WO2020258985A1 - 一种离子风散热装置 - Google Patents

一种离子风散热装置 Download PDF

Info

Publication number
WO2020258985A1
WO2020258985A1 PCT/CN2020/083993 CN2020083993W WO2020258985A1 WO 2020258985 A1 WO2020258985 A1 WO 2020258985A1 CN 2020083993 W CN2020083993 W CN 2020083993W WO 2020258985 A1 WO2020258985 A1 WO 2020258985A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
ion wind
dissipation device
ground electrode
electrode
Prior art date
Application number
PCT/CN2020/083993
Other languages
English (en)
French (fr)
Inventor
屈治国
张显明
张倩
任晓强
张剑飞
曾敏军
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2020258985A1 publication Critical patent/WO2020258985A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/20136Forced ventilation, e.g. by fans
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T19/00Devices providing for corona discharge
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present disclosure relates to a heat dissipation device for electronic equipment, in particular to an ion wind heat dissipation device.
  • noise including the aerodynamic noise of the fan blowing air, the electromagnetic noise of the motor, and the vibration noise of the structural parts. These noises will have a certain impact on the user. ; Second, the moving parts in the mechanical device have mechanical friction, which will wear or generate frictional noise as the running time increases, which affects the performance of the radiator and user experience.
  • the present disclosure particularly uses ion wind heat dissipation to overcome the defects in the prior art and provide better heat dissipation effects.
  • the purpose of the present disclosure is to provide an ion wind heat dissipation device, which can effectively reduce noise, reduce mechanical wear, and provide a greater wind speed to help heat dissipation.
  • an ion wind heat dissipation device which is composed of a plurality of single-stage ion wind generating units superimposed, and generates ion wind through corona discharge for convective heat dissipation.
  • Figure 1 is a schematic diagram of the structure of the ion wind generation module
  • Figure 2 is a schematic diagram of the structure of a single-stage ion wind generating unit
  • Figure 3 is a schematic diagram of the high-voltage electrode structure
  • Figure 4 is a schematic diagram of the ground electrode structure
  • Fig. 5 and Fig. 6 are comparison diagrams of electric fields of different ground electrodes.
  • Fig. 5 is a tapered ground electrode
  • Fig. 6 is a straight ring ground electrode;
  • Figures 7, 8, and 9 are schematic diagrams of the arrangement of the ring electrodes of the ion wind generation module, in which Figure 7 is “cone + cone + cone”; Figure 8 is “straight ring + cone + cone”; 9 is “straight ring + straight ring + cone”;
  • Figure 10 is a comparison diagram of wind speeds using three different ground electrode arrangements.
  • the ion wind heat dissipation device is composed of a plurality of single-stage ion wind generating units superimposed and generated by corona discharge to generate ion wind for convective heat dissipation.
  • the wind speed and air output of the ion wind heat dissipation device can be flexibly adjusted according to heat dissipation requirements and space conditions. For example: if the space is relatively small, single-stage or two-stage ion wind generating units can be installed; if the space is larger and greater heat dissipation performance is required, four-stage and five-stage ion wind generating units can be stacked to increase the outlet wind speed to enhance The heat dissipation capacity of the fins.
  • the single-stage ion wind generating unit includes a high-voltage electrode 3 and a ground electrode 4.
  • the high-voltage power supply supplies power to the high-voltage electrode 3, and the grounding electrode 4 is grounded, and a strong electric field is generated between the discharge needle and the grounding electrode.
  • a strong electric field is generated between the discharge needle and the grounding electrode.
  • the air around the discharge needle 1 is ionized into charged particles.
  • the charged particles move to the ground electrode 4 under the action of the electric field, and collide with neutral molecules during the movement, resulting in the transfer and transfer of electric charge and kinetic energy. , Produce strong disturbance to the surrounding fluid flow, thereby forming a macroscopic gas movement, thereby generating wind at the outlet of the ion wind device.
  • the high-voltage electrode 3 includes a discharge needle 1 and an electrode plate 5, and the discharge needle 1 is connected to a small hole opened on the electrode plate 5.
  • the material of the discharge needle 1 includes any of the following: metallic tungsten, tungsten alloy, stainless steel, titanium, gold, and the like.
  • the electrode plate 5 is made of insulating material, such as plastic, resin or ceramic.
  • the electrode plate adopts insulating materials to protect the conductive lines arranged in it.
  • it can shield the electric field generated by the conductive lines from interfering with the heat sink, improve the stability of the ion wind, and reduce the overall performance of the heat sink.
  • it can prevent a short circuit between the high-voltage electrode and the ground electrode in a high-humidity environment, thereby improving the adaptability of the heat sink to a high-humidity environment.
  • the ground electrode 4 includes a thin-walled metal channel 2 and a supporting structure 6, wherein the thin-walled metal channel 2 is arranged in an array, and the thin-walled metal channel 2 Connected to the hole opened on the supporting structure 6.
  • the thin-walled metal channels 2 are arranged in an array along the longitudinal and transverse directions on the ground electrode 4, which can be adjusted according to the air output and the size of the heat dissipation device to meet various heat dissipation requirements.
  • the support structure 6 is provided with holes for installing the thin-walled metal channel 2.
  • the inner wall of the support structure 6 can be plated with a layer of metal as the ion wind receiver by electroplating, or the thin-walled metal channel 2 can be machined. Then install it on the hole of the support structure 6.
  • the ground electrode 4 includes a tapered ground electrode and a straight ring ground electrode.
  • the cross-sectional area of the thin-walled metal channel 2 in the axial direction is divided into two cases: gradually decreasing and remaining unchanged.
  • the cross-sectional area of the thin-walled metal channel 2 gradually decreases.
  • the ground electrode 4 is a conical ground electrode, and the distance between the discharge needle 1 and the wall surface of the thin-walled metal channel 2 is closer, which can obtain a greater electric field strength, improve the acceleration effect on ions, and thereby increase the wind speed of the ion wind.
  • the ground electrode 4 whose cross-sectional area of the thin-walled metal channel remains constant is a straight ring ground electrode, which can obtain a larger air volume than a tapered ground electrode.
  • the ground electrode 4 includes any one of the following arrangements: cone + cone + cone, straight ring + cone + cone and straight ring +Straight ring+cone.
  • the ground electrode 4 includes, but is not limited to, "taper + cone + cone” as shown in FIG. 7, and "straight ring + cone + cone” as shown in FIG.
  • the electrode arrangement of "cone + cone + cone” can obtain the maximum outlet wind speed, but the outlet air volume may be slightly smaller.
  • the straight ring can obtain a larger outlet area, the outlet air volume is large, but the outlet wind speed is lower than that of the cone.
  • the above-mentioned concentrated electrode arrangement needs to be determined in conjunction with specific heat dissipation requirements.
  • the supporting structure 6 is made of insulating material, and in order to prevent breakdown, it specifically includes any one of the following: plastic and ceramic.
  • insulating materials can reduce the occurrence of breakdown between the ion wind high-voltage electrode and the ground electrode, and improve the stability and reliability of the ion wind operation.
  • Fig. 10 is a comparison of the outlet wind speed of the ion wind device with two-stage “cone + cone”, two-stage “straight ring + cone”, and two-stage "straight ring + straight ring” arrangement in this disclosure. It can be seen from Figure 10 that the use of "tapered" electrodes can effectively increase the outlet wind speed of the ion wind, thereby improving the heat dissipation effect of the fins.
  • the ion wind device can be equipped with more electrodes to further increase the wind speed.
  • only two-stage ion wind is used as an example.
  • the setting of the single-stage ion wind generating unit can be flexibly adjusted through the superposition method to meet different working requirements;
  • the ground electrode adopts a tapered shape with a gradually changing cross section. , And the straight-ring mixed arrangement, can effectively increase the outlet wind speed and air volume, and improve the heat dissipation effect of the fins.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Thermal Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Electrostatic Separation (AREA)

Abstract

本公开揭示了一种离子风散热装置,所述离子风散热装置由若干单级离子风发生单元叠加组成,通过电晕放电产生离子风进行对流散热。

Description

一种离子风散热装置
本公开要求享有2019年06月26日提交的名称为“一种离子风散热装置”的中国专利申请CN201910570963.8的优先权,其全部内容通过引用并入本文中。
技术领域
本公开涉及一种电子设备散热装置,特别涉及一种离子风散热装置。
背景技术
目前,通讯产品的散热面临巨大的挑战,5G时代的高功耗导致许多产品都存在不同程度的散热问题,传统的自然散热已经无法满足产品的需求,需引入风冷散热模式已解决产品面临的散热问题。若使用传统风扇,换热器与外界空气之间的换热主要采用电机加风扇的机械式散热方式,通过电机旋转带动风扇从而驱动空气与换热器表面翅片发生热量交换,以达到散热的效果。然而,机械式散热存有以下几方面的不足:一、易产生噪声,包括风扇吹动空气的气动噪声、电机的电磁噪声以及结构件的振动噪声等,这些噪声都会对使用者造成一定的影响;二、机械装置中的运动部件存在机械摩擦,随着运行时间增加会有磨损或产生摩擦噪声,影响散热器的性能和用户体验。
因此,为改变现有的机械式散热现状,本公开特别采用离子风散热方式以克服现有技术中的缺陷,提供更好的散热效果。
发明内容
针对以上情况,本公开的目的在于提供一种离子风散热装置,能有效降低噪声,减少机械磨损,以及提供更大的风速帮助散热。
本公开的目的是通过以下技术方案实现的:一种离子风散热装置,所述离子风散热装置由若干单级离子风发生单元叠加组成,通过电晕放电产生离子风进行对流散热。
附图说明
图1是离子风发生模块结构示意图;
图2是单级离子风发生单元结构示意图;
图3是高压电极结构示意图;
图4是接地电极结构示意图;
图5、图6是不同接地电极的电场对比图,其中,图5为锥形接地电极;图6为直环接地电极;
图7、图8、图9是离子风发生模块环电极排布示意图,其中,图7是“锥形+锥形+锥形”;图8是“直环+锥形+锥形”;图9是“直环+直环+锥形”;
图10是采用三种不同接地电极排布方式的出风速度对比图。
附图中标记说明如下:
1、放电针;2、薄壁金属通道;3、高压电极;4、接地电极;5、电极板;6、支撑结构。
具体实施方式
下面结合附图和实施例对本公开的技术方案进行详细说明。
参见图1、图2,一种离子风散热装置,所述离子风散热装置由若干单级离子风发生单元叠加组成,通过电晕放电产生离子风进行对流散热。
上述实施例公开了本公开的技术方案,通过将多个单级离子风发生单元在出风方向叠加,能够根据散热要求及空间条件灵活调节离子风散热装置的风速及出风量。例如:若空间比较狭小,可以安装单级或者两级的离子风发生单元;若空间较大且要求更大的散热性能,可以叠加四级、五级的离子风发生单元提高出口风速,来加强翅片的散热能力。
在一个实施例中,如图2所示,所述单级离子风发生单元包括高压电极3和接地电极4。
在离子风散热装置工作时,由高压电源对高压电极3供电,接地电极4接地,在放电针与接地电极之间会产生强电场。在强电场的作用下,放电针1周围的空气被电离成带电粒子,带电粒子在电场的作用下向接地电极4运动,在运动过程中与中性分子碰撞,产生电荷和动能的转移和传递,对周围流体流动产生强烈的扰动,从而形成宏观的气体运动,从而在离子风装置的出口出产生风。
在一个实施例中,如图3所示,所述高压电极3包括放电针1和电极板5,且所述放电针1连接于所述电极板5上开设的小孔内。
在一个实施例中,所述放电针1的材料包括如下任一种:金属钨、钨合金、不锈钢、钛、金等。
在一个实施例中,所述电极板5为绝缘材料,例如塑料、树脂或陶瓷。
该实施例中,电极板采用绝缘材料,对布置于其内的导电线路进行保护,一方面能够屏蔽导电线路产生的电场对散热装置的干扰,提高离子风的稳定性,降低散热装置的整体功耗;另一方面,能够防止高湿度环境下高压电极与接地电极发生短路,从而提高散热装置对高湿度环境的适应性。
在一个实施例中,如图4所示,所述接地电极4包括薄壁金属通道2和支撑结构6,其中,所述薄壁金属通道2呈阵列式排列,且所述薄壁金属通道2连接于所述支撑结构6上开设的孔洞内。
该实施例中,薄壁金属通道2在接地电极4上沿纵向和横向呈阵列式排列,能够根据出风量及散热装置的尺寸大小进行调节以适应各种散热需求。另外,支撑结构6上开设有用于安装薄壁金属通道2的孔洞,可以采用电镀的方式在支撑结构6内壁镀一层金属作为离子风的接收极,或者对薄壁金属通道2进行机械加工,再安装在支撑结构6的孔洞上。
在一个实施例中,所述接地电极4包括锥形接地电极和直环接地电极。
该实施例中,薄壁金属通道2在轴向方向的横截面面积分为逐渐减小和保持不变两种情况,其中,如图5所示,薄壁金属通道2横截面面积逐渐减小的接地电极4为锥形接地电极,放电针1到薄壁金属通道2壁面的距离更近,能够获得更大的电场强度,提高对离子的加速效果,从而提高离子风的风速。如图6所示,薄壁金属通道横截面面积保持不变的接地电极4为直环接地电极,相比锥形接地电极,能够获得更大的风量。
在一个实施例中,如图7、8、9所示,所述接地电极4包括如下任一种排布方式:锥形+锥形+锥形、直环+锥形+锥形和直环+直环+锥形。
该实施例中,接地电极4包括但不限于如图7所示的“锥形+锥形+锥形”、如图8所示的“直环+锥形+锥形”、如图9所示的“直环+直环+锥形”等排布方式。如图7所示采用“锥形+锥形+锥形”的电极排布可以获得最大的出口风速,但其出口的风量可能略小。采用直环则可以获得较大的出口面积,出口风量大,但出口风速比锥形的小。上述集中电极排布需要结合具体的散热需求进行确定。
在一个实施例中,所述支撑结构6采用绝缘材料制成,为防止击穿,具体包括如下任一:塑料、陶瓷。采用绝缘材料可以降低离子风高压电极和接地电极之间击穿现象的发生,提高离子风工作的稳定性和可靠性。
图10为本公开采用双级“锥形+锥形”、双级“直环+锥形”和双级“直环+直环”布置离子风装置的出口风速对比。从图10中可以看出,采用“锥形”电极可以有效的提高离子风的出口风速,进而提高翅片的散热效果。该离子风装置可以设置更多的电极,进一步提高风速,这里仅以双级的离子风举例说明。
与现有技术相比,本公开带来的有益效果为:1、通过叠加方式,能够灵活调整单级离子风发生单元的设置,以适应不同工作需求;2、接地电极采用锥形,截面渐变,以及直环混合排布方式,能有效提高出口风速和风量,提高翅片的散热效果。

Claims (10)

  1. 一种离子风散热装置,其中,所述离子风散热装置由若干单级离子风发生单元叠加组成,通过电晕放电产生离子风进行对流散热。
  2. 根据权利要求1所述的散热装置,其中,所述单级离子风发生单元包括高压电极和接地电极。
  3. 根据权利要求2所述的散热装置,其中,所述高压电极包括放电针和电极板,且所述放电针连接于所述电极板上开设的小孔内。
  4. 根据权利要求3所述的散热装置,其中,所述电极板为绝缘材料。
  5. 根据权利要求2所述的散热装置,其中,所述接地电极包括薄壁金属通道和支撑结构。
  6. 根据权利要求5所述的散热装置,所述薄壁金属通道呈阵列式排列,且所述薄壁金属通道连接于所述支撑结构上开设的孔洞内。
  7. 根据权利要求6所述的散热装置,其中,根据所述薄壁金属通道的横截面面积不同,所述接地电极包括锥形接地电极和直环接地电极。
  8. 根据权利要求6所述的散热装置,其中,所述离子风发生单元中的接地电极由若干个锥形接地电极排列组成。
  9. 根据权利要求6所述的散热装置,其中,所述离子风发生单元中的接地电极由若干个锥形接地电极和直环接地电极排列组成。
  10. 根据权利要求9所述的散热装置,其中,所述支撑结构采用绝缘材料制成。
PCT/CN2020/083993 2019-06-26 2020-04-09 一种离子风散热装置 WO2020258985A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910570963.8A CN112153853B (zh) 2019-06-26 2019-06-26 一种离子风散热装置
CN201910570963.8 2019-06-26

Publications (1)

Publication Number Publication Date
WO2020258985A1 true WO2020258985A1 (zh) 2020-12-30

Family

ID=73869102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/083993 WO2020258985A1 (zh) 2019-06-26 2020-04-09 一种离子风散热装置

Country Status (2)

Country Link
CN (1) CN112153853B (zh)
WO (1) WO2020258985A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115313157A (zh) * 2022-09-13 2022-11-08 南京工业大学 一种离子风散热装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080197779A1 (en) * 2007-02-16 2008-08-21 Timothy Scott Fisher Various methods, apparatuses, and systems that use ionic wind to affect heat transfer
CN102159055A (zh) * 2010-12-31 2011-08-17 东莞市宇洁新材料有限公司 一种离子风散热装置
KR101361036B1 (ko) * 2012-08-17 2014-02-12 서강대학교산학협력단 스택형 이온풍 발생장치
CN107809063A (zh) * 2016-09-09 2018-03-16 青岛海尔智能技术研发有限公司 并联式多级离子送风装置
CN107809064A (zh) * 2016-09-09 2018-03-16 青岛海尔智能技术研发有限公司 多级离子送风模块
CN108848659A (zh) * 2018-08-29 2018-11-20 西安交通大学 一种基于肋片的离子风散热装置
CN208284607U (zh) * 2017-12-14 2018-12-25 广东工业大学 离子风散热单体、离子风散热系统和离子风散热温控系统
CN110337219A (zh) * 2019-06-12 2019-10-15 西安交通大学 离子风散热装置及其方法
CN110708918A (zh) * 2018-07-09 2020-01-17 中兴通讯股份有限公司 一种离子风发生器及实现方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130083446A1 (en) * 2010-06-22 2013-04-04 Kyocera Corporation Ion Wind Generator, Ion Wind Generating Apparatus, and Ion Wind Generating Method
WO2013161534A1 (ja) * 2012-04-23 2013-10-31 三菱電機株式会社 コロナ放電装置及び空気調和機
CN107660103B (zh) * 2017-09-14 2019-08-09 西安交通大学 一种针-环式离子风翅片散热装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080197779A1 (en) * 2007-02-16 2008-08-21 Timothy Scott Fisher Various methods, apparatuses, and systems that use ionic wind to affect heat transfer
CN102159055A (zh) * 2010-12-31 2011-08-17 东莞市宇洁新材料有限公司 一种离子风散热装置
KR101361036B1 (ko) * 2012-08-17 2014-02-12 서강대학교산학협력단 스택형 이온풍 발생장치
CN107809063A (zh) * 2016-09-09 2018-03-16 青岛海尔智能技术研发有限公司 并联式多级离子送风装置
CN107809064A (zh) * 2016-09-09 2018-03-16 青岛海尔智能技术研发有限公司 多级离子送风模块
CN208284607U (zh) * 2017-12-14 2018-12-25 广东工业大学 离子风散热单体、离子风散热系统和离子风散热温控系统
CN110708918A (zh) * 2018-07-09 2020-01-17 中兴通讯股份有限公司 一种离子风发生器及实现方法
CN108848659A (zh) * 2018-08-29 2018-11-20 西安交通大学 一种基于肋片的离子风散热装置
CN110337219A (zh) * 2019-06-12 2019-10-15 西安交通大学 离子风散热装置及其方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115313157A (zh) * 2022-09-13 2022-11-08 南京工业大学 一种离子风散热装置
CN115313157B (zh) * 2022-09-13 2024-04-12 南京工业大学 一种离子风散热装置

Also Published As

Publication number Publication date
CN112153853B (zh) 2023-03-14
CN112153853A (zh) 2020-12-29

Similar Documents

Publication Publication Date Title
CN105283046B (zh) 一种离子风散热装置
US7545640B2 (en) Various methods, apparatuses, and systems that use ionic wind to affect heat transfer
KR101206578B1 (ko) 플로우 튜브 장치
US8342234B2 (en) Plasma-driven cooling heat sink
CN107218187B (zh) 一种磁等离子体推力器的阳极水冷结构
TW201008651A (en) Ionic fluid flow accelerator
CN107660103B (zh) 一种针-环式离子风翅片散热装置
CN107517573B (zh) 一种针-网式离子风翅片散热装置
WO2020258985A1 (zh) 一种离子风散热装置
WO2008136697A1 (en) Method and apparatus for flow control of a gas
JP2011511997A (ja) 強化された静電放電のための補助電極
CN113163678B (zh) 一种基于离子风的耦合冷却装置及其应用方法
AU2013401144A1 (en) Controllable nanoparticle jet flow transportation type minimal quantity lubrication grinding equipment under magnetically enhanced electric field
CN106852095B (zh) 一种旋转射流式离子风散热器
JP5515099B2 (ja) イオン風発生装置及びガスポンプ
CN113035803B (zh) 一种磁场与碳纳米管协同提升离子风强度的装置
CN109246987B (zh) 一种离子风散热器
CN111225486A (zh) 一种网状结构介质阻挡放电等离子体激励器
CN105514063A (zh) 一种等离子风冷却装置
CN110337219A (zh) 离子风散热装置及其方法
CN205266098U (zh) 一种离子风散热装置
CN115313157A (zh) 一种离子风散热装置
CN206517732U (zh) 一种散热装置
CN218215283U (zh) 一种高频芯片散热装置
CN208272361U (zh) 一种离子风高效散热器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20832465

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20832465

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/05/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20832465

Country of ref document: EP

Kind code of ref document: A1