WO2020258217A1 - 可移动平台状态估计方法、系统、可移动平台及存储介质 - Google Patents

可移动平台状态估计方法、系统、可移动平台及存储介质 Download PDF

Info

Publication number
WO2020258217A1
WO2020258217A1 PCT/CN2019/093580 CN2019093580W WO2020258217A1 WO 2020258217 A1 WO2020258217 A1 WO 2020258217A1 CN 2019093580 W CN2019093580 W CN 2019093580W WO 2020258217 A1 WO2020258217 A1 WO 2020258217A1
Authority
WO
WIPO (PCT)
Prior art keywords
point cloud
cloud data
ground point
grid area
accumulation frame
Prior art date
Application number
PCT/CN2019/093580
Other languages
English (en)
French (fr)
Inventor
王荣志
刘晓洋
张晓炜
王京
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2019/093580 priority Critical patent/WO2020258217A1/zh
Priority to CN201980008419.2A priority patent/CN111684382B/zh
Publication of WO2020258217A1 publication Critical patent/WO2020258217A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0246Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
    • G05D1/0251Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means extracting 3D information from a plurality of images taken from different locations, e.g. stereo vision
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0214Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0223Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving speed control of the vehicle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0255Control of position or course in two dimensions specially adapted to land vehicles using acoustic signals, e.g. ultra-sonic singals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0257Control of position or course in two dimensions specially adapted to land vehicles using a radar
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • G05D1/0285Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using signals transmitted via a public communication network, e.g. GSM network

Definitions

  • the embodiment of the present invention relates to the field of control technology, and in particular to a method, system, movable platform and storage medium for estimating the state of a movable platform.
  • mobile platforms such as unmanned vehicles and sports robots mainly control the movement of the mobile platform by recognizing the surrounding environment and the state of the mobile platform itself.
  • unmanned vehicles running on the ground are less observable in roll, pitch, and height.
  • the embodiment of the present invention provides a method, system, movable platform and storage medium for estimating the state of a movable platform, which can achieve a better estimation of the state of the movable platform in an environment with poor observability, and improve the The accuracy and stability of platform state estimation.
  • an embodiment of the present invention provides a method for estimating the state of a movable platform, including:
  • an embodiment of the present invention provides a state estimation system, including:
  • Point cloud sensor for obtaining 3D point cloud data
  • Memory used to store program instructions
  • the processor is configured to call the program instructions, and when the program instructions are executed, to perform the following operations:
  • an embodiment of the present invention provides a movable platform, and the movable platform includes:
  • the power system configured on the fuselage is used to provide mobile power for the movable platform
  • an embodiment of the present invention provides a computer-readable storage medium that stores a computer program that, when executed by a processor, implements the method described in the first aspect.
  • the ground point cloud data belonging to the same plane is determined from the three-dimensional point cloud data, and the ground point cloud data is corrected according to the ground point cloud data.
  • the position information and/or posture information of the movable platform realizes the improvement of the stability and accuracy of the state estimation of the movable platform by correcting the position information and/or posture information of the movable platform.
  • FIG. 1 is a schematic structural diagram of a state estimation system provided by an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of a method for estimating the state of a movable platform according to an embodiment of the present invention
  • FIG. 3 is a schematic flowchart of another method for estimating the state of a movable platform according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of matching ground point cloud data provided by an embodiment of the present invention.
  • 5a is a schematic diagram of the height change result before the state of the movable platform is corrected according to an embodiment of the present invention
  • 5b is a schematic diagram of the height change result after the state of the movable platform is corrected according to an embodiment of the present invention
  • Fig. 6 is a schematic structural diagram of a state estimation system provided by an embodiment of the present invention.
  • the method for estimating the state of the movable platform provided in the embodiment of the present invention may be executed by a state estimating system.
  • the state estimation system can be applied to a movable platform.
  • the state estimation system may be installed on a movable platform; in some embodiments, the state estimation system may be spatially independent of the movable platform.
  • the movable platform may include, but is not limited to, movable systems such as robots capable of autonomous movement, unmanned vehicles, and unmanned ships.
  • the state estimation system can obtain the three-dimensional point cloud data corresponding to the surrounding environment where the mobile platform is currently located, and determine the ground point cloud data belonging to the same plane from the three-dimensional point cloud data, thereby according to the ground point cloud data Correct the position information and/or posture information of the movable platform.
  • the three-dimensional point cloud data may be obtained by lidar, or may be obtained by millimeter wave radar, ultrasonic radar, camera on a movable platform, etc., which is not specifically limited in the embodiment of the present invention .
  • the embodiment of the present invention considers that in scenes with poor observability, such as scenes with obvious environmental noise such as in a tunnel and a large car, the movable platform uses the visual inertial navigation system to determine the position, speed, and posture of the movable platform.
  • the ground point cloud data extracted from the acquired three-dimensional point cloud data of the surrounding environment of the movable platform is used to constrain the roll and pitch angles of the movable platform It can effectively improve the stability and accuracy of estimating the state of the movable platform in some special scenarios.
  • the estimation of the front and back changes of the movable platform is constrained, so as to improve the robustness in special scenes such as more dynamic objects and sparse texture.
  • the state estimation system obtains three-dimensional point cloud data of the surrounding environment of the movable platform, determines a fitting plane according to the three-dimensional point cloud data, and performs pose correction on the ground point cloud data of the fitting plane , And perform a secondary correction on the ground point cloud data of the fitted plane after the pose correction, to determine the height error information of the ground point cloud data, and transmit the error information as a constraint factor to Non-linear optimization is performed in the visual inertial navigation system to improve the robustness of state estimation.
  • the state estimation system determines the ground point cloud data
  • the distance to the surroundings of the movable platform may be specified with the movable platform as the center.
  • the three-dimensional point cloud data in the range is divided into multiple grid areas, and the height of the three-dimensional point cloud data in each grid area is counted, so as to determine that the three-dimensional point cloud data whose height is less than the preset height threshold is the initial ground point cloud data.
  • the state estimation system may obtain a fitting plane and a normal vector of the fitting plane according to the determined initial ground point cloud fitting, and use the normal vector to determine a ground point cloud whose distance from the fitting plane is less than a preset distance threshold data.
  • the state estimation system may obtain the first current accumulated frame and the first historical accumulated frame obtained by accumulation of a preset number of frames, and project the ground point cloud data of the first current accumulated frame to the first In the ground point cloud data of a historical accumulation frame, the first error information between the ground point cloud data of the first current accumulation frame and the ground point cloud data of the first historical accumulation frame is determined, and according to the first The error information corrects the roll angle, pitch angle, height, etc. of the movable platform to obtain the corrected ground point cloud data.
  • the state estimation system may construct a second current cumulative frame acquired cumulatively within a specified time range based on the corrected ground point cloud data of each frame And a second historical accumulation frame, and project the ground point cloud data of the second current accumulation frame onto the ground point cloud data of the second historical accumulation frame to determine the ground point cloud of the second current accumulation frame
  • FIG. 1 is a schematic structural diagram of a state estimation system according to an embodiment of the present invention.
  • the state estimation system includes: a state estimation device 11 and a movable platform 12.
  • a communication connection can be established between the movable platform 12 and the state estimation device 11 through a wireless communication connection.
  • the mobile platform 12 and the state estimation device 11 may also establish a communication connection through a wired communication connection.
  • the state estimation device 11 may be set on a movable platform 12.
  • the movable platform 12 may include, but is not limited to, movable equipment such as unmanned vehicles, unmanned ships, and mobile robots.
  • the movable platform 12 includes a power system 121, and the power system 121 is used to provide the movable platform 12 with moving power.
  • the movable platform 12 and the state estimation device 11 are independent of each other, and the state estimation device 11 may include one or more of a remote control, a smart phone, a tablet computer, a laptop computer, and a wearable device.
  • the state estimation device 11 may be far away from the movable platform 12, for example, for example, the state estimation device 11 is set in a cloud server and establishes a communication connection with the movable platform 12 through a wireless communication connection.
  • the state estimation device 11 includes a point cloud sensor, and the point cloud sensor is used to obtain three-dimensional point cloud data.
  • the state estimation device 11 may obtain three-dimensional point cloud data corresponding to the surrounding environment where the movable platform is currently located, and determine the ground point cloud data belonging to the same plane from the three-dimensional point cloud data, And according to the ground point cloud data, the position information and/or posture information of the movable platform are corrected, thereby improving the accuracy and stability of the state estimation of the movable platform.
  • FIG. 2 is a schematic flowchart of a state estimation method for a movable platform according to an embodiment of the present invention.
  • the method can be executed by a state estimation system, wherein the specific explanation of the state estimation system is as described above.
  • the method of the embodiment of the present invention includes the following steps.
  • S201 Acquire 3D point cloud data corresponding to the surrounding environment where the mobile platform is currently located.
  • the state estimation system can obtain three-dimensional point cloud data corresponding to the surrounding environment where the movable platform is currently located. In some embodiments, when the state estimation system obtains the three-dimensional point cloud data corresponding to the surrounding environment where the movable platform is located, it may obtain the three-dimensional point corresponding to the surrounding environment where the movable platform is located through a point cloud sensor. Cloud data.
  • the point cloud sensor may include a lidar
  • the state estimation system may obtain the movable platform through the lidar when acquiring three-dimensional point cloud data corresponding to the surrounding environment where the movable platform is located. 3D point cloud data corresponding to the surrounding environment.
  • the state estimation system can obtain 100hz three-dimensional point cloud data corresponding to the surrounding environment where the movable platform is located through lidar.
  • the lidar is a perceptual sensor that can obtain three-dimensional information of the scene.
  • the basic principle is to actively emit laser pulse signals to the detected object and obtain the reflected pulse signals.
  • the depth information of the distance detector of the object to be measured is calculated; Know the launch direction, obtain the angle information of the measured object relative to the lidar; combine the aforementioned depth information and angle information to obtain a large number of detection points (called point clouds), based on the point cloud, the spatial three-dimensional information of the measured object relative to the lidar can be reconstructed .
  • the point cloud sensor may include a camera, and when the state estimation system obtains three-dimensional point cloud data corresponding to the surrounding environment where the movable platform is located, the state estimation system may obtain the location of the movable platform through the camera. 3D point cloud data corresponding to the surrounding environment.
  • the camera may be mounted on the movable platform. In some embodiments, the camera may also be independent of the movable platform and installed in the environment where the movable platform is located. In some embodiments, the camera includes, but is not limited to, binocular cameras, monocular cameras, TOF cameras and other camera devices.
  • the state estimation system when it obtains three-dimensional point cloud data corresponding to the surrounding environment where the movable platform is located through a camera, it may convert the point cloud obtained by the camera to world coordinates based on a preset conversion matrix
  • the three-dimensional point cloud data corresponding to the surrounding environment where the movable platform is located is obtained; wherein, the preset conversion matrix includes an internal parameter matrix and an external parameter matrix, and the external parameter matrix includes a rotation matrix and/or a translation vector.
  • the external parameter matrix when the origin of the world coordinate system is set on the movable platform, the external parameter matrix only includes a rotation matrix.
  • the internal parameter matrix is determined based on a plurality of internal parameters, and the internal parameters are parameters obtained by camera calibration, such as focal length and principal point coordinates.
  • the external parameter matrix may include a rotation matrix and/or a translation vector, wherein the rotation matrix may be determined by the posture of the camera, and the translation vector may be estimated by the state of the movable platform of the camera. The information is confirmed.
  • the embodiment of the present invention converts the point cloud collected by the camera to the world coordinate system to obtain the three-dimensional point cloud data.
  • the camera can collect The obtained point cloud is subjected to processing such as distortion removal, thereby improving the accuracy of the three-dimensional point cloud data.
  • S202 Determine ground point cloud data belonging to the same plane from the three-dimensional point cloud data.
  • the state estimation system can determine the ground point cloud data belonging to the same plane from the three-dimensional point cloud data.
  • the state estimation system determines ground point cloud data belonging to the same plane from the three-dimensional point cloud data
  • the three-dimensional point cloud data may be divided according to a plurality of preset grid regions, And according to the three-dimensional point cloud data in each grid area, the ground point cloud data belonging to the same plane is determined.
  • the state estimation system when the state estimation system divides the three-dimensional point cloud data according to a plurality of preset grid areas, it can obtain that the movable platform is the center, and the Surround the three-dimensional point cloud data within a preset distance range, and divide the three-dimensional point cloud data within the preset distance range into multiple grid areas.
  • the state estimation system may take the movable platform as the center, obtain the three-dimensional point cloud data within a range of 4 m from the movable platform to the front, rear, left, and right of the movable platform, and calculate the data according to multiple preset grid areas.
  • the 3D point cloud data within the 4m range is divided into multiple grid areas.
  • the state estimation system when the state estimation system determines the ground point cloud data belonging to the same plane according to the three-dimensional point cloud data in each grid area, it can obtain the three-dimensional point cloud data in each grid area.
  • the height of the point cloud data is determined, and the ground point cloud data belonging to the same plane is determined according to the height of the three-dimensional point cloud data in each grid area.
  • the state estimation system when the state estimation system determines the ground point cloud data belonging to the same plane according to the height of the three-dimensional point cloud data in each grid area, it may determine that each grid The initial ground point cloud data whose height in the area is less than the preset height threshold, and fitting the initial ground point cloud data to obtain the fitting plane and the normal vector of the fitting plane, so as to determine that it belongs to The ground point cloud data of the fitted plane.
  • the state estimation system can obtain the height of the three-dimensional point cloud data in each divided grid area, and determine that the height in each grid area is less than 5cm of the three-dimensional point cloud data Is the initial ground point cloud data.
  • the state estimation system when the state estimation system determines the ground point cloud data belonging to the fitting plane according to the normal vector, it can determine the three-dimensional point cloud data in each grid area and the The distance of the fitting plane is determined, and the ground point cloud data whose distance to the fitting plane is less than a preset distance threshold is determined from each grid area.
  • the state estimation system can determine the distance between the three-dimensional point cloud data in each grid area and the fitting plane according to the determined normal vector belonging to the fitting plane , And determine from each grid area the three-dimensional point cloud data with a distance of less than 2 cm from the fitting plane as ground point cloud data.
  • the state estimation system may correct the position information and/or attitude information of the movable platform according to the ground point cloud data.
  • the position information includes altitude information; and the attitude information includes roll angle and/or pitch angle.
  • the state estimation system may have errors, it is necessary to correct the position information and/or attitude information of the movable platform according to the determined ground point cloud data to ensure the estimated movable platform The accuracy and stability of the state.
  • the state estimation system when the state estimation system corrects the position information and/or attitude information of the movable platform according to the ground point cloud data, it may determine the first error information and the second error information according to the ground point cloud data. Two error information, and correcting the position information and/or posture information of the movable platform according to the first error information and the second error information.
  • the state estimation system determines the ground point cloud data belonging to the same plane from the three-dimensional point cloud data by acquiring the three-dimensional point cloud data corresponding to the surrounding environment where the movable platform is currently located, and according to the The ground point cloud data corrects the position information and/or attitude information of the movable platform, realizes the correction of the position information and/or attitude information of the movable platform, and improves the stability and accuracy of the state estimation of the movable platform .
  • FIG. 3 is a schematic flowchart of another state estimation method for a movable platform according to an embodiment of the present invention.
  • the method can be executed by a state estimation system, and the detailed explanation of the state estimation system is as described above. .
  • the difference between the embodiment of the present invention and the embodiment described in FIG. 2 is that the embodiment of the present invention schematically illustrates how to modify the position information and/or posture information of the movable platform.
  • the method of the embodiment of the present invention includes the following steps.
  • S301 Acquire 3D point cloud data corresponding to the surrounding environment where the mobile platform is currently located.
  • the state estimation system can obtain three-dimensional point cloud data corresponding to the surrounding environment where the movable platform is currently located.
  • S302 Determine ground point cloud data belonging to the same plane from the three-dimensional point cloud data.
  • the state estimation system can determine the ground point cloud data belonging to the same plane from the three-dimensional point cloud data.
  • S303 Determine first error information and second error information according to the ground point cloud data, and correct the position information and/or attitude information of the movable platform according to the first error information and the second error information.
  • the state estimation system can determine the first error information and the second error information according to the ground point cloud data, and correct the position information and/or the position information of the movable platform according to the first error information and the second error information. Or posture information.
  • the state estimation system when the state estimation system corrects the position information and/or the attitude information of the movable platform according to the first error information and the second error information, it may first adjust each grid of the first current accumulation frame The ground point cloud data in the grid area is matched with the ground point cloud data in each grid area corresponding to the first historical accumulation frame to determine the ground point cloud data of the first current accumulation frame and the ground point of the first historical accumulation frame The first error information of the cloud data, and correcting the position information and/or posture information of the movable platform according to the first error information.
  • the state estimation system performs the calculation of the ground point cloud data in each grid area of the first current accumulation frame with the ground point cloud data in each grid area corresponding to the first historical accumulation frame.
  • the grid area in the first current accumulation frame may be projected to the first The grid area of a historical accumulation frame, and determine the average height of the ground point cloud data in each grid area in the first current accumulation frame, and calculate the average height of the ground point cloud data in each grid area in the first current accumulation frame
  • the average height of the ground point cloud data in the first historical accumulation frame is compared with the average height of the ground point cloud data in each grid area corresponding to the first historical accumulation frame, so as to determine the average height of each grid area in the first current accumulation frame
  • the first current accumulation frame is obtained by
  • the state estimation system can obtain the current accumulated 10 frames and the adjacent 10 frames accumulated in history before the current accumulated 10 frames, and compare the current accumulated 10 frames
  • the grid area is projected to the grid area of the adjacent 10 frames of the historical accumulation, and the height average value of the ground point cloud data in each grid area in the current accumulated 10 frames is determined, and the current accumulated Compare the average height of the ground point cloud data in each grid area in the 10 frames of the history with the average height of the ground point cloud data in each grid area corresponding to the adjacent 10 frames in the history, thereby determining the The first between the average height of the ground point cloud data in each grid area in the current accumulated 10 frames and the average height of the ground point cloud data in each grid area corresponding to the historically accumulated 10 frames Error information.
  • the state estimation system when the state estimation system corrects the position information and/or attitude information of the movable platform according to the first error information, it can correct the height and roll of the movable platform according to the first error information. Angle, pitch angle, etc., to optimize the state of the movable platform.
  • the state estimation system may optimize the state of the movable platform according to a preset optimization rule and the first error information.
  • the preset optimization rule may be as shown in the following formula (1):
  • i represents the i-th raster area
  • k represents the k-th frame
  • z ik are the height average of the ground point cloud data of the k-th frame in the i-th raster area
  • a k , b k , and c k are the variables to be optimized, representing the adjustment values of the roll angle, pitch angle, and height, respectively.
  • the state estimation system may determine the first error information according to formula (1), and optimize the roll angle, pitch angle, and height of the movable platform according to the first error information, so as to Get the corrected ground point cloud data.
  • the state estimation system after the state estimation system corrects the position information and/or posture information of the movable platform according to the first error information, it can obtain the information of correcting the movable platform according to the first error information. Based on the ground point cloud data obtained after the position information and/or attitude information, the position information and/or attitude information of the movable platform is corrected according to the ground point cloud data obtained after correction.
  • the state estimation system when it corrects the position information and/or attitude information of the movable platform according to the ground point cloud data obtained after the correction, it may change the second current cumulative frame obtained after the correction Match the ground point cloud data in each grid area of the second historical accumulation frame with the ground point cloud data in each grid area corresponding to the second historical accumulation frame, and determine the ground point cloud data of the second current accumulation frame and the second historical accumulation The second error information of the ground point cloud data of the frame, and correcting the position information and/or posture information of the movable platform according to the second error information.
  • the state estimation system corrects the obtained ground point cloud data in each grid area of the second current accumulation frame and each grid area corresponding to the second historical accumulation frame.
  • the grid area in the second current accumulation frame may be Projected to the grid area of the second historical accumulation frame, and determine the height average value of the ground point cloud data in each grid area in the second current accumulation frame, and calculate each The average height of the ground point cloud data in each grid area is compared with the average height of the ground point cloud data in each grid area corresponding to the second historical accumulation frame, so as to determine each of the second current accumulation frames.
  • Second error information between the average height of the ground point cloud data in each grid area and the average height of the ground point cloud data in each grid area corresponding to the second historical accumulation frame is obtained by acquiring the accumulation of frames within a specified time range
  • the second historical accumulation frame is obtained by accumulation of frames within the specified time range acquired in history.
  • the number of frames included in the second current accumulation frame and the number of frames included in the second historical accumulation frame may be the same or different.
  • the state estimation system can obtain the second current accumulation frame accumulated within the current 10s and the second historical accumulation frame within 10s accumulated before the current 10s, and combine the first 2. Project the grid area in the current accumulation frame to the grid area of the second historical accumulation frame, and determine the height average value of the ground point cloud data in each grid area in the second current accumulation frame, and The average height of the ground point cloud data in each grid area in the second current accumulation frame is compared with the average height of the ground point cloud data in each grid area corresponding to the second historical accumulation frame to determine The second current accumulation frame between the average height of the ground point cloud data in each grid area and the average height of the ground point cloud data in each grid area corresponding to the second historical accumulation frame Error information.
  • the state estimation system corrects the obtained ground point cloud data in each grid area of the second current accumulation frame and each grid area corresponding to the second historical accumulation frame.
  • the grid area in the second current accumulation frame may be projected to the grid area in the second historical accumulation frame for matching.
  • the state estimation system projects the grid area in the second current accumulation frame to the grid area of the second historical accumulation frame for matching process as shown in FIG. 4,
  • FIG. 4 It is a schematic diagram of matching ground point cloud data provided by an embodiment of the present invention. As shown in FIG. 4, it includes the second current accumulation frame 41 and the second historical accumulation frame 42 acquired within a preset time range.
  • the state estimation system can project the grid area in the second current accumulation frame 41 To the grid area of the second historical accumulation frame 42, thereby determining that the grid area 411 in the second current accumulation frame 41 is projected to the corresponding location area 421 in the grid area of the second historical accumulation frame 42 .
  • the state estimation system determines that the average height of the ground point cloud data in each grid area in the second current accumulation frame is in each grid area corresponding to the second historical accumulation frame
  • the second error information can be determined according to the following formula (2).
  • res is the second error information.
  • it includes the average height p and the normal vector n; the characteristics of a certain grid area in the second current accumulation frame are p1, n 2 , and the second current accumulation frame
  • the pose is Rcur, P cur ; the grid area characteristics corresponding to the second historical accumulation frame are p 2 , n 2 , and the pose of the second historical accumulation frame is R pre , P pre .
  • the height of the movable platform may be corrected according to the determined second error information Any one or more of information, roll angle, and pitch angle, so that the error information obtained after correction is less than a preset threshold.
  • the state estimation system can determine the estimated height of the state of the movable platform after correcting the height information, roll angle, and pitch angle of the movable platform according to the second error information Change results.
  • Figure 5a and Figure 5b can be used as an example for description.
  • Figure 5a is a schematic diagram of the height change result before the state of the movable platform is corrected according to an embodiment of the present invention.
  • Figure 5b is a schematic diagram of the height change provided by an embodiment of the present invention. Schematic diagram of the height change result after the state of the mobile platform is corrected. It can be determined from the schematic diagram of the height change result shown in FIG. 5a that the height change error of the movable platform is large, so that it can be determined that the second error information is large.
  • the embodiment of the present invention can greatly suppress the error of estimating the state of the movable platform in a special scene, and improve the robustness and accuracy of the state estimation of the movable platform.
  • the state estimation system determines the ground point cloud data belonging to the same plane from the three-dimensional point cloud data by acquiring the three-dimensional point cloud data corresponding to the surrounding environment where the movable platform is currently located, and according to the The ground point cloud data determines the first error information and the second error information, and corrects the position information and/or the attitude information of the movable platform according to the first error information and the second error information.
  • multiple corrections to the position information and/or posture information of the movable platform are achieved, which further improves the stability and accuracy of the state estimation of the movable platform.
  • FIG. 6 is a schematic structural diagram of a state estimation system according to an embodiment of the present invention.
  • the state estimation system includes: a memory 601 and a processor 602.
  • the state estimation system further includes a data interface 603, and the data interface 603 is used to transfer data information between the state estimation system and other systems.
  • the state estimation system further includes a point cloud sensor 604, and the point cloud sensor 604 is used to obtain three-dimensional point cloud data.
  • the memory 601 may include a volatile memory (volatile memory); the memory 601 may also include a non-volatile memory (non-volatile memory); the memory 601 may also include a combination of the foregoing types of memories.
  • the processor 602 may be a central processing unit (CPU).
  • the processor 602 may further include a hardware chip.
  • the aforementioned hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • the foregoing PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), or any combination thereof.
  • the memory 601 is used to store program instructions, and the processor 602 can call the program instructions stored in the memory 601 to perform the following steps:
  • processor 602 determines the ground point cloud data belonging to the same plane from the three-dimensional point cloud data, it is specifically configured to:
  • the ground point cloud data belonging to the same plane is determined.
  • processor 602 determines the ground point cloud data belonging to the same plane according to the three-dimensional point cloud data in each grid area, it is specifically used for:
  • the ground point cloud data belonging to the same plane is determined.
  • processor 602 determines the ground point cloud data belonging to the same plane according to the height of the three-dimensional point cloud data in each grid area, it is specifically configured to:
  • the ground point cloud data belonging to the fitting plane is determined according to the normal vector.
  • processor 602 determines the ground point cloud data belonging to the fitting plane according to the normal vector, it is specifically configured to:
  • the processor 602 corrects the position information and/or attitude information of the movable platform according to the ground point cloud data, it is specifically configured to:
  • the processor 602 matches the ground point cloud data in each grid area of the first current accumulation frame with the ground point cloud data in each grid area corresponding to the first historical accumulation frame, and determines the first
  • the first error information between the ground point cloud data of the current accumulated frame and the ground point cloud data of the first historical accumulated frame is specifically used for:
  • the first current accumulated frame is obtained by accumulating a preset number of frames
  • the first historical accumulated frame is obtained by accumulating a preset number of frames obtained in history.
  • the processor 602 is further configured to:
  • the position information and/or the posture information of the movable platform are corrected.
  • the processor 602 corrects the position information and/or attitude information of the movable platform according to the ground point cloud data obtained after correction, it is specifically used for:
  • the processor 602 compares the ground point cloud data in each grid area of the second current accumulation frame acquired after correction with the ground point cloud data in each grid area corresponding to the second historical accumulation frame
  • the processor 602 compares the ground point cloud data in each grid area of the second current accumulation frame acquired after correction with the ground point cloud data in each grid area corresponding to the second historical accumulation frame
  • the second current accumulation frame is obtained by obtaining the accumulation of frames within a specified time range
  • the second historical accumulation frame is obtained by accumulation of frames within the specified time range obtained in history.
  • the position information includes height information; the attitude information includes a roll angle and/or a pitch angle.
  • the processor 602 is further configured to:
  • the processor 602 obtains the three-dimensional point cloud data corresponding to the surrounding environment where the movable platform is currently located, it is specifically used for:
  • the state estimation system determines the ground point cloud data belonging to the same plane from the three-dimensional point cloud data by acquiring the three-dimensional point cloud data corresponding to the surrounding environment where the movable platform is currently located, and according to the The ground point cloud data corrects the position information and/or posture information of the movable platform, so as to improve the stability and accuracy of the state estimation of the movable platform by correcting the position information and/or posture information of the movable platform.
  • the embodiment of the present invention also provides a movable platform, which includes: a fuselage; a power system configured on the fuselage to provide mobile power for the movable platform; and a processor to obtain Three-dimensional point cloud data corresponding to the surrounding environment where the mobile platform is currently located; determining ground point cloud data belonging to the same plane from the three-dimensional point cloud data; correcting the position information of the movable platform according to the ground point cloud data and/ Or posture information.
  • the processor determines ground point cloud data belonging to the same plane from the three-dimensional point cloud data, it is specifically configured to:
  • the ground point cloud data belonging to the same plane is determined.
  • the processor determines the ground point cloud data belonging to the same plane according to the three-dimensional point cloud data in each grid area, it is specifically used for:
  • the ground point cloud data belonging to the same plane is determined.
  • the processor determines the ground point cloud data belonging to the same plane according to the height of the three-dimensional point cloud data in each grid area, it is specifically configured to:
  • the ground point cloud data belonging to the fitting plane is determined according to the normal vector.
  • the processor determines the ground point cloud data belonging to the fitting plane according to the normal vector, it is specifically configured to:
  • the processor corrects the position information and/or attitude information of the movable platform according to the ground point cloud data, it is specifically configured to:
  • the processor matches the ground point cloud data in each grid area of the first current accumulation frame with the ground point cloud data in each grid area corresponding to the first historical accumulation frame, and determines the first
  • the first error information between the ground point cloud data of the current accumulated frame and the ground point cloud data of the first historical accumulated frame it is specifically used for:
  • the first current accumulated frame is obtained by accumulating a preset number of frames
  • the first historical accumulated frame is obtained by accumulating a preset number of frames obtained in history.
  • the processor is further configured to:
  • the position information and/or the posture information of the movable platform are corrected.
  • the processor corrects the position information and/or attitude information of the movable platform according to the ground point cloud data obtained after correction, it is specifically used for:
  • the processor compares the ground point cloud data in each grid area of the second current accumulation frame acquired after correction with the ground point cloud data in each grid area corresponding to the second historical accumulation frame.
  • the processor compares the ground point cloud data in each grid area of the second current accumulation frame acquired after correction with the ground point cloud data in each grid area corresponding to the second historical accumulation frame.
  • the second current accumulation frame is obtained by obtaining the accumulation of frames within a specified time range
  • the second historical accumulation frame is obtained by accumulation of frames within the specified time range obtained in history.
  • the position information includes height information; the attitude information includes a roll angle and/or a pitch angle.
  • the processor is further configured to:
  • the processor obtains the three-dimensional point cloud data corresponding to the surrounding environment where the movable platform is currently located, it is specifically used for:
  • the state estimation system determines the ground point cloud data belonging to the same plane from the three-dimensional point cloud data by acquiring the three-dimensional point cloud data corresponding to the surrounding environment where the movable platform is currently located, and according to the The ground point cloud data corrects the position information and/or posture information of the movable platform, so as to improve the stability and accuracy of the state estimation of the movable platform by correcting the position information and/or posture information of the movable platform.
  • the embodiment of the present invention also provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the present invention
  • the described method can also implement the system of the corresponding embodiment of the present invention described in FIG. 6, which will not be repeated here.
  • the computer-readable storage medium may be an internal storage unit of the system described in any of the foregoing embodiments, such as a hard disk or memory of the system.
  • the computer-readable storage medium may also be an external storage device of the system, such as a plug-in hard disk equipped on the device, a Smart Media Card (SMC), or a Secure Digital (SD) card. , Flash Card, etc.
  • the computer-readable storage medium may also include both an internal storage unit of the device and an external storage device.
  • the computer-readable storage medium is used to store the computer program and other programs and data required by the terminal.
  • the computer-readable storage medium can also be used to temporarily store data that has been output or will be output.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Electromagnetism (AREA)
  • Acoustics & Sound (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

本发明实施例提供了一种可移动平台状态估计方法、系统、可移动平台及存储介质,其中,该方法包括:获取可移动平台当前所处周围环境对应的三维点云数据;从所述三维点云数据中确定属于同一平面的地面点云数据;根据所述地面点云数据修正所述可移动平台的位置信息和/或姿态信息。通过这种方式,可以提高可移动平台状态估计的精准性和稳定性。

Description

可移动平台状态估计方法、系统、可移动平台及存储介质 技术领域
本发明实施例涉及控制技术领域,尤其涉及一种可移动平台状态估计方法、系统、可移动平台及存储介质。
背景技术
目前,无人车、运动机器人等可移动平台主要通过识别周围环境和可移动平台自身的状态控制可移动平台的移动,然而在某些特殊场景下,比如周围动态物体较多,夜晚光线昏暗等,导致地面行驶的无人车在横滚、俯仰、高度上的可观性较差,在这种情况下很难对可移动平台的状态进行准确的估计。因此,如何在可观性较差的环境下更有好地确定可移动平台的状态具有十分重要的意义。
发明内容
本发明实施例提供了一种可移动平台状态估计方法、系统、可移动平台及存储介质,可以实现在可观性较差的环境下更好地估计可移动平台的状态,并提高了对可移动平台状态估计的精度和稳定性。
第一方面,本发明实施例提供了一种可移动平台状态估计方法,包括:
获取所述可移动平台当前所处周围环境对应的三维点云数据;
从所述三维点云数据中确定属于同一平面的地面点云数据;
根据所述地面点云数据修正所述可移动平台的位置信息和/或姿态信息。
第二方面,本发明实施例提供了一种状态估计系统,包括:
点云传感器,用于获取三维点云数据;
存储器,用于存储程序指令;
处理器,用于调用所述程序指令,当所述程序指令被执行时,用于执行以下操作:
获取所述可移动平台当前所处周围环境对应的三维点云数据;
从所述三维点云数据中确定属于同一平面的地面点云数据;
根据所述地面点云数据修正所述可移动平台的位置信息和/或姿态信息。
第三方面,本发明实施例提供了一种可移动平台,所述可移动平台包括:
机身;
配置在机身上的动力系统,用于为所述可移动平台提供移动的动力;
如上述第二方面所述的状态估计系统。
第四方面,本发明实施例提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,该计算机程序被处理器执行时实现如上述第一方面所述的方法。
本发明实施例,通过获取可移动平台当前所处周围环境对应的三维点云数据,从所述三维点云数据中确定属于同一平面的地面点云数据,并根据所述地面点云数据修正所述可移动平台的位置信息和/或姿态信息,实现了通过对可移动平台的位置信息和/或姿态信息进行修正提高对可移动平台状态估计的稳定性和精准性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种状态估计系统的结构示意图;
图2是本发明实施例提供的一种可移动平台状态估计方法的流程示意图;
图3是本发明实施例提供的另一种可移动平台状态估计方法的流程示意图;
图4是本发明实施例提供的一种地面点云数据的匹配示意图;
图5a是本发明实施例提供的一种对可移动平台的状态修正前的高度变化结果示意图;
图5b是本发明实施例提供的一种对可移动平台的状态修正后的高度变化结果示意图;
图6是本发明实施例提供的一种状态估计系统的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面结合附图,对本发明的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
本发明实施例中提供的可移动平台状态估计方法可以由一种状态估计系统执行。其中,所述状态估计系统可应用于可移动平台。在某些实施例中,所述状态估计系统可以安装在可移动平台上;在某些实施例中,所述状态估计系统可以在空间上独立于可移动平台。在某些实施例中,所述可移动平台可以包括但不限于如能够自主移动的机器人、无人车、无人船等可移动系统。
通过状态估计系统可以获取所述可移动平台当前所处周围环境对应的三维点云数据,并从所述三维点云数据中确定属于同一平面的地面点云数据,从而根据所述地面点云数据修正所述可移动平台的位置信息和/或姿态信息。在某些实施例中,所述三维点云数据可以是通过激光雷达获取得到,也可以是通过毫米波雷达、超声波雷达、可移动平台上的摄像头等获取得到,本发明实施例不做具体限定。
本发明实施例考虑到在可观性较差的场景下,比如在隧道内跟大车等环境噪声较明显的场景,可移动平台通过视觉惯性导航系统对可移动平台的位置、速度、姿态等状态进行估计时存在较大的误差,容易估计错误,因此,利用获取到的所述可移动平台周围环境的三维点云数据提取出的地面点云数据来约束可移动平台的横滚角、俯仰角、高度等状态,从而能够有效提升在某些特殊场景下对可移动平台状态进行估计的稳定性和精度。通过判断前后相邻的地面点云数据的共面一致性来约束对可移动平台的前后变化状态进行估计,从而提升在诸如动态物体较多,纹理稀疏等特殊场景下的鲁棒性。
在一个实施例中,状态估计系统通过获取可移动平台周围环境的三维点云数据,根据所述三维点云数据确定出一个拟合平面,并对拟合平面的地面点云数据进行位姿修正,以及对位姿修正后的该拟合平面的地面点云数据进行二次修正,以确定出所述地面点云数据在高度上的误差信息,并将该误差信息作为一种约束因子传输给视觉惯性导航系统中进行非线性优化,从而提升状态估计 的鲁棒性。
在一个实施例中,所述状态估计系统在确定地面点云数据时,可以在获取到可移动平台周围环境的三维点云数据后,以该可移动平台为中心将距离该可移动平台周围指定范围内的三维点云数据划分为多个栅格区域,并统计每个栅格区域内三维点云数据的高度,从而确定高度小于预设高度阈值的三维点云数据为初始地面点云数据。所述状态估计系统可以根据确定的所述初始地面点云拟合得到拟合平面和该拟合平面的法向量,并利用法向量确定与拟合平面的距离小于预设距离阈值的地面点云数据。
在一个实施例中,所述状态估计系统可以获取预设数量的帧累计得到的第一当前累计帧和第一历史累计帧,并将第一当前累计帧的地面点云数据投影至所述第一历史累计帧的地面点云数据中,以确定所述第一当前累计帧的地面点云数据与所述第一历史累计帧的地面点云数据的第一误差信息,并根据所述第一误差信息对可移动平台的横滚角、俯仰角、高度等进行修正,从而得到修正后的地面点云数据。
在一个实施例中,所述状态估计系统在得到所述修正后的地面点云数据之后,可以根据修正后的每帧地面点云数据,构建指定时间范围内累计获取到的第二当前累计帧和第二历史累计帧,并将所述第二当前累计帧的地面点云数据投影到所述第二历史累计帧的地面点云数据上,以确定所述第二当前累计帧的地面点云数据与所述第二历史累计帧的地面点云数据在高度上的第二误差信息,从而将该第二误差信息作为约束因子发送给视觉惯性导航系统进行优化,来提升状态估计的鲁棒性。
下面结合附图1对本发明实施例提供的状态估计系统进行示意性说明。
请参见图1,图1是本发明实施例提供的一种状态估计系统的结构示意图。所述状态估计系统包括:状态估计设备11、可移动平台12。其中,可移动平台12和状态估计设备11之间可以通过无线通信连接方式建立通信连接。其中,在某些场景下,所述可移动平台12和状态估计设备11之间也可以通过有线通信连接方式建立通信连接。在某些实施例中,所述状态估计设备11可以设置在可移动平台12上。在某些实施例中,所述可移动平台12可以包括但不限于无人车、无人船、可移动机器人等可移动设备。所述可移动平台12包括动力 系统121,所述动力系统121用于为可移动平台12提供移动的动力。在其他实施例中,可移动平台12和状态估计设备11彼此独立,所述状态估计设备11可以包括遥控器、智能手机、平板电脑、膝上型电脑和穿戴式设备中的一种或者多种。在其他实施例中,状态估计设备11可以是远离于所述可移动平台12,例如,例如状态估计设备11设置在云端服务器中,通过无线通信连接方式与可移动平台12建立通信连接。在某些实施例中,所述状态估计设备11中包括点云传感器,所述点云传感器用于获取三维点云数据。
本发明实施例中,所述状态估计设备11可以获取所述可移动平台当前所处周围环境对应的三维点云数据,并从所述三维点云数据中确定属于同一平面的地面点云数据,以及根据所述地面点云数据修正所述可移动平台的位置信息和/或姿态信息,从而提高可移动平台状态估计的精准性和稳定性。
下面结合附图对本发明实施例提供的可移动平台状态估计方法进行示意性说明。
具体请参见图2,图2是本发明实施例提供的一种可移动平台状态估计方法的流程示意图,所述方法可以由状态估计系统执行,其中,状态估计系统的具体解释如前所述。具体地,本发明实施例的所述方法包括如下步骤。
S201:获取可移动平台当前所处周围环境对应的三维点云数据。
本发明实施例中,状态估计系统可以获取可移动平台当前所处周围环境对应的三维点云数据。在某些实施例中,所述状态估计系统在获取所述可移动平台所处周围环境对应的三维点云数据时,可以通过点云传感器获取所述可移动平台所处周围环境对应的三维点云数据。
在一个实施例中,所述点云传感器可以包括激光雷达,所述状态估计系统在获取所述可移动平台所处周围环境对应的三维点云数据时,可以通过激光雷达获取所述可移动平台所处周围环境对应的三维点云数据。例如,所述状态估计系统在可以通过激光雷达获取所述可移动平台所处周围环境对应的100hz的三维点云数据。
在某些实施例中,所述激光雷达是一种感知传感器,可以获得场景的三维信息。其基本原理为主动对被探测对象发射激光脉冲信号,并获得其反射回来的脉冲信号,根据发射信号和接收信号之间的时间差计算被测对象的距离探测 器的深度信息;基于激光雷达的已知发射方向,获得被测对象相对激光雷达的角度信息;结合前述深度信息和角度信息得到海量的探测点(称为点云),基于点云即可以重建被测对象相对激光雷达的空间三维信息。
在一个实施例中,所述点云传感器可以包括摄像头,所述状态估计系统在获取所述可移动平台所处周围环境对应的三维点云数据时,可以通过摄像头获取所述可移动平台所处周围环境对应的三维点云数据。在某些实施例中,所述摄像头可以挂载在所述可移动平台上。在某些实施例中,所述摄像头还可以独立于可移动平台,安装于所述可移动平台所处环境当中。在某些实施例中,所述摄像头包括但不限于双目摄像头、单目摄像头,TOF摄像头等摄像装置。
在一些实施例中,所述状态估计系统在通过摄像头获取所述可移动平台所处周围环境对应的三维点云数据时,可以基于预设转换矩阵将所述摄像头获取的点云转换到世界坐标系中,得到所述可移动平台所处周围环境对应的三维点云数据;其中,所述预设转换矩阵包括内参矩阵和外参矩阵,所述外参矩阵包括旋转矩阵和/或平移向量。在某些实施例中,当所述世界坐标系的原点设定在所述可移动平台上时,所述外参矩阵只包括旋转矩阵。
在某些实施例中,所述内参矩阵是根据多个内参数确定得到,所述内参数是摄像头标定得到的参数,如焦距、像主点坐标等。在某些实施例中,所述外参矩阵可以包括旋转矩阵和/或平移向量,其中,所述旋转矩阵可以通过摄像头的姿态确定得到的,所述平移向量可以通过摄像头的可移动平台状态估计信息确定得到。
可见,本发明实施例通过将摄像头采集到的点云转换到世界坐标系,以得到所述三维点云数据,在将摄像头采集到的点云转换到世界坐标系的过程中,可以对摄像头采集到的点云进行去畸变等处理,从而提升所述三维点云数据的准确性。
S202:从所述三维点云数据中确定属于同一平面的地面点云数据。
本发明实施例中,状态估计系统可以从所述三维点云数据中确定属于同一平面的地面点云数据。
在一个实施例中,所述状态估计系统从所述三维点云数据中确定属于同一平面的地面点云数据时,可以根据预设的多个栅格区域对所述三维点云数据进行划分,并根据每个栅格区域内的三维点云数据,确定所述属于同一平面的地 面点云数据。
在一种实施方式中,所述状态估计系统在根据预设的多个栅格区域对所述三维点云数据进行划分时,可以获取以所述可移动平台为中心,在所述可移动平台周围预设距离范围内的三维点云数据,并将在所述预设距离范围内的三维点云数据划分为多个栅格区域。例如,所述状态估计系统可以以所述可移动平台为中心,获取所述可移动平台前后左右距离该可移动平台4m范围内的三维点云数据,并根据预设的多个栅格区域将所述4m范围内的三维点云数据划分为多个栅格区域。
在一个实施例中,所述状态估计系统在根据每个栅格区域内的三维点云数据,确定所述属于同一平面的地面点云数据时,可以获取所述每个栅格区域内的三维点云数据的高度,并根据所述每个栅格区域内的三维点云数据的高度,确定所述属于同一平面的地面点云数据。
在一个实施例中,所述状态估计系统在根据所述每个栅格区域内的三维点云数据的高度,确定所述属于同一平面的地面点云数据时,可以确定所述每个栅格区域内的高度小于预设高度阈值的初始地面点云数据,并对所述初始地面点云数据进行拟合得到拟合平面以及所述拟合平面的法向量,从而根据所述法向量确定属于所述拟合平面的地面点云数据。
例如,假设预设高度阈值5cm,则所述状态估计系统可以获取划分得到的每个栅格区域内的三维点云数据的高度,并确定每个栅格区域内的高度小于5cm三维点云数据为初始地面点云数据。
在一个实施例中,所述状态估计系统在根据所述法向量确定属于所述拟合平面的地面点云数据时,可以根据所述法向量确定每个栅格区域内的三维点云数据与所述拟合平面的距离,并从所述每个栅格区域中确定与所述拟合平面的距离小于预设距离阈值的地面点云数据。
例如,假设所述预设距离阈值为2cm,则所述状态估计系统可以根据确定的属于拟合平面的法向量,确定每个栅格区域内的三维点云数据与所述拟合平面的距离,并从所述每个栅格区域中确定与所述拟合平面的距离小于2cm的三维点云数据为地面点云数据。
S203:根据所述地面点云数据修正所述可移动平台的位置信息和/或姿态信息。
本发明实施例中,状态估计系统可以根据所述地面点云数据修正所述可移动平台的位置信息和/或姿态信息。在某些实施例中,所述位置信息包括高度信息;所述姿态信息包括横滚角和/或俯仰角。
由于所述状态估计系统获取到的三维点云数据可能存在误差,因此需要根据确定出的地面点云数据对可移动平台的位置信息和/或姿态信息进行修正,以确保估计得到的可移动平台的状态的准确性和稳定性。
在一个实施例中,所述状态估计系统在根据所述地面点云数据修正所述可移动平台的位置信息和/或姿态信息时,可以根据所述地面点云数据确定第一误差信息和第二误差信息,并根据第一误差信息和第二误差信息修正所述可移动平台的位置信息和/或姿态信息。
可见,通过这种根据地面点云数据对可移动平台进行两次修正的实施方式,可以提高估计可移动平台状态的精度和稳定性。
本发明实施例中,状态估计系统通过获取所述可移动平台当前所处周围环境对应的三维点云数据,从所述三维点云数据中确定属于同一平面的地面点云数据,并根据所述地面点云数据修正所述可移动平台的位置信息和/或姿态信息,实现了对可移动平台的位置信息和/或姿态信息进行修正,提高了对可移动平台状态估计的稳定性和精准性。
具体请参见图3,图3是本发明实施例提供的另一种可移动平台状态估计方法的流程示意图,所述方法可以由状态估计系统执行,其中,状态估计系统的具体解释如前所述。本发明实施例与图2所述实施例的区别在于本发明实施例是对具体如何对可移动平台的位置信息和/或姿态信息进行修正进行示意性说明。具体地,本发明实施例的所述方法包括如下步骤。
S301:获取可移动平台当前所处周围环境对应的三维点云数据。
本发明实施例中,状态估计系统可以获取可移动平台当前所处周围环境对应的三维点云数据。
S302:从所述三维点云数据中确定属于同一平面的地面点云数据。
本发明实施例中,状态估计系统可以从所述三维点云数据中确定属于同一平面的地面点云数据。
S303:根据所述地面点云数据确定第一误差信息和第二误差信息,并根据 第一误差信息和第二误差信息修正所述可移动平台的位置信息和/或姿态信息。
本发明实施例中,状态估计系统可以根据所述地面点云数据确定第一误差信息和第二误差信息,并根据第一误差信息和第二误差信息修正所述可移动平台的位置信息和/或姿态信息。
在一个实施例中,所述状态估计系统在根据第一误差信息和第二误差信息修正所述可移动平台的位置信息和/或姿态信息时,可以首先将第一当前累计帧的每个栅格区域内的地面点云数据与第一历史累积帧对应的每个栅格区域内的地面点云数据进行匹配,确定第一当前累计帧的地面点云数据与第一历史累计帧的地面点云数据的第一误差信息,并根据所述第一误差信息修正所述可移动平台的位置信息和/或姿态信息。
在一个实施例中,所述状态估计系统在将第一当前累计帧的每个栅格区域内的地面点云数据与第一历史累计帧对应的每个栅格区域内的地面点云数据进行匹配,确定第一当前累计帧的地面点云数据与第一历史累计帧的地面点云数据的第一误差信息时,可以将所述第一当前累计帧中的栅格区域投影至所述第一历史累计帧的栅格区域,并确定所述第一当前累计帧中每个栅格区域内的地面点云数据的高度均值,以及将所述第一当前累计帧中每个栅格区域内的地面点云数据的高度均值与所述第一历史累计帧对应每个栅格区域内的地面点云数据的高度均值进行比较,从而确定所述第一当前累计帧中每个栅格区域内的地面点云数据的高度均值与所述第一历史累计帧对应每个栅格区域内的地面点云数据的高度均值之间的第一误差信息。在某些实施例中,所述第一当前累计帧是通过获取预设数量帧累计得到的,所述第一历史累计帧是根据历史获取到的预设数量帧累计得到的。
例如,假设预设数量帧为10帧,则所述状态估计系统可以获取当前累计的10帧以及当前累计的10帧之前历史累计的相邻10帧,并将所述当前累计的10帧中的栅格区域投影至所述历史累计的相邻10帧的栅格区域,并确定所述当前累计的10帧中每个栅格区域内的地面点云数据的高度均值,以及将所述当前累计的10帧中每个栅格区域内的地面点云数据的高度均值与所述历史累计的相邻10帧对应每个栅格区域内的地面点云数据的高度均值进行比较,从而确定所述当前累计的10帧中每个栅格区域内的地面点云数据的高度均值 与所述历史累计的相邻10帧对应每个栅格区域内的地面点云数据的高度均值之间的第一误差信息。
可见,通过这种对可移动平台的状态进行修正的实施方式,可以提高对可移动平台状态估计的精度和稳定性。
在一个实施例中,所述状态估计系统在根据第一误差信息修正所述可移动平台的位置信息和/或姿态信息时,可以根据第一误差信息修正所述可移动平台的高度、横滚角、俯仰角等,以对所述可移动平台的状态进行优化。
在一种实施方式中,所述状态估计系统可以根据预设的优化规则和所述第一误差信息对所述可移动平台的状态进行优化。在某些实施例中,所述预设的优化规则可以为如下公式(1)所示:
Figure PCTCN2019093580-appb-000001
其中,i代表第i个栅格区域,k代表第k帧,x ik,y ik,z ik为第k帧地面点云数据在第i个栅格区域内的高度均值,
Figure PCTCN2019093580-appb-000002
为第i个栅格区域内所有地面点云数据的高度均值,a k,b k,c k为待优化的变量,分别代表了横滚角、俯仰角、高度上的调整值。
在一个实施例中,所述状态估计系统可以根据公式(1)确定出第一误差信息,并根据所述第一误差信息对可移动平台的横滚角、俯仰角、高度进行优化调整,从而得到修正后的地面点云数据。
在一个实施例中,所述状态估计系统根据所述第一误差信息修正所述可移动平台的位置信息和/或姿态信息之后,可以获取根据所述第一误差信息修正所述可移动平台的位置信息和/或姿态信息之后得到的地面点云数据,并根据修正后得到的地面点云数据,修正所述可移动平台的位置信息和/或姿态信息。
在一个实施例中,所述状态估计系统在根据修正后得到的地面点云数据,修正所述可移动平台的位置信息和/或姿态信息时,可以将修正后获取到的第二当前累计帧的每个栅格区域内的地面点云数据与第二历史累积帧对应的每个栅格区域内的地面点云数据进行匹配,确定第二当前累计帧的地面点云数据与第二历史累计帧的地面点云数据的第二误差信息,并根据所述第二误差信息修正所述可移动平台的位置信息和/或姿态信息。
在一个实施例中,所述状态估计系统在将修正后获取到的第二当前累计帧的每个栅格区域内的地面点云数据与第二历史累积帧对应的每个栅格区域内 的地面点云数据进行匹配,确定第二当前累计帧的地面点云数据与第二历史累计帧的地面点云数据的第二误差信息时,可以将所述第二当前累计帧中的栅格区域投影至所述第二历史累计帧的栅格区域,并确定所述第二当前累计帧中每个栅格区域内的地面点云数据的高度均值,以及将所述第二当前累计帧中每个栅格区域内的地面点云数据的高度均值与所述第二历史累计帧对应每个栅格区域内的地面点云数据的高度均值进行比较,从而确定所述第二当前累计帧中每个栅格区域内的地面点云数据的高度均值与所述第二历史累计帧对应每个栅格区域内的地面点云数据的高度均值之间的第二误差信息。在某些实施例中,所述第二当前累计帧是通过获取指定时间范围内的帧累计得到的,所述第二历史累计帧是根据历史获取到的指定时间范围内的帧累计得到的。在某些实施例中,第二当前累计帧中包括的帧数量与第二历史累计帧中包括的帧数量可以相同,也可以不相同。
例如,假设指定时间范围为10s,则所述状态估计系统可以获取在当前10s内累计的第二当前累计帧以及在当前10s之前历史累计的10s内的第二历史累计帧,并将所述第二当前累计帧中的栅格区域投影至所述第二历史累计帧的栅格区域,并确定所述第二当前累计帧中每个栅格区域内的地面点云数据的高度均值,以及将所述第二当前累计帧中每个栅格区域内的地面点云数据的高度均值与所述第二历史累计帧对应每个栅格区域内的地面点云数据的高度均值进行比较,从而确定所述第二当前累计帧中每个栅格区域内的地面点云数据的高度均值与所述第二历史累计帧对应每个栅格区域内的地面点云数据的高度均值之间的第二误差信息。
可见,通过这种第二次对可移动平台的状态进行修正的实施方式,可以进一步提高对可移动平台状态估计的精度和稳定性。
在一个实施例中,所述状态估计系统在将修正后获取到的第二当前累计帧的每个栅格区域内的地面点云数据与第二历史累积帧对应的每个栅格区域内的地面点云数据进行匹配时,可以将所述第二当前累计帧中的栅格区域投影至所述第二历史累计帧的栅格区域进行匹配。
在一种实施方式中,所述状态估计系统将所述第二当前累计帧中的栅格区域投影至所述第二历史累计帧的栅格区域进行匹配的过程如图4所示,图4是本发明实施例提供的一种地面点云数据的匹配示意图。如图4所示包括在预 设时间范围内获取到的第二当前累计帧41和第二历史累计帧42,所述状态估计系统可以将所述第二当前累计帧41中的栅格区域投影至所述第二历史累计帧42的栅格区域上,从而确定出所述第二当前累计帧41中的栅格区域411投影到第二历史累计帧42的栅格区域中的对应位置区域421。
在一个实施例中,所述状态估计系统在确定所述第二当前累计帧中每个栅格区域内的地面点云数据的高度均值与所述第二历史累计帧对应每个栅格区域内的地面点云数据的高度均值之间的第二误差信息时,可以根据如下公式(2)确定所述第二误差信息。
Figure PCTCN2019093580-appb-000003
其中,res为第二误差信息,对每个栅格区域,其包括高度均值p和法向量n;第二当前累计帧中某个栅格区域的特征为p1,n 2,第二当前累计帧位姿为Rcur,P cur;第二历史累计帧对应的栅格区域特征为p 2,n 2,第二历史累计帧位姿为R pre,P pre
在一个实施例中,所述状态估计系统根据所述地面点云数据修正所述可移动平台的位置信息和/或姿态信息之后,可以根据确定的第二误差信息修正所述可移动平台的高度信息、横滚角、俯仰角中的任意一种或多种,以使修正后得到的误差信息小于预设阈值。
在一个实施例中,所述状态估计系统根据所述第二误差信息修正所述可移动平台的高度信息、横滚角、俯仰角之后,可以确定出对所述可移动平台的状态估计的高度变化结果。具体可以图5a和图5b为例进行说明,图5a是本发明实施例提供的一种对可移动平台的状态修正前的高度变化结果示意图,图5b是本发明实施例提供的一种对可移动平台的状态修正后的高度变化结果示意图。通过图5a所示的高度变化结果示意图可以确定所述可移动平台的高度变化误差较大,从而可以确定所述第二误差信息较大。通过本发明实施例提供的方案对可移动平台的状态进行修正后,可以估计得到如图5b所示的高度变化结果示意图,图5b所示的高度变化误差明显比图5a所示的高度变化误差减小很多。可见,通过本发明实施例可以大大抑制在特殊场景下估计可移动平台状态的误差,提高了对可移动平台进行状态估计的鲁棒性和精度。
本发明实施例中,状态估计系统通过获取所述可移动平台当前所处周围环境对应的三维点云数据,从所述三维点云数据中确定属于同一平面的地面点云数据,并根据所述地面点云数据确定第一误差信息和第二误差信息,以及根据第一误差信息和第二误差信息修正所述可移动平台的位置信息和/或姿态信息。通过这种实施方式实现了对可移动平台的位置信息和/或姿态信息进行多次修正,进一步提高了对可移动平台状态估计的稳定性和精准性。
请参见图6,图6是本发明实施例提供的一种状态估计系统的结构示意图。具体的,所述状态估计系统包括:存储器601、处理器602。
在一种实施例中,所述状态估计系统还包括数据接口603,所述数据接口603,用于传递状态估计系统和其他系统之间的数据信息。
在一种实施例中,所述状态估计系统还包括点云传感器604,所述点云传感器604用于获取三维点云数据。
所述存储器601可以包括易失性存储器(volatile memory);存储器601也可以包括非易失性存储器(non-volatile memory);存储器601还可以包括上述种类的存储器的组合。所述处理器602可以是中央处理器(central processing unit,CPU)。所述处理器602还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA)或其任意组合。
所述存储器601用于存储程序指令,所述处理器602可以调用存储器601中存储的程序指令,用于执行如下步骤:
获取可移动平台当前所处周围环境对应的三维点云数据;
从所述三维点云数据中确定属于同一平面的地面点云数据;
根据所述地面点云数据修正所述可移动平台的位置信息和/或姿态信息。
进一步地,所述处理器602从所述三维点云数据中确定属于同一平面的地面点云数据时,具体用于:
根据预设的多个栅格区域对所述三维点云数据进行划分;
根据每个栅格区域内的三维点云数据,确定所述属于同一平面的地面点云数据。
进一步地,所述处理器602根据每个栅格区域内的三维点云数据,确定所述属于同一平面的地面点云数据时,具体用于:
获取所述每个栅格区域内的三维点云数据的高度;
根据所述每个栅格区域内的三维点云数据的高度,确定所述属于同一平面的地面点云数据。
进一步地,所述处理器602根据所述每个栅格区域内的三维点云数据的高度,确定所述属于同一平面的地面点云数据时,具体用于:
确定所述每个栅格区域内的高度小于预设高度阈值的初始地面点云数据;
对所述初始地面点云数据进行拟合得到拟合平面以及所述拟合平面的法向量;
根据所述法向量确定属于所述拟合平面的地面点云数据。
进一步地,所述处理器602根据所述法向量确定属于所述拟合平面的地面点云数据时,具体用于:
根据所述法向量确定每个栅格区域内的三维点云数据与所述拟合平面的距离;
从所述每个栅格区域中确定与所述拟合平面的距离小于预设距离阈值的地面点云数据。
进一步地,所述处理器602根据所述地面点云数据修正所述可移动平台的位置信息和/或姿态信息时,具体用于:
将第一当前累计帧的每个栅格区域内的地面点云数据与第一历史累积帧对应的每个栅格区域内的地面点云数据进行匹配,确定第一当前累计帧的地面点云数据与第一历史累计帧的地面点云数据的第一误差信息;
根据所述第一误差信息修正所述可移动平台的位置信息和/或姿态信息。
进一步地,所述处理器602将第一当前累计帧的每个栅格区域内的地面点云数据与第一历史累计帧对应的每个栅格区域内的地面点云数据进行匹配,确定第一当前累计帧的地面点云数据与第一历史累计帧的地面点云数据的第一误差信息时,具体用于:
将所述第一当前累计帧中的栅格区域投影至所述第一历史累计帧的栅格区域;
确定所述第一当前累计帧中每个栅格区域内的地面点云数据的高度均值;
将所述第一当前累计帧中每个栅格区域内的地面点云数据的高度均值与所述第一历史累计帧对应每个栅格区域内的地面点云数据的高度均值进行比较;
确定所述第一当前累计帧中每个栅格区域内的地面点云数据的高度均值与所述第一历史累计帧对应每个栅格区域内的地面点云数据的高度均值之间的第一误差信息。
进一步地,所述第一当前累计帧是通过获取预设数量帧累计得到的,所述第一历史累计帧是根据历史获取到的预设数量帧累计得到的。
进一步地,所述处理器602根据所述第一误差信息修正所述可移动平台的位置信息和/或姿态信息之后,还用于:
获取根据所述第一误差信息修正所述可移动平台的位置信息和/或姿态信息之后得到的地面点云数据;
根据修正后得到的地面点云数据,修正所述可移动平台的位置信息和/或姿态信息。
进一步地,所述处理器602根据修正后得到的地面点云数据,修正所述可移动平台的位置信息和/或姿态信息时,具体用于:
将修正后获取到的第二当前累计帧的每个栅格区域内的地面点云数据与第二历史累积帧对应的每个栅格区域内的地面点云数据进行匹配,确定第二当前累计帧的地面点云数据与第二历史累计帧的地面点云数据的第二误差信息;
根据所述第二误差信息修正所述可移动平台的位置信息和/或姿态信息。
进一步地,所述处理器602将修正后获取到的第二当前累计帧的每个栅格区域内的地面点云数据与第二历史累积帧对应的每个栅格区域内的地面点云数据进行匹配,确定第二当前累计帧的地面点云数据与第二历史累计帧的地面点云数据的第二误差信息时,具体用于:
将所述第二当前累计帧中的栅格区域投影至所述第二历史累计帧的栅格区域;
确定所述第二当前累计帧中每个栅格区域内的地面点云数据的高度均值;
将所述第二当前累计帧中每个栅格区域内的地面点云数据的高度均值与所述第二历史累计帧对应每个栅格区域内的地面点云数据的高度均值进行比较;
确定所述第二当前累计帧中每个栅格区域内的地面点云数据的高度均值与所述第二历史累计帧对应每个栅格区域内的地面点云数据的高度均值之间的第二误差信息。
进一步地,所述第二当前累计帧是通过获取指定时间范围内的帧累计得到的,所述第二历史累计帧是根据历史获取到的指定时间范围内的帧累计得到的。
进一步地,所述位置信息包括高度信息;所述姿态信息包括横滚角和/或俯仰角。
进一步地,所述处理器602根据所述地面点云数据修正所述可移动平台的位置信息和/或姿态信息之后,还用于:
根据确定的第二误差信息修正所述可移动平台的高度信息、横滚角、俯仰角中的任意一种或多种,以使修正后得到的误差信息小于预设阈值。
进一步地,所述处理器602获取可移动平台当前所处周围环境对应的三维点云数据时,具体用于:
通过激光雷达获取所述可移动平台当前所处周围环境对应的三维点云数据。
本发明实施例中,状态估计系统通过获取所述可移动平台当前所处周围环境对应的三维点云数据,从所述三维点云数据中确定属于同一平面的地面点云数据,并根据所述地面点云数据修正所述可移动平台的位置信息和/或姿态信息,实现了通过对可移动平台的位置信息和/或姿态信息进行修正提高对可移动平台状态估计的稳定性和精准性。
本发明实施例还提供了一种可移动平台,所述可移动平台包括:机身;配置在机身上的动力系统,用于为可移动平台提供移动的动力;处理器,用于获取可移动平台当前所处周围环境对应的三维点云数据;从所述三维点云数据中确定属于同一平面的地面点云数据;根据所述地面点云数据修正所述可移动平台的位置信息和/或姿态信息。
进一步地,所述处理器从所述三维点云数据中确定属于同一平面的地面点云数据时,具体用于:
根据预设的多个栅格区域对所述三维点云数据进行划分;
根据每个栅格区域内的三维点云数据,确定所述属于同一平面的地面点云 数据。
进一步地,所述处理器根据每个栅格区域内的三维点云数据,确定所述属于同一平面的地面点云数据时,具体用于:
获取所述每个栅格区域内的三维点云数据的高度;
根据所述每个栅格区域内的三维点云数据的高度,确定所述属于同一平面的地面点云数据。
进一步地,所述处理器根据所述每个栅格区域内的三维点云数据的高度,确定所述属于同一平面的地面点云数据时,具体用于:
确定所述每个栅格区域内的高度小于预设高度阈值的初始地面点云数据;
对所述初始地面点云数据进行拟合得到拟合平面以及所述拟合平面的法向量;
根据所述法向量确定属于所述拟合平面的地面点云数据。
进一步地,所述处理器根据所述法向量确定属于所述拟合平面的地面点云数据时,具体用于:
根据所述法向量确定每个栅格区域内的三维点云数据与所述拟合平面的距离;
从所述每个栅格区域中确定与所述拟合平面的距离小于预设距离阈值的地面点云数据。
进一步地,所述处理器根据所述地面点云数据修正所述可移动平台的位置信息和/或姿态信息时,具体用于:
将第一当前累计帧的每个栅格区域内的地面点云数据与第一历史累积帧对应的每个栅格区域内的地面点云数据进行匹配,确定第一当前累计帧的地面点云数据与第一历史累计帧的地面点云数据的第一误差信息;
根据所述第一误差信息修正所述可移动平台的位置信息和/或姿态信息。
进一步地,所述处理器将第一当前累计帧的每个栅格区域内的地面点云数据与第一历史累计帧对应的每个栅格区域内的地面点云数据进行匹配,确定第一当前累计帧的地面点云数据与第一历史累计帧的地面点云数据的第一误差信息时,具体用于:
将所述第一当前累计帧中的栅格区域投影至所述第一历史累计帧的栅格区域;
确定所述第一当前累计帧中每个栅格区域内的地面点云数据的高度均值;
将所述第一当前累计帧中每个栅格区域内的地面点云数据的高度均值与所述第一历史累计帧对应每个栅格区域内的地面点云数据的高度均值进行比较;
确定所述第一当前累计帧中每个栅格区域内的地面点云数据的高度均值与所述第一历史累计帧对应每个栅格区域内的地面点云数据的高度均值之间的第一误差信息。
进一步地,所述第一当前累计帧是通过获取预设数量帧累计得到的,所述第一历史累计帧是根据历史获取到的预设数量帧累计得到的。
进一步地,所述处理器根据所述第一误差信息修正所述可移动平台的位置信息和/或姿态信息之后,还用于:
获取根据所述第一误差信息修正所述可移动平台的位置信息和/或姿态信息之后得到的地面点云数据;
根据修正后得到的地面点云数据,修正所述可移动平台的位置信息和/或姿态信息。
进一步地,所述处理器根据修正后得到的地面点云数据,修正所述可移动平台的位置信息和/或姿态信息时,具体用于:
将修正后获取到的第二当前累计帧的每个栅格区域内的地面点云数据与第二历史累积帧对应的每个栅格区域内的地面点云数据进行匹配,确定第二当前累计帧的地面点云数据与第二历史累计帧的地面点云数据的第二误差信息;
根据所述第二误差信息修正所述可移动平台的位置信息和/或姿态信息。
进一步地,所述处理器将修正后获取到的第二当前累计帧的每个栅格区域内的地面点云数据与第二历史累积帧对应的每个栅格区域内的地面点云数据进行匹配,确定第二当前累计帧的地面点云数据与第二历史累计帧的地面点云数据的第二误差信息时,具体用于:
将所述第二当前累计帧中的栅格区域投影至所述第二历史累计帧的栅格区域;
确定所述第二当前累计帧中每个栅格区域内的地面点云数据的高度均值;
将所述第二当前累计帧中每个栅格区域内的地面点云数据的高度均值与所述第二历史累计帧对应每个栅格区域内的地面点云数据的高度均值进行比 较;
确定所述第二当前累计帧中每个栅格区域内的地面点云数据的高度均值与所述第二历史累计帧对应每个栅格区域内的地面点云数据的高度均值之间的第二误差信息。
进一步地,所述第二当前累计帧是通过获取指定时间范围内的帧累计得到的,所述第二历史累计帧是根据历史获取到的指定时间范围内的帧累计得到的。
进一步地,所述位置信息包括高度信息;所述姿态信息包括横滚角和/或俯仰角。
进一步地,所述处理器根据所述地面点云数据修正所述可移动平台的位置信息和/或姿态信息之后,还用于:
根据确定的第二误差信息修正所述可移动平台的高度信息、横滚角、俯仰角中的任意一种或多种,以使修正后得到的误差信息小于预设阈值。
进一步地,所述处理器获取可移动平台当前所处周围环境对应的三维点云数据时,具体用于:
通过激光雷达获取所述可移动平台当前所处周围环境对应的三维点云数据。
本发明实施例中,状态估计系统通过获取所述可移动平台当前所处周围环境对应的三维点云数据,从所述三维点云数据中确定属于同一平面的地面点云数据,并根据所述地面点云数据修正所述可移动平台的位置信息和/或姿态信息,实现了通过对可移动平台的位置信息和/或姿态信息进行修正提高对可移动平台状态估计的稳定性和精准性。
本发明的实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本发明图2或图3所对应实施例中描述的方法,也可实现图6所述本发明所对应实施例的系统,在此不再赘述。
所述计算机可读存储介质可以是前述任一实施例所述的系统的内部存储单元,例如系统的硬盘或内存。所述计算机可读存储介质也可以是所述系统的外部存储设备,例如所述设备上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进 一步地,所述计算机可读存储介质还可以既包括所述设备的内部存储单元也包括外部存储设备。所述计算机可读存储介质用于存储所述计算机程序以及所述终端所需的其他程序和数据。所述计算机可读存储介质还可以用于暂时地存储已经输出或者将要输出的数据。
以上所揭露的仅为本发明部分实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (46)

  1. 一种可移动平台的状态估计方法,其特征在于,包括:
    获取可移动平台当前所处周围环境对应的三维点云数据;
    从所述三维点云数据中确定属于同一平面的地面点云数据;
    根据所述地面点云数据修正所述可移动平台的位置信息和/或姿态信息。
  2. 根据权利要求1所述的方法,其特征在于,所述从所述三维点云数据中确定属于同一平面的地面点云数据,包括:
    根据预设的多个栅格区域对所述三维点云数据进行划分;
    根据每个栅格区域内的三维点云数据,确定所述属于同一平面的地面点云数据。
  3. 根据权利要求2所述的方法,其特征在于,所述根据每个栅格区域内的三维点云数据,确定所述属于同一平面的地面点云数据,包括:
    获取所述每个栅格区域内的三维点云数据的高度;
    根据所述每个栅格区域内的三维点云数据的高度,确定所述属于同一平面的地面点云数据。
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述每个栅格区域内的三维点云数据的高度,确定所述属于同一平面的地面点云数据,包括:
    确定所述每个栅格区域内的高度小于预设高度阈值的初始地面点云数据;
    对所述初始地面点云数据进行拟合得到拟合平面以及所述拟合平面的法向量;
    根据所述法向量确定属于所述拟合平面的地面点云数据。
  5. 根据权利要求4所述的方法,其特征在于,所述根据所述法向量确定属于所述拟合平面的地面点云数据,包括:
    根据所述法向量确定每个栅格区域内的三维点云数据与所述拟合平面的距离;
    从所述每个栅格区域中确定与所述拟合平面的距离小于预设距离阈值的地面点云数据。
  6. 根据权利要求1所述的方法,其特征在于,所述根据所述地面点云数据修正所述可移动平台的位置信息和/或姿态信息,包括:
    将第一当前累计帧的每个栅格区域内的地面点云数据与第一历史累积帧对应的每个栅格区域内的地面点云数据进行匹配,确定第一当前累计帧的地面点云数据与第一历史累计帧的地面点云数据的第一误差信息;
    根据所述第一误差信息修正所述可移动平台的位置信息和/或姿态信息。
  7. 根据权利要求6所述的方法,其特征在于,所述将第一当前累计帧的每个栅格区域内的地面点云数据与第一历史累计帧对应的每个栅格区域内的地面点云数据进行匹配,确定第一当前累计帧的地面点云数据与第一历史累计帧的地面点云数据的第一误差信息,包括:
    将所述第一当前累计帧中的栅格区域投影至所述第一历史累计帧的栅格区域;
    确定所述第一当前累计帧中每个栅格区域内的地面点云数据的高度均值;
    将所述第一当前累计帧中每个栅格区域内的地面点云数据的高度均值与所述第一历史累计帧对应每个栅格区域内的地面点云数据的高度均值进行比较;
    确定所述第一当前累计帧中每个栅格区域内的地面点云数据的高度均值与所述第一历史累计帧对应每个栅格区域内的地面点云数据的高度均值之间的第一误差信息。
  8. 根据权利要求7所述的方法,其特征在于,
    所述第一当前累计帧是通过获取预设数量帧累计得到的,所述第一历史累计帧是根据历史获取到的预设数量帧累计得到的。
  9. 根据权利要求6所述的方法,其特征在于,所述根据所述第一误差信息修正所述可移动平台的位置信息和/或姿态信息之后,还包括:
    获取根据所述第一误差信息修正所述可移动平台的位置信息和/或姿态信息之后得到的地面点云数据;
    根据修正后得到的地面点云数据,修正所述可移动平台的位置信息和/或姿态信息。
  10. 根据权利要求9所述的方法,其特征在于,所述根据修正后得到的地面点云数据,修正所述可移动平台的位置信息和/或姿态信息,包括:
    将修正后获取到的第二当前累计帧的每个栅格区域内的地面点云数据与第二历史累积帧对应的每个栅格区域内的地面点云数据进行匹配,确定第二当前累计帧的地面点云数据与第二历史累计帧的地面点云数据的第二误差信息;
    根据所述第二误差信息修正所述可移动平台的位置信息和/或姿态信息。
  11. 根据权利要求10所述的方法,其特征在于,所述将修正后获取到的第二当前累计帧的每个栅格区域内的地面点云数据与第二历史累积帧对应的每个栅格区域内的地面点云数据进行匹配,确定第二当前累计帧的地面点云数据与第二历史累计帧的地面点云数据的第二误差信息,包括:
    将所述第二当前累计帧中的栅格区域投影至所述第二历史累计帧的栅格区域;
    确定所述第二当前累计帧中每个栅格区域内的地面点云数据的高度均值;
    将所述第二当前累计帧中每个栅格区域内的地面点云数据的高度均值与所述第二历史累计帧对应每个栅格区域内的地面点云数据的高度均值进行比较;
    确定所述第二当前累计帧中每个栅格区域内的地面点云数据的高度均值与所述第二历史累计帧对应每个栅格区域内的地面点云数据的高度均值之间的第二误差信息。
  12. 根据权利要求11所述的方法,其特征在于,
    所述第二当前累计帧是通过获取指定时间范围内的帧累计得到的,所述第二历史累计帧是根据历史获取到的指定时间范围内的帧累计得到的。
  13. 根据权利要求1所述的方法,其特征在于,所述位置信息包括高度信息;所述姿态信息包括横滚角和/或俯仰角。
  14. 根据权利要求13所述的方法,其特征在于,所述根据所述地面点云数据修正所述可移动平台的位置信息和/或姿态信息之后,还包括:
    根据确定的第二误差信息修正所述可移动平台的高度信息、横滚角、俯仰角中的任意一种或多种,以使修正后得到的误差信息小于预设阈值。
  15. 根据权利要求1所述的方法,其特征在于,所述获取可移动平台当前所处周围环境对应的三维点云数据,包括:
    通过激光雷达获取所述可移动平台当前所处周围环境对应的三维点云数据。
  16. 一种状态估计系统,用于可移动平台,其特征在于,包括:
    点云传感器,用于获取三维点云数据;
    存储器,用于存储程序指令;
    处理器,用于调用所述程序指令,当所述程序指令被执行时,用于执行以下操作:
    获取可移动平台当前所处周围环境对应的三维点云数据;
    从所述三维点云数据中确定属于同一平面的地面点云数据;
    根据所述地面点云数据修正所述可移动平台的位置信息和/或姿态信息。
  17. 根据权利要求16所述的系统,其特征在于,所述处理器从所述三维点云数据中确定属于同一平面的地面点云数据时,具体用于:
    根据预设的多个栅格区域对所述三维点云数据进行划分;
    根据每个栅格区域内的三维点云数据,确定所述属于同一平面的地面点云数据。
  18. 根据权利要求17所述的系统,其特征在于,所述处理器根据每个栅 格区域内的三维点云数据,确定所述属于同一平面的地面点云数据时,具体用于:
    获取所述每个栅格区域内的三维点云数据的高度;
    根据所述每个栅格区域内的三维点云数据的高度,确定所述属于同一平面的地面点云数据。
  19. 根据权利要求18所述的系统,其特征在于,所述处理器根据所述每个栅格区域内的三维点云数据的高度,确定所述属于同一平面的地面点云数据时,具体用于:
    确定所述每个栅格区域内的高度小于预设高度阈值的初始地面点云数据;
    对所述初始地面点云数据进行拟合得到拟合平面以及所述拟合平面的法向量;
    根据所述法向量确定属于所述拟合平面的地面点云数据。
  20. 根据权利要求19所述的系统,其特征在于,所述处理器根据所述法向量确定属于所述拟合平面的地面点云数据时,具体用于:
    根据所述法向量确定每个栅格区域内的三维点云数据与所述拟合平面的距离;
    从所述每个栅格区域中确定与所述拟合平面的距离小于预设距离阈值的地面点云数据。
  21. 根据权利要求16所述的系统,其特征在于,所述处理器根据所述地面点云数据修正所述可移动平台的位置信息和/或姿态信息时,具体用于:
    将第一当前累计帧的每个栅格区域内的地面点云数据与第一历史累积帧对应的每个栅格区域内的地面点云数据进行匹配,确定第一当前累计帧的地面点云数据与第一历史累计帧的地面点云数据的第一误差信息;
    根据所述第一误差信息修正所述可移动平台的位置信息和/或姿态信息。
  22. 根据权利要求21所述的系统,其特征在于,所述处理器将第一当前累计帧的每个栅格区域内的地面点云数据与第一历史累计帧对应的每个栅格 区域内的地面点云数据进行匹配,确定第一当前累计帧的地面点云数据与第一历史累计帧的地面点云数据的第一误差信息时,具体用于:
    将所述第一当前累计帧中的栅格区域投影至所述第一历史累计帧的栅格区域;
    确定所述第一当前累计帧中每个栅格区域内的地面点云数据的高度均值;
    将所述第一当前累计帧中每个栅格区域内的地面点云数据的高度均值与所述第一历史累计帧对应每个栅格区域内的地面点云数据的高度均值进行比较;
    确定所述第一当前累计帧中每个栅格区域内的地面点云数据的高度均值与所述第一历史累计帧对应每个栅格区域内的地面点云数据的高度均值之间的第一误差信息。
  23. 根据权利要求22所述的系统,其特征在于,
    所述第一当前累计帧是通过获取预设数量帧累计得到的,所述第一历史累计帧是根据历史获取到的预设数量帧累计得到的。
  24. 根据权利要求21所述的系统,其特征在于,所述处理器根据所述第一误差信息修正所述可移动平台的位置信息和/或姿态信息之后,还用于:
    获取根据所述第一误差信息修正所述可移动平台的位置信息和/或姿态信息之后得到的地面点云数据;
    根据修正后得到的地面点云数据,修正所述可移动平台的位置信息和/或姿态信息。
  25. 根据权利要求24所述的系统,其特征在于,所述处理器根据修正后得到的地面点云数据,修正所述可移动平台的位置信息和/或姿态信息时,具体用于:
    将修正后获取到的第二当前累计帧的每个栅格区域内的地面点云数据与第二历史累积帧对应的每个栅格区域内的地面点云数据进行匹配,确定第二当前累计帧的地面点云数据与第二历史累计帧的地面点云数据的第二误差信息;
    根据所述第二误差信息修正所述可移动平台的位置信息和/或姿态信息。
  26. 根据权利要求25所述的系统,其特征在于,所述处理器将修正后获取到的第二当前累计帧的每个栅格区域内的地面点云数据与第二历史累积帧对应的每个栅格区域内的地面点云数据进行匹配,确定第二当前累计帧的地面点云数据与第二历史累计帧的地面点云数据的第二误差信息时,具体用于:
    将所述第二当前累计帧中的栅格区域投影至所述第二历史累计帧的栅格区域;
    确定所述第二当前累计帧中每个栅格区域内的地面点云数据的高度均值;
    将所述第二当前累计帧中每个栅格区域内的地面点云数据的高度均值与所述第二历史累计帧对应每个栅格区域内的地面点云数据的高度均值进行比较;
    确定所述第二当前累计帧中每个栅格区域内的地面点云数据的高度均值与所述第二历史累计帧对应每个栅格区域内的地面点云数据的高度均值之间的第二误差信息。
  27. 根据权利要求26所述的系统,其特征在于,
    所述第二当前累计帧是通过获取指定时间范围内的帧累计得到的,所述第二历史累计帧是根据历史获取到的指定时间范围内的帧累计得到的。
  28. 根据权利要求16所述的系统,其特征在于,所述位置信息包括高度信息;所述姿态信息包括横滚角和/或俯仰角。
  29. 根据权利要求28所述的系统,其特征在于,所述处理器根据所述地面点云数据修正所述可移动平台的位置信息和/或姿态信息之后,还用于:
    根据确定的第二误差信息修正所述可移动平台的高度信息、横滚角、俯仰角中的任意一种或多种,以使修正后得到的误差信息小于预设阈值。
  30. 根据权利要求16所述的系统,其特征在于,所述处理器获取可移动平台当前所处周围环境对应的三维点云数据时,具体用于:
    通过激光雷达获取所述可移动平台当前所处周围环境对应的三维点云数 据。
  31. 一种可移动平台,其特征在于,包括:
    机身;
    配置在机身上的动力系统,用于为可移动平台提供移动的动力;
    处理器,用于执行:
    获取可移动平台当前所处周围环境对应的三维点云数据;
    从所述三维点云数据中确定属于同一平面的地面点云数据;
    根据所述地面点云数据修正所述可移动平台的位置信息和/或姿态信息。
  32. 根据权利要求31所述的可移动平台,其特征在于,所述处理器从所述三维点云数据中确定属于同一平面的地面点云数据时,具体用于:
    根据预设的多个栅格区域对所述三维点云数据进行划分;
    根据每个栅格区域内的三维点云数据,确定所述属于同一平面的地面点云数据。
  33. 根据权利要求32所述的可移动平台,其特征在于,所述处理器根据每个栅格区域内的三维点云数据,确定所述属于同一平面的地面点云数据时,具体用于:
    获取所述每个栅格区域内的三维点云数据的高度;
    根据所述每个栅格区域内的三维点云数据的高度,确定所述属于同一平面的地面点云数据。
  34. 根据权利要求33所述的可移动平台,其特征在于,所述处理器根据所述每个栅格区域内的三维点云数据的高度,确定所述属于同一平面的地面点云数据时,具体用于:
    确定所述每个栅格区域内的高度小于预设高度阈值的初始地面点云数据;
    对所述初始地面点云数据进行拟合得到拟合平面以及所述拟合平面的法向量;
    根据所述法向量确定属于所述拟合平面的地面点云数据。
  35. 根据权利要求34所述的可移动平台,其特征在于,所述处理器根据所述法向量确定属于所述拟合平面的地面点云数据时,具体用于:
    根据所述法向量确定每个栅格区域内的三维点云数据与所述拟合平面的距离;
    从所述每个栅格区域中确定与所述拟合平面的距离小于预设距离阈值的地面点云数据。
  36. 根据权利要求31所述的可移动平台,其特征在于,所述处理器根据所述地面点云数据修正所述可移动平台的位置信息和/或姿态信息时,具体用于:
    将第一当前累计帧的每个栅格区域内的地面点云数据与第一历史累积帧对应的每个栅格区域内的地面点云数据进行匹配,确定第一当前累计帧的地面点云数据与第一历史累计帧的地面点云数据的第一误差信息;
    根据所述第一误差信息修正所述可移动平台的位置信息和/或姿态信息。
  37. 根据权利要求36所述的可移动平台,其特征在于,所述处理器将第一当前累计帧的每个栅格区域内的地面点云数据与第一历史累计帧对应的每个栅格区域内的地面点云数据进行匹配,确定第一当前累计帧的地面点云数据与第一历史累计帧的地面点云数据的第一误差信息时,具体用于:
    将所述第一当前累计帧中的栅格区域投影至所述第一历史累计帧的栅格区域;
    确定所述第一当前累计帧中每个栅格区域内的地面点云数据的高度均值;
    将所述第一当前累计帧中每个栅格区域内的地面点云数据的高度均值与所述第一历史累计帧对应每个栅格区域内的地面点云数据的高度均值进行比较;
    确定所述第一当前累计帧中每个栅格区域内的地面点云数据的高度均值与所述第一历史累计帧对应每个栅格区域内的地面点云数据的高度均值之间的第一误差信息。
  38. 根据权利要求37所述的可移动平台,其特征在于,
    所述第一当前累计帧是通过获取预设数量帧累计得到的,所述第一历史累计帧是根据历史获取到的预设数量帧累计得到的。
  39. 根据权利要求36所述的可移动平台,其特征在于,所述处理器根据所述第一误差信息修正所述可移动平台的位置信息和/或姿态信息之后,还用于:
    获取根据所述第一误差信息修正所述可移动平台的位置信息和/或姿态信息之后得到的地面点云数据;
    根据修正后得到的地面点云数据,修正所述可移动平台的位置信息和/或姿态信息。
  40. 根据权利要求39所述的可移动平台,其特征在于,所述处理器根据修正后得到的地面点云数据,修正所述可移动平台的位置信息和/或姿态信息时,具体用于:
    将修正后获取到的第二当前累计帧的每个栅格区域内的地面点云数据与第二历史累积帧对应的每个栅格区域内的地面点云数据进行匹配,确定第二当前累计帧的地面点云数据与第二历史累计帧的地面点云数据的第二误差信息;
    根据所述第二误差信息修正所述可移动平台的位置信息和/或姿态信息。
  41. 根据权利要求40所述的可移动平台,其特征在于,所述处理器将修正后获取到的第二当前累计帧的每个栅格区域内的地面点云数据与第二历史累积帧对应的每个栅格区域内的地面点云数据进行匹配,确定第二当前累计帧的地面点云数据与第二历史累计帧的地面点云数据的第二误差信息时,具体用于:
    将所述第二当前累计帧中的栅格区域投影至所述第二历史累计帧的栅格区域;
    确定所述第二当前累计帧中每个栅格区域内的地面点云数据的高度均值;
    将所述第二当前累计帧中每个栅格区域内的地面点云数据的高度均值与所述第二历史累计帧对应每个栅格区域内的地面点云数据的高度均值进行比 较;
    确定所述第二当前累计帧中每个栅格区域内的地面点云数据的高度均值与所述第二历史累计帧对应每个栅格区域内的地面点云数据的高度均值之间的第二误差信息。
  42. 根据权利要求41所述的可移动平台,其特征在于,
    所述第二当前累计帧是通过获取指定时间范围内的帧累计得到的,所述第二历史累计帧是根据历史获取到的指定时间范围内的帧累计得到的。
  43. 根据权利要求31所述的可移动平台,其特征在于,所述位置信息包括高度信息;所述姿态信息包括横滚角和/或俯仰角。
  44. 根据权利要求43所述的可移动平台,其特征在于,所述处理器根据所述地面点云数据修正所述可移动平台的位置信息和/或姿态信息之后,还用于:
    根据确定的第二误差信息修正所述可移动平台的高度信息、横滚角、俯仰角中的任意一种或多种,以使修正后得到的误差信息小于预设阈值。
  45. 根据权利要求31所述的可移动平台,其特征在于,所述处理器获取可移动平台当前所处周围环境对应的三维点云数据时,具体用于:
    通过激光雷达获取所述可移动平台当前所处周围环境对应的三维点云数据。
  46. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至15任一项所述方法。
PCT/CN2019/093580 2019-06-28 2019-06-28 可移动平台状态估计方法、系统、可移动平台及存储介质 WO2020258217A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/093580 WO2020258217A1 (zh) 2019-06-28 2019-06-28 可移动平台状态估计方法、系统、可移动平台及存储介质
CN201980008419.2A CN111684382B (zh) 2019-06-28 2019-06-28 可移动平台状态估计方法、系统、可移动平台及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/093580 WO2020258217A1 (zh) 2019-06-28 2019-06-28 可移动平台状态估计方法、系统、可移动平台及存储介质

Publications (1)

Publication Number Publication Date
WO2020258217A1 true WO2020258217A1 (zh) 2020-12-30

Family

ID=72433225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/093580 WO2020258217A1 (zh) 2019-06-28 2019-06-28 可移动平台状态估计方法、系统、可移动平台及存储介质

Country Status (2)

Country Link
CN (1) CN111684382B (zh)
WO (1) WO2020258217A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115220009A (zh) * 2021-04-15 2022-10-21 阿里巴巴新加坡控股有限公司 数据处理方法、装置、电子设备及计算机存储介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113253294A (zh) * 2021-06-16 2021-08-13 北京海天瑞声科技股份有限公司 关于3d雷达点云数据中地面点检测的方法、装置及介质
CN113848944A (zh) * 2021-10-18 2021-12-28 云鲸智能科技(东莞)有限公司 一种地图构建方法、装置、机器人及存储介质
CN117999207A (zh) * 2021-11-18 2024-05-07 华为技术有限公司 运动状态估计方法及装置
CN117392569A (zh) * 2023-11-06 2024-01-12 上海勘测设计研究院有限公司 融合DOM影像和三维实景模型的机载Lidar点云地面点提取方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105045263A (zh) * 2015-07-06 2015-11-11 杭州南江机器人股份有限公司 一种基于Kinect的机器人自定位方法
CN106530380A (zh) * 2016-09-20 2017-03-22 长安大学 一种基于三维激光雷达的地面点云分割方法
CN107340522A (zh) * 2017-07-10 2017-11-10 浙江国自机器人技术有限公司 一种激光雷达定位的方法、装置及系统
CN109923583A (zh) * 2017-07-07 2019-06-21 深圳市大疆创新科技有限公司 一种姿态的识别方法、设备及可移动平台

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101619076B1 (ko) * 2009-08-25 2016-05-10 삼성전자 주식회사 모바일 플랫폼의 동적 물체 검출 및 추적 방법
US8942917B2 (en) * 2011-02-14 2015-01-27 Microsoft Corporation Change invariant scene recognition by an agent
CN106650640B (zh) * 2016-12-05 2020-03-03 浙江大学 一种基于激光雷达点云局部结构特征的负障碍物检测方法
CN107179768B (zh) * 2017-05-15 2020-01-17 上海木木机器人技术有限公司 一种障碍物识别方法及装置
CN109214248B (zh) * 2017-07-04 2022-04-29 阿波罗智能技术(北京)有限公司 用于识别无人驾驶车辆的激光点云数据的方法和装置
CN107796397B (zh) * 2017-09-14 2020-05-15 杭州迦智科技有限公司 一种机器人双目视觉定位方法、装置和存储介质
CN108279670B (zh) * 2017-12-29 2021-12-10 百度在线网络技术(北京)有限公司 用于调整点云数据采集轨迹的方法、设备以及计算机可读介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105045263A (zh) * 2015-07-06 2015-11-11 杭州南江机器人股份有限公司 一种基于Kinect的机器人自定位方法
CN106530380A (zh) * 2016-09-20 2017-03-22 长安大学 一种基于三维激光雷达的地面点云分割方法
CN109923583A (zh) * 2017-07-07 2019-06-21 深圳市大疆创新科技有限公司 一种姿态的识别方法、设备及可移动平台
CN107340522A (zh) * 2017-07-10 2017-11-10 浙江国自机器人技术有限公司 一种激光雷达定位的方法、装置及系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115220009A (zh) * 2021-04-15 2022-10-21 阿里巴巴新加坡控股有限公司 数据处理方法、装置、电子设备及计算机存储介质

Also Published As

Publication number Publication date
CN111684382B (zh) 2024-06-11
CN111684382A (zh) 2020-09-18

Similar Documents

Publication Publication Date Title
WO2020258217A1 (zh) 可移动平台状态估计方法、系统、可移动平台及存储介质
US20210124029A1 (en) Calibration of laser and vision sensors
CN111373337B (zh) 使用基于相机的子地图和基于lidar的全局地图进行厘米精度定位的3d子地图重构系统和方法
CN110148185B (zh) 确定成像设备坐标系转换参数的方法、装置和电子设备
WO2021016854A1 (zh) 一种标定方法、设备、可移动平台及存储介质
EP3876141A1 (en) Object detection method, related device and computer storage medium
WO2020215172A1 (zh) 一种障碍物检测方法、设备、可移动平台及存储介质
US11047976B2 (en) Information processing apparatus, information processing method and program
CN113657224B (zh) 车路协同中用于确定对象状态的方法、装置、设备
US10247831B2 (en) Navigation signal processing device, navigation signal processing method, and navigation signal processing program
WO2021097983A1 (zh) 定位的方法、装置、设备及存储介质
CN111080784B (zh) 一种基于地面图像纹理的地面三维重建方法和装置
WO2020237516A1 (zh) 点云的处理方法、设备和计算机可读存储介质
CN112414403B (zh) 一种机器人的定位定姿方法、设备及存储介质
CN112967344B (zh) 相机外参标定的方法、设备、存储介质及程序产品
US11263774B2 (en) Three-dimensional position estimation device and program
WO2017033422A1 (ja) 画像処理装置および画像処理方法
CN111862214A (zh) 计算机设备定位方法、装置、计算机设备和存储介质
US11734850B2 (en) On-floor obstacle detection method and mobile machine using the same
CN111656404B (zh) 图像处理方法、系统及可移动平台
CN116844124A (zh) 三维目标检测框标注方法、装置、电子设备和存储介质
WO2021056283A1 (en) Systems and methods for adjusting a vehicle pose
WO2020215296A1 (zh) 可移动平台的巡线控制方法、设备、可移动平台及系统
CN116499453A (zh) 一种电子地图生成方法、装置、移动机器人及存储介质
CN114648639B (zh) 一种目标车辆的检测方法、系统及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19935482

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19935482

Country of ref document: EP

Kind code of ref document: A1