から犠牲テンプレート120を除去する除去工程(図3A~図3B参照)と、を含む。
1A to 1D, FIGS. 2A to 2B, and FIGS. 3A to 3B are diagrams schematically showing an example of a method for producing a porous body.
As shown in FIGS. 1A to 1D, FIGS. 2A to 2B, and FIGS. 3A to 3B, in the method for producing a porous body according to the present embodiment, a long sacrificial template 120 having a large aspect ratio is deposited in a medium. Precipitation step (see FIGS. 1A to 1D), and a base layer layer forming step (see FIGS. 2A to 2B) for forming a base material layer 10 as a base material for a porous body around the sacrificial template 120, and sacrifice. It includes a removal step (see FIGS. 3A-3B) of removing the sacrificial template 120 from the substrate layer 10 formed around the template.
 従来、犠牲テンプレート(ポロジェン)を用いて多孔質体を製造する方法としては、アスペクト比が小さい球状の粒子を用いる方法が知られている。球状のポロジェンを、樹脂原料を溶解した溶液に混合し、樹脂を重合ないし硬化させた後に、ポロジェンを溶解等で除去する方法や、球状のポロジェンを金属粉末中に混合し、金属粉末同士を熱処理で焼結させると共にポロジェンを燃焼等させて除去する方法が知られている。 Conventionally, as a method for producing a porous body using a sacrificial template (porogen), a method using spherical particles having a small aspect ratio is known. Spherical porogen is mixed with a solution in which a resin raw material is dissolved, the resin is polymerized or cured, and then porogen is removed by dissolution, or spherical porogen is mixed in metal powder and the metal powders are heat-treated. There is known a method of removing pologene by burning it while sintering it with.
 一般的に用いられている球状のポロジェンは、分散性が良好であるため、多孔質体の製造に用いられる前駆溶液、前駆粉体等に対して比較的容易に混合することができる。また、ポロジェンを混合した後の前駆溶液、前駆粉体等は比較的高い流動性を示すため、多孔質体を所望の外形に成形するために成形型を用いる場合等に、ポロジェンを偏らせず分散させることができる。 Since the generally used spherical porogen has good dispersibility, it can be relatively easily mixed with the precursor solution, precursor powder, etc. used for producing a porous body. Further, since the precursor solution, precursor powder, etc. after mixing the pologene show relatively high fluidity, the pologene is not biased when a molding die is used to mold the porous body into a desired outer shape. Can be dispersed.
 しかし、球状のポロジェンは、多孔質体に連通孔を形成する点では不利である。多孔質体の外部と連通した連通孔を形成するためには、前駆溶液、前駆粉体等の中で球状のポロジェン同士を接触させる必要があるため、前駆溶液、前駆粉体等を加圧したり、圧縮したりする必要がある。しかし、このような操作を加えると、原料が流動したり、未固化物が変形したりするため、ポロジェン同士を接触させた状態を保ちながら多孔質体を所望の外形に成形するのが難しい。 However, spherical pologene is disadvantageous in that it forms communication holes in the porous body. In order to form communication holes that communicate with the outside of the porous body, it is necessary to bring spherical porogens into contact with each other in the precursor solution, precursor powder, etc., so the precursor solution, precursor powder, etc. may be pressurized. , Need to be compressed. However, when such an operation is applied, the raw material flows and the unsolidified material is deformed, so that it is difficult to form the porous body into a desired outer shape while keeping the pologenes in contact with each other.
 また、球状のポロジェンは、前駆溶液、前駆粉体等の中で全方向にバラつくため、互いに接触させた状態で目的の位置に配置するのが難しい。ポロジェンが不必要に密集すると、ポロジェンを除去したとき、高数密度の閉気孔が形成されることになる。その結果、付近の連通孔の形状が保たれなくなったり、多孔質体の機械的強度が局所的に低くなったりする。 In addition, since spherical porogens vary in all directions in the precursor solution, precursor powder, etc., it is difficult to place them in the target position in contact with each other. Unnecessarily dense pologens result in the formation of high-density closed pores when the pologens are removed. As a result, the shape of the communication holes in the vicinity is not maintained, and the mechanical strength of the porous body is locally reduced.
 また、球状のポロジェンは、径(内幅)が一定でない不均一な連通孔を形成する傾向がある。連通孔が太い部位や細い部位を持っていると、連通孔に導入した細胞が特定箇所に滞留したり、酸素・栄養の供給性や老廃物の放出性に差異が生じたりするため、多孔質体の品質上で適切とはいえない。また、アスペクト比が小さい球状のポロジェンは比表面積が小さいため、多孔質体の比表面積が空隙率に対して小さくなる問題もある。 Also, spherical porogens tend to form non-uniform communication holes with non-constant diameters (inner widths). If the communication hole has a thick or thin part, the cells introduced into the communication hole will stay in a specific place, and the oxygen / nutrient supply and waste product release will be different, so that it is porous. It is not appropriate for the quality of the body. Further, since the spherical porogen having a small aspect ratio has a small specific surface area, there is a problem that the specific surface area of the porous body becomes smaller than the porosity.
 これに対し、本実施形態のように、アスペクト比が大きい長尺の犠牲テンプレートを用いると、多孔質体の製造に用いられる前駆溶液、前駆粉体等の中で、犠牲テンプレート同士を容易に接触させることができる。また、多数の犠牲テンプレートの形状を揃えることにより、径(内幅)の均一性が高く、形状が一定している多数の連通孔を安定的に形成することができる。 On the other hand, when a long sacrificial template having a large aspect ratio is used as in the present embodiment, the sacrificial templates can be easily contacted with each other in the precursor solution, precursor powder, etc. used for producing the porous body. Can be made to. Further, by aligning the shapes of a large number of sacrificial templates, it is possible to stably form a large number of communication holes having a high uniformity in diameter (inner width) and a constant shape.
 但し、アスペクト比が大きい長尺の犠牲テンプレートは、多孔質体の製造に用いられる前駆溶液、前駆粉体等に混合したとき、犠牲テンプレート同士で絡み合い易い。犠牲テンプレート同士が絡み合うと、前駆溶液、前駆粉体等の中において犠牲テンプレートの流動性が低くなる。犠牲テンプレートの流動性が低いと、多孔質体を所望の外形に成形するために成形型を用いる場合等に、犠牲テンプレートが成形型中の目的の位置に適切に配置されず偏りを生じるため、所望の外形に成形した多孔質体中に、適切な分布の連通孔を形成するのが困難になる。 However, long sacrificial templates with a large aspect ratio tend to be entangled with each other when mixed with the precursor solution, precursor powder, etc. used in the production of porous materials. When the sacrificial templates are entangled with each other, the fluidity of the sacrificial template becomes low in the precursor solution, the precursor powder, and the like. If the fluidity of the sacrificial template is low, the sacrificial template will not be properly placed at the desired position in the molding die and will be biased when a molding die is used to form the porous body into a desired outer shape. It becomes difficult to form communication holes with an appropriate distribution in the porous body formed into a desired outer shape.
 しかし、本実施形態のように、犠牲テンプレートを前駆溶液等の媒体中に析出させる製造方法を用いると、犠牲テンプレート同士の接触や、犠牲テンプレートの空間的配置・配向を比較的自由に制御することができる。多孔質体を所望の外形に成形するための成形型中で犠牲テンプレートを析出させることも可能であり、多孔質体の外形に対する連通孔の配置を正確に制御することができる。そのため、多孔質体の全体にわたって離散的に張り巡らされた3次元的な網目構造の連通孔を安定的に形成することができる。 However, when the manufacturing method of precipitating the sacrificial template in a medium such as a precursor solution as in the present embodiment is used, the contact between the sacrificial templates and the spatial arrangement / orientation of the sacrificial templates can be controlled relatively freely. Can be done. It is also possible to deposit the sacrificial template in a molding die for molding the porous body into a desired outer shape, and it is possible to accurately control the arrangement of the communication holes with respect to the outer shape of the porous body. Therefore, it is possible to stably form communication holes having a three-dimensional network structure that are discretely stretched over the entire porous body.
 図1A~図1Dに示すように、析出工程では、アスペクト比が大きい長尺の犠牲テンプレート120を媒体中に析出させるために、犠牲テンプレート120の原料を含有する前駆溶液100の状態・性質を調整する操作を加え、析出媒体としての前駆溶液100中に、アスペクト比が大きい長尺の犠牲テンプレート120で構成される3次元的な網目構造を半自発的に形成させる。 As shown in FIGS. 1A to 1D, in the precipitation step, the state / property of the precursor solution 100 containing the raw material of the sacrificial template 120 is adjusted in order to precipitate the long sacrificial template 120 having a large aspect ratio in the medium. In addition, a three-dimensional network structure composed of a long sacrificial template 120 having a large aspect ratio is semi-spontaneously formed in the precursor solution 100 as a precipitation medium.
 図1Aは、犠牲テンプレート120の原料を含有する前駆溶液100を液槽に用意した状態を示す。図1Bは、前駆溶液100中に犠牲テンプレート120の核110が生成した状態を示す。図1Cは、前駆溶液100中にアスペクト比が大きい長尺の犠牲テンプレート120が析出した状態を示す。図1Dは、前駆溶液100中から得られた3次元的な網目構造を形成した犠牲テンプレート120を示す。 FIG. 1A shows a state in which the precursor solution 100 containing the raw material of the sacrificial template 120 is prepared in the liquid tank. FIG. 1B shows a state in which the nucleus 110 of the sacrificial template 120 is formed in the precursor solution 100. FIG. 1C shows a state in which a long sacrificial template 120 having a large aspect ratio is precipitated in the precursor solution 100. FIG. 1D shows the sacrificial template 120 forming a three-dimensional network structure obtained from the precursor solution 100.
 図1Aに示すように、前駆溶液100は、適宜の形状の液槽に用意することができる。図1A~図1Dにおいては、作製した犠牲テンプレート120を、前駆溶液100を入れた液槽から一旦取り出して多孔質体1の製造に用いる方法を示している。但し、多孔質体1の製造は、作製した犠牲テンプレート120を液槽から一旦取り出さず、同じ液槽内で連続的に行うこともできる。 As shown in FIG. 1A, the precursor solution 100 can be prepared in a liquid tank having an appropriate shape. 1A to 1D show a method in which the prepared sacrificial template 120 is once taken out from the liquid tank containing the precursor solution 100 and used for producing the porous body 1. However, the production of the porous body 1 can be performed continuously in the same liquid tank without taking out the prepared sacrificial template 120 from the liquid tank once.
 作製した犠牲テンプレート120を液槽から一旦取り出して多孔質体の製造に用いる場合、前駆溶液100を入れる液槽は、犠牲テンプレート120の立体構造が収まる限り、製造しようとする多孔質体1の外形と同じ形状、すなわち、多孔質体1の成形型として機能する形状であってもよいし、製造しようとする多孔質体1の外形とは異なる形状であってよい。 When the prepared sacrificial template 120 is once taken out from the liquid tank and used for manufacturing the porous body, the liquid tank containing the precursor solution 100 is the outer shape of the porous body 1 to be manufactured as long as the three-dimensional structure of the sacrificial template 120 fits. It may have the same shape as the above, that is, a shape that functions as a molding mold for the porous body 1, or may have a shape different from the outer shape of the porous body 1 to be manufactured.
 犠牲テンプレート120は、低分子化合物、高分子化合物、無機化合物、金属等のいずれで形成することもできる。前駆溶液100としては、犠牲テンプレート120を低分子化合物で形成する場合、原料となる低分子化合物等、高分子化合物で形成する場合、モノマ、プレポリマ、高分子化合物等、無機化合物で形成する場合、金属塩、金属アルコキシド等、金属で形成する場合、金属塩、金属酸化体等を、それぞれ、適宜の溶媒に溶解・分散させて用意することができる。 The sacrificial template 120 can be formed of any of low molecular weight compounds, high molecular weight compounds, inorganic compounds, metals and the like. As the precursor solution 100, when the sacrificial template 120 is formed of a low molecular weight compound, when it is formed of a high molecular weight compound such as a low molecular weight compound which is a raw material, or when it is formed of an inorganic compound such as a monoma, a prepolymer, or a high molecular weight compound. When it is formed of a metal such as a metal salt or a metal alkoxide, the metal salt, the metal oxide or the like can be prepared by dissolving and dispersing each in an appropriate solvent.
 図1B及び図1Cに示すように、犠牲テンプレート120の核110や、アスペクト比が大きい長尺の犠牲テンプレート120は、前駆溶液100中に、連通孔20の形成に必要な適宜の数密度となるように析出させることができる。図1Bには、球状の核110を図示しているが、析出の形態は、液相からの結晶化に限られず、球状、繊維状、不定形状等の固体成分の相分離等であってもよい。固体成分を析出させる操作としては、犠牲テンプレート120の原料の種類に応じて、適宜の操作を用いることができる。 As shown in FIGS. 1B and 1C, the core 110 of the sacrificial template 120 and the long sacrificial template 120 having a large aspect ratio have an appropriate number density required for forming the communication holes 20 in the precursor solution 100. It can be precipitated as follows. Although the spherical nucleus 110 is shown in FIG. 1B, the form of precipitation is not limited to crystallization from the liquid phase, but may be phase separation of solid components such as spherical, fibrous, and amorphous. Good. As an operation for precipitating the solid component, an appropriate operation can be used depending on the type of the raw material of the sacrificial template 120.
 固体成分を析出させる操作としては、犠牲テンプレート120を低分子化合物で形成する場合、低分子化合物の溶解度を低下させる操作等を用いることができる。溶解度は、前駆溶液100の温度、極性、pH、塩濃度等の外因性因子を変える方法や、原料の配位性、親媒性等の内因性因子を化学的に変える方法等のいずれで操作してもよい。 As an operation for precipitating a solid component, when the sacrificial template 120 is formed of a low molecular weight compound, an operation of lowering the solubility of the low molecular weight compound or the like can be used. Solubility can be adjusted by either a method of changing exogenous factors such as temperature, polarity, pH, or salt concentration of the precursor solution 100, or a method of chemically changing intrinsic factors such as coordinating property and amphipathicity of raw materials. You may.
 また、固体成分を析出させる操作としては、犠牲テンプレート120を高分子化合物で形成する場合、モノマやプレポリマを重合させる操作、高分子化合物を架橋する操作、高分子化合物を液体から相分離させる操作等を用いることができる。重合や架橋は、重合剤や架橋剤を添加する方法、熱重合させる方法、光重合させる方法等のいずれで操作してもよい。相分離は、前駆溶液100の温度、極性、pH、塩濃度等の外因性因子を変える方法や、原料の配位性、親媒性等の内因性因子を化学的に変える方法等のいずれで操作してもよい。 Further, as the operation of precipitating the solid component, when the sacrificial template 120 is formed of a polymer compound, an operation of polymerizing a monoma or a prepolymer, an operation of cross-linking the polymer compound, an operation of phase-separating the polymer compound from the liquid, etc. Can be used. The polymerization or cross-linking may be carried out by any of a method of adding a polymerization agent or a cross-linking agent, a method of thermal polymerization, a method of photopolymerization and the like. Phase separation can be performed by either a method of changing exogenous factors such as temperature, polarity, pH and salt concentration of the precursor solution 100, or a method of chemically changing intrinsic factors such as coordinating property and hostility of raw materials. You may operate it.
 また、固体成分を析出させる操作としては、犠牲テンプレート120を無機化合物で形成する場合、無機化合物の溶解度を低下させる操作、不溶性無機化合物を反応生成させる操作等を用いることができる。溶解度は、前駆溶液100の温度、極性、pH、塩濃度等の外因性因子を変える方法や、原料の配位性、親媒性等の内因性因子を化学的に変える方法等のいずれで操作してもよい。不溶性無機化合物の生成は、沈殿反応、酸化還元反応、ゾルゲル反応等のいずれによるものでもよい。 Further, as the operation of precipitating the solid component, when the sacrificial template 120 is formed of the inorganic compound, an operation of lowering the solubility of the inorganic compound, an operation of reacting and generating an insoluble inorganic compound, and the like can be used. Solubility can be adjusted by either a method of changing exogenous factors such as temperature, polarity, pH, or salt concentration of the precursor solution 100, or a method of chemically changing intrinsic factors such as coordinating property and amphipathicity of raw materials. You may. The formation of the insoluble inorganic compound may be carried out by any of a precipitation reaction, a redox reaction, a sol-gel reaction and the like.
 また、固体成分を析出させる操作としては、犠牲テンプレート120を金属で形成する場合、金属を還元剤で化学的に還元析出させる操作、金属を電気化学的に還元析出させる操作等を用いることができる。電気化学的に還元析出させる操作は、例えば、液槽に犠牲テンプレート120の原料と電解質を入れ、液槽に浸漬させた電極間に通電することによって行うことができる。このような操作によると、電極上に樹状結晶、針状結晶等の還元金属を析出させることができる。 Further, as the operation of precipitating the solid component, when the sacrificial template 120 is formed of metal, an operation of chemically reducing and precipitating the metal with a reducing agent, an operation of electrochemically reducing and precipitating the metal, and the like can be used. .. The operation of electrochemically reducing and precipitating can be performed, for example, by putting the raw material and the electrolyte of the sacrificial template 120 in a liquid tank and energizing between the electrodes immersed in the liquid tank. By such an operation, a reducing metal such as a dendritic crystal or an acicular crystal can be precipitated on the electrode.
 犠牲テンプレート120を形成する低分子化合物としては、溶解度の温度依存性が高く、前駆溶液100の使用温度の範囲内で溶解度差が大きくとれる化合物が好ましい。このような低分子化合物であると、前駆溶液100の温度を低下させるだけで、犠牲テンプレート120の析出を開始することができる。そのため、犠牲テンプレート120の核110の数密度や犠牲テンプレート120の形状を容易に制御することができる。また、前駆溶液100に不要成分を添加する必要が無いため、析出物を洗浄する処理等を簡略化することができる。 As the low molecular weight compound forming the sacrificial template 120, a compound having a high temperature dependence of solubility and a large solubility difference within the operating temperature range of the precursor solution 100 is preferable. With such a low molecular weight compound, the precipitation of the sacrificial template 120 can be started only by lowering the temperature of the precursor solution 100. Therefore, the number density of the core 110 of the sacrifice template 120 and the shape of the sacrifice template 120 can be easily controlled. Further, since it is not necessary to add an unnecessary component to the precursor solution 100, it is possible to simplify the process of washing the precipitate.
 低分子化合物の具体例としては、尿素、尿素誘導体、チオ尿素、チオ尿素誘導体等が挙げられる。誘導体としては、フェニル(チオ)尿素、アルキル置換フェニル(チオ)尿素、アルコキシ置換フェニル(チオ)尿素、ベンゾイル(チオ)尿素、ベンジル(チオ)尿素、これらの置換誘導体等が挙げられる。これらの化合物であると、溶媒として水を用いることができる。これらの化合物は、水中における溶解度の温度依存性が高く、結晶性の犠牲テンプレート120を形成することができる。そのため、犠牲テンプレート120の核110の数密度や犠牲テンプレート120の形状を容易に制御することができる。また、水が良溶媒となるため、貧溶媒の添加量の調節によって、前駆溶液100の極性を簡単に調整することができる。 Specific examples of low molecular weight compounds include urea, urea derivatives, thiourea, and thiourea derivatives. Examples of the derivative include phenyl (thio) urea, alkyl-substituted phenyl (thio) urea, alkoxy-substituted phenyl (thio) urea, benzoyl (thio) urea, benzyl (thio) urea, and substituted derivatives thereof. With these compounds, water can be used as the solvent. These compounds are highly temperature dependent for solubility in water and can form a crystalline sacrificial template 120. Therefore, the number density of the core 110 of the sacrifice template 120 and the shape of the sacrifice template 120 can be easily controlled. Further, since water serves as a good solvent, the polarity of the precursor solution 100 can be easily adjusted by adjusting the amount of the poor solvent added.
 犠牲テンプレート120を形成する高分子化合物としては、モノマやプレポリマの重合によって固化する化合物や、分子間の相互作用等で溶解度が大きく変化して相分離する化合物が好ましい。このような高分子化合物であると、犠牲テンプレート120の核110の数密度や犠牲テンプレート120の形状を、添加する原料の種類や濃度を変えることによって精密に制御することができる。 As the polymer compound forming the sacrificial template 120, a compound that is solidified by the polymerization of a monomer or a prepolymer, or a compound that undergoes phase separation due to a large change in solubility due to an interaction between molecules or the like is preferable. With such a polymer compound, the number density of the nuclei 110 of the sacrificial template 120 and the shape of the sacrificial template 120 can be precisely controlled by changing the type and concentration of the raw material to be added.
 高分子化合物の具体例としては、ポリメチルアクリレート、ポリメチルメタクリレート、ポリアクリル酸、ポリメタクリル酸、ポリアクリルアミド、ポリジメチルアクリルアミド等のアクリル樹脂や、ポリエチレン、ポリプロピレン等のポリオレフィンや、ポリスチレン等が挙げられる。ポリスチレンとポリメタクリル酸メチル等との組み合わせを用いると、液相に対する相溶性の低下によって相分離が起こるため、特定のモルフォロジで犠牲テンプレート120を形成させることができる。 Specific examples of the polymer compound include acrylic resins such as polymethylacrylate, polymethylmethacrylate, polyacrylic acid, polymethacrylic acid, polyacrylamide and polydimethylacrylamide, polyolefins such as polyethylene and polypropylene, and polystyrene. .. When a combination of polystyrene and polymethyl methacrylate or the like is used, phase separation occurs due to a decrease in compatibility with the liquid phase, so that the sacrificial template 120 can be formed with a specific morphology.
 犠牲テンプレート120を形成する無機化合物としては、溶解度の温度依存性が高く、前駆溶液100の使用温度の範囲内で溶解度差が大きくとれる化合物が好ましい。このような無機化合物であると、前駆溶液100の温度を低下させるだけで、犠牲テンプレート120の析出を開始することができる。そのため、犠牲テンプレート120の核110の数密度や犠牲テンプレート120の形状を容易に制御することができる。また、前駆溶液100に不要成分を添加する必要が無いため、析出物を洗浄する処理等を簡略化することができる。 As the inorganic compound forming the sacrificial template 120, a compound having a high temperature dependence of solubility and a large solubility difference within the operating temperature range of the precursor solution 100 is preferable. With such an inorganic compound, the precipitation of the sacrificial template 120 can be started only by lowering the temperature of the precursor solution 100. Therefore, the number density of the core 110 of the sacrifice template 120 and the shape of the sacrifice template 120 can be easily controlled. Further, since it is not necessary to add an unnecessary component to the precursor solution 100, it is possible to simplify the process of washing the precipitate.
 無機化合物の具体例としては、ミョウバン等が挙げられる。ミョウバンとしては、カリウムアルミニウムミョウバン、アンモニウムアルミニウムミョウバン、アンモニウム鉄ミョウバン、アンモニウムクロムミョウバン等が挙げられる。これらの化合物であると、溶媒として水を用いることができる。これらの化合物は、水中における溶解度の温度依存性が高く、結晶性の犠牲テンプレート120を形成することができる。そのため、犠牲テンプレート120の核110の数密度や犠牲テンプレート120の形状を容易に制御することができる。 Specific examples of inorganic compounds include alum and the like. Examples of alum include potassium aluminum alum, ammonium aluminum alum, ammonium iron alum, and ammonium chrome alum. With these compounds, water can be used as the solvent. These compounds are highly temperature dependent for solubility in water and can form a crystalline sacrificial template 120. Therefore, the number density of the core 110 of the sacrifice template 120 and the shape of the sacrifice template 120 can be easily controlled.
 犠牲テンプレート120を形成する金属としては、溶解度が高い金属塩を形成する金属や、還元電位が大きい金属が好ましい。このような金属であると、犠牲テンプレート120の核110の数密度や犠牲テンプレート120の形状を前駆溶液100の酸化還元電位を変えることによって精密に制御することができる。 As the metal forming the sacrificial template 120, a metal forming a metal salt having high solubility and a metal having a large reduction potential are preferable. With such a metal, the number density of the core 110 of the sacrificial template 120 and the shape of the sacrificial template 120 can be precisely controlled by changing the redox potential of the precursor solution 100.
 前駆溶液100の溶媒としては、例えば、水や、メタノール、エタノール、イソプロピルアルコール等のアルコール類や、ジエチルエーテル、ジブチルエーテル等のエーテル類や、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類や、酢酸エチル等の脂肪酸エステル類や、ベンゼン、トルエン、キシレン、ジクロロベンゼン等の芳香族炭化水素類や、ヘキサン、シクロヘキサン、ドデカン等の脂肪族炭化水素類や、クロロホルム、ジクロロエタン、ジメチルフラン、ジメチルスルホキシド、ジメチルアセトアミド、ジメチルホルムアミド、N-メチル-2-ピロリドン、テトラヒドロフラン、アセトニトリル等の各種の溶媒や超臨界流体を用いることができる。 Examples of the solvent of the precursor solution 100 include water, alcohols such as methanol, ethanol and isopropyl alcohol, ethers such as diethyl ether and dibutyl ether, ketones such as acetone, methyl ethyl ketone and cyclohexanone, ethyl acetate and the like. Fatty acid esters, aromatic hydrocarbons such as benzene, toluene, xylene, and dichlorobenzene, aliphatic hydrocarbons such as hexane, cyclohexane, and dodecane, chloroform, dichloroethane, dimethylfuran, dimethylsulfoxide, dimethylacetamide, Various solvents such as dimethylformamide, N-methyl-2-pyrrolidone, tetrahydrofuran and acetonitrile and supercritical fluids can be used.
 析出工程では、前駆溶液100に対して、犠牲テンプレート120のモルフォロジを制御するための添加剤や、犠牲テンプレート120の析出や核生成を促進する種結晶、造核剤等を添加することもできる。添加剤としては、例えば、界面活性剤、凝集剤、分散剤、錯化剤等を用いることができる。 In the precipitation step, an additive for controlling the morphology of the sacrificial template 120, a seed crystal that promotes precipitation and nucleation of the sacrificial template 120, a nucleating agent, and the like can be added to the precursor solution 100. As the additive, for example, a surfactant, a flocculant, a dispersant, a complexing agent and the like can be used.
 また、析出工程では、前駆溶液100を入れる液槽に、犠牲テンプレート120の結晶成長の方向、核110の生成頻度、結晶や分子の配向等を制御するための基材等を投入することもできるし、これらを制御するための内面構造等を設けておくこともできる。基材や内面構造としては、例えば、所定の結晶面を露出させたものや、金属等の物質付着、化学修飾等の表面処理を施したものを用いることができる。 Further, in the precipitation step, a base material or the like for controlling the direction of crystal growth of the sacrificial template 120, the frequency of formation of the nuclei 110, the orientation of crystals and molecules, and the like can be put into the liquid tank containing the precursor solution 100. However, it is also possible to provide an inner surface structure or the like for controlling these. As the base material and the inner surface structure, for example, one having a predetermined crystal face exposed, or one having undergone surface treatment such as attachment of a substance such as metal or chemical modification can be used.
 犠牲テンプレート120は、前駆溶液100中に析出させたとき、アスペクト比が大きい長尺の直線部位のみを形成していてもよいし、アスペクト比が大きい長尺の直線部位に加え、非直線部位を形成していてもよい。非直線部位としては、例えば、直線部位から2以上に枝分かれした分岐部位、直線部位同士が交差した交差部位、屈曲部位、湾曲部位等が挙げられる。 When the sacrificial template 120 is deposited in the precursor solution 100, it may form only a long straight portion having a large aspect ratio, or it may form a non-linear portion in addition to a long straight portion having a large aspect ratio. It may be formed. Examples of the non-linear portion include a bifurcated portion branched into two or more from the straight portion, an intersecting portion where the straight portions intersect, a bending portion, a curved portion, and the like.
 犠牲テンプレート120の横断面形状は、円形、楕円形、矩形、多角形、不定形等のいずれであってもよい。また、犠牲テンプレート120の横断面形状は、析出物毎に相似形状であってもよいし、析出物毎に非相似形状であってもよい。 The cross-sectional shape of the sacrifice template 120 may be circular, elliptical, rectangular, polygonal, amorphous, or the like. Further, the cross-sectional shape of the sacrificial template 120 may be a similar shape for each precipitate or a non-similar shape for each precipitate.
 犠牲テンプレート120は、縦断面視におけるアスペクト比(長さと径との比)が10以上であることが好ましい。犠牲テンプレート120のアスペクト比は、直線部位の平均長さと平均径との比として定義される。アスペクト比は、犠牲テンプレート120が非直線部位を形成している場合、非直線部位を除いた直線部位のみについて計算される。長さや径の平均値は、直線部位のうちの任意部位を測定点として、所定の試料数以上の析出物及びその部位の測定結果から計算される。 The sacrificial template 120 preferably has an aspect ratio (ratio of length to diameter) of 10 or more in a vertical cross-sectional view. The aspect ratio of the sacrifice template 120 is defined as the ratio of the mean length of the straight line portion to the mean diameter. The aspect ratio is calculated only for the linear portion excluding the non-linear portion when the sacrificial template 120 forms the non-linear portion. The average value of the length and the diameter is calculated from the measurement results of the precipitates having a predetermined number of samples or more and the measurement results of the arbitrary part of the straight part as the measurement point.
 図1Cに示すように、犠牲テンプレート120は、縦断面視におけるアスペクト比が大きい長尺の直線部位、又は、アスペクト比が大きい長尺の直線部位同士の連結によって3次元的な網目構造の構造物となるように、前駆溶液100中で析出物を成長させて形成することができる。作製された犠牲テンプレート120は、必要に応じて、前駆溶液100を入れた液槽から取り出し、洗浄処理、乾燥処理等を施すことができる。 As shown in FIG. 1C, the sacrifice template 120 is a structure having a three-dimensional network structure by connecting long straight parts having a large aspect ratio or long straight parts having a large aspect ratio in a vertical cross-sectional view. The precipitate can be grown and formed in the precursor solution 100 so as to be. The prepared sacrificial template 120 can be taken out from the liquid tank containing the precursor solution 100 and subjected to a washing treatment, a drying treatment, or the like, if necessary.
 図2A~図2Bに示すように、基材層形成工程では、犠牲テンプレート120の周囲に多孔質体の基材となる基材層10を形成するために、基材の原料を含有する前駆溶液200の状態・性質を調整する操作を加え、犠牲テンプレート120の周囲を基材層10で覆う。基材層10を形成することにより、犠牲テンプレート120を除去したときに形成される連通孔20の形状を固定化すると共に、多孔質体1の本体を構成するマトリクスを形成する。 As shown in FIGS. 2A to 2B, in the base material layer forming step, a precursor solution containing a raw material of the base material is formed in order to form the base material layer 10 which is the base material of the porous body around the sacrificial template 120. An operation for adjusting the state / property of 200 is added, and the periphery of the sacrificial template 120 is covered with the base material layer 10. By forming the base material layer 10, the shape of the communication hole 20 formed when the sacrificial template 120 is removed is fixed, and a matrix constituting the main body of the porous body 1 is formed.
 図2Aは、基材層10の原料を含有する前駆溶液200と、犠牲テンプレート120とを、液槽に用意した状態を示す。図2Bは、犠牲テンプレート120の周囲に基材層10を形成した状態を示す。 FIG. 2A shows a state in which the precursor solution 200 containing the raw material of the base material layer 10 and the sacrificial template 120 are prepared in the liquid tank. FIG. 2B shows a state in which the base material layer 10 is formed around the sacrificial template 120.
 図2Aに示すように、前駆溶液200と犠牲テンプレート120は、適宜の形状の液槽に用意することができる。図2A~図2Bにおいては、作製した犠牲テンプレート120の周囲に、犠牲テンプレート120の輪郭が分かる程度の厚さの基材層10を形成する方法を示している。但し、基材層10は、犠牲テンプレート120の周囲を完全に埋めるバルク状に形成することもできる。 As shown in FIG. 2A, the precursor solution 200 and the sacrificial template 120 can be prepared in a liquid tank having an appropriate shape. 2A to 2B show a method of forming a base material layer 10 having a thickness such that the outline of the sacrificial template 120 can be seen around the prepared sacrificial template 120. However, the base material layer 10 can also be formed in a bulk shape that completely fills the periphery of the sacrificial template 120.
 前駆溶液200を入れる液槽は、犠牲テンプレート120の立体構造が収まる限り、製造しようとする多孔質体1の外形と同じ形状、すなわち、多孔質体1の成形型となる形状であってもよいし、製造しようとする多孔質体1の外形とは異なる形状であってよい。 The liquid tank containing the precursor solution 200 may have the same shape as the outer shape of the porous body 1 to be manufactured, that is, a shape that becomes a molding mold of the porous body 1 as long as the three-dimensional structure of the sacrificial template 120 fits. However, the shape may be different from the outer shape of the porous body 1 to be manufactured.
 なお、図2A~図2Bには、基材層10を液相中で形成する例を示しているが、基材層10は、犠牲テンプレート120の原料の種類や、基材の原料の種類に応じて、前駆溶液の噴霧等を利用することにより気相中で形成してもよいし、前駆粉末の焼結、溶着等を利用することにより充填相中で形成してもよい。 Although FIGS. 2A to 2B show an example in which the base material layer 10 is formed in the liquid phase, the base material layer 10 can be used for the type of raw material of the sacrificial template 120 and the type of raw material for the base material. Depending on the situation, it may be formed in the gas phase by using spraying of the precursor solution or the like, or may be formed in the packed phase by using sintering, welding or the like of the precursor powder.
 基材層10は、多孔質体1に生体適合性を付与可能であり、犠牲テンプレート120による連通孔20の形状の固定化と犠牲テンプレート120の除去が妨げられない限り、高分子化合物、無機化合物、金属等のいずれで形成することもできる。前駆溶液200としては、基材層10を高分子化合物で形成する場合、モノマ、プレポリマ、高分子化合物等、無機化合物で形成する場合、金属塩、金属アルコキシド等、金属で形成する場合、金属塩、金属酸化体等を、それぞれ、適宜の溶媒に溶解・分散させて用意することができる。 The base material layer 10 can impart biocompatibility to the porous body 1, and is a polymer compound or an inorganic compound as long as the immobilization of the shape of the communication hole 20 by the sacrificial template 120 and the removal of the sacrificial template 120 are not hindered. , Metal, etc. can be used. As the precursor solution 200, when the base material layer 10 is formed of a polymer compound, when it is formed of an inorganic compound such as monoma, prepolyma, or polymer compound, or when it is formed of a metal such as a metal salt or metal alkoxide, it is a metal salt. , Metal oxidants and the like can be prepared by dissolving and dispersing each in an appropriate solvent.
 基材層10を形成する方法としては、基材層10を高分子化合物で形成する場合、モノマやプレポリマを重合させる反応、高分子化合物を架橋する反応等を用いることができる。重合や架橋は、重合剤や架橋剤を添加する方法、熱重合させる方法、光重合させる方法等のいずれで行ってもよい。 As a method for forming the base material layer 10, when the base material layer 10 is formed of a polymer compound, a reaction of polymerizing a monomer or a prepolymer, a reaction of cross-linking a polymer compound, or the like can be used. The polymerization or cross-linking may be carried out by any of a method of adding a polymerization agent or a cross-linking agent, a method of thermal polymerization, a method of photopolymerization and the like.
 また、基材層10を形成する方法としては、基材層10を無機化合物で形成する場合、ゾルゲル法、液相法、固相法等のいずれを用いることもできる。また、基材層10を金属で形成する場合、金属を還元剤で化学的に還元析出させる方法、金属を電気化学的に還元析出させる方法等を用いることができる。 Further, as a method for forming the base material layer 10, when the base material layer 10 is formed of an inorganic compound, any of a sol-gel method, a liquid phase method, a solid phase method and the like can be used. When the base material layer 10 is formed of a metal, a method of chemically reducing and precipitating the metal with a reducing agent, a method of electrochemically reducing and precipitating the metal, and the like can be used.
 図2Bに示すように、基材層10は、犠牲テンプレート120の周囲が、ある程度覆われることによって、連通孔20の形状が固定化され、且つ、多孔質体1の機械的強度が確保される限り、犠牲テンプレート120の全体を覆うように形成してもよいし、犠牲テンプレート120の一部のみを覆うように形成してもよい。 As shown in FIG. 2B, in the base material layer 10, the shape of the communication hole 20 is fixed and the mechanical strength of the porous body 1 is ensured by covering the periphery of the sacrificial template 120 to some extent. As long as it is formed, it may be formed so as to cover the entire sacrifice template 120, or may be formed so as to cover only a part of the sacrifice template 120.
 基材層10を形成する方法としては、基材の原料の種類に応じて、基材の原料の固化、硬化反応等を利用した適宜の方法を用いることができる。基材の原料としては、犠牲テンプレート120の表面で析出や吸着を生じるものを用いてもよい。 As a method for forming the base material layer 10, an appropriate method using the solidification of the base material raw material, the curing reaction, or the like can be used depending on the type of the base material raw material. As the raw material of the base material, a material that causes precipitation or adsorption on the surface of the sacrificial template 120 may be used.
 多孔質体1の基材となる基材層10は、多孔質体1の用途に応じて、適宜の構造に設けることができる。多孔質体1の基材は、3次元的な網目構造を形成する連通孔20以外に微細な閉気孔を実質的に有しない非ポーラス構造であってもよいし、3次元的な網目構造を形成する連通孔20以外に微細な閉気孔を有するポーラス構造であってもよい。 The base material layer 10 serving as the base material of the porous body 1 can be provided in an appropriate structure depending on the use of the porous body 1. The base material of the porous body 1 may have a non-porous structure having substantially no fine closed pores other than the communication holes 20 forming the three-dimensional network structure, or may have a three-dimensional network structure. It may have a porous structure having fine closed air holes in addition to the communication holes 20 to be formed.
 また、多孔質体1の基材となる基材層10は、犠牲テンプレート120の周囲や、隣接する犠牲テンプレート120同士の間を埋めるバルク状に設けてもよいし、図2Bに示すように、犠牲テンプレート120の周囲のみを埋め、隣接する犠牲テンプレート120同士の間を埋めない網目状、すなわち、基材層10が犠牲テンプレート120の周囲に犠牲テンプレート120の輪郭が分かる程度の厚さの外壁部を形成し、隣接する犠牲テンプレート120の外壁部同士が柱状部で架橋される海綿骨状に形成することもできる。 Further, the base material layer 10 serving as the base material of the porous body 1 may be provided in a bulk shape so as to fill the periphery of the sacrificial template 120 or between the adjacent sacrificial templates 120, or as shown in FIG. 2B. A mesh pattern that fills only the periphery of the sacrificial template 120 and does not fill the space between adjacent sacrificial templates 120, that is, the outer wall portion having a thickness such that the base material layer 10 can see the outline of the sacrificial template 120 around the sacrificial template 120. Can also be formed into a cancellous bone shape in which the outer wall portions of adjacent sacrificial templates 120 are bridged by columnar portions.
 多孔質体1の基材となる基材層10をバルク状に設けると、比較的高強度な多孔質体1が得られる。一方、多孔質体1の基材となる基材層10を網目状に設けると、連通孔20の内外両側が細胞接着し易い表面となるため、連通孔20の内外両側に対して高密度の細胞を担持させることができる。例えば、連通孔20の内側に内皮細胞等を担持させ、連通孔20の外側に結合組織の細胞等を担持させて、生体組織に近い人工臓器・人工組織を形成することも可能になる。 When the base material layer 10 serving as the base material of the porous body 1 is provided in a bulk shape, the porous body 1 having relatively high strength can be obtained. On the other hand, when the base material layer 10 serving as the base material of the porous body 1 is provided in a mesh shape, both the inner and outer sides of the communication hole 20 become a surface on which cells easily adhere, so that the density is high with respect to the inner and outer sides of the communication hole 20. Cells can be supported. For example, it is possible to support an endothelial cell or the like inside the communication hole 20 and a connective tissue cell or the like on the outside of the communication hole 20 to form an artificial organ / artificial tissue close to a living tissue.
 多孔質体1の基材は、生体吸収性を有する材料で形成されてもよいし、生体吸収性を有しない材料で形成されてもよい。生体吸収性を有する材料であると、多孔質体1を生体内に移植したとき、多孔質体1が時間の経過と共に分解されるため、移植した多孔質体1の使用後の抜き取りが不要になる。生体吸収性を有する材料であると、連通孔20が生体内で早期に消失する虞があるが、連通孔20の内側を内皮細胞等で被覆すると、連通孔20の形状を保てる場合がある。一方、生体吸収性を有しない材料であると、多孔質体1の使用後の抜き取りが必要になるが、連通孔20が生体内で消失し難いため、多孔質体1の機能を長期間にわたって維持できる。 The base material of the porous body 1 may be formed of a material having bioabsorbability, or may be formed of a material having no bioabsorbability. If the material has bioabsorbability, when the porous body 1 is transplanted into a living body, the porous body 1 is decomposed with the passage of time, so that it is not necessary to remove the transplanted porous body 1 after use. Become. If the material has bioabsorbability, the communication hole 20 may disappear in the living body at an early stage, but if the inside of the communication hole 20 is covered with endothelial cells or the like, the shape of the communication hole 20 may be maintained. On the other hand, if the material does not have bioabsorbability, it is necessary to remove the porous body 1 after use, but since the communication holes 20 are difficult to disappear in the living body, the function of the porous body 1 can be maintained for a long period of time. Can be maintained.
 生体吸収性を有する材料の具体例としては、タンパク・ペプチド・ポリアミノ酸、多糖類、ポリエステル、ポリアミド等が挙げられる。生体吸収性を有する材料としては、これらの誘導体、架橋体、これらを含む共重合体等を用いることもできる。また、生体吸収性を有する材料としては、金属マグネシウム、炭酸カルシウム、ハイドロキシアパタイト等の無機物や金属を用いることもできる。これらの材料は、架橋や被覆によって生体吸収性を示さなくなってもよい。 Specific examples of bioabsorbable materials include proteins, peptides, polyamino acids, polysaccharides, polyesters, polyamides and the like. As the material having bioabsorbability, derivatives of these, crosslinked products, copolymers containing them, and the like can also be used. Further, as a material having bioabsorbability, an inorganic substance such as metallic magnesium, calcium carbonate or hydroxyapatite or a metal can also be used. These materials may not exhibit bioabsorbability due to cross-linking or coating.
 タンパク・ペプチド・ポリアミノ酸としては、例えば、コラーゲン、ゼラチン、α-ポリリジン、ε-ポリリジン、ポリグルタミン酸、ポリアスパラギン酸、フィブリン、フィブロイン等が挙げられる。多糖類としては、例えば、キチン、キトサン等が挙げられる。ポリエステルとしては、例えば、ポリ乳酸、ポリカプロラクタム、ポリジオキサノン、ポリグリコール酸、ポリヒドロキシ酪酸等が挙げられる。 Examples of proteins, peptides and polyamino acids include collagen, gelatin, α-polylysine, ε-polylysine, polyglutamic acid, polyaspartic acid, fibrin, fibroin and the like. Examples of the polysaccharide include chitin and chitosan. Examples of the polyester include polylactic acid, polycaprolactam, polydioxanone, polyglycolic acid, polyhydroxybutyrate and the like.
 生体吸収性を有しない材料の具体例としては、アクリル樹脂、フッ素樹脂、多糖類、ポリオレフィン、シリコーン、ポリスチレン、ポリエステル、ポリウレタン、ポリカーボネート、ポリイミド等が挙げられる。生体吸収性を有しない材料としては、これらの誘導体、架橋体、これらを含む共重合体等を用いることもできる。また、生体吸収性を有しない材料としては、チタン、シリカ、ジルコニア等の無機物や金属を用いることもできる。生体吸収性を有しない材料としては、比重や硬度、成形性や犠牲テンプレート120との組み合わせ等の観点からは、有機高分子材料が好ましい。 Specific examples of materials that do not have bioabsorbability include acrylic resin, fluororesin, polysaccharides, polyolefins, silicones, polystyrenes, polyesters, polyurethanes, polycarbonates, and polyimides. As a material having no bioabsorbability, derivatives of these, crosslinked products, copolymers containing these, and the like can also be used. Further, as a material having no bioabsorbability, an inorganic substance such as titanium, silica or zirconia or a metal can be used. As the material having no bioabsorbability, an organic polymer material is preferable from the viewpoint of specific gravity, hardness, moldability, combination with the sacrificial template 120, and the like.
 アクリル樹脂としては、例えば、ポリ(2-ヒドロキシエチルアクリレート)、ポリ(2-ヒドロキシエチルメタクリレート)、ポリ(メトキシエチルアクリレート)、ポリ(メトキシエチルメタクリレート)、ポリメチルアクリレート、ポリメチルメタクリレート、ポリアクリル酸、ポリメタクリル酸、ポリアクリルアミド、ポリジメチルアクリルアミド等が挙げられる。 Examples of the acrylic resin include poly (2-hydroxyethyl acrylate), poly (2-hydroxyethyl methacrylate), poly (methoxyethyl acrylate), poly (methoxyethyl methacrylate), polymethyl acrylate, polymethyl methacrylate, and polyacrylic acid. , Polymethacrylic acid, polyacrylamide, polydimethylacrylamide and the like.
 フッ素樹脂としては、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体等が挙げられる。多糖類としては、アガロース、セルロース、ヒドロキシエチルセルロース、ヒドロキプロピルセルロース等が挙げられる。ポリオレフィンとしては、ポリエチレン、ポリプロピレン、ポリメチルペンテン等が挙げられる。シリコーンとしては、ポリジメチルシロキサン、シリコーン樹脂等が挙げられる。 Examples of the fluororesin include polytetrafluoroethylene, polyvinylidene fluoride, and a tetrafluoroethylene / hexafluoropropylene copolymer. Examples of the polysaccharide include agarose, cellulose, hydroxyethyl cellulose, hydrokipropyl cellulose and the like. Examples of the polyolefin include polyethylene, polypropylene, polymethylpentene and the like. Examples of the silicone include polydimethylsiloxane and silicone resin.
 多孔質体1の基材は、多孔質体1の高強度化や軽量化、増量、ブロッキングの防止等の各種の目的で、フィラーが配合されてもよい。フィラーは、球状、板状、フレーク状、針状、繊維状、不定形状等のいずれであってもよいし、中実形状であってもよいし、中空形状であってもよい。フィラーは、例えば、前駆溶液200中に分散させた状態で基材層10を形成することにより配合することができる。 The base material of the porous body 1 may be blended with a filler for various purposes such as increasing the strength, reducing the weight of the porous body 1, increasing the amount, and preventing blocking. The filler may have a spherical shape, a plate shape, a flake shape, a needle shape, a fibrous shape, an indefinite shape, or the like, a solid shape, or a hollow shape. The filler can be blended, for example, by forming the base material layer 10 in a state of being dispersed in the precursor solution 200.
 フィラーの具体例としては、シリカ、アルミナ、ジルコニア、タルク、クレー、マイカ、黒鉛、カーボンブラック、炭素繊維、ガラス、ガラス繊維、ガラスバルーン、シラスバルーン、炭酸カルシウム、炭酸マグネシウム、水酸化アルミニウム、水酸化マグネシウム、酸化チタン、酸化鉄、酸化カルシウム、酸化マグネシウム、セルロース繊維、アラミド繊維、ポリアミド繊維等が挙げられる。 Specific examples of fillers include silica, alumina, zirconia, talc, clay, mica, graphite, carbon black, carbon fiber, glass, glass fiber, glass balloon, silas balloon, calcium carbonate, magnesium carbonate, aluminum hydroxide, and hydroxide. Examples thereof include magnesium, titanium oxide, iron oxide, calcium oxide, magnesium oxide, cellulose fiber, aramid fiber, and polyamide fiber.
 図2Bに示すように、基材層10は、連通孔20の形状が固定化される限り、犠牲テンプレート120の表面に積層した段階で多孔質体1の基材を形成してもよいし、犠牲テンプレート120の表面に積層した後に、前駆溶液200の溶媒を除去する乾燥処理、基材層10を固化させる重合処理や架橋処理、基材層10をポーラス化させる発泡処理等の後処理をされた段階で多孔質体1の基材を形成してもよい。形成された犠牲テンプレート120と基材層10との複合体は、必要に応じて、前駆溶液200を入れた液槽から取り出し、犠牲テンプレート120の除去性の向上等の目的で、面取り加工、切り出し加工等を施すこともできる。 As shown in FIG. 2B, the base material layer 10 may form the base material of the porous body 1 at the stage of being laminated on the surface of the sacrificial template 120 as long as the shape of the communication hole 20 is fixed. After laminating on the surface of the sacrificial template 120, post-treatments such as a drying treatment for removing the solvent of the precursor solution 200, a polymerization treatment and a cross-linking treatment for solidifying the base material layer 10, and a foaming treatment for making the base material layer 10 porous are performed. The base material of the porous body 1 may be formed at this stage. The complex of the formed sacrificial template 120 and the base material layer 10 is taken out from the liquid tank containing the precursor solution 200, if necessary, and chamfered and cut out for the purpose of improving the removability of the sacrificial template 120. It can also be processed.
 図3A~図3Bに示すように、除去工程では、犠牲テンプレート120の周囲に形成された基材層10中から犠牲テンプレート120を除去するために、犠牲テンプレート120の状態・性質を調整する操作を加え、基材層10によって形状が固定化された連通孔20が空いた多孔質体1を得る。 As shown in FIGS. 3A to 3B, in the removing step, in order to remove the sacrificial template 120 from the base material layer 10 formed around the sacrificial template 120, an operation of adjusting the state / property of the sacrificial template 120 is performed. In addition, a porous body 1 having communication holes 20 whose shape is fixed by the base material layer 10 is obtained.
 図3Aは、犠牲テンプレート120と基材層10との複合体を、液槽に用意した状態を示す。図3Bは、犠牲テンプレート120と基材層10との複合体から犠牲テンプレート120を除去した状態を示す。 FIG. 3A shows a state in which the composite of the sacrificial template 120 and the base material layer 10 is prepared in the liquid tank. FIG. 3B shows a state in which the sacrificial template 120 is removed from the composite of the sacrificial template 120 and the base material layer 10.
 図3Aに示すように、犠牲テンプレート120の除去は、液相中で行うことができる。なお、図3A~図3Bには、犠牲テンプレート120を、基材層10の形成に用いた前駆溶液200を入れた液槽から一旦取り出さず、同じ液槽内で連続的に処理する例を示している。但し、犠牲テンプレート120は、犠牲テンプレート120の原料の種類に応じて、前駆溶液200を入れた液槽から一旦取り出して別の液槽内で処理することもできる。また、気相中や充填相中で処理することもできる。 As shown in FIG. 3A, the removal of the sacrificial template 120 can be performed in the liquid phase. Note that FIGS. 3A to 3B show an example in which the sacrificial template 120 is not once taken out from the liquid tank containing the precursor solution 200 used for forming the base material layer 10, but is continuously treated in the same liquid tank. ing. However, the sacrificial template 120 may be taken out from the liquid tank containing the precursor solution 200 and processed in another liquid tank, depending on the type of raw material of the sacrificial template 120. It can also be processed in the gas phase or the packed phase.
 犠牲テンプレート120を除去する方法としては、犠牲テンプレート120の原料の種類に応じて、例えば、犠牲テンプレート120を溶解させる方法、熱融解させる方法、昇華させる方法、化学反応分解させる方法、これらの組み合わせ等を用いることができる。 As a method of removing the sacrificial template 120, for example, a method of melting the sacrificial template 120, a method of heat melting, a method of sublimation, a method of chemical reaction decomposition, a combination thereof, etc., depending on the type of the raw material of the sacrificial template 120, etc. Can be used.
 犠牲テンプレート120を除去するときの犠牲テンプレート120の除去率は、特に制限されるものではない。犠牲テンプレート120の除去率は、多孔質体の空隙率を高くする観点等からは、90%以上であることが好ましく、95%以上であることがより好ましく、98%以上であることが更に好ましい。なお、犠牲テンプレート120の除去率は、犠牲テンプレート120と基材層10との複合体の乾燥重量に対する、犠牲テンプレート120が除去された多孔質体1の乾燥重量として求めることができる。 The removal rate of the sacrifice template 120 when removing the sacrifice template 120 is not particularly limited. The removal rate of the sacrificial template 120 is preferably 90% or more, more preferably 95% or more, still more preferably 98% or more, from the viewpoint of increasing the porosity of the porous body. .. The removal rate of the sacrificial template 120 can be determined as the dry weight of the porous body 1 from which the sacrificial template 120 has been removed with respect to the dry weight of the composite of the sacrificial template 120 and the base material layer 10.
 図3Bに示すように、犠牲テンプレート120と基材層10との複合体から犠牲テンプレート120を除去し、必要に応じて、乾燥処理、重合処理、架橋処理、発泡処理等の後処理を行うと、目的の形状・構造の連通孔20が形成された多孔質体1が得られる。多孔質体1の連通孔20は、縦断面視におけるアスペクト比が大きい長尺の細孔、又は、アスペクト比が大きい長尺の細孔同士の連結によって形成された3次元的な網目構造となる。作製された多孔質体1は、必要に応じて、洗浄処理、乾燥処理、表面処理、成形加工等を施すことができる。 As shown in FIG. 3B, the sacrificial template 120 is removed from the composite of the sacrificial template 120 and the base material layer 10, and post-treatments such as drying treatment, polymerization treatment, cross-linking treatment, and foaming treatment are performed as necessary. , A porous body 1 in which communication holes 20 having a desired shape and structure are formed can be obtained. The communication holes 20 of the porous body 1 have a three-dimensional network structure formed by connecting long pores having a large aspect ratio or long pores having a large aspect ratio in a vertical cross-sectional view. .. The produced porous body 1 can be subjected to cleaning treatment, drying treatment, surface treatment, molding processing and the like, if necessary.
 多孔質体1の連通孔20は、縦断面視におけるアスペクト比(長さと径との比)が10以上であることが好ましい。このような連通孔20を形成すると、大きな細胞を通過させず、酸素、栄養等の小さい分子のみが移動できる細胞足場や生体適合性材料が得られる。また、連通孔20内に細胞を担持させる場合、細胞が偏りや脱落を生じ難い3次元的な網目構造が得られる。そのため、担持される細胞の生着率や細胞の機能が向上する細胞足場が得られる。 The communication hole 20 of the porous body 1 preferably has an aspect ratio (ratio of length to diameter) of 10 or more in a vertical cross-sectional view. By forming such a communication hole 20, a cell scaffold or a biocompatible material can be obtained in which only small molecules such as oxygen and nutrients can move without passing through large cells. Further, when the cells are supported in the communication holes 20, a three-dimensional network structure in which the cells are less likely to be biased or dropped can be obtained. Therefore, a cell scaffold that improves the engraftment rate of supported cells and the function of cells can be obtained.
 連通孔20のアスペクト比は、直線部位の平均長さと平均径との比として定義される。アスペクト比は、連通孔20が非直線部位を形成している場合、非直線部位を除いた直線部位のみについて計算される。長さや径の平均値は、直線部位のうちの任意部位を測定点として、所定の試料数以上の連通孔20及びその部位の測定結果から計算される。連通孔20のアスペクト比は、使用した犠牲テンプレート120のアスペクト比と同一でなくてもよく、基材の部分的な形成不良や、変形・破断・膨潤等が生じていてもよい。 The aspect ratio of the communication hole 20 is defined as the ratio of the average length of the straight line portion to the average diameter. When the communication hole 20 forms a non-linear portion, the aspect ratio is calculated only for the straight portion excluding the non-linear portion. The average value of the length and the diameter is calculated from the measurement results of the communication holes 20 and the portions having a predetermined number of samples or more, with an arbitrary portion of the straight portion as a measurement point. The aspect ratio of the communication hole 20 does not have to be the same as the aspect ratio of the sacrificial template 120 used, and the base material may be partially poorly formed, deformed, broken, or swollen.
 多孔質体1は、アスペクト比が10以上である連通孔20の体積率が、基材中に存在する全細孔の体積の合計に対して、50体積%以上であることが好ましく、60体積%以上であることがより好ましく、70体積%以上であることが更に好ましい。アスペクト比が大きい連通孔20の体積率が高いと、多数の連通孔20が、径(内幅)の均一性が高く、直線部位が多い網目構造となる。そのため、連通孔20に導入した細胞が特定箇所に滞留したり、酸素・栄養の供給性や老廃物の放出性に差異が生じたりするのを抑制できる。 In the porous body 1, the volume ratio of the communication holes 20 having an aspect ratio of 10 or more is preferably 50% by volume or more, preferably 60 volumes, based on the total volume of all the pores existing in the base material. It is more preferably 70% by volume or more, and further preferably 70% by volume or more. When the volume fraction of the communication holes 20 having a large aspect ratio is high, a large number of communication holes 20 have a high uniformity of diameter (inner width) and a network structure having many straight portions. Therefore, it is possible to prevent the cells introduced into the communication hole 20 from staying at a specific location and causing a difference in the supply of oxygen / nutrients and the release of waste products.
 連通孔20は、平均長さ、平均径、断面形状、非直線部位の屈曲角度・曲率等が、特に制限されるものではない。連通孔20の平均長さ、平均径、断面形状、非直線部位の屈曲角度・曲率等は、多孔質体1の用途、連通孔20の機能、基材の原料の種類、多孔質体1に担持させる細胞の種類等に応じて、適宜の条件に設けることができる。 The communication hole 20 is not particularly limited in the average length, the average diameter, the cross-sectional shape, the bending angle / curvature of the non-linear portion, and the like. The average length, average diameter, cross-sectional shape, bending angle / curvature of the non-linear portion of the communication hole 20 can be determined by the application of the porous body 1, the function of the communication hole 20, the type of raw material of the base material, and the porous body 1. It can be provided under appropriate conditions depending on the type of cells to be carried.
 連通孔20は、低分子の輸送を目的とした毛細血管様の構造として利用する場合、平均径が10μm以上1000μm以下となるように設けることが好ましい。このような径であると、連通孔20が、大きな細胞を通過させず、酸素、栄養等の小さい分子のみを輸送することができるし、3次元的な網目構造中に担持される細胞が偏りや脱落を生じ難くなる。 When the communication hole 20 is used as a capillary-like structure for the purpose of transporting small molecules, it is preferable to provide the communication hole 20 so that the average diameter is 10 μm or more and 1000 μm or less. With such a diameter, the communication hole 20 can transport only small molecules such as oxygen and nutrients without passing through large cells, and the cells supported in the three-dimensional network structure are biased. It becomes difficult for it to fall off.
 多孔質体1は、多孔質体1の外部と連通した連通孔20に加え、閉気孔を有していてもよい。閉気孔としては、基材の部分的な形成不良や、基材の形成の段階で不可避的に発生・混入する気泡や、犠牲テンプレート120を除去するときの基材の溶出等を原因とするものであってもよいし、発泡処理等によって積極的に形成されたものであってもよい。 The porous body 1 may have closed pores in addition to the communication holes 20 that communicate with the outside of the porous body 1. The closed pores are caused by partial poor formation of the base material, air bubbles inevitably generated / mixed at the stage of forming the base material, elution of the base material when the sacrificial template 120 is removed, and the like. It may be one that is positively formed by a foaming treatment or the like.
 多孔質体1の空隙率は、好ましくは20%以上、より好ましくは30%以上、更に好ましくは50%以上である。また、多孔質体1の空隙率は、好ましくは99%以下、より好ましくは95%以下、更に好ましくは90%以下である。空隙率が20%以上で高いほど、多孔質体1に担持させる細胞の量を多くすることができる。また、酸素・栄養の供給性や老廃物の放出性が良好になる。一方、空隙率が99%以下で低いほど、多孔質体1の機械的強度が確保され易くなる。 The porosity of the porous body 1 is preferably 20% or more, more preferably 30% or more, still more preferably 50% or more. The porosity of the porous body 1 is preferably 99% or less, more preferably 95% or less, still more preferably 90% or less. The higher the porosity of 20% or more, the larger the amount of cells supported on the porous body 1. In addition, the supply of oxygen and nutrients and the release of waste products are improved. On the other hand, the lower the porosity is 99% or less, the easier it is to secure the mechanical strength of the porous body 1.
 多孔質体1は、基材の表面や連通孔20の内面が、表面処理されていてもよい。表面処理としては、化学修飾処理、プラズマ処理、コロナ放電処理、紫外線照射処理、紫外線照射/オゾン処理等が挙げられる。化学修飾処理を行うと、化学修飾に用いる成分に応じて、親水性、生体適合性等を向上させたり、基材の細胞接着性を向上させたり、基材自体に機能性を付与したりすることができる。また、プラズマ処理、コロナ放電処理、紫外線照射処理、紫外線照射/オゾン処理によると、親水性を向上させたり、化学修飾用の官能基を導入したりすることができる。 The surface of the base material and the inner surface of the communication holes 20 of the porous body 1 may be surface-treated. Examples of the surface treatment include chemical modification treatment, plasma treatment, corona discharge treatment, ultraviolet irradiation treatment, ultraviolet irradiation / ozone treatment, and the like. When the chemical modification treatment is performed, hydrophilicity, biocompatibility, etc. are improved, cell adhesion of the base material is improved, and functionality is imparted to the base material itself, depending on the components used for the chemical modification. be able to. Further, according to plasma treatment, corona discharge treatment, ultraviolet irradiation treatment, and ultraviolet irradiation / ozone treatment, hydrophilicity can be improved and functional groups for chemical modification can be introduced.
 化学修飾処理としては、基材が電荷を有する材料である場合、静電相互作用等、基材が反応性の官能基を有する材料である場合、共有結合等、基材が疎水性の材料である場合、疎水性相互作用等を、それぞれ、利用することができる。また、基材が特定の分子に特異的に結合する分子認識部位を有する材料である場合、特異的に認識される分子を用いることができる。化学修飾処理は、塗布コーティング法、ディップコーティング法、スプレーコーティング法等の各種の方法で行うことができる。化学修飾処理は、一種の成分を用いて行ってもよいし、複数種の成分を用いて行ってもよい。 As the chemical modification treatment, when the base material is a charged material, electrostatic interaction, etc., the base material has a reactive functional group, covalent bond, etc., the base material is a hydrophobic material. In some cases, hydrophobic interactions and the like can be utilized, respectively. Further, when the base material is a material having a molecular recognition site that specifically binds to a specific molecule, a molecule that is specifically recognized can be used. The chemical modification treatment can be performed by various methods such as a coating coating method, a dip coating method, and a spray coating method. The chemical modification treatment may be carried out using one kind of component or a plurality of kinds of components.
 化学修飾処理に用いる成分としては、コラーゲン、フィブロネクチン、ビトロネクチン、ラミニン、カドヘリン、α-ポリリジン等の接着因子・細胞外マトリクス(Extracellular Matrix:ECM)や、ゼラチン、化学修飾ゼラチン等のECMから誘導される成分や、ビオチン、アビジン、ストレプトアビジン、プロテインA、プロテインG、プロテインL、抗体等の特異的な結合を形成する成分や、上皮成長因子(Epidermal Growth Factor:EGF)、塩基性線維芽細胞成長因子(Basic Fibroblast Growth Factor:bFGF)、骨形成タンパク質(Bone Morphogenetic Protein:BMP)、エリスロポエチン(Erythropoietin:EPO)、インスリン、インスリン様成長因子、トランスフェリン、インターロイキン、腫瘍壊死因子(Tumor Necrosis Factor:TNF)等の成長因子・分化因子・ホルモン・サイトカイン等の生理活性物質や、銀ナノ粒子等の抗菌成分や、グルタチオン、ビタミンE、カタラーゼ、ペルオキシダーゼ等の抗酸化成分・活性酸素捕捉成分・活性酸素分解成分や、金属過酸化物、過酸化水素尿素等の酸素徐放成分や、抗炎症性成分や、抗線維化成分等が挙げられる。 Ingredients used in the chemical modification treatment are derived from adhesion factors / extracellular matrix (ECM) such as collagen, fibronectin, bitronectin, laminin, cadoherin, α-polylysine, and ECM such as gelatin and chemically modified gelatin. Ingredients, components that form specific bonds such as biotin, avidin, streptavidin, protein A, protein G, protein L, antibody, epidermal growth factor (EGF), basic fibroblast growth factor (Basic Fibroblast Growth Factor: bFGF), bone morphogenetic protein (BMP), erythropoietin (EPO), insulin, insulin-like growth factor, transferase, interleukin, tumor necrosis factor (TNF), etc. Physiologically active substances such as growth factors, differentiation factors, hormones and cytokines, antibacterial components such as silver nanoparticles, antioxidant components such as glutathione, vitamin E, catalase and peroxidase, active oxygen trapping components, active oxygen decomposing components and , Metal peroxides, sustained-release oxygen components such as urea hydrogen peroxide, anti-inflammatory components, anti-fibrotic components and the like.
 また、化学修飾処理に用いる成分としては、基材の官能基に対するブロッキング剤を用いることもできる。ブロッキング剤の具体例としては、活性化カルボキシル基、グリシジル基等に対するエタノールアミン等が挙げられる。ブロッキング剤を用いると、不要成分の吸着・結合による多孔質1の汚染等を防止することができる。 Further, as a component used for the chemical modification treatment, a blocking agent for the functional group of the base material can also be used. Specific examples of the blocking agent include ethanolamine for an activated carboxyl group, a glycidyl group and the like. When a blocking agent is used, it is possible to prevent contamination of the porous 1 due to adsorption / bonding of unnecessary components.
 図4A~図4Eは、多孔質体の製造方法の別例を模式的に示す図である。
 図4A~図4Eに示すように、多孔質体1は、析出工程(図4A~図4C参照)と、基材層形成工程(図4D参照)と、除去工程(図4E参照)とを、同じ液槽内で連続的に行うこともできる。前駆溶液300としては、犠牲テンプレート120の原料に加えて基材の原料を含有する溶液が用いられる。
4A to 4E are diagrams schematically showing another example of a method for producing a porous body.
As shown in FIGS. 4A to 4E, the porous body 1 has a precipitation step (see FIGS. 4A to 4C), a base material layer forming step (see FIG. 4D), and a removing step (see FIG. 4E). It can also be performed continuously in the same liquid tank. As the precursor solution 300, a solution containing the raw material of the base material in addition to the raw material of the sacrificial template 120 is used.
 図4Aは、犠牲テンプレート120の原料に加えて基材の原料を含有する前駆溶液300を液槽に用意した状態を示す。図4Bは、前駆溶液300中に犠牲テンプレート120の核110が生成した状態を示す。図4Cは、前駆溶液300中にアスペクト比が大きい長尺の犠牲テンプレート120が析出した状態を示す。図4Dは、犠牲テンプレート120の周囲に基材層10が形成された状態を示す。図4Eは、犠牲テンプレート120と基材層10との複合体から犠牲テンプレート120を除去した状態を示す。 FIG. 4A shows a state in which a precursor solution 300 containing the raw material of the base material in addition to the raw material of the sacrificial template 120 is prepared in the liquid tank. FIG. 4B shows a state in which the nucleus 110 of the sacrificial template 120 is formed in the precursor solution 300. FIG. 4C shows a state in which a long sacrificial template 120 having a large aspect ratio is precipitated in the precursor solution 300. FIG. 4D shows a state in which the base material layer 10 is formed around the sacrificial template 120. FIG. 4E shows a state in which the sacrificial template 120 is removed from the composite of the sacrificial template 120 and the base material layer 10.
 図4A~図4Eに示すように、前駆溶液300は、適宜の形状の液槽に用意することができる。図4A~図4Eにおいては、作製した犠牲テンプレート120の周囲に、犠牲テンプレート120の輪郭が分かる程度の厚さの基材層10を形成する方法を示している。但し、基材層10は、犠牲テンプレート120の周囲や、隣接する犠牲テンプレート120同士の間を埋めるバルク状に形成してもよい。前駆溶液300を入れる液槽は、製造しようとする多孔質体1の外形と同じ形状、すなわち、多孔質体1の成形型となる形状であってもよいし、製造しようとする多孔質体1の外形とは異なる形状であってよい。 As shown in FIGS. 4A to 4E, the precursor solution 300 can be prepared in a liquid tank having an appropriate shape. 4A to 4E show a method of forming a base material layer 10 having a thickness such that the outline of the sacrificial template 120 can be seen around the prepared sacrificial template 120. However, the base material layer 10 may be formed in a bulk shape that fills the periphery of the sacrificial template 120 or between adjacent sacrificial templates 120. The liquid tank in which the precursor solution 300 is placed may have the same shape as the outer shape of the porous body 1 to be manufactured, that is, a shape that becomes a molding mold of the porous body 1, or the porous body 1 to be manufactured. The shape may be different from the outer shape of.
 各工程を同じ液槽内で連続的に行う場合、犠牲テンプレート120の原料や、基材の原料としては、析出の条件が互いに異なり、犠牲テンプレート120の除去が可能である限り、適宜の組み合わせを用いることができる。例えば、犠牲テンプレート120の原料として、尿素、尿素誘導体、チオ尿素、チオ尿素誘導体、ミョウバン等の水溶性の低分子化合物を用い、基材の原料として、タンパク・ペプチド・ポリアミノ酸、アクリル樹脂、多糖類等の水溶性の高分子化合物を用いると、溶媒として水を用いて温度を変えるだけで、犠牲テンプレート120の析出や除去、基材層10の形成を開始できる。そのため、入れ替えに伴う手間や犠牲テンプレート120の破損のリスクを避けることができる。 When each step is continuously performed in the same liquid tank, the raw material of the sacrificial template 120 and the raw material of the base material may be appropriately combined as long as the precipitation conditions are different from each other and the sacrificial template 120 can be removed. Can be used. For example, a water-soluble low-molecular-weight compound such as urea, a urea derivative, thiourea, a thiourea derivative, or myoban is used as a raw material for the sacrificial template 120, and a protein / peptide / polyamino acid, an acrylic resin, or many other as a raw material for the base material. When a water-soluble polymer compound such as a saccharide is used, precipitation or removal of the sacrificial template 120 and formation of the base material layer 10 can be started simply by changing the temperature using water as a solvent. Therefore, it is possible to avoid the trouble of replacement and the risk of damage to the sacrificial template 120.
 図5A~図5Eは、多孔質体の製造方法の別例を模式的に示す図である。
 図5A~図5Eに示すように、多孔質体1は、アスペクト比が大きい長尺の犠牲テンプレート120とは形状や形成法が異なるテンプレート材150を併用して製造することもできる。
5A to 5E are diagrams schematically showing another example of a method for producing a porous body.
As shown in FIGS. 5A to 5E, the porous body 1 can also be produced by using a template material 150 having a different shape and forming method from the long sacrificial template 120 having a large aspect ratio.
 テンプレート材150は、多孔質体1の基材中に所望の形状・構造の内部空間50を型取りするために用いられる。媒体中に犠牲テンプレート120とは異なるテンプレート材150を入れて犠牲テンプレート120を析出させると、基材中に、アスペクト比が大きい長尺の連通孔20と、複数の連通孔20に連通した内部空間50と、を有する多孔質体1が得られる。なお、図5A~図5Eにおいては、内部空間50が多孔質体1の基材で完全に覆われる構造に設けられているが、内部空間50は、外部と連通する構造に設けられてもよい。 The template material 150 is used to mold the internal space 50 having a desired shape and structure in the base material of the porous body 1. When a template material 150 different from the sacrificial template 120 is put in the medium and the sacrificial template 120 is deposited, a long communication hole 20 having a large aspect ratio and an internal space communicating with the plurality of communication holes 20 are formed in the base material. A porous body 1 having 50 and 50 is obtained. In addition, in FIGS. 5A to 5E, the internal space 50 is provided in a structure completely covered with the base material of the porous body 1, but the internal space 50 may be provided in a structure communicating with the outside. ..
 図5Aは、犠牲テンプレート120の原料に加えて基材の原料を含有する前駆溶液300と、テンプレート材150とを、液槽に用意した状態を示す。図5Bは、前駆溶液300中に犠牲テンプレート120の核110が生成した状態を示す。図5Cは、前駆溶液300中にアスペクト比が大きい長尺の犠牲テンプレート120が析出した状態を示す。図5Dは、犠牲テンプレート120及びテンプレート材150の周囲に基材層10が形成された状態を示す。図5Eは、犠牲テンプレート120とテンプレート材150と基材層10との複合体から犠牲テンプレート120とテンプレート材150を除去した状態を示す。 FIG. 5A shows a state in which the precursor solution 300 containing the raw material of the base material in addition to the raw material of the sacrificial template 120 and the template material 150 are prepared in the liquid tank. FIG. 5B shows a state in which the nucleus 110 of the sacrificial template 120 is formed in the precursor solution 300. FIG. 5C shows a state in which a long sacrificial template 120 having a large aspect ratio is precipitated in the precursor solution 300. FIG. 5D shows a state in which the base material layer 10 is formed around the sacrificial template 120 and the template material 150. FIG. 5E shows a state in which the sacrificial template 120 and the template material 150 are removed from the composite of the sacrificial template 120, the template material 150, and the base material layer 10.
 図5Aに示すように、犠牲テンプレート120の原料に加えて基材の原料を含有する前駆溶液300と、テンプレート材150とは、適宜の形状の液槽に用意することができる。図5A~図5Eにおいては、製造しようとする多孔質体1の外形と同じ形状、すなわち、多孔質体1の成形型となる形状の液槽を用いている。但し、製造しようとする多孔質体1の外形とは異なる形状の液槽を用いてもよい。 As shown in FIG. 5A, the precursor solution 300 containing the raw material of the base material in addition to the raw material of the sacrificial template 120 and the template material 150 can be prepared in a liquid tank having an appropriate shape. In FIGS. 5A to 5E, a liquid tank having the same shape as the outer shape of the porous body 1 to be manufactured, that is, a shape that becomes a molding mold for the porous body 1, is used. However, a liquid tank having a shape different from the outer shape of the porous body 1 to be manufactured may be used.
 テンプレート材150は、犠牲テンプレート120の析出後に前駆溶液300中から除去できる限り、高分子化合物、無機化合物、金属等のいずれで形成することもできる。テンプレート材150は、形状、大きさ、テクスチャ等が、特に制限されるものではない。テンプレート材150は、犠牲テンプレート120と同様の材料、又は、犠牲テンプレート120とは異なる材料を用いて、予め成形された成形体として用意することができる。 The template material 150 can be formed of any of a polymer compound, an inorganic compound, a metal, and the like as long as it can be removed from the precursor solution 300 after the sacrificial template 120 is precipitated. The shape, size, texture, etc. of the template material 150 are not particularly limited. The template material 150 can be prepared as a preformed molded product using the same material as the sacrificial template 120 or a material different from the sacrificial template 120.
 テンプレート材150を形成する原料としては、ポリスチレン、多糖類等が好ましい。多糖類としては、アガロース、ヒドロキシエチルセルロース、ヒドロキプロピルセルロース等が挙げられる。ポリスチレンを用いると、成形が比較的容易であり、トルエン、リモネン等の溶媒で容易に溶解させることができる。また、多糖類を用いると、水、温水等の溶媒で容易に溶解する場合が多いため、テンプレート材150を簡単に除去することができる。 As the raw material for forming the template material 150, polystyrene, polysaccharides and the like are preferable. Examples of the polysaccharide include agarose, hydroxyethyl cellulose, hydrokipropyl cellulose and the like. When polystyrene is used, molding is relatively easy, and it can be easily dissolved in a solvent such as toluene or limonene. Further, when a polysaccharide is used, it is often easily dissolved in a solvent such as water or warm water, so that the template material 150 can be easily removed.
 図5B及び図5Cに示すように、犠牲テンプレート120の核110や、アスペクト比が大きい長尺の犠牲テンプレート120は、前駆溶液300中やテンプレート材150の表面に、連通孔20の形成に必要な適宜の数密度となるように析出させることができる。図5Bには、球状の核110を図示しているが、析出の形態は、液相からの結晶化に限られず、球状、繊維状、不定形状等の固体成分の相分離等であってもよい。固体成分を析出させる操作としては、犠牲テンプレート120の原料の種類に応じて、適宜の操作を用いることができる。 As shown in FIGS. 5B and 5C, the core 110 of the sacrificial template 120 and the long sacrificial template 120 having a large aspect ratio are necessary for forming the communication holes 20 in the precursor solution 300 and on the surface of the template material 150. It can be precipitated so as to have an appropriate number density. Although the spherical nucleus 110 is shown in FIG. 5B, the form of precipitation is not limited to crystallization from the liquid phase, but may be phase separation of solid components such as spherical, fibrous, and amorphous. Good. As an operation for precipitating the solid component, an appropriate operation can be used depending on the type of the raw material of the sacrificial template 120.
 テンプレート材150は、犠牲テンプレート120の結晶成長の方向、核110の生成頻度、結晶や分子の配向等を制御するための表面構造が設けられていてもよい。表面構造としては、例えば、所定の結晶面を露出させた構造や、金属等の物質付着、化学修飾等の表面処理を施した構造を用いることができる。このような表面構造を設けると、テンプレート材150の表面に犠牲テンプレート120を析出させることができるため、内部空間50に対して連通孔20が繋がった多孔質体1が得られる。 The template material 150 may be provided with a surface structure for controlling the direction of crystal growth of the sacrificial template 120, the frequency of formation of nuclei 110, the orientation of crystals and molecules, and the like. As the surface structure, for example, a structure in which a predetermined crystal plane is exposed, or a structure in which a substance such as a metal is attached or a surface treatment such as chemical modification is applied can be used. When such a surface structure is provided, the sacrificial template 120 can be deposited on the surface of the template material 150, so that the porous body 1 in which the communication holes 20 are connected to the internal space 50 can be obtained.
 図5Cに示すように、犠牲テンプレート120は、縦断面視におけるアスペクト比が大きい長尺の直線部位、又は、アスペクト比が大きい長尺の直線部位同士の連結によって3次元的な網目構造の構造物となり、テンプレート材150と接触又は絡み合った複合体が形成されるように、前駆溶液100中で析出物を成長させて形成することができる。作製された犠牲テンプレート120とテンプレート材150は、必要に応じて、前駆溶液300を入れた液槽から取り出し、洗浄処理、乾燥処理等を施すことができる。 As shown in FIG. 5C, the sacrifice template 120 is a structure having a three-dimensional network structure by connecting long straight parts having a large aspect ratio or long straight parts having a large aspect ratio in a vertical cross-sectional view. Therefore, the precipitate can be grown and formed in the precursor solution 100 so that a complex in contact with or entangled with the template material 150 is formed. The prepared sacrificial template 120 and the template material 150 can be taken out from the liquid tank containing the precursor solution 300 and subjected to cleaning treatment, drying treatment and the like, if necessary.
 図5Dに示すように、基材層10は、犠牲テンプレート120やテンプレート材150の周囲が、ある程度覆われることによって、連通孔20や内部空間50の形状が固定化され、且つ、多孔質体1の機械的強度が確保される限り、犠牲テンプレート120やテンプレート材150の全体を覆うように形成してもよいし、犠牲テンプレート120やテンプレート材150の一部のみを覆うように形成してもよい。図5A~図5Eにおいては、作製した犠牲テンプレート120やテンプレート材150の周囲を完全に埋めるバルク状の基材層10を形成しているが、犠牲テンプレート120やテンプレート材150の輪郭が分かる程度の厚さの基材層10を形成してもよい。 As shown in FIG. 5D, in the base material layer 10, the shapes of the communication holes 20 and the internal space 50 are fixed by covering the periphery of the sacrificial template 120 and the template material 150 to some extent, and the porous body 1 As long as the mechanical strength of the sacrificial template 120 or the template material 150 is ensured, it may be formed so as to cover the entire sacrificial template 120 or the template material 150, or may be formed so as to cover only a part of the sacrificial template 120 or the template material 150. .. In FIGS. 5A to 5E, the bulk-shaped base material layer 10 that completely fills the periphery of the prepared sacrificial template 120 and the template material 150 is formed, but the contours of the sacrificial template 120 and the template material 150 can be seen. A base layer 10 having a thickness may be formed.
 図5Eに示すように、犠牲テンプレート120とテンプレート材150と基材層10との複合体から犠牲テンプレート120とテンプレート材150を除去し、必要に応じて、乾燥処理、重合処理、架橋処理、発泡処理等の後処理を行うと、目的の形状・構造の連通孔20と内部空間50が形成された多孔質体1が得られる。多孔質体1の連通孔20は、縦断面視におけるアスペクト比が大きい長尺の細孔、又は、アスペクト比が大きい長尺の細孔同士の連結によって形成されており、内部空間50に対して繋がった3次元的な網目構造となる。作製された多孔質体1は、必要に応じて、洗浄処理、乾燥処理、表面処理、成形加工等を施すことができる。 As shown in FIG. 5E, the sacrificial template 120 and the template material 150 are removed from the composite of the sacrificial template 120, the template material 150, and the base material layer 10, and if necessary, a drying treatment, a polymerization treatment, a cross-linking treatment, and foaming are performed. When post-treatment such as treatment is performed, a porous body 1 in which the communication holes 20 having the desired shape and structure and the internal space 50 are formed can be obtained. The communication holes 20 of the porous body 1 are formed by connecting long pores having a large aspect ratio or long pores having a large aspect ratio in a vertical cross-sectional view, and are formed with respect to the internal space 50. It becomes a connected three-dimensional network structure. The produced porous body 1 can be subjected to cleaning treatment, drying treatment, surface treatment, molding processing and the like, if necessary.
 図6A~図6Cは、多孔質体の製造方法の具体例を模式的に示す図である。
 図6A~図6Cに示すように、多孔質体1は、移植先の生体に対する適合性が高くなるように、連通孔20によって血管様構造を形成することもできる。図6A~図6Cには、アスペクト比が大きい長尺の犠牲テンプレート120とは形状や形成法が異なる柱状テンプレート材160を併用して人工臓器を形成する例を示している。
6A to 6C are diagrams schematically showing specific examples of a method for producing a porous body.
As shown in FIGS. 6A to 6C, the porous body 1 can also form a blood vessel-like structure by the communication holes 20 so as to have high compatibility with the living body to be transplanted. 6A to 6C show an example in which an artificial organ is formed by using a columnar template material 160 having a shape and a different forming method from the long sacrificial template 120 having a large aspect ratio.
 柱状テンプレート材160は、多孔質体1の基材中に、連通孔20よりも大径であり、多孔質体1を略横断する形状・構造の柱状空間60を型取りするために用いられる。媒体中に犠牲テンプレート120とは異なる柱状テンプレート材160を入れて犠牲テンプレート120を析出させると、基材中に、アスペクト比が大きい長尺の連通孔20と、複数の連通孔20に連通した柱状空間60と、を有する多孔質体1が得られる。 The columnar template material 160 is used for molding a columnar space 60 having a diameter larger than that of the communication hole 20 and having a shape and structure substantially crossing the porous body 1 in the base material of the porous body 1. When a columnar template material 160 different from the sacrificial template 120 is placed in the medium to deposit the sacrificial template 120, a long communication hole 20 having a large aspect ratio and a columnar structure communicating with the plurality of communication holes 20 are deposited in the base material. A porous body 1 having a space of 60 is obtained.
 図6Aは、多孔質体1を所望の外形に成形するための成形型500に柱状テンプレート材160を配置した状態を示す。図6Bは、犠牲テンプレート120及び柱状テンプレート材160の周囲に基材層10が形成された状態を示す。図6Cは、犠牲テンプレート120と柱状テンプレート材160と基材層10との複合体から犠牲テンプレート120と柱状テンプレート材160を除去すると共に、成形型500を除去した状態を示す。 FIG. 6A shows a state in which the columnar template material 160 is arranged in the molding die 500 for molding the porous body 1 into a desired outer shape. FIG. 6B shows a state in which the base material layer 10 is formed around the sacrificial template 120 and the columnar template material 160. FIG. 6C shows a state in which the sacrificial template 120 and the columnar template material 160 are removed from the composite of the sacrificial template 120, the columnar template material 160, and the base material layer 10, and the molding die 500 is removed.
 図6Aに示すように、犠牲テンプレート120の析出や、基材層10の形成に用いる液槽としては、多孔質体1を所望の外形に成形するための成形型500を用いることができる。図6A~図6Cに示す成形型500は、その側壁に、成形型500の内側から側方に向けて突出するように、柱状テンプレート材160と嵌め合わせ可能な接合片40が取り付けられている。 As shown in FIG. 6A, as the liquid tank used for precipitating the sacrificial template 120 and forming the base material layer 10, a molding die 500 for molding the porous body 1 into a desired outer shape can be used. In the molding dies 500 shown in FIGS. 6A to 6C, a joining piece 40 that can be fitted with the columnar template material 160 is attached to the side wall thereof so as to project laterally from the inside of the molding dies 500.
 成形型500は、ガラス、石膏、軟質樹脂、硬質樹脂、セラミック、金属等のいずれで形成することもできる。図6A~図6Cにおいては、成形型500の一例として、人工臓器様の成形型を示している。但し、成形型500は、形状、大きさ等が、特に制限されるものではない。成形型500は、柱状テンプレート材160の取り付けや、犠牲テンプレート120や柱状テンプレート材160の除去が可能である限り、密閉型として設けてもよいし、割型として設けてもよい。接合片40は、成形型500に合わせて、筒状、割筒状等に設けることができる。 The mold 500 can be formed of any of glass, plaster, soft resin, hard resin, ceramic, metal and the like. In FIGS. 6A to 6C, an artificial organ-like molding die is shown as an example of the molding die 500. However, the shape, size, and the like of the molding die 500 are not particularly limited. The molding die 500 may be provided as a closed mold or a split mold as long as the columnar template material 160 can be attached and the sacrificial template 120 and the columnar template material 160 can be removed. The joint piece 40 can be provided in a tubular shape, a split tubular shape, or the like according to the molding die 500.
 成形型500は、石膏等のように容易に破砕可能な材料、軟質樹脂等のように容易に変形可能な材料、成形型500自体を溶解可能な材料、成形型500自体を熱溶融可能な材料等によって形成することが好ましい。また、成形型500は、内面に離型剤が塗布されてもよい。 The mold 500 is a material that can be easily crushed such as plaster, a material that can be easily deformed such as a soft resin, a material that can dissolve the mold 500 itself, and a material that can heat-melt the mold 500 itself. It is preferable to form by the above. Further, the mold release agent may be applied to the inner surface of the molding die 500.
 成形型500を破砕可能な材料で形成すると、作製した多孔質体1を成形型500を破砕して容易に取り出すことができる。また、成形型500を変形可能な材料で形成すると、作製した多孔質体1を成形型500を変形させて容易に取り出すことができる。多孔質体1の外形が複雑形状である場合であっても、取り出し時の破損を避けることができる。 When the molding die 500 is formed of a crushable material, the produced porous body 1 can be easily taken out by crushing the molding die 500. Further, when the molding die 500 is formed of a deformable material, the produced porous body 1 can be easily taken out by deforming the molding die 500. Even when the outer shape of the porous body 1 is complicated, damage at the time of taking out can be avoided.
 成形型500としては、3Dプリンタを使用して三次元造形された成形型が好ましく用いられる。3Dプリンタを使用して三次元造形された成形型500に前駆溶液等の媒体を用意し、基材層10を成形型500の形状に形成すると、複雑形状の多孔質体1を良好な生産性で製造することができる。 As the molding die 500, a molding die formed three-dimensionally using a 3D printer is preferably used. When a medium such as a precursor solution is prepared in the molding die 500 three-dimensionally molded using a 3D printer and the base material layer 10 is formed in the shape of the molding die 500, the porous body 1 having a complicated shape is produced with good productivity. Can be manufactured at.
 三次元造形の方法としては、成形型500の材料の種類に応じて、粉末焼結造形、樹脂溶融造形、光造形、インクジェット造形等の適宜の方法を用いることができる。3Dプリンタを使用した三次元造形によると、中空構造、内部独立構造等を有する成形型500や、柱状テンプレート材160等の取り付けに適した成形型500を正確且つ安定的に作製することができる。 As a three-dimensional modeling method, an appropriate method such as powder sintering modeling, resin melt modeling, stereolithography, and inkjet modeling can be used depending on the type of material of the molding die 500. According to the three-dimensional modeling using a 3D printer, a molding die 500 having a hollow structure, an internal independent structure, and the like, and a molding die 500 suitable for attaching a columnar template material 160 and the like can be accurately and stably manufactured.
 図6Aに示すように、柱状テンプレート材160は、接合片40に嵌め合わされて支持され、成形型500内を略横断するように配置される。柱状テンプレート材160をこのように配置すると、多孔質体1を略横断する形状・構造の柱状空間60が形成されるため、多孔質体1中に動脈様・静脈様の血管様構造を形成することができる。 As shown in FIG. 6A, the columnar template material 160 is fitted and supported by the joint piece 40, and is arranged so as to substantially traverse the inside of the molding die 500. When the columnar template material 160 is arranged in this way, a columnar space 60 having a shape and structure substantially traversing the porous body 1 is formed, so that an arterial-like / vein-like blood vessel-like structure is formed in the porous body 1. be able to.
 柱状テンプレート材160は、連通孔20よりも大径であり、多孔質体1を略横断する形状・構造である限り、形状、大きさ、テクスチャ等が、特に制限されるものではない。柱状テンプレート材160は、テンプレート材150と同様に、犠牲テンプレート120と同様の材料、又は、犠牲テンプレート120とは異なる材料を用いて、予め成形された成形体として用意することができる。 The columnar template material 160 has a diameter larger than that of the communication hole 20, and the shape, size, texture, and the like are not particularly limited as long as the columnar template material 160 has a shape and structure that substantially traverses the porous body 1. Like the template material 150, the columnar template material 160 can be prepared as a preformed molded body using the same material as the sacrificial template 120 or a material different from the sacrificial template 120.
 図6Bに示すように、犠牲テンプレート120は、縦断面視におけるアスペクト比が大きい長尺の直線部位、又は、アスペクト比が大きい長尺の直線部位同士の連結によって3次元的な網目構造の構造物となり、成形型500内に柱状テンプレート材160と接触又は絡み合った複合体が形成されるように、前駆溶液中で析出物を成長させて形成することができる。 As shown in FIG. 6B, the sacrifice template 120 is a structure having a three-dimensional network structure by connecting long straight parts having a large aspect ratio or long straight parts having a large aspect ratio in a vertical cross-sectional view. Therefore, the precipitate can be grown and formed in the precursor solution so that a complex in contact with or entangled with the columnar template material 160 is formed in the molding die 500.
 図6Cに示すように、犠牲テンプレート120と柱状テンプレート材160と基材層10との複合体から犠牲テンプレート120と柱状テンプレート材160を除去し、必要に応じて、乾燥処理、重合処理、架橋処理、発泡処理等の後処理を行うと、目的の形状・構造の連通孔20と柱状空間60が形成された多孔質体1が得られる。多孔質体1の連通孔20は、縦断面視におけるアスペクト比が大きい長尺の細孔、又は、アスペクト比が大きい長尺の細孔同士の連結によって形成されており、柱状空間60に対して繋がった3次元的な網目構造となる。 As shown in FIG. 6C, the sacrificial template 120 and the columnar template material 160 are removed from the composite of the sacrificial template 120, the columnar template material 160, and the base material layer 10, and if necessary, a drying treatment, a polymerization treatment, and a cross-linking treatment are performed. When post-treatment such as foaming treatment is performed, a porous body 1 in which the communication holes 20 having the desired shape and structure and the columnar space 60 are formed can be obtained. The communication holes 20 of the porous body 1 are formed by connecting long pores having a large aspect ratio or long pores having a large aspect ratio in a vertical cross-sectional view, and are formed with respect to the columnar space 60. It becomes a connected three-dimensional network structure.
 成形型500は、多孔質体1を作製した後に、接合片40を基材に結合させた状態で残して、多孔質体1から分離・除去することができる。接合片40は、例えば、ポリテトラフルオロエチレン、ポリエステル等の生体適合性材料で形成することができる。このような接合片40を設けると、接合片40が人工血管として機能できる。 After the porous body 1 is produced, the molding die 500 can be separated / removed from the porous body 1 by leaving the bonded piece 40 in a state of being bonded to the base material. The junction piece 40 can be formed of, for example, a biocompatible material such as polytetrafluoroethylene or polyester. When such a joint piece 40 is provided, the joint piece 40 can function as an artificial blood vessel.
 図7A~図7Bは、多孔質体の血管への吻合について説明する図である。
 図7A~図7Bに示すように、連通孔20によって血管様構造を形成した多孔質体1は、連通孔20が血液循環経路を構成するように、移植先の血管80に繋ぐことができる。
7A-7B are diagrams illustrating anastomosis of a porous body into a blood vessel.
As shown in FIGS. 7A to 7B, the porous body 1 having a blood vessel-like structure formed by the communication holes 20 can be connected to the blood vessel 80 of the transplant destination so that the communication holes 20 form a blood circulation path.
 図7Aは、血管80が存在する生体内に多孔質体1を移植した状態を示す。図7Bは、移植先の血管80と多孔質体1の接合片40とを接続した状態を示す。 FIG. 7A shows a state in which the porous body 1 is transplanted into a living body in which the blood vessel 80 is present. FIG. 7B shows a state in which the blood vessel 80 at the transplant destination and the junction piece 40 of the porous body 1 are connected.
 多孔質体1は、基材と結合させた接合片40を介して、移植先の血管80と外科的に吻合させることができる。このような多孔質体1を移植先の血管80に接続すると、連通孔20や柱状空間60が形成する血管様構造が、生体側の血液循環経路の一部となるため、多孔質体1に担持される細胞に対する血流が確保される。そのため、多孔質体1に担持される細胞の生着率や細胞の機能を向上させることができる。 The porous body 1 can be surgically anastomosed to the blood vessel 80 to be transplanted via the junction piece 40 bonded to the base material. When such a porous body 1 is connected to the blood vessel 80 of the transplant destination, the blood vessel-like structure formed by the communication hole 20 and the columnar space 60 becomes a part of the blood circulation pathway on the living body side, so that the porous body 1 is formed. Blood flow to the supported cells is ensured. Therefore, the engraftment rate of cells supported on the porous body 1 and the function of cells can be improved.
<デバイス>
 本実施形態に係る多孔質体1は、基材や細胞以外の他の要素と複合化することによって、デバイスとして用いることができる。デバイスの用途としては、生体内で機能させる移植デバイス、細胞を担持させて細胞の機能を利用する細胞デバイス、細胞が分泌した成分を回収するためのバイオリアクタ等が挙げられる。
<Device>
The porous body 1 according to the present embodiment can be used as a device by combining it with a base material or other elements other than cells. Applications of the device include a transplant device that functions in vivo, a cell device that supports cells and utilizes the functions of cells, a bioreactor for recovering components secreted by cells, and the like.
 移植デバイスは、ヒトの体内や、ヒトを除く動物の体内に移植して、生体内で細胞デバイスやバイオリアクタ等として機能させることができる。移植デバイスを移植するとき、連通孔20を移植先の血管等の循環系に繋ぐと、多孔質体1の3次元的な網目構造を、物質輸送経路として有効に利用することができる。一方、細胞デバイスやバイオリアクタは、生体外においても用いることができる。 The transplanted device can be transplanted into a human body or an animal body other than humans to function as a cell device, a bioreactor, or the like in the living body. When the transplant device is transplanted, if the communication hole 20 is connected to the circulatory system such as the blood vessel of the transplant destination, the three-dimensional network structure of the porous body 1 can be effectively used as a substance transport route. On the other hand, cell devices and bioreactors can also be used in vitro.
 複合化する他の要素としては、犠牲テンプレート120の結晶成長の方向、核110の生成頻度、結晶や分子の配向等を制御するための基材や、多孔質体1の形状を補強する補強材や、多孔質体1の外部環境や内部環境を計測するセンサや、デバイス内の電子部品等に給電するバッテリや、センサの構成部品や生体への電気刺激に利用される電極や、多孔質体1の外部環境や内部環境を調整するヒータや、デバイスを機能させるチップや、生体に薬物を投与可能な薬物徐放剤や、デバイス内に担持される細胞に酸素を供給する酸素徐放剤等が挙げられる。 Other elements to be composited include a base material for controlling the direction of crystal growth of the sacrificial template 120, the frequency of formation of nuclei 110, the orientation of crystals and molecules, and a reinforcing material for reinforcing the shape of the porous body 1. , Sensors that measure the external and internal environment of the porous body 1, batteries that supply power to electronic components in the device, electrodes used for electrical stimulation of sensor components and living organisms, and porous bodies. 1 Heater that adjusts the external environment and internal environment, chips that function the device, drug sustained-release agents that can administer drugs to living organisms, oxygen sustained-release agents that supply oxygen to cells carried in the device, etc. Can be mentioned.
<細胞担体>
 本実施形態に係る多孔質体1は、連通孔20内に細胞を導入し、細胞を多孔質体1に担持させることによって、細胞担体として用いることができる。細胞担体は、ヒトの体内や、ヒトを除く動物の体内に移植して、生体内で細胞機能を利用するための細胞足場として用いることができる。細胞機能としては、ホルモン、サイトカイン等の生理活性物質や栄養素等の分泌、特定の物質の代謝・分解、正常細胞の機能の代替等が挙げられる。
<Cell carrier>
The porous body 1 according to the present embodiment can be used as a cell carrier by introducing cells into the communication hole 20 and supporting the cells on the porous body 1. The cell carrier can be transplanted into a human body or an animal body other than humans and used as a cell scaffold for utilizing cell functions in the living body. Examples of cell functions include secretion of physiologically active substances such as hormones and cytokines and nutrients, metabolism / decomposition of specific substances, and substitution of normal cell functions.
 細胞担体は、生体への移植の他に、in vitroでの用途に用いることもできる。例えば、細胞の維持培養や、細胞を増殖させるための拡大培養や、細胞を分化・誘導させるための誘導培養等の用途に用いることもできる。 The cell carrier can be used for in vitro applications in addition to transplantation into a living body. For example, it can be used for maintenance culture of cells, expansion culture for proliferating cells, induction culture for differentiating and inducing cells, and the like.
 細胞担体として用いられる多孔質体1には、移植前の生体外で細胞を導入してもよいし、移植後の生体内で細胞を導入してもよい。多孔質体1に、細胞が侵入できる程度の連通孔20を設けておくと、移植後であっても、レシピエントの細胞が遊走して多孔質体1の内部に細胞接着することができるため、生体内で細胞足場として機能させることができる。 In the porous body 1 used as a cell carrier, cells may be introduced in vitro before transplantation, or cells may be introduced in vivo after transplantation. If the porous body 1 is provided with a communication hole 20 capable of allowing cells to enter, the recipient cells can migrate and adhere to the inside of the porous body 1 even after transplantation. , Can function as a cell scaffold in vivo.
 担持させる細胞は、種類、由来、形態等が、特に制限されるものではない。細胞は、組織等から直接採取した初代細胞の他、予め培養した培養細胞、増殖性を付加した株化細胞、遺伝子組換え細胞、ES細胞由来の細胞、iPS細胞由来の細胞等のいずれでもよい。また、単一の遊離細胞であってもよいし、細胞凝集体(スフェロイド)であってもよい。 The type, origin, morphology, etc. of the cells to be supported are not particularly limited. The cells may be any of primary cells collected directly from a tissue or the like, pre-cultured cultured cells, proliferative cell lines, recombinant cells, ES cell-derived cells, iPS cell-derived cells, or the like. .. Further, it may be a single free cell or a cell aggregate (spheroid).
 細胞の具体例としては、血管内皮細胞、肝細胞、胆管細胞、腎細胞、間葉系幹細胞、神経細胞や、膵島、膵α細胞、膵β細胞、株化α細胞、株化β細胞等の膵臓細胞等が挙げられる。 Specific examples of cells include vascular endothelial cells, hepatocytes, bile duct cells, renal cells, mesenchymal stem cells, nerve cells, pancreatic islands, pancreatic α cells, pancreatic β cells, established α cells, established β cells, and the like. Examples include pancreatic cells.
 担持させる細胞は、接着細胞であってもよいし、浮遊細胞であってもよいが、多孔質体1内に保持され易い点で、接着細胞が好ましい。 The cells to be supported may be adherent cells or floating cells, but adherent cells are preferable because they are easily retained in the porous body 1.
 以上の多孔質体、多孔質体の製造方法、多孔質体の移植方法、及び、これを用いた細胞担体によると、媒体中に析出させたアスペクト比が大きい犠牲テンプレートによって、多孔質体の基材中にアスペクト比が大きい細孔で形成される連通孔が備わるため、多孔質体の内部に、細胞を高密度且つ離散的に担持させて、細胞を長期間にわたって健全に維持することができる。また、多孔質体の外形や連通孔の形状・構造について、移植先の空間や用途に合わせた自在な造形が可能であり、このような造形を容易に行うことができる。また、細胞を担持させない場合であっても、優れた物質透過性を得ることができる。よって、3次元的な網目構造の連通孔を有し、細胞足場や生体適合性材料として有用な多孔質体の製造方法、多孔質体の移植方法、及び、これを用いた細胞担体が得られる。 According to the above-mentioned porous body, the method for producing the porous body, the method for transplanting the porous body, and the cell carrier using the above, the base of the porous body is based on the sacrificial template having a large aspect ratio precipitated in the medium. Since the material is provided with communication holes formed by pores having a large aspect ratio, cells can be supported densely and discretely inside the porous body, and the cells can be maintained healthy for a long period of time. .. In addition, the outer shape of the porous body and the shape and structure of the communication holes can be freely shaped according to the space and application of the transplant destination, and such modeling can be easily performed. In addition, excellent substance permeability can be obtained even when cells are not supported. Therefore, a method for producing a porous body having three-dimensional network-structured communication holes and useful as a cell scaffold or a biocompatible material, a method for transplanting a porous body, and a cell carrier using the same can be obtained. ..
 以上、本発明について説明したが、本発明は、前記の実施形態や変形例に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更が可能である。例えば、本発明は、必ずしも前記の実施形態や変形例が備える全ての構成を備えるものに限定されない。或る実施形態や変形例の構成の一部を他の構成に置き換えたり、或る実施形態や変形例の構成の一部を他の形態に追加したり、或る実施形態や変形例の構成の一部を省略したりすることができる。 Although the present invention has been described above, the present invention is not limited to the above-described embodiments and modifications, and various modifications can be made without departing from the spirit of the present invention. For example, the present invention is not necessarily limited to those having all the configurations included in the above-described embodiments and modifications. Part of the configuration of a certain embodiment or modification is replaced with another configuration, a part of the configuration of a certain embodiment or modification is added to another configuration, or a configuration of a certain embodiment or modification. You can omit a part of.
 以下、実施例を示して本発明について具体的に説明するが、本発明の技術的範囲はこれに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the technical scope of the present invention is not limited thereto.
<実施例1>
 実施例1では、犠牲テンプレートの原料として、チオ尿素、多孔質体の基材として、ポリアミンとポリカルボン酸との架橋体を用いた多孔質体を作製した。
<Example 1>
In Example 1, a porous body was prepared using thiourea as a raw material for a sacrificial template and a crosslinked product of polyamine and polycarboxylic acid as a base material for the porous body.
 チオ尿素(0.9g)、ε-ポリリシン(0.1g)、ポリアクリル酸(0.2g)を、4mLの水に加え、この溶液を80℃に加熱して均一な溶液とした。そして、この溶液を冷却して、犠牲テンプレートであるチオ尿素の針状結晶を析出させた。続いて、犠牲テンプレートが析出した溶液を凍結乾燥させて溶媒を除去し、チオ尿素の針状結晶の周囲に、ε-ポリリシンとポリアクリル酸とからなる基材層を形成させた。そして、犠牲テンプレートと基材層との複合体をメタノールで処理して、犠牲テンプレートであるチオ尿素を溶出させた。その後、縮合剤である4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(DMT-MM)のメタノール溶液で処理して、ε-ポリリシンとポリアクリル酸とを架橋させた。容器内に得られた多孔質の基材を水で洗浄し、その後、過剰のカルボン酸を中和させて多孔質体を得た。 Thiourea (0.9 g), ε-polylysine (0.1 g), and polyacrylic acid (0.2 g) were added to 4 mL of water, and this solution was heated to 80 ° C. to obtain a uniform solution. Then, this solution was cooled to precipitate acicular crystals of thiourea, which is a sacrificial template. Subsequently, the solution in which the sacrificial template was precipitated was freeze-dried to remove the solvent, and a substrate layer composed of ε-polylysine and polyacrylic acid was formed around the acicular crystals of thiourea. Then, the complex of the sacrificial template and the base material layer was treated with methanol to elute the sacrificial template thiourea. Then, it was treated with a methanol solution of 4- (4,6-dimethoxy-1,3,5-triazine-2-yl) -4-methylmorpholinium chloride (DMT-MM), which is a condensing agent, and ε-. Polylysine and polyacrylic acid were crosslinked. The porous substrate obtained in the container was washed with water, and then the excess carboxylic acid was neutralized to obtain a porous body.
 実施例1に係る多孔質体の空隙率は、60%であった。多孔質体中の連通孔の平均アスペクト比は、20であった。 The porosity of the porous body according to Example 1 was 60%. The average aspect ratio of the communication holes in the porous body was 20.
 実施例1に係る多孔質体について、以下の手順で表面修飾を施した。作製した多孔質体に、0.1質量%のα-ポリリシン溶液を加え、室温で12時間静置させて、過剰のカルボン酸が存在する表面に、静電相互作用でα-ポリリシンを導入した。α-ポリリシンは、pH7.4のリン酸バッファを用いた洗浄を行っても、多孔質体の表面から解離しないことが確認された。 The porous body according to Example 1 was surface-modified by the following procedure. A 0.1% by mass α-polylysine solution was added to the prepared porous body, and the mixture was allowed to stand at room temperature for 12 hours to introduce α-polylysine by electrostatic interaction on the surface where excess carboxylic acid was present. .. It was confirmed that α-polylysine did not dissociate from the surface of the porous body even when washed with a phosphate buffer having a pH of 7.4.
<実施例2>
 実施例2では、犠牲テンプレートの原料として、尿素、多孔質体の基材として、アクリル系ポリマの架橋体を用いた多孔質体を作製した。
<Example 2>
In Example 2, a porous body was prepared using urea as a raw material for the sacrificial template and a crosslinked body of an acrylic polymer as a base material for the porous body.
 尿素(3.3g)を4mLの水に加え、この溶液を80℃に加熱して均一な溶液とした。そして、この溶液を冷却して、犠牲テンプレートである尿素の針状結晶を析出させた。続いて、犠牲テンプレートが析出した溶液から溶媒を除去し、犠牲テンプレートが充填された容器内に、グリシジルメタクリレート、エチレングリコールジメタクリレート、熱重合開始剤を含む混合溶液を加え、60℃に加温して重合させることにより、尿素の針状結晶の周囲に、架橋アクリル系ポリマからなる基材層を形成させた。そして、犠牲テンプレートと基材層との複合体をメタノールで処理して、犠牲テンプレートである尿素を溶出させた。容器内に得られた多孔質の基材を水で洗浄して多孔質体を得た。 Urea (3.3 g) was added to 4 mL of water, and this solution was heated to 80 ° C. to obtain a uniform solution. Then, this solution was cooled to precipitate acicular crystals of urea, which is a sacrificial template. Subsequently, the solvent is removed from the solution in which the sacrificial template is precipitated, a mixed solution containing glycidyl methacrylate, ethylene glycol dimethacrylate, and a thermal polymerization initiator is added to the container filled with the sacrificial template, and the mixture is heated to 60 ° C. A substrate layer made of a crosslinked acrylic polymer was formed around the acicular crystals of urea by polymerization. Then, the complex of the sacrificial template and the substrate layer was treated with methanol to elute the sacrificial template urea. The porous base material obtained in the container was washed with water to obtain a porous body.
 実施例2に係る多孔質体の空隙率は、75%であった。多孔質体中の連通孔の平均アスペクト比は、50であった。 The porosity of the porous body according to Example 2 was 75%. The average aspect ratio of the communication holes in the porous body was 50.
 実施例2に係る多孔質体について、以下の手順で表面修飾を施した。作製した多孔質体に、1質量%のゼラチン溶液を加え、60℃で12時間反応させて、グリシジル基が存在する表面に、アミンとの反応でゼラチンを導入した。 The porous body according to Example 2 was surface-modified by the following procedure. A 1% by mass gelatin solution was added to the prepared porous body, and the mixture was reacted at 60 ° C. for 12 hours to introduce gelatin on the surface where the glycidyl group was present by reaction with an amine.
<実施例3>
 実施例3では、犠牲テンプレートの原料として、フェニル尿素、多孔質体の基材として、変性コラーゲンの架橋体、内部空間を型取りするためのテンプレート材として発泡ポリスチレンを用いた多孔質体を作製した。
<Example 3>
In Example 3, a porous body was prepared using phenylurea as a raw material for the sacrificial template, a crosslinked body of modified collagen as a base material for the porous body, and expanded polystyrene as a template material for molding the internal space. ..
 フェニル尿素(0.7g)を4mLの水に加え、この溶液を80℃に加熱して均一な溶液とした。そして、この溶液を冷却して、犠牲テンプレートであるフェニル尿素の針状結晶を析出させた。続いて、犠牲テンプレートが析出した溶液から溶媒を除去し、犠牲テンプレートが充填された容器内に、コラーゲンと塩化ナトリウムとを含む4℃の混合溶液を加え、37℃に加温してゲル化させた。そして、このゲルを凍結乾燥させて溶媒を除去し、フェニル尿素の針状結晶の周囲に、コラーゲンからなる基材層を形成させた。そして、犠牲テンプレートと基材層との複合体をメタノールで処理して、コラーゲンを変性させると共に、犠牲テンプレートであるフェニル尿素を溶出させた。その後、架橋剤で処理して、変性コラーゲン同士を架橋させた。容器内に得られた多孔質の基材を水で洗浄して多孔質体を得た。 Phenylurea (0.7 g) was added to 4 mL of water, and this solution was heated to 80 ° C. to obtain a uniform solution. Then, this solution was cooled to precipitate acicular crystals of phenylurea, which is a sacrificial template. Subsequently, the solvent is removed from the solution in which the sacrificial template is precipitated, a mixed solution of collagen and sodium chloride at 4 ° C. is added to a container filled with the sacrificial template, and the mixture is heated to 37 ° C. to gel. It was. Then, this gel was freeze-dried to remove the solvent, and a base material layer made of collagen was formed around the acicular crystals of phenylurea. Then, the complex of the sacrificial template and the base material layer was treated with methanol to denature collagen and elute the sacrificial template phenylurea. Then, it was treated with a cross-linking agent to cross-link the denatured collagens. The porous base material obtained in the container was washed with water to obtain a porous body.
 実施例3に係る多孔質体の空隙率は、60%であった。多孔質体中の連通孔の平均アスペクト比は、30であった。 The porosity of the porous body according to Example 3 was 60%. The average aspect ratio of the communication holes in the porous body was 30.
<実施例4>
 実施例4では、3Dプリンタを使用して三次元造形された成形型と、柱状テンプレート材とを用いて、外形が成形された血管様構造を持つ多孔質体(図6C参照)を作製した。
<Example 4>
In Example 4, a porous body having a blood vessel-like structure (see FIG. 6C) having a molded outer shape was produced by using a molding die three-dimensionally molded using a 3D printer and a columnar template material.
 柱状テンプレート材は、発泡ポリスチレンを切削して造形した。また、成形型としては、上下の2パーツからなる臓器形状の成形型を、石膏を原料として、3Dプリンタを使用して三次元造形した。図6Aに示したように、下型に柱状テンプレート材を取り付け、その上に上型をかぶせて、臓器形状の石膏型を形成した。この石膏型を60℃に加熱し、チオ尿素、ε-ポリリシン、アクリル酸モノマ、4,4′-アゾビス(4-シアノ吉草酸)(AVCA)を含む80℃の水溶液を注入し、アクリル酸モノマを重合させた。そして、この水溶液を徐冷して、犠牲テンプレートであるチオ尿素の針状結晶を析出させた。続いて、犠牲テンプレートが析出した石膏型を凍結乾燥させて溶媒を除去し、チオ尿素の針状結晶の周囲に、ε-ポリリシンとポリアクリル酸とからなる基材層を形成させた。そして、柱状テンプレート材である発泡ポリスチレンをトルエンで処理して溶出させた。続いて、犠牲テンプレートと基材層との複合体を縮合剤であるDMT-MMのメタノール溶液で処理して、ε-ポリリシンとポリアクリル酸とを架橋させた。そして、犠牲テンプレートと基材層との複合体をメタノールで処理して、犠牲テンプレートであるチオ尿素を溶出させた。容器内に得られた多孔質を石膏型を破砕して取り出し、多孔質体の表面を、高粘性のシリコーンマクロモノマを溶解した塗布液でコーティングし、モノマを重合硬化させて多孔質体を得た。 The columnar template material was formed by cutting expanded polystyrene. As the molding die, an organ-shaped molding die composed of two upper and lower parts was three-dimensionally molded using plaster as a raw material using a 3D printer. As shown in FIG. 6A, a columnar template material was attached to the lower mold, and the upper mold was placed over the columnar template material to form an organ-shaped plaster mold. This gypsum mold is heated to 60 ° C., and an aqueous solution at 80 ° C. containing thiourea, ε-polylysine, monoma acrylate and 4,4'-azobis (4-cyanovaleric acid) (AVCA) is injected to monoma acrylate. Was polymerized. Then, this aqueous solution was slowly cooled to precipitate acicular crystals of thiourea, which is a sacrificial template. Subsequently, the gypsum mold on which the sacrificial template was precipitated was freeze-dried to remove the solvent, and a substrate layer composed of ε-polylysine and polyacrylic acid was formed around the acicular crystals of thiourea. Then, expanded polystyrene, which is a columnar template material, was treated with toluene and eluted. Subsequently, the complex of the sacrificial template and the substrate layer was treated with a methanol solution of DMT-MM as a condensing agent to crosslink ε-polylysine and polyacrylic acid. Then, the complex of the sacrificial template and the base material layer was treated with methanol to elute the sacrificial template thiourea. The porous body obtained in the container is taken out by crushing a plaster mold, the surface of the porous body is coated with a coating solution in which highly viscous silicone macromonoma is dissolved, and the monoma is polymerized and cured to obtain the porous body. It was.
 実施例4に係る多孔質体は、犠牲テンプレートによる毛細血管様構造と、柱状テンプレート材による動脈・静脈様構造とを備えており、柱状テンプレート材による動脈・静脈様の部位を除いて液漏れが無い構造であった。 The porous body according to Example 4 has a capillary-like structure by the sacrificial template and an arterial / vein-like structure by the columnar template material, and liquid leakage occurs except for the arterial / vein-like part by the columnar template material. There was no structure.
<実施例5>
 実施例5では、表面修飾を施した実施例1に係る多孔質体と、細胞とを用いて細胞担体を作製した。
<Example 5>
In Example 5, a cell carrier was prepared using the porous body according to Example 1 which had undergone surface modification and cells.
 表面修飾を施した実施例1に係る多孔質体と、細胞と、培地とを、深型ディッシュにいれた。そして、ディッシュを30rpmの回転速度で12時間にわたって旋回攪拌させて、多孔質体の内部に細胞を導入させた。細胞が多孔質体の内部に定着した後、旋回攪拌を停止して、静置培養に移行した。静置培養中には、2日おきに培地交換を行い、採取された培地についてグルコース消費量に基づき細胞数を求めた。 The surface-modified porous body according to Example 1, cells, and medium were placed in a deep dish. Then, the dish was swirled and stirred at a rotation speed of 30 rpm for 12 hours to introduce cells into the porous body. After the cells had settled inside the porous body, the swirling stirring was stopped and the culture was started in a static culture. During the static culture, the medium was exchanged every two days, and the number of cells in the collected medium was determined based on the glucose consumption.
 その結果、細胞として、V79細胞及び間葉系幹細胞のいずれを担持させた場合においても、細胞の増殖が進行し、静置培養に移行して5日後の時点で、略コンフルエントに達した。表面修飾を施した実施例1に係る多孔質体は、十分な生体適合性を備えていることが確認された。 As a result, regardless of whether V79 cells or mesenchymal stem cells were supported as cells, cell proliferation proceeded and reached approximately confluence 5 days after the transition to static culture. It was confirmed that the surface-modified porous body according to Example 1 had sufficient biocompatibility.
<比較例1>
 比較例1では、犠牲テンプレートの原料として、針状マグネシウム塩、多孔質体の基材として、アクリル系ポリマの架橋体を用い、実施例4と同様に、外形が成形された血管様構造を持つ多孔質体(図6C参照)を作製した。
<Comparative example 1>
In Comparative Example 1, a needle-shaped magnesium salt was used as a raw material for the sacrificial template, and a crosslinked acrylic polymer was used as a base material for the porous body, and as in Example 4, it had a blood vessel-like structure having a molded outer shape. A porous body (see FIG. 6C) was prepared.
 実施例4と同様に石膏型を60℃に加熱し、針状マグネシウム塩、グリシジルメタクリレート、エチレングリコールジメタクリレート、熱重合開始剤を含む混合溶液を注入した。その結果、混合溶液の注入を行った部位に近い柱状テンプレート材の周辺で、針状マグネシウム塩が凝集した。この石膏型を加熱してアクリル酸モノマを重合させた後に、針状マグネシウム塩を溶出させてから石膏型を破砕したところ、針状マグネシウム塩が凝集していた部位の近傍が、機械的強度の不足が原因で破損した。石膏型の底部側は、針状マグネシウム塩が充填された一方で、その他の部位は、針状マグネシウム塩が充填されなかった。 The gypsum mold was heated to 60 ° C. in the same manner as in Example 4, and a mixed solution containing acicular magnesium salt, glycidyl methacrylate, ethylene glycol dimethacrylate, and a thermal polymerization initiator was injected. As a result, acicular magnesium salts aggregated around the columnar template material near the site where the mixed solution was injected. When the gypsum mold was heated to polymerize the monoma acrylate, and then the acicular magnesium salt was eluted and then the gypsum mold was crushed, the vicinity of the site where the acicular magnesium salt was agglomerated was of mechanical strength. Damaged due to lack. The bottom side of the plaster mold was filled with needle-shaped magnesium salt, while the other parts were not filled with needle-shaped magnesium salt.
<比較例2>
 比較例2では、犠牲テンプレートの原料として、尿素、多孔質体の基材として、ポリアミンとポリカルボン酸との架橋体を用い、基材を硬化させてから犠牲テンプレートを析出させる方法で多孔質体を作製した。
<Comparative example 2>
In Comparative Example 2, urea was used as a raw material for the sacrificial template, and a crosslinked product of polyamine and polycarboxylic acid was used as the base material for the porous body. The base material was cured and then the sacrificial template was precipitated. Was produced.
 尿素(3g)、ε-ポリリシン(0.1g)、ポリアクリル酸(0.2g)、DMT-MM(0.01g)を、4mLの水に加え、この溶液を80℃に加熱して、ε-ポリリシンとポリアクリル酸とを架橋させた。そして、この溶液を徐冷して、犠牲テンプレートである尿素の針状結晶を析出させた。続いて、犠牲テンプレートが析出した溶液を凍結乾燥させて溶媒を除去した後、メタノールで処理して、犠牲テンプレートである尿素を溶出させた。容器内に得られた多孔質の基材を水で洗浄したところ、架橋体が吸水して元の形状に戻ったため、犠牲テンプレートで型取りした連通孔が失われた。 Urea (3 g), ε-polylysine (0.1 g), polyacrylic acid (0.2 g), DMT-MM (0.01 g) are added to 4 mL of water, and this solution is heated to 80 ° C. to ε. -Polylysine and polyacrylic acid were crosslinked. Then, this solution was slowly cooled to precipitate acicular crystals of urea, which is a sacrificial template. Subsequently, the solution in which the sacrificial template was precipitated was freeze-dried to remove the solvent, and then treated with methanol to elute urea, which is the sacrificial template. When the porous substrate obtained in the container was washed with water, the crosslinked body absorbed water and returned to its original shape, so that the communication holes molded by the sacrificial template were lost.
<比較例3>
 比較例3では、実施例3と同様に、犠牲テンプレートの原料として、フェニル尿素、多孔質体の基材として、変性コラーゲンの架橋体を用い、アスペクト比が小さい短尺の犠牲テンプレートを析出させて多孔質体を作製した。
<Comparative example 3>
In Comparative Example 3, similarly to Example 3, phenylurea was used as a raw material for the sacrificial template, and a crosslinked product of modified collagen was used as a base material for the porous body, and a short sacrificial template having a small aspect ratio was precipitated to be porous. A template was prepared.
 フェニル尿素(0.7g)と、フェニル尿素の結晶を低アスペクト比に成長させるための塩化カルシウムを4mLの水に加え、この溶液を80℃に加熱して均一な溶液とした。そして、この溶液を冷却して、犠牲テンプレートであるフェニル尿素の針状結晶を析出させた。その結果、犠牲テンプレートの溶液中における分布は偏りを生じた。続いて、犠牲テンプレートが析出した溶液から溶媒を除去し、犠牲テンプレートが充填された容器内に、コラーゲンと塩化ナトリウムとを含む4℃の混合溶液を加え、37℃に加温してゲル化させた。そして、このゲルを凍結乾燥させて溶媒を除去し、フェニル尿素の針状結晶の周囲に、コラーゲンからなる基材層を形成させた。そして、犠牲テンプレートと基材層との複合体をメタノールで処理して、コラーゲンを変性させると共に、犠牲テンプレートであるフェニル尿素を溶出させた。その後、架橋剤で処理して、変性コラーゲン同士を架橋させた。容器内に得られた多孔質の基材を水で洗浄したところ、機械的強度の不足により多孔質体が崩壊した。 Phenylurea (0.7 g) and calcium chloride for growing phenylurea crystals to a low aspect ratio were added to 4 mL of water, and this solution was heated to 80 ° C. to obtain a uniform solution. Then, this solution was cooled to precipitate acicular crystals of phenylurea, which is a sacrificial template. As a result, the distribution of the sacrificial template in solution was biased. Subsequently, the solvent is removed from the solution in which the sacrificial template is precipitated, a mixed solution of collagen and sodium chloride at 4 ° C. is added to a container filled with the sacrificial template, and the mixture is heated to 37 ° C. to gel. It was. Then, this gel was freeze-dried to remove the solvent, and a base material layer made of collagen was formed around the acicular crystals of phenylurea. Then, the complex of the sacrificial template and the base material layer was treated with methanol to denature collagen and elute the sacrificial template phenylurea. Then, it was treated with a cross-linking agent to cross-link the denatured collagens. When the porous base material obtained in the container was washed with water, the porous body collapsed due to lack of mechanical strength.
1   多孔質体
10  基材層
20  連通孔
40  接合片
50  内部空間
60  柱状空間
100 前駆溶液
110 核
120 犠牲テンプレート
150 テンプレート材
160 柱状テンプレート材
200 前駆溶液
300 前駆溶液
500 成形型
1 Porous body 10 Base material layer 20 Communication hole 40 Bonding piece 50 Internal space 60 Columnar space 100 Precursor solution 110 Nuclear 120 Sacrificial template 150 Template material 160 Columnar template material 200 Precursor solution 300 Precursor solution 500 Molding mold

Claims (15)

  1.  基材中に連通孔を有する多孔質体であって、
     前記連通孔は、アスペクト比が10以上である細孔、又は、当該細孔の連結によって形成されており、
     前記基材は、生体適合性を有する材料で形成されている多孔質体。
    A porous body having communication holes in the base material,
    The communication holes are formed by pores having an aspect ratio of 10 or more, or by connecting the pores.
    The base material is a porous body made of a biocompatible material.
  2.  請求項1に記載の多孔質体であって、
     前記連通孔は、アスペクト比が10以上である前記細孔の割合が50体積%以上であり、
     前記多孔質体は、前記連通孔が占める空間の空隙率が30%以上である多孔質体。
    The porous body according to claim 1.
    In the communication holes, the proportion of the pores having an aspect ratio of 10 or more is 50% by volume or more.
    The porous body is a porous body in which the porosity of the space occupied by the communication holes is 30% or more.
  3.  請求項1に記載の多孔質体であって、
     前記基材中に、前記連通孔と、複数の前記連通孔に連通した内部空間と、を有する多孔質体。
    The porous body according to claim 1.
    A porous body having the communication holes and internal spaces communicating with the plurality of communication holes in the base material.
  4.  請求項1から請求項3のいずれか一項に記載の多孔質体であって、
     前記基材は、生体吸収性を有しない材料で形成されている多孔質体。
    The porous body according to any one of claims 1 to 3.
    The base material is a porous body made of a material that does not have bioabsorbability.
  5.  請求項4に記載の多孔質体であって、
     前記材料は、アクリル樹脂、フッ素樹脂、多糖類、ポリオレフィン、シリコーン、ポリエステル、ポリウレタン、ポリカーボネート、ポリイミド、シリカ、又は、ジルコニアである多孔質体。
    The porous body according to claim 4.
    The material is a porous body which is acrylic resin, fluororesin, polysaccharide, polyolefin, silicone, polyester, polyurethane, polycarbonate, polyimide, silica, or zirconia.
  6.  請求項1から請求項3のいずれか一項に記載の多孔質体であって、
     前記基材は、生体吸収性を有する材料で形成されている多孔質体。
    The porous body according to any one of claims 1 to 3.
    The base material is a porous body made of a material having bioabsorbability.
  7.  請求項6に記載の多孔質体であって、
     前記材料は、コラーゲン、ゼラチン、α-ポリリジン、ε-ポリリジン、ポリグルタミン酸、ポリアスパラギン酸、ポリ乳酸、ポリカプロラクタム、ポリジオキサノン、これらの誘導体、架橋体若しくは共重合体、又は、金属マグネシウムである多孔質体。
    The porous body according to claim 6.
    The material is collagen, gelatin, α-polylysine, ε-polylysine, polyglutamic acid, polyaspartic acid, polylactic acid, polycaprolactam, polydioxanone, derivatives thereof, crosslinked or copolymers, or porous metal magnesium. body.
  8.  基材中に連通孔を有する多孔質体の製造方法であって、
     アスペクト比が10以上である犠牲テンプレートを媒体中に析出させる工程と、
     前記犠牲テンプレートの周囲に前記基材となる基材層を形成する工程と、
     形成された前記基材層中から前記犠牲テンプレートを除去する工程と、を含む多孔質体の製造方法。
    A method for producing a porous body having communication holes in a base material.
    A process of precipitating a sacrificial template having an aspect ratio of 10 or more in a medium,
    A step of forming a base material layer to be the base material around the sacrifice template, and
    A method for producing a porous body, which comprises a step of removing the sacrificial template from the formed base material layer.
  9.  請求項8に記載の多孔質体の製造方法であって、
     前記犠牲テンプレートは、尿素、尿素誘導体、チオ尿素、又は、チオ尿素誘導体で形成される多孔質体の製造方法。
    The method for producing a porous body according to claim 8.
    The sacrificial template is a method for producing a porous body formed of urea, a urea derivative, thiourea, or a thiourea derivative.
  10.  請求項8に記載の多孔質体の製造方法であって、
     前記媒体中に前記犠牲テンプレートの析出方向を制御するための添加剤を添加する多孔質体の製造方法。
    The method for producing a porous body according to claim 8.
    A method for producing a porous body, in which an additive for controlling the precipitation direction of the sacrificial template is added to the medium.
  11.  請求項8に記載の多孔質体の製造方法であって、
     前記媒体中に前記犠牲テンプレートとは異なるテンプレート材を入れて前記犠牲テンプレートを析出させる多孔質体の製造方法。
    The method for producing a porous body according to claim 8.
    A method for producing a porous body in which a template material different from the sacrificial template is put in the medium to precipitate the sacrificial template.
  12.  請求項8に記載の多孔質体の製造方法であって、
     前記犠牲テンプレートが除去された前記基材を表面修飾する工程を含む多孔質体の製造方法。
    The method for producing a porous body according to claim 8.
    A method for producing a porous body, which comprises a step of surface-modifying the base material from which the sacrificial template has been removed.
  13.  請求項8に記載の多孔質体の製造方法であって、
     前記媒体は、3Dプリンタを使用して三次元造形された成形型内に用意され、
     前記基材層は、前記成形型の形状に形成される多孔質体の製造方法。
    The method for producing a porous body according to claim 8.
    The medium is prepared in a molding die three-dimensionally modeled using a 3D printer.
    A method for producing a porous body in which the base material layer is formed in the shape of the molding mold.
  14.  基材中に連通孔を有する多孔質体の移植方法であって、
     請求項1から請求項7のいずれか一項に記載の多孔質体を、ヒトを除く動物の体内に移植する多孔質体の移植方法。
    A method for transplanting a porous body having communication holes in a base material.
    A method for transplanting a porous body according to any one of claims 1 to 7, wherein the porous body is transplanted into the body of an animal other than humans.
  15.  請求項1から請求項7のいずれか一項に記載の多孔質体と、
     前記多孔質体に担持された細胞と、を備える細胞担体。
    The porous body according to any one of claims 1 to 7.
    A cell carrier comprising cells supported on the porous body.
PCT/JP2020/008957 2019-06-25 2020-03-03 Porous body, method for producing porous body, method for transplanting porous body, and cell support WO2020261653A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-117228 2019-06-25
JP2019117228A JP2021003007A (en) 2019-06-25 2019-06-25 Porous body, production method of the same, transplantation method of the same and cell carrier

Publications (1)

Publication Number Publication Date
WO2020261653A1 true WO2020261653A1 (en) 2020-12-30

Family

ID=74061850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/008957 WO2020261653A1 (en) 2019-06-25 2020-03-03 Porous body, method for producing porous body, method for transplanting porous body, and cell support

Country Status (2)

Country Link
JP (1) JP2021003007A (en)
WO (1) WO2020261653A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115232355A (en) * 2022-07-21 2022-10-25 哈尔滨工业大学(威海) Method for preparing hierarchical porous PDMS based on soft template and application of hierarchical porous PDMS in sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004522823A (en) * 2000-12-27 2004-07-29 アルティムプラント アーベー Method for producing open-cell polymer material and open-cell polymer material
JP2013544549A (en) * 2010-10-08 2013-12-19 ザ ボード オブ リージェンツ オブ ザ ユニバーシティ オブ テキサス システム Anti-adhesion barrier membranes using alginate and hyaluronic acid for biomedical applications

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004522823A (en) * 2000-12-27 2004-07-29 アルティムプラント アーベー Method for producing open-cell polymer material and open-cell polymer material
JP2013544549A (en) * 2010-10-08 2013-12-19 ザ ボード オブ リージェンツ オブ ザ ユニバーシティ オブ テキサス システム Anti-adhesion barrier membranes using alginate and hyaluronic acid for biomedical applications

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115232355A (en) * 2022-07-21 2022-10-25 哈尔滨工业大学(威海) Method for preparing hierarchical porous PDMS based on soft template and application of hierarchical porous PDMS in sensor

Also Published As

Publication number Publication date
JP2021003007A (en) 2021-01-14

Similar Documents

Publication Publication Date Title
Nikolova et al. Recent advances in biomaterials for 3D scaffolds: A review
Mobaraki et al. Bioinks and bioprinting: A focused review
Wang et al. 3D printing of bone tissue engineering scaffolds
Gungor-Ozkerim et al. Bioinks for 3D bioprinting: an overview
Poomathi et al. 3D printing in tissue engineering: a state of the art review of technologies and biomaterials
Lee et al. Printing of three-dimensional tissue analogs for regenerative medicine
Bencherif et al. Advances in the design of macroporous polymer scaffolds for potential applications in dentistry
Kundu et al. Biomaterials for biofabrication of 3D tissue scaffolds
US20100075419A1 (en) Biomaterial, method of constructing the same and use thereof
CN110177584B (en) Low-temperature gel 3D scaffold and production method thereof
Zhang et al. Inverse opal scaffolds for applications in regenerative medicine
Guarino et al. Temperature-driven processing techniques for manufacturing fully interconnected porous scaffolds in bone tissue engineering
JP2020500058A (en) Magnetically driven articular cartilage regeneration system
Koyyada et al. Recent advancements and associated challenges of scaffold fabrication techniques in tissue engineering applications
JP2009213716A (en) Blood vessel histogenesis
Lai et al. Low temperature hybrid 3D printing of hierarchically porous bone tissue engineering scaffolds with in situ delivery of osteogenic peptide and mesenchymal stem cells
Taneja et al. Hydrogel based 3D printing: Bio ink for tissue engineering
Whyte et al. A review on the challenges of 3D printing of organic powders
Ding et al. A novel gene-activated matrix composed of PEI/plasmid-BMP2 complexes and hydroxyapatite/chitosan-microspheres promotes bone regeneration
WO2020261653A1 (en) Porous body, method for producing porous body, method for transplanting porous body, and cell support
Forgacs et al. Biofabrication: micro-and nano-fabrication, printing, patterning and assemblies
Jahani et al. Additive manufacturing techniques for fabrication of bone scaffolds for tissue engineering applications
US9226993B2 (en) Biomaterial scaffolds with keratin for tissue engineering
Han et al. Engineered biomimetic micro/nano-materials for tissue regeneration
Yadegari et al. Specific considerations in scaffold design for oral tissue engineering

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20831066

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20831066

Country of ref document: EP

Kind code of ref document: A1