WO2020261346A1 - Method for producing light-emitting element and light-emitting element - Google Patents

Method for producing light-emitting element and light-emitting element Download PDF

Info

Publication number
WO2020261346A1
WO2020261346A1 PCT/JP2019/025011 JP2019025011W WO2020261346A1 WO 2020261346 A1 WO2020261346 A1 WO 2020261346A1 JP 2019025011 W JP2019025011 W JP 2019025011W WO 2020261346 A1 WO2020261346 A1 WO 2020261346A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
layer
electron transport
transport layer
mixed crystal
Prior art date
Application number
PCT/JP2019/025011
Other languages
French (fr)
Japanese (ja)
Inventor
貴洋 土江
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to PCT/JP2019/025011 priority Critical patent/WO2020261346A1/en
Publication of WO2020261346A1 publication Critical patent/WO2020261346A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source

Definitions

  • the present invention relates to a method for manufacturing a light emitting element and a light emitting element.
  • Patent Document 1 discloses a quantum dot light emitting diode (QLED: Quantum dot Light Emitting Diode) using an inorganic layer such as ZnO (zinc oxide) in the electron transporting layer (ETL: Electron transporting layer).
  • QLED Quantum dot Light Emitting Diode
  • inorganic layer such as ZnO (zinc oxide) in the electron transporting layer
  • ETL Electron transporting layer
  • QLED light emitting element
  • QD Quantum dots
  • the electron transport layer and light emission are the boundaries between the organic layer and the inorganic layer. Defects are likely to occur between the layers and the stability is reduced when the light emitting element is driven. Further, since the organic layer has a slow electron transfer rate and a low electron density, there is a problem that the electron transport efficiency is lower than the hole transport efficiency.
  • Patent Document 1 a solution coating process selected from the group consisting of sol-gel coating, spin coating, printing, casting and spraying, or chemical vapor deposition (CVD), sputtering, is used for forming an electron transport layer.
  • a vapor phase coating process selected from the group consisting of electron beam deposition and vacuum deposition is used.
  • the film forming method by the vacuum method such as sputtering has good film properties, but sputter damage to quantum dots occurs. Further, in such a vapor phase coating process, since a vacuum device is used, the cost is higher than that of the solution coating method.
  • Patent Document 1 also discloses that an electron transport layer is formed by a solution coating process. By using the solution coating process, it is possible to reduce the cost and avoid problems such as spatter damage to the quantum dots.
  • the electron transport layer (ETL) is formed by the solution coating process in this way, the nanoparticles of the separately synthesized ETL material are coated on the light emitting layer.
  • FIG. 6 is a diagram schematically showing problems when an electron transport layer (ETL) is formed by a solution coating process in a QLED using quantum dot QD as a light emitting layer.
  • HTL indicates a hole transport layer.
  • ZnO nanoparticles solution a solution containing ZnO nanoparticles (ZnO-NP) (hereinafter, referred to as “ZnO nanoparticles solution”) is illustrated as an example. ..
  • the contact point at the interface between the quantum dot QD and ZnO-NP is point contact.
  • the resistance component increases, the contact resistance increases, the applied voltage increases, resulting in problems such as a decrease in power consumption and power luminous efficiency, and a decrease in the quality of the interface between the quantum dot QD and ZnO-NP.
  • One aspect of the present disclosure has been made in view of the above problems, and an object thereof is a light emitting device provided with an electron transport layer made of an inorganic layer, which is inexpensive and has excellent coating properties of an electron transport layer.
  • the purpose is to provide a manufacturing method.
  • the method for manufacturing a light emitting element includes an anode forming step of forming an anode on a substrate, a light emitting layer forming step of forming a light emitting layer on the anode, and the like.
  • the electron transport layer forming step comprising an electron transport layer forming step of forming an electron transport layer adjacent to the light emitting layer on the light emitting layer and a cathode forming step of forming a cathode on the electron transport layer.
  • the light emitting element includes an anode, a light emitting layer, an electron transport layer adjacent to the light emitting layer, and a cathode in this order, and the electron transport layer.
  • a light emitting device provided with an electron transport layer made of an inorganic layer, which is inexpensive and has excellent coating properties of the electron transport layer, and a method for manufacturing the same.
  • FIG. 1 is a diagram schematically showing an example of a laminated structure of the light emitting element 1 according to the embodiment.
  • FIG. 2 is a flowchart showing an example of a method for manufacturing the light emitting element 1 according to the embodiment.
  • FIG. 3 is a cross-sectional view schematically showing the steps from step S4 to step S5 shown in FIG.
  • the light emitting element 1 includes an electron transport layer 14 and a light emitting layer 13 as functional layers between the cathode 15 (cathode) and the anode 11 (anode), which are counter electrodes arranged vertically. It is a light emitting element.
  • the light emitting element 1 is provided with an anode 11, a hole transport layer 12 (HTL), a light emitting layer 13, an electron transport layer 14 (ETL), and a cathode 15 on the substrate 10 in this order from the substrate 10 side. ..
  • the electron transport layer 14 is laminated on the light emitting layer 13 adjacent to the light emitting layer 13.
  • the hole transport layer 12 may not be provided.
  • the direction from the substrate 10 to the cathode 15 is defined as the upward direction, and the opposite direction is defined as the downward direction.
  • the layer formed in the process before the layer to be compared is referred to as "lower layer”
  • the layer formed in the process after the layer to be compared is referred to as "upper layer”. ..
  • the anode 11 is formed on the substrate 10 (step S1, anode forming step).
  • the hole transport layer 12 is formed on the anode 11 (step S2, hole transport layer forming step).
  • the light emitting layer 13 is formed on the hole transport layer 12 (step S3, light emitting layer forming step).
  • the electron transport layer 14 is formed on the light emitting layer 13 (electron transport layer forming step).
  • a chemical solution method called a CBD (Chemical bath deposition) method is used for forming the electron transport layer 14.
  • the electron transport layer forming step includes a mask step (step S4), a thin film forming step (step S5, dipping step), a drying step (step S6), and a mask removing step (step S6).
  • a mask step of step S4 as shown in FIG. 3, a part of the surface of the laminate obtained in step S3 is exposed and a part is masked with a mask 21 (mask material).
  • the laminate obtained in step S3 is a laminate including the substrate 10, the anode 11, and the light emitting layer 13, and in the present embodiment, as described above, the anode 11, the hole, and the hole are placed on the substrate 10.
  • a laminated body formed by laminating the transport layer 12 and the light emitting layer 13 in this order is shown.
  • the laminated body will be referred to as "laminated body 20" for convenience of explanation.
  • step S4 specifically, a part of the surface of the light emitting layer 13 which is the surface to be formed of the electron transport layer 14 (in other words, the formed region of the electron transport layer 14) in the light emitting layer 13 of the laminated body 20. (Specifically, the upper surface) is exposed. Then, at least a part of the surface of the laminated body 20 other than the surface to be formed of the electron transport layer 14 (in other words, the electron transport layer non-formed region that does not form the electron transport layer 14) is masked. In addition, in FIG. 3, as an example, the case where the side surface and the back surface of the laminated body 20 are masked is taken as an example.
  • the laminate 20 in which a part of the light emitting layer 13 is exposed is immersed in the reaction solution 23 in the reaction vessel 22.
  • an alkaline aqueous solution containing a zinc source and a sulfur source, which is a base material of the electron transport layer 14, is used as the reaction solution 23.
  • a thin film derived from the alkaline aqueous solution, which becomes the electron transport layer 14, is formed on the light emitting layer 13.
  • the drying step of step S6 the thin film formed in step S5 is dried.
  • the mask removing step of step S7 the mask 21 is removed.
  • the cathode 15 is formed on the electron transport layer 14 thus formed (step S8).
  • the light emitting element 1 shown in FIG. 1 is manufactured by the above steps.
  • the substrate 10 is a support substrate that supports the anode 11, the hole transport layer 12, the light emitting layer 13, the electron transport layer 14, and the cathode 15.
  • the light emitting element 1 may be used as a light source of an electronic device such as a display device, for example.
  • the light emitting element 1 is the light source of the display device, for example, an array substrate on which a thin film transistor is formed is used for the substrate 10, and the anode 11 is electrically connected to the thin film transistor of the array substrate.
  • anode 11 and the cathode 15 For the formation of the anode 11 and the cathode 15, various conventionally known methods such as a sputtering method, a vacuum vapor deposition method, a CVD (chemical vapor deposition) method, a plasma CVD method, and a printing method can be used.
  • the anode 11 and the cathode 15 are connected to a power source 16 (for example, a DC power source), so that a voltage is applied between them.
  • the anode 11 and the cathode 15 contain a conductive material and are electrically connected to the hole transport layer 12 and the electron transport layer 14, respectively.
  • At least one of the anode 11 and the cathode 15 is made of a light transmissive material.
  • Either one of the anode 11 and the cathode 15 may be formed of a light-reflecting material.
  • the light emitting element 1 can extract light from the electrode (specifically, the transparent electrode) side made of a light transmissive material.
  • the upper electrode for example, the cathode 15 is formed of a light transmitting material
  • the lower electrode for example, the anode 11 is formed of a light reflecting material
  • the upper electrode for example, the cathode 15 is formed of a light reflecting material
  • the anode 11 which is a lower electrode is formed of a light transmitting material.
  • the light transmissive material for example, a transparent conductive film material can be used.
  • the light-transmitting material include ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), ZnO (zinc oxide), AZO (aluminum-doped zinc oxide), and BZO (boron-doped zinc).
  • Oxide), GZO (gallium-doped zinc oxide) and the like can be used. Since these materials have high visible light transmittance, the luminous efficiency is improved.
  • the light-reflecting material a material having a high reflectance of visible light is preferable, and for example, a metal material can be used. Specifically, for example, Al (aluminum), Cu (copper), Au (gold), Ag (silver) and the like can be used as the light-reflecting material. Since these materials have high visible light reflectance, the luminous efficiency is improved. Further, by forming either one of the anode 11 and the cathode 15 as a laminate of a layer made of a light-transmitting material and a layer made of a light-reflecting material, an electrode having light reflectivity may be used.
  • the hole transport layer 12 is a layer that transports holes from the anode 11 to the light emitting layer 13.
  • the hole transport layer 12 contains a hole transport material having excellent hole transport properties.
  • the hole transport layer 12 may have a function of inhibiting the transport of electrons.
  • the hole transport layer 12 may also have a function as a hole injection layer (HIL) that promotes hole injection from the anode 11 to the light emitting layer 13, and the anode 11 injects holes. It may also have a function as a layer (EIL).
  • HIL hole injection layer
  • EIL layer
  • the hole transport layer 12 contains, for example, PEDOT: PSS (poly (3,4-ethylenedioxythiophene): poly (4-styrene sulfonic acid)).
  • the hole transport layer 12 may be replaced with PEDOT: PSS, or in addition to PEDOT: PSS, PVK (polyvinylcarbazole), TFB (poly [(9,9-dioctylfluorenyl-2,7-diyl-2,7-diyl)).
  • TPD 4,4'-bis [N-phenyl-N- (3''-methylphenyl)
  • It may contain at least one organic material selected from the group consisting of (amino] biphenyl).
  • the hole transport layer 12 For the formation of the hole transport layer 12, various conventionally known methods such as an inkjet method and a vacuum vapor deposition method can be used.
  • the electron transport layer 14 is a layer that transports electrons from the cathode 15 to the light emitting layer 13.
  • the electron transport layer 14 contains an electron transport material having excellent electron transport properties.
  • the electron transport layer 14 may have a function of inhibiting the transport of holes. Further, the electron transport layer 14 may also have a function as an electron injection layer (EIL) that promotes electron injection from the cathode 15 to the light emitting layer 13, and the cathode 15 is a hole injection layer (EIL). ) May also have the function.
  • EIL electron injection layer
  • the electron transport layer 14 is a mixed crystal layer formed of a solid solution of at least ZnS (zinc sulfide) and Zn (OH) 2 (zinc hydroxide), and has a Zn—S bond and a Zn—OH bond with ZnS. It is formed of mixed crystals containing Zn (OH) 2 .
  • the mixed crystal (mixed crystal layer) may further contain ZnO having a Zn—O bond, and has Zn—S, Zn—OH, and Zn—O bonds, ZnS, ZnO, and Zn. It may be a mixed crystal (mixed crystal layer) with (OH) 2 .
  • the electron transport layer 14 is, for example, a mixed crystal layer containing at least ZnS and Zn (OH) 2 among ZnS, ZnO, and Zn (OH) 2 .
  • a mixed crystal of ZnS and Zn (OH) 2 having a Zn—S bond and a Zn—OH bond is referred to as Zn (S, OH).
  • a mixed crystal of ZnS, ZnO (zinc oxide) and Zn (OH) 2 having a bond of Zn—S, Zn—OH and Zn—O is referred to as Zn (S, O, OH).
  • the electron transport layer 14 contains Zn (S, OH).
  • Zn (S, OH) may be Zn (S, O, OH).
  • the CBD method using an alkaline aqueous solution containing a zinc source and a sulfur source in the reaction solution 23 is used for forming the electron transport layer 14.
  • ZnS is synthesized in an aqueous solution to form a thin film to be an electron transport layer 14, so that at least a hydroxyl group (-OH group) and an oxygen group (-O group) among the hydroxyl groups (-OH group) and the oxygen group (-O group) Group) is always contained in the thin film.
  • ZnO or ZnS is formed by a vacuum method or a vapor deposition method, Zn (OH) 2 is not intentionally mixed.
  • a mask having alkali resistance is used as the mask 21 used in step S4.
  • the material of the mask 21 is not particularly limited as long as it has alkali resistance.
  • a commercially available masking tape can be used.
  • step S4 it is not necessary to mask the entire electron transport layer non-formation region, and the electron transport layer non-formation region of the portion of the electron transport layer non-formation region immersed in the reaction solution 23 in step S5). It is enough if it is masked.
  • the laminate 20 is one of the light emitting layers 13 so that the formed region (in other words, the formed surface) of the electron transport layer 14 in the light emitting layer 13, which is a part of the light emitting layer 13, comes into contact with the reaction solution 23.
  • the part may be immersed in the reaction solution 23. Therefore, the masked portion may be, for example, only the side surface of the laminate 20 including the anode 11, the hole transport layer 12, and the light emitting layer 13 (specifically, a part of the side surface or the entire side surface). It may be a part of the side surface and a part of the back surface of the laminate 20.
  • the entire surface of the laminated body 20 other than the formed region of the electron transport layer 14 (that is, the laminated body) is exposed so that only the formed region of the electron transport layer 14 is exposed. It goes without saying that the entire electron transport layer non-forming region in 20) may be masked.
  • step S5 In the thin film forming step (step S5), first, an alkaline aqueous solution containing a zinc source and a sulfur source is prepared as the reaction solution 23. Then, the reaction solution 23 is placed in the reaction vessel 22. Next, the laminate 20 in which a part of the light emitting layer 13 is exposed is immersed in the reaction solution 23 to form a thin film. Then, the laminate 20 on which the thin film is formed is taken out from the reaction solution 23.
  • the reaction solution 23 is prepared by mixing a zinc source, an alkali source, and a sulfur source so as to have a predetermined concentration.
  • the zinc source and the sulfur source are used as the base material of the electron transport layer 14 as described above.
  • the zinc ion concentration in the reaction solution 23 is preferably 0.001 to 0.5 mol / L, more preferably 0.01 to 0.1 mol / L. If the zinc ion concentration in the reaction solution 23 is smaller than 0.01 mol / L, the chemical reaction rate is very slow and the film formation time may be prolonged. On the other hand, when the zinc ion concentration in the reaction solution 23 exceeds 0.5 mol / L, the reaction time becomes extremely short and the film thickness controllability deteriorates, and the yield of the thin film with respect to the raw material deteriorates. There is a risk of increase.
  • the concentration of sulfide ion in the reaction solution 23 is preferably 0.5 to 5 times, more preferably 1 to 3 times, the zinc ion concentration. If the sulfide ion concentration in the reaction solution 23 is smaller than 0.5 times the zinc ion concentration, the Zn—O bond becomes dominant and the Zn—S bond may not be formed. On the other hand, when the sulfide ion concentration in the reaction solution 23 exceeds 5 times the zinc ion concentration, excess S atoms may be introduced into the ZnS thin film as an acceptor. As a result, the ZnS thin film, which is an n-type semiconductor, behaves like a p-type semiconductor and may not function as the electron transport layer 14.
  • the zinc ion concentration in the reaction solution 23 is preferably smaller than the sulfide ion concentration in the reaction solution 23.
  • the concentration of zinc ions in the reaction solution 23 is smaller than the concentration of sulfide ions in the reaction solution 23, the Zn—S bond becomes the main component, and ZnS / Zn (S, OH) can be brought close to 1.
  • the zinc source at least one selected from the group consisting of a weak acid salt containing zinc and a strong acid salt containing zinc is used.
  • the zinc source include zinc sulfate, zinc acetate, zinc nitrate, zinc chloride and the like.
  • the sulfur source at least one selected from the group consisting of sulfur, thiouric acid, water-soluble thiol, and water-soluble thiocarbonyl compound is used. The water-soluble thiol does not need to be completely dissolved in water.
  • the alkali source for example, salts such as ammonia and NaOH are used.
  • the alkaline aqueous solution is prepared (prepared) by dissolving the alkaline source in water so that a desired pH can be obtained. At this time, the alkaline aqueous solution is preferably prepared so that the pH thereof and the pH of the reaction solution 23 finally prepared are 9 or more.
  • the temperature of the reaction solution 23 while immersing the laminate 20 in the reaction solution 23 may be in the range of 15 to 90 ° C., but is preferably maintained in the range of 70 to 90 ° C. It is more desirable that the temperature is maintained in the range of 75 to 90 ° C.
  • the temperature of the reaction solution 23 By setting the temperature of the reaction solution 23 to 70 ° C. or higher, more preferably 75 ° C. or higher during the immersion of the laminate 20, the formation of the Zn—S bond is promoted over the Zn—O bond (in other words, priority is given). Can grow).
  • the immersion time of the laminate 20 in the reaction solution 23 is the temperature of the reaction solution 23, the concentration of the zinc source and the sulfur source in the reaction solution 23, and the concentration of the alkali source in the reaction solution 23 (in other words, the pH of the reaction solution 23). ) And the like, the thickness of the thin film to be the electron transport layer 14 is appropriately set to be a desired thickness. Therefore, the immersion time is not particularly limited, but is typically 5 minutes or more and 60 minutes or less.
  • ZnSO 4 zinc sulfate
  • ammonia as an alkali source at 7.5 mol / L
  • thiourea as a sulfur source at a concentration of 0.6 mol / L.
  • the reaction solution 23 having a pH of 11 is obtained.
  • ZnS / Zn (S, O, OH) is set to 1 as described above. You can get closer.
  • the temperature of the reaction solution 23 is adjusted to 80 ° C., and the laminate 20 is immersed in the reaction solution 23 for 15 minutes to form a Zn (S, O, OH) thin film having a film thickness of 100 nm.
  • the film thickness of the electron transport layer 14 can be controlled by the concentrations of the zinc source, the sulfur source, and the alkali source in the reaction solution 23, the temperature of the reaction solution 23, the immersion time, and the like. ..
  • the laminate 20 taken out from the reaction solution 23 is dried by, for example, washing the excess reaction solution 23 with water and then allowing it to stand at room temperature. As a result, as shown in FIG. 1, an electron transport layer 14 is formed on the light emitting layer 13.
  • the electron transport layer 14 thus formed is a mixed crystal layer containing ZnS mainly composed of a Zn—S bond as a main component and partially containing Zn (OH) 2 having a Zn—OH bond derived from an aqueous solution. It becomes. Further, not only Zn (OH) 2 but also ZnO having a Zn—O bond derived from an aqueous solution is partially contained.
  • the chemical bond state and abundance of the elements contained in the electron transport layer 14 are determined by X-rays on a sample exposed to the electron transport layer 14 by the XPS (X-ray photoelectron spectroscopy) method or the UPS (ultraviolet photoelectron spectroscopy) method. Alternatively, it can be specified by irradiating with ultraviolet rays and analyzing the composition. Since the electron transport layer 14 contains Zn (S, O, OH), the binding energies between Zn—O / Zn—S and between O—Zn / OH are different. Therefore, the presence of each bond of Zn—S, Zn—OH, and Zn—O in the electron transport layer 14 can be identified by the XPS method or the UPS method. Further, the Fermi level is different between ZnS produced by the CBD method and ZnS produced by the vacuum vapor deposition method.
  • the light emitting layer 13 is a layer that emits light due to recombination of holes transported from the anode 11 and electrons transported from the cathode 15.
  • a forward voltage is applied between the anode 11 and the cathode 15 by the power source 16 (the anode 11 has a higher potential than the cathode 15)
  • the anode 11 goes to the light emitting layer 13 via the hole transport layer 12.
  • holes are supplied, while electrons are supplied from the cathode 15 to the light emitting layer 13 via the electron transport layer 14.
  • the voltage applied by the power supply 16 may be controlled by a thin film transistor (TFT) (not shown).
  • TFT thin film transistor
  • FIG. 4 is a cross-sectional view schematically showing the state of the interface between the light emitting layer 13 and the electron transport layer 14 in the light emitting element 1 according to the embodiment.
  • FIG. 5 is a diagram showing energy bands of each layer of the functional layer in the light emitting element 1 according to the embodiment.
  • the light emitting layer 13 contains quantum dots 13QD as a light emitting material.
  • the quantum dot 13QD used for the light emitting layer 13 in this embodiment is a coating type quantum dot formed by a solution method instead of crystal growth.
  • a dispersion liquid in which quantum dots 13QD are dispersed in a solvent is applied to the upper surface of the hole transport layer 12, a coating film containing the quantum dots 13QD is formed, and then the solvent is volatilized to solidify the coating film. It can be formed by forming (curing).
  • the dispersion liquid is a colloidal solution containing a quantum dot 13QD, a ligand 13R (organic ligand) composed of an organic component, located on the surface of the quantum dot 13QD as a receptor, and a solvent.
  • the surface of the quantum dot 13QD is protected by the ligand 13R, which is a surface modifying group that modifies the surface of the quantum dot 13QD.
  • the ligand 13R is composed of an adsorbing group that adsorbs (coordinates) the surface of the quantum dot 13QD and an alkyl group that binds to the adsorbing group.
  • the adsorbing group include an amino group, a phosphine group, a carboxyl group, a hydroxyl group, a thiol group and the like.
  • an alkyl group having 2 to 50 carbon atoms can be mentioned.
  • the ligand 13R includes, for example, hexadecylamine, oleylamine, octylamine, hexadecanethiol, dodecanethiol, trioctylphosphine, trioctylphosphine oxide, myristic acid, oleic acid and the like.
  • the ligand 13R has a role of protecting the surface of the quantum dots 13QD and preventing deterioration of the quantum dots 13QD, while suppressing aggregation of the quantum dots 13QD in the dispersion liquid and improving dispersibility. Has a role as.
  • the solvent may be water, or may be an organic solvent such as methanol, ethanol, propanol, butanol, pentane, hexane, octane, acetone, toluene, xylene, benzene, chloroform, dichloromethane, and chlorobenzene. Often, it may be a combination thereof.
  • a known coating method such as a spin coating method or an inkjet method can be used for coating the dispersion liquid.
  • the light emitting layer 13 thus formed by the solution method includes a spherical quantum dot 13QD and the above-mentioned ligand 13R. Since the shape of the quantum dot 13QD is spherical rather than island-shaped (lens-shaped) as in the case of crystal growth, the polarization characteristic of light emission can be reduced. Further, since the light emitting layer 13 contains the ligand 13R, the aggregation of the quantum dots 13QD can be suppressed and the quantum dots 13QD can be satisfactorily dispersed when the coating film containing the quantum dots 13QD is formed.
  • the quantum dot 13QD as a receptacle used in the present embodiment is a core-shell type quantum dot (core-shell particle), and as shown in FIG. 4, a nano-sized crystal (semiconductor) of a semiconductor material called a semiconductor nanoparticle. It includes a core 13C as a light emitting portion, which is composed of fine particles of crystals), and a shell 13S that covers the core 13C. Therefore, the light emitting layer 13 includes a core-shell type quantum dot 13QD including a core 13C and a shell 13S covering the core 13C, and a ligand 13R coordinated to the shell 13S in the core-shell type quantum dot 13QD. ..
  • Quantum dot 13QD is, for example, Cd (cadmium), S (sulfur), Te (tellurium), Se (selenium), Zn (zinc), In (indium), N (nitrogen), P (phosphorus), As (arsenic). ), Sb (antimony), Al (aluminum), Ga (gallium), Pb (lead), Si (silicon), Ge (germanium), Mg (magnesium), at least one element selected from the group. It may contain the semiconductor material. For example, nano-sized crystals of the above semiconductor material can be used for the core 13C.
  • the shell 13S preferably contains ZnS, and more preferably consists of ZnS.
  • the red quantum dot 13QD having a CdS (cadmium sulfide) as a core and having a narrow bandgap may have a shell made of, for example, ZnSe.
  • the shell 13S has a double shell structure in which the outermost shell is made of ZnS.
  • the nanocrystal material serving as the core 13C is composed of CdSe (cadmium selenide), CdS, and ZnSe (zinc selenide) in which the conduction band level and the valence band level are present in the bandgap energy of ZnS.
  • Nano-sized crystals of at least one semiconductor material selected from the group are preferred.
  • the wavelength of light emitted by the quantum dot 13QD is proportional to the particle size of the core 13C and does not depend on the particle size of the shell 13S (the outermost particle size of the quantum dot 13QD). ..
  • the particle size of the core 13C is, for example, about 1 to 10 nm
  • the outermost particle size of the quantum dot 13QD which is the particle size of the shell 13S, is, for example, about 1 to 15 nm.
  • the number of overlapping layers of the quantum dots 13QD in the light emitting layer 13 is, for example, 1 to 5 layers.
  • the film thicknesses of the hole transport layer 12, the light emitting layer 13, and the electron transport layer 14 can be conventionally known, but are, for example, about 1 to 50 nm.
  • the film thickness of the light emitting layer 13 is preferably about several times the outermost particle size of the quantum dot QD.
  • the core 13C has a valence band level and a conduction band level.
  • the valence band level is equal to the ionization potential between the vacuum level and the upper end of the valence band indicated as the light emitting layer valence band in FIG.
  • the conduction band level is equal to the electron affinity between the vacuum level and the lower end of the conductor described as the light emitting layer conduction band in FIG.
  • a voltage is applied between the anode 11 and the cathode 15, and holes are generated from the valence band level at the lower end of the hole transport layer 12 (HTL) to the conduction band at the upper end of the electron transport layer 14 (ETL).
  • HTL hole transport layer 12
  • ETL electron transport layer 14
  • the quantum confinement effect can be obtained by making the core 13C smaller than the Bohr radius.
  • the core 13C In the core 13C, electrons located in the conduction band (conduction band of the light emitting layer) of the core 13C and holes located in the valence band (valence band of the light emitting layer) of the core are recombined, and the core 13C It emits light having a wavelength corresponding to the particle size (in other words, light having an emission wavelength corresponding to a band gap between the lower end of the conduction band of the light emitting layer and the upper end of the valence band of the light emitting layer). Since the light emission from the quantum dot 13QD has a narrow spectrum due to the quantum confinement effect, it is possible to obtain light emission with a relatively deep chromaticity.
  • the ligand 13R composed of an organic component and the shell 13S mainly composed of ZnS behave as a blocking layer that reduces the injection efficiency of electrons and holes.
  • the ligand 13R is coordinated on the surface of the quantum dots 13QD, and suppresses aggregation of the quantum dots 13QD and quantum in the dispersion liquid for forming the light emitting layer 13 in which the quantum dots 13QD are dispersed. It is used to prevent deterioration of the dot 13QD, but acts as an insulating component. Therefore, it is desirable that the ligand 13R does not exist at the interface between the light emitting layer 13 and the electron transport layer 14.
  • step S5 the surface of the light emitting layer 13 on which the electron transport layer 14 is laminated is brought into contact with the alkaline aqueous solution. Therefore, the ligand 13R on the surface of the light emitting layer 13 on which the electron transport layer 14 is laminated is etched by the alkaline aqueous solution.
  • the average coordination number of the ligand 13R coordinated to the shell 13S of the quantum dot 13QD included in the interface between the light emitting layer 13 and the electron transport layer 14. Can be less than the average coordination number of the ligand 13R coordinated to the shell 13S of the quantum dot 13QD contained in the portion of the light emitting layer 13 other than the boundary (in other words, the bulk of the light emitting layer 13). ..
  • the ligand 13R at the interface between the light emitting layer 13 and the electron transport layer 14 can be removed.
  • the unnecessary shell 13S at the interface between the light emitting layer 13 and the electron transport layer 14 that comes into contact with the reaction solution 23 is also removed together with the ligand 13R. ..
  • the electron transport layer 14 of a dense thin film can be formed on the spot by a chemical reaction in the aqueous solution, and the interface between the electron transport layer 14 and the light emitting layer 13 can be contacted.
  • the resistance can be reduced, and the ligand 13R and the shell 13S at the interface can be removed to improve the quality of the interface and reduce the resistance component. Therefore, the efficiency of injecting electrons from the electron transport layer 14 into the light emitting layer 13 can be improved.
  • the electron transport layer 14 uses the inorganic layer, defects are unlikely to occur between the electron transport layer 14 and the light emitting layer 13. Moreover, by etching the surface of the quantum dot 13QD with the alkaline aqueous solution as described above, the defects on the surface of the quantum dot 13QD are further reduced as compared with the conventional light emitting device using the inorganic layer for the electron transport layer 14. Can be made to. Therefore, it is possible to obtain a light emitting element 1 having a coating property of the electron transport layer 14 that is superior to that of the conventional light emitting device.
  • the electron transport layer 14 is not formed by laminating nanoparticles of an electron transport material as in the conventional case, but is formed by a zinc source and a sulfur source in an aqueous solution by the CBD method. It is directly formed as a thin film (mixed crystal layer) by a chemical reaction.
  • the electron transport material permeates into the gap between the adjacent quantum dots 13QD at the interface between the light emitting layer 13 and the electron transport layer 14, and the electron transport material becomes quantum. Dot 13QD is coated. Therefore, the contact area between the light emitting layer 13 and the electron transport layer 14 increases.
  • the film property of the electron transport layer 14 can be improved, and the contact resistance between the light emitting layer 13 and the electron transport layer 14 can be reduced. Further, since the vacuum device is not used for forming the electron transport layer 14, the light emitting element 1 can be manufactured at low cost.
  • the energy level can be adjusted by changing the ratio of Zn (S, O, OH) depending on the composition of the reaction solution 23 or the film forming conditions such as the reaction temperature. Therefore, the band gap of Zn (S, O, OH) can be changed by, for example, changing the composition of the reaction solution 23, but the concentration of ZnO contained in Zn (S, O, OH) is large. Therefore, the band gap and the valence band level are lowered, resulting in a decrease in electron injection efficiency. Therefore, a preferable ratio of ZnS, ZnO, and Zn (OH) 2 contained in the mixed crystal (in other words, the electron transport layer 14 which is the mixed crystal layer) constituting the electron transport layer 14 is appropriately set.
  • the mixed crystal contains ZnS as a main component as described above, and the concentration of ZnS contained in the mixed crystal is as described above. It is desirable that the concentration is higher than the concentration of Zn (OH) 2 contained in the mixed crystal.
  • the mixed crystal is Zn (S, O, OH)
  • it is desirable that the concentration of ZnS contained in the mixed crystal is higher than the concentration of ZnO contained in the mixed crystal.
  • the mixed crystal is Zn (S, O, OH)
  • it is desirable that the concentration of Zn (OH) 2 contained in the mixed crystal is higher than the concentration of ZnO contained in the mixed crystal. ..
  • the concentration of ZnS contained in the mixed crystal (Zn (S, OH) or Zn (S, O, OH)) is 50 wt% or more.
  • the value is preferably 50 wt% of ZnS contained in the mixed crystal.
  • the concentration of Zn (OH) 2 is preferably 0.1 wt% or more from the viewpoint of the concentration above the detection limit. Therefore, the concentration of Zn (OH) 2 contained in the mixed crystal (Zn (S, OH) or Zn (S, O, OH)) is based on the concentration of ZnS in the mixed crystal (100 wt%). It is desirable that the value is 0.1 wt% or more and 50 wt% or less with respect to the above reference value.
  • the mixed crystal is Zn (S, O, OH)
  • the electron transport layer 14 is formed by the CBD method, it is possible to form a film at a lower temperature than the conventional film formation method such as a vapor deposition method or a sputtering method, and the hole transport layer 12 or the like which is the lower layer thereof , It becomes possible to use organic materials that are sensitive to heat.
  • the vacuum method such as the vapor deposition method and the sputtering method, the hydroxyl group ( ⁇ OH group) is eliminated as water by heat. Therefore, no hydroxyl group is detected in the electron transport layer formed by a vacuum method such as a vapor deposition method or a sputtering method.

Abstract

This method for producing a light-emitting element comprises a positive electrode formation step, a light-emitting layer formation step, an electron transport layer formation step, and a negative electrode formation step. The electron transport layer formation step includes an immersion step for immersing the light-emitting layer surface on which the electron transport layer will be formed in an aqueous alkaline solution containing a zinc source and a sulfur source. In the electron transport layer formation step, a mixed crystal layer which contains ZnS and Zn(OH)2 having Zn-S bonds and Zn-OH bonds is formed as the electron transport layer.

Description

発光素子の製造方法および発光素子Manufacturing method of light emitting element and light emitting element
 本発明は、発光素子の製造方法および発光素子に関する。 The present invention relates to a method for manufacturing a light emitting element and a light emitting element.
 特許文献1では、電子輸送層(ETL:Electron transporting layer)に、ZnO(酸化亜鉛)等の無機層を用いた量子ドット発光ダイオード(QLED:Quantum dot Light Emitting Diode)が開示されている。 Patent Document 1 discloses a quantum dot light emitting diode (QLED: Quantum dot Light Emitting Diode) using an inorganic layer such as ZnO (zinc oxide) in the electron transporting layer (ETL: Electron transporting layer).
 このように発光層に量子ドット(QD:Quantum dot)を用いた発光素子(QLED)において、電子輸送層に有機層を用いると、有機層と無機層との境界となる、電子輸送層と発光層との間で欠陥が生じ易く、発光素子の駆動時に安定性が低下する。また、有機層は、電子伝達速度が遅く、電子密度が小さいため、電子輸送効率が正孔輸送効率に比べて落ちるという問題がある。電子輸送層を無機層とすることで、上述した問題点を解決することができる。 In a light emitting element (QLED) that uses quantum dots (QD: Quantum dots) for the light emitting layer in this way, when an organic layer is used for the electron transport layer, the electron transport layer and light emission are the boundaries between the organic layer and the inorganic layer. Defects are likely to occur between the layers and the stability is reduced when the light emitting element is driven. Further, since the organic layer has a slow electron transfer rate and a low electron density, there is a problem that the electron transport efficiency is lower than the hole transport efficiency. By using the electron transport layer as an inorganic layer, the above-mentioned problems can be solved.
日本国公表特許公報「特表2008-533735号」Japanese Patent Publication "Special Table 2008-533735"
 しかしながら、特許文献1では、電子輸送層の形成に、ゾル-ゲルコーティング、スピンコーティング、プリンティング、キャスティングおよびスプレーからなる群より選ばれる溶液コーティングプロセス、または、化学気相蒸着法(CVD)、スパッタリング、電子ビーム蒸着および真空蒸着法からなる群より選ばれる気相コーティングプロセスを使用する。 However, in Patent Document 1, a solution coating process selected from the group consisting of sol-gel coating, spin coating, printing, casting and spraying, or chemical vapor deposition (CVD), sputtering, is used for forming an electron transport layer. A vapor phase coating process selected from the group consisting of electron beam deposition and vacuum deposition is used.
 スパッタリング等の真空法による製膜手法は、被膜性は良いが、量子ドットへのスパッタダメージが生じる。また、このような気相コーティングプロセスにおいては、真空装置を用いるため、溶液コーティング法と比較して高コストとなる。 The film forming method by the vacuum method such as sputtering has good film properties, but sputter damage to quantum dots occurs. Further, in such a vapor phase coating process, since a vacuum device is used, the cost is higher than that of the solution coating method.
 なお、上述したように、特許文献1には、溶液コーティングプロセスで電子輸送層を形成することも開示されている。溶液コーティングプロセスを用いることで、コスト削減が可能であり、量子ドットへのスパッタダメージ等の問題を回避することが可能である。 As described above, Patent Document 1 also discloses that an electron transport layer is formed by a solution coating process. By using the solution coating process, it is possible to reduce the cost and avoid problems such as spatter damage to the quantum dots.
 しかしながら、電子輸送層(ETL)を、このように溶液コーティングプロセスで形成する場合、発光層上に、別途合成したETL材料のナノ粒子をコーティングすることになる。 However, when the electron transport layer (ETL) is formed by the solution coating process in this way, the nanoparticles of the separately synthesized ETL material are coated on the light emitting layer.
 図6は、発光層に量子ドットQDを用いたQLEDにおいて、電子輸送層(ETL)を溶液コーティングプロセスで形成したときの問題点を模式的に示す図である。なお、図6中、HTLは、正孔輸送層(Hole Transport Layer)を示す。図6では、電子輸送層(ETL)を、ZnOナノ粒子(ZnO-NP)を含む溶液(以下、「ZnOナノ粒子溶液」と記す)を用いて形成した場合を例に挙げて図示している。 FIG. 6 is a diagram schematically showing problems when an electron transport layer (ETL) is formed by a solution coating process in a QLED using quantum dot QD as a light emitting layer. In FIG. 6, HTL indicates a hole transport layer. In FIG. 6, the case where the electron transport layer (ETL) is formed by using a solution containing ZnO nanoparticles (ZnO-NP) (hereinafter, referred to as “ZnO nanoparticles solution”) is illustrated as an example. ..
 図6に示すように、QLEDにおいて電子輸送層を、ZnOナノ粒子溶液を用いたコーティング法により形成する場合、量子ドットQDとZnO-NPとの界面の接点が点接触となる。この結果、抵抗成分が大きくなり、接触抵抗が上昇し、印加電圧の増加、それによる消費電力および電力発光効率の低下といった問題が生じるとともに、量子ドットQDとZnO-NPとの界面の品質の低下によるキャリアトラップの増加を招く。 As shown in FIG. 6, when the electron transport layer is formed in QLED by a coating method using a ZnO nanoparticle solution, the contact point at the interface between the quantum dot QD and ZnO-NP is point contact. As a result, the resistance component increases, the contact resistance increases, the applied voltage increases, resulting in problems such as a decrease in power consumption and power luminous efficiency, and a decrease in the quality of the interface between the quantum dot QD and ZnO-NP. Causes an increase in carrier traps.
 本開示の一態様は、上記問題に鑑みなされたものであり、その目的は、安価で、かつ、電子輸送層の被膜性に優れた、無機層からなる電子輸送層を備えた発光素子およびその製造方法を提供することにある。 One aspect of the present disclosure has been made in view of the above problems, and an object thereof is a light emitting device provided with an electron transport layer made of an inorganic layer, which is inexpensive and has excellent coating properties of an electron transport layer. The purpose is to provide a manufacturing method.
 上記の課題を解決するために、本開示の一態様に係る発光素子の製造方法は、基板上に陽極を形成する陽極形成工程と、上記陽極上に発光層を形成する発光層形成工程と、上記発光層上に、該発光層に隣接して電子輸送層を形成する電子輸送層形成工程と、上記電子輸送層上に陰極を形成する陰極形成工程と、を備え、上記電子輸送層形成工程は、亜鉛源および硫黄源を含むアルカリ性水溶液に上記発光層における上記電子輸送層の被形成面を浸漬する浸漬工程を含み、上記電子輸送層形成工程では、上記電子輸送層として、Zn-S結合およびZn-OH結合を有する、ZnSとZn(OH)とを含む混晶層を形成する。 In order to solve the above problems, the method for manufacturing a light emitting element according to one aspect of the present disclosure includes an anode forming step of forming an anode on a substrate, a light emitting layer forming step of forming a light emitting layer on the anode, and the like. The electron transport layer forming step comprising an electron transport layer forming step of forming an electron transport layer adjacent to the light emitting layer on the light emitting layer and a cathode forming step of forming a cathode on the electron transport layer. Includes a dipping step of immersing the surface to be formed of the electron transport layer in the light emitting layer in an alkaline aqueous solution containing a zinc source and a sulfur source, and in the electron transport layer forming step, Zn—S bond is used as the electron transport layer. And a mixed crystal layer containing ZnS and Zn (OH) 2 having a Zn—OH bond is formed.
 上記の課題を解決するために、本開示の一態様に係る発光素子は、陽極と、発光層と、上記発光層に隣接する電子輸送層と、陰極と、をこの順に備え、上記電子輸送層は、Zn-S結合およびZn-OH結合を有する、ZnSとZn(OH)とを含む混晶層である。 In order to solve the above problems, the light emitting element according to one aspect of the present disclosure includes an anode, a light emitting layer, an electron transport layer adjacent to the light emitting layer, and a cathode in this order, and the electron transport layer. Is a mixed crystal layer containing ZnS and Zn (OH) 2 having a Zn—S bond and a Zn—OH bond.
 本開示の一態様によれば、安価で、かつ、電子輸送層の被膜性に優れた、無機層からなる電子輸送層を備えた発光素子およびその製造方法を提供することができる。 According to one aspect of the present disclosure, it is possible to provide a light emitting device provided with an electron transport layer made of an inorganic layer, which is inexpensive and has excellent coating properties of the electron transport layer, and a method for manufacturing the same.
実施の一形態に係る発光素子の積層構造の一例を示す模式的に示す図である。It is a figure which shows typically an example of the laminated structure of the light emitting element which concerns on one Embodiment. 実施の一形態に係る発光素子の製造方法の一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing method of the light emitting element which concerns on one Embodiment. 図2に示すステップS4からステップS5にかけての工程を模式的に示す断面図である。It is sectional drawing which shows typically the process from step S4 to step S5 shown in FIG. 実施の一形態に係る発光素子における、発光層と電子輸送層との界面の状態を模式的に示す断面図である。It is sectional drawing which shows typically the state of the interface between a light emitting layer and an electron transport layer in the light emitting element which concerns on one Embodiment. 実施の一形態に係る発光素子における機能層の各層のエネルギーバンドを示す図である。It is a figure which shows the energy band of each layer of the functional layer in the light emitting element which concerns on one Embodiment. 発光層に量子ドットを用いたQLEDにおいて、電子輸送層を溶液コーティングプロセスで形成したときの問題点を模式的に示す図である。It is a figure which shows typically the problem when the electron transport layer is formed by the solution coating process in QLED which used the quantum dot as a light emitting layer.
 図1は、実施の一形態に係る発光素子1の積層構造の一例を示す模式的に示す図である。図2は実施の一形態に係る発光素子1の製造方法の一例を示すフローチャートである。図3は、図2に示すステップS4からステップS5にかけての工程を模式的に示す断面図である。 FIG. 1 is a diagram schematically showing an example of a laminated structure of the light emitting element 1 according to the embodiment. FIG. 2 is a flowchart showing an example of a method for manufacturing the light emitting element 1 according to the embodiment. FIG. 3 is a cross-sectional view schematically showing the steps from step S4 to step S5 shown in FIG.
 まず、発光素子1の積層構造および製造方法の一例の概要について、説明する。 First, an outline of a laminated structure of the light emitting element 1 and an example of a manufacturing method will be described.
 図1に示すように、発光素子1は、上下に配置された対向電極である陰極15(カソード)と陽極11(アノード)との間に、機能層として電子輸送層14および発光層13を含む発光素子である。一例として、発光素子1は、基板10上に、陽極11、正孔輸送層12(HTL)、発光層13、電子輸送層14(ETL)、陰極15を、基板10側からこの順に備えている。電子輸送層14は、発光層13上に、該発光層13に隣接して積層されている。なお、正孔輸送層12は設けられていなくてもよい。本実施形態では、基板10から陰極15に向かう方向を上方向とし、その逆方向を下方向として説明する。また、本実施形態では、比較対象の層よりも先のプロセスで形成されている層を「下層」と称し、比較対象の層よりも後のプロセスで形成されている層を「上層」と称する。 As shown in FIG. 1, the light emitting element 1 includes an electron transport layer 14 and a light emitting layer 13 as functional layers between the cathode 15 (cathode) and the anode 11 (anode), which are counter electrodes arranged vertically. It is a light emitting element. As an example, the light emitting element 1 is provided with an anode 11, a hole transport layer 12 (HTL), a light emitting layer 13, an electron transport layer 14 (ETL), and a cathode 15 on the substrate 10 in this order from the substrate 10 side. .. The electron transport layer 14 is laminated on the light emitting layer 13 adjacent to the light emitting layer 13. The hole transport layer 12 may not be provided. In the present embodiment, the direction from the substrate 10 to the cathode 15 is defined as the upward direction, and the opposite direction is defined as the downward direction. Further, in the present embodiment, the layer formed in the process before the layer to be compared is referred to as "lower layer", and the layer formed in the process after the layer to be compared is referred to as "upper layer". ..
 図1および図2に示すように、本実施形態に係る発光素子1の製造工程では、まず、基板10上に、陽極11を形成する(ステップS1、陽極形成工程)。次に、陽極11上に正孔輸送層12を形成する(ステップS2、正孔輸送層形成工程)。次に、正孔輸送層12上に発光層13を形成する(ステップS3、発光層形成工程)。次に、発光層13上に電子輸送層14を形成する(電子輸送層形成工程)。本実施形態では、電子輸送層14の形成に、CBD(Chemical bath deposition)法と称される化学溶液法を使用する。このため、本実施形態に係る電子輸送層形成工程は、マスク工程(ステップS4)、薄膜形成工程(ステップS5、浸漬工程)、乾燥工程(ステップS6)、マスク除去工程(ステップS6)を含んでいる。ステップS4のマスク工程では、図3に示すように、ステップS3で得られた積層体の表面のうち、一部を露出し、一部をマスク21(マスク材)でマスクする。なお、ステップS3で得られた積層体とは、基板10、陽極11、および発光層13を含む積層体であり、本実施形態では、上述したように、基板10上に、陽極11、正孔輸送層12、および発光層13をこの順に積層してなる積層体を示す。以下、上記積層体を、説明の便宜上、「積層体20」と称する。 As shown in FIGS. 1 and 2, in the manufacturing process of the light emitting element 1 according to the present embodiment, first, the anode 11 is formed on the substrate 10 (step S1, anode forming step). Next, the hole transport layer 12 is formed on the anode 11 (step S2, hole transport layer forming step). Next, the light emitting layer 13 is formed on the hole transport layer 12 (step S3, light emitting layer forming step). Next, the electron transport layer 14 is formed on the light emitting layer 13 (electron transport layer forming step). In the present embodiment, a chemical solution method called a CBD (Chemical bath deposition) method is used for forming the electron transport layer 14. Therefore, the electron transport layer forming step according to the present embodiment includes a mask step (step S4), a thin film forming step (step S5, dipping step), a drying step (step S6), and a mask removing step (step S6). There is. In the masking step of step S4, as shown in FIG. 3, a part of the surface of the laminate obtained in step S3 is exposed and a part is masked with a mask 21 (mask material). The laminate obtained in step S3 is a laminate including the substrate 10, the anode 11, and the light emitting layer 13, and in the present embodiment, as described above, the anode 11, the hole, and the hole are placed on the substrate 10. A laminated body formed by laminating the transport layer 12 and the light emitting layer 13 in this order is shown. Hereinafter, the laminated body will be referred to as "laminated body 20" for convenience of explanation.
 上記ステップS4では、具体的には、上記積層体20の発光層13における電子輸送層14の被形成面(言い換えれば、電子輸送層14の被形成領域)である発光層13の表面の一部(具体的には上面)を露出させる。そして、上記積層体20における、電子輸送層14の被形成面以外の表面(言い換えれば、電子輸送層14を形成しない電子輸送層非形成領域)の少なくとも一部をマスクする。なお、図3では、一例として、上記積層体20の側面および背面をマスクした場合を例に挙げて図示している。 In step S4, specifically, a part of the surface of the light emitting layer 13 which is the surface to be formed of the electron transport layer 14 (in other words, the formed region of the electron transport layer 14) in the light emitting layer 13 of the laminated body 20. (Specifically, the upper surface) is exposed. Then, at least a part of the surface of the laminated body 20 other than the surface to be formed of the electron transport layer 14 (in other words, the electron transport layer non-formed region that does not form the electron transport layer 14) is masked. In addition, in FIG. 3, as an example, the case where the side surface and the back surface of the laminated body 20 are masked is taken as an example.
 次いで、ステップS5の薄膜形成工程で、図3に示すように、反応容器22中の反応溶液23に、発光層13の一部が露出された上記積層体20を浸漬する。上記反応溶液23には、電子輸送層14の母材となる、亜鉛源および硫黄源を含む、アルカリ性水溶液を使用する。これにより、上記発光層13上に、電子輸送層14となる、上記アルカリ性水溶液に由来する薄膜を形成する。次いで、ステップS6の乾燥工程で、ステップS5で形成された薄膜を乾燥する。その後、ステップS7のマスク除去工程で、上記マスク21を除去する。次いで、このようにして形成された電子輸送層14上に陰極15を形成する(ステップS8)。以上の工程により、図1に示す発光素子1が製造される。 Next, in the thin film forming step of step S5, as shown in FIG. 3, the laminate 20 in which a part of the light emitting layer 13 is exposed is immersed in the reaction solution 23 in the reaction vessel 22. As the reaction solution 23, an alkaline aqueous solution containing a zinc source and a sulfur source, which is a base material of the electron transport layer 14, is used. As a result, a thin film derived from the alkaline aqueous solution, which becomes the electron transport layer 14, is formed on the light emitting layer 13. Next, in the drying step of step S6, the thin film formed in step S5 is dried. Then, in the mask removing step of step S7, the mask 21 is removed. Next, the cathode 15 is formed on the electron transport layer 14 thus formed (step S8). The light emitting element 1 shown in FIG. 1 is manufactured by the above steps.
 次に、上記発光素子1の積層構造および製造方法について、より詳細に説明する。 Next, the laminated structure and manufacturing method of the light emitting element 1 will be described in more detail.
 図1に示すように、上記発光素子1において、基板10は、陽極11、正孔輸送層12、発光層13、電子輸送層14、陰極15を支持する支持基板である。発光素子1は、例えば、表示装置等の電子機器の光源として用いられてよい。発光素子1が表示装置の光源である場合、基板10には、例えば、薄膜トランジスタが形成されたアレイ基板が用いられ、陽極11は、アレイ基板の薄膜トランジスタと電気的に接続される。 As shown in FIG. 1, in the light emitting element 1, the substrate 10 is a support substrate that supports the anode 11, the hole transport layer 12, the light emitting layer 13, the electron transport layer 14, and the cathode 15. The light emitting element 1 may be used as a light source of an electronic device such as a display device, for example. When the light emitting element 1 is the light source of the display device, for example, an array substrate on which a thin film transistor is formed is used for the substrate 10, and the anode 11 is electrically connected to the thin film transistor of the array substrate.
 陽極11および陰極15の形成には、例えば、スパッタ法、真空蒸着法、CVD(chemical vapor deposition)法、プラズマCVD法、印刷法等、従来公知の各種方法を用いることができる。 For the formation of the anode 11 and the cathode 15, various conventionally known methods such as a sputtering method, a vacuum vapor deposition method, a CVD (chemical vapor deposition) method, a plasma CVD method, and a printing method can be used.
 陽極11および陰極15は電源16(例えば直流電源)と接続されることで、それらの間に電圧が印加されるようになっている。陽極11および陰極15は導電性材料を含み、それぞれ、正孔輸送層12および電子輸送層14と電気的に接続されている。陽極11および陰極15の少なくとも一方は、光透過性材料からなる。なお、陽極11および陰極15の何れか一方は、光反射性材料で形成してもよい。発光素子1は、光透過性材料からなる電極(具体的には透明電極)側から、光を取り出すことが可能である。 The anode 11 and the cathode 15 are connected to a power source 16 (for example, a DC power source), so that a voltage is applied between them. The anode 11 and the cathode 15 contain a conductive material and are electrically connected to the hole transport layer 12 and the electron transport layer 14, respectively. At least one of the anode 11 and the cathode 15 is made of a light transmissive material. Either one of the anode 11 and the cathode 15 may be formed of a light-reflecting material. The light emitting element 1 can extract light from the electrode (specifically, the transparent electrode) side made of a light transmissive material.
 発光素子1がトップエミッション型の発光素子である場合、上部電極である例えば陰極15を光透過性材料で形成し、下部電極である例えば陽極11を光反射性材料で形成する。発光素子1をボトムエミッション型の発光素子とする場合、上部電極である例えば陰極15を光反射性材料で形成し、下部電極である陽極11を光透過性材料で形成する。 When the light emitting element 1 is a top emission type light emitting element, the upper electrode, for example, the cathode 15 is formed of a light transmitting material, and the lower electrode, for example, the anode 11 is formed of a light reflecting material. When the light emitting element 1 is a bottom emission type light emitting element, the upper electrode, for example, the cathode 15 is formed of a light reflecting material, and the anode 11 which is a lower electrode is formed of a light transmitting material.
 光透過性材料としては、例えば、透明導電膜材料を用いることができる。上記光透過性材料には、具体的には、例えば、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、ZnO(酸化亜鉛)、AZO(aluminum-doped zinc oxide)、BZO(boron-doped zinc oxide)、GZO(gallium-doped zinc oxide)等を用いることができる。これらの材料は可視光の透過率が高いため、発光効率が向上する。 As the light transmissive material, for example, a transparent conductive film material can be used. Specific examples of the light-transmitting material include ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), ZnO (zinc oxide), AZO (aluminum-doped zinc oxide), and BZO (boron-doped zinc). Oxide), GZO (gallium-doped zinc oxide) and the like can be used. Since these materials have high visible light transmittance, the luminous efficiency is improved.
 光反射性材料としては、可視光の反射率の高い材料が好ましく、例えば、金属材料を用いることができる。上記光反射性材料には、具体的には、例えば、Al(アルミニウム)、Cu(銅)、Au(金)、Ag(銀)等を用いることができる。これらの材料は、可視光の反射率が高いため、発光効率が向上する。また、陽極11および陰極15の何れか一方を、光透過性材料からなる層と光反射性材料からなる層との積層体とすることで、光反射性を有する電極としてもよい。 As the light-reflecting material, a material having a high reflectance of visible light is preferable, and for example, a metal material can be used. Specifically, for example, Al (aluminum), Cu (copper), Au (gold), Ag (silver) and the like can be used as the light-reflecting material. Since these materials have high visible light reflectance, the luminous efficiency is improved. Further, by forming either one of the anode 11 and the cathode 15 as a laminate of a layer made of a light-transmitting material and a layer made of a light-reflecting material, an electrode having light reflectivity may be used.
 正孔輸送層12は、陽極11からの正孔を発光層13へと輸送する層である。正孔輸送層12は、正孔輸送性に優れた正孔輸送性材料を含む。なお、正孔輸送層12は、電子の輸送を阻害する機能を有していてもよい。また、正孔輸送層12は、陽極11から発光層13への正孔の注入を促進する正孔注入層(HIL)としての機能を併有していてもよく、陽極11が、正孔注入層(EIL)としての機能を併有していてもよい。 The hole transport layer 12 is a layer that transports holes from the anode 11 to the light emitting layer 13. The hole transport layer 12 contains a hole transport material having excellent hole transport properties. The hole transport layer 12 may have a function of inhibiting the transport of electrons. Further, the hole transport layer 12 may also have a function as a hole injection layer (HIL) that promotes hole injection from the anode 11 to the light emitting layer 13, and the anode 11 injects holes. It may also have a function as a layer (EIL).
 正孔輸送層12には、公知の正孔輸送性材料を用いることができる。正孔輸送層12は、例えば、PEDOT:PSS(ポリ(3,4-エチレンジオキシチオフェン):ポリ(4-スチレンスルホン酸))を含む。なお、正孔輸送層12は、PEDOT:PSSに代えて、あるいは、PEDOT:PSSに加えて、PVK(ポリビニルカルバゾール)、TFB(ポリ[(9,9-ジオクチルフルオレニル-2,7-ジイル)-co-(4,4'-(N-(4-sec-ブチルフェニル))ジフェニルアミン)])、TPD(4,4’-ビス[N-フェニル-N-(3’’-メチルフェニル)アミノ]ビフェニル)からなる群より選択される少なくとも一種の有機材料を含んでいてもよい。 A known hole transporting material can be used for the hole transporting layer 12. The hole transport layer 12 contains, for example, PEDOT: PSS (poly (3,4-ethylenedioxythiophene): poly (4-styrene sulfonic acid)). The hole transport layer 12 may be replaced with PEDOT: PSS, or in addition to PEDOT: PSS, PVK (polyvinylcarbazole), TFB (poly [(9,9-dioctylfluorenyl-2,7-diyl-2,7-diyl)). ) -Co- (4,4'-(N- (4-sec-butylphenyl)) diphenylamine)]), TPD (4,4'-bis [N-phenyl-N- (3''-methylphenyl)) It may contain at least one organic material selected from the group consisting of (amino] biphenyl).
 正孔輸送層12の形成には、例えば、インクジェット法、真空蒸着法等、従来公知の各種方法を用いることができる。 For the formation of the hole transport layer 12, various conventionally known methods such as an inkjet method and a vacuum vapor deposition method can be used.
 電子輸送層14は、陰極15からの電子を発光層13へと輸送する層である。電子輸送層14は、電子輸送性に優れた電子輸送性材料を含む。なお、電子輸送層14は、正孔の輸送を阻害する機能を有していてもよい。また、電子輸送層14は、陰極15から発光層13への電子の注入を促進する電子注入層(EIL)としての機能を併有していてもよく、陰極15が、正孔注入層(EIL)としての機能を併有していてもよい。 The electron transport layer 14 is a layer that transports electrons from the cathode 15 to the light emitting layer 13. The electron transport layer 14 contains an electron transport material having excellent electron transport properties. The electron transport layer 14 may have a function of inhibiting the transport of holes. Further, the electron transport layer 14 may also have a function as an electron injection layer (EIL) that promotes electron injection from the cathode 15 to the light emitting layer 13, and the cathode 15 is a hole injection layer (EIL). ) May also have the function.
 電子輸送層14は、少なくともZnS(硫化亜鉛)とZn(OH)(水酸化亜鉛)との固溶体で形成された混晶層であり、Zn-S結合およびZn-OH結合を有する、ZnSとZn(OH)とを含む混晶で形成されている。なお、上記混晶(混晶層)は、さらに、Zn-O結合を有するZnOを含んでいてもよく、Zn-S、Zn-OH、Zn-Oの各結合を有する、ZnSとZnOとZn(OH)との混晶(混晶層)であってもよい。言い換えれば、電子輸送層14は、例えば、ZnS、ZnO、およびZn(OH)のうち、少なくともZnSとZn(OH)とを含む混晶層である。なお、以下、Zn-S結合およびZn-OH結合を有する、ZnSとZn(OH)との混晶をZn(S、OH)と記す。また、Zn-S、Zn-OH、Zn-Oの各結合を有する、ZnSとZnO(酸化亜鉛)とZn(OH)との混晶を、Zn(S、O、OH)と記す。電子輸送層14は、Zn(S、OH)を含む。Zn(S、OH)は、Zn(S、O、OH)であってもよい。 The electron transport layer 14 is a mixed crystal layer formed of a solid solution of at least ZnS (zinc sulfide) and Zn (OH) 2 (zinc hydroxide), and has a Zn—S bond and a Zn—OH bond with ZnS. It is formed of mixed crystals containing Zn (OH) 2 . The mixed crystal (mixed crystal layer) may further contain ZnO having a Zn—O bond, and has Zn—S, Zn—OH, and Zn—O bonds, ZnS, ZnO, and Zn. It may be a mixed crystal (mixed crystal layer) with (OH) 2 . In other words, the electron transport layer 14 is, for example, a mixed crystal layer containing at least ZnS and Zn (OH) 2 among ZnS, ZnO, and Zn (OH) 2 . Hereinafter, a mixed crystal of ZnS and Zn (OH) 2 having a Zn—S bond and a Zn—OH bond is referred to as Zn (S, OH). Further, a mixed crystal of ZnS, ZnO (zinc oxide) and Zn (OH) 2 having a bond of Zn—S, Zn—OH and Zn—O is referred to as Zn (S, O, OH). The electron transport layer 14 contains Zn (S, OH). Zn (S, OH) may be Zn (S, O, OH).
 前述したように、本実施形態では、電子輸送層14の形成に、反応溶液23に亜鉛源および硫黄源を含むアルカリ性水溶液を用いたCBD法を使用する。本実施形態では、水溶液中で、ZnSを合成して、電子輸送層14となる薄膜を形成することで、水酸基(-OH基)および酸素基(-O基)のうち、少なくとも水酸基(-OH基)が上記薄膜中に必ず含まれる。なお、通常、真空法あるいは蒸着法でZnOまたはZnSを製膜する際に、Zn(OH)を意図的に混入させることはない。 As described above, in the present embodiment, the CBD method using an alkaline aqueous solution containing a zinc source and a sulfur source in the reaction solution 23 is used for forming the electron transport layer 14. In the present embodiment, ZnS is synthesized in an aqueous solution to form a thin film to be an electron transport layer 14, so that at least a hydroxyl group (-OH group) and an oxygen group (-O group) among the hydroxyl groups (-OH group) and the oxygen group (-O group) Group) is always contained in the thin film. Normally, when ZnO or ZnS is formed by a vacuum method or a vapor deposition method, Zn (OH) 2 is not intentionally mixed.
 なお、上述したように本実施形態では、反応溶液23に、亜鉛源および硫黄源を含むアルカリ性水溶液を使用することから、ステップS4で用いられるマスク21には、耐アルカリ性を有するマスクが用いられる。マスク21は、耐アルカリ性を有していれば、その材料は特に限定されない。マスク21には、例えば、市販のマスキングテープを用いることができる。 As described above, in the present embodiment, since an alkaline aqueous solution containing a zinc source and a sulfur source is used as the reaction solution 23, a mask having alkali resistance is used as the mask 21 used in step S4. The material of the mask 21 is not particularly limited as long as it has alkali resistance. For the mask 21, for example, a commercially available masking tape can be used.
 なお、ステップS4では、電子輸送層非形成領域の全てをマスクする必要は無く、電子輸送層非形成領域のうち、ステップS5において反応溶液23に浸漬される部分の電子輸送層非形成領域)がマスクされれば足りる。積層体20は、発光層13の一部である、発光層13における電子輸送層14の被形成領域(言い換えれば、被形成面)が反応溶液23と接触するように、上記発光層13の一部が反応溶液23に浸漬されればよい。したがって、マスクされる部分は、例えば、陽極11、正孔輸送層12、発光層13を含む積層体20の側面のみ(具体的には、側面の一部もしくは側面全体)であってもよく、該積層体20の側面の一部および背面の一部であってもよい。 In step S4, it is not necessary to mask the entire electron transport layer non-formation region, and the electron transport layer non-formation region of the portion of the electron transport layer non-formation region immersed in the reaction solution 23 in step S5). It is enough if it is masked. The laminate 20 is one of the light emitting layers 13 so that the formed region (in other words, the formed surface) of the electron transport layer 14 in the light emitting layer 13, which is a part of the light emitting layer 13, comes into contact with the reaction solution 23. The part may be immersed in the reaction solution 23. Therefore, the masked portion may be, for example, only the side surface of the laminate 20 including the anode 11, the hole transport layer 12, and the light emitting layer 13 (specifically, a part of the side surface or the entire side surface). It may be a part of the side surface and a part of the back surface of the laminate 20.
 但し、図3に示すように、電子輸送層14の被形成領域のみが露出されるように、積層体20の表面のうち、電子輸送層14の被形成領域以外の表面全体(つまり、積層体20における電子輸送層非形成領域全体)がマスクされていてもよいことは、言うまでもない。 However, as shown in FIG. 3, the entire surface of the laminated body 20 other than the formed region of the electron transport layer 14 (that is, the laminated body) is exposed so that only the formed region of the electron transport layer 14 is exposed. It goes without saying that the entire electron transport layer non-forming region in 20) may be masked.
 薄膜形成工程(ステップS5)では、まず、反応溶液23として、亜鉛源および硫黄源を含むアルカリ性水溶液を調製する。その後、反応容器22中に、反応溶液23を入れる。次いで、上記反応溶液23に、発光層13の一部が露出された積層体20を浸漬して薄膜を形成する。その後、該薄膜が形成された積層体20を、反応溶液23から取り出す。 In the thin film forming step (step S5), first, an alkaline aqueous solution containing a zinc source and a sulfur source is prepared as the reaction solution 23. Then, the reaction solution 23 is placed in the reaction vessel 22. Next, the laminate 20 in which a part of the light emitting layer 13 is exposed is immersed in the reaction solution 23 to form a thin film. Then, the laminate 20 on which the thin film is formed is taken out from the reaction solution 23.
 反応溶液23は、亜鉛源と、アルカリ源と、硫黄源と、を所定濃度となるように混合することで調製される。なお、亜鉛源および硫黄源は、前述したように電子輸送層14の母材として用いられる。 The reaction solution 23 is prepared by mixing a zinc source, an alkali source, and a sulfur source so as to have a predetermined concentration. The zinc source and the sulfur source are used as the base material of the electron transport layer 14 as described above.
 反応溶液23中の亜鉛イオン濃度は、0.001~0.5mol/Lであることが好ましく、0.01~0.1mol/Lであることがより好ましい。反応溶液23中の亜鉛イオン濃度が0.01mol/Lよりも小さければ、化学反応速度が非常に遅く、製膜時間が長引くおそれがある。一方で、反応溶液23中の亜鉛イオン濃度が0.5mol/Lを超える場合、反応時間が極端に短くなることによる膜厚制御性の悪化や、原料に対する薄膜の収率が悪化することによるコスト増大のおそれがある。 The zinc ion concentration in the reaction solution 23 is preferably 0.001 to 0.5 mol / L, more preferably 0.01 to 0.1 mol / L. If the zinc ion concentration in the reaction solution 23 is smaller than 0.01 mol / L, the chemical reaction rate is very slow and the film formation time may be prolonged. On the other hand, when the zinc ion concentration in the reaction solution 23 exceeds 0.5 mol / L, the reaction time becomes extremely short and the film thickness controllability deteriorates, and the yield of the thin film with respect to the raw material deteriorates. There is a risk of increase.
 また、反応溶液23中の硫化物イオンの濃度は、亜鉛イオン濃度の0.5~5倍であることが好ましく、1~3倍であることがより好ましい。反応溶液23中の硫化物イオン濃度が亜鉛イオン濃度の0.5倍よりも小さければ、Zn-O結合が支配的となり、Zn-S結合を形成しないおそれがある。一方で、反応溶液23中の硫化物イオン濃度が亜鉛イオン濃度の5倍を超える場合、余剰のS原子がアクセプタとしてZnS薄膜中に導入されるおそれがある。この結果、n型半導体であるZnS薄膜が、p型半導体のような挙動を示し、電子輸送層14として働かないおそれがある。 Further, the concentration of sulfide ion in the reaction solution 23 is preferably 0.5 to 5 times, more preferably 1 to 3 times, the zinc ion concentration. If the sulfide ion concentration in the reaction solution 23 is smaller than 0.5 times the zinc ion concentration, the Zn—O bond becomes dominant and the Zn—S bond may not be formed. On the other hand, when the sulfide ion concentration in the reaction solution 23 exceeds 5 times the zinc ion concentration, excess S atoms may be introduced into the ZnS thin film as an acceptor. As a result, the ZnS thin film, which is an n-type semiconductor, behaves like a p-type semiconductor and may not function as the electron transport layer 14.
 また、反応溶液23中の亜鉛イオン濃度は、反応溶液23中の硫化物イオン濃度よりも小さいことが好ましい。反応溶液23中の亜鉛イオンの濃度が反応溶液23中の硫化物イオン濃度よりも小さい場合、Zn-S結合が主成分となり、ZnS/Zn(S、OH)を1に近づけることができる。 Further, the zinc ion concentration in the reaction solution 23 is preferably smaller than the sulfide ion concentration in the reaction solution 23. When the concentration of zinc ions in the reaction solution 23 is smaller than the concentration of sulfide ions in the reaction solution 23, the Zn—S bond becomes the main component, and ZnS / Zn (S, OH) can be brought close to 1.
 上記亜鉛源には、亜鉛を含む弱酸塩および亜鉛を含む強酸塩からなる群より選択される少なくとも一種が用いられる。上記亜鉛源としては、例えば、硫酸亜鉛、酢酸亜鉛、硝酸亜鉛、塩化亜鉛等が挙げられる。また、上記硫黄源としては、硫黄、チオ尿酸、水溶性のチオール、水溶性のチオカルボニル化合物からなる群より選択される少なくとも一種が用いられる。なお、上記水溶性のチオールは、水に完全に溶解する必要はない。上記アルカリ源としては、例えば、アンモニア、NaOH等の塩が用いられる。アルカリ性水溶液は、所望のpHが得られるように、上記アルカリ源を水に溶解させることにより調製(準備)される。このとき、アルカリ性水溶液は、そのpH並びに最終的に調製される反応溶液23のpHが9以上となるように調製されることが好ましい。 As the zinc source, at least one selected from the group consisting of a weak acid salt containing zinc and a strong acid salt containing zinc is used. Examples of the zinc source include zinc sulfate, zinc acetate, zinc nitrate, zinc chloride and the like. Further, as the sulfur source, at least one selected from the group consisting of sulfur, thiouric acid, water-soluble thiol, and water-soluble thiocarbonyl compound is used. The water-soluble thiol does not need to be completely dissolved in water. As the alkali source, for example, salts such as ammonia and NaOH are used. The alkaline aqueous solution is prepared (prepared) by dissolving the alkaline source in water so that a desired pH can be obtained. At this time, the alkaline aqueous solution is preferably prepared so that the pH thereof and the pH of the reaction solution 23 finally prepared are 9 or more.
 反応溶液23に積層体20を浸漬している間の反応溶液23の温度は、15~90℃の範囲内であればよいが、70~90℃の範囲内に維持されていることが望ましく、75~90℃の範囲内に維持されていることがより望ましい。積層体20の浸漬中、反応溶液23の温度を、70℃以上、より好適には75℃以上とすることで、Zn-O結合よりもZn-S結合の形成を促進させる(言い換えれば、優先的に成長させる)ことができる。 The temperature of the reaction solution 23 while immersing the laminate 20 in the reaction solution 23 may be in the range of 15 to 90 ° C., but is preferably maintained in the range of 70 to 90 ° C. It is more desirable that the temperature is maintained in the range of 75 to 90 ° C. By setting the temperature of the reaction solution 23 to 70 ° C. or higher, more preferably 75 ° C. or higher during the immersion of the laminate 20, the formation of the Zn—S bond is promoted over the Zn—O bond (in other words, priority is given). Can grow).
 反応溶液23への積層体20の浸漬時間は、反応溶液23の温度、反応溶液23中の亜鉛源および硫黄源の濃度、反応溶液23中のアルカリ源の濃度(言い換えれば、反応溶液23のpH)等に応じて、電子輸送層14となる薄膜の膜厚が所望の膜厚となるように適宜設定される。このため、上記浸漬時間は、特に限定されないが、典型的には、5分以上、60分以下である。 The immersion time of the laminate 20 in the reaction solution 23 is the temperature of the reaction solution 23, the concentration of the zinc source and the sulfur source in the reaction solution 23, and the concentration of the alkali source in the reaction solution 23 (in other words, the pH of the reaction solution 23). ) And the like, the thickness of the thin film to be the electron transport layer 14 is appropriately set to be a desired thickness. Therefore, the immersion time is not particularly limited, but is typically 5 minutes or more and 60 minutes or less.
 例えば、亜鉛源としての硫酸亜鉛(ZnSO)を0.16mol/L、アルカリ源としてのアンモニアを7.5mol/L、硫黄源としてのチオ尿素を0.6mol/Lの濃度となるように混合することで、pH11の反応溶液23が得られる。なお、このように反応溶液23中の亜鉛イオンの濃度を、反応溶液23中の硫化物イオン濃度よりも小さくすることで、前述したように、ZnS/Zn(S、O、OH)を1に近づけることができる。この反応溶液23を80℃に調温し、該反応溶液23に上記積層体20を15分間浸漬することで、膜厚100nmのZn(S、O、OH)薄膜が生成される。 For example, zinc sulfate (ZnSO 4 ) as a zinc source is mixed at a concentration of 0.16 mol / L, ammonia as an alkali source at 7.5 mol / L, and thiourea as a sulfur source at a concentration of 0.6 mol / L. By doing so, the reaction solution 23 having a pH of 11 is obtained. By making the concentration of zinc ions in the reaction solution 23 smaller than the concentration of sulfide ions in the reaction solution 23 in this way, ZnS / Zn (S, O, OH) is set to 1 as described above. You can get closer. The temperature of the reaction solution 23 is adjusted to 80 ° C., and the laminate 20 is immersed in the reaction solution 23 for 15 minutes to form a Zn (S, O, OH) thin film having a film thickness of 100 nm.
 なお、上述した記載から判るように、電子輸送層14の膜厚は、反応溶液23中の亜鉛源、硫黄源、アルカリ源の各濃度、反応溶液23の温度、浸漬時間等により制御可能である。 As can be seen from the above description, the film thickness of the electron transport layer 14 can be controlled by the concentrations of the zinc source, the sulfur source, and the alkali source in the reaction solution 23, the temperature of the reaction solution 23, the immersion time, and the like. ..
 反応溶液23から取り出した積層体20は、例えば、水洗により余剰の反応溶液23を洗浄した後、室温にて静置することにより乾燥される。これにより、図1に示すように、発光層13上に、電子輸送層14が形成される。 The laminate 20 taken out from the reaction solution 23 is dried by, for example, washing the excess reaction solution 23 with water and then allowing it to stand at room temperature. As a result, as shown in FIG. 1, an electron transport layer 14 is formed on the light emitting layer 13.
 このようにして形成された電子輸送層14は、Zn-S結合を主体とするZnSを主成分とし、部分的に、水溶液由来のZn-OH結合を有するZn(OH)を含む混晶層となる。また、Zn(OH)だけでなく、水溶液由来のZn-O結合を有するZnOを部分的に含む。 The electron transport layer 14 thus formed is a mixed crystal layer containing ZnS mainly composed of a Zn—S bond as a main component and partially containing Zn (OH) 2 having a Zn—OH bond derived from an aqueous solution. It becomes. Further, not only Zn (OH) 2 but also ZnO having a Zn—O bond derived from an aqueous solution is partially contained.
 なお、電子輸送層14中に含まれる元素の化学結合状態および存在量は、XPS(X線光電子分光)法あるいはUPS(紫外光電子分光)法により、電子輸送層14を露出させた試料にX線あるいは紫外線を照射して組成分析することで特定することができる。電子輸送層14がZn(S、O、OH)を含むことで、Zn-O/Zn-S間、O-Zn/O-H間の結合エネルギーが異なる。したがって、XPS法あるいはUPS法により、電子輸送層14中におけるZn-S、Zn-OH、Zn-Oの各結合の存在を特定することができる。また、CBD法により作製したZnSと真空蒸着法で作製したZnSとでは、フェルミレベルが異なる。 The chemical bond state and abundance of the elements contained in the electron transport layer 14 are determined by X-rays on a sample exposed to the electron transport layer 14 by the XPS (X-ray photoelectron spectroscopy) method or the UPS (ultraviolet photoelectron spectroscopy) method. Alternatively, it can be specified by irradiating with ultraviolet rays and analyzing the composition. Since the electron transport layer 14 contains Zn (S, O, OH), the binding energies between Zn—O / Zn—S and between O—Zn / OH are different. Therefore, the presence of each bond of Zn—S, Zn—OH, and Zn—O in the electron transport layer 14 can be identified by the XPS method or the UPS method. Further, the Fermi level is different between ZnS produced by the CBD method and ZnS produced by the vacuum vapor deposition method.
 発光層13は、陽極11から輸送された正孔(ホール)と、陰極15から輸送された電子との再結合が発生することにより光を発する層である。電源16によって、陽極11と陰極15との間に順方向の電圧を印加する(陽極11を陰極15よりも高電位にする)と、陽極11から正孔輸送層12を介して発光層13へと正孔が供給される一方、陰極15から電子輸送層14を介して発光層13へと電子が供給される。なお、電源16による電圧の印加は、図示しない薄膜トランジスタ(TFT)によって制御されてよい。 The light emitting layer 13 is a layer that emits light due to recombination of holes transported from the anode 11 and electrons transported from the cathode 15. When a forward voltage is applied between the anode 11 and the cathode 15 by the power source 16 (the anode 11 has a higher potential than the cathode 15), the anode 11 goes to the light emitting layer 13 via the hole transport layer 12. And holes are supplied, while electrons are supplied from the cathode 15 to the light emitting layer 13 via the electron transport layer 14. The voltage applied by the power supply 16 may be controlled by a thin film transistor (TFT) (not shown).
 図4は、実施の一形態に係る発光素子1における、発光層13と電子輸送層14との界面の状態を模式的に示す断面図である。また、図5は、実施の一形態に係る発光素子1における機能層の各層のエネルギーバンドを示す図である。 FIG. 4 is a cross-sectional view schematically showing the state of the interface between the light emitting layer 13 and the electron transport layer 14 in the light emitting element 1 according to the embodiment. Further, FIG. 5 is a diagram showing energy bands of each layer of the functional layer in the light emitting element 1 according to the embodiment.
 発光層13は、図4に示すように、発光材料として量子ドット13QDを含んでいる。 As shown in FIG. 4, the light emitting layer 13 contains quantum dots 13QD as a light emitting material.
 本実施形態で発光層13に用いられる量子ドット13QDは、結晶成長ではなく溶液法で形成された、塗布型の量子ドットである。発光層13は、溶媒に量子ドット13QDを分散させた分散液を正孔輸送層12の上面に塗布し、量子ドット13QDを含む塗布膜を形成した後、溶媒を揮発させて上記塗布膜を固体化(硬化)させることにより形成することができる。 The quantum dot 13QD used for the light emitting layer 13 in this embodiment is a coating type quantum dot formed by a solution method instead of crystal growth. In the light emitting layer 13, a dispersion liquid in which quantum dots 13QD are dispersed in a solvent is applied to the upper surface of the hole transport layer 12, a coating film containing the quantum dots 13QD is formed, and then the solvent is volatilized to solidify the coating film. It can be formed by forming (curing).
 上記分散液は、量子ドット13QDと、該量子ドット13QDをレセプタとして該量子ドット13QDの表面に位置する、有機成分からなるリガンド13R(有機リガンド)と、溶媒と、を含むコロイド溶液である。量子ドット13QDの表面は、該量子ドット13QDの表面を修飾する表面修飾基であるリガンド13Rで保護されている。 The dispersion liquid is a colloidal solution containing a quantum dot 13QD, a ligand 13R (organic ligand) composed of an organic component, located on the surface of the quantum dot 13QD as a receptor, and a solvent. The surface of the quantum dot 13QD is protected by the ligand 13R, which is a surface modifying group that modifies the surface of the quantum dot 13QD.
 リガンド13Rは、量子ドット13QDの表面に吸着(配位)する吸着基と、該吸着基に結合するアルキル基とで構成される。上記吸着基としては、例えば、アミノ基、ホスフィン基、カルボキシル基、ヒドロキシル基、チオール基等が挙げられる。また、上記アルキル基としては、炭素数2~50のアルキル基が挙げられる。 The ligand 13R is composed of an adsorbing group that adsorbs (coordinates) the surface of the quantum dot 13QD and an alkyl group that binds to the adsorbing group. Examples of the adsorbing group include an amino group, a phosphine group, a carboxyl group, a hydroxyl group, a thiol group and the like. Moreover, as the above-mentioned alkyl group, an alkyl group having 2 to 50 carbon atoms can be mentioned.
 より具体的には、リガンド13Rとしては、例えば、ヘキサデシルアミン、オレイルアミン、オクチルアミン、ヘキサデカンチオール、ドデカンチオール、トリオクチルホスフィン、トリオクチルホスフィンオキシド、ミリスチン酸、オレイン酸等が挙げられる。 More specifically, the ligand 13R includes, for example, hexadecylamine, oleylamine, octylamine, hexadecanethiol, dodecanethiol, trioctylphosphine, trioctylphosphine oxide, myristic acid, oleic acid and the like.
 リガンド13Rは、量子ドット13QDの表面を保護して該量子ドット13QDの劣化を防ぐ役割を有している一方、上記分散液中における量子ドット13QDの凝集を抑制し、分散性を向上させる分散剤としての役割を有している。 The ligand 13R has a role of protecting the surface of the quantum dots 13QD and preventing deterioration of the quantum dots 13QD, while suppressing aggregation of the quantum dots 13QD in the dispersion liquid and improving dispersibility. Has a role as.
 なお、上記溶媒は、水であってもよく、メタノール、エタノール、プロパノール、ブタノール、ペンタン、ヘキサン、オクタン、アセトン、トルエン、キシレン、ベンゼン、クロロホルム、ジクロロメタン、およびクロルベンゼン等の有機溶媒であってもよく、それらの組み合せであってもよい。上記分散液の塗布には、例えば、スピンコート法、または、インクジェット法等、公知の塗布法を用いることができる。 The solvent may be water, or may be an organic solvent such as methanol, ethanol, propanol, butanol, pentane, hexane, octane, acetone, toluene, xylene, benzene, chloroform, dichloromethane, and chlorobenzene. Often, it may be a combination thereof. A known coating method such as a spin coating method or an inkjet method can be used for coating the dispersion liquid.
 このように溶液法で形成された発光層13は、図4に示すように、球状の量子ドット13QDと、上記リガンド13Rと、を含む。量子ドット13QDの形状が、結晶成長させた場合のような島状(レンズ状)ではなく球状であることで、発光の偏光特性を小さくすることができる。また、発光層13がリガンド13Rを含むことで、量子ドット13QDを含む塗布膜の形成時に、量子ドット13QDの凝集を抑制し、量子ドット13QDを良好に分散させることができる。 As shown in FIG. 4, the light emitting layer 13 thus formed by the solution method includes a spherical quantum dot 13QD and the above-mentioned ligand 13R. Since the shape of the quantum dot 13QD is spherical rather than island-shaped (lens-shaped) as in the case of crystal growth, the polarization characteristic of light emission can be reduced. Further, since the light emitting layer 13 contains the ligand 13R, the aggregation of the quantum dots 13QD can be suppressed and the quantum dots 13QD can be satisfactorily dispersed when the coating film containing the quantum dots 13QD is formed.
 本実施形態で用いられるレセプタとしての量子ドット13QDは、コアシェル型の量子ドット(コアシェル粒子)であり、図4に示すように、半導体ナノ粒子と称される、半導体材料のナノサイズの結晶(半導体結晶の微粒子)からなる、発光部としてのコア13Cと、該コア13Cを覆うシェル13Sと、を含んでいる。したがって、発光層13は、コア13Cと該コア13Cを覆うシェル13Sとを含むコアシェル型の量子ドット13QDと、該コアシェル型の量子ドット13QDにおけるシェル13Sに配位するリガンド13Rと、を含んでいる。 The quantum dot 13QD as a receptacle used in the present embodiment is a core-shell type quantum dot (core-shell particle), and as shown in FIG. 4, a nano-sized crystal (semiconductor) of a semiconductor material called a semiconductor nanoparticle. It includes a core 13C as a light emitting portion, which is composed of fine particles of crystals), and a shell 13S that covers the core 13C. Therefore, the light emitting layer 13 includes a core-shell type quantum dot 13QD including a core 13C and a shell 13S covering the core 13C, and a ligand 13R coordinated to the shell 13S in the core-shell type quantum dot 13QD. ..
 量子ドット13QDは、例えば、Cd(カドミウム)、S(硫黄)、Te(テルル)、Se(セレン)、Zn(亜鉛)、In(インジウム)、N(窒素)、P(リン)、As(ヒ素)、Sb(アンチモン)、Al(アルミニウム)、Ga(ガリウム)、Pb(鉛)、Si(ケイ素)、Ge(ゲルマニウム)、Mg(マグネシウム)からなる群より選択される少なくとも一種の元素で構成されている半導体材料を含んでいてもよい。例えば、コア13Cには、上記半導体材料のナノサイズの結晶を用いることができる。 Quantum dot 13QD is, for example, Cd (cadmium), S (sulfur), Te (tellurium), Se (selenium), Zn (zinc), In (indium), N (nitrogen), P (phosphorus), As (arsenic). ), Sb (antimony), Al (aluminum), Ga (gallium), Pb (lead), Si (silicon), Ge (germanium), Mg (magnesium), at least one element selected from the group. It may contain the semiconductor material. For example, nano-sized crystals of the above semiconductor material can be used for the core 13C.
 本実施形態において、シェル13Sは、ZnSを含んでいることが好ましく、ZnSからなることがより好ましい。なお、バンドギャップが狭い、CdS(硫化カドミウム)をコアとする赤色の量子ドット13QDでは、例えばZnSeからなるシェルを有していてもよい。しかしながら、この場合でも、量子効率向上のためには、シェル13Sが、最外殻がZnSからなるダブルシェル構造を有していることが好ましい。したがって、コア13Cとなるナノ結晶材料は、ZnSのバンドギャップエネルギーの中に伝導帯準位、価電子帯準位が存在する、CdSe(セレン化カドミウム)、CdS、ZnSe(セレン化亜鉛)からなる群より選択される少なくとも一種の半導体材料のナノサイズの結晶が好ましい。 In the present embodiment, the shell 13S preferably contains ZnS, and more preferably consists of ZnS. The red quantum dot 13QD having a CdS (cadmium sulfide) as a core and having a narrow bandgap may have a shell made of, for example, ZnSe. However, even in this case, in order to improve the quantum efficiency, it is preferable that the shell 13S has a double shell structure in which the outermost shell is made of ZnS. Therefore, the nanocrystal material serving as the core 13C is composed of CdSe (cadmium selenide), CdS, and ZnSe (zinc selenide) in which the conduction band level and the valence band level are present in the bandgap energy of ZnS. Nano-sized crystals of at least one semiconductor material selected from the group are preferred.
 このようなコアシェル型の量子ドット13QDでは、該量子ドット13QDの発する光の波長は、コア13Cの粒径に比例し、シェル13Sの粒径(量子ドット13QDの最外粒径)には依存しない。 In such a core-shell type quantum dot 13QD, the wavelength of light emitted by the quantum dot 13QD is proportional to the particle size of the core 13C and does not depend on the particle size of the shell 13S (the outermost particle size of the quantum dot 13QD). ..
 コア13Cの粒径は、例えば1~10nm程度であり、シェル13Sの粒径である、量子ドット13QDの最外粒径は、例えば、1~15nm程度である。発光層13における量子ドット13QDの重なり層数は、例えば、1~5層である。正孔輸送層12、発光層13、および電子輸送層14の膜厚は、従来公知の膜厚を採用できるが、例えば1~50nm程度である。なお、発光層13の膜厚は、量子ドットQDの最外粒径の数倍程度であることが好ましい。 The particle size of the core 13C is, for example, about 1 to 10 nm, and the outermost particle size of the quantum dot 13QD, which is the particle size of the shell 13S, is, for example, about 1 to 15 nm. The number of overlapping layers of the quantum dots 13QD in the light emitting layer 13 is, for example, 1 to 5 layers. The film thicknesses of the hole transport layer 12, the light emitting layer 13, and the electron transport layer 14 can be conventionally known, but are, for example, about 1 to 50 nm. The film thickness of the light emitting layer 13 is preferably about several times the outermost particle size of the quantum dot QD.
 図5に示すように、コア13Cは、価電子帯準位と、伝導帯準位とを有している。なお、上記価電子帯準位は、真空準位と、図5中、発光層価電子帯と記す価電子帯の上端との間のイオン化ポテンシャルに等しい。また、上記伝導帯準位は、真空準位と、図5中、発光層伝導帯と記す伝導体の下端との間の電子親和力に等しい。 As shown in FIG. 5, the core 13C has a valence band level and a conduction band level. The valence band level is equal to the ionization potential between the vacuum level and the upper end of the valence band indicated as the light emitting layer valence band in FIG. Further, the conduction band level is equal to the electron affinity between the vacuum level and the lower end of the conductor described as the light emitting layer conduction band in FIG.
 陽極11と陰極15との間に電圧が印加され、正孔輸送層12(HTL)の下端の価電子帯準位から正孔(ホール)が、電子輸送層14(ETL)の上端の伝導帯準位から電子が、それぞれ発光層13に注入されると、これら正孔および電子は、伝導帯下端と価電子帯上端との間のバンドギャップが小さいコア13Cに流れ込み、コア13C中に閉じ込められる。コア13Cは、ボーア半径よりも小さなサイズとすることで、量子閉じ込め効果を得ることができる。コア13C内では、該コア13Cの伝導帯(発光層伝導帯)に位置する電子と、該コアの価電子帯(発光層価電子帯)に位置する正孔とが再結合し、コア13Cの粒径に対応した波長の光(言い換えれば、発光層伝導帯の下端と発光層価電子帯の上端との間のバンドギャップに相当する発光波長の光)を発光する。量子ドット13QDからの発光は、量子閉じ込め効果により狭いスペクトルを有するため、比較的深い色度の発光を得ることが可能である。 A voltage is applied between the anode 11 and the cathode 15, and holes are generated from the valence band level at the lower end of the hole transport layer 12 (HTL) to the conduction band at the upper end of the electron transport layer 14 (ETL). When electrons are injected into the light emitting layer 13 from the level, these holes and electrons flow into the core 13C having a small band gap between the lower end of the conduction band and the upper end of the valence band, and are confined in the core 13C. .. The quantum confinement effect can be obtained by making the core 13C smaller than the Bohr radius. In the core 13C, electrons located in the conduction band (conduction band of the light emitting layer) of the core 13C and holes located in the valence band (valence band of the light emitting layer) of the core are recombined, and the core 13C It emits light having a wavelength corresponding to the particle size (in other words, light having an emission wavelength corresponding to a band gap between the lower end of the conduction band of the light emitting layer and the upper end of the valence band of the light emitting layer). Since the light emission from the quantum dot 13QD has a narrow spectrum due to the quantum confinement effect, it is possible to obtain light emission with a relatively deep chromaticity.
 しかしながら、このとき、有機成分からなるリガンド13Rや、主にZnSで構成されるシェル13Sは、電子や正孔の注入効率を低下させるブロッキング層として振る舞う。リガンド13Rは、前述したように、量子ドット13QDの表面に配位し、量子ドット13QDが分散された、発光層13を形成するための分散液中において、量子ドット13QDの凝集の抑制や、量子ドット13QDの劣化を防ぐために用いられるが、絶縁成分として働く。このため、発光層13と電子輸送層14との界面においては、リガンド13Rは存在しない方が望ましい。 However, at this time, the ligand 13R composed of an organic component and the shell 13S mainly composed of ZnS behave as a blocking layer that reduces the injection efficiency of electrons and holes. As described above, the ligand 13R is coordinated on the surface of the quantum dots 13QD, and suppresses aggregation of the quantum dots 13QD and quantum in the dispersion liquid for forming the light emitting layer 13 in which the quantum dots 13QD are dispersed. It is used to prevent deterioration of the dot 13QD, but acts as an insulating component. Therefore, it is desirable that the ligand 13R does not exist at the interface between the light emitting layer 13 and the electron transport layer 14.
 本実施形態によれば、前述したように、ステップS5において、発光層13における、電子輸送層14が積層される表面が、アルカリ性水溶液と接触される。このため、発光層13における、電子輸送層14が積層される表面のリガンド13Rが、上記アルカリ性水溶液によってエッチングされる。 According to the present embodiment, as described above, in step S5, the surface of the light emitting layer 13 on which the electron transport layer 14 is laminated is brought into contact with the alkaline aqueous solution. Therefore, the ligand 13R on the surface of the light emitting layer 13 on which the electron transport layer 14 is laminated is etched by the alkaline aqueous solution.
 この結果、本実施形態によれば、図4に示すように、発光層13と電子輸送層14との界面に含まれる量子ドット13QDのシェル13Sに配位しているリガンド13Rの平均配位数を、発光層13における上記境界以外の部分(言い換えれば、発光層13のバルク)に含まれる量子ドット13QDのシェル13Sに配位しているリガンド13Rの平均配位数よりも少なくすることができる。好適には、図4および図5に示すように、発光層13と電子輸送層14との界面のリガンド13Rを除去することができる。また、上述したように反応溶液23にアルカリ性水溶液を用いることで、該反応溶液23に接触する、発光層13と電子輸送層14との界面の不要なシェル13Sも、リガンド13Rと併せて取り除かれる。 As a result, according to the present embodiment, as shown in FIG. 4, the average coordination number of the ligand 13R coordinated to the shell 13S of the quantum dot 13QD included in the interface between the light emitting layer 13 and the electron transport layer 14. Can be less than the average coordination number of the ligand 13R coordinated to the shell 13S of the quantum dot 13QD contained in the portion of the light emitting layer 13 other than the boundary (in other words, the bulk of the light emitting layer 13). .. Preferably, as shown in FIGS. 4 and 5, the ligand 13R at the interface between the light emitting layer 13 and the electron transport layer 14 can be removed. Further, by using an alkaline aqueous solution for the reaction solution 23 as described above, the unnecessary shell 13S at the interface between the light emitting layer 13 and the electron transport layer 14 that comes into contact with the reaction solution 23 is also removed together with the ligand 13R. ..
 このように、本実施形態によれば、水溶液中で、化学反応により、その場で緻密な薄膜の電子輸送層14を形成することができ、電子輸送層14と発光層13との界面の接触抵抗の低減が可能となるとともに、上記界面のリガンド13Rおよびシェル13Sが除去されることで、上記界面の品質を向上させて抵抗成分を減少させることができる。このため、電子輸送層14から発光層13への電子の注入効率を向上させることができる。 As described above, according to the present embodiment, the electron transport layer 14 of a dense thin film can be formed on the spot by a chemical reaction in the aqueous solution, and the interface between the electron transport layer 14 and the light emitting layer 13 can be contacted. The resistance can be reduced, and the ligand 13R and the shell 13S at the interface can be removed to improve the quality of the interface and reduce the resistance component. Therefore, the efficiency of injecting electrons from the electron transport layer 14 into the light emitting layer 13 can be improved.
 また、本実施形態によれば、電子輸送層14に無機層を用いていることで、電子輸送層14と発光層13との間で欠陥が生じ難い。しかも、上述したようにアルカリ性水溶液で量子ドット13QDの表面がエッチングされることで、量子ドット13QDの表面の欠陥を、電子輸送層14に無機層を用いた従来の発光素子と比べて、さらに低減させることができる。したがって、従来の発光素子よりも電子輸送層14の被膜性に優れた発光素子1を得ることができる。 Further, according to the present embodiment, since the electron transport layer 14 uses the inorganic layer, defects are unlikely to occur between the electron transport layer 14 and the light emitting layer 13. Moreover, by etching the surface of the quantum dot 13QD with the alkaline aqueous solution as described above, the defects on the surface of the quantum dot 13QD are further reduced as compared with the conventional light emitting device using the inorganic layer for the electron transport layer 14. Can be made to. Therefore, it is possible to obtain a light emitting element 1 having a coating property of the electron transport layer 14 that is superior to that of the conventional light emitting device.
 また、本実施形態によれば、電子輸送層14が、従来のように電子輸送性材料のナノ粒子の積層により形成されるのではなく、CBD法による水溶液中での亜鉛源と硫黄源との化学反応により、薄膜(混晶層)として直接形成される。しかも、本実施形態によれば、図4に示すように、発光層13と電子輸送層14との界面において、隣り合う量子ドット13QD間の隙間に電子輸送材料が浸透し、電子輸送材料が量子ドット13QDを被膜する。このため、発光層13と電子輸送層14との接触面積が増加する。このため、電子輸送層14の被膜性が向上するとともに、発光層13と電子輸送層14との接触抵抗を低減させることができる。また、電子輸送層14の形成に真空装置を用いないため、発光素子1を安価に製造することができる。 Further, according to the present embodiment, the electron transport layer 14 is not formed by laminating nanoparticles of an electron transport material as in the conventional case, but is formed by a zinc source and a sulfur source in an aqueous solution by the CBD method. It is directly formed as a thin film (mixed crystal layer) by a chemical reaction. Moreover, according to the present embodiment, as shown in FIG. 4, the electron transport material permeates into the gap between the adjacent quantum dots 13QD at the interface between the light emitting layer 13 and the electron transport layer 14, and the electron transport material becomes quantum. Dot 13QD is coated. Therefore, the contact area between the light emitting layer 13 and the electron transport layer 14 increases. Therefore, the film property of the electron transport layer 14 can be improved, and the contact resistance between the light emitting layer 13 and the electron transport layer 14 can be reduced. Further, since the vacuum device is not used for forming the electron transport layer 14, the light emitting element 1 can be manufactured at low cost.
 また、反応溶液23の組成あるいは反応温度等の製膜条件により、Zn(S、O、OH)の比率変更によるエネルギー準位の調整も可能となる。このため、Zn(S、O、OH)のバンドギャップは、例えば反応溶液23の組成を変更すること等により変更可能であるが、Zn(S、O、OH)に含まれるZnOの濃度が大きくなるにしたがい、バンドギャップおよび価電子帯準位が低下することによる電子注入効率の低下を招く。このため、上記電子輸送層14を構成する混晶(言い換えれば、混晶層である上記電子輸送層14)に含まれるZnS、ZnO、Zn(OH)の好ましい割合が適宜設定される。 Further, the energy level can be adjusted by changing the ratio of Zn (S, O, OH) depending on the composition of the reaction solution 23 or the film forming conditions such as the reaction temperature. Therefore, the band gap of Zn (S, O, OH) can be changed by, for example, changing the composition of the reaction solution 23, but the concentration of ZnO contained in Zn (S, O, OH) is large. Therefore, the band gap and the valence band level are lowered, resulting in a decrease in electron injection efficiency. Therefore, a preferable ratio of ZnS, ZnO, and Zn (OH) 2 contained in the mixed crystal (in other words, the electron transport layer 14 which is the mixed crystal layer) constituting the electron transport layer 14 is appropriately set.
 具体的には、上記混晶(Zn(S、OH)またはZn(S、O、OH))は、前述したように、ZnSを主成分とし、上記混晶に含まれるZnSの濃度は、上記混晶に含まれるZn(OH)の濃度よりも大きいことが望ましい。また、上記混晶がZn(S、O、OH)である場合、該混晶中に含まれるZnSの濃度は、上記混晶中に含まれるZnOの濃度よりも大きいことが望ましい。また、上記混晶がZn(S、O、OH)である場合、該混晶中に含まれるZn(OH)の濃度は、上記混晶中に含まれるZnOの濃度よりも大きいことが望ましい。 Specifically, the mixed crystal (Zn (S, OH) or Zn (S, O, OH)) contains ZnS as a main component as described above, and the concentration of ZnS contained in the mixed crystal is as described above. It is desirable that the concentration is higher than the concentration of Zn (OH) 2 contained in the mixed crystal. When the mixed crystal is Zn (S, O, OH), it is desirable that the concentration of ZnS contained in the mixed crystal is higher than the concentration of ZnO contained in the mixed crystal. When the mixed crystal is Zn (S, O, OH), it is desirable that the concentration of Zn (OH) 2 contained in the mixed crystal is higher than the concentration of ZnO contained in the mixed crystal. ..
 より具体的には、上記混晶(Zn(S、OH)またはZn(S、O、OH))に含まれるZnSの濃度は、50wt%以上であることが望ましい。 More specifically, it is desirable that the concentration of ZnS contained in the mixed crystal (Zn (S, OH) or Zn (S, O, OH)) is 50 wt% or more.
 また、上記混晶(Zn(S、OH)またはZn(S、O、OH))中に含まれるZn(OH)の濃度は、少なければ少ないほど望ましく(但し、ゼロではない)、その上限値としては、上記混晶中に含まれるZnSの50wt%であることが望ましい。なお、上記Zn(OH)の濃度は、検出限界以上の濃度という観点からすれば、0.1wt%以上であることが望ましい。したがって、上記混晶(Zn(S、OH)またはZn(S、O、OH))中に含まれるZn(OH)の濃度は、該混晶中のZnSの濃度を基準値(100wt%)として、上記基準値に対して0.1wt%以上、50wt%以下であることが望ましい。 Further, the smaller the concentration of Zn (OH) 2 contained in the mixed crystal (Zn (S, OH) or Zn (S, O, OH)), the more desirable (however, it is not zero), and the upper limit thereof. The value is preferably 50 wt% of ZnS contained in the mixed crystal. The concentration of Zn (OH) 2 is preferably 0.1 wt% or more from the viewpoint of the concentration above the detection limit. Therefore, the concentration of Zn (OH) 2 contained in the mixed crystal (Zn (S, OH) or Zn (S, O, OH)) is based on the concentration of ZnS in the mixed crystal (100 wt%). It is desirable that the value is 0.1 wt% or more and 50 wt% or less with respect to the above reference value.
 また、上記混晶がZn(S、O、OH)である場合、該混晶中に含まれるZnOの濃度は、バンドギャップの調整のために適切な比率に設定することが望ましく、上記混晶中に含まれるZnSの0.1wt%以上、46wt%以下であることが望ましい。つまり、上記Zn(S、O、OH)中のZnSの濃度を基準値(100wt%)として、上記Zn(S、O、OH)中に含まれるZnOの濃度は、上記基準値に対して0.1wt%以上、46wt%以下であることが望ましい。 When the mixed crystal is Zn (S, O, OH), it is desirable to set the concentration of ZnO contained in the mixed crystal to an appropriate ratio for adjusting the band gap, and the mixed crystal It is desirable that it is 0.1 wt% or more and 46 wt% or less of ZnS contained therein. That is, with the concentration of ZnS in the Zn (S, O, OH) as a reference value (100 wt%), the concentration of ZnO contained in the Zn (S, O, OH) is 0 with respect to the reference value. It is desirable that it is 1 wt% or more and 46 wt% or less.
 また、CBD法で電子輸送層14を作成する際は、蒸着法あるいはスパッタ法等の従来の製膜方法よりも低温での製膜が可能であり、その下層である正孔輸送層12等に、熱に弱い有機系の材料も利用することが可能になる。なお、蒸着法およびスパッタ法等の真空法では、熱により、水酸基(-OH基)が水として脱離する。このため、蒸着法あるいはスパッタ法等の真空法で製膜された電子輸送層からは、水酸基は検出されない。 Further, when the electron transport layer 14 is formed by the CBD method, it is possible to form a film at a lower temperature than the conventional film formation method such as a vapor deposition method or a sputtering method, and the hole transport layer 12 or the like which is the lower layer thereof , It becomes possible to use organic materials that are sensitive to heat. In the vacuum method such as the vapor deposition method and the sputtering method, the hydroxyl group (−OH group) is eliminated as water by heat. Therefore, no hydroxyl group is detected in the electron transport layer formed by a vacuum method such as a vapor deposition method or a sputtering method.
 本開示は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。 The present disclosure is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and the embodiments obtained by appropriately combining the technical means disclosed in the different embodiments. Is also included in the technical scope of the present invention. Furthermore, new technical features can be formed by combining the technical means disclosed in each embodiment.
  1   発光素子
 10   基板
 11   陽極
 13   発光層
 14   電子輸送層
 13C  コア
 13QD 量子ドット
 13R  リガンド
 13S  シェル
 15   陰極
 20   積層体
 21   マスク
 23   反応溶液(亜鉛源および硫黄源を含むアルカリ性水溶液)
1 Light emitting element 10 Substrate 11 Anode 13 Light emitting layer 14 Electron transport layer 13 C core 13QD Quantum dot 13R Ligand 13S Shell 15 Cathode 20 Laminated body 21 Mask 23 Reaction solution (alkaline aqueous solution containing zinc source and sulfur source)

Claims (20)

  1.  基板上に陽極を形成する陽極形成工程と、
     上記陽極上に発光層を形成する発光層形成工程と、
     上記発光層上に、該発光層に隣接して電子輸送層を形成する電子輸送層形成工程と、
     上記電子輸送層上に陰極を形成する陰極形成工程と、を備え、
     上記電子輸送層形成工程は、亜鉛源および硫黄源を含むアルカリ性水溶液に上記発光層における上記電子輸送層の被形成面を浸漬する浸漬工程を含み、
     上記電子輸送層形成工程では、上記電子輸送層として、Zn-S結合およびZn-OH結合を有する、ZnSとZn(OH)とを含む混晶層を形成することを特徴とする発光素子の製造方法。
    An anode forming process for forming an anode on a substrate,
    A light emitting layer forming step of forming a light emitting layer on the anode and
    An electron transport layer forming step of forming an electron transport layer adjacent to the light emitting layer on the light emitting layer,
    A cathode forming step of forming a cathode on the electron transport layer is provided.
    The electron transport layer forming step includes a dipping step of immersing the formed surface of the electron transport layer in the light emitting layer in an alkaline aqueous solution containing a zinc source and a sulfur source.
    In the electron transport layer forming step, the light emitting element is characterized in that a mixed crystal layer containing ZnS and Zn (OH) 2 having a Zn—S bond and a Zn—OH bond is formed as the electron transport layer. Production method.
  2.  上記亜鉛源は、亜鉛を含む弱酸塩および亜鉛を含む強酸塩からなる群より選択される少なくとも一種であることを特徴とする請求項1に記載の発光素子の製造方法。 The method for producing a light emitting element according to claim 1, wherein the zinc source is at least one selected from the group consisting of a weak acid salt containing zinc and a strong acid salt containing zinc.
  3.  上記硫黄源は、硫黄、水溶性チオール、水溶性のチオ尿素、水溶性チオカルボニル化合物からなる群より選択される少なくとも一種であることを特徴とする請求項1または2に記載の発光素子の製造方法。 The production of the light emitting element according to claim 1 or 2, wherein the sulfur source is at least one selected from the group consisting of sulfur, water-soluble thiol, water-soluble thiourea, and water-soluble thiocarbonyl compound. Method.
  4.  上記アルカリ性水溶液のpHは9以上であることを特徴とする請求項1~3の何れか1項に記載の発光素子の製造方法。 The method for manufacturing a light emitting device according to any one of claims 1 to 3, wherein the pH of the alkaline aqueous solution is 9 or more.
  5.  上記浸漬工程において上記発光層における電子輸送層の被形成面を上記アルカリ性水溶液に浸漬する浸漬時間は、5分以上、60分以下であることを特徴とする請求項1~4の何れか1項に記載の発光素子の製造方法。 Any one of claims 1 to 4, wherein in the immersion step, the surface to be formed of the electron transport layer in the light emitting layer is immersed in the alkaline aqueous solution for 5 minutes or more and 60 minutes or less. The method for manufacturing a light emitting element according to.
  6.  上記電子輸送層形成工程は、上記浸漬工程の前に、上記基板、上記陽極、および上記発光層を含む積層体の表面のうち、上記発光層における上記電子輸送層の被形成面を露出させ、上記発光層における上記電子輸送層の被形成面以外の表面の少なくとも一部をマスクする工程を含むことを特徴とする請求項1~5の何れか1項に記載の発光素子の製造方法。 In the electron transport layer forming step, before the dipping step, the surface to be formed of the electron transport layer in the light emitting layer among the surfaces of the substrate, the anode, and the laminate including the light emitting layer is exposed. The method for manufacturing a light emitting element according to any one of claims 1 to 5, further comprising a step of masking at least a part of the surface of the light emitting layer other than the surface to be formed of the electron transport layer.
  7.  上記発光層形成工程では、コアと、該コアを覆い、かつ、ZnSを含むシェルとを含む量子ドットと、上記量子ドットの上記シェルに配位するリガンドとを含む発光層を形成することを特徴とする請求項1~6の何れか1項に記載の発光素子の製造方法。 The light emitting layer forming step is characterized in that a light emitting layer including a core, a quantum dot covering the core and containing a shell containing ZnS, and a ligand coordinating the shell of the quantum dot is formed. The method for manufacturing a light emitting element according to any one of claims 1 to 6.
  8.  上記浸漬工程では、上記アルカリ性水溶液の温度を15~90℃の範囲内に維持して、上記アルカリ性水溶液に、上記発光層における上記電子輸送層の被形成面を浸漬することを特徴とする請求項1~7の何れか1項に記載の発光素子の製造方法。 The claim is characterized in that, in the immersion step, the temperature of the alkaline aqueous solution is maintained in the range of 15 to 90 ° C., and the surface to be formed of the electron transport layer in the light emitting layer is immersed in the alkaline aqueous solution. The method for manufacturing a light emitting element according to any one of 1 to 7.
  9.  上記浸漬工程では、上記アルカリ性水溶液の温度を70~90℃の範囲内に維持して、上記アルカリ性水溶液に、上記発光層における上記電子輸送層の被形成面を浸漬することを特徴とする請求項1~8の何れか1項に記載の発光素子の製造方法。 The claim is characterized in that in the dipping step, the temperature of the alkaline aqueous solution is maintained in the range of 70 to 90 ° C., and the surface to be formed of the electron transport layer in the light emitting layer is immersed in the alkaline aqueous solution. The method for manufacturing a light emitting element according to any one of 1 to 8.
  10.  陽極と、発光層と、上記発光層に隣接する電子輸送層と、陰極と、をこの順に備え、
     上記電子輸送層は、Zn-S結合およびZn-OH結合を有する、ZnSとZn(OH)とを含む混晶層であることを特徴とする発光素子。
    An anode, a light emitting layer, an electron transporting layer adjacent to the light emitting layer, and a cathode are provided in this order.
    The electron transport layer is a light emitting element having a Zn—S bond and a Zn—OH bond and being a mixed crystal layer containing ZnS and Zn (OH) 2 .
  11.  上記混晶層は、ZnSと、ZnOと、Zn(OH)と、の混晶層であり、Zn-O結合をさらに有していることを特徴とする請求項10に記載の発光素子。 The light emitting element according to claim 10, wherein the mixed crystal layer is a mixed crystal layer of ZnS, ZnO, and Zn (OH) 2, and further has a Zn—O bond.
  12.  上記混晶層に含まれるZnSの濃度は、上記混晶層に含まれるZnOの濃度よりも大きいことを特徴とする請求項11に記載の発光素子。 The light emitting device according to claim 11, wherein the concentration of ZnS contained in the mixed crystal layer is higher than the concentration of ZnO contained in the mixed crystal layer.
  13.  上記混晶層に含まれるZnOの濃度は、上記混晶層に含まれるZnSの0.1wt%以上、46wt%以下であることを特徴とする請求項12に記載の発光素子。 The light emitting device according to claim 12, wherein the concentration of ZnO contained in the mixed crystal layer is 0.1 wt% or more and 46 wt% or less of ZnS contained in the mixed crystal layer.
  14.  上記混晶層に含まれるZn(OH)の濃度は、上記混晶層に含まれるZnOの濃度よりも大きいことを特徴とする請求項11~13の何れか1項に記載の発光素子。 The light emitting device according to any one of claims 11 to 13, wherein the concentration of Zn (OH) 2 contained in the mixed crystal layer is higher than the concentration of ZnO contained in the mixed crystal layer.
  15.  上記混晶層に含まれるZnSの濃度は、上記混晶層に含まれるZn(OH)の濃度よりも大きいことを特徴とする請求項10~14の何れか1項に記載の発光素子。 The light emitting device according to any one of claims 10 to 14, wherein the concentration of ZnS contained in the mixed crystal layer is higher than the concentration of Zn (OH) 2 contained in the mixed crystal layer.
  16.  上記混晶層に含まれるZn(OH)の濃度は、上記混晶層に含まれるZnSの0.1wt%以上、50wt%以下であることを特徴とする請求項15に記載の発光素子。 The light emitting device according to claim 15, wherein the concentration of Zn (OH) 2 contained in the mixed crystal layer is 0.1 wt% or more and 50 wt% or less of ZnS contained in the mixed crystal layer.
  17.  上記混晶層に含まれるZnSの濃度は、50wt%以上であることを特徴とする請求項10~16の何れか1項に記載の発光素子。 The light emitting device according to any one of claims 10 to 16, wherein the concentration of ZnS contained in the mixed crystal layer is 50 wt% or more.
  18.  上記混晶層に含まれるZnSの濃度は、Zn(OH)の濃度よりも大きいことを特徴とする請求項10~17の何れか1項に記載の発光素子。 The light emitting device according to any one of claims 10 to 17, wherein the concentration of ZnS contained in the mixed crystal layer is higher than the concentration of Zn (OH) 2 .
  19.  上記発光層は、コアと、該コアを覆い、かつ、ZnSを含むシェルとを含む量子ドットとを含むことを特徴とする請求項10~18の何れか1項に記載の発光素子。 The light emitting element according to any one of claims 10 to 18, wherein the light emitting layer includes a core and quantum dots that cover the core and include a shell containing ZnS.
  20.  上記発光層は、上記量子ドットの上記シェルに配位するリガンドをさらに含み、
     上記発光層と上記電子輸送層との界面における、上記量子ドットの上記シェルに配位している上記リガンドの平均配位数は、上記界面以外の上記発光層のバルクに含まれる上記量子ドットの上記シェルに配位している上記リガンドの平均配位数よりも少ないことを特徴とする請求項19に記載の発光素子。
    The light emitting layer further comprises a ligand that coordinates the shell of the quantum dots.
    The average coordination number of the ligands coordinated to the shell of the quantum dots at the interface between the light emitting layer and the electron transport layer is the number of coordination numbers of the quantum dots contained in the bulk of the light emitting layer other than the interface. The light emitting element according to claim 19, wherein the number is less than the average coordination number of the ligands coordinated to the shell.
PCT/JP2019/025011 2019-06-24 2019-06-24 Method for producing light-emitting element and light-emitting element WO2020261346A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/025011 WO2020261346A1 (en) 2019-06-24 2019-06-24 Method for producing light-emitting element and light-emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/025011 WO2020261346A1 (en) 2019-06-24 2019-06-24 Method for producing light-emitting element and light-emitting element

Publications (1)

Publication Number Publication Date
WO2020261346A1 true WO2020261346A1 (en) 2020-12-30

Family

ID=74061533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/025011 WO2020261346A1 (en) 2019-06-24 2019-06-24 Method for producing light-emitting element and light-emitting element

Country Status (1)

Country Link
WO (1) WO2020261346A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022143554A1 (en) * 2020-12-31 2022-07-07 Tcl科技集团股份有限公司 Light-emitting device and preparation method therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012160714A1 (en) * 2011-05-20 2012-11-29 国立大学法人山形大学 Organic electronic device and method for manufacturing same
KR20150120026A (en) * 2014-04-16 2015-10-27 희성전자 주식회사 Light Emitting Device and Method Of Manufacturing Electron Transport layer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012160714A1 (en) * 2011-05-20 2012-11-29 国立大学法人山形大学 Organic electronic device and method for manufacturing same
KR20150120026A (en) * 2014-04-16 2015-10-27 희성전자 주식회사 Light Emitting Device and Method Of Manufacturing Electron Transport layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022143554A1 (en) * 2020-12-31 2022-07-07 Tcl科技集团股份有限公司 Light-emitting device and preparation method therefor

Similar Documents

Publication Publication Date Title
KR102181060B1 (en) Metal oxide nanoparticles with metal ion surface-treatment, quantum dot-light-emitting devices comprising the same and method for fabricating the same
Han et al. Development of colloidal quantum dots for electrically driven light-emitting devices
CN109980097B (en) Preparation method of thin film and QLED device
US11329245B2 (en) Electron transport thin film and formation method and light emitting diode device
WO2008108962A1 (en) Method of patterning inorganic led display
US11355725B2 (en) Composite thin film and formation method and application thereof
CN113903865A (en) Zinc oxide nano material, preparation method thereof and luminescent device
CN109935733B (en) N-type ZnO film, preparation method thereof and QLED device
WO2020261346A1 (en) Method for producing light-emitting element and light-emitting element
US11744098B2 (en) Quantum dot light-emitting diode and preparation method therefor
WO2021111556A1 (en) Light-emitting device
CN113130833A (en) Quantum dot light-emitting diode and preparation method thereof
WO2022143676A1 (en) Composite material and preparation method therefor, and quantum dot light-emitting diode
US20210351320A1 (en) Light-Emitting Element
CN113130631B (en) Heterojunction nano material, preparation method thereof, thin film and quantum dot light-emitting diode
CN113046077B (en) Composite material, quantum dot light-emitting diode and preparation method thereof
CN113130790B (en) Nano material, preparation method thereof and quantum dot light-emitting diode
WO2021084598A1 (en) Light emitting element
CN113120952B (en) Zinc sulfide nano material and preparation method thereof, zinc sulfide thin film and quantum dot light-emitting diode
CN114479827A (en) Composite material, preparation method thereof and light emitting diode
CN114188490B (en) Quantum dot-semiconductor composite film layer, preparation method thereof and quantum dot light emitting device
WO2024018509A1 (en) Light-emitting element, display device, and production method for light-emitting element
WO2024079908A1 (en) Light-emitting element, display device, and method for manufacturing light-emitting element
WO2024089874A1 (en) Light-emitting element, display device, nanoparticle dispersion, and light-emitting element manufacturing method
CN112397620B (en) Nano composite particle and preparation method and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19934415

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19934415

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP