WO2020259022A1 - 一种月基原位保真取芯装置 - Google Patents

一种月基原位保真取芯装置 Download PDF

Info

Publication number
WO2020259022A1
WO2020259022A1 PCT/CN2020/085207 CN2020085207W WO2020259022A1 WO 2020259022 A1 WO2020259022 A1 WO 2020259022A1 CN 2020085207 W CN2020085207 W CN 2020085207W WO 2020259022 A1 WO2020259022 A1 WO 2020259022A1
Authority
WO
WIPO (PCT)
Prior art keywords
fidelity
landing
lunar
coring
situ
Prior art date
Application number
PCT/CN2020/085207
Other languages
English (en)
French (fr)
Inventor
谢和平
陈领
高明忠
吴年汉
朱建波
李存宝
Original Assignee
深圳大学
四川大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学, 四川大学 filed Critical 深圳大学
Publication of WO2020259022A1 publication Critical patent/WO2020259022A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/04Devices for withdrawing samples in the solid state, e.g. by cutting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/04Devices for withdrawing samples in the solid state, e.g. by cutting
    • G01N1/08Devices for withdrawing samples in the solid state, e.g. by cutting involving an extracting tool, e.g. core bit
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/10Detecting, e.g. by using light barriers

Definitions

  • the invention relates to the technical field of lunar exploration and drilling, in particular to a lunar-based in-situ fidelity coring device.
  • the lunar exploration and development project embodies the comprehensive strength of a country and is also an important step for centuries to go to space to find a new home. And lunar drilling is of great strategic significance for humans to study the material composition of the moon's surface, the origin of the moon, the earth's climate and water tidal phenomena, and future resources.
  • lunar drilling activities are affected by factors such as severe soil weathering, no water and air, and lack of energy, making it impossible to core lunar soil samples with fidelity.
  • the purpose of the present invention is to provide a lunar-based in-situ fidelity coring device to solve the problem that the lunar soil samples cannot be fidelity coring during lunar drilling.
  • a lunar-based in-situ fidelity coring device includes:
  • the Skyline communication system for information transmission installed on the top of the landing and return module;
  • the fidelity core system includes:
  • a fidelity core remover control mechanism arranged at the bottom of the landing and returning cabin.
  • the several fidelity core removers are evenly distributed on the transposition table
  • the fidelity core remover control mechanism is connected to the injection hole; wherein the fidelity core remover enters the fidelity core remover control mechanism through the injection hole.
  • the fidelity coring system further includes:
  • a first mechanical arm is arranged on the transposition table, and is used to transfer the fidelity core remover stored in the transposition table to the injection hole;
  • a traction mechanism the traction mechanism is arranged above the transposition table; the traction mechanism includes a traction drive, a traction rope, and a first electrostatic chuck arranged at the end of the traction rope.
  • the sky communication system includes a sky communication antenna and a lunar surface detector, the moon surface detector is used to detect the environment on the surface of the moon, and the detected information is transmitted through the sky communication antenna.
  • a further configuration of the present invention also includes a power supply system, the power supply system includes a plurality of multi-faceted solar panel groups, the multi-faceted solar panel includes a plurality of solar panel groups, the plurality of solar panels are spliced together and arranged in The surface of the landing and return cabin.
  • the fidelity core remover includes:
  • a multi-stage overlapping hydraulic cylinder system includes a pneumatic servo cylinder and a pneumatic servo cylinder;
  • An electrode drive system including a thrust bearing set, a hollow stator and a hollow rotor;
  • the ultrasonic excitation vibration force system includes an upper cover plate, piezoelectric ceramics, a lower cover plate and an horn.
  • the fidelity core remover further includes an external drill bit and an internal drill bit, and the external drill bit is driven by the multi-stage overlapping hydraulic cylinder system and the electrode drive system to complete the drilling action, when When encountering a hard rock formation, the internal drill bit is driven to complete the drilling action through the ultrasonic excitation vibration force system.
  • the fidelity core remover control mechanism includes:
  • a clamping guide structure is used to clamp the fidelity core remover and control the putting angle of the fidelity core remover;
  • a second mechanical arm the end of the second mechanical arm is provided with a second electrostatic chuck, and the second mechanical arm controls the second electrostatic chuck to perform sampling;
  • a camera and a sensor The camera is installed at the bottom of the propulsion chamber and is used to detect the environment of the landing site.
  • the sensor is used to measure the temperature, humidity and pressure of the surrounding environment.
  • the landing and return cabin includes:
  • a propulsion chamber for adjusting the landing angle of the landing and return module provided at the bottom of the casing;
  • a fidelity coring chamber for accommodating the fidelity coring system arranged in the casing.
  • a further arrangement of the present invention also includes a buffer assembly arranged on the periphery of the landing and return cabin.
  • the buffer assembly includes a support base and a telescopic rod. One end of the telescopic rod is connected to the support base and the other end is connected to the landing. Connect with the return cabin.
  • a lunar-based in-situ fidelity coring device includes: a landing and returning cabin; and a fidelity coring arranged in the landing and returning cabin for drilling, coring and storing samples System; and a Skyline communication system set on the top of the landing and return cabin for information transmission;
  • the fidelity core taking system includes: a transposing table; a number of fidelity core taking devices arranged on the transposing table And a fidelity core remover control mechanism set at the bottom of the landing and return cabin.
  • the Skyline Communication System carries out information transmission and controls the lunar-based in-situ fidelity coring device for lunar landing and automatic coring operation.
  • the fidelity corer drills and takes lunar soil samples under the control of the fidelity corer control mechanism. After the core, the fidelity core remover after sampling is stored on the transposition table to achieve the purpose of automatic sampling on the moon, and realize the functions of drilling, coring and fidelity storage of the lunar soil.
  • Fig. 1 is a perspective view 1 of the in-situ fidelity coring device of the moon base of the present invention.
  • Fig. 2 is a perspective view 2 of the in-situ fidelity coring device of the present invention.
  • Fig. 3 is a schematic diagram 1 of the internal structure of the in-situ fidelity coring device of the present invention.
  • Fig. 4 is a schematic diagram 2 of the internal structure of the in-situ fidelity coring device of the present invention.
  • Fig. 5 is a structural diagram of the control mechanism of the fidelity core remover in the present invention.
  • Figure 6 is a schematic diagram of the structure of the fidelity core remover in the present invention.
  • the present invention provides a moon-based in-situ fidelity coring device.
  • the present invention will be further described in detail with reference to the accompanying drawings and examples. It should be understood that the specific embodiments described here are only used to explain the present invention, but not to limit the present invention.
  • the present invention provides a preferred embodiment of a lunar base in-situ fidelity coring device.
  • a moon-based in-situ fidelity coring device includes a landing and return cabin 100, a fidelity coring system 200, a sky communication system 300, and a power supply system 400.
  • the fidelity coring system 200 is located inside the landing and return module 100
  • the horizon communication system 300 is located on the top of the landing and return module 100
  • the power supply system 400 is located on the outer surface of the landing and return module 100.
  • the landing and return module 100 carries the fidelity coring system 200 to log on to the moon, which relies on the moon exploration space rocket to fly to the moon.
  • the lunar exploration and coring When the lunar exploration and coring are completed, it will fly away from the moon and dock with the lunar orbiting vehicle, and finally the lunar orbiting vehicle will return to the earth.
  • the landing and return cabin 100 includes a casing 101, a propulsion chamber 102, and a fidelity coring chamber 103.
  • the propulsion chamber 102 is provided at the bottom of the casing 101, and the propulsion chamber 102 is provided with
  • the fuel tank and spray gun obtain upward reaction force by injecting fuel downwards, so as to achieve upward propulsion when starting, and for buffering when landing.
  • the propulsion chamber 102 can be used for reverse thrust buffering to adjust the landing angle of the landing and return module 100, avoiding the discomfort caused by the impact during landing, and landing smoothly to the designated position;
  • the propulsion chamber 102 can be used to provide an upward reaction force to propel the landing and return module 100 into the air.
  • the fidelity core chamber 103 has a certain accommodation space, and the fidelity core system 200 is installed in the fidelity core chamber 103.
  • the fidelity core taking system 200 includes a transposing table 201, a plurality of fidelity core taking devices 202 arranged on the transposing table 201, and the landing and returning cabin
  • the fidelity core remover control mechanism 206 at the bottom of 100.
  • fidelity core removers 202 there are a total of 8 fidelity core removers 202, which are initially evenly distributed on the transposition table 201. After the landing and return module 100 lands on the moon, the fidelity coring system 200 will successively drop the fidelity coring device 202 onto the lunar surface for core drilling.
  • the intermediate position of the transposing table 201 is provided with an inserting hole 2011, and the fidelity core remover control mechanism 206 is arranged at the bottom of the housing 101 and connected to the inserting hole 2011, and is in direct contact with the moon, wherein
  • the hole 2011 is a through hole.
  • the fidelity core remover 202 When the fidelity core remover 202 performs a sampling operation, the fidelity core remover 202 enters the fidelity core remover control mechanism 206 through the insertion hole 2011, and is in the fidelity core remover control mechanism 206.
  • the fidelity core drilling is performed under the control of the corer control mechanism 206.
  • the number of fidelity core removers 202 can also be set to 6, 10, or 12, and the specific number is specifically determined according to the area of the transposition table 201, which is not limited in the present invention.
  • the fidelity core remover 202 is controlled by the fidelity core remover control mechanism 206 to drill and core the lunar soil samples, and then the fidelity core remover 202 after sampling is stored in the transposition table 201, in order to achieve the purpose of automatic sampling on the moon, and realize the functions of drilling, coring and fidelity storage of the lunar soil.
  • fidelity coring refers to the need to take the lunar soil samples "five guarantees" Core, namely "guarantee quality, heat preservation, pressure preservation, moisturizing, and gloss" core.
  • the sky communication system 300 includes a sky communication antenna 301 and a lunar probe 302.
  • the lunar probe 302 is used to detect the environment on the lunar surface and communicate through the sky
  • the antenna 301 transmits the detected information.
  • the Skyline Communication Antenna 301 is used to receive control instructions and can transmit information to ground personnel and moon-orbiting satellites.
  • Lunar probe 302 is used for environmental monitoring of the lunar surface, identification of optimal landing and sampling points, and temperature monitoring.
  • the moon-based in-situ fidelity coring device can carry out lunar landing and soil coring under the control of the manipulator located on the earth , Push away from the moon and other operations.
  • the data communication of the drilling system is carried out through the sky communication antenna 301 and the lunar probe 302 to realize real-time management and monitoring of the coring process.
  • Establish an interface for real-time communication with the drilling system collect all kinds of information in the sampling process, process and send to the ground through the register, and at the same time, the drilling system can be controlled manually through the interface.
  • the moon-based in-situ fidelity core-taking device further includes a power supply system 400
  • the power supply system 400 includes a plurality of multi-faceted solar panel groups
  • the multi-faceted solar panel group includes a plurality of A solar panel 401
  • a plurality of solar panels 401 are spliced together and arranged on the surface of the landing and return cabin 100, and two adjacent solar panels 401 have an angle.
  • the power supply system 400 composed of a multi-faceted solar panel group can convert the solar energy projected on the lunar surface into electrical energy, which can supply power to the device in the present invention.
  • the multi-faceted solar cell panel group includes a plurality of solar panels 401, and the multi-faceted structure enables it to receive sunlight from all directions and improve the photoelectric conversion rate. Among them, its rated power is 700W, and the peak power can reach 2KW.
  • a buffer assembly 500 is provided around the landing and return cabin 100.
  • the buffer assembly includes a support base 502 and a telescopic rod 501.
  • One end of the telescopic rod 501 is connected to the support base 502.
  • the other end is connected to the landing and return cabin 100.
  • one end of the telescopic rod 501 is hinged to the support base 502, and the other end is connected to the landing and return cabin 100 through a number of support rods 504.
  • the telescopic rod 501 is also hinged with two auxiliary telescopic rods 503, and the other end of the auxiliary telescopic rod 503
  • a number of support rods 504 are hinged, and the support rods 504 are fixedly connected to the landing and return cabin 100.
  • the telescopic rod 501 can contract in time when impacted, which acts as a buffer and reduces the impact of landing. impact.
  • the fidelity core taking system 200 further includes a first mechanical arm 205 and a traction mechanism 204, the first mechanical arm 205 is arranged on the transposition table 201, used to The fidelity core remover 202 stored in the transposition table 201 is transferred to the insertion hole 2011; the traction mechanism 204 is arranged above the transposition table 201, and includes a traction drive 2041, a traction rope 2042 and a The first electrostatic chuck 2043 at the end of the traction rope 2042, after the fidelity core remover 202 completes sampling, leads the fidelity core remover 202 out of the lunar surface through the first electrostatic chuck 2043, and passes the first electrostatic chuck 2043.
  • a mechanical arm 205 transfers the fidelity core remover 202 after sampling to the transpose table 201.
  • the end of the first mechanical arm 205 is provided with a clamping structure 2051 adapted to the fidelity core remover 202.
  • the clamping structure 2051 can realize the clamping and moving of the fidelity core remover 202.
  • the first robotic arm 205 will pick up an unsampled fidelity core remover 202 and move it to the insertion hole 2011 for release. At this time, the fidelity core remover 202 will fall to fidelity.
  • the corer control mechanism 206 performs fidelity core drilling under the control of the fidelity corer control mechanism 206.
  • the traction drive member 2041 lowers the traction rope 2042, and then the first electrostatic chuck 2043 is in contact with the fidelity core remover 202, and then the cored and located inside the lunar soil
  • the fidelity core remover 202 is pulled out of the moon ground, and the sampled fidelity core remover 202 is moved to the transposition table 201 through the first mechanical arm 205.
  • the first mechanical arm 205 is also used to perform simple maintenance on the equipment through the first mechanical arm 205 when the equipment is abnormal due to some irresistible factors.
  • the fidelity core remover control mechanism 206 includes a clamping guide structure 2061 and a second mechanical arm 2063, the clamping guide structure 2061 is provided with a guide groove 2062, can be clamped
  • the fidelity core remover 202 controls the placement angle of the fidelity core remover 202; the end of the second mechanical arm 2063 is provided with a second electrostatic chuck 2064, and the second mechanical arm 2063 controls the first Two electrostatic chucks 2064 for sampling; and a camera 2065 and a sensor (not shown in the figure), the camera 2065 is installed at the bottom of the propulsion chamber 102 for detecting the landing site environment, and the sensor is used to monitor the surrounding environment Temperature, humidity and pressure are measured.
  • the clamping and guiding structure 2061 guides the movement direction of the fidelity core remover 202, thereby controlling the fidelity core remover 202.
  • the placement angle of the true corer 202; the second robotic arm 2063 is used to sample rock samples on the surface of the moon.
  • the second electrostatic chuck 2064 installed at its end uses electrostatic adsorption to sample the samples, which can be protected
  • the device judges the hardness of the surface of the moon at the same time, and detects it through the camera 2065, and measures the temperature, humidity and pressure of the surrounding environment through the sensor, and the controller (not shown in the figure) analyzes the detected information And after processing, to confirm and mark the sampling location, confirm the appropriate placement of the drilling surface, and drill according to the optimal angle and drilling point.
  • the fidelity core remover 202 is mainly composed of a multi-stage overlapping hydraulic cylinder system, a motor drive system and an ultrasonic vibration force system.
  • the multi-stage overlapping hydraulic cylinder system is composed of pneumatic servo cylinder 2021 and air-actuated servo cylinder 2022;
  • the motor drive system is mainly composed of thrust bearing group 2027, hollow stator 2029 and hollow rotor 2028;
  • the ultrasonic vibration force system is mainly composed of the above Cover plate 2038, piezoelectric ceramics 2031, lower cover plate 2039, horn 2032 and so on.
  • the fidelity core remover 202 further includes an outer drill bit 2026, an inner drill bit 2034, an outer drill housing 2025, an inner drill housing 2033, a connection housing 2023, a force sensor 2024, and two sliding guide support rings 2035,
  • the external drill bit 2026 is driven by the multi-stage overlapping hydraulic cylinder system and the electrode drive system to complete the drilling action.
  • the internal drill bit 2034 is driven by the ultrasonic excitation vibration force system Complete the drilling action.
  • the clamping and guiding structure 2061 outside the fidelity core remover 202 expands and contacts the hole wall tightly to fix the tool on the hole wall while keeping The true core remover 202 can move axially along the inner wall of the clamping and guiding structure 2061 within a certain stroke.
  • the pneumatic servo cylinder 2021 and the air-actuated servo cylinder 2022 in the multi-stage overlapping hydraulic cylinder system generate downward thrust under the action of air pressure to form the drilling pressure required for drilling, which passes through the connecting shell
  • the body 2023 and the force sensor 2024 are transmitted downwards, and then transmitted to the outer drill housing 2025 through the motor drive system, and then to the outer drill bit 2026.
  • the motor drive system starts to work, and the hollow rotor 2028 is wound around
  • the connecting rod 2030 rotates on a fixed axis, and at the same time transmits the generated torque to the outer drill housing 2025, and then to the outer drill bit 2026. At this point, the rotary drilling action of the outer drill bit 2026 is completed.
  • the piezoelectric ceramic 2031 and the horn 2032 in the ultrasonic excitation vibration force system When encountering hard rock formations, the piezoelectric ceramic 2031 and the horn 2032 in the ultrasonic excitation vibration force system generate ultrasonic excitation vibration under the action of electric current, and transmit the vibration to the inner drill shell 2033, and then to the inner drill bit 2034 in turn At the same time, the connecting rod 2030 also transfers part of the WOB shared by it to the internal drill bit 2034, forming ultrasonic vibration cutting to the rock formation, cutting hard rock formations at high speed, and increasing the sampling drilling rate.
  • the outer surface of the inner drill shell 2033 is installed with 2 sliding parts
  • the guide support ring 2035 under the action of the sliding guide support ring 2035, reduces the lateral vibration of the ultrasonic drilling and ensures the smooth progress of the ultrasonic drilling.
  • the present invention uses multi-stage coring to realize sample coring in the deep part of the moon in a limited space, and the sampling depth can reach more than 15 meters.
  • the fidelity core finder 202 can be maintained during the drilling process.
  • the integrity of the borehole wall (lunar soil) prevents it from collapsing, and its weight is less than 10kg, and the rotation speed can reach 300r/min. It has the advantages of low weight and high rotation speed. It can be used for large weight cores and the sampling diameter can reach 50mm.
  • the fidelity core remover 202 also includes a claw 2036 and a sealing airbag 2037.
  • the clamping guide structure 2061 is contracted, and then the clamping guide structure 2061 is contracted down for another stroke and then opened again.
  • the guide structure 2061 is in tight contact with the hole wall, and the above-mentioned new round of drilling operations is repeated until the core is completed.
  • the core is clamped by the claw 2036.
  • the air bag 2037 behind the claw 2036 begins to expand and fills the entire sealing groove. Since the moon is near vacuum and the earth is in a high-pressure environment, when the coring tool is brought back When on the ground, the sealed airbag 2037 can form a self-sealing under the action of atmospheric pressure.
  • the lunar soil sample is sealed in the fidelity core remover 202 to maintain its original performance state, that is, to achieve the "five guarantees” core removal of "quality preservation, heat preservation, pressure preservation, moisture retention, and gloss preservation".
  • a sample collection instruction is given, the traction mechanism 204 is lowered into the insertion hole 2011, and the fidelity core remover 202 filled with samples is retrieved through the first electrostatic chuck 2043, and placed on the rotary table 201. Then the transpose table 201 is rotated by the command and a new fidelity core remover 202 is grabbed by the first mechanical 205 arm to start a new round of core removal.
  • the present invention provides a lunar-based in-situ fidelity coring device, and realizes the functions of drilling, coring and fidelity storage of lunar soil, so as to achieve in-situ detection of lunar soil ,
  • the use of multi-stage coring realizes that the sample can be cored in the deep part of the moon in a limited space, and the sampling depth can reach more than 15 meters.
  • the fidelity corer 202 can maintain the drill hole during the drilling process.
  • the integrity of the hole wall can prevent it from collapsing; when the fidelity core remover 202 is placed on the lunar surface, the fidelity core remover control mechanism 206 monitors the ground environment, analyzes the optimal drilling point, and puts the angle Control, and control the descending process of the fidelity corer 202; through the sky communication antenna 301 and the lunar probe 302 for data communication of the drilling system, real-time management and monitoring of the core process, and environment on the lunar surface Monitor and identify the optimal landing point and sampling point.

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Geophysics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Earth Drilling (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

一种月基原位保真取芯装置,包括:登陆与返回舱(100);设置在所述登陆与返回舱(100)内的用于对样品进行钻探、取芯并存储的保真取芯系统(200);以及设置在所述登陆与返回舱(100)顶部的用于进行信息传递的天际通讯系统(301);所述保真取芯系统(200)包括:转置台(201);设置在所述转置台(201)上的若干个保真取芯器(202);以及设置在所述登陆与返回舱(100)底部的保真取芯器控制机构(206)。以达到在月球自动取样的目的,并实现了对月球土壤的钻探、取芯以及保真存储的功能。

Description

一种月基原位保真取芯装置 技术领域
本发明涉及月球探索与钻探技术领域,尤其涉及的是一种月基原位保真取芯装置。
背景技术
月球探索及开发工程体现的是一个国家的综合实力,也是人类走向太空寻找新家园的重要的一步。而月球钻探对于人类研究月球表面的物质组成、月球起源、地球气候和水域潮汛现象、未来资源等问题具有重大战略意义。
与常规陆上钻探活动不同,月球钻探活动会受到诸如土壤严重风化、无水无空气、能源缺乏等因素的影响,无法对月球土壤样品进行保真取芯。
因此,现有技术还有待于改进和发展。
发明内容
鉴于上述现有技术的不足,本发明的目的在于提供一种月基原位保真取芯装置,以解决月球钻探过程中无法实现对月球土壤样品进行保真取芯的问题。
本发明的技术方案如下:
一种月基原位保真取芯装置,包括:
登陆与返回舱;
设置在所述登陆与返回舱内的用于对样品进行钻探、取芯并存储的保真取芯系统;以及
设置在所述登陆与返回舱顶部的用于进行信息传递的天际通讯系统;
所述保真取芯系统包括:
转置台;
设置在所述转置台上的若干个保真取芯器;以及
设置在所述登陆与返回舱底部的保真取芯器控制机构。
本发明的进一步设置,所述若干个保真取芯器均匀分布在所述转置台上;
所述保真取芯器控制机构与所述投放孔连接;其中,所述保真取芯器通过所述投放孔进入所述保真取芯器控制机构内。
本发明的进一步设置,所述保真取芯系统还包括:
第一机械臂,所述第一机械臂设置在所述转置台上,用于将存放在所述转置台的保真取 芯器转移至所述投放孔中;
牵引机构,所述牵引机构设置在所述转置台上方;所述牵引机构包括牵引驱动件、牵引绳和设置在所述牵引绳末端的第一静电吸盘,所述保真取芯器完成采样后通过所述第一静电吸盘将所述保真取芯器引出月球表面,并通过所述第一机械臂将完成采样后的所述保真取芯器转移回所述转置台。
本发明的进一步设置,所述天际通讯系统包括天际通讯天线和月面探测器,所述月面探测器用于对月球表面的环境进行检测,并通过所述天际通讯天线对检测的信息进行传输。
本发明的进一步设置,还包括电源系统,所述电源系统包括若干多面形太阳能电池板组,所述多面形太阳能电池板包括若干块太阳能板组,所述若干块太阳能板拼接在一起并设置在所述登陆与返回舱的表面。
本发明的进一步设置,所述保真取芯器包括:
多级重叠式液压缸系统,所述多级重叠式液压缸系统包括气动伺服缸和中空气动伺服缸;
电极驱动系统,所述电极驱动系统包括推力轴承组、中空定子和中空转子;以及
超声激振动力系统,所述超声激振动力系统包括上盖板、压电陶瓷、下盖板和变幅杆。
本发明的进一步设置,所述保真取芯器还包括外部钻头和内部钻头,所述外部钻头在所述多级重叠式液压缸系统和所述电极驱动系统的驱动下完成钻进动作,当遇到坚硬岩层时,通过所述超声激振动力系统驱动所述内部钻头完成钻进动作。
本发明的进一步设置,所述保真取芯器控制机构包括:
夹持导向结构,所述夹持导向结构用于夹持所述保真取芯器并控制所述保真取芯器的投放角度;
第二机械臂,所述第二机械臂的末端设置有第二静电吸盘,所述第二机械臂控制所述第二静电吸盘进行取样;以及
摄像头和传感器,所述摄像头安装在所述推进室底部,用于对着陆点环境进行探测,所述传感器用于对周围环境的温度、湿度和压力进行测取。
本发明的进一步设置,所述登陆与返回舱包括:
壳体;
设置在所述壳体底部的用于调整所述登陆与返回舱着陆角度的推进室;以及
设置在所述壳体内的用于容置所述保真取芯系统的保真取芯室。
本发明的进一步设置,还包括设置在所述登陆与返回舱周边的缓冲组件,所述缓冲组件包括支撑座和伸缩杆,所述伸缩杆一端与所述支撑座连接,另一端与所述登陆与返回舱连接。
本发明所提供的一种月基原位保真取芯装置,包括:登陆与返回舱;设置在所述登陆与返回舱内的用于对样品进行钻探、取芯并存储的保真取芯系统;以及设置在所述登陆与返回舱顶部的用于进行信息传递的天际通讯系统;所述保真取芯系统包括:转置台;设置在所述转置台上的若干个保真取芯器;以及设置在所述登陆与返回舱底部的保真取芯器控制机构。天际通讯系统进行信息传递控制月基原位保真取芯装置进行月球登陆并进行自动取芯操作,保真取芯器在保真取芯器控制机构的控制下对月球土壤样品进行钻探、取芯,其后将完成采样后的保真取芯器存储在转置台上,以达到在月球自动取样的目的,并实现了对月球土壤的钻探、取芯以及保真存储的功能。
附图说明
图1是本发明中月基原位保真取芯装置的立体图1。
图2是本发明中基原位保真取芯装置的立体图2。
图3是本发明中基原位保真取芯装置的内部结构示意图1。
图4是本发明中基原位保真取芯装置的内部结构示意图2。
图5是本发明中保真取芯器控制机构的结构示意图。
图6是本发明中保真取芯器的结构示意图。
附图中各标记:100、登陆与返回舱;101、壳体;102、推进室;103、保真取芯室;200、保真取芯系统;201、转置台;2011、投放孔;202、保真取芯器;2021、气动伺服缸;2022、中空气动伺服缸;2023、连接壳体;2024、力传感器;2025、外钻壳体;2026、外部钻头;2027、推力轴承组;2028、中空转子;2029、中空定子;2030、连接杆;2031、压电陶瓷、2032、变幅杆;2033、内钻壳体;2034、内部钻头;2035、滑动导向支撑环;2036、卡爪;2037、密封气囊;2038、上盖板;2039、下盖板;204、牵引机构;2041、牵引驱动件;2042、牵引绳;2043、第一静电吸盘;205、第一机械臂;2051、夹持结构;206、保真取芯器控制机构;2061、夹持导向结构;2062、导向槽;2063、第二机械臂;2064、第二静电吸盘;2065、摄像头;300、天际通讯系统;301、天际通讯天线;302、月面探测器;400、电源系统;401、太阳能板;500、缓冲组件;501、伸缩杆;502、支撑座;503、辅助伸缩杆;504、支撑杆。
具体实施方式
本发明提供一种月基原位保真取芯装置,为使本发明的目的、技术方案及效果更加清楚、明确,以下参照附图并举实例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
在实施方式和申请专利范围中,除非文中对于冠词有特别限定,否则“一”与“所述”可泛指单一个或复数个。
另外,若本发明实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
请同时参阅图1至图6,本发明提供了一种月基原位保真取芯装置的较佳实施例。
如图1、图2与图3所示,一种月基原位保真取芯装置,包括登陆与返回舱100、保真取芯系统200、天际通讯系统300以及电源系统400。其中,保真取芯系统200位于登陆与返回舱100内部,天际通讯系统300位于登陆与返回舱100顶部,电源系统400位于登陆与返回舱100的外表面。
其中,登陆与返回舱100承载着保真取芯系统200登录月球,其依靠着月球探测航天火箭飞向月球。当月球探测及取芯结束时,则会飞离月球,并与绕月飞行器对接,最后由绕月飞行器装载着返回地球。
请继续参阅图2,详细来说,登陆与返回舱100包括壳体101、推进室102以及保真取芯室103,推进室102设置在壳体101的底部,其中,推进室102内设置有燃料舱和喷射枪,通过向下喷射燃料,获得向上的反作用力,以实现启动时向上推进,着陆时实现缓冲的目的。因此,当登陆与返回舱100登陆月球时,推进室102可以用于反推缓冲以调整登陆与返回舱100着陆角度,避免了着陆时冲击所带来的不适感,并平稳降落到指定位置;当登陆与返回舱100飞离地面时,推进室102可以用于提供向上的反作用力,从而将登陆与返回舱100推进升空。保真取芯室103具有一定的容置空间,保真取芯系统200安装在该保真取芯室103内。
请参阅图2与图3,进一步地,所述保真取芯系统200包括转置台201、设置在所述转置台201上的若干个保真取芯器202以及设置在所述登陆与返回舱100底部的保真取芯器控制机构206。
其中,所述若干个保真取芯器202共设置有8个,初始时,均匀分布在所述转置台201上。当登陆与返回舱100在月球上着陆后,保真取芯系统200则会依次的将保真取芯器202投放至月球地面进行取芯钻探。所述转置台201的中间位置设置有投放孔2011,所述保真取 芯器控制机构206设置在所述壳体101底部并与所述投放孔2011连接,并与月球直接接触,其中,投放孔2011为通孔,当进行保真取芯器202进行采样操作时,所述保真取芯器202通过所述投放孔2011进入所述保真取芯器控制机构206内,并在保真取芯器控制机构206的控制下进行保真取芯钻探。可以理解的是,保真取芯器202的个数还可以设置为6个、10个或12个,其具体数量根据转置台201的面积大小具体确定,本发明对此不作限定。
通过上述技术方案,保真取芯器202在保真取芯器控制机构206的控制下对月球土壤样品进行钻探、取芯,其后将完成采样后的保真取芯器202存储在转置台201上,以达到在月球自动取样的目的,并实现了对月球土壤的钻探、取芯以及保真存储的功能,其中,保真取芯指的是需要对月球土壤样品进行“五保”取芯,即“保质、保温、保压、保湿、保光”取芯。
请继续参阅图1,进一步地,所述天际通讯系统300包括天际通讯天线301和月面探测器302,所述月面探测器302用于对月球表面的环境进行检测,并通过所述天际通讯天线301对检测的信息进行传输。其中,天际通讯天线301用于接收控制指令,同时能向地面人员及绕月卫星传递信息,月面探测器302用于对于月球表面进行环境监测,最优着陆点及采样点识别,温度监测,并将所测得的信息全部通过天际通讯天线301传输至地面人员及绕月卫星,使得月基原位保真取芯装置可以在位于地球的操纵人员的控制下,进行月球登陆,土壤取芯,推离月球等操作。另外,通过天际通讯天线301与月面探测器302进行钻取系统的数据通信,实现取芯过程的实时管理和监测。建立与钻取系统实时通信的接口,收集取样过程的各类信息,通过登录器进行处理和对地发送,同时通过接口可对钻取系统进行人为控制。
请参阅图1与图2,进一步地,月基原位保真取芯装置还包括电源系统400,所述电源系统400包括若干多面形太阳能电池板组,所述多面形太阳能电池板组包括若干块太阳能板401,若干块太阳能板401拼接在一起并设置在登陆与返回舱100的表面,并且相邻两所述太阳能板401具有一夹角。通过由多面形太阳能电池板组构成的电源系统400,能够将投射向月面的太阳光能量转换为电能,为本发明中的装置供电。多面形太阳能电池板组包含有多块太阳能板401,其多面形的构造,使其可以接收四面八方的太阳光,提高光电转换率。其中,其额定功率为700W,峰值功率可达2KW。
请参阅图1与图4,优选地,所述登陆与返回舱100周边设置有缓冲组件500,所述缓冲组件包括支撑座502和伸缩杆501,所述伸缩杆501一端与所述支撑座502连接,另一端与所述登陆与返回舱100连接。
具体地,伸缩杆501一端与支撑座502铰接,其另一端通过若干支撑杆504与登陆与返回舱100连接,同时,伸缩杆501还铰接有2个辅助伸缩杆503,辅助伸缩杆503另一端铰 接有若干支撑杆504,支撑杆504同登陆与返回舱100固定连接,当登陆与返回舱100着陆时,伸缩杆501能在受到冲击时及时收缩,起到缓冲的作用,减轻了着陆时的冲击力。
请参阅图3与图4,进一步地,所述保真取芯系统200还包括第一机械臂205和牵引机构204,所述第一机械臂205设置在所述转置台201上,用于将存放在所述转置台201的保真取芯器202转移至所述投放孔2011中;所述牵引机构204设置在所述转置台201上方,其包括牵引驱动件2041、牵引绳2042和设置在所述牵引绳2042末端的第一静电吸盘2043,所述保真取芯器202完成采样后通过所述第一静电吸盘2043将所述保真取芯器202引出月球表面,并通过所述第一机械臂205将完成采样后的所述保真取芯器202转移回所述转置台201。
具体的,第一机械臂205的末端上设置有与保真取芯器202的适配的夹持结构2051,该夹持结构2051能够实现保真取芯器202的夹取与移动,在进行保真取芯器202的投放时,第一机械臂205会夹取一个未采样的保真取芯器202并移动至投放孔2011进行投放,此时保真取芯器202会坠落至保真取芯器控制机构206,并在保真取芯器控制机构206的控制下进行保真取芯钻探。当保真取芯器202采样工作完成后,牵引驱动件2041下放牵引绳2042,进而将第一静电吸盘2043与保真取芯器202接触,其后将取芯后的并位于月球土壤内部的保真取芯器202牵引出月球地面,并通过第一机械臂205将采样后的保真取芯器202移动至转置台201上。在本发明中,第一机械臂205还用于,当遇到某些不可抗拒因素导致设备出现异常,可通过第一机械臂205对设备进行简易维护。
请参阅图2与图5,进一步地,所述保真取芯器控制机构206包括夹持导向结构2061和第二机械臂2063,所述夹持导向结构2061设置有导向槽2062,能够夹持所述保真取芯器202并控制所述保真取芯器202的投放角度;所述第二机械臂2063的末端设置有第二静电吸盘2064,所述第二机械臂2063控制所述第二静电吸盘2064进行取样;以及摄像头2065和传感器(图中未标出),所述摄像头2065安装在所述推进室102底部,用于着陆点环境进行探测,所述传感器用于对周围环境的温度、湿度和压力进行测取。
具体实施时,当保真取芯器202通过投放孔2011进入保真取芯器控制机构206后,此时其夹持导向结构2061对保真取芯器202的运动方向进行导向,进而控制保真取芯器202的投放角度;第二机械臂2063用于对月球表面的岩石样品进行采样,通过安装在其末端的第二静电吸盘2064,采用静电吸附的方式对样品进行采样,可在保护设备的同时对表面月壤硬度进行判断,并通过摄像头2065进行探测,以及通过传感器对周围环境的温度、湿度和压力进行测取,控制器(图中未标出)对检测到的信息进行分析及处理后,以确认并标记采样地点,确认合适的安放钻取的表面,按最优的角度、钻探点进行钻探。
请参阅图5与图6,进一步地,保真取芯器202主要由多级重叠式液压缸系统、电机驱动系统和超声激振动力系统构成。其中多级重叠式液压缸系统由气动伺服缸2021和中空气动伺服缸2022等组成;电机驱动系统主要由推力轴承组2027、中空定子2029和中空转子2028组成;超声激振动力系统主要由上盖板2038、压电陶瓷2031、下盖板2039和变幅杆2032等组成。
进一步地,所述保真取芯器202还包括外部钻头2026、内部钻头2034、外钻壳体2025、内钻壳体2033、连接壳体2023、力传感器2024和2个滑动导向支撑环2035,所述外部钻头2026在所述多级重叠式液压缸系统和所述电极驱动系统的驱动下完成钻进动作,当遇到坚硬岩层时,通过所述超声激振动力系统驱动所述内部钻头2034完成钻进动作。
具体为:将保真取芯器202放入投放孔2011以后,保真取芯器202外部的夹持导向结构2061张开,与孔壁胀紧接触,将工具固定在孔壁上,同时保真取芯器202可沿夹持导向结构2061内壁在一定行程内轴向移动。在取样钻进时,多级重叠式液压缸系统中的气动伺服缸2021和中空气动伺服缸2022在气压作用下产生向下的推力,形成钻进所需的钻压,钻压经过连接壳体2023和力传感器2024向下传递,然后经过电机驱动系统传递到外钻壳体2025,进而传递给外部钻头2026;同时在自带动力电源的作用下,电机驱动系统开始工作,中空转子2028绕连接杆2030作定轴转动,同时将产生的扭矩传递给外钻壳体2025,然后传递给外部钻头2026,至此外部钻头2026的旋转钻进动作完成。
当遇到硬岩层时,超声激振动力系统中的压电陶瓷2031和变幅杆2032在电流作用下产生超声激励振动,并将振动传递给内钻壳体2033,然后依次传递给内部钻头2034上;同时连接杆2030将其分担的部分钻压也传递给内部钻头2034,对岩层形成超声振动切削,高速切削硬岩层,提高取样钻进速率,内钻壳体2033外表面安装有2个滑动导向支撑环2035,在滑动导向支撑环2035的作用下,降低超声钻进的横向振动,保证超声钻进的平稳进行。本发明通过采用多级式取芯实现了在有限的空间下能够在月球深部进行样品取芯,其取样深度可达15米以上,另外,保真取芯器202在钻取过程中,能够维护钻孔孔壁(月球土壤)的完整性,防止其坍塌,并且,其重量小于10kg,转速可达300r/min,具有低重量、高转速的优势,可进行大重量取芯,取样直径可达50mm。
进一步地,保真取芯器202还包括卡爪2036和密封气囊2037,当完成一个行程的取芯钻进后,收缩夹持导向结构2061,然后再向下行进一个行程后再次张开夹持导向结构2061并与孔壁胀紧接触,开始重复上述新一轮的钻进动作,直至取芯完成。取芯完成后,由卡爪2036卡断岩心,此时卡爪2036后方的密封气囊2037开始膨胀并填满整个密封槽,由于月球 为近真空,地球为高压环境,当取芯工具被带回地面时,此密封气囊2037在大气压力作用下便可形成自密封。
取样结束后,月壤样品封存在保真取芯器202中,保持其原始性能状态,即实现“保质、保温、保压、保湿、保光”的“五保”取芯。此时给出收集样品指令,牵引机构204下入投放孔2011内部,并通过第一静电吸盘2043取回装满样品的保真取芯器202,将其放回转置台201上。然后通过指令转动转置台201并通过第一机械205臂抓取一个新的保真取芯器202开始新一轮的取芯工作。
综上所述,本发明所述提供的一种月基原位保真取芯装置,并实现了对月球土壤的钻探、取芯以及保真存储的功能,以达到对月球土壤的原位检测,采用多级式取芯实现了在有限的空间下能够在月球深部进行样品取芯,其取样深度可达15米以上,另外,保真取芯器202在钻取过程中,能够维护钻孔孔壁(月球土壤)的完整性,能够防止其坍塌;保真取芯器202投放至月球表面时,通过保真取芯器控制机构206对地面环境进行监测,最优钻探点分析,投放角度控制,以及控制保真取芯器202的下探过程;通过天际通讯天线301与月面探测器302进行钻取系统的数据通信,实现取芯过程的实时管理和监测,并对月球表面进行环境监测,识别最优着陆点及采样点。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (10)

  1. 一种月基原位保真取芯装置,其特征在于,包括:
    登陆与返回舱;
    设置在所述登陆与返回舱内的用于对样品进行钻探、取芯并存储的保真取芯系统;以及
    设置在所述登陆与返回舱顶部的用于进行信息传递的天际通讯系统;
    所述保真取芯系统包括:
    转置台;
    设置在所述转置台上的若干个保真取芯器;以及
    设置在所述登陆与返回舱底部的保真取芯器控制机构。
  2. 根据权利要求1所述的月基原位保真取芯装置,其特征在于,所述若干个保真取芯器均匀分布在所述转置台上;
    所述转置台的中间位置设置有投放孔;所述保真取芯器控制机构与所述投放孔连接;其中,所述保真取芯器通过所述投放孔进入所述保真取芯器控制机构内。
  3. 根据权利要求1所述的月基原位保真取芯装置,其特征在于,所述保真取芯系统还包括:
    第一机械臂,所述第一机械臂设置在所述转置台上,用于将存放在所述转置台的保真取芯器转移至所述投放孔中;
    牵引机构,所述牵引机构设置在所述转置台上方;所述牵引机构包括牵引驱动件、牵引绳和设置在所述牵引绳末端的第一静电吸盘,所述保真取芯器完成采样后通过所述第一静电吸盘将所述保真取芯器引出月球表面,并通过所述第一机械臂将完成采样后的所述保真取芯器转移回所述转置台。
  4. 根据权利要求1所述的月基原位保真取芯装置,其特征在于,所述天际通讯系统包括天际通讯天线和月面探测器,所述月面探测器用于对月球表面的环境进行检测,并通过所述天际通讯天线对检测的信息进行传输。
  5. 根据权利要求1所述的月基原位保真取芯装置,其特征在于,还包括电源系统,所述电源系统包括若干多面形太阳能电池板组,所述多面形太阳能电池板组包括若干块太阳能板,所述若干块太阳能板拼接在一起并设置在所述登陆与返回舱的表面。
  6. 根据权利要求1所述的月基原位保真取芯装置,其特征在于,所述保真取芯器包括:
    多级重叠式液压缸系统,所述多级重叠式液压缸系统包括气动伺服缸和中空气动伺服缸;
    电极驱动系统,所述电极驱动系统包括推力轴承组、中空定子和中空转子;以及
    超声激振动力系统,所述超声激振动力系统包括上盖板、压电陶瓷、下盖板和变幅杆。
  7. 根据权利要求6所述的月基原位保真取芯装置,其特征在于,所述保真取芯器还包括外部钻头和内部钻头,所述外部钻头在所述多级重叠式液压缸系统和所述电极驱动系统的驱动下完成钻进动作,当遇到坚硬岩层时,通过所述超声激振动力系统驱动所述内部钻头完成钻进动作。
  8. 根据权利要求1所述的月基原位保真取芯装置,其特征在于,所述保真取芯器控制机构包括:
    夹持导向结构,所述夹持导向结构用于夹持所述保真取芯器并控制所述保真取芯器的投放角度;
    第二机械臂,所述第二机械臂的末端设置有第二静电吸盘,所述第二机械臂控制所述第二静电吸盘进行取样;以及
    摄像头和传感器,所述摄像头安装在所述推进室底部,用于对着陆点环境进行探测,所述传感器用于对周围环境的温度、湿度和压力进行测取。
  9. 根据权利要求1所述的月基原位保真取芯装置,其特征在于,所述登陆与返回舱包括:
    壳体;
    设置在所述壳体底部的用于调整所述登陆与返回舱着陆角度的推进室;以及
    设置在所述壳体内的用于容置所述保真取芯系统的保真取芯室。
  10. 根据权利要求1所述的月基原位保真取芯装置,其特征在于,还包括设置在所述登陆与返回舱周边的缓冲组件,所述缓冲组件包括支撑座和伸缩杆,所述伸缩杆一端与所述支撑座连接,另一端与所述登陆与返回舱连接。
PCT/CN2020/085207 2019-06-27 2020-04-16 一种月基原位保真取芯装置 WO2020259022A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910568191.4A CN110186708B (zh) 2019-06-27 2019-06-27 一种月基原位保真取芯装置
CN201910568191.4 2019-06-27

Publications (1)

Publication Number Publication Date
WO2020259022A1 true WO2020259022A1 (zh) 2020-12-30

Family

ID=67723790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/085207 WO2020259022A1 (zh) 2019-06-27 2020-04-16 一种月基原位保真取芯装置

Country Status (2)

Country Link
CN (1) CN110186708B (zh)
WO (1) WO2020259022A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113640400A (zh) * 2021-06-25 2021-11-12 中国科学院紫金山天文台 一种太阳系小行星岩土中有机物的探测方法
CN115539028A (zh) * 2022-10-31 2022-12-30 深圳大学 月壤高低频复合冲击式取芯方案和装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110186708B (zh) * 2019-06-27 2024-11-01 深圳大学 一种月基原位保真取芯装置
CN111141549B (zh) * 2020-02-22 2024-09-06 深圳大学 月球大深度保真取芯探矿机器人系统
CN111137473A (zh) * 2020-02-22 2020-05-12 深圳大学 月球取芯探矿及回收装置
CN111198111A (zh) * 2020-02-22 2020-05-26 深圳大学 月球取芯样品保真存储装置及回收和取芯系统
CN111731510B (zh) * 2020-07-31 2020-11-17 北京控制与电子技术研究所 适用于地外天体着陆探测的小型化数据记录与发射系统
CN112255004B (zh) * 2020-09-27 2021-09-21 中国科学院空间应用工程与技术中心 轴向屈曲金属密封深空采样封装装置及漏率监测封装系统
CN112828939A (zh) * 2021-03-20 2021-05-25 陈伟波 一种基于大数据控制压力传感器的系统
CN113375965A (zh) * 2021-06-23 2021-09-10 云南省生态环境科学研究院 一种多功能土壤采样装置
CN114323773B (zh) * 2022-03-15 2022-05-17 潍坊市园林环卫服务中心 一种景观园林土壤取样装置
CN116165002B (zh) * 2022-11-11 2023-08-22 南京航空航天大学 一种实现月面钻取表取采样的着陆器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101109674A (zh) * 2007-08-30 2008-01-23 北京航空航天大学 月球土壤采样器
CN102721573A (zh) * 2012-06-18 2012-10-10 哈尔滨工业大学 长距离柔弹性刷式螺旋集输颗粒状样品的采集装置
CN110186708A (zh) * 2019-06-27 2019-08-30 深圳大学 一种月基原位保真取芯装置
CN210427066U (zh) * 2019-06-27 2020-04-28 深圳大学 一种月基原位保真取芯装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101109674A (zh) * 2007-08-30 2008-01-23 北京航空航天大学 月球土壤采样器
CN102721573A (zh) * 2012-06-18 2012-10-10 哈尔滨工业大学 长距离柔弹性刷式螺旋集输颗粒状样品的采集装置
CN110186708A (zh) * 2019-06-27 2019-08-30 深圳大学 一种月基原位保真取芯装置
CN210427066U (zh) * 2019-06-27 2020-04-28 深圳大学 一种月基原位保真取芯装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU, DEYUN ET AL.: "Summary of Sampling Technology for Small Celestial Bodies", JOURNAL OF DEEP SPACE EXPLORATION, vol. 5, no. 3, 30 June 2018 (2018-06-30), pages 1 - 16, XP055773232 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113640400A (zh) * 2021-06-25 2021-11-12 中国科学院紫金山天文台 一种太阳系小行星岩土中有机物的探测方法
CN115539028A (zh) * 2022-10-31 2022-12-30 深圳大学 月壤高低频复合冲击式取芯方案和装置
CN115539028B (zh) * 2022-10-31 2024-05-14 深圳大学 月壤高低频复合冲击式取芯方案和装置

Also Published As

Publication number Publication date
CN110186708B (zh) 2024-11-01
CN110186708A (zh) 2019-08-30

Similar Documents

Publication Publication Date Title
WO2020259022A1 (zh) 一种月基原位保真取芯装置
US11821274B2 (en) Moon-based in-situ condition-preserved coring multi-stage large-depth drilling system and method therefor
CN100582729C (zh) 月球土壤采样器
CN101786504B (zh) 用于小行星着陆器探测的锚定位系统
JP4078030B2 (ja) 海底ピストンコアリングの方法、コア標本採取管、及び海底コアリングシステム
US3734209A (en) Well drilling rod and casing assembling method
JP3809524B2 (ja) スペースデブリ軌道変換用テザー装置
AU2012330484B2 (en) Device and method for extracting a sample while maintaining a pressure that is present at the sample extraction location
CN102979520A (zh) 基于bwsrm原理的水平孔地应力测量装置
JP2010525204A (ja) 水底削岩システム及び水底下方の地層を削岩する方法
US10745989B2 (en) Deep rock in-situ active thermal-insulation coring device and thermal-insulation coring method thereof
EP1839052A1 (en) Instrumentation probe for in situ measurement and testing of seabed
CN112389666B (zh) 基于矢量飞行的爬壁机器人
KR101886277B1 (ko) 드론을 이용한 원격 탐사장치
CN108548689A (zh) 延时启动型多电机同步振动式冰下水体沉积物取样器
CN210427066U (zh) 一种月基原位保真取芯装置
WO2019226913A1 (en) Dual rotary elevating geotechnical drill
WO2019196184A1 (zh) 一种水下机器人可携带型水平方向地质取样钻具
US11773651B2 (en) Drilling machine for foundation piles comprising an electric energy recovery winch
CN210136094U (zh) 一种月基保真取芯多级大深度钻进系统
JP4317600B2 (ja) ロータリー式サンプリング法による試料採取方法
CN210571476U (zh) 一种地质勘探用取样器辅助装置
Yang et al. Design of a Lunar Regolith Sampling System for Large-Scale Rover Traversals
Fichou et al. Exploratory Rover for Experimental Based insitu Utilization Science
US9062433B2 (en) Method and apparatus for gradually introducing thin-walled pipes into the ground

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20833580

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22.04.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20833580

Country of ref document: EP

Kind code of ref document: A1