WO2020256137A1 - Air conditioning system for plant cultivation space - Google Patents

Air conditioning system for plant cultivation space Download PDF

Info

Publication number
WO2020256137A1
WO2020256137A1 PCT/JP2020/024239 JP2020024239W WO2020256137A1 WO 2020256137 A1 WO2020256137 A1 WO 2020256137A1 JP 2020024239 W JP2020024239 W JP 2020024239W WO 2020256137 A1 WO2020256137 A1 WO 2020256137A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
pipe
plant cultivation
branch pipe
flow rate
Prior art date
Application number
PCT/JP2020/024239
Other languages
French (fr)
Japanese (ja)
Inventor
文彦 後藤
直樹 西野
Original Assignee
株式会社浪速試錐工業所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社浪速試錐工業所 filed Critical 株式会社浪速試錐工業所
Publication of WO2020256137A1 publication Critical patent/WO2020256137A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like

Definitions

  • the present invention relates to an air conditioning system for a plant cultivation space and the like.
  • an air conditioning system using a heat sink has been known as an air conditioning system for a plant cultivation space.
  • the temperature of the plant cultivation space is controlled by the natural convection of air whose temperature is controlled by the heat sink.
  • Patent Document 1 describes a heating system for a plant cultivation room as this type of air conditioning system.
  • This heating system includes a heat sink extending in the vicinity of the plant to be heated in the plant cultivation room, and a heat source unit for supplying heat to the heat sink.
  • the heat sink has heat-dissipating fins for heating the plant by natural convection, and is supported at a predetermined height separated upward from the ground of the plant cultivation room while being exposed to the indoor space on the side of the plant. There is.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to realize an air conditioning system for a plant cultivation space capable of equalizing the growth speed of plants in the plant cultivation space.
  • the first invention is an air conditioning system for a plant cultivation space, which includes a heat source unit for heating or cooling a refrigerant and a plurality of branch pipes connected in parallel to the heat source unit.
  • a plurality of flow control units capable of individually adjusting the flow rate of each refrigerant of the plurality of branch pipes are provided.
  • the branch pipe is provided with a flow rate control valve constituting a flow rate control unit on the upstream side, and one or more heat sinks are provided downstream of the flow rate control valve.
  • the height of the branch pipe varies between the flow control valve and the most upstream heat sink, and the height of the flow control valve installation location is higher than the height of the installation section of one or more heat sinks. ing.
  • each of the plurality of branch pipes extends along the first direction in the plant cultivation space, and the refrigerant pipe is substantially orthogonal to the first direction. It further has a first connecting pipe extending along the direction and connecting the upstream end of each branch pipe, and a second connecting pipe extending along the second direction and connecting the downstream end of each branch pipe.
  • the refrigerant flows from one end side to the other end side in the second direction, and the refrigerant branches at the connection point of each branch pipe, and in the second connection pipe, from one end side in the second direction to the other.
  • the refrigerant flows toward the end side and joins at the connection point of each branch pipe.
  • the refrigerant pipe through which the refrigerant heated or cooled in the heat source portion flows has a plurality of branch pipes connected in parallel to the heat source portion.
  • Each branch tube is provided with a heat sink.
  • the refrigerant flow rate of each branch pipe can be individually adjusted by the flow rate adjusting unit.
  • the amount of heat exchange between the refrigerant and air in the heat sink is adjusted by adjusting the flow rate of the refrigerant.
  • the temperature of the plant cultivation space is controlled by the natural convection method using a heat sink, the heat supplied from the refrigerant to the air in the heat sink of the branch pipe is not transferred over a wide range. Therefore, by adjusting the flow rate of the refrigerant in each branch pipe, the temperature can be individually adjusted for each region in the vicinity of the branch pipe.
  • the temperature of each branch pipe can be individually adjusted in the natural convection air conditioning system, the temperature can be individually adjusted for each region near the branch pipe as described above. .. That is, it is possible to realize temperature control for each region in the plant cultivation space.
  • the air conditioning system is a heating system
  • the temperature of the region near the branch pipe is relatively increased in the plant cultivation space by relatively increasing the refrigerant flow rate of the branch pipe near the slow-growing plant in the plant cultivation space.
  • the growth of the plant becomes relatively fast in the region near the branch pipe, and the growth speed is made uniform in the plant cultivation space.
  • FIG. 1 (a) is a view of the internal space of the plant cultivation room according to the embodiment in the longitudinal direction
  • FIG. 1 (b) is a plan view of the plant cultivation room and the outdoor unit.
  • FIG. 2 is a cross-sectional view of the internal space of the plant cultivation room.
  • FIG. 3 is a perspective view of the cut surface of the heat sink.
  • 4 (a) is a plan view of the heat sink
  • FIG. 4 (b) is a front view of the end face of the heat sink
  • FIG. 4 (c) is a side view of the heat sink.
  • FIG. 5 is a control flowchart of an air conditioning system for a plant cultivation space.
  • FIGS. 1 to 5 The following embodiments are examples of the present invention, and are not intended to limit the scope of the present invention, its applications, or its uses.
  • the plant cultivation room 10 is, for example, a vinyl house or a plant factory.
  • the roof of the plant cultivation room 10 is formed in a mountain shape.
  • the height of the plant cultivation room 10 is about 3.5 m at the highest position (center position in the left-right direction in FIG. 1 (a)) and at the lowest position (positions of the left and right side walls in FIG. 1 (a)). It is about 2m.
  • a plurality of ridges 12 are formed.
  • the plurality of ridges 12 extend in the same direction as each other.
  • the extending direction of each ridge 12 is referred to as a “longitudinal direction”, and the direction orthogonal to the longitudinal direction is referred to as a “transverse direction” (see FIG. 1 (b)).
  • the outer wall of the plant cultivation room 10 and the outer wall of the outdoor unit 25, which will be described later, are represented by dotted lines.
  • the plurality of ridges 12 are lined up at intervals in the crossing direction.
  • the top surface (top region) of each ridge 12 is a cultivated surface on which plants 15 (for example, edible plants such as bell peppers and ornamental plants such as flowers) are planted, and a plurality of plants 15 are arranged in the longitudinal direction. They are planted in a row at intervals along the line.
  • the circles indicate the planting points of the plant 15.
  • a plurality of erection members 14 erected in the transverse direction are provided at a predetermined pitch in the longitudinal direction.
  • Each erection member 14 is provided for the purpose of suspending a support material (not shown) such as a string or a wire that supports the plant 15.
  • a rod-shaped metal member, a wire, or the like can be used for each erection member 14. In FIG. 2, the description of the erection member 14 and the plant 15 is omitted.
  • the air conditioning system 20 is a heating system that heats the plant cultivation space 11.
  • the air conditioning system 20 includes a refrigerant pipe 21 (refrigerant circuit) filled with a refrigerant, a circulation pump 22 for circulating the refrigerant in the refrigerant pipe 21, a heating device 23 for heating the refrigerant supplied to the refrigerant pipe 21, and a heating device 23. It is provided with a plurality of heat sinks 24 that supply the heat of the refrigerant supplied from the above to the air of the plant cultivation space 11.
  • water is used as the refrigerant.
  • a refrigerant other than water for example, a chlorofluorocarbon refrigerant may be used.
  • the heating device 23 corresponds to a heat source unit.
  • a boiler water heater is used for the heating device 23.
  • a heating device other than the boiler water heater may be used for the heating device 23.
  • the heating device 23 is housed in an outdoor unit 25 provided outside the plant cultivation room 10 together with the circulation pump 22.
  • the refrigerant pipe 21 includes an outdoor pipe 31 arranged outside the plant cultivation room 10 and an indoor pipe 32 arranged inside the plant cultivation room 10. ..
  • the outdoor pipe 31 and the indoor pipe 32 are connected to each other.
  • the outdoor pipe 31 includes a first outdoor pipe 33 connected to the inlet of the heating device 23 and a second outdoor pipe 34 connected to the outlet of the heating device 23.
  • a circulation pump 22 is connected to the second outdoor pipe 34.
  • the indoor pipe 32 is connected to a plurality of branch pipes 41 extending in the longitudinal direction (first direction) along the ridges 12 and the upstream ends of the branch pipes 41 to one end side of the ridges 12 in the plant cultivation space 11 (FIG. 1).
  • the first connecting pipe 42 arranged on the lower side in (b) is connected to the downstream end of each branch pipe 41, and the other end side of the ridge 12 in the plant cultivation space 11 (upper side in FIG. 1B).
  • a second connecting pipe 43 arranged in the above, and an indoor return pipe 44 extending from the downstream end of the second connecting pipe 43 to the upstream end of the first outdoor pipe 33 are provided.
  • the plurality of branch pipes 41 are connected in parallel to the heating device 23 and are arranged at a predetermined pitch (for example, 1 m to 5 m) in the transverse direction.
  • the pitch of the branch pipe 41 in the crossing direction can be determined according to the pitch in the crossing direction for the rows of plants 15 arranged along the ridges 12, and is set to 1 to 2 m in the case of peppers having a short pitch in the rows of plants 15. In the case of mango, it can be 3 to 5 m.
  • the pitch of the branch pipe 41 in the crossing direction does not have to be a constant pitch.
  • the first connecting pipe 42 extends in the transverse direction (second direction) along one wall surface 10a of the pair of wall surfaces 10a and 10b facing in the longitudinal direction in the plant cultivation room 10.
  • the first connecting pipe 42 is arranged over almost the entire area in the transverse direction of the cultivation area where the plant 15 is cultivated in the plant cultivation space 11.
  • the first connecting pipe 42 is connected to the second outdoor pipe 34 on one end side (right side in FIG. 1A) in the transverse direction.
  • the refrigerant flows from one end side to the other end side in the transverse direction, and the refrigerant branches at the connection point of each branch pipe 41.
  • the first connecting pipe 42 is installed at a height of 1 m or more (preferably a height of 1.5 m or more) and extends substantially horizontally.
  • the first connecting pipe 42 is provided with a connecting portion (branching portion) of the branch pipe 41 at the same pitch as the pitch of the branch pipe 41 in the transverse direction.
  • the plurality of branch pipes 41 are arranged at intervals in the range from one end side to the other end side in the transverse direction in the cultivation area of one plant cultivation space 11.
  • a flow rate control valve 40 (flow rate adjusting unit) capable of adjusting the refrigerant flow rate of the branch pipe 41 is connected to the upstream side of each branch pipe 41.
  • the flow rate control valve 40 includes an operation unit (lever, knob, etc.) whose opening degree can be adjusted manually.
  • a plurality of heat sinks 24 are connected in series on the downstream side of the flow rate control valve 40. The number of heat sinks 24 connected to each branch pipe 41 may be one.
  • Each branch pipe 41 is provided in each ridge 12 and extends along a row of plants 15.
  • a flow rate control valve 40 is provided on the upstream side, and a plurality of heat sinks 24 are provided downstream of the flow rate control valve 40.
  • each branch pipe 41 is arranged so that the flow rate control valve 40 is installed at the same height as the first connection pipe 42 (height of 1 m or more (preferably height of 1.5 m or more)). It is installed. Further, the height of each branch pipe 41 changes between the flow rate control valve 40 and the most upstream heat sink 24, and the height of the installation location of the flow rate control valve 40 is higher than the height of the installation section of the plurality of heat sinks 24. It's getting higher.
  • each branch pipe 41 extends substantially horizontally from the first connecting pipe 42, bends downward downstream of the flow control valve 40, and extends in the vertical direction. Then, it is bent at a height slightly above the top surface of the ridge 12 and extends in the lateral direction.
  • each heat sink 24 is supported in a state of being floated from the ridge 12 by a support member 16 provided on the ridge 12 or the like.
  • the lower end (lower surface 39) of each heat sink 24 is supported so as to float, for example, 5 cm to 30 cm (preferably 5 cm to 15 cm) from the ridge 12 (the region directly below the heat sink 24).
  • each heat sink 24 is arranged in the vicinity of the plant 15 (for example, a horizontal distance of 10 to 30 cm from the lower end of the stem of the plant 15 (lower end on the ground)) and is located below the canopy of the plant 15.
  • the heat sink 24 may be floated by hanging it with a wire or the like.
  • the second connecting pipe 43 extends in the transverse direction along the other wall surface 10b of the pair of wall surfaces 10a and 10b facing in the longitudinal direction in the plant cultivation room 10.
  • the second connecting pipe 43 is arranged over almost the entire area in the transverse direction of the cultivation area in the plant cultivation space 11.
  • the second connecting pipe 43 is installed at the same height as the lower extension portion 41a of each branch pipe 41.
  • the refrigerant flows from one end side to the other end side in the transverse direction, and the refrigerant merges at the connection point of each branch pipe 41.
  • a connecting portion (merging portion) of the branch pipe 41 is provided at the same pitch as the pitch of the branch pipe 41 in the transverse direction.
  • the second connecting pipe 43 is connected to the indoor return pipe 44 via a folded-back portion.
  • the indoor return pipe 44 includes an upstream section extending in the transverse direction along the other wall surface 10b of the plant cultivation room 10, and a downstream section connected to the upstream section via a bent portion and extending in the longitudinal direction.
  • the bent portion of the indoor return pipe 44 is located near the corner portion of the plant cultivation room 10.
  • the downstream section of the indoor return pipe 44 extends along one of a pair of wall surfaces facing each other in the transverse direction in the plant cultivation room 10 and is connected to the first outdoor pipe 33.
  • the heat sink 24 includes a pipe portion 37 through which the refrigerant flows, and a plurality of heat radiating fins 38 protruding from the outer surface of the pipe portion 37.
  • the heat sink 24 is made of metal (for example, made of aluminum alloy).
  • the tube portion 37 is formed in a circular tubular shape.
  • Each heat radiation fin 38 is a flat plate-shaped member extending along the length direction of the pipe portion 37.
  • a plurality of pairs of heat radiation fins 38 are provided symmetrically with respect to a vertical straight line (one-dot chain line in FIG. 4B) passing through the center of the tube portion 37. In each pair, the radiating fins 38 extend laterally opposite to each other.
  • heat radiation fins 38 arranged vertically are arranged in parallel with each other at substantially equal intervals.
  • the width (horizontal length) of the heat radiation fins 38 increases from the upper side to the lower side.
  • Each of the pair of heat radiation fins 38 on the uppermost side protrudes upward from the top of the pipe portion 37, bends in the middle, and extends in the lateral direction. Further, the entire other heat radiating fins 38 from the base to the tip extend in the lateral direction.
  • the pair of heat radiation fins 38 on the lowermost side extend from the bottom of the pipe portion 37 to the left and right along the tangential direction.
  • a continuous surface extending from the lower surface of the heat radiation fin 38 on the left side to the lower surface of the heat radiation fin 38 on the right side via the lower surface of the pipe portion 37 constitutes the lower surface 39 of the heat sink 24.
  • the lower surface 39 is a substantially flat surface.
  • the lower surface 39 of the heat sink 24 faces the cultivated surface at intervals. Further, the lower surface 39 of the heat sink 24 has a larger area than the upper surface. Therefore, a relatively large amount of radiant heat can be supplied below the heat sink 24, and the roots of the plant 15 can be heated together with the soil.
  • the heating operation is performed by operating the heating device 23 and the circulation pump 22.
  • the refrigerant (hot water) heated by the heating device 23 flows in the direction of the arrow in FIG. 1B and circulates in the refrigerant pipe 21.
  • the refrigerant flowing out of the heating device 23 flows into the first connecting pipe 42 through the second outdoor pipe 34, and branches to each branch pipe 41 at the first connecting pipe 42.
  • the refrigerant dissipates heat at each heat sink 24 when flowing through each branch pipe 41.
  • the refrigerants that have passed through each branch pipe 41 merge at the second connecting pipe 43, and return to the heating device 23 through the indoor return pipe 44 and the first outdoor pipe 33.
  • the first connecting pipe 42 extending from the heating device (heat source portion) 23 is branched into a plurality of branch pipes 41 at one end side of the plurality of ridges 12 (rows of a plurality of plants 15), and a plurality of branch pipes 41 are branched.
  • the branch pipe 41 joins at the other end side of the plurality of ridges 12.
  • the pipes 43 and 44 connected to the heating device (heat source unit) 23 from the confluence are arranged in a place that does not overlap with the plurality of branch pipes 41.
  • the range of the heating area is as large as or slightly larger than the size of the plant 15.
  • natural convection is formed for each branch pipe 41, as shown by the broken line in FIG. 1 (a). That is, a heating region is formed for each branch pipe 41. Each heating region is formed in a region near the branch pipe 41.
  • the control of the air conditioning system 20 will be described with reference to the flowchart of FIG.
  • the air conditioning system 20 includes a control unit 50 (see FIG. 1B) that controls the circulation pump 22 and the heating device 23.
  • an outside air temperature sensor 61 (see FIG. 1 (b)) for measuring the outside air temperature is provided outside the plant cultivation room 10. Further, a room temperature sensor 62 (see FIG. 1A) for measuring the temperature of the plant cultivation space 11 is provided in the plant cultivation room 10. The room temperature sensor 62 is attached to a height position (for example, a height position of 1.7 to 2.3 m) above the plant 15 to be heated, and measures the temperature of air at the attachment position. The room temperature sensor 62 is arranged, for example, in the central portion of the plant cultivation space 11 in a plan view. The measured temperature of the outside air temperature sensor 61 and the measured temperature of the room temperature sensor 62 are input to the control unit 50.
  • the outdoor unit 25 is provided with an input panel (not shown) for inputting the set temperature ST of the indoor space.
  • the set temperature ST of the indoor space input to the input panel is input to the control unit 50.
  • the manager determines the set temperature ST of the indoor space according to the growing state of the plant 15.
  • the operation of the air conditioning system 20 includes the time from a certain time when the outside temperature is decreasing (for example, a certain time in the evening or evening) to a certain time when the outside temperature is rising (for example, a certain time in the early morning). Performed on the belt.
  • the operation of the air conditioning system 20 is started, for example, when the manager of the vinyl house switches the input panel to ON.
  • the control unit 50 may automatically start the operation of the air conditioning system 20 when the measured temperature OT of the outside air temperature sensor 61 falls below a predetermined determination temperature. Further, the operation of the air conditioning system 20 may be performed in the daytime.
  • the control unit 50 sets the target temperature WT of the refrigerant (hot water).
  • the target temperature WT is set using Equation 1.
  • Equation 1 ST represents the set temperature of the indoor space, OT represents the measured temperature of the outside air temperature sensor 61, and ⁇ represents the addition coefficient.
  • the control unit 50 sets the temperature obtained by subtracting the measurement temperature OT of the outside air temperature sensor 61 from the set temperature ST of the indoor space and adding a predetermined addition coefficient ⁇ as the target temperature of the refrigerant supplied to the heat sink 24, as a heating device. 23 is controlled.
  • the addition coefficient ⁇ for example, a value of 35 ° C. or higher and 45 ° C. or lower is used.
  • the vinyl house may be doubled or tripled with respect to the plant cultivation space 11.
  • the addition coefficient ⁇ can be 45 ° C. in the case of single tension, 40 ° C. in the case of double tension, and 35 ° C. in the case of triple tension.
  • the greenhouse is double-tensioned (when the addition coefficient ⁇ is 40 ° C.)
  • the refrigerant The target temperature WT is set to 55 ° C.
  • the target temperature WT is set to 60 ° C. or lower according to Equation 1.
  • the air conditioning system 20 by controlling the air conditioning system 20 by Equation 1, it is possible to prevent the updraft due to natural convection from becoming too strong and the main component of the updraft reaching the ceiling.
  • step ST2 the control unit 50 starts the operation of the circulation pump 22 and the operation of the heating device 23.
  • the refrigerant heated by the heating device 23 is supplied to each branch pipe 41, the air in contact with the heat sink 24 of each branch pipe 41 is heated, natural convection occurs, and each branch pipe 41 is subjected to natural convection.
  • the corresponding heating area (near area) described above is heated.
  • step ST3 the control unit 50 determines whether or not the measured temperature T of the room temperature sensor 62 in the plant cultivation room 10 exceeds the set temperature ST.
  • the control unit 50 determines that the measured temperature T exceeds the set temperature ST, the control unit 50 stops the circulation pump 22 and the heating device 23 in step ST4 to stop the circulation of the refrigerant in the refrigerant pipe 21. Switch to the state. As a result, the heating of the region near each branch pipe 41 is stopped.
  • step ST3 when it is determined in step ST3 that the measured temperature T does not exceed the set temperature ST, the control unit 50 maintains the circulation state if the refrigerant pipe 22 is in the circulation state in step ST6, and the circulation is stopped. If so, switch to the circulating state.
  • step ST6 the process proceeds to step ST5.
  • step ST5 the control unit 50 determines whether or not to terminate the operation of the air conditioning system 20.
  • the control unit 50 determines that the operation is completed when the switch is switched to OFF on the input panel. As a result, the processing of the flowchart ends.
  • the measured temperature OT of the outside air temperature sensor 61 becomes equal to or higher than a predetermined determination temperature, it may be determined that the operation is completed.
  • the temperature of the heating area of the branch pipe 41 corresponding to the fast-growing ridge 12 of the plant 15 is relatively lowered.
  • the temperature can be raised relatively.
  • the growth speed of the plant 15 in the plant cultivation space 11 can be made uniform.
  • the opening degree of the flow rate control valve 40 of each branch pipe 41 is not adjusted for the purpose of equalizing the growth speed of the plant 15 in the plant cultivation space 11, but the harvest / shipment time of the fruits and flowers of the plant 15 is set. It may be done for the purpose of adjustment. In this case, the temperature is adjusted for each heating region of the branch pipe 41 so that the growth speed of the plant 15 is intentionally different for each ridge 12.
  • the height of the installation location of the flow control valve 40 is higher than the height of the installation section of the heat sink 24, and the administrator can take a comfortable posture without bending down. 40 operations can be performed.
  • the refrigerant pipe 21 is configured so that the branch pipe 41 branched on the upstream side in the first connecting pipe 42 joins on the upstream side in the second connecting pipe 43 as well. Therefore, the pressure loss of the refrigerant is made uniform among the plurality of branch pipes 41. Therefore, the amount of change in the refrigerant flow rate with respect to the adjustment amount of the opening degree of the flow rate control valve 40 can be made uniform among the plurality of branch pipes 41, and the opening degree adjustment of the flow rate control valve 40 can be facilitated. ..
  • the flow rate of the circulation pump 22 is set so that the refrigerant flows in the laminar flow state in each branch pipe 41. Therefore, in the pipe portion 37 of each heat sink 24, a flow velocity difference occurs between the central portion and the vicinity of the inner surface, and the amount of heat exchange between the refrigerant and the contact air is smaller than in the case where the refrigerant flows in a turbulent flow state. Therefore, even if a plurality of heat sinks 24 are connected in series in the branch pipe 41, the temperature difference between the refrigerants on the upstream side and the downstream side in the branch pipe 41 becomes small, and the plant cultivation space 11 is uniformly heated in the longitudinal direction. be able to.
  • the control unit 50 automatically adjusts the opening degree of each flow rate control valve 40.
  • the control unit 50 determines that the heating capacity of the air conditioning system 20 is insufficient for the heating load of the plant cultivation space 11 based on the measured temperature of the room temperature sensor 62.
  • the opening degree of the flow rate control valve 40 of the branch pipe 41 corresponding to the outer ridge 12 is controlled to be larger than that of the flow control valve 40 of the branch pipe 41 corresponding to the inner ridge 12.
  • the room temperature sensor 62 used for determining the capacity deficiency condition is arranged in the central portion of the plant cultivation space 11 in a plan view, for example.
  • examples of the capacity shortage condition include a condition that the measured temperature T of the room temperature sensor 62 is lower than the set temperature ST for a predetermined time or longer, or the measured temperature T of the room temperature sensor 62 is lower than the set temperature ST by a predetermined value or more.
  • the condition is that the state continues for a predetermined time or longer.
  • the control unit 50 automatically adjusts the opening degree of each flow rate control valve 40, as in the case of modification 1.
  • the room temperature sensors 62 are arranged at a plurality of locations. All room temperature sensors 62 are provided at approximately the same height.
  • the control unit 50 controls the opening degree of each flow rate control valve 40 based on the measured temperature of the room temperature sensor 62 of the same ridge 12.
  • the average value of the measured temperatures of the room temperature sensors 62 of all the ridges 12 is calculated, and the opening degree of the flow control valve 40 corresponding to the room temperature sensor 62 whose measurement temperature is higher than the average value is relatively reduced. Opening control that relatively expands the opening degree of the flow control valve 40 corresponding to the room temperature sensor 62 whose measured temperature is lower than the average value can be performed. According to this opening degree control, the temperature of the plant cultivation space 11 can be automatically made uniform.
  • the room temperature sensor 62 may be provided at the central portion of the plant cultivation space 11 in a plan view and at the peripheral portion outside the central portion. Even in this case, since the temperature distribution of the plant cultivation space 11 can be grasped to some extent by the measured temperatures of the two room temperature sensors 62, the temperature of the plant cultivation space 11 is automatically adjusted by the opening control based on the measured temperatures of the two room temperature sensors 62. Can be homogenized.
  • the heat sink 24 is floated on the cultivated surface on which the plant 15 is planted, but the heat sink 24 may be placed on the cultivated surface. Further, in the above embodiment, each plant 15 is planted in the ridge 12, but may be potted.
  • the air conditioning system 20 may be configured to cool the plant cultivation space 11.
  • a device for cooling the refrigerant is used instead of the heating device 23.
  • the manager of the plant cultivation room 10 adjusts the opening degree of the flow control valve 40 of each branch pipe 41 while visually observing the growth state of the plant 15 for each ridge 12, but the plant 15 for each ridge 12.
  • the control unit 50 may grasp the growth state of the plant 15 for each ridge 12 based on the camera image and automatically adjust the opening degree of the flow control valve 40 of each branch pipe 41.
  • the plants 15 are planted in a row on the ridges 12, but the plants 15 may be planted in two rows on the ridges 12.
  • the branch pipe 41 and the heat sink 24 may be arranged between the two rows of plants 15.
  • one branch pipe 41 is provided for one ridge 12, but one branch pipe 41 may be provided for a plurality of ridges 12.
  • the refrigerant pipe 21 has a plurality of branch pipes 41 (for example, three or more branch pipes 41) provided with a heat sink 24 and a flow rate control valve 40, respectively, and these plurality of branch pipes 41
  • another branch pipe (branch pipe not provided with the flow rate control valve 40) extending from the first connection pipe 42 to the second connection pipe 43 may be further provided.
  • the present invention can be applied to an air conditioning system or the like for a plant cultivation space.
  • Plant cultivation room 11 Plant cultivation space 15 Plants 21 Refrigerant piping 22 Circulation pump 23 Heating device (heat source) 20 Air conditioning system 24 Heat sink 40 Flow control unit (flow control valve) 41 Branch pipe

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Greenhouses (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Abstract

An air conditioning system 20 for a plant cultivation space comprises: a heat source unit 23 that heats or cools a refrigerant; refrigerant piping 21 having a plurality of branch tubes 41 connected in parallel to the heat source unit 23, refrigerant that has been heated or cooled by the heat source unit 23 circulating in the refrigerant piping 21; a plurality of heat sinks 24 provided in each of the plurality of branch tubes 41, the plurality of heat sinks 24 supplying the heat of the refrigerant circulating in the branch tubes 41 to the air in a plant cultivation space 11; and a plurality of flow rate adjustment units 40 with which it is possible to separately adjust the refrigerant flow rate in each of the plurality of branch tubes 41.

Description

植物栽培空間用の空調システムAir conditioning system for plant cultivation space
 本発明は、植物栽培空間用の空調システム等に関する。 The present invention relates to an air conditioning system for a plant cultivation space and the like.
 従来から、植物栽培空間用の空調システムとして、ヒートシンクを用いた空調システムが知られている。この種の空調システムでは、ヒートシンクにより温度調節された空気が自然対流することで、植物栽培空間の温度調節が行われる。 Conventionally, an air conditioning system using a heat sink has been known as an air conditioning system for a plant cultivation space. In this type of air conditioning system, the temperature of the plant cultivation space is controlled by the natural convection of air whose temperature is controlled by the heat sink.
 特許文献1には、この種の空調システムとして、植物栽培室用の暖房システムが記載されている。この暖房システムは、植物栽培室において加温対象の植物の近傍に延設されたヒートシンクと、ヒートシンクへ温熱を供給する熱源部とを備えている。ヒートシンクは、自然対流によって植物を加温するための放熱フィンを有し、植物の側方において室内空間に露出した状態で、植物栽培室の地面から上方に離間した所定の高さに支持されている。 Patent Document 1 describes a heating system for a plant cultivation room as this type of air conditioning system. This heating system includes a heat sink extending in the vicinity of the plant to be heated in the plant cultivation room, and a heat source unit for supplying heat to the heat sink. The heat sink has heat-dissipating fins for heating the plant by natural convection, and is supported at a predetermined height separated upward from the ground of the plant cultivation room while being exposed to the indoor space on the side of the plant. There is.
特開2017-205092号公報JP-A-2017-205092
 ところで、本願発明者は、自然対流方式の空調システムを使用した植物栽培空間において、植物の成長状況を観察したところ、場所によって植物の成長スピードに差があることに気が付いた。 By the way, when the inventor of the present application observed the growth status of plants in a plant cultivation space using a natural convection air conditioning system, he noticed that the growth speed of plants differed depending on the location.
 本発明は、このような事情に鑑みてなされたものであり、植物栽培空間における植物の成長スピードを均一化することができる植物栽培空間用の空調システムを実現することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to realize an air conditioning system for a plant cultivation space capable of equalizing the growth speed of plants in the plant cultivation space.
 上述の課題を解決するべく、第1の発明は、植物栽培空間用の空調システムであって、冷媒を加熱又は冷却する熱源部と、熱源部に対し並列に接続された複数の分岐管を有し、熱源部で加熱又は冷却された冷媒が流通する冷媒配管と、複数の分岐管の各々に設けられ、該分岐管を流通する冷媒の熱を植物栽培空間の空気に供給する複数のヒートシンクと、複数の分岐管の各々の冷媒流量を個別に調節可能な複数の流量調節部とを備えている。 In order to solve the above-mentioned problems, the first invention is an air conditioning system for a plant cultivation space, which includes a heat source unit for heating or cooling a refrigerant and a plurality of branch pipes connected in parallel to the heat source unit. A refrigerant pipe through which the refrigerant heated or cooled in the heat source section flows, and a plurality of heat sinks provided in each of the plurality of branch pipes and supplying the heat of the refrigerant flowing through the branch pipes to the air in the plant cultivation space. , A plurality of flow control units capable of individually adjusting the flow rate of each refrigerant of the plurality of branch pipes are provided.
 第2の発明は、第1の発明において、分岐管では、上流側に流量調節部を構成する流量調節弁が設けられ、該流量調節弁よりも下流に1つ又は複数のヒートシンクが設けられ、分岐管は、流量調節弁と最上流のヒートシンクとの間で高さが変化しており、流量調節弁の設置箇所の高さが、1つ又は複数のヒートシンクの設置区間の高さよりも高くなっている。 In the second invention, in the first invention, the branch pipe is provided with a flow rate control valve constituting a flow rate control unit on the upstream side, and one or more heat sinks are provided downstream of the flow rate control valve. The height of the branch pipe varies between the flow control valve and the most upstream heat sink, and the height of the flow control valve installation location is higher than the height of the installation section of one or more heat sinks. ing.
 第3の発明は、第1又は第2の発明において、複数の分岐管の各々は、植物栽培空間において第1方向に沿って延びており、冷媒配管は、第1方向に略直交する第2方向に沿って延びて各分岐管の上流端が接続された第1接続管と、第2方向に沿って延びて各分岐管の下流端が接続された第2接続管とをさらに有し、第1接続管では、第2方向における一端側から他端側に向かって冷媒が流通して各分岐管の接続箇所で冷媒が分岐し、第2接続管では、第2方向における一端側から他端側に向かって冷媒が流通して各分岐管の接続箇所で冷媒が合流する。 According to the third invention, in the first or second invention, each of the plurality of branch pipes extends along the first direction in the plant cultivation space, and the refrigerant pipe is substantially orthogonal to the first direction. It further has a first connecting pipe extending along the direction and connecting the upstream end of each branch pipe, and a second connecting pipe extending along the second direction and connecting the downstream end of each branch pipe. In the first connection pipe, the refrigerant flows from one end side to the other end side in the second direction, and the refrigerant branches at the connection point of each branch pipe, and in the second connection pipe, from one end side in the second direction to the other. The refrigerant flows toward the end side and joins at the connection point of each branch pipe.
 本発明では、熱源部で加熱又は冷却された冷媒が流通する冷媒配管が、熱源部に対し並列に接続された複数の分岐管を有する。各分岐管にはヒートシンクが設けられている。また、各分岐管の冷媒流量は、流量調節部により個別に調節可能である。各分岐管では、冷媒流量の調節により、ヒートシンクにおける冷媒と空気の熱交換量が調節される。また、本発明では、ヒートシンクを用いた自然対流方式により、植物栽培空間の温度調節が行われるため、分岐管のヒートシンクにおいて冷媒から空気に供給された熱が、それほど広範囲には伝達されない。そのため、各分岐管の冷媒流量の調節により、分岐管の近傍領域ごとに温度調節を個別に行うことができる。 In the present invention, the refrigerant pipe through which the refrigerant heated or cooled in the heat source portion flows has a plurality of branch pipes connected in parallel to the heat source portion. Each branch tube is provided with a heat sink. Further, the refrigerant flow rate of each branch pipe can be individually adjusted by the flow rate adjusting unit. In each branch pipe, the amount of heat exchange between the refrigerant and air in the heat sink is adjusted by adjusting the flow rate of the refrigerant. Further, in the present invention, since the temperature of the plant cultivation space is controlled by the natural convection method using a heat sink, the heat supplied from the refrigerant to the air in the heat sink of the branch pipe is not transferred over a wide range. Therefore, by adjusting the flow rate of the refrigerant in each branch pipe, the temperature can be individually adjusted for each region in the vicinity of the branch pipe.
 ここで、地面に敷設されたダクトの小孔から、温度調節された空気が吹き出される強制対流方式の空調システムがある。この強制対流方式の場合、植物栽培空間に生じる空気の対流の流速が比較的大きく、ダクトの小孔から供給される熱が比較的広範囲に伝達される。そのため、仮に複数のダクトを並列に設けて各ダクトの空気流量を個別に調節したとしても、ダクトの近傍領域ごとに温度調節を個別に行うことは容易ではない。 Here, there is a forced convection air-conditioning system in which temperature-controlled air is blown out from a small hole in a duct laid on the ground. In the case of this forced convection method, the flow velocity of the convection of air generated in the plant cultivation space is relatively large, and the heat supplied from the small holes of the duct is transferred to a relatively wide range. Therefore, even if a plurality of ducts are provided in parallel and the air flow rate of each duct is individually adjusted, it is not easy to individually adjust the temperature for each region in the vicinity of the ducts.
 それに対し、本発明では、自然対流方式の空調システムにおいて各分岐管の冷媒流量を個別に調節可能としているため、上述したように、分岐管の近傍領域ごとに温度調節を個別に行うことができる。つまり、植物栽培空間において領域ごとの温度調節を実現することが可能である。例えば、空調システムが暖房システムの場合に、植物栽培空間において成長が遅い植物の近傍の分岐管の冷媒流量を相対的に増やすことで、その分岐管の近傍領域の温度を植物栽培空間において相対的に高めることができる。その結果、その分岐管の近傍領域において植物の成長が相対的に早くなり、植物栽培空間において成長スピードが均一化される。本発明によれば、植物栽培空間における植物の成長スピードを均一化することができる植物栽培空間用の空調システムを実現することができる。 On the other hand, in the present invention, since the refrigerant flow rate of each branch pipe can be individually adjusted in the natural convection air conditioning system, the temperature can be individually adjusted for each region near the branch pipe as described above. .. That is, it is possible to realize temperature control for each region in the plant cultivation space. For example, when the air conditioning system is a heating system, the temperature of the region near the branch pipe is relatively increased in the plant cultivation space by relatively increasing the refrigerant flow rate of the branch pipe near the slow-growing plant in the plant cultivation space. Can be enhanced to. As a result, the growth of the plant becomes relatively fast in the region near the branch pipe, and the growth speed is made uniform in the plant cultivation space. According to the present invention, it is possible to realize an air conditioning system for a plant cultivation space that can make the growth speed of plants in the plant cultivation space uniform.
図1(a)は、実施形態に係る植物栽培室の内部空間を縦断方向に見た図であり、図1(b)は、植物栽培室及び室外ユニットの平面図である。FIG. 1 (a) is a view of the internal space of the plant cultivation room according to the embodiment in the longitudinal direction, and FIG. 1 (b) is a plan view of the plant cultivation room and the outdoor unit. 図2は、植物栽培室の内部空間を横断方向に見た図である。FIG. 2 is a cross-sectional view of the internal space of the plant cultivation room. 図3は、ヒートシンクの切断面の斜視図である。FIG. 3 is a perspective view of the cut surface of the heat sink. 図4(a)は、ヒートシンクの平面図であり、図4(b)は、ヒートシンク端面の正面図であり、図4(c)は、ヒートシンクの側面図である。4 (a) is a plan view of the heat sink, FIG. 4 (b) is a front view of the end face of the heat sink, and FIG. 4 (c) is a side view of the heat sink. 図5は、植物栽培空間用の空調システムの制御フローチャートである。FIG. 5 is a control flowchart of an air conditioning system for a plant cultivation space.
 以下、図1-図5を参照しながら、本発明の実施形態を詳細に説明する。なお、以下の実施形態は、本発明の一例であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS. 1 to 5. The following embodiments are examples of the present invention, and are not intended to limit the scope of the present invention, its applications, or its uses.
[植物栽培室等について]
 まず植物栽培室10及びその内部の植物栽培空間11について説明する。植物栽培室10は、例えばビニールハウスや植物工場などである。植物栽培室10の屋根は、図1(a)に示すように、山型形状に形成されている。例えば、植物栽培室10の高さは、最も高い位置(図1(a)における左右方向の中心位置)で約3.5m、最も低い位置(図1(a)における左右の側壁の位置)で約2mである。
[About the plant cultivation room, etc.]
First, the plant cultivation room 10 and the plant cultivation space 11 inside the plant cultivation room 10 will be described. The plant cultivation room 10 is, for example, a vinyl house or a plant factory. As shown in FIG. 1A, the roof of the plant cultivation room 10 is formed in a mountain shape. For example, the height of the plant cultivation room 10 is about 3.5 m at the highest position (center position in the left-right direction in FIG. 1 (a)) and at the lowest position (positions of the left and right side walls in FIG. 1 (a)). It is about 2m.
 植物栽培空間11では、複数の畝12が形成されている。複数の畝12は、互いに同じ方向に延びている。以下では、各畝12の延伸方向を「縦断方向」と言い、その縦断方向に直交する方向を「横断方向」と言う(図1(b)参照)。なお、図1(b)では、植物栽培室10の外壁及び後述する室外ユニット25の外壁を点線で表している。 In the plant cultivation space 11, a plurality of ridges 12 are formed. The plurality of ridges 12 extend in the same direction as each other. Hereinafter, the extending direction of each ridge 12 is referred to as a “longitudinal direction”, and the direction orthogonal to the longitudinal direction is referred to as a “transverse direction” (see FIG. 1 (b)). In FIG. 1B, the outer wall of the plant cultivation room 10 and the outer wall of the outdoor unit 25, which will be described later, are represented by dotted lines.
 複数の畝12は、横断方向に間隔を空けて並んでいる。各畝12の天端面(天端領域)は、植物15(例えば、ピーマンなどの食用植物、花卉などの観賞用植物)が植え付けられる耕作面となっており、複数の植物15が、縦断方向に沿って間隔を空けて一列に植えられている。図1(b)では、○印が植物15の植え付け箇所を表している。 The plurality of ridges 12 are lined up at intervals in the crossing direction. The top surface (top region) of each ridge 12 is a cultivated surface on which plants 15 (for example, edible plants such as bell peppers and ornamental plants such as flowers) are planted, and a plurality of plants 15 are arranged in the longitudinal direction. They are planted in a row at intervals along the line. In FIG. 1B, the circles indicate the planting points of the plant 15.
 植物栽培空間11では、横断方向に架設された複数の架設部材14が、縦断方向に所定のピッチで設けられている。各架設部材14は、植物15を支持する紐やワイヤーなどの支持材(図示省略)を吊り下げる等の目的で設けられている。各架設部材14には、棒状の金属部材やワイヤーなどを用いることができる。なお、図2では架設部材14及び植物15の記載を省略している。 In the plant cultivation space 11, a plurality of erection members 14 erected in the transverse direction are provided at a predetermined pitch in the longitudinal direction. Each erection member 14 is provided for the purpose of suspending a support material (not shown) such as a string or a wire that supports the plant 15. A rod-shaped metal member, a wire, or the like can be used for each erection member 14. In FIG. 2, the description of the erection member 14 and the plant 15 is omitted.
[空調システムの構成について]
 続いて、植物栽培空間11用の空調システム20について説明する。空調システム20は、植物栽培空間11を暖房する暖房システムである。空調システム20は、冷媒が充填された冷媒配管21(冷媒回路)と、冷媒配管21において冷媒を循環させる循環ポンプ22と、冷媒配管21に供給する冷媒を加熱する加熱装置23と、加熱装置23から供給された冷媒の熱を植物栽培空間11の空気に供給する複数のヒートシンク24とを備えている。冷媒としては、例えば水が用いられている。なお、水以外の冷媒(例えばフロン冷媒)を用いてもよい。
[About the configuration of the air conditioning system]
Subsequently, the air conditioning system 20 for the plant cultivation space 11 will be described. The air conditioning system 20 is a heating system that heats the plant cultivation space 11. The air conditioning system 20 includes a refrigerant pipe 21 (refrigerant circuit) filled with a refrigerant, a circulation pump 22 for circulating the refrigerant in the refrigerant pipe 21, a heating device 23 for heating the refrigerant supplied to the refrigerant pipe 21, and a heating device 23. It is provided with a plurality of heat sinks 24 that supply the heat of the refrigerant supplied from the above to the air of the plant cultivation space 11. For example, water is used as the refrigerant. A refrigerant other than water (for example, a chlorofluorocarbon refrigerant) may be used.
 加熱装置23は、熱源部に相当する。加熱装置23にはボイラー給湯器が用いられている。但し、加熱装置23には、ボイラー給湯器以外の加熱装置を用いてもよい。加熱装置23は、循環ポンプ22と共に、植物栽培室10の外側に設けられた室外ユニット25に収容されている。 The heating device 23 corresponds to a heat source unit. A boiler water heater is used for the heating device 23. However, a heating device other than the boiler water heater may be used for the heating device 23. The heating device 23 is housed in an outdoor unit 25 provided outside the plant cultivation room 10 together with the circulation pump 22.
 冷媒配管21は、図1(b)に示すように、植物栽培室10の外側に配設された室外配管31と、植物栽培室10の内側に配設された室内配管32とを備えている。室外配管31と室内配管32は、互いに接続されている。 As shown in FIG. 1B, the refrigerant pipe 21 includes an outdoor pipe 31 arranged outside the plant cultivation room 10 and an indoor pipe 32 arranged inside the plant cultivation room 10. .. The outdoor pipe 31 and the indoor pipe 32 are connected to each other.
 室外配管31は、加熱装置23の入口に接続する第1室外管33と、加熱装置23の出口に接続する第2室外管34とを備えている。第2室外管34には、循環ポンプ22が接続されている。 The outdoor pipe 31 includes a first outdoor pipe 33 connected to the inlet of the heating device 23 and a second outdoor pipe 34 connected to the outlet of the heating device 23. A circulation pump 22 is connected to the second outdoor pipe 34.
 室内配管32は、畝12に沿って縦断方向(第1方向)に延びる複数の分岐管41と、各分岐管41の上流端が接続されて植物栽培空間11における畝12の一端側(図1(b)において下側)に配設された第1接続管42と、各分岐管41の下流端が接続されて植物栽培空間11における畝12の他端側(図1(b)において上側)に配設された第2接続管43と、第2接続管43の下流端から第1室外管33の上流端まで延びる室内戻り管44とを備えている。複数の分岐管41は、加熱装置23に対し並列に接続され、横断方向に所定のピッチ(例えば1m~5m)で並んでいる。横断方における分岐管41のピッチは、畝12に沿って並ぶ植物15の列についての横断方向のピッチに応じて決めることができ、植物15の列のピッチが短いピーマンの場合1~2mにすることができ、マンゴーの場合3~5mにすることができる。なお、横断方における分岐管41のピッチは、一定のピッチでなくてもよい。 The indoor pipe 32 is connected to a plurality of branch pipes 41 extending in the longitudinal direction (first direction) along the ridges 12 and the upstream ends of the branch pipes 41 to one end side of the ridges 12 in the plant cultivation space 11 (FIG. 1). The first connecting pipe 42 arranged on the lower side in (b) is connected to the downstream end of each branch pipe 41, and the other end side of the ridge 12 in the plant cultivation space 11 (upper side in FIG. 1B). A second connecting pipe 43 arranged in the above, and an indoor return pipe 44 extending from the downstream end of the second connecting pipe 43 to the upstream end of the first outdoor pipe 33 are provided. The plurality of branch pipes 41 are connected in parallel to the heating device 23 and are arranged at a predetermined pitch (for example, 1 m to 5 m) in the transverse direction. The pitch of the branch pipe 41 in the crossing direction can be determined according to the pitch in the crossing direction for the rows of plants 15 arranged along the ridges 12, and is set to 1 to 2 m in the case of peppers having a short pitch in the rows of plants 15. In the case of mango, it can be 3 to 5 m. The pitch of the branch pipe 41 in the crossing direction does not have to be a constant pitch.
 第1接続管42は、植物栽培室10において縦断方向に対面する一対の壁面10a,10bの一方の壁面10aに沿って、横断方向(第2方向)に延びている。第1接続管42は、植物栽培空間11において植物15の栽培が行われている栽培領域の横断方向のほぼ全域に亘って配設されている。第1接続管42は、横断方向における一端側(図1(a)の右側)で第2室外管34に繋がっている。第1接続管42では、横断方向における一端側から他端側に向かって冷媒が流通し、各分岐管41の接続箇所で冷媒が分岐する。また、第1接続管42は、1m以上の高さ(好ましくは1.5m以上の高さ)に設置され、略水平に延びている。 The first connecting pipe 42 extends in the transverse direction (second direction) along one wall surface 10a of the pair of wall surfaces 10a and 10b facing in the longitudinal direction in the plant cultivation room 10. The first connecting pipe 42 is arranged over almost the entire area in the transverse direction of the cultivation area where the plant 15 is cultivated in the plant cultivation space 11. The first connecting pipe 42 is connected to the second outdoor pipe 34 on one end side (right side in FIG. 1A) in the transverse direction. In the first connecting pipe 42, the refrigerant flows from one end side to the other end side in the transverse direction, and the refrigerant branches at the connection point of each branch pipe 41. Further, the first connecting pipe 42 is installed at a height of 1 m or more (preferably a height of 1.5 m or more) and extends substantially horizontally.
 第1接続管42では、横断方向における分岐管41のピッチと同じピッチで、分岐管41の接続箇所(分岐箇所)が設けられている。複数の分岐管41は、1つの植物栽培空間11の栽培領域における横断方向の一端側から他端側の範囲に、間隔を空けて並んでいる。各分岐管41の上流側には、その分岐管41の冷媒流量を調節可能な流量調節弁40(流量調節部)が接続されている。流量調節弁40は、手動の操作で開度を調節できる操作部(レバー、ツマミなど)を備える。また、各分岐管41では、流量調節弁40の下流側に複数のヒートシンク24が直列に接続されている。なお、各分岐管41に接続するヒートシンク24は1つであってもよい。 The first connecting pipe 42 is provided with a connecting portion (branching portion) of the branch pipe 41 at the same pitch as the pitch of the branch pipe 41 in the transverse direction. The plurality of branch pipes 41 are arranged at intervals in the range from one end side to the other end side in the transverse direction in the cultivation area of one plant cultivation space 11. A flow rate control valve 40 (flow rate adjusting unit) capable of adjusting the refrigerant flow rate of the branch pipe 41 is connected to the upstream side of each branch pipe 41. The flow rate control valve 40 includes an operation unit (lever, knob, etc.) whose opening degree can be adjusted manually. Further, in each branch pipe 41, a plurality of heat sinks 24 are connected in series on the downstream side of the flow rate control valve 40. The number of heat sinks 24 connected to each branch pipe 41 may be one.
 各分岐管41は、各畝12に設けられ、植物15の列に沿って延びている。各分岐管41では、上流側に流量調節弁40が設けられ、その流量調節弁40よりも下流に複数のヒートシンク24が設けられている。各分岐管41は、図2に示すように、流量調節弁40の設置箇所が第1接続管42と同じ高さ(1m以上の高さ(好ましくは1.5m以上の高さ))に配設されている。また、各分岐管41は、流量調節弁40と最上流のヒートシンク24との間で高さが変化し、流量調節弁40の設置箇所の高さが複数のヒートシンク24の設置区間の高さよりも高くなっている。具体的に、各分岐管41は、第1接続管42から略水平方向に延びて、流量調節弁40の下流で下方に屈曲して上下方向に延びている。そして、畝12の天端面より少し上側の高さで屈曲して、横方向に延びている。 Each branch pipe 41 is provided in each ridge 12 and extends along a row of plants 15. In each branch pipe 41, a flow rate control valve 40 is provided on the upstream side, and a plurality of heat sinks 24 are provided downstream of the flow rate control valve 40. As shown in FIG. 2, each branch pipe 41 is arranged so that the flow rate control valve 40 is installed at the same height as the first connection pipe 42 (height of 1 m or more (preferably height of 1.5 m or more)). It is installed. Further, the height of each branch pipe 41 changes between the flow rate control valve 40 and the most upstream heat sink 24, and the height of the installation location of the flow rate control valve 40 is higher than the height of the installation section of the plurality of heat sinks 24. It's getting higher. Specifically, each branch pipe 41 extends substantially horizontally from the first connecting pipe 42, bends downward downstream of the flow control valve 40, and extends in the vertical direction. Then, it is bent at a height slightly above the top surface of the ridge 12 and extends in the lateral direction.
 各分岐管41のうち、複数のヒートシンク24の設置区間を含む下側延伸部41aは、畝12から浮かせた状態で設けられている。各分岐管41では、各ヒートシンク24が、畝12などに設けた支持部材16によって、畝12から浮かせた状態で支持されている。各ヒートシンク24の下端(下面39)は、畝12(ヒートシンク24の直下の領域)から例えば5cm~30cm(好ましくは5cm~15cm)浮かせて支持されている。また、各ヒートシンク24は、植物15の近傍(例えば植物15の茎の下端(地面上の下端)から10~30cmの水平距離)に配置され、植物15の樹冠の下方に位置している。なお、ヒートシンク24は、ワイヤー等で吊下げることにより浮かせてもよい。 Of each branch pipe 41, the lower extension portion 41a including the installation sections of the plurality of heat sinks 24 is provided in a state of being floated from the ridge 12. In each branch pipe 41, each heat sink 24 is supported in a state of being floated from the ridge 12 by a support member 16 provided on the ridge 12 or the like. The lower end (lower surface 39) of each heat sink 24 is supported so as to float, for example, 5 cm to 30 cm (preferably 5 cm to 15 cm) from the ridge 12 (the region directly below the heat sink 24). Further, each heat sink 24 is arranged in the vicinity of the plant 15 (for example, a horizontal distance of 10 to 30 cm from the lower end of the stem of the plant 15 (lower end on the ground)) and is located below the canopy of the plant 15. The heat sink 24 may be floated by hanging it with a wire or the like.
 第2接続管43は、植物栽培室10において縦断方向に対面する一対の壁面10a,10bの他方の壁面10bに沿って、横断方向に延びている。第2接続管43は、植物栽培空間11における栽培領域の横断方向のほぼ全域に亘って配設されている。第2接続管43は、各分岐管41の下側延伸部41aと同じ高さに設置されている。第2接続管43では、横断方向における一端側から他端側に向かって冷媒が流通し、各分岐管41の接続箇所で冷媒が合流する。第2接続管43では、横断方向における分岐管41のピッチと同じピッチで、分岐管41の接続箇所(合流箇所)が設けられている。また、第2接続管43は、折り返し箇所を介して室内戻り管44に繋がっている。 The second connecting pipe 43 extends in the transverse direction along the other wall surface 10b of the pair of wall surfaces 10a and 10b facing in the longitudinal direction in the plant cultivation room 10. The second connecting pipe 43 is arranged over almost the entire area in the transverse direction of the cultivation area in the plant cultivation space 11. The second connecting pipe 43 is installed at the same height as the lower extension portion 41a of each branch pipe 41. In the second connecting pipe 43, the refrigerant flows from one end side to the other end side in the transverse direction, and the refrigerant merges at the connection point of each branch pipe 41. In the second connecting pipe 43, a connecting portion (merging portion) of the branch pipe 41 is provided at the same pitch as the pitch of the branch pipe 41 in the transverse direction. Further, the second connecting pipe 43 is connected to the indoor return pipe 44 via a folded-back portion.
 室内戻り管44は、植物栽培室10の他方の壁面10bに沿って横断方向に延びる上流区間と、その上流区間に屈曲部を介して接続されて縦断方向に延びる下流区間とを備えている。室内戻り管44の屈曲部は、植物栽培室10の角部の近傍に位置している。室内戻り管44の下流区間は、植物栽培室10において横断方向に対面する一対の壁面の一方に沿って延びて、第1室外管33に繋がっている。 The indoor return pipe 44 includes an upstream section extending in the transverse direction along the other wall surface 10b of the plant cultivation room 10, and a downstream section connected to the upstream section via a bent portion and extending in the longitudinal direction. The bent portion of the indoor return pipe 44 is located near the corner portion of the plant cultivation room 10. The downstream section of the indoor return pipe 44 extends along one of a pair of wall surfaces facing each other in the transverse direction in the plant cultivation room 10 and is connected to the first outdoor pipe 33.
 ヒートシンク24は、図3及び図4に示すように、冷媒が流れる管部37と、管部37の外面から突出する複数の放熱フィン38とを備えている。ヒートシンク24は、金属製(例えばアルミニウム合金製)である。管部37は、円管状に形成されている。各放熱フィン38は、管部37の長さ方向に沿って延びる平板状の部材である。ヒートシンク24では、管部37の中心を通る鉛直線(図4(b)の一点鎖線)に対し、複数対の放熱フィン38が左右対称に設けられている。各対では、放熱フィン38が互いに逆側に横方向に延びている。管部37の左右それぞれでは、上下に並ぶ放熱フィン38が略等間隔で互いに平行に配置されている。ヒートシンク24では、放熱フィン38の幅(横方向の長さ)が、上側から下側に向かうに従って大きくなっている。 As shown in FIGS. 3 and 4, the heat sink 24 includes a pipe portion 37 through which the refrigerant flows, and a plurality of heat radiating fins 38 protruding from the outer surface of the pipe portion 37. The heat sink 24 is made of metal (for example, made of aluminum alloy). The tube portion 37 is formed in a circular tubular shape. Each heat radiation fin 38 is a flat plate-shaped member extending along the length direction of the pipe portion 37. In the heat sink 24, a plurality of pairs of heat radiation fins 38 are provided symmetrically with respect to a vertical straight line (one-dot chain line in FIG. 4B) passing through the center of the tube portion 37. In each pair, the radiating fins 38 extend laterally opposite to each other. On the left and right sides of the pipe portion 37, heat radiation fins 38 arranged vertically are arranged in parallel with each other at substantially equal intervals. In the heat sink 24, the width (horizontal length) of the heat radiation fins 38 increases from the upper side to the lower side.
 最も上側の一対の放熱フィン38の各々は、管部37の頂部から上方向に突出し、途中で屈曲して横方向に延びている。また、これ以外の放熱フィン38は、付け根から先端までの全体が横方向に延びている。 Each of the pair of heat radiation fins 38 on the uppermost side protrudes upward from the top of the pipe portion 37, bends in the middle, and extends in the lateral direction. Further, the entire other heat radiating fins 38 from the base to the tip extend in the lateral direction.
 最も下側の一対の放熱フィン38は、管部37の底部から接線方向に沿って左右にそれぞれ延びている。左側の放熱フィン38の下面から、管部37の下面を介して右側の放熱フィン38の下面に亘る連続面は、ヒートシンク24の下面39を構成している。下面39は略平坦面である。ヒートシンク24の下面39は、間隔を存して耕作面と対面する。また、ヒートシンク24の下面39は、上面に比べて面積が大きい。そのため、ヒートシンク24の下方に比較的多くの輻射熱を供給することができ、土壌とともに植物15の根を加温することができる。 The pair of heat radiation fins 38 on the lowermost side extend from the bottom of the pipe portion 37 to the left and right along the tangential direction. A continuous surface extending from the lower surface of the heat radiation fin 38 on the left side to the lower surface of the heat radiation fin 38 on the right side via the lower surface of the pipe portion 37 constitutes the lower surface 39 of the heat sink 24. The lower surface 39 is a substantially flat surface. The lower surface 39 of the heat sink 24 faces the cultivated surface at intervals. Further, the lower surface 39 of the heat sink 24 has a larger area than the upper surface. Therefore, a relatively large amount of radiant heat can be supplied below the heat sink 24, and the roots of the plant 15 can be heated together with the soil.
[空調システムの運転について]
 空調システム20では、加熱装置23の運転及び循環ポンプ22の運転を行うことにより、暖房運転が行われる。暖房運転中は、加熱装置23で加熱された冷媒(温水)が、図1(b)の矢印の向きに流れて冷媒配管21を循環する。
[About the operation of the air conditioning system]
In the air conditioning system 20, the heating operation is performed by operating the heating device 23 and the circulation pump 22. During the heating operation, the refrigerant (hot water) heated by the heating device 23 flows in the direction of the arrow in FIG. 1B and circulates in the refrigerant pipe 21.
 具体的に、加熱装置23から流出した冷媒は、第2室外管34を通って第1接続管42に流入し、第1接続管42で各分岐管41に分岐する。冷媒は、各分岐管41を流通する際に各ヒートシンク24で放熱する。そして、各分岐管41を通過した冷媒は、第2接続管43で合流し、室内戻り管44及び第1室外管33を通って加熱装置23に戻る。なお、室内配管32では、加熱装置(熱源部)23から延びる第1接続管42が、複数の畝12(複数の植物15の列)の一端側で複数の分岐管41に分岐し、複数の分岐管41が、複数の畝12の他端側で合流している。そして、合流箇所から加熱装置(熱源部)23に接続する配管43,44が、複数の分岐管41とは重複しない場所に配置されている。 Specifically, the refrigerant flowing out of the heating device 23 flows into the first connecting pipe 42 through the second outdoor pipe 34, and branches to each branch pipe 41 at the first connecting pipe 42. The refrigerant dissipates heat at each heat sink 24 when flowing through each branch pipe 41. Then, the refrigerants that have passed through each branch pipe 41 merge at the second connecting pipe 43, and return to the heating device 23 through the indoor return pipe 44 and the first outdoor pipe 33. In the indoor pipe 32, the first connecting pipe 42 extending from the heating device (heat source portion) 23 is branched into a plurality of branch pipes 41 at one end side of the plurality of ridges 12 (rows of a plurality of plants 15), and a plurality of branch pipes 41 are branched. The branch pipe 41 joins at the other end side of the plurality of ridges 12. The pipes 43 and 44 connected to the heating device (heat source unit) 23 from the confluence are arranged in a place that does not overlap with the plurality of branch pipes 41.
 植物栽培空間11では、暖房運転中に、各ヒートシンク24から温熱が空気に放出される。その結果、各ヒートシンク24から自然対流が生じる。自然対流の主成分は、図1(a)に破線(矢印付きの破線)で示すように、ヒートシンク24付近から植物栽培空間11の上層手前まで上昇し、上層に溜まる冷気に冷却されて、植物栽培空間11の天井に到達することなく、上層の手前(植物15の上端)付近から下降する。自然対流(自然対流の主成分)が生じる領域(図1(a)における破線の内側)は、ヒートシンク24から温熱が供給される暖房領域となる。例えば、暖房領域の範囲は、植物15の大きさと同程度か少し大きい。植物栽培空間11では、分岐管41ごとに、図1(a)の破線で示すように周回する自然対流が形成される。つまり、分岐管41ごとに暖房領域が形成される。各暖房領域は、分岐管41の近傍領域に形成される。 In the plant cultivation space 11, heat is released to the air from each heat sink 24 during the heating operation. As a result, natural convection is generated from each heat sink 24. As shown by the broken line (broken line with an arrow) in FIG. 1A, the main component of natural convection rises from the vicinity of the heat sink 24 to the front of the upper layer of the plant cultivation space 11, and is cooled by the cold air accumulated in the upper layer to form a plant. It descends from the vicinity of the upper layer (upper end of the plant 15) without reaching the ceiling of the cultivation space 11. The region where natural convection (the main component of natural convection) occurs (inside the broken line in FIG. 1A) is a heating region where heat is supplied from the heat sink 24. For example, the range of the heating area is as large as or slightly larger than the size of the plant 15. In the plant cultivation space 11, natural convection is formed for each branch pipe 41, as shown by the broken line in FIG. 1 (a). That is, a heating region is formed for each branch pipe 41. Each heating region is formed in a region near the branch pipe 41.
[空調システムの制御について]
 図5のフローチャートを参照して、空調システム20の制御について説明する。空調システム20は、循環ポンプ22及び加熱装置23を制御する制御部50(図1(b)参照)を備えている。
[Control of air conditioning system]
The control of the air conditioning system 20 will be described with reference to the flowchart of FIG. The air conditioning system 20 includes a control unit 50 (see FIG. 1B) that controls the circulation pump 22 and the heating device 23.
 なお、制御用のセンサとして、植物栽培室10の室外には、室外の外気温を計測する外気温センサ61(図1(b)参照)が設けられている。また、植物栽培室10の室内には、植物栽培空間11の温度を計測する室温センサ62(図1(a)参照)が設けられている。室温センサ62は、加温対象の植物15の上部の高さ位置(例えば、1.7~2.3mの高さ位置)に取り付けられ、その取付位置おける空気の温度を計測する。室温センサ62は、例えば、平面視における植物栽培空間11の中央部に配置される。外気温センサ61の計測温度と、室温センサ62の計測温度とは、制御部50に入力される。 As a control sensor, an outside air temperature sensor 61 (see FIG. 1 (b)) for measuring the outside air temperature is provided outside the plant cultivation room 10. Further, a room temperature sensor 62 (see FIG. 1A) for measuring the temperature of the plant cultivation space 11 is provided in the plant cultivation room 10. The room temperature sensor 62 is attached to a height position (for example, a height position of 1.7 to 2.3 m) above the plant 15 to be heated, and measures the temperature of air at the attachment position. The room temperature sensor 62 is arranged, for example, in the central portion of the plant cultivation space 11 in a plan view. The measured temperature of the outside air temperature sensor 61 and the measured temperature of the room temperature sensor 62 are input to the control unit 50.
 また、室外ユニット25には、室内空間の設定温度STを入力するための入力パネル(図示省略)が設けられている。入力パネルに入力された室内空間の設定温度STは、制御部50に入力される。なお、管理者は、植物15の育成状態に応じて室内空間の設定温度STを決める。 Further, the outdoor unit 25 is provided with an input panel (not shown) for inputting the set temperature ST of the indoor space. The set temperature ST of the indoor space input to the input panel is input to the control unit 50. The manager determines the set temperature ST of the indoor space according to the growing state of the plant 15.
 空調システム20の運転は、外気温が低下中のある時点(例えば、夕方や晩のある時点)から、外気温が上昇中のある時点(例えば、早朝のある時点)までの、夜間を含む時間帯に行われる。空調システム20の運転は、例えばビニールハウスの管理者が入力パネルのスイッチをONに切り替えることで開始される。なお、外気温センサ61の計測温度OTが所定の判定温度を下回った場合に、制御部50が空調システム20の運転を自動的に開始するようにしてもよい。また、空調システム20の運転は、昼間に行ってもよい。 The operation of the air conditioning system 20 includes the time from a certain time when the outside temperature is decreasing (for example, a certain time in the evening or evening) to a certain time when the outside temperature is rising (for example, a certain time in the early morning). Performed on the belt. The operation of the air conditioning system 20 is started, for example, when the manager of the vinyl house switches the input panel to ON. The control unit 50 may automatically start the operation of the air conditioning system 20 when the measured temperature OT of the outside air temperature sensor 61 falls below a predetermined determination temperature. Further, the operation of the air conditioning system 20 may be performed in the daytime.
 まずステップST1では、制御部50が、冷媒(温水)の目標温度WTを設定する。目標温度WTは、式1を用いて設定される。なお、冷媒の目標温度WTは、循環ポンプ22の出口温度でもよいし、何れかの分岐管41の上流側又は中間地点などの温度であってもよい。
  式1:WT=ST-OT+α
First, in step ST1, the control unit 50 sets the target temperature WT of the refrigerant (hot water). The target temperature WT is set using Equation 1. The target temperature WT of the refrigerant may be the outlet temperature of the circulation pump 22, or the temperature of the upstream side or the intermediate point of any branch pipe 41.
Equation 1: WT = ST-OT + α
 式1において、STは室内空間の設定温度、OTは外気温センサ61の計測温度、αは加算係数を表す。制御部50は、室内空間の設定温度STから外気温センサ61の計測温度OTを引いた温度差に所定の加算係数αを加えた温度を、ヒートシンク24へ供給する冷媒の目標温度として、加熱装置23を制御する。 In Equation 1, ST represents the set temperature of the indoor space, OT represents the measured temperature of the outside air temperature sensor 61, and α represents the addition coefficient. The control unit 50 sets the temperature obtained by subtracting the measurement temperature OT of the outside air temperature sensor 61 from the set temperature ST of the indoor space and adding a predetermined addition coefficient α as the target temperature of the refrigerant supplied to the heat sink 24, as a heating device. 23 is controlled.
 加算係数αは、例えば、35℃以上45℃以下の値が用いられる。ビニールハウスは、植物栽培空間11に対して2重張りや3重張りにする場合がある。例えば、加算係数αは、1重張りの場合に45℃、2重張りの場合に40℃、3重張りの場合に35℃とすることができる。例えば、ビニールハウスが2重張りの場合(加算係数αが40℃の場合)に、室内空間の設定温度STが20℃で、外気温センサ61の計測温度OTが5℃であれば、冷媒の目標温度WTは55℃に設定される。多くの場合、目標温度WTは、式1により60℃以下に設定される。本実施形態では、式1によって空調システム20を制御することで、自然対流による上昇気流が強くなり過ぎて上昇気流の主成分が天井にまで到達することを抑制できる。 For the addition coefficient α, for example, a value of 35 ° C. or higher and 45 ° C. or lower is used. The vinyl house may be doubled or tripled with respect to the plant cultivation space 11. For example, the addition coefficient α can be 45 ° C. in the case of single tension, 40 ° C. in the case of double tension, and 35 ° C. in the case of triple tension. For example, when the greenhouse is double-tensioned (when the addition coefficient α is 40 ° C.), if the set temperature ST of the indoor space is 20 ° C. and the measured temperature OT of the outside air temperature sensor 61 is 5 ° C., the refrigerant The target temperature WT is set to 55 ° C. In many cases, the target temperature WT is set to 60 ° C. or lower according to Equation 1. In the present embodiment, by controlling the air conditioning system 20 by Equation 1, it is possible to prevent the updraft due to natural convection from becoming too strong and the main component of the updraft reaching the ceiling.
 続いて、制御部50は、ステップST2において、循環ポンプ22の運転を開始させると共に、加熱装置23の運転を開始させる。これにより、上述したように、加熱装置23で加熱された冷媒が各分岐管41に供給され、各分岐管41のヒートシンク24に接触した空気が加熱されて自然対流が生じ、各分岐管41に対応する上述の暖房領域(近傍領域)が加温される。 Subsequently, in step ST2, the control unit 50 starts the operation of the circulation pump 22 and the operation of the heating device 23. As a result, as described above, the refrigerant heated by the heating device 23 is supplied to each branch pipe 41, the air in contact with the heat sink 24 of each branch pipe 41 is heated, natural convection occurs, and each branch pipe 41 is subjected to natural convection. The corresponding heating area (near area) described above is heated.
 続いて、制御部50は、ステップST3において、植物栽培室10の室温センサ62の計測温度Tが設定温度STを超えているか否かを判定する。制御部50は、計測温度Tが設定温度STを超えていると判定した場合に、ステップST4において、循環ポンプ22及び加熱装置23を停止させて、冷媒配管21における冷媒の循環を停止させる循環停止状態に切り替える。その結果、各分岐管41の近傍領域の加温が停止される。 Subsequently, in step ST3, the control unit 50 determines whether or not the measured temperature T of the room temperature sensor 62 in the plant cultivation room 10 exceeds the set temperature ST. When the control unit 50 determines that the measured temperature T exceeds the set temperature ST, the control unit 50 stops the circulation pump 22 and the heating device 23 in step ST4 to stop the circulation of the refrigerant in the refrigerant pipe 21. Switch to the state. As a result, the heating of the region near each branch pipe 41 is stopped.
 また、ステップST3において計測温度Tが設定温度STを超えていないと判定した場合、制御部50は、ステップST6において、冷媒配管22が循環状態であれば循環状態を維持し、循環停止状態であれば循環状態へ切り替える。ステップST6が終了すると、ステップST5に移行する。 Further, when it is determined in step ST3 that the measured temperature T does not exceed the set temperature ST, the control unit 50 maintains the circulation state if the refrigerant pipe 22 is in the circulation state in step ST6, and the circulation is stopped. If so, switch to the circulating state. When step ST6 is completed, the process proceeds to step ST5.
 続いて、制御部50は、ステップST5において、空調システム20の運転を終了させるか否かを判定する。制御部50は、入力パネルにおいてスイッチがOFFに切り替えられている場合に、運転終了と判定する。これにより、フローチャートの処理は終了する。なお、外気温センサ61の計測温度OTが所定の判定温度以上となった場合に、運転終了と判定してもよい。 Subsequently, in step ST5, the control unit 50 determines whether or not to terminate the operation of the air conditioning system 20. The control unit 50 determines that the operation is completed when the switch is switched to OFF on the input panel. As a result, the processing of the flowchart ends. When the measured temperature OT of the outside air temperature sensor 61 becomes equal to or higher than a predetermined determination temperature, it may be determined that the operation is completed.
[本実施形態の効果等]
 本実施形態では、畝12ごとに設けられた各分岐管41の流量調節弁40を手動で調節することが可能である。植物栽培室10の管理者は、畝12毎の植物15の成長状況を目視で見ながら、各分岐管41の流量調節弁40の開度を調節する。例えば、植物15の成長が早い畝12に対応する分岐管41の流量調節弁40の開度を縮小し、植物15の成長が遅い畝12に対応する分岐管41の流量調節弁40の開度を拡大することで、植物15の成長が早い畝12に対応する分岐管41の暖房領域の温度は相対的に下げて、植物15の成長が遅い畝12に対応する分岐管41の暖房領域の温度は相対的に上げることができる。このように、本実施形態では、分岐管41の暖房領域ごとに温度調節を個別に行うことができるため、植物栽培空間11における植物15の成長スピードを均一化することができる。
[Effects of this embodiment, etc.]
In the present embodiment, it is possible to manually adjust the flow rate control valve 40 of each branch pipe 41 provided for each ridge 12. The manager of the plant cultivation room 10 adjusts the opening degree of the flow rate control valve 40 of each branch pipe 41 while visually observing the growth state of the plant 15 for each ridge 12. For example, the opening degree of the flow control valve 40 of the branch pipe 41 corresponding to the ridge 12 where the plant 15 grows fast is reduced, and the opening degree of the flow control valve 40 of the branch pipe 41 corresponding to the ridge 12 where the plant 15 grows slowly is reduced. By expanding the temperature of the heating area of the branch pipe 41 corresponding to the fast-growing ridge 12 of the plant 15, the temperature of the heating area of the branch pipe 41 corresponding to the slow-growing ridge 12 of the plant 15 is relatively lowered. The temperature can be raised relatively. As described above, in the present embodiment, since the temperature can be individually adjusted for each heating region of the branch pipe 41, the growth speed of the plant 15 in the plant cultivation space 11 can be made uniform.
 なお、各分岐管41の流量調節弁40の開度調節について、植物栽培空間11における植物15の成長スピードを均一化する目的で行うのではなく、植物15の果実や花卉の収穫・出荷時期を調節する目的で行ってもよい。この場合、畝12毎に敢えて植物15の成長スピードに所定の差がつくように、分岐管41の暖房領域ごとに温度調節を行う。 The opening degree of the flow rate control valve 40 of each branch pipe 41 is not adjusted for the purpose of equalizing the growth speed of the plant 15 in the plant cultivation space 11, but the harvest / shipment time of the fruits and flowers of the plant 15 is set. It may be done for the purpose of adjustment. In this case, the temperature is adjusted for each heating region of the branch pipe 41 so that the growth speed of the plant 15 is intentionally different for each ridge 12.
 また、本実施形態では、流量調節弁40の設置箇所の高さが、ヒートシンク24の設置区間の高さよりも高くなっており、管理者は、体を屈めることなく楽な姿勢で流量調節弁40の操作を行うことができる。 Further, in the present embodiment, the height of the installation location of the flow control valve 40 is higher than the height of the installation section of the heat sink 24, and the administrator can take a comfortable posture without bending down. 40 operations can be performed.
 また、本実施形態では、第1接続管42において上流側で分岐した分岐管41ほど第2接続管43においても上流側で合流するように冷媒配管21を構成している。そのため、複数の分岐管41の間において冷媒の圧力損失が均一化される。従って、複数の分岐管41の間において、流量調節弁40の開度の調節量に対する冷媒流量の変化量を均一化することができ、流量調節弁40の開度調節を容易化することができる。 Further, in the present embodiment, the refrigerant pipe 21 is configured so that the branch pipe 41 branched on the upstream side in the first connecting pipe 42 joins on the upstream side in the second connecting pipe 43 as well. Therefore, the pressure loss of the refrigerant is made uniform among the plurality of branch pipes 41. Therefore, the amount of change in the refrigerant flow rate with respect to the adjustment amount of the opening degree of the flow rate control valve 40 can be made uniform among the plurality of branch pipes 41, and the opening degree adjustment of the flow rate control valve 40 can be facilitated. ..
 また、本実施形態では、各分岐管41において冷媒が層流状態で流れるように、循環ポンプ22の流量が設定される。そのため、各ヒートシンク24の管部37内では、中心部と内面付近とで流速差が生じ、冷媒が乱流状態で流れる場合に比べ、冷媒と接触空気との熱交換量が少なくなる。そのため、分岐管41において複数のヒートシンク24を直列に接続したとしても、分岐管41において上流側と下流側とにおける冷媒の温度差が小さくなり、縦断方向において植物栽培空間11を均一に加温することができる。 Further, in the present embodiment, the flow rate of the circulation pump 22 is set so that the refrigerant flows in the laminar flow state in each branch pipe 41. Therefore, in the pipe portion 37 of each heat sink 24, a flow velocity difference occurs between the central portion and the vicinity of the inner surface, and the amount of heat exchange between the refrigerant and the contact air is smaller than in the case where the refrigerant flows in a turbulent flow state. Therefore, even if a plurality of heat sinks 24 are connected in series in the branch pipe 41, the temperature difference between the refrigerants on the upstream side and the downstream side in the branch pipe 41 becomes small, and the plant cultivation space 11 is uniformly heated in the longitudinal direction. be able to.
<実施形態の変形例1>
 本変形例では、制御部50により各流量調節弁40の開度の自動調節が行われる。制御部50は、室温センサ62の計測温度に基づいて、植物栽培空間11の暖房負荷に対して空調システム20の暖房能力が不足していると判断する能力不足条件が成立する場合に、横断方向において内寄りの畝12に対応する分岐管41の流量調節弁40に比べて、横断方向において外寄りの畝12に対応する分岐管41の流量調節弁40の開度を大きくする制御を行う。これにより、植物栽培空間11の暖房負荷に対して空調システム20の暖房能力が不足する場合であっても、植物栽培空間11の壁面近傍の温度が低下しすぎる状態を抑制することができる。
<Modification 1 of the embodiment>
In this modification, the control unit 50 automatically adjusts the opening degree of each flow rate control valve 40. The control unit 50 determines that the heating capacity of the air conditioning system 20 is insufficient for the heating load of the plant cultivation space 11 based on the measured temperature of the room temperature sensor 62. In the above section, the opening degree of the flow rate control valve 40 of the branch pipe 41 corresponding to the outer ridge 12 is controlled to be larger than that of the flow control valve 40 of the branch pipe 41 corresponding to the inner ridge 12. As a result, even when the heating capacity of the air conditioning system 20 is insufficient with respect to the heating load of the plant cultivation space 11, it is possible to suppress a state in which the temperature near the wall surface of the plant cultivation space 11 is excessively lowered.
 なお、能力不足条件の判定に用いる室温センサ62は、例えば、平面視における植物栽培空間11の中央部に配置される。また、能力不足条件の一例は、設定温度STに対し室温センサ62の計測温度Tが下回る状態が所定時間以上継続するという条件や、設定温度STより室温センサ62の計測温度Tが所定値以上下回る状態が所定時間以上継続するという条件である。 The room temperature sensor 62 used for determining the capacity deficiency condition is arranged in the central portion of the plant cultivation space 11 in a plan view, for example. Further, examples of the capacity shortage condition include a condition that the measured temperature T of the room temperature sensor 62 is lower than the set temperature ST for a predetermined time or longer, or the measured temperature T of the room temperature sensor 62 is lower than the set temperature ST by a predetermined value or more. The condition is that the state continues for a predetermined time or longer.
<実施形態の変形例2>
 本変形例では、変形例1と同様に、制御部50により各流量調節弁40の開度の自動調節が行われる。また、室温センサ62は、複数箇所に配置される。全ての室温センサ62は、略同じ高さに設けられる。
<Modification 2 of the embodiment>
In this modification, the control unit 50 automatically adjusts the opening degree of each flow rate control valve 40, as in the case of modification 1. Further, the room temperature sensors 62 are arranged at a plurality of locations. All room temperature sensors 62 are provided at approximately the same height.
 例えば、畝12ごとに室温センサ62を設ける場合、制御部50は、各流量調節弁40の開度制御を、同一の畝12の室温センサ62の計測温度に基づいて行う。制御の一例として、全ての畝12の室温センサ62の計測温度の平均値を算出し、平均値より計測温度が高い室温センサ62に対応する流量調節弁40の開度を相対的に縮小し、平均値より計測温度が低い室温センサ62に対応する流量調節弁40の開度を相対的に拡大する開度制御を行うことができる。この開度制御によれば、植物栽培空間11の温度を自動で均一化することができる。 For example, when the room temperature sensor 62 is provided for each ridge 12, the control unit 50 controls the opening degree of each flow rate control valve 40 based on the measured temperature of the room temperature sensor 62 of the same ridge 12. As an example of control, the average value of the measured temperatures of the room temperature sensors 62 of all the ridges 12 is calculated, and the opening degree of the flow control valve 40 corresponding to the room temperature sensor 62 whose measurement temperature is higher than the average value is relatively reduced. Opening control that relatively expands the opening degree of the flow control valve 40 corresponding to the room temperature sensor 62 whose measured temperature is lower than the average value can be performed. According to this opening degree control, the temperature of the plant cultivation space 11 can be automatically made uniform.
 なお、畝12ごとに室温センサ62を設けずに、平面視における植物栽培空間11の中央部と、その中央部より外側の周辺部とにそれぞれ室温センサ62を設けてもよい。この場合でも、2つの室温センサ62の計測温度により植物栽培空間11の温度分布をある程度把握できるため、2つの室温センサ62の計測温度に基づく開度制御により、植物栽培空間11の温度を自動で均一化することができる。 Instead of providing the room temperature sensor 62 for each ridge 12, the room temperature sensor 62 may be provided at the central portion of the plant cultivation space 11 in a plan view and at the peripheral portion outside the central portion. Even in this case, since the temperature distribution of the plant cultivation space 11 can be grasped to some extent by the measured temperatures of the two room temperature sensors 62, the temperature of the plant cultivation space 11 is automatically adjusted by the opening control based on the measured temperatures of the two room temperature sensors 62. Can be homogenized.
<その他の実施形態>
 上記実施形態では、植物15が植え付けられた耕作面に対しヒートシンク24を浮かせているが、耕作面上にヒートシンク24を載置してもよい。また、上記実施形態では、各植物15は、畝12に植えられているが、鉢植えされていてもよい。
<Other Embodiments>
In the above embodiment, the heat sink 24 is floated on the cultivated surface on which the plant 15 is planted, but the heat sink 24 may be placed on the cultivated surface. Further, in the above embodiment, each plant 15 is planted in the ridge 12, but may be potted.
 上記実施形態では、空調システム20が植物栽培空間11の冷房を行うように構成されていてもよい。この場合、加熱装置23の代わりに、冷媒を冷却する装置を用いる。 In the above embodiment, the air conditioning system 20 may be configured to cool the plant cultivation space 11. In this case, a device for cooling the refrigerant is used instead of the heating device 23.
 上記実施形態では、植物栽培室10の管理者が畝12毎の植物15の成長状況を目視で見ながら各分岐管41の流量調節弁40の開度を調節するが、畝12毎に植物15をカメラで撮影し、制御部50が、カメラ画像に基づいて畝12毎の植物15の成長状況を把握して、各分岐管41の流量調節弁40の開度を自動調節してもよい。 In the above embodiment, the manager of the plant cultivation room 10 adjusts the opening degree of the flow control valve 40 of each branch pipe 41 while visually observing the growth state of the plant 15 for each ridge 12, but the plant 15 for each ridge 12. The control unit 50 may grasp the growth state of the plant 15 for each ridge 12 based on the camera image and automatically adjust the opening degree of the flow control valve 40 of each branch pipe 41.
 上記実施形態では、畝12に植物15を一列に植えているが、畝12に植物15を二列に植えてもよい。この場合に、二列の植物15の間に分岐管41及びヒートシンク24を配置してもよい。また、上記実施形態では、1つの畝12に対し1本の分岐管41を設けているが、複数の畝12に対し1本の分岐管41を設けてもよい。 In the above embodiment, the plants 15 are planted in a row on the ridges 12, but the plants 15 may be planted in two rows on the ridges 12. In this case, the branch pipe 41 and the heat sink 24 may be arranged between the two rows of plants 15. Further, in the above embodiment, one branch pipe 41 is provided for one ridge 12, but one branch pipe 41 may be provided for a plurality of ridges 12.
 上記実施形態において、冷媒配管21は、それぞれにヒートシンク24及び流量調節弁40が設けられた複数の分岐管41(例えば、3本以上の分岐管41)を有するが、これらの複数の分岐管41に加えて、第1接続管42から第2接続管43に延びる別の分岐管(流量調節弁40が設けられていない分岐管)をさらに有していてもよい。 In the above embodiment, the refrigerant pipe 21 has a plurality of branch pipes 41 (for example, three or more branch pipes 41) provided with a heat sink 24 and a flow rate control valve 40, respectively, and these plurality of branch pipes 41 In addition, another branch pipe (branch pipe not provided with the flow rate control valve 40) extending from the first connection pipe 42 to the second connection pipe 43 may be further provided.
 本発明は、植物栽培空間用の空調システム等に適用可能である。 The present invention can be applied to an air conditioning system or the like for a plant cultivation space.
 10   植物栽培室
 11   植物栽培空間
 15   植物
 21   冷媒配管
 22   循環ポンプ
 23   加熱装置(熱源部)
 20   空調システム
 24   ヒートシンク
 40   流量調節部(流量調節弁)
 41   分岐管
10 Plant cultivation room 11 Plant cultivation space 15 Plants 21 Refrigerant piping 22 Circulation pump 23 Heating device (heat source)
20 Air conditioning system 24 Heat sink 40 Flow control unit (flow control valve)
41 Branch pipe

Claims (3)

  1.  植物栽培空間用の空調システムであって、
     冷媒を加熱又は冷却する熱源部と、
     前記熱源部に対し並列に接続された複数の分岐管を有し、前記熱源部で加熱又は冷却された冷媒が流通する冷媒配管と、
     前記複数の分岐管の各々に設けられ、該分岐管を流通する冷媒の熱を前記植物栽培空間の空気に供給する複数のヒートシンクと、
     前記複数の分岐管の各々の冷媒流量を個別に調節可能な複数の流量調節部とを備えている、空調システム。
    An air conditioning system for plant cultivation spaces
    A heat source that heats or cools the refrigerant,
    A refrigerant pipe having a plurality of branch pipes connected in parallel to the heat source portion and through which the refrigerant heated or cooled in the heat source portion flows.
    A plurality of heat sinks provided in each of the plurality of branch pipes and supplying heat of the refrigerant flowing through the branch pipes to the air in the plant cultivation space.
    An air conditioning system including a plurality of flow rate adjusting units capable of individually adjusting the flow rate of each refrigerant of the plurality of branch pipes.
  2.  前記分岐管では、上流側に前記流量調節部を構成する流量調節弁が設けられ、該流量調節弁よりも下流に1つ又は複数の前記ヒートシンクが設けられ、
     前記分岐管は、前記流量調節弁と最上流のヒートシンクとの間で高さが変化しており、前記流量調節弁の設置箇所の高さが、前記1つ又は複数のヒートシンクの設置区間の高さよりも高くなっている、請求項1に記載の空調システム。
    In the branch pipe, a flow rate control valve constituting the flow rate control unit is provided on the upstream side, and one or a plurality of the heat sinks are provided downstream of the flow rate control valve.
    The height of the branch pipe varies between the flow control valve and the most upstream heat sink, and the height of the installation location of the flow control valve is the height of the installation section of the one or more heat sinks. The air conditioning system according to claim 1, which is higher than the above.
  3.  前記複数の分岐管の各々は、前記植物栽培空間において第1方向に沿って延びており、
     前記冷媒配管は、前記第1方向に略直交する第2方向に沿って延びて前記各分岐管の上流端が接続された第1接続管と、前記第2方向に沿って延びて前記各分岐管の下流端が接続された第2接続管とをさらに有し、
     前記第1接続管では、前記第2方向における一端側から他端側に向かって冷媒が流通して前記各分岐管の接続箇所で冷媒が分岐し、
     前記第2接続管では、前記第2方向における一端側から他端側に向かって冷媒が流通して前記各分岐管の接続箇所で冷媒が合流する、請求項1又は2に記載の空調システム。
    Each of the plurality of branch pipes extends along the first direction in the plant cultivation space.
    The refrigerant pipe extends along a second direction substantially orthogonal to the first direction and is connected to an upstream end of each branch pipe, and each branch extends along the second direction. Further having a second connecting pipe to which the downstream end of the pipe is connected
    In the first connection pipe, the refrigerant flows from one end side to the other end side in the second direction, and the refrigerant branches at the connection point of each branch pipe.
    The air conditioning system according to claim 1 or 2, wherein in the second connection pipe, the refrigerant flows from one end side to the other end side in the second direction, and the refrigerant merges at the connection point of each branch pipe.
PCT/JP2020/024239 2019-06-19 2020-06-19 Air conditioning system for plant cultivation space WO2020256137A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019113660A JP2022126889A (en) 2019-06-19 2019-06-19 Air conditioning system for plant cultivation space
JP2019-113660 2019-06-19

Publications (1)

Publication Number Publication Date
WO2020256137A1 true WO2020256137A1 (en) 2020-12-24

Family

ID=74036963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/024239 WO2020256137A1 (en) 2019-06-19 2020-06-19 Air conditioning system for plant cultivation space

Country Status (2)

Country Link
JP (1) JP2022126889A (en)
WO (1) WO2020256137A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022113065A (en) * 2021-01-22 2022-08-03 Jfeエンジニアリング株式会社 Humidification control method and device for plant cultivation facility

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090134242A1 (en) * 2005-11-29 2009-05-28 Richard Theoret Hydro-thermo irrigation mat
JP3195434U (en) * 2014-10-20 2015-01-22 健一 清田 Air conditioning / medium temperature control equipment for house cultivation facilities
JP2018196376A (en) * 2017-05-23 2018-12-13 株式会社浪速試錐工業所 Heat sink, and air-conditioning system for plant cultivation space

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090134242A1 (en) * 2005-11-29 2009-05-28 Richard Theoret Hydro-thermo irrigation mat
JP3195434U (en) * 2014-10-20 2015-01-22 健一 清田 Air conditioning / medium temperature control equipment for house cultivation facilities
JP2018196376A (en) * 2017-05-23 2018-12-13 株式会社浪速試錐工業所 Heat sink, and air-conditioning system for plant cultivation space

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022113065A (en) * 2021-01-22 2022-08-03 Jfeエンジニアリング株式会社 Humidification control method and device for plant cultivation facility
JP7435488B2 (en) 2021-01-22 2024-02-21 Jfeエンジニアリング株式会社 Humidity or saturation control method and device for plant cultivation facilities

Also Published As

Publication number Publication date
JP2022126889A (en) 2022-08-31

Similar Documents

Publication Publication Date Title
US20210199316A1 (en) Environmental Control and Air Distribution System and Method of Using the Same
WO2020256137A1 (en) Air conditioning system for plant cultivation space
KR101719772B1 (en) Crops partially cooling heating system
JP2010200634A (en) Air conditioner for greenhouse
JP2018196376A (en) Heat sink, and air-conditioning system for plant cultivation space
JP6547199B1 (en) Cultivation facility air conditioner
JP4529164B2 (en) Windless environment type plant growth chamber and temperature adjustment method
JP2018078826A (en) Agricultural House Air circulation system
JP2021170979A (en) Air conditioner control device for plant cultivation room, temperature control system for plant cultivation room, and control program
JP2021170980A (en) Controller of heater for plant cultivation chamber, heating system, and control program
JPH08280269A (en) Air conditioning duct for protected culture
JP6497805B2 (en) Crop cultivation system
JP2006187238A (en) Raising seedling device
JP6150166B2 (en) Hydroponic cultivation method and cultivation support system
JP6814425B2 (en) Growth assistance device and plant growth device
JP7541340B2 (en) Plant Cultivation Equipment
JP5417251B2 (en) Photosynthesis panel, photosynthesis rack and plant growing system
JP5610754B2 (en) Plant year-round cultivation equipment
JP4592371B2 (en) Temperature control method and apparatus for culture medium in crop cultivation
Knies et al. Infrared heating in greenhouses
JP2018068194A (en) Air conditioning system for raising-seedling facilities
KR200404661Y1 (en) heating apparatus of equipment house
JP2006204161A (en) Heating device of cultivation facility
Moon et al. Spot heating technology development for strawberry cultivated in a greenhouse by using hot water pipe
KR20240085685A (en) Zoned air conditioning apparatus in the greenhouse, and control methods thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20826221

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20826221

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP