WO2020255925A1 - Method for forming pattern, method for manufacturing substrate with pattern, and method for manufacturing sintered body with pattern - Google Patents
Method for forming pattern, method for manufacturing substrate with pattern, and method for manufacturing sintered body with pattern Download PDFInfo
- Publication number
- WO2020255925A1 WO2020255925A1 PCT/JP2020/023437 JP2020023437W WO2020255925A1 WO 2020255925 A1 WO2020255925 A1 WO 2020255925A1 JP 2020023437 W JP2020023437 W JP 2020023437W WO 2020255925 A1 WO2020255925 A1 WO 2020255925A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resin layer
- base material
- pattern
- transfer pattern
- deforming
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C59/00—Surface shaping of articles, e.g. embossing; Apparatus therefor
- B29C59/02—Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
Definitions
- the present disclosure relates to a pattern forming method, a method for producing a patterned base material, and a method for producing a patterned sintered body.
- Imprint processing is known as one of the microfabrication technologies.
- the imprint process is a process of forming a transfer pattern on the surface of the resin layer by pressing a mold having a predetermined pattern against the resin layer and transferring the pattern.
- Non-Patent Document 1 a technique for forming a multilayer structure by imprint processing is studied.
- the transfer pattern may collapse during peeling after the transfer pattern is formed, or the pattern of the mold may be sufficiently filled with the resin layer.
- Imprint processing technology that can form special patterns such as patterns with a large aspect ratio and patterns with overhangs by simple methods, imprint processing that can form complex transfer patterns It is useful if there is technology. Further, it is useful if there is a method for producing a patterned base material using the technique.
- One aspect of the present disclosure is a pattern forming method comprising a step of pressing a mold against a resin layer to provide a transfer pattern and a step of deforming the resin layer along a direction orthogonal to the pressing direction. I will provide a.
- the pattern possessed by the mold is formed by deforming the resin layer having the transfer pattern along a direction orthogonal to the pressing direction of the transfer pattern. It is possible to easily form a pattern having a large aspect ratio or the like.
- the resin layer may have a plurality of layers.
- the resin layer may have a first resin layer and a second resin layer.
- the first resin layer may have a pattern on the surface of the first resin layer on the side of the second resin layer.
- the step of providing the transfer pattern may be a step of providing the transfer pattern by heating the resin layer and the mold so as to face each other.
- the step of providing the transfer pattern may be a step of providing the transfer pattern by irradiating the resin layer with light while pressing the resin layer and the mold while facing each other.
- the resin layer may be further provided with a step of irradiating the resin layer with heat or light.
- One aspect of the present disclosure is a step of pressing a mold against a resin layer containing a polymer to form a transfer pattern, and a step of deforming the resin layer along a direction orthogonal to the pressing direction.
- a method for producing a patterned base material is provided.
- a transfer pattern is provided on the resin layer by imprinting, and then the resin layer having the transfer pattern is deformed along a direction orthogonal to the pressing direction of the transfer pattern. It is possible to easily provide a patterned base material having a pattern having an aspect ratio larger than that of the mold on the base material.
- One aspect of the present disclosure is that the resin layer is pressed against the stacking direction of the laminate having the elastic base material and the resin layer provided on the base material and containing the polymer.
- a method for producing a patterned base material which comprises a step of forming a transfer pattern on a surface opposite to the base material side and a step of deforming the resin layer along a direction orthogonal to the laminating direction. I will provide a.
- a transfer pattern is provided by imprinting on a resin layer on a stretchable base material, and then the transfer pattern is pressed in the direction of pressing by using the stretchability of the base material.
- the step of deforming the resin layer may be a step of deforming the resin layer by shrinking the base material along a direction orthogonal to the laminating direction.
- the step of deforming the resin layer may be a step of forming a pattern having a larger aspect ratio than the transfer pattern by shrinking the base material along a direction orthogonal to the laminating direction.
- the base material may contain at least one selected from the group consisting of elastic bodies, photoresponsive gels, and temperature responsive gels. When the base material contains the above-mentioned materials, the transfer pattern can be more easily deformed.
- the base material may contain a silicone resin.
- the resin layer may have a plurality of layers.
- the resin layer may have a first resin layer and a second resin layer.
- the first resin layer is located between the second resin layer and the base material, and even if the first resin layer has a pattern on the surface opposite to the base material side. Good.
- the recessed aspect ratio of the above type may be 5 to 10.
- the step of providing the transfer pattern may be a step of providing the transfer pattern by heating the resin layer and the mold so as to face each other.
- the step of providing the transfer pattern may be a step of providing the transfer pattern by irradiating the resin layer with light while pressing the resin layer and the mold while facing each other.
- the resin layer may be further provided with a step of irradiating the resin layer with heat or light.
- the polymer may contain at least one selected from the group consisting of thermoplastic polymers and thermosetting polymers.
- the polymer may contain polyvinyl alcohol.
- the polymer may have a polymerizable functional group.
- the resin layer may contain inorganic particles in addition to the polymer.
- the inorganic particles may contain at least one selected from the group consisting of magnesium oxide, titanium oxide, zirconium oxide, iron oxide, aluminum oxide, silicon oxide, silicon nitride, aluminum nitride, silicon carbide, hydroxyapatite and ferrite. ..
- the resin layer may contain a polymerizable compound in addition to the polymer.
- the above-mentioned polymerizable compound may contain at least one selected from the group consisting of photopolymerizable compounds and thermally polymerizable compounds.
- One aspect of the present disclosure is to press a mold against a stacking direction of a laminate having a stretchable base material and a resin layer provided on the base material and containing a polymer and inorganic particles.
- the present invention provides a method for producing a patterned sintered body, which comprises a step of firing the resin layer to form a sintered body of the inorganic particles.
- a transfer pattern is provided by imprinting on a resin layer on a stretchable base material, and then the transfer pattern is pressed using the stretchability of the base material.
- a resin layer having the transfer pattern By deforming the resin layer having the transfer pattern along the direction orthogonal to the above, a resin layer having a pattern having a large aspect ratio or the like is formed on the base material, and then the resin layer is fired to form a pattern.
- a sintered body can be easily provided.
- the step of deforming the resin layer may be a step of deforming the resin layer by shrinking the base material along a direction orthogonal to the laminating direction.
- the step of deforming the resin layer may be a step of forming a pattern having a larger aspect ratio than the transfer pattern by shrinking the base material along a direction orthogonal to the laminating direction.
- a pattern forming method capable of easily forming a pattern having a large aspect ratio or the like.
- a method for producing a patterned substrate which can easily produce a patterned substrate having a pattern having a large aspect ratio or the like.
- a method for producing a patterned sintered body which can easily produce a sintered body having a pattern having a large aspect ratio or the like.
- FIG. 1 is a schematic diagram for explaining an example of a pattern forming method.
- FIG. 2 is a schematic diagram for explaining another example of the pattern forming method.
- FIG. 3 is a schematic diagram for explaining another example of the pattern forming method.
- FIG. 4 is a schematic diagram for explaining another example of the pattern forming method.
- FIG. 5 is an optical micrograph showing a part of the patterned substrate produced in the examples.
- FIG. 6 is an electron micrograph showing a part of the patterned base material produced in the examples.
- FIG. 7 is an electron micrograph showing a part of the patterned base material produced in the examples.
- each component in the composition means the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to each component in the composition are present, unless otherwise specified. ..
- One embodiment of the pattern forming method is a method including deforming the transfer pattern formed by the imprint method in the in-plane direction.
- the pattern forming method includes, for example, a step of pressing a mold against the resin layer to provide a transfer pattern, and a step of deforming the resin layer along a direction orthogonal to the pressing direction.
- FIG. 1 is a schematic diagram for explaining an example of a pattern forming method.
- the pattern forming method shown in FIG. 1 includes a first step of preparing the base material 2 ((a) of FIG. 1), a second step of stretching the base material 2 ((b) of FIG. 1), and the base material.
- the third step ((c) of FIG. 1) of providing the laminate of the first resin layer 4 and the second resin layer 6 on 2 the mold 52 is pressed from the second resin layer 6 side of the laminate. Then, by removing the mold 52, a fourth step ((d) and (e) of FIG.
- the base material 2 is deformable in order to deform the transfer pattern formed on the resin layer by the imprint method in the in-plane direction.
- FIG. 1 shows an example in which a stretchable base material (for example, an elastic body) is used as the base material 2, but for example, if it can supply a force for deforming the resin layer after forming a transfer pattern. Often, it may be a material that shrinks by supplying light or heat after forming a transfer pattern. In this case, the first step and the second step can be omitted.
- the base material 2 may contain, for example, at least one selected from the group consisting of elastic bodies, photoresponsive gels, and temperature responsive gels. When the base material 2 contains the above-mentioned material, the resin layer having the transfer pattern can be easily deformed later.
- the base material 2 may be made of a material having a high elastic modulus. Since the base material 2 is made of a material having a high elastic modulus, the stress at the time of stretching can be improved, and more sufficient force is supplied to deform the resin layer having the transfer pattern in a later step. be able to.
- the base material 2 may contain, for example, a silicone resin, a urethane resin, a natural rubber, a styrene-butadiene rubber, a butadiene rubber, an isoprene rubber, or the like.
- the shape of the base material 2 is not particularly limited, but may be, for example, a plate shape.
- the thickness of the base material 2 and the elastic modulus of the base material 2 are not particularly limited as long as they can be deformed (for example, deformed by expansion and contraction).
- the upper limit of the thickness of the base material 2 may be, for example, 1 mm or less, 0.5 mm or less, or 0.3 mm or less.
- the lower limit of the thickness of the base material 2 may be, for example, 0.1 mm or more.
- the thickness of the base material 2 may be adjusted within the above range, and may be, for example, 0.1 to 1 mm or 0.1 to 0.5 mm.
- the degree of stretching of the base material 2 may be adjusted in a subsequent step according to the degree of deformation of the resin layer having the transfer pattern.
- the lower limit of the draw ratio of the base material 2 may be, for example, 1.5 times or more, 1.7 times or more, 2.0 times or more, 2.5 times or more, or 3.0 times or more.
- the upper limit of the draw ratio of the base material 2 may be, for example, 8.0 times or less, 6.0 times or less, 5.0 times or less, or 4.0 times or less.
- the draw ratio of the base material 2 may be adjusted within the above range, and may be, for example, 1.5 to 8.0 times or 1.7 to 6.0 times.
- the third step is a step of providing the first resin layer 4 and the second resin layer 6 on the base material 2.
- the first resin layer 4 and the second resin layer 6 may be formed by sticking a separately prepared resin layer on the base material 2, and the composition for forming the resin layer is formed on the base material 2. It may be formed by applying a solution containing the mixture.
- the first resin layer 4 and the second resin layer 6 may be the same as or different from each other.
- the first resin layer 4 and the second resin layer 6 may be collectively referred to as a resin layer in some cases.
- the first resin layer 4 and the second resin layer 6 may contain, for example, a polymer, or may be made of a polymer.
- the polymer may be, for example, a thermoplastic polymer, a thermosetting polymer, or the like.
- the polymer may be, for example, a photocurable polymer or the like.
- the polymer can be selected according to the method of forming a transfer pattern on the resin layer by the imprint method. For example, when the step of providing the transfer pattern is a step of providing the transfer pattern by heating the resin layer and the mold while pressing them against each other, the polymer may include a thermoplastic polymer or a thermosetting polymer.
- the polymer when the step of providing the transfer pattern is a step of providing the transfer pattern by irradiating the resin layer with light while pressing the resin layer and the mold against each other, the polymer may contain a photocurable polymer. ..
- the polymer may also have polymerizable functional groups.
- the polymerizable functional group may be, for example, a glycidyl group, a hydroxyl group, a carboxy group, an ethylenically unsaturated group or the like.
- the second resin layer 6 preferably contains, for example, an acid-soluble polymer or an alkali-soluble polymer.
- thermoplastic polymer examples include polyolefins such as polyvinyl alcohol, polyethylene and polypropylene, poly (meth) acrylic acid alkyl esters such as polyvinyl chloride, polyurethane and polymethyl methacrylate, polystyrene, polylactic acid, and polyethylene terephthalate.
- thermosetting polymer examples include epoxy resin, phenol resin, melamine resin and the like.
- photocurable polymer examples include polymers having a photopolymerizable functional group.
- the upper limit of the thickness of the first resin layer 4 may be, for example, 5 mm or less, 3 mm or less, 1 mm or less, 500 ⁇ m or less, 100 ⁇ m or less, or 50 ⁇ m or less.
- the lower limit of the thickness of the first resin layer 4 may be, for example, 25 ⁇ m or more, or 30 ⁇ m or more. By setting the lower limit of the thickness of the first resin layer 4 within the above range, the handleability can be further improved.
- the thickness of the first resin layer 4 may be adjusted within the above range, and may be, for example, 25 ⁇ m to 5 mm or 25 to 100 ⁇ m.
- the second resin layer 6 may be removed in a later step if necessary. By removing the second resin layer 6, for example, it becomes easy to form a pattern having a large aspect ratio.
- the thickness of the second resin layer 6 may be smaller than the thickness of the first resin layer 4.
- the upper limit of the thickness of the second resin layer 6 may be, for example, 20 ⁇ m or less, 15 ⁇ m or less, or 10 ⁇ m or less. By setting the upper limit value of the second resin layer 6 within the above range, it becomes easier when the second resin layer 6 is removed in a later step.
- the lower limit of the thickness of the second resin layer 6 may be, for example, 0.1 ⁇ m or more, 0.5 ⁇ m or more, 1 ⁇ m or more, 3 ⁇ m or more, or 5 ⁇ m or more.
- the thickness of the second resin layer 6 may be adjusted within the above range, and may be, for example, 1 to 25 ⁇ m or 5 to 10 ⁇ m.
- FIG. 1 shows an example in which the resin layer is formed from a plurality of layers, but the resin layer may be one layer and may include two or more layers.
- the resin layer may be one layer and may include two or more layers.
- at least one of the layers constituting the resin layer may be, for example, a resin composition layer, an inorganic layer, and a composite layer. That is, the resin layer may include a first resin layer and a second resin layer, may include a resin composition layer and an inorganic layer, and may include a resin composition layer and a composite layer.
- the material of each layer may be the same or different.
- the inorganic layer includes, for example, metal oxides such as magnesium oxide, titanium oxide, zirconium oxide, iron oxide, aluminum oxide and silicon oxide, nitrides such as silicon nitride and aluminum nitride, carbides such as silicon carbide, and calcium phosphate such as hydroxyapatite. , Ferrite, and at least one selected from the group consisting of amorphous carbon (carbon black, etc.) and the like, and the inorganic layer may be made of these materials.
- the composite layer include a layer in which inorganic particles are dispersed in a resin serving as a binder.
- the material of the inorganic particles in the composite layer is, for example, magnesium oxide, titanium oxide, zirconium oxide, iron oxide, aluminum oxide, metal oxides such as silicon oxide, carbides such as silicon carbide, and amorphous carbon (carbon black, etc.). It may be at least one selected from the group consisting of the above.
- the resin layer contains a composite layer, it can exhibit a function according to the material of the inorganic particles contained in the composite layer.
- the inorganic particles can be sintered and a sintered body having a desired pattern can be obtained by forming a resin layer having a transfer pattern and then firing the resin layer.
- the first resin layer 4 and the second resin layer 6 may be formed on the base material 2 by using the slurry containing the polymer and the solvent. More specifically, the polymer is dissolved or dispersed in a solvent to prepare a slurry, which is applied onto the substrate 2 to form a coating film, and then the solvent content in the coating film is reduced.
- the first resin layer 4 and the second resin layer 6 can be formed by using the method of forming the resin layer.
- the slurry may contain other components in addition to the polymer and solvent.
- the other components for example, the above-mentioned inorganic particles, plasticizers, polymerizable compounds and the like can be used. Examples of the plasticizer include glycerin, polyethylene glycol, phthalate ester and the like.
- the polymerizable compound may include, for example, at least one selected from the group consisting of photopolymerizable compounds and thermopolymerizable compounds.
- the photopolymerizable compound include (meth) acrylate and styrene.
- the thermopolymerizable compound include bisphenol A and the like.
- the resin layer is heated while pressing the mold 52 from the side of the second resin layer 6 against the first resin layer 4 and the second resin layer 6 formed as described above. ..
- the pattern corresponding to the mold 52 is transferred onto the resin layer.
- the mold 52 may be made of, for example, a metal or a resin material, but is preferably made of a resin material because a mold having a plurality of patterns can be easily prepared.
- the resin material constituting the mold 52 include polyimide, silicone resin, and the like.
- Mold 52 has a recess.
- the mold 52 may have a plurality of recesses.
- the plurality of recesses of the mold 52 all have the same shape, but the plurality of recesses may be different from each other.
- the shape of the concave portion in the cross section of the mold 52 in the thickness direction is substantially triangular, but may be, for example, semicircular, trapezoidal, rectangular, or the like.
- the cross section of the mold 52 having a plurality of recesses in the thickness direction has a sinusoidal shape, but may be, for example, a rectangular wave shape, and does not necessarily have to have a constant period. Absent.
- the lower limit of the aspect ratio of the recess may be, for example, 0.1 or more, 0.5 or more, or 1 or more.
- the upper limit of the aspect ratio of the recess may be, for example, 10 or less, or 9 or less.
- the aspect ratio of the recess may be adjusted within the above range, and may be, for example, 0.1 to 10 or 0.1 to 9.
- the aspect ratio in the present specification means the ratio of the depth to the width in the rectangular concave cross section, and is a numerical value obtained by dividing the value corresponding to the depth by the value corresponding to the width.
- the pressure at the time of pressing the mold 52 in the fourth step may be adjusted according to the material or the like constituting the resin layer.
- the lower limit of the pressure may be, for example, 0.5 MPa or more, 1.0 MPa or more, 3 MPa or more, or 5 MPa or more. By setting the lower limit of the pressure within the above range, the resin layer can be sufficiently filled in the recesses of the mold 52.
- the upper limit of the pressure may be, for example, 100 MPa or less, 50 MPa or less, 30 MPa or less, 20 MPa or less, or 10 MPa or less. By setting the upper limit value of the pressure within the above range, deformation and avoidance of the mold 52 can be more sufficiently suppressed.
- the pressure may be adjusted within the above range, for example, 5 to 50 MPa, or 10 to 20 MPa.
- the resin layer is heated while pressing the mold 52.
- the heating temperature at this time may be adjusted according to the material or the like constituting the resin layer.
- the lower limit of the heating temperature may be, for example, 80 ° C. or higher, 90 ° C. or higher, 100 ° C. or higher, or 150 ° C. or higher.
- the upper limit of the heating temperature may be, for example, less than 200 ° C., 180 ° C. or lower, or 160 ° C. or lower. By setting the upper limit of the heating temperature within the above range, deterioration of the resin layer due to heat can be further suppressed.
- the temperature may be adjusted within the above range, for example, 80 to 180 ° C, or 100 to 160 ° C.
- the heating time for heating the resin layer in the fourth step may be, for example, 10 seconds to 5 minutes, 20 seconds to 3 minutes, 30 seconds to 1.5 minutes, or 30 to 60 seconds.
- the resin layer may be heated and humidified before pressing the mold 52. Moldability can be improved by heating and humidifying the resin layer.
- the heating may be, for example, 25 to 35 ° C.
- the above humidification is performed by adjusting the relative humidity of the environment to which the resin layer is exposed.
- the lower limit of the relative humidity may be 40% RH or more, 50% RH or more, 60% RH or more, 70% RH or more, 80% RH or more, or 85% RH or more.
- the upper limit of the relative humidity may be, for example, 100% RH or less, or 90% RH or less.
- the time for heating and humidifying the resin layer may be adjusted according to the thickness of the resin layer (total thickness of the first resin layer 4 and the second resin layer 6), and is, for example, 0.5 hours. It may be 1 hour or more, or 1.5 hours or more. The time for heating and humidifying the resin layer may be, for example, 3 hours or less.
- the force applied to maintain the base material 2 in the stretched state is removed, and the base material 2 is contracted to press the resin layer having the transfer pattern formed in the above step.
- This is a step of deforming along a direction orthogonal to the direction of (the direction indicated by the arrow (f) in FIG. 1). By including this step, it is possible to form a pattern that is difficult to form using the mold 52.
- the patterned base material 10 is obtained in the fifth step.
- the pattern on the patterned base material 10 can also be a pattern having a larger aspect ratio than the transfer pattern transferred by the mold 52.
- the above pattern forming method may further include other steps. Examples of other steps include a step of deforming the resin layer and then irradiating the resin layer with heat or light.
- the pattern forming method further includes a step of irradiating the resin layer with heat or light after deforming the resin layer, the transfer pattern can be more sufficiently fixed.
- FIG. 2 is a schematic diagram for explaining another example of the pattern forming method.
- the pattern forming method shown in FIG. 2 includes a first step of preparing the base material 2 ((a) of FIG. 2), a second step of stretching the base material 2 ((b) of FIG. 2), and the base material.
- the third step ((c) of FIG. 2) of providing the laminate of the first resin layer 4 and the second resin layer 6 on 2 the mold 52 is pressed from the second resin layer 6 side of the laminate. Then, by removing the mold 52, a fourth step ((d) and (e) of FIG.
- the pattern forming method shown in FIG. 2 is basically the same as the pattern forming method shown in FIG. 1 except that the concave shape of the mold 52 is different from that shown in FIG. 1, and the pattern forming method shown in FIG. 1 is formed. The content described for the method can be applied.
- the mold 52 shown in FIG. 2D has a plurality of recesses having a quadrangular cross-sectional shape.
- the resin layer having the transfer pattern is deformed as shown in FIG. 2 (f) by adjusting the distance between the recesses (distance from the adjacent recesses).
- the shape to be formed can be adjusted.
- the shape of the transfer pattern is rectangular, the volume of the second resin layer 6 when the resin layer is deformed greatly differs depending on the position.
- there is a gap between the convex portion and the adjacent convex portion there is a gap between the convex portion and the adjacent convex portion, and the resin layer can be easily moved when the resin layer is deformed.
- the first resin layer 4 and the second resin layer 6 are deformed.
- the components constituting the resin layer 6 are pushed upward of the convex portion of the transfer pattern, and as a result, the first resin layer 4 can be deformed so as to form an overhang inside the second resin layer 6.
- the shape of the overhang can be adjusted according to the moldability of the first resin layer 4 and the second resin layer 6 such as viscoelasticity.
- a patterned base material can be obtained. That is, the present disclosure provides a method for producing a patterned substrate.
- One embodiment of the method for producing a patterned base material is a step of pressing a mold against a resin layer containing a polymer to form a transfer pattern, and the resin layer being pressed along a direction orthogonal to the pressing direction. It has a step of transforming.
- another embodiment of the method for producing a patterned base material is based on a stacking direction of a laminate having a stretchable base material and a resin layer provided on the base material and containing a polymer.
- a step of pressing a mold to form a transfer pattern on a surface of the resin layer opposite to the base material side, and a step of deforming the resin layer along a direction orthogonal to the laminating direction. Have.
- one embodiment of the pattern forming method and the method for manufacturing a patterned base material has been described with an example in which a resin layer is provided on the elastic base material.
- another embodiment of the pattern forming method and the method for producing a patterned base material has, for example, providing a resin layer having a transfer pattern on a base material different from the stretchable base material, and having a transfer pattern.
- a method including peeling the resin layer from the base material and sticking it on a stretchable base material from the first resin layer side, and deforming the resin layer by deforming the stretchable base material. It may be.
- an adhesive when the resin layer having a transfer pattern is attached onto a stretchable base material, an adhesive may be used, and the viewpoint of improving the followability of the resin layer to the deformation of the stretchable base material. Therefore, it is preferable to use an adhesive.
- the adhesive for example, a polyvinyl alcohol-based adhesive or the like can be used.
- the patterned base material obtained by the above-mentioned pattern forming method and the patterned base material obtained by the above-mentioned method for producing the patterned base material are further fired. Thereby, it can be used for producing a sintered body of the above-mentioned inorganic particles.
- the obtained sintered body can have a shape that is difficult to form by the conventional imprint method. That is, the above-mentioned pattern forming method and the method for producing a patterned base material can also be used to produce a sintered body having a shape that is difficult to produce by a conventional imprint method.
- One embodiment of the method for producing a patterned sintered body is based on a stacking direction of a laminate having a stretchable base material and a resin layer provided on the base material and containing a polymer and inorganic particles.
- a laminate having a stretchable base material and a resin layer provided on the base material and containing a polymer and inorganic particles.
- the base material may be peeled from the resin layer and then the resin layer may be fired to form a sintered body of the inorganic particles.
- FIGS. 3 and 4 are schematic views for explaining another example of the pattern forming method.
- a pattern is provided on the surface of the first resin layer and then a second resin layer is provided, or the first resin layer is on the second resin layer side of the first resin layer.
- the first resin layer 4 is viewed from the first resin layer 4 side with respect to the laminate having the base material 2 and the first resin layer 4 provided on the base material 2. Steps of forming the first transfer pattern by pressing one mold 52 ((a) and (b) in FIG.
- a second resin on the first resin layer 4 having the first transfer pattern In the step of providing the layer 6 ((c) in FIG. 3), the second mold 54 is pressed from the side of the second resin layer 6 and the second mold 54 is removed to form the second transfer pattern. In the steps ((a) and (b) of FIG. 4), the first resin layer 4 and the second resin layer 6 are pressed along the direction orthogonal to the pressing direction by compressing and shrinking the base material 2.
- the method for producing the patterned sintered body has been described as an example in which the base material 2 is compressed and shrunk instead of being stretched in advance, but the intention is not limited to this. That is, also in the method for producing the patterned sintered body, a method of pre-stretching the base material 2 may be adopted in the same manner as described in the above-mentioned pattern forming method and the above-mentioned method for producing the patterned base material. ..
- the contents described above for the pattern forming method and the above-mentioned method for manufacturing the patterned base material can be applied.
- the conditions of the above-mentioned pattern forming method and the above-mentioned transfer pattern forming method described in the method for producing a patterned substrate may be adopted, respectively.
- the recess of the second mold 54 is larger than the recess of the first mold 52.
- the width of the recess of the second mold 54 may be, for example, 5 times or more, 10 times or more, 15 times or more, or 20 times or more based on the width of the recess of the first mold 52.
- the width of the recess of the second mold 54 may be, for example, 50 times or less, or 40 times or less, based on the width of the recess of the first mold 52.
- the firing temperature can be adjusted according to the type and content of the inorganic particles contained in the resin layer, the type of the polymer, and the like.
- the lower limit of the firing temperature may be, for example, 100 ° C. or higher, 200 ° C. or higher, 500 ° C. or higher, 700 ° C. or higher, or 800 ° C. or higher.
- the upper limit of the firing temperature is, for example, 1900 ° C or lower, 1800 ° C or lower, 1700 ° C or lower, 1600 ° C or lower, 1500 ° C or lower, 1400 ° C or lower, 1300 ° C or lower, 1200 ° C or lower, 1100 ° C or lower, 1000 ° C or lower, or It may be 900 ° C. or lower.
- the firing temperature can be adjusted within the above range, and may be, for example, 100 to 1900 ° C, 500 to 1900 ° C, or 500 to 1500 ° C.
- the firing temperature can be specifically 800 to 1900 ° C, 800 to 1600 ° C, or 800 to 1300 ° C.
- the firing temperature can be specifically 500 to 1500 ° C., 500 to 1200 ° C., or 500 to 900 ° C.
- the firing temperature can be set low, and for example, it can be set to about 200 ° C.
- the firing atmosphere is not particularly limited, but may be, for example, an inert gas atmosphere, a reducing gas atmosphere, or a mixed gas atmosphere of an inert gas and a reducing gas.
- the inert gas include nitrogen, argon and the like.
- the reducing gas include hydrogen, methane, ammonia and the like.
- Example 1 [Preparation of composition for forming resin layer]
- alumina powder manufactured by Taimei Chemicals Co., Ltd., product name: TM-DAR, average grain shape: 0.1 ⁇ m, purity 99.99%) and polyvinyl alcohol (manufactured by Wako Pure Chemical Industries, Ltd., degree of polymerization: 500).
- glycerin manufactured by Wako Pure Chemical Industries, Ltd.
- glycerin manufactured by Wako Pure Chemical Industries, Ltd.
- aqueous solution was stirred and defoamed using a stirring defoaming device (manufactured by Photochemical Co., Ltd., product name: SK-350T) to obtain a slurry.
- a stirring defoaming device manufactured by Photochemical Co., Ltd., product name: SK-350T
- the alumina powder and pure water were mixed in two steps. Further, polyvinyl alcohol was used as a 20% by volume aqueous solution.
- a silicone film manufactured by AS ONE Corporation, product name: 6-9085-14 having a rubber hardness (durometer hardness) of 47, a length of 80 mm, a width of 80 mm, and a thickness of 0.3 mm was prepared. Both sides of the silicone film were irradiated with ultraviolet rays at an illuminance of 18 mW / cm 2 for 3 minutes to hydrophilize the surface of the substrate. Then, the silicone film was stretched 1.5 times, and while maintaining this stretched state, the slurry prepared as described above was applied onto the silicone film by the doctor blade method to form a coating film. The coating film was heated at 80 ° C. for 60 seconds to reduce the water content, thereby forming a first resin layer having a thickness of 100 ⁇ m.
- a dispersed aqueous solution of hydrophilic carbon black (manufactured by Tokai Carbon Co., Ltd., product name: Aqua-Black162) was diluted 40-fold with pure water, and this was applied onto the first resin layer to form a coating film.
- An inorganic layer was formed by removing water from the water.
- the slurry used to form the first resin layer was applied onto the inorganic layer to form a coating film.
- the coating film was heated at a temperature of 80 ° C. for 60 seconds to reduce the water content, thereby forming a second resin layer having a thickness of 20 ⁇ m.
- Example 2 and Example 3 A transfer pattern is formed in the same manner as in Example 1 except that the draw ratio of the silicone film as the base material is changed to 1.7 times (Example 2) or 2.0 times (Example 3). did.
- Example 2 the cross section of the transfer pattern was observed at a position where the compression ratio of the base material was 1.7, and in Example 3, the transfer pattern was observed at a position where the compression ratio of the base material was 2.0.
- FIGS. 5 (c) and 5 (d) The results are shown in FIGS. 5 (c) and 5 (d), respectively.
- FIG. 5 is an optical micrograph showing a part of a cross section of the patterned base material manufactured in the examples.
- FIG. 5 shows a cross-sectional photograph of the first resin layer 4a and the second resin layer 6a.
- FIG. 5A is a cross-sectional photograph showing a part of the transfer pattern in a state where the stretched state of the base material is maintained.
- (B), (c) and (d) of FIG. 5 are cross-sectional photographs showing a part of the transfer pattern when the compression ratios of the base materials are 1.5, 1.7 and 2.0, respectively. It was confirmed that the transfer pattern formed on the resin layer was deformed according to the compression ratio of the base material. For example, focusing on the first resin layer 4a, the height and width of the pattern are larger and the width is smaller than the pattern imprinted by the polyimide mold, and the pattern is deformed into a pattern having a large aspect ratio. You can check it.
- Example 4 [Formation of first resin layer]
- a silicone film manufactured by AS ONE Corporation, product name: 6-9085-14 having a rubber hardness (durometer hardness) of 47, a length of 80 mm, a width of 80 mm, and a thickness of 0.3 mm was prepared. Both sides of the silicone film were irradiated with ultraviolet rays at an illuminance of 18 mW / cm 2 for 3 minutes to hydrophilize the surface of the substrate. Then, the silicone film was stretched 1.5 times, and while maintaining this stretched state, the slurry prepared in Example 1 was applied onto the silicone film by the doctor blade method to form a coating film. The coating film was heated at a temperature of 80 ° C. for 60 seconds to reduce the water content, thereby forming a first resin layer having a thickness of 100 ⁇ m.
- the prepared first resin layer was allowed to stand for 1 hour in an environment of temperature: 30 ° C. and humidity: 70% RH.
- a polyimide mold of 10 mm ⁇ 10 mm depth of recess: 10 ⁇ m, pitch: 10 ⁇ m
- the first transfer pattern was formed by heating for 60 seconds.
- the mixed solution was spin-coated on the first resin layer on which the first transfer pattern was formed to reduce the acetone content, thereby forming a second resin layer having a thickness of 20 ⁇ m.
- Example 5 [Formation of first resin layer] A polyethylene terephthalate film (PET film) was prepared, and the slurry prepared in Example 1 was applied onto the PET film by the doctor blade method to form a coating film. The coating film was heated at a temperature of 80 ° C. for 60 seconds to reduce the water content, thereby forming a first resin layer having a thickness of 100 ⁇ m.
- PET film polyethylene terephthalate film
- the prepared first resin layer was allowed to stand for 1 hour in an environment of temperature: 30 ° C. and humidity: 70% RH.
- a 20 mm ⁇ 20 mm mold made of silicone resin depth of recess: 10 ⁇ m, pitch: 10 ⁇ m was prepared, and while pressing with a pressure of 7.5 MPa from the first resin layer side, the temperature: 80 ° C.
- the first transfer pattern was formed by heating in.
- Second resin layer A 10% by mass aqueous solution of polyvinyl alcohol (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., molecular weight 1500) was dropped onto the first resin layer provided with the first transfer pattern, and a liquid film was formed by spin coating. .. Then, it is heated to a temperature of 60 ° C. by an oven to reduce the amount of water, thereby forming a second resin layer having a thickness of 10 ⁇ m, which is composed of two layers, a first resin layer and a second resin layer. A resin layer was obtained.
- polyvinyl alcohol manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., molecular weight 1500
- a silicone film manufactured by AS ONE Corporation, product name: 6-9085-14 having a rubber hardness (durometer hardness) of 47, a length of 25 mm, a width of 40 mm, and a thickness of 0.3 mm was prepared.
- a polyvinyl alcohol-based adhesive was applied onto the silicone film stretched so that the stretch ratio was 2.0 times.
- the resin layer provided with the second transfer pattern described above was separated from the PET film, and the resin layer was adhered onto the base material so that the first resin layer was in contact with the silicone film side. Then, after allowing to stand indoors for 30 minutes, it was allowed to stand for 1 hour in an environment of temperature: 30 ° C. and humidity: 90% RH.
- FIG. 7 (c) In the electron micrograph shown in FIG. 7, the first resin layer 4c and the second resin layer 6c can be confirmed.
- FIG. 7A is an electron micrograph of observing a cross section of the resin layer when the second resin layer is formed
- FIG. 7B is an age-old resin layer forming the second transfer pattern. It is an electron micrograph which observed the cross section of. More specifically, FIG. 7 (c) is obtained by shrinking the silicone film until the compression ratio of the silicone film is 1.5, based on the state where the draw ratio of the silicone film is 2.0. It is an electron micrograph which observed the cross section of the resin layer.
- a pattern forming method capable of easily forming a pattern having a large aspect ratio or the like.
- a method for producing a patterned substrate which can easily produce a patterned substrate having a pattern having a large aspect ratio or the like.
- a method for producing a patterned sintered body which can easily produce a sintered body having a pattern having a large aspect ratio or the like.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Shaping Of Tube Ends By Bending Or Straightening (AREA)
Abstract
One aspect of the present disclosure provides a method for forming a pattern, the method comprising: a step for pressing a mold onto a resin layer to form a transfer pattern; and a step for deforming the resin layer along the direction orthogonal to the pressing direction.
Description
本開示は、パターン形成方法、パターン付き基材の製造方法、及びパターン付き焼結体の製造方法に関する。
The present disclosure relates to a pattern forming method, a method for producing a patterned base material, and a method for producing a patterned sintered body.
インプリント加工は、微細加工技術のひとつとして知られている。インプリント加工は、樹脂層に対して所定のパターンを有する型を押圧し、そのパターンを転写することによって、樹脂層の表面に転写パターンを形成する加工である。非特許文献1では、インプリント加工によって多層構造を形成する技術が検討されている。
Imprint processing is known as one of the microfabrication technologies. The imprint process is a process of forming a transfer pattern on the surface of the resin layer by pressing a mold having a predetermined pattern against the resin layer and transferring the pattern. In Non-Patent Document 1, a technique for forming a multilayer structure by imprint processing is studied.
しかし、押圧する型の有するパターンが複雑であったり、アスペクト比が大きかったりする場合、転写パターン形成後のはく離の際に転写パターンが崩れたり、そもそも型の有するパターン内に樹脂層が十分に充填されず、想定したような転写パターンを形成することが困難となる場合がある。また、パターンの上部と下部とでサイズが異なり上部の幅が下部の幅よりも大きいオーバーハングのような形状を型抜きすることはできず、オーバーハング形状を有するパターンをインプリント技術で製造することは困難である。
However, if the pattern of the pressing mold is complicated or the aspect ratio is large, the transfer pattern may collapse during peeling after the transfer pattern is formed, or the pattern of the mold may be sufficiently filled with the resin layer. However, it may be difficult to form the expected transfer pattern. In addition, it is not possible to die-cut a shape such as an overhang whose size is different between the upper part and the lower part of the pattern and the width of the upper part is larger than the width of the lower part, and a pattern having an overhang shape is manufactured by imprint technology. That is difficult.
簡便な方法によって、例えば、アスペクト比の大きなパターン、及びオーバーハングを有するパターン等の特殊なパターンを形成することが可能なインプリント加工技術、複雑な転写パターンを形成することが可能なインプリント加工技術があれば有用である。また、当該技術を用いたパターン付き基材の製造方法があれば有用である。
Imprint processing technology that can form special patterns such as patterns with a large aspect ratio and patterns with overhangs by simple methods, imprint processing that can form complex transfer patterns It is useful if there is technology. Further, it is useful if there is a method for producing a patterned base material using the technique.
本開示は、アスペクト比の大きなパターン等を容易に形成可能なパターン形成方法を提供することを目的とする。本開示はまた、アスペクト比の大きなパターン等を有するパターン付き基材を容易に製造可能なパターン付き基材の製造方法を提供することを目的とする。本開示はまた、アスペクト比の大きなパターン等を有する焼結体を容易に製造可能なパターン付き焼結体の製造方法を提供することを目的とする。
An object of the present disclosure is to provide a pattern forming method capable of easily forming a pattern having a large aspect ratio or the like. Another object of the present disclosure is to provide a method for producing a patterned substrate, which can easily produce a patterned substrate having a pattern having a large aspect ratio or the like. Another object of the present disclosure is to provide a method for producing a patterned sintered body, which can easily produce a sintered body having a pattern having a large aspect ratio or the like.
本開示の一側面は、樹脂層に対して型を押圧して転写パターンを設ける工程と、上記押圧の方向と直交する方向に沿って上記樹脂層を変形させる工程と、を有する、パターン形成方法を提供する。
One aspect of the present disclosure is a pattern forming method comprising a step of pressing a mold against a resin layer to provide a transfer pattern and a step of deforming the resin layer along a direction orthogonal to the pressing direction. I will provide a.
上記パターン形成方法は、インプリンティングによって樹脂層上に転写パターンを設けた後に、当該転写パターンを押圧の方向と直交する方向に沿って転写パターンを有する樹脂層を変形させることによって、型の有するパターンよりも、アスペクト比の大きなパターン等を容易に形成することができる。
In the above pattern forming method, after a transfer pattern is provided on the resin layer by imprinting, the pattern possessed by the mold is formed by deforming the resin layer having the transfer pattern along a direction orthogonal to the pressing direction of the transfer pattern. It is possible to easily form a pattern having a large aspect ratio or the like.
上記樹脂層が複数の層を有してもよい。
The resin layer may have a plurality of layers.
上記樹脂層が、第一の樹脂層と、第二の樹脂層とを有していてもよい。
The resin layer may have a first resin layer and a second resin layer.
上記第一の樹脂層が、上記第一の樹脂層の上記第二の樹脂層側の面にパターンを有していてもよい。
The first resin layer may have a pattern on the surface of the first resin layer on the side of the second resin layer.
上記転写パターンを設ける工程が、上記樹脂層と上記型とを対向させて加熱することによって、上記転写パターンを設ける工程であってよい。
The step of providing the transfer pattern may be a step of providing the transfer pattern by heating the resin layer and the mold so as to face each other.
上記転写パターンを設ける工程が、上記樹脂層と上記型とを対向させて押圧しながら上記樹脂層に光照射することによって、上記転写パターンを設ける工程であってよい。
The step of providing the transfer pattern may be a step of providing the transfer pattern by irradiating the resin layer with light while pressing the resin layer and the mold while facing each other.
上記樹脂層を変形させた後、上記樹脂層に熱又は光を照射する工程を更に有してもよい。
After deforming the resin layer, the resin layer may be further provided with a step of irradiating the resin layer with heat or light.
本開示の一側面は、ポリマーを含有する樹脂層に対して型を押圧して転写パターンを形成する工程と、上記押圧の方向と直交する方向に沿って上記樹脂層を変形させる工程と、を有する、パターン付き基材の製造方法を提供する。
One aspect of the present disclosure is a step of pressing a mold against a resin layer containing a polymer to form a transfer pattern, and a step of deforming the resin layer along a direction orthogonal to the pressing direction. Provided is a method for producing a patterned base material.
上記パターン付き基材の製造方法は、インプリンティングによって樹脂層上に転写パターンを設けた後に、当該転写パターンを押圧の方向と直交する方向に沿って転写パターンを有する樹脂層を変形させることによって、基材上に、型の有するパターンよりも、アスペクト比の大きなパターン等を有するパターン付き基材を容易に提供することができる。
In the method for producing a patterned base material, a transfer pattern is provided on the resin layer by imprinting, and then the resin layer having the transfer pattern is deformed along a direction orthogonal to the pressing direction of the transfer pattern. It is possible to easily provide a patterned base material having a pattern having an aspect ratio larger than that of the mold on the base material.
本開示の一側面は、伸縮性を有する基材と、上記基材上に設けられ、ポリマーを含有する樹脂層とを有する積層体の積層方向に対して、型を押し当てて、上記樹脂層の上記基材側とは反対側の面に転写パターンを形成する工程と、上記積層方向とは直交する方向に沿って上記樹脂層を変形させる工程と、を有する、パターン付き基材の製造方法を提供する。
One aspect of the present disclosure is that the resin layer is pressed against the stacking direction of the laminate having the elastic base material and the resin layer provided on the base material and containing the polymer. A method for producing a patterned base material, which comprises a step of forming a transfer pattern on a surface opposite to the base material side and a step of deforming the resin layer along a direction orthogonal to the laminating direction. I will provide a.
上記パターン付き基材の製造方法は、伸縮性を有する基材上の樹脂層に対してインプリンティングによって転写パターンを設けた後に、基材の伸縮性を使用して当該転写パターンを押圧の方向と直交する方向に沿って転写パターンを有する樹脂層を変形させることによって、基材上にアスペクト比の大きなパターン等を有するパターン付き基材を容易に提供することができる。
In the method for producing a patterned base material, a transfer pattern is provided by imprinting on a resin layer on a stretchable base material, and then the transfer pattern is pressed in the direction of pressing by using the stretchability of the base material. By deforming the resin layer having a transfer pattern along the orthogonal directions, it is possible to easily provide a patterned base material having a pattern having a large aspect ratio or the like on the base material.
上記樹脂層を変形させる工程が、上記積層方向とは直交する方向に沿って上記基材を収縮させることによって上記樹脂層を変形させる工程であってよい。
The step of deforming the resin layer may be a step of deforming the resin layer by shrinking the base material along a direction orthogonal to the laminating direction.
上記樹脂層を変形させる工程が、上記積層方向とは直交する方向に沿って上記基材を収縮させることによって上記転写パターンよりアスペクト比の大きなパターンを形成する工程であってよい。
The step of deforming the resin layer may be a step of forming a pattern having a larger aspect ratio than the transfer pattern by shrinking the base material along a direction orthogonal to the laminating direction.
上記基材が、弾性体、光応答ゲル、及び温度応答ゲルからなる群より選択される少なくとも1種を含んでよい。基材が上述の材料を含むことによって、転写パターンの変形をより容易に行うことができる。
The base material may contain at least one selected from the group consisting of elastic bodies, photoresponsive gels, and temperature responsive gels. When the base material contains the above-mentioned materials, the transfer pattern can be more easily deformed.
上記基材がシリコーン樹脂を含有してよい。
The base material may contain a silicone resin.
上記樹脂層が複数の層を有してもよい。
The resin layer may have a plurality of layers.
上記樹脂層が、第一の樹脂層と、第二の樹脂層とを有してよい。
The resin layer may have a first resin layer and a second resin layer.
上記第一の樹脂層は、上記第二の樹脂層と、上記基材との間に位置し、上記第一の樹脂層が上記基材側とは反対側の面にパターンを有してもよい。
The first resin layer is located between the second resin layer and the base material, and even if the first resin layer has a pattern on the surface opposite to the base material side. Good.
上記型の凹部アスペクト比が5~10であってよい。
The recessed aspect ratio of the above type may be 5 to 10.
上記転写パターンを設ける工程が、上記樹脂層と上記型とを対向させて加熱することによって、上記転写パターンを設ける工程であってよい。
The step of providing the transfer pattern may be a step of providing the transfer pattern by heating the resin layer and the mold so as to face each other.
上記転写パターンを設ける工程が、上記樹脂層と上記型とを対向させて押圧しながら上記樹脂層に光照射することによって、上記転写パターンを設ける工程であってよい。
The step of providing the transfer pattern may be a step of providing the transfer pattern by irradiating the resin layer with light while pressing the resin layer and the mold while facing each other.
上記樹脂層を変形させた後、上記樹脂層に熱又は光を照射する工程を更に有してもよい。
After deforming the resin layer, the resin layer may be further provided with a step of irradiating the resin layer with heat or light.
上記ポリマーが、熱可塑性ポリマー及び熱硬化性ポリマーからなる群より選択される少なくとも1種を含んでよい。
The polymer may contain at least one selected from the group consisting of thermoplastic polymers and thermosetting polymers.
上記ポリマーがポリビニルアルコールを含んでよい。
The polymer may contain polyvinyl alcohol.
上記ポリマーが重合性の官能基を有してよい。
The polymer may have a polymerizable functional group.
上記樹脂層が、上記ポリマーの他に、無機粒子を含有してよい。
The resin layer may contain inorganic particles in addition to the polymer.
上記無機粒子が、酸化マグネシウム、酸化チタン、酸化ジルコニウム、酸化鉄、酸化アルミニウム、酸化ケイ素、窒化ケイ素、窒化アルミニウム、炭化ケイ素、ハイドロキシアパタイト及びフェライトからなる群より選択される少なくとも1種を含んでよい。
The inorganic particles may contain at least one selected from the group consisting of magnesium oxide, titanium oxide, zirconium oxide, iron oxide, aluminum oxide, silicon oxide, silicon nitride, aluminum nitride, silicon carbide, hydroxyapatite and ferrite. ..
上記樹脂層が、上記ポリマーの他に、重合性化合物を含有してよい。
The resin layer may contain a polymerizable compound in addition to the polymer.
上記重合性化合物が、光重合性化合物及び熱重合性化合物からなる群より選択される少なくとも1種を含んでよい。
The above-mentioned polymerizable compound may contain at least one selected from the group consisting of photopolymerizable compounds and thermally polymerizable compounds.
本開示の一側面は、伸縮性を有する基材と、上記基材上に設けられ、ポリマー及び無機粒子を含有する樹脂層と、を有する積層体の積層方向に対して、型を押し当てて、上記樹脂層の上記基材側とは反対側の面に転写パターンを形成する工程と、上記積層方向とは直交する方向に沿って上記基材を収縮させることによって上記樹脂層を変形させる工程と、上記樹脂層を焼成し、上記無機粒子の焼結体を形成する工程と、を有する、パターン付き焼結体の製造方法を提供する。
One aspect of the present disclosure is to press a mold against a stacking direction of a laminate having a stretchable base material and a resin layer provided on the base material and containing a polymer and inorganic particles. , A step of forming a transfer pattern on the surface of the resin layer opposite to the base material side, and a step of deforming the resin layer by shrinking the base material along a direction orthogonal to the laminating direction. The present invention provides a method for producing a patterned sintered body, which comprises a step of firing the resin layer to form a sintered body of the inorganic particles.
上記パターン付き焼結体の製造方法は、伸縮性を有する基材上の樹脂層に対してインプリンティングによって転写パターンを設けた後に、基材の伸縮性を使用して当該転写パターンを押圧の方向と直交する方向に沿って転写パターンを有する樹脂層を変形させることによって、基材上にアスペクト比の大きなパターン等を有する樹脂層を形成し、その後、当該樹脂層を焼成することによって、パターン付き焼結体を容易に提供することができる。
In the method for producing a sintered body with a pattern, a transfer pattern is provided by imprinting on a resin layer on a stretchable base material, and then the transfer pattern is pressed using the stretchability of the base material. By deforming the resin layer having the transfer pattern along the direction orthogonal to the above, a resin layer having a pattern having a large aspect ratio or the like is formed on the base material, and then the resin layer is fired to form a pattern. A sintered body can be easily provided.
上記樹脂層を変形させる工程が、上記積層方向とは直交する方向に沿って上記基材を収縮させることによって上記樹脂層を変形させる工程であってよい。
The step of deforming the resin layer may be a step of deforming the resin layer by shrinking the base material along a direction orthogonal to the laminating direction.
上記樹脂層を変形させる工程が、上記積層方向とは直交する方向に沿って上記基材を収縮させることによって上記転写パターンよりアスペクト比の大きなパターンを形成する工程であってよい。
The step of deforming the resin layer may be a step of forming a pattern having a larger aspect ratio than the transfer pattern by shrinking the base material along a direction orthogonal to the laminating direction.
本開示によれば、アスペクト比の大きなパターン等を容易に形成可能なパターン形成方法を提供することができる。本開示によればまた、アスペクト比の大きなパターン等を有するパターン付き基材を容易に製造可能なパターン付き基材の製造方法を提供することができる。本開示によればまた、アスペクト比の大きなパターン等を有する焼結体を容易に製造可能なパターン付き焼結体の製造方法を提供することができる。
According to the present disclosure, it is possible to provide a pattern forming method capable of easily forming a pattern having a large aspect ratio or the like. According to the present disclosure, it is also possible to provide a method for producing a patterned substrate, which can easily produce a patterned substrate having a pattern having a large aspect ratio or the like. According to the present disclosure, it is also possible to provide a method for producing a patterned sintered body, which can easily produce a sintered body having a pattern having a large aspect ratio or the like.
以下、場合によって図面を参照して、本開示の実施形態について説明する。ただし、以下の実施形態は、本開示を説明するための例示であり、本開示を以下の内容に限定する趣旨ではない。上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。各要素の寸法比率は図面に図示された比率に限られるものではない。
Hereinafter, embodiments of the present disclosure will be described with reference to the drawings in some cases. However, the following embodiments are examples for explaining the present disclosure, and are not intended to limit the present disclosure to the following contents. Unless otherwise specified, the positional relationship such as up, down, left, and right shall be based on the positional relationship shown in the drawings. The dimensional ratio of each element is not limited to the ratio shown in the drawings.
本明細書において例示する材料は特に断らない限り、1種を単独で又は2種以上を組み合わせて用いることができる。組成物中の各成分の含有量は、組成物中の各成分に該当する物質が複数存在する場合には、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
Unless otherwise specified, the materials exemplified in this specification may be used alone or in combination of two or more. The content of each component in the composition means the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to each component in the composition are present, unless otherwise specified. ..
<パターン形成方法>
パターン形成方法の一実施形態は、インプリント法によって形成された転写パターンを面内方向に変形することを含む方法である。パターン形成方法は、例えば、樹脂層に対して型を押圧して転写パターンを設ける工程と、上記押圧の方向と直交する方向に沿って上記樹脂層を変形させる工程と、を有する。 <Pattern formation method>
One embodiment of the pattern forming method is a method including deforming the transfer pattern formed by the imprint method in the in-plane direction. The pattern forming method includes, for example, a step of pressing a mold against the resin layer to provide a transfer pattern, and a step of deforming the resin layer along a direction orthogonal to the pressing direction.
パターン形成方法の一実施形態は、インプリント法によって形成された転写パターンを面内方向に変形することを含む方法である。パターン形成方法は、例えば、樹脂層に対して型を押圧して転写パターンを設ける工程と、上記押圧の方向と直交する方向に沿って上記樹脂層を変形させる工程と、を有する。 <Pattern formation method>
One embodiment of the pattern forming method is a method including deforming the transfer pattern formed by the imprint method in the in-plane direction. The pattern forming method includes, for example, a step of pressing a mold against the resin layer to provide a transfer pattern, and a step of deforming the resin layer along a direction orthogonal to the pressing direction.
図1は、パターン形成方法の一例を説明するための模式図である。図1に示すパターン形成方法は、基材2を用意する第一の工程(図1の(a))、基材2を延伸させる第二の工程(図1の(b))、当該基材2上で第一の樹脂層4及び第二の樹脂層6の積層体を設ける第三の工程(図1の(c))、上記積層体の第二の樹脂層6側から型52を押圧し、その後、型52を除去することで、第一の樹脂層4及び第二の樹脂層6に転写パターンを設ける第四の工程(図1の(d)及び(e))、及び基材2を延伸させていた力を除去し、基材2を収縮させることによって第一の樹脂層4及び第二の樹脂層6を上記押圧の方向と直交する方向に沿って、転写パターンを有する樹脂層を変形させる第五の工程(図1の(f))を有する。
FIG. 1 is a schematic diagram for explaining an example of a pattern forming method. The pattern forming method shown in FIG. 1 includes a first step of preparing the base material 2 ((a) of FIG. 1), a second step of stretching the base material 2 ((b) of FIG. 1), and the base material. In the third step ((c) of FIG. 1) of providing the laminate of the first resin layer 4 and the second resin layer 6 on 2, the mold 52 is pressed from the second resin layer 6 side of the laminate. Then, by removing the mold 52, a fourth step ((d) and (e) of FIG. 1) of providing a transfer pattern on the first resin layer 4 and the second resin layer 6 and the base material A resin having a transfer pattern along a direction orthogonal to the pressing direction of the first resin layer 4 and the second resin layer 6 by removing the force that stretched 2 and shrinking the base material 2. It has a fifth step ((f) of FIG. 1) of deforming the layer.
基材2は、インプリント法によって樹脂層上に形成された転写パターンを面内方向に変形させるために変形可能である。図1は、基材2として伸縮性を有する基材(例えば、弾性体等)を用いる例を示したが、例えば、転写パターン形成後に樹脂層を変形させるための力を供給できるものであればよく、転写パターンを形成した後に、光又は熱を供給することで収縮する材料であってもよい。この場合、第一の工程及び第二の工程は省略することができる。基材2は、例えば、弾性体、光応答ゲル、及び温度応答ゲルからなる群より選択される少なくとも一種を含んでよい。基材2が上述の材料を含むことによって、転写パターンを有する樹脂層を後に変形することが容易となる。
The base material 2 is deformable in order to deform the transfer pattern formed on the resin layer by the imprint method in the in-plane direction. FIG. 1 shows an example in which a stretchable base material (for example, an elastic body) is used as the base material 2, but for example, if it can supply a force for deforming the resin layer after forming a transfer pattern. Often, it may be a material that shrinks by supplying light or heat after forming a transfer pattern. In this case, the first step and the second step can be omitted. The base material 2 may contain, for example, at least one selected from the group consisting of elastic bodies, photoresponsive gels, and temperature responsive gels. When the base material 2 contains the above-mentioned material, the resin layer having the transfer pattern can be easily deformed later.
基材2は弾性率の高い材料で構成されてよい。基材2が弾性率の高い材料で構成されることによって、延伸された際の応力を向上させることができ、後の工程で転写パターンを有する樹脂層を変形させるためにより十分な力を供給することができる。基材2は、例えば、シリコーン樹脂、ウレタン樹脂、天然ゴム、スチレン・ブタジエンゴム、ブタジエンゴム、及びイソプレンゴム等を含んでもよい。
The base material 2 may be made of a material having a high elastic modulus. Since the base material 2 is made of a material having a high elastic modulus, the stress at the time of stretching can be improved, and more sufficient force is supplied to deform the resin layer having the transfer pattern in a later step. be able to. The base material 2 may contain, for example, a silicone resin, a urethane resin, a natural rubber, a styrene-butadiene rubber, a butadiene rubber, an isoprene rubber, or the like.
基材2の形状は、特に制限されるものでは無いが、例えば、板状であってよい。基材2の厚さ及び基材2の弾性率は、変形(例えば、伸縮によって変形)可能であれば、特に制限されるものではない。基材2の厚さの上限値は、例えば、1mm以下、0.5mm以下、又は0.3mm以下であってよい。基材2の厚さの下限値は、例えば、0.1mm以上であってよい。基材2の伸縮を利用して後の工程で樹脂層を変形させる場合、基材2の厚さの下限値を上記範囲内とすることで、基材2を収縮させ樹脂層を変形させる際により十分な力を樹脂層に供給することができる。また基材2の厚さの下限値を上記範囲内とすることで、基材2を延伸した後であっても十分な厚みを維持することができ後の工程の作業性を向上させることができる。基材2の厚さは上述の範囲内で調整してよく、例えば、0.1~1mm、又は0.1~0.5mmであってよい。
The shape of the base material 2 is not particularly limited, but may be, for example, a plate shape. The thickness of the base material 2 and the elastic modulus of the base material 2 are not particularly limited as long as they can be deformed (for example, deformed by expansion and contraction). The upper limit of the thickness of the base material 2 may be, for example, 1 mm or less, 0.5 mm or less, or 0.3 mm or less. The lower limit of the thickness of the base material 2 may be, for example, 0.1 mm or more. When the resin layer is deformed in a later step by utilizing the expansion and contraction of the base material 2, when the lower limit of the thickness of the base material 2 is set within the above range, the base material 2 is shrunk and the resin layer is deformed. Therefore, sufficient force can be supplied to the resin layer. Further, by setting the lower limit of the thickness of the base material 2 within the above range, a sufficient thickness can be maintained even after the base material 2 is stretched, and the workability of the subsequent process can be improved. it can. The thickness of the base material 2 may be adjusted within the above range, and may be, for example, 0.1 to 1 mm or 0.1 to 0.5 mm.
基材2を延伸させる工程における基材2の延伸の程度(延伸倍率)は、後工程で、転写パターンを有する樹脂層を変形させる程度に合わせて調整してよい。基材2の延伸倍率の下限値は、例えば、1.5倍以上、1.7倍以上、2.0倍以上、2.5倍以上、又は3.0倍以上であってよい。基材2の延伸倍率の上限値は、例えば、8.0倍以下、6.0倍以下、5.0倍以下、又は4.0倍以下であってよい。基材2の延伸倍率は上述の範囲内で調整してよく、例えば、1.5~8.0倍、又は1.7~6.0倍であってよい。
The degree of stretching of the base material 2 (stretching ratio) in the step of stretching the base material 2 may be adjusted in a subsequent step according to the degree of deformation of the resin layer having the transfer pattern. The lower limit of the draw ratio of the base material 2 may be, for example, 1.5 times or more, 1.7 times or more, 2.0 times or more, 2.5 times or more, or 3.0 times or more. The upper limit of the draw ratio of the base material 2 may be, for example, 8.0 times or less, 6.0 times or less, 5.0 times or less, or 4.0 times or less. The draw ratio of the base material 2 may be adjusted within the above range, and may be, for example, 1.5 to 8.0 times or 1.7 to 6.0 times.
第三の工程は、基材2上に第一の樹脂層4及び第二の樹脂層6を設ける工程である。第一の樹脂層4及び第二の樹脂層6は、あらかじめ別途調製された樹脂層を基材2上に張り付けることで形成してもよく、基材2上に樹脂層形成用組成物を含む溶液の塗布等によって形成してもよい。第一の樹脂層4及び第二の樹脂層6は互いに同一であっても、異なってもよい。以下、第一の樹脂層4及び第二の樹脂層6を合わせて、場合によって、樹脂層と表記することもある。
The third step is a step of providing the first resin layer 4 and the second resin layer 6 on the base material 2. The first resin layer 4 and the second resin layer 6 may be formed by sticking a separately prepared resin layer on the base material 2, and the composition for forming the resin layer is formed on the base material 2. It may be formed by applying a solution containing the mixture. The first resin layer 4 and the second resin layer 6 may be the same as or different from each other. Hereinafter, the first resin layer 4 and the second resin layer 6 may be collectively referred to as a resin layer in some cases.
第一の樹脂層4及び第二の樹脂層6は、例えば、ポリマーを含有してよく、ポリマーからなってもよい。ポリマーは、例えば、熱可塑性ポリマー及び熱硬化性ポリマー等であってよい。ポリマーは、例えば、光硬化性ポリマー等であってもよい。ポリマーは、インプリント法によって樹脂層上に転写パターンを形成する方法に合わせて選択することができる。例えば、転写パターンを設ける工程が、樹脂層と型とを対向させて押圧しながら加熱することによって転写パターンを設ける工程である場合、ポリマーは熱可塑性ポリマー又は熱硬化性ポリマーを含んでよい。また、例えば、転写パターンを設ける工程が、樹脂層と型とを対向させて押圧しながら樹脂層に光照射することによって転写パターンを設ける工程である場合、ポリマーは光硬化性ポリマーを含んでよい。ポリマーはまた、重合性の官能基を有していてもよい。重合性の官能基としては、例えば、グリシジル基、水酸基、カルボキシ基、及びエチレン性不飽和基等であってよい。第一の樹脂層4と第二の樹脂層6とが異なる場合、第二の樹脂層6は、例えば、酸可溶性ポリマー又はアルカリ可溶性ポリマーを含有することが好ましい。
The first resin layer 4 and the second resin layer 6 may contain, for example, a polymer, or may be made of a polymer. The polymer may be, for example, a thermoplastic polymer, a thermosetting polymer, or the like. The polymer may be, for example, a photocurable polymer or the like. The polymer can be selected according to the method of forming a transfer pattern on the resin layer by the imprint method. For example, when the step of providing the transfer pattern is a step of providing the transfer pattern by heating the resin layer and the mold while pressing them against each other, the polymer may include a thermoplastic polymer or a thermosetting polymer. Further, for example, when the step of providing the transfer pattern is a step of providing the transfer pattern by irradiating the resin layer with light while pressing the resin layer and the mold against each other, the polymer may contain a photocurable polymer. .. The polymer may also have polymerizable functional groups. The polymerizable functional group may be, for example, a glycidyl group, a hydroxyl group, a carboxy group, an ethylenically unsaturated group or the like. When the first resin layer 4 and the second resin layer 6 are different, the second resin layer 6 preferably contains, for example, an acid-soluble polymer or an alkali-soluble polymer.
熱可塑性ポリマーとしては、例えば、ポリビニルアルコール、ポリエチレン及びポリプロピレン等のポリオレフィン、ポリ塩化ビニル、ポリウレタン、ポリメタクリル酸メチル等のポリ(メタ)アクリル酸アルキルエステル、ポリスチレン、ポリ乳酸、並びに、ポリエチレンテレフタレート等のポリエステルなどが挙げられる。熱硬化性ポリマーとしては、例えば、エポキシ樹脂、フェノール樹脂、及びメラミン樹脂等が挙げられる。光硬化性ポリマーとしては、例えば、光重合性官能基を有するポリマー等が挙げられる。
Examples of the thermoplastic polymer include polyolefins such as polyvinyl alcohol, polyethylene and polypropylene, poly (meth) acrylic acid alkyl esters such as polyvinyl chloride, polyurethane and polymethyl methacrylate, polystyrene, polylactic acid, and polyethylene terephthalate. Examples include polyester. Examples of the thermosetting polymer include epoxy resin, phenol resin, melamine resin and the like. Examples of the photocurable polymer include polymers having a photopolymerizable functional group.
第一の樹脂層4の厚さの上限値は、例えば、5mm以下、3mm以下、1mm以下、500μm以下、100μm以下、又は50μm以下であってよい。第一の樹脂層4の厚さの上限値を上記範囲内とすることによって、後の工程において転写パターンを有する樹脂層を変形させる際、樹脂層にかかる力の樹脂層の厚み方向における分布を低減し、樹脂層の変形の制御がより容易なものとすることができる。第一の樹脂層4の厚さの下限値は、例えば、25μm以上、又は30μm以上であってよい。第一の樹脂層4の厚さの下限値を上記範囲内とすることによって、取扱い性をより向上させることができる。第一の樹脂層4の厚さは上述の範囲内で調整してよく、例えば、25μm~5mm、又は25~100μmであってよい。
The upper limit of the thickness of the first resin layer 4 may be, for example, 5 mm or less, 3 mm or less, 1 mm or less, 500 μm or less, 100 μm or less, or 50 μm or less. By setting the upper limit of the thickness of the first resin layer 4 within the above range, the distribution of the force applied to the resin layer in the thickness direction when the resin layer having the transfer pattern is deformed in a later step is distributed. It can be reduced and the deformation of the resin layer can be controlled more easily. The lower limit of the thickness of the first resin layer 4 may be, for example, 25 μm or more, or 30 μm or more. By setting the lower limit of the thickness of the first resin layer 4 within the above range, the handleability can be further improved. The thickness of the first resin layer 4 may be adjusted within the above range, and may be, for example, 25 μm to 5 mm or 25 to 100 μm.
第二の樹脂層6は、必要に応じて後の工程で除去してもよい。第二の樹脂層6を除去することで、例えば、アスペクト比の大きなパターンの形成が容易なものとなる。第二の樹脂層6の厚さは、第一の樹脂層4の厚さよりも小さくてよい。第二の樹脂層6の厚さの上限値は、例えば、20μm以下、15μm以下、又は10μm以下であってよい。第二の樹脂層6の上限値を上記範囲内とすることによって、後の工程で第二の樹脂層6を除去する場合にはより容易となる。第二の樹脂層6の厚さの下限値は、例えば、0.1μm以上、0.5μm以上、1μm以上、3μm以上、又は5μm以上であってよい。第二の樹脂層6の厚さの下限値を上記範囲内とすることによって、後の工程でパターンを有する樹脂層を変形させる際に、第一の樹脂層4同士が融合することを抑制することができる。第二の樹脂層6の厚さは上述の範囲内で調整してよく、例えば、1~25μm、又は5~10μmであってよい。
The second resin layer 6 may be removed in a later step if necessary. By removing the second resin layer 6, for example, it becomes easy to form a pattern having a large aspect ratio. The thickness of the second resin layer 6 may be smaller than the thickness of the first resin layer 4. The upper limit of the thickness of the second resin layer 6 may be, for example, 20 μm or less, 15 μm or less, or 10 μm or less. By setting the upper limit value of the second resin layer 6 within the above range, it becomes easier when the second resin layer 6 is removed in a later step. The lower limit of the thickness of the second resin layer 6 may be, for example, 0.1 μm or more, 0.5 μm or more, 1 μm or more, 3 μm or more, or 5 μm or more. By setting the lower limit of the thickness of the second resin layer 6 within the above range, it is possible to prevent the first resin layers 4 from being fused with each other when the resin layer having a pattern is deformed in a later step. be able to. The thickness of the second resin layer 6 may be adjusted within the above range, and may be, for example, 1 to 25 μm or 5 to 10 μm.
図1は、樹脂層が複数の層から形成される例を示したが、樹脂層は1層であってよく、2以上の層を含んでもよい。2以上の層を含む場合、樹脂層を構成する層の少なくとも一つは、例えば、樹脂組成物層、無機層、及び複合層であってよい。すなわち、樹脂層は、第一の樹脂層及び第二の樹脂層を含んでもよく、樹脂組成物層及び無機層を含んでもよく、樹脂組成物層及び複合層を含んでもよい。樹脂層が2以上の層を含む場合、各層の素材は同じであっても、異なってもよい。無機層は、例えば、酸化マグネシウム、酸化チタン、酸化ジルコニウム、酸化鉄、酸化アルミニウム、酸化ケイ素等の金属酸化物、窒化ケイ素、窒化アルミニウム等の窒化物、炭化ケイ素等の炭化物、ハイドロキシアパタイト等のリン酸カルシウム、フェライト、並びに無定形炭素(カーボンブラック等)等からなる群より選択される少なくとも一種を含む層であってよく、無機層はこれらの材料からなってよい。複合層は、例えば、バインダーとなる樹脂中に無機粒子が分散した層等が挙げられる。複合層中の無機粒子の素材は、例えば、酸化マグネシウム、酸化チタン、酸化ジルコニウム、酸化鉄、酸化アルミニウム、酸化ケイ素等の金属酸化物、炭化ケイ素等の炭化物、並びに無定形炭素(カーボンブラック等)等からなる群より選択される少なくとも一種であってよい。樹脂層が複合層を含む場合、複合層中に含有される無機粒子の素材に応じた機能を発揮し得る。また、樹脂層が複合層を含む場合、転写パターンを有する樹脂層を形成した後に焼成することによって、無機粒子を焼結させ、所望のパターンを有する焼結体を得ることもできる。
FIG. 1 shows an example in which the resin layer is formed from a plurality of layers, but the resin layer may be one layer and may include two or more layers. When two or more layers are included, at least one of the layers constituting the resin layer may be, for example, a resin composition layer, an inorganic layer, and a composite layer. That is, the resin layer may include a first resin layer and a second resin layer, may include a resin composition layer and an inorganic layer, and may include a resin composition layer and a composite layer. When the resin layer includes two or more layers, the material of each layer may be the same or different. The inorganic layer includes, for example, metal oxides such as magnesium oxide, titanium oxide, zirconium oxide, iron oxide, aluminum oxide and silicon oxide, nitrides such as silicon nitride and aluminum nitride, carbides such as silicon carbide, and calcium phosphate such as hydroxyapatite. , Ferrite, and at least one selected from the group consisting of amorphous carbon (carbon black, etc.) and the like, and the inorganic layer may be made of these materials. Examples of the composite layer include a layer in which inorganic particles are dispersed in a resin serving as a binder. The material of the inorganic particles in the composite layer is, for example, magnesium oxide, titanium oxide, zirconium oxide, iron oxide, aluminum oxide, metal oxides such as silicon oxide, carbides such as silicon carbide, and amorphous carbon (carbon black, etc.). It may be at least one selected from the group consisting of the above. When the resin layer contains a composite layer, it can exhibit a function according to the material of the inorganic particles contained in the composite layer. When the resin layer contains a composite layer, the inorganic particles can be sintered and a sintered body having a desired pattern can be obtained by forming a resin layer having a transfer pattern and then firing the resin layer.
第一の樹脂層4及び第二の樹脂層6は、上記ポリマー及び溶剤を含むスラリーを用いて基材2上に形成してもよい。より具体的には、上記ポリマーを溶媒に溶解又は分散させてスラリーを調製し、これを基材2上に塗布し塗膜を形成、その後、塗膜中の溶媒含有量を低減することによって、樹脂層を形成する方法を用いて第一の樹脂層4及び第二の樹脂層6を形成することができる。上記スラリーは、上記ポリマー及び溶媒に加えて、その他の成分を含んでもよい。その他の成分は、例えば、上述の無機粒子、可塑剤、重合性化合物等を用いることができる。可塑剤としては、例えば、グリセリン、ポリエチレングリコール、及びフタル酸エステル等が挙げられる。重合性化合物は、例えば、光重合性化合物及び熱重合性化合物からなる群より選択される少なくとも1種を含んでよい。光重合性化合物としては、例えば、(メタ)アクリレート、及びスチレン等が挙げられる。熱重合性化合物としては、例えば、ビスフェノールAなどが挙げられる。
The first resin layer 4 and the second resin layer 6 may be formed on the base material 2 by using the slurry containing the polymer and the solvent. More specifically, the polymer is dissolved or dispersed in a solvent to prepare a slurry, which is applied onto the substrate 2 to form a coating film, and then the solvent content in the coating film is reduced. The first resin layer 4 and the second resin layer 6 can be formed by using the method of forming the resin layer. The slurry may contain other components in addition to the polymer and solvent. As the other components, for example, the above-mentioned inorganic particles, plasticizers, polymerizable compounds and the like can be used. Examples of the plasticizer include glycerin, polyethylene glycol, phthalate ester and the like. The polymerizable compound may include, for example, at least one selected from the group consisting of photopolymerizable compounds and thermopolymerizable compounds. Examples of the photopolymerizable compound include (meth) acrylate and styrene. Examples of the thermopolymerizable compound include bisphenol A and the like.
第四の工程では、まず、上述のとおり形成された第一の樹脂層4及び第二の樹脂層6に対して第二の樹脂層6側から型52を押圧しながら、樹脂層を加熱する。第四の工程によって、樹脂層上に型52に対応するパターンが転写される。
In the fourth step, first, the resin layer is heated while pressing the mold 52 from the side of the second resin layer 6 against the first resin layer 4 and the second resin layer 6 formed as described above. .. By the fourth step, the pattern corresponding to the mold 52 is transferred onto the resin layer.
型52は、例えば、金属及び樹脂材料で構成されていてよいが、複数のパターンを有する型を容易に調製可能であることから、好ましくは樹脂材料で構成される。型52を構成する樹脂材料としては、例えば、ポリイミド、及びシリコーン樹脂等が挙げられる・
The mold 52 may be made of, for example, a metal or a resin material, but is preferably made of a resin material because a mold having a plurality of patterns can be easily prepared. Examples of the resin material constituting the mold 52 include polyimide, silicone resin, and the like.
型52は凹部を有する。型52は凹部を複数有していてよい。図1の(d)において、型52が有する複数の凹部はいずれも同一の形状を有しているが、複数の凹部は互いに異なっていてもよい。図1の(d)において、型52の厚み方向の断面における凹部の形状は、略三角形状であるが、例えば、半円状、台形状、及び長方形状等であってよい。図1の(d)において、複数の凹部を有する型52の厚み方向の断面は正弦波形状であるが、例えば、矩形波形状等であってよく、必ずしも一定の周期をもつ形状である必要はない。型52の凹部が矩形である場、凹部のアスペクト比の下限値は、例えば、0.1以上、0.5以上、又は1以上であってよい。凹部の上記アスペクト比の上限値は、例えば、10以下、又は9以下であってよい。凹部の上記アスペクト比は上述の範囲内で調整してよく、例えば、0.1~10、又は0.1~9であってよい。本明細書におけるアスペクト比は、矩形状の凹部断面における幅に対する深さの比を意味し、上記深さに対応する値を上記幅に対応する値で除した数値である。
Mold 52 has a recess. The mold 52 may have a plurality of recesses. In FIG. 1D, the plurality of recesses of the mold 52 all have the same shape, but the plurality of recesses may be different from each other. In FIG. 1D, the shape of the concave portion in the cross section of the mold 52 in the thickness direction is substantially triangular, but may be, for example, semicircular, trapezoidal, rectangular, or the like. In FIG. 1D, the cross section of the mold 52 having a plurality of recesses in the thickness direction has a sinusoidal shape, but may be, for example, a rectangular wave shape, and does not necessarily have to have a constant period. Absent. When the recess of the mold 52 is rectangular, the lower limit of the aspect ratio of the recess may be, for example, 0.1 or more, 0.5 or more, or 1 or more. The upper limit of the aspect ratio of the recess may be, for example, 10 or less, or 9 or less. The aspect ratio of the recess may be adjusted within the above range, and may be, for example, 0.1 to 10 or 0.1 to 9. The aspect ratio in the present specification means the ratio of the depth to the width in the rectangular concave cross section, and is a numerical value obtained by dividing the value corresponding to the depth by the value corresponding to the width.
第四の工程における型52の押圧の際の圧力は、樹脂層を構成する材料等に応じて調整してよい。上記圧力の下限値は、例えば、0.5MPa以上、1.0MPa以上、3MPa以上、又は5MPa以上であってよい。上記圧力の下限値を上記範囲内とすることで、型52の凹部により十分に樹脂層を充填することができる。上記圧力の上限値は、例えば、100MPa以下、50MPa以下、30MPa以下、20MPa以下、又は10MPa以下であってよい。上記圧力の上限値を上記範囲内とすることで、型52の変形及び回避をより十分に抑制することができる。上記圧力は上述の範囲内で調整してよく、例えば、5~50MPa、又は10~20MPaであってよい。
The pressure at the time of pressing the mold 52 in the fourth step may be adjusted according to the material or the like constituting the resin layer. The lower limit of the pressure may be, for example, 0.5 MPa or more, 1.0 MPa or more, 3 MPa or more, or 5 MPa or more. By setting the lower limit of the pressure within the above range, the resin layer can be sufficiently filled in the recesses of the mold 52. The upper limit of the pressure may be, for example, 100 MPa or less, 50 MPa or less, 30 MPa or less, 20 MPa or less, or 10 MPa or less. By setting the upper limit value of the pressure within the above range, deformation and avoidance of the mold 52 can be more sufficiently suppressed. The pressure may be adjusted within the above range, for example, 5 to 50 MPa, or 10 to 20 MPa.
第四の工程において型52を押圧しながら、樹脂層を加熱する。この際の加熱温度は、樹脂層を構成する材料等に応じて調整してよい。上記加熱温度の下限値は、例えば、80℃以上、90℃以上、100℃以上、又は150℃以上であってよい。上記加熱温度の下限値を上記範囲内とすることで、樹脂層へのパターンの転写をより容易なものにできる。上記加熱温度の上限値は、例えば、200℃未満、180℃以下、又は160℃以下であってよい。上記加熱温度の上限値を上記範囲内とすることで、樹脂層が熱によって劣化することをより抑制することができる。上記温度は、上述の範囲内で調整してよく、例えば、80~180℃、又は100~160℃であってよい。
In the fourth step, the resin layer is heated while pressing the mold 52. The heating temperature at this time may be adjusted according to the material or the like constituting the resin layer. The lower limit of the heating temperature may be, for example, 80 ° C. or higher, 90 ° C. or higher, 100 ° C. or higher, or 150 ° C. or higher. By setting the lower limit of the heating temperature within the above range, it is possible to facilitate the transfer of the pattern to the resin layer. The upper limit of the heating temperature may be, for example, less than 200 ° C., 180 ° C. or lower, or 160 ° C. or lower. By setting the upper limit of the heating temperature within the above range, deterioration of the resin layer due to heat can be further suppressed. The temperature may be adjusted within the above range, for example, 80 to 180 ° C, or 100 to 160 ° C.
第四の工程における樹脂層を加熱する際の加熱時間は、例えば、10秒間~5分間、20秒間~3分間、30秒間~1.5分間、又は30~60秒間であってよい。
The heating time for heating the resin layer in the fourth step may be, for example, 10 seconds to 5 minutes, 20 seconds to 3 minutes, 30 seconds to 1.5 minutes, or 30 to 60 seconds.
第四の工程においては、型52を押圧する前に、例えば、樹脂層を加温及び加湿してもよい。樹脂層を加温及び加湿することによって、成形性を向上させることができる。上記加温は、例えば、25~35℃であってよい。上記加湿は、樹脂層が晒される環境の相対湿度を調整することで行う。上記相対湿度の下限値は、40%RH以上、50%RH以上、60%RH以上、70%RH以上、80%RH以上、又は85%RH以上であってよい。上記相対湿度の下限値を上記範囲内とすることで、樹脂層の成形性をより向上させることができる。上記相対湿度の上限値は、例えば、100%RH以下、又は90%RH以下であってよい。上記相対湿度の上限値を上記範囲内とし、樹脂層の水分含有量を調整することで、樹脂層の軟化を適度なものとすることができ、転写パターンが崩れることをより十分に抑制することができる。樹脂層を加温及び加湿する時間は、樹脂層の厚さ(第一の樹脂層4及び第二の樹脂層6の合計厚さ)に応じて調整してよいが、例えば、0.5時間以上、1時間以上、又は1.5時間以上であってよい。樹脂層を加温及び加湿する時間は、例えば、3時間以下であってよい。
In the fourth step, for example, the resin layer may be heated and humidified before pressing the mold 52. Moldability can be improved by heating and humidifying the resin layer. The heating may be, for example, 25 to 35 ° C. The above humidification is performed by adjusting the relative humidity of the environment to which the resin layer is exposed. The lower limit of the relative humidity may be 40% RH or more, 50% RH or more, 60% RH or more, 70% RH or more, 80% RH or more, or 85% RH or more. By setting the lower limit of the relative humidity within the above range, the moldability of the resin layer can be further improved. The upper limit of the relative humidity may be, for example, 100% RH or less, or 90% RH or less. By setting the upper limit of the relative humidity within the above range and adjusting the water content of the resin layer, the softening of the resin layer can be made appropriate, and the transfer pattern can be more sufficiently suppressed from being disrupted. Can be done. The time for heating and humidifying the resin layer may be adjusted according to the thickness of the resin layer (total thickness of the first resin layer 4 and the second resin layer 6), and is, for example, 0.5 hours. It may be 1 hour or more, or 1.5 hours or more. The time for heating and humidifying the resin layer may be, for example, 3 hours or less.
第五の工程において、基材2を延伸した状態に維持するために加えていた力を除去し、基材2を収縮させることで上述の工程で形成された転写パターンを有する樹脂層を上記押圧の方向と直交する方向(図1の(f)の矢印が示す方向)に沿って、変形させる工程である。この工程を含むことによって、型52を用いて形成することが困難なパターンを形成することもできる。
In the fifth step, the force applied to maintain the base material 2 in the stretched state is removed, and the base material 2 is contracted to press the resin layer having the transfer pattern formed in the above step. This is a step of deforming along a direction orthogonal to the direction of (the direction indicated by the arrow (f) in FIG. 1). By including this step, it is possible to form a pattern that is difficult to form using the mold 52.
第五の工程においてパターン付き基材10が得られる。パターン付き基材10におけるパターンは、型52によって転写された転写パターンよりもアスペクト比の大きなパターンとすることもできる。
The patterned base material 10 is obtained in the fifth step. The pattern on the patterned base material 10 can also be a pattern having a larger aspect ratio than the transfer pattern transferred by the mold 52.
上記パターン形成方法は、その他の工程を更に備えてもよい。その他の工程としては、例えば、上記樹脂層を変形させた後、上記樹脂層に熱又は光を照射する工程等が挙げられる。上記パターン形成方法が上記樹脂層を変形させた後、上記樹脂層に熱又は光を照射する工程を更に有する場合、転写パターンをより十分に固定することができる。
The above pattern forming method may further include other steps. Examples of other steps include a step of deforming the resin layer and then irradiating the resin layer with heat or light. When the pattern forming method further includes a step of irradiating the resin layer with heat or light after deforming the resin layer, the transfer pattern can be more sufficiently fixed.
図2は、パターン形成方法の別の一例を説明するための模式図である。図2に示すパターン形成方法は、基材2を用意する第一の工程(図2の(a))、基材2を延伸させる第二の工程(図2の(b))、当該基材2上で第一の樹脂層4及び第二の樹脂層6の積層体を設ける第三の工程(図2の(c))、上記積層体の第二の樹脂層6側から型52を押圧し、その後、型52を除去することで、第一の樹脂層4及び第二の樹脂層6に転写パターンを設ける第四の工程(図2の(d)及び(e))、及び基材2を延伸させていた力を除去し、基材2を収縮させることによって第一の樹脂層4及び第二の樹脂層6を上記押圧の方向と直交する方向に沿って、転写パターンを有する樹脂層を変形させる第五の工程(図2の(f))を有する。図2に示したパターン形成方法は、図1に示したものと型52が有する凹部形状が異なる以外は基本的に図1に示したパターン形成方法と同じであり、図1に示したパターン形成方法について説明した内容を適用することができる。
FIG. 2 is a schematic diagram for explaining another example of the pattern forming method. The pattern forming method shown in FIG. 2 includes a first step of preparing the base material 2 ((a) of FIG. 2), a second step of stretching the base material 2 ((b) of FIG. 2), and the base material. In the third step ((c) of FIG. 2) of providing the laminate of the first resin layer 4 and the second resin layer 6 on 2, the mold 52 is pressed from the second resin layer 6 side of the laminate. Then, by removing the mold 52, a fourth step ((d) and (e) of FIG. 2) of providing a transfer pattern on the first resin layer 4 and the second resin layer 6 and the base material A resin having a transfer pattern along a direction orthogonal to the pressing direction of the first resin layer 4 and the second resin layer 6 by removing the force that stretched 2 and shrinking the base material 2. It has a fifth step ((f) of FIG. 2) of deforming the layer. The pattern forming method shown in FIG. 2 is basically the same as the pattern forming method shown in FIG. 1 except that the concave shape of the mold 52 is different from that shown in FIG. 1, and the pattern forming method shown in FIG. 1 is formed. The content described for the method can be applied.
図2の(d)に示す型52は、断面形状が四角形状である複数の凹部を有する。図2に示すパターン形成方法では加えて、凹部の間隔(隣り合う凹部との距離)を調整することによって、図2の(f)に示すように、転写パターンを有する樹脂層を変形させて得られる形状を調整することができる。図2に示す例でいえば、転写パターンの形状が矩形であることによって、樹脂層が変形する際の第二の樹脂層6の体積が位置によって大きく異なる。転写パターンの凸部上部においては、隣り合う凸部との間は空隙であり、樹脂層を変形させる際に容易に移動することができる。しかし、転写パターンの凸部下方(基材2側)は、第一の樹脂層4及び第二の樹脂層6を圧縮しながら変形することになるため、第一の樹脂層4及び第二の樹脂層6を構成する成分が転写パターン凸部上方へと押し出され、結果として、第二の樹脂層6の内部に第一の樹脂層4がオーバーハングを形成するように変形させることができる。オーバーハングの形状は、第一の樹脂層4及び第二の樹脂層6の粘弾性等の成形性に応じて調整することができる。
The mold 52 shown in FIG. 2D has a plurality of recesses having a quadrangular cross-sectional shape. In addition to the pattern forming method shown in FIG. 2, the resin layer having the transfer pattern is deformed as shown in FIG. 2 (f) by adjusting the distance between the recesses (distance from the adjacent recesses). The shape to be formed can be adjusted. In the example shown in FIG. 2, since the shape of the transfer pattern is rectangular, the volume of the second resin layer 6 when the resin layer is deformed greatly differs depending on the position. In the upper portion of the convex portion of the transfer pattern, there is a gap between the convex portion and the adjacent convex portion, and the resin layer can be easily moved when the resin layer is deformed. However, since the lower portion of the convex portion of the transfer pattern (on the base material 2 side) is deformed while compressing the first resin layer 4 and the second resin layer 6, the first resin layer 4 and the second resin layer 6 are deformed. The components constituting the resin layer 6 are pushed upward of the convex portion of the transfer pattern, and as a result, the first resin layer 4 can be deformed so as to form an overhang inside the second resin layer 6. The shape of the overhang can be adjusted according to the moldability of the first resin layer 4 and the second resin layer 6 such as viscoelasticity.
上述のパターン形成方法によれば、パターン付き基材が得られる。すなわち、本開示はパターン付き基材の製造方法を提供する。パターン付き基材の製造方法の一実施形態は、ポリマーを含有する樹脂層に対して型を押圧して転写パターンを形成する工程と、上記押圧の方向と直交する方向に沿って上記樹脂層を変形させる工程と、を有する。また、パターン付き基材の製造方法の別の実施形態は、伸縮性を有する基材と、上記基材上に設けられ、ポリマーを含有する樹脂層とを有する積層体の積層方向に対して、型を押し当てて、上記樹脂層の上記基材側とは反対側の面に転写パターンを形成する工程と、上記積層方向とは直交する方向に沿って上記樹脂層を変形させる工程と、を有する。
According to the above-mentioned pattern forming method, a patterned base material can be obtained. That is, the present disclosure provides a method for producing a patterned substrate. One embodiment of the method for producing a patterned base material is a step of pressing a mold against a resin layer containing a polymer to form a transfer pattern, and the resin layer being pressed along a direction orthogonal to the pressing direction. It has a step of transforming. Further, another embodiment of the method for producing a patterned base material is based on a stacking direction of a laminate having a stretchable base material and a resin layer provided on the base material and containing a polymer. A step of pressing a mold to form a transfer pattern on a surface of the resin layer opposite to the base material side, and a step of deforming the resin layer along a direction orthogonal to the laminating direction. Have.
以上の説明では、パターン形成方法及びパターン付き基材の製造方法の一実施形態を、伸縮性の基材上に樹脂層を設ける例で説明した。しかし、パターン形成方法及びパターン付き基材の製造方法の別の実施形態は、例えば、伸縮性を有する基材とは別の基材上に転写パターンを有する樹脂層を設けること、転写パターンを有する上記樹脂層を上記基材からはく離して、伸縮性を有する基材上に第一の樹脂層側から貼り付けること、伸縮性の基材を変形させることによって樹脂層を変形させることを含む方法であってもよい。また転写パターンを有する上記樹脂層を、伸縮性を有する基材上に貼り付ける際には、接着剤を用いてもよく、伸縮性を有する基材の変形に対する樹脂層の追従性を向上させる観点から、接着剤を使用することが好ましい。接着剤としては、例えば、ポリビニルアルコール系接着剤等を用いることができる。
In the above description, one embodiment of the pattern forming method and the method for manufacturing a patterned base material has been described with an example in which a resin layer is provided on the elastic base material. However, another embodiment of the pattern forming method and the method for producing a patterned base material has, for example, providing a resin layer having a transfer pattern on a base material different from the stretchable base material, and having a transfer pattern. A method including peeling the resin layer from the base material and sticking it on a stretchable base material from the first resin layer side, and deforming the resin layer by deforming the stretchable base material. It may be. Further, when the resin layer having a transfer pattern is attached onto a stretchable base material, an adhesive may be used, and the viewpoint of improving the followability of the resin layer to the deformation of the stretchable base material. Therefore, it is preferable to use an adhesive. As the adhesive, for example, a polyvinyl alcohol-based adhesive or the like can be used.
少なくとも第一の樹脂層が無機粒子を含む場合、上述のパターン形成方法を用いて得られるパターン付き基材、及び上述のパターン付き基材の製造方法によって得られるパターン付き基材は、更に焼成させることによって、上記無機粒子の焼結体を製造するために用いることができる。得られる焼結体は、従来のインプリント法では形成することが困難であった形状を有するものとすることができる。すなわち、上述のパターン形成方法及びパターン付き基材の製造方法は、従来のインプリント法では製造が困難な形状を有する焼結体を製造するためにも使用できる。
When at least the first resin layer contains inorganic particles, the patterned base material obtained by the above-mentioned pattern forming method and the patterned base material obtained by the above-mentioned method for producing the patterned base material are further fired. Thereby, it can be used for producing a sintered body of the above-mentioned inorganic particles. The obtained sintered body can have a shape that is difficult to form by the conventional imprint method. That is, the above-mentioned pattern forming method and the method for producing a patterned base material can also be used to produce a sintered body having a shape that is difficult to produce by a conventional imprint method.
パターン付き焼結体の製造方法の一実施形態は、伸縮性を有する基材と、上記基材上に設けられ、ポリマー及び無機粒子を含有する樹脂層と、を有する積層体の積層方向に対して、型を押し当てて、上記樹脂層の上記基材側とは反対側の面に転写パターンを形成する工程と、上記積層方向とは直交する方向に沿って上記基材を収縮させることによって上記樹脂層を変形させる工程と、上記樹脂層を焼成し、上記無機粒子の焼結体を形成する工程と、を有する。パターン付き焼結体の製造方法は、例えば、上記基材を上記樹脂層から剥離してから上記樹脂層を焼成し、上記無機粒子の焼結体を形成してもよい。
One embodiment of the method for producing a patterned sintered body is based on a stacking direction of a laminate having a stretchable base material and a resin layer provided on the base material and containing a polymer and inorganic particles. By pressing the mold to form a transfer pattern on the surface of the resin layer opposite to the base material side, and by shrinking the base material along a direction orthogonal to the laminating direction. It includes a step of deforming the resin layer and a step of firing the resin layer to form a sintered body of the inorganic particles. As a method for producing a patterned sintered body, for example, the base material may be peeled from the resin layer and then the resin layer may be fired to form a sintered body of the inorganic particles.
図3及び図4は、パターン形成方法の別の一例を説明するための模式図である。以下に示す例は、第一の樹脂層の表面にパターンを設け、その後、第二の樹脂層を設ける場合、又は、第一の樹脂層が、第一の樹脂層の第二の樹脂層側の面にパターンを有する場合に対応する例である。このような方法によれば、より複雑な形状のパターンを形成することができる。図3及び図4に示すパターン形成方法は、基材2と、基材2上に設けられた第一の樹脂層4とを有する積層体に対して、上記第一の樹脂層4側から第一の型52を押圧することによって第一の転写パターンを形成する工程(図3の(a)及び(b))、第一の転写パターンを有する第一の樹脂層4上に第二の樹脂層6を設ける工程(図3の(c))、上記第二の樹脂層6側から第二の型54を押圧し、第二の型54を除去することによって第二の転写パターンを形成する工程(図4の(a)及び(b))、基材2を圧縮し収縮させることによって第一の樹脂層4及び第二の樹脂層6を上記押圧の方向と直交する方向に沿って、転写パターンを有する樹脂層を変形させる工程(図3の(c))、並びに、基材2をはく離し、又は加熱分解によって除去させながら、第一の樹脂層及び第二の樹脂層を含む積層体を焼成し、無機粒子の焼結体20を形成する工程(図3の(d))を有する。
3 and 4 are schematic views for explaining another example of the pattern forming method. In the example shown below, a pattern is provided on the surface of the first resin layer and then a second resin layer is provided, or the first resin layer is on the second resin layer side of the first resin layer. This is an example corresponding to the case where the surface of the surface has a pattern. According to such a method, a pattern having a more complicated shape can be formed. In the pattern forming method shown in FIGS. 3 and 4, the first resin layer 4 is viewed from the first resin layer 4 side with respect to the laminate having the base material 2 and the first resin layer 4 provided on the base material 2. Steps of forming the first transfer pattern by pressing one mold 52 ((a) and (b) in FIG. 3), a second resin on the first resin layer 4 having the first transfer pattern. In the step of providing the layer 6 ((c) in FIG. 3), the second mold 54 is pressed from the side of the second resin layer 6 and the second mold 54 is removed to form the second transfer pattern. In the steps ((a) and (b) of FIG. 4), the first resin layer 4 and the second resin layer 6 are pressed along the direction orthogonal to the pressing direction by compressing and shrinking the base material 2. A step of deforming a resin layer having a transfer pattern ((c) in FIG. 3), and a lamination including a first resin layer and a second resin layer while peeling off the base material 2 or removing the base material 2 by thermal decomposition. It has a step ((d) of FIG. 3) of firing a body to form a sintered body 20 of inorganic particles.
パターン付き焼結体の製造方法は、基材2を予め延伸するのではなく、圧縮して収縮される例で記載したが、これに限定する意図では無い。すなわち、パターン付き焼結体の製造方法においても、上述のパターン形成方法及び上述のパターン付き基材の製造方法で説明したのと同様に、基材2を予め延伸させる方法を採用してもよい。
The method for producing the patterned sintered body has been described as an example in which the base material 2 is compressed and shrunk instead of being stretched in advance, but the intention is not limited to this. That is, also in the method for producing the patterned sintered body, a method of pre-stretching the base material 2 may be adopted in the same manner as described in the above-mentioned pattern forming method and the above-mentioned method for producing the patterned base material. ..
パターン付き焼結体の製造方法においてパターン付き基材10を得る工程までは、上述のパターン形成方法、及び上述のパターン付き基材の製造方法について説明した内容を適用することができる。例えば、パターン付き焼結体の製造方法における第一の樹脂層4への第一の転写パターンの形成方法、及び第一の樹脂層4及び第二の樹脂層6に対する第二の転写パターンの形成方法は、それぞれ、上述のパターン形成方法、及び上述のパターン付き基材の製造方法において説明した転写パターンの形成方法の条件を採用してもよい。
Up to the step of obtaining the patterned base material 10 in the method for manufacturing the patterned sintered body, the contents described above for the pattern forming method and the above-mentioned method for manufacturing the patterned base material can be applied. For example, a method for forming a first transfer pattern on the first resin layer 4 in a method for producing a patterned sintered body, and a method for forming a second transfer pattern on the first resin layer 4 and the second resin layer 6. As the method, the conditions of the above-mentioned pattern forming method and the above-mentioned transfer pattern forming method described in the method for producing a patterned substrate may be adopted, respectively.
第二の型54の凹部は、第一の型52の凹部よりも大きい。第二の型54の凹部の幅は、第一の型52の凹部の幅を基準として、例えば、5倍以上、10倍以上、15倍以上、又は20倍以上であってよい。第二の型54の凹部の幅は、第一の型52の凹部の幅を基準として、例えば、50倍以下、又は40倍以下であってよい。
The recess of the second mold 54 is larger than the recess of the first mold 52. The width of the recess of the second mold 54 may be, for example, 5 times or more, 10 times or more, 15 times or more, or 20 times or more based on the width of the recess of the first mold 52. The width of the recess of the second mold 54 may be, for example, 50 times or less, or 40 times or less, based on the width of the recess of the first mold 52.
パターン付き焼結体の製造方法においては、樹脂層に対して、転写パターンの形成した後、第一の樹脂層及び第二の樹脂層を含む積層体を焼成する。この際の、焼成温度は樹脂層に含有される無機粒子の種類及び含有量、並びに、ポリマーの種類等に応じて調整することができる。焼成温度の下限値は、例えば、100℃以上、200℃以上、500℃以上、700℃以上、又は800℃以上であってよい。焼成温度の上限値は、例えば、1900℃以下、1800℃以下、1700℃以下、1600℃以下、1500℃以下、1400℃以下、1300℃以下、1200℃以下、1100℃以下、1000℃以下、又は900℃以下であってよい。焼成温度は上述の範囲内で調整することができ、例えば、100~1900℃、500~1900℃、又は500~1500℃であってよい。
In the method for producing a sintered body with a pattern, after forming a transfer pattern on the resin layer, the laminate containing the first resin layer and the second resin layer is fired. At this time, the firing temperature can be adjusted according to the type and content of the inorganic particles contained in the resin layer, the type of the polymer, and the like. The lower limit of the firing temperature may be, for example, 100 ° C. or higher, 200 ° C. or higher, 500 ° C. or higher, 700 ° C. or higher, or 800 ° C. or higher. The upper limit of the firing temperature is, for example, 1900 ° C or lower, 1800 ° C or lower, 1700 ° C or lower, 1600 ° C or lower, 1500 ° C or lower, 1400 ° C or lower, 1300 ° C or lower, 1200 ° C or lower, 1100 ° C or lower, 1000 ° C or lower, or It may be 900 ° C. or lower. The firing temperature can be adjusted within the above range, and may be, for example, 100 to 1900 ° C, 500 to 1900 ° C, or 500 to 1500 ° C.
得られる焼結体がセラミックス及びガラスである場合、焼成温度は、具体的には、800~1900℃、800~1600℃、又は800~1300℃とすることができる。得られる焼結体が金属からなる焼結体である場合、焼成温度は、具体的には、500~1500℃、500~1200℃、又は500~900℃とすることができる。無機粒子として金属ナノ粒子等を用いる場合には、焼成温度を低く設定することが可能であり、例えば、200℃程度に設定することもできる。
When the obtained sintered body is ceramics and glass, the firing temperature can be specifically 800 to 1900 ° C, 800 to 1600 ° C, or 800 to 1300 ° C. When the obtained sintered body is a sintered body made of metal, the firing temperature can be specifically 500 to 1500 ° C., 500 to 1200 ° C., or 500 to 900 ° C. When metal nanoparticles or the like are used as the inorganic particles, the firing temperature can be set low, and for example, it can be set to about 200 ° C.
焼成雰囲気は、特に制限されるものでは無いが、例えば、不活性ガス雰囲気、還元性ガス雰囲気、並びに、不活性ガス及び還元性ガスの混合ガス雰囲気であってよい。不活性ガスとしては、例えば、窒素、及びアルゴン等が挙げられる。還元性ガスとしては、例えば、水素、メタン、及びアンモニア等が挙げられる。
The firing atmosphere is not particularly limited, but may be, for example, an inert gas atmosphere, a reducing gas atmosphere, or a mixed gas atmosphere of an inert gas and a reducing gas. Examples of the inert gas include nitrogen, argon and the like. Examples of the reducing gas include hydrogen, methane, ammonia and the like.
以上、本開示の幾つかの実施形態について説明したが、本開示は上記実施形態に何ら限定されるものではない。また、上述した実施形態についての説明内容は、互いに適用することができる。
Although some embodiments of the present disclosure have been described above, the present disclosure is not limited to the above embodiments. Further, the contents of the description of the above-described embodiment can be applied to each other.
以下、実施例及び比較例を参照して本開示の内容をより詳細に説明する。ただし、本開示は、下記の実施例に限定されるものではない。
Hereinafter, the contents of the present disclosure will be described in more detail with reference to Examples and Comparative Examples. However, the present disclosure is not limited to the following examples.
(実施例1)
[樹脂層形成用組成物の調製]
容器に、アルミナ粉末(大明化学工業株式会社製、製品名:TM-DAR、平均粒形:0.1μm、純度99.99%)と、ポリビニルアルコール(和光純薬株式会社製、重合度:500)と、可塑剤としてグリセリン(和光純薬株式会社製)とを、体積比で43:30:27となるように測り取った。容器に更に純水を加えた後、得られた水溶液を撹拌脱泡装置(株式会社写真化学製、製品名:SK-350T)を用いて、撹拌、脱泡することによって、スラリーを得た。なお、上述のスラリーを調製する際、アルミナ粉末の凝集を防ぐため、初めにアルミナ粉末と純水との混合を2回に分けて行った。また、ポリビニルアルコールは、20体積%水溶液として用いた。 (Example 1)
[Preparation of composition for forming resin layer]
In a container, alumina powder (manufactured by Taimei Chemicals Co., Ltd., product name: TM-DAR, average grain shape: 0.1 μm, purity 99.99%) and polyvinyl alcohol (manufactured by Wako Pure Chemical Industries, Ltd., degree of polymerization: 500). ) And glycerin (manufactured by Wako Pure Chemical Industries, Ltd.) as a plasticizer were measured so as to have a volume ratio of 43:30:27. After further adding pure water to the container, the obtained aqueous solution was stirred and defoamed using a stirring defoaming device (manufactured by Photochemical Co., Ltd., product name: SK-350T) to obtain a slurry. When preparing the above-mentioned slurry, in order to prevent agglomeration of the alumina powder, first, the alumina powder and pure water were mixed in two steps. Further, polyvinyl alcohol was used as a 20% by volume aqueous solution.
[樹脂層形成用組成物の調製]
容器に、アルミナ粉末(大明化学工業株式会社製、製品名:TM-DAR、平均粒形:0.1μm、純度99.99%)と、ポリビニルアルコール(和光純薬株式会社製、重合度:500)と、可塑剤としてグリセリン(和光純薬株式会社製)とを、体積比で43:30:27となるように測り取った。容器に更に純水を加えた後、得られた水溶液を撹拌脱泡装置(株式会社写真化学製、製品名:SK-350T)を用いて、撹拌、脱泡することによって、スラリーを得た。なお、上述のスラリーを調製する際、アルミナ粉末の凝集を防ぐため、初めにアルミナ粉末と純水との混合を2回に分けて行った。また、ポリビニルアルコールは、20体積%水溶液として用いた。 (Example 1)
[Preparation of composition for forming resin layer]
In a container, alumina powder (manufactured by Taimei Chemicals Co., Ltd., product name: TM-DAR, average grain shape: 0.1 μm, purity 99.99%) and polyvinyl alcohol (manufactured by Wako Pure Chemical Industries, Ltd., degree of polymerization: 500). ) And glycerin (manufactured by Wako Pure Chemical Industries, Ltd.) as a plasticizer were measured so as to have a volume ratio of 43:30:27. After further adding pure water to the container, the obtained aqueous solution was stirred and defoamed using a stirring defoaming device (manufactured by Photochemical Co., Ltd., product name: SK-350T) to obtain a slurry. When preparing the above-mentioned slurry, in order to prevent agglomeration of the alumina powder, first, the alumina powder and pure water were mixed in two steps. Further, polyvinyl alcohol was used as a 20% by volume aqueous solution.
[樹脂層の形成]
基材として、ゴム硬さ(デュロメーター硬度)が47、縦:80mm、横:80mm、厚さが0.3mmのシリコーンフィルム(アズワン株式会社製、製品名:6-9085-14)を用意した。シリコーンフィルムの両面に、照度:18mW/cm2で3分間、紫外線を照射し、基材表面の親水化処理を行った。その後、シリコーンフィルムを1.5倍に延伸し、この延伸状態を維持したままで、ドクターブレード法によってシリコーンフィルム上に上述のとおり調製したスラリーを塗布し塗膜を形成した。塗膜を80℃、60秒間の条件で加熱し、水の含有量を低減することによって、厚さ:100μmの第一の樹脂層を形成した。 [Formation of resin layer]
As a base material, a silicone film (manufactured by AS ONE Corporation, product name: 6-9085-14) having a rubber hardness (durometer hardness) of 47, a length of 80 mm, a width of 80 mm, and a thickness of 0.3 mm was prepared. Both sides of the silicone film were irradiated with ultraviolet rays at an illuminance of 18 mW / cm 2 for 3 minutes to hydrophilize the surface of the substrate. Then, the silicone film was stretched 1.5 times, and while maintaining this stretched state, the slurry prepared as described above was applied onto the silicone film by the doctor blade method to form a coating film. The coating film was heated at 80 ° C. for 60 seconds to reduce the water content, thereby forming a first resin layer having a thickness of 100 μm.
基材として、ゴム硬さ(デュロメーター硬度)が47、縦:80mm、横:80mm、厚さが0.3mmのシリコーンフィルム(アズワン株式会社製、製品名:6-9085-14)を用意した。シリコーンフィルムの両面に、照度:18mW/cm2で3分間、紫外線を照射し、基材表面の親水化処理を行った。その後、シリコーンフィルムを1.5倍に延伸し、この延伸状態を維持したままで、ドクターブレード法によってシリコーンフィルム上に上述のとおり調製したスラリーを塗布し塗膜を形成した。塗膜を80℃、60秒間の条件で加熱し、水の含有量を低減することによって、厚さ:100μmの第一の樹脂層を形成した。 [Formation of resin layer]
As a base material, a silicone film (manufactured by AS ONE Corporation, product name: 6-9085-14) having a rubber hardness (durometer hardness) of 47, a length of 80 mm, a width of 80 mm, and a thickness of 0.3 mm was prepared. Both sides of the silicone film were irradiated with ultraviolet rays at an illuminance of 18 mW / cm 2 for 3 minutes to hydrophilize the surface of the substrate. Then, the silicone film was stretched 1.5 times, and while maintaining this stretched state, the slurry prepared as described above was applied onto the silicone film by the doctor blade method to form a coating film. The coating film was heated at 80 ° C. for 60 seconds to reduce the water content, thereby forming a first resin layer having a thickness of 100 μm.
次に、親水化カーボンブラックの分散水溶液(東海カーボン株式会社製、製品名:Aqua-Black162)を、純水で40倍に希釈し、これを上記第一の樹脂層上に塗布し、塗膜から水分を除去することによって、無機層を形成した。
Next, a dispersed aqueous solution of hydrophilic carbon black (manufactured by Tokai Carbon Co., Ltd., product name: Aqua-Black162) was diluted 40-fold with pure water, and this was applied onto the first resin layer to form a coating film. An inorganic layer was formed by removing water from the water.
第一の樹脂層を形成するために用いたスラリーを上記無機層上に塗布し塗膜を形成した。塗膜を温度:80℃で60秒間加熱し、水の含有量を低減することによって、厚さ:20μmの第二の樹脂層を形成した。
The slurry used to form the first resin layer was applied onto the inorganic layer to form a coating film. The coating film was heated at a temperature of 80 ° C. for 60 seconds to reduce the water content, thereby forming a second resin layer having a thickness of 20 μm.
[転写パターンの形成]
まず、調製された樹脂層を温度:30℃及び湿度:70%RHの環境下で1時間静置した。次に、ポリイミド製の10mm×10mmの型(凹部の深さ:46μm、ピッチ:150μm)を用意し、上述樹脂層に対して第二の樹脂層側から7.5MPaの圧力で押圧しながら、温度:80℃で60秒間加熱することによって転写パターンを形成した。 [Formation of transfer pattern]
First, the prepared resin layer was allowed to stand for 1 hour in an environment of temperature: 30 ° C. and humidity: 70% RH. Next, a polyimide mold of 10 mm × 10 mm (depth of recess: 46 μm, pitch: 150 μm) was prepared, and while pressing the resin layer from the second resin layer side with a pressure of 7.5 MPa, Temperature: A transfer pattern was formed by heating at 80 ° C. for 60 seconds.
まず、調製された樹脂層を温度:30℃及び湿度:70%RHの環境下で1時間静置した。次に、ポリイミド製の10mm×10mmの型(凹部の深さ:46μm、ピッチ:150μm)を用意し、上述樹脂層に対して第二の樹脂層側から7.5MPaの圧力で押圧しながら、温度:80℃で60秒間加熱することによって転写パターンを形成した。 [Formation of transfer pattern]
First, the prepared resin layer was allowed to stand for 1 hour in an environment of temperature: 30 ° C. and humidity: 70% RH. Next, a polyimide mold of 10 mm × 10 mm (depth of recess: 46 μm, pitch: 150 μm) was prepared, and while pressing the resin layer from the second resin layer side with a pressure of 7.5 MPa, Temperature: A transfer pattern was formed by heating at 80 ° C. for 60 seconds.
[転写パターンを有する樹脂層の変形]
転写パターンを有する樹脂層から型をはく離し、基材の延伸状態を維持するために加えていた力を弱めながら、基材を徐々に収縮させることで、これに追従させて上記樹脂層を変形した。基材の延伸状態を維持していた状態を基準として、基材の圧縮比が1.5となる転写パターンの観察を行った。ここで、圧縮比とは、基材の初期長さをL0とし、延伸後の長さをL1としたときに、L1/L0で求められる値を意味する。各状態での転写パターンの一部を示す断面を光学顕微鏡によって観察した。結果を図5の(b)に示す。 [Deformation of resin layer with transfer pattern]
The mold is peeled off from the resin layer having the transfer pattern, and the base material is gradually contracted while weakening the force applied to maintain the stretched state of the base material, thereby following this and deforming the resin layer. did. The transfer pattern in which the compression ratio of the base material was 1.5 was observed based on the state in which the stretched state of the base material was maintained. Here, the compression ratio means a value obtained by L 1 / L 0 when the initial length of the base material is L 0 and the length after stretching is L 1 . A cross section showing a part of the transfer pattern in each state was observed with an optical microscope. The results are shown in FIG. 5 (b).
転写パターンを有する樹脂層から型をはく離し、基材の延伸状態を維持するために加えていた力を弱めながら、基材を徐々に収縮させることで、これに追従させて上記樹脂層を変形した。基材の延伸状態を維持していた状態を基準として、基材の圧縮比が1.5となる転写パターンの観察を行った。ここで、圧縮比とは、基材の初期長さをL0とし、延伸後の長さをL1としたときに、L1/L0で求められる値を意味する。各状態での転写パターンの一部を示す断面を光学顕微鏡によって観察した。結果を図5の(b)に示す。 [Deformation of resin layer with transfer pattern]
The mold is peeled off from the resin layer having the transfer pattern, and the base material is gradually contracted while weakening the force applied to maintain the stretched state of the base material, thereby following this and deforming the resin layer. did. The transfer pattern in which the compression ratio of the base material was 1.5 was observed based on the state in which the stretched state of the base material was maintained. Here, the compression ratio means a value obtained by L 1 / L 0 when the initial length of the base material is L 0 and the length after stretching is L 1 . A cross section showing a part of the transfer pattern in each state was observed with an optical microscope. The results are shown in FIG. 5 (b).
(実施例2及び実施例3)
基材であるシリコーンフィルムの延伸倍率を、1.7倍(実施例2)、又は2.0倍(実施例3)に変更したこと以外は、実施例1と同様にして、転写パターンを形成した。実施例2は基材の圧縮比が1.7となる位置で転写パターンの断面を観察し、実施例3は基材の圧縮比が2.0となる位置で転写パターンを観察した。結果をそれぞれ図5の(c)及び(d)に示す。 (Example 2 and Example 3)
A transfer pattern is formed in the same manner as in Example 1 except that the draw ratio of the silicone film as the base material is changed to 1.7 times (Example 2) or 2.0 times (Example 3). did. In Example 2, the cross section of the transfer pattern was observed at a position where the compression ratio of the base material was 1.7, and in Example 3, the transfer pattern was observed at a position where the compression ratio of the base material was 2.0. The results are shown in FIGS. 5 (c) and 5 (d), respectively.
基材であるシリコーンフィルムの延伸倍率を、1.7倍(実施例2)、又は2.0倍(実施例3)に変更したこと以外は、実施例1と同様にして、転写パターンを形成した。実施例2は基材の圧縮比が1.7となる位置で転写パターンの断面を観察し、実施例3は基材の圧縮比が2.0となる位置で転写パターンを観察した。結果をそれぞれ図5の(c)及び(d)に示す。 (Example 2 and Example 3)
A transfer pattern is formed in the same manner as in Example 1 except that the draw ratio of the silicone film as the base material is changed to 1.7 times (Example 2) or 2.0 times (Example 3). did. In Example 2, the cross section of the transfer pattern was observed at a position where the compression ratio of the base material was 1.7, and in Example 3, the transfer pattern was observed at a position where the compression ratio of the base material was 2.0. The results are shown in FIGS. 5 (c) and 5 (d), respectively.
図5は、実施例において製造したパターン付き基材の断面の一部を示す光学顕微鏡写真である。図5には、第一の樹脂層4a及び第二の樹脂層6aの断面写真が示されている。図5の(a)は、基材の延伸状態を維持していた状態における転写パターンの一部を示す断面写真である。図5の(b)、(c)及び(d)は、それぞれ基材の圧縮比が1.5、1.7、及び2.0の場合における転写パターンの一部を示す断面写真である。基材の圧縮比に応じて樹脂層に形成された転写パターンが変形することが確認された。例えば、第一の樹脂層4aに着目すると、ポリイミド製の型によってインプリントされたパターンよりもパターンの高さが大きく、幅が小さくなっており、アスペクト比の大きなパターンに変形されていることが確認できる。
FIG. 5 is an optical micrograph showing a part of a cross section of the patterned base material manufactured in the examples. FIG. 5 shows a cross-sectional photograph of the first resin layer 4a and the second resin layer 6a. FIG. 5A is a cross-sectional photograph showing a part of the transfer pattern in a state where the stretched state of the base material is maintained. (B), (c) and (d) of FIG. 5 are cross-sectional photographs showing a part of the transfer pattern when the compression ratios of the base materials are 1.5, 1.7 and 2.0, respectively. It was confirmed that the transfer pattern formed on the resin layer was deformed according to the compression ratio of the base material. For example, focusing on the first resin layer 4a, the height and width of the pattern are larger and the width is smaller than the pattern imprinted by the polyimide mold, and the pattern is deformed into a pattern having a large aspect ratio. You can check it.
(実施例4)
[第一の樹脂層の形成]
基材として、ゴム硬さ(デュロメーター硬度)が47、縦:80mm、横:80mm、厚さが0.3mmのシリコーンフィルム(アズワン株式会社製、製品名:6-9085-14)を用意した。シリコーンフィルムの両面に、照度:18mW/cm2で3分間、紫外線を照射し、基材表面の親水化処理を行った。その後、シリコーンフィルムを1.5倍に延伸し、この延伸状態を維持したままで、ドクターブレード法によってシリコーンフィルム上に、実施例1で調製したスラリーを塗布し塗膜を形成した。塗膜を温度:80℃で60秒間加熱し、水の含有量を低減することによって、厚さ:100μmの第一の樹脂層を形成した。 (Example 4)
[Formation of first resin layer]
As a base material, a silicone film (manufactured by AS ONE Corporation, product name: 6-9085-14) having a rubber hardness (durometer hardness) of 47, a length of 80 mm, a width of 80 mm, and a thickness of 0.3 mm was prepared. Both sides of the silicone film were irradiated with ultraviolet rays at an illuminance of 18 mW / cm 2 for 3 minutes to hydrophilize the surface of the substrate. Then, the silicone film was stretched 1.5 times, and while maintaining this stretched state, the slurry prepared in Example 1 was applied onto the silicone film by the doctor blade method to form a coating film. The coating film was heated at a temperature of 80 ° C. for 60 seconds to reduce the water content, thereby forming a first resin layer having a thickness of 100 μm.
[第一の樹脂層の形成]
基材として、ゴム硬さ(デュロメーター硬度)が47、縦:80mm、横:80mm、厚さが0.3mmのシリコーンフィルム(アズワン株式会社製、製品名:6-9085-14)を用意した。シリコーンフィルムの両面に、照度:18mW/cm2で3分間、紫外線を照射し、基材表面の親水化処理を行った。その後、シリコーンフィルムを1.5倍に延伸し、この延伸状態を維持したままで、ドクターブレード法によってシリコーンフィルム上に、実施例1で調製したスラリーを塗布し塗膜を形成した。塗膜を温度:80℃で60秒間加熱し、水の含有量を低減することによって、厚さ:100μmの第一の樹脂層を形成した。 (Example 4)
[Formation of first resin layer]
As a base material, a silicone film (manufactured by AS ONE Corporation, product name: 6-9085-14) having a rubber hardness (durometer hardness) of 47, a length of 80 mm, a width of 80 mm, and a thickness of 0.3 mm was prepared. Both sides of the silicone film were irradiated with ultraviolet rays at an illuminance of 18 mW / cm 2 for 3 minutes to hydrophilize the surface of the substrate. Then, the silicone film was stretched 1.5 times, and while maintaining this stretched state, the slurry prepared in Example 1 was applied onto the silicone film by the doctor blade method to form a coating film. The coating film was heated at a temperature of 80 ° C. for 60 seconds to reduce the water content, thereby forming a first resin layer having a thickness of 100 μm.
[第一の転写パターンの形成]
調製された第一の樹脂層を温度:30℃及び湿度:70%RHの環境下で1時間静置した。次に、ポリイミド製の10mm×10mmの型(凹部の深さ:10μm、ピッチ:10μm)を用意し、上記第一の樹脂層側から7.5MPaの圧力で押圧しながら、温度:80℃で60秒間加熱することによって第一の転写パターンを形成した。 [Formation of the first transfer pattern]
The prepared first resin layer was allowed to stand for 1 hour in an environment of temperature: 30 ° C. and humidity: 70% RH. Next, a polyimide mold of 10 mm × 10 mm (depth of recess: 10 μm, pitch: 10 μm) was prepared, and while pressing with a pressure of 7.5 MPa from the first resin layer side, the temperature was 80 ° C. The first transfer pattern was formed by heating for 60 seconds.
調製された第一の樹脂層を温度:30℃及び湿度:70%RHの環境下で1時間静置した。次に、ポリイミド製の10mm×10mmの型(凹部の深さ:10μm、ピッチ:10μm)を用意し、上記第一の樹脂層側から7.5MPaの圧力で押圧しながら、温度:80℃で60秒間加熱することによって第一の転写パターンを形成した。 [Formation of the first transfer pattern]
The prepared first resin layer was allowed to stand for 1 hour in an environment of temperature: 30 ° C. and humidity: 70% RH. Next, a polyimide mold of 10 mm × 10 mm (depth of recess: 10 μm, pitch: 10 μm) was prepared, and while pressing with a pressure of 7.5 MPa from the first resin layer side, the temperature was 80 ° C. The first transfer pattern was formed by heating for 60 seconds.
[第二の樹脂層の形成]
まず、ポリメチルメタクリレート(シグマアルドリッチ社製、PMMA、数平均分子量:350,000以下)、増粘剤(明成化学工業株式会社製、製品名:アルコックスEP-10、エチレンオキサイドとプロピレンオキサイドとのランダム共重合体)、及び溶媒(和光純薬製、アセトン)を、質量比で9:1:90となるように混合溶解させた混合液を調製した。 [Formation of second resin layer]
First, polymethylmethacrylate (manufactured by Sigma Aldrich, PMMA, number average molecular weight: 350,000 or less), thickener (manufactured by Meisei Chemical Works, Ltd., product name: Alcox EP-10, ethylene oxide and propylene oxide) A mixed solution was prepared by mixing and dissolving the random copolymer) and the solvent (Acetone manufactured by Wako Pure Chemical Works, Ltd.) so as to have a mass ratio of 9: 1: 90.
まず、ポリメチルメタクリレート(シグマアルドリッチ社製、PMMA、数平均分子量:350,000以下)、増粘剤(明成化学工業株式会社製、製品名:アルコックスEP-10、エチレンオキサイドとプロピレンオキサイドとのランダム共重合体)、及び溶媒(和光純薬製、アセトン)を、質量比で9:1:90となるように混合溶解させた混合液を調製した。 [Formation of second resin layer]
First, polymethylmethacrylate (manufactured by Sigma Aldrich, PMMA, number average molecular weight: 350,000 or less), thickener (manufactured by Meisei Chemical Works, Ltd., product name: Alcox EP-10, ethylene oxide and propylene oxide) A mixed solution was prepared by mixing and dissolving the random copolymer) and the solvent (Acetone manufactured by Wako Pure Chemical Works, Ltd.) so as to have a mass ratio of 9: 1: 90.
上述のとおり第一の転写パターンを形成した第一の樹脂層上に、上記混合液をスピンコートしアセトンの含有量を低減することによって、厚さ:20μmの第二の樹脂層を形成し、第一の樹脂層及び第二の樹脂層の2層からなる樹脂層を得た。
As described above, the mixed solution was spin-coated on the first resin layer on which the first transfer pattern was formed to reduce the acetone content, thereby forming a second resin layer having a thickness of 20 μm. A resin layer composed of two layers, a first resin layer and a second resin layer, was obtained.
[第二の転写パターンの形成]
上述のように調製した樹脂層を温度:30℃及び湿度70%RHの環境下で1時間静置した。次に、ポリイミド製の10mm×10mmの型(凹部の深さ:46μm、ピッチ:150μm)を用意し、上記第二の樹脂層側から7.5MPaの圧力で押圧しながら、温度:80℃で60秒間加熱することによって第二の転写パターンを形成した。転写パターンの断面の一部を電子顕微鏡によって観察した。結果を図6に示す。図6に示す電子顕微鏡写真において、第一の樹脂層4bと第二の樹脂層6bとを確認することができ、第二の転写パターンを形成した後であっても、第一の樹脂層4bの第二の樹脂層6b側に、微細パターンが維持されていることが確認できる。 [Formation of second transfer pattern]
The resin layer prepared as described above was allowed to stand for 1 hour in an environment of temperature: 30 ° C. and humidity of 70% RH. Next, a polyimide mold of 10 mm × 10 mm (depth of recess: 46 μm, pitch: 150 μm) was prepared, and while being pressed from the second resin layer side at a pressure of 7.5 MPa, at a temperature of 80 ° C. A second transfer pattern was formed by heating for 60 seconds. A part of the cross section of the transfer pattern was observed with an electron microscope. The results are shown in FIG. In the electron micrograph shown in FIG. 6, thefirst resin layer 4b and the second resin layer 6b can be confirmed, and even after the second transfer pattern is formed, the first resin layer 4b It can be confirmed that the fine pattern is maintained on the second resin layer 6b side of the above.
上述のように調製した樹脂層を温度:30℃及び湿度70%RHの環境下で1時間静置した。次に、ポリイミド製の10mm×10mmの型(凹部の深さ:46μm、ピッチ:150μm)を用意し、上記第二の樹脂層側から7.5MPaの圧力で押圧しながら、温度:80℃で60秒間加熱することによって第二の転写パターンを形成した。転写パターンの断面の一部を電子顕微鏡によって観察した。結果を図6に示す。図6に示す電子顕微鏡写真において、第一の樹脂層4bと第二の樹脂層6bとを確認することができ、第二の転写パターンを形成した後であっても、第一の樹脂層4bの第二の樹脂層6b側に、微細パターンが維持されていることが確認できる。 [Formation of second transfer pattern]
The resin layer prepared as described above was allowed to stand for 1 hour in an environment of temperature: 30 ° C. and humidity of 70% RH. Next, a polyimide mold of 10 mm × 10 mm (depth of recess: 46 μm, pitch: 150 μm) was prepared, and while being pressed from the second resin layer side at a pressure of 7.5 MPa, at a temperature of 80 ° C. A second transfer pattern was formed by heating for 60 seconds. A part of the cross section of the transfer pattern was observed with an electron microscope. The results are shown in FIG. In the electron micrograph shown in FIG. 6, the
(実施例5)
[第一の樹脂層の形成]
ポリエチレンテレフタレートフィルム(PETフィルム)を用意し、ドクターブレード法によってPETフィルム上に、実施例1で調製したスラリーを塗布し塗膜を形成した。塗膜を温度:80℃で60秒間加熱し、水の含有量を低減することによって、厚さ:100μmの第一の樹脂層を形成した。 (Example 5)
[Formation of first resin layer]
A polyethylene terephthalate film (PET film) was prepared, and the slurry prepared in Example 1 was applied onto the PET film by the doctor blade method to form a coating film. The coating film was heated at a temperature of 80 ° C. for 60 seconds to reduce the water content, thereby forming a first resin layer having a thickness of 100 μm.
[第一の樹脂層の形成]
ポリエチレンテレフタレートフィルム(PETフィルム)を用意し、ドクターブレード法によってPETフィルム上に、実施例1で調製したスラリーを塗布し塗膜を形成した。塗膜を温度:80℃で60秒間加熱し、水の含有量を低減することによって、厚さ:100μmの第一の樹脂層を形成した。 (Example 5)
[Formation of first resin layer]
A polyethylene terephthalate film (PET film) was prepared, and the slurry prepared in Example 1 was applied onto the PET film by the doctor blade method to form a coating film. The coating film was heated at a temperature of 80 ° C. for 60 seconds to reduce the water content, thereby forming a first resin layer having a thickness of 100 μm.
[第一の転写パターンの形成]
調製された第一の樹脂層を温度:30℃及び湿度:70%RHの環境下で1時間静置した。次に、シリコーン樹脂製の20mm×20mmの型(凹部の深さ:10μm、ピッチ:10μm)を用意し、上記第一の樹脂層側から7.5MPaの圧力で押圧しながら、温度:80℃で60秒間加熱することによって第一の転写パターンを形成した。 [Formation of the first transfer pattern]
The prepared first resin layer was allowed to stand for 1 hour in an environment of temperature: 30 ° C. and humidity: 70% RH. Next, a 20 mm × 20 mm mold made of silicone resin (depth of recess: 10 μm, pitch: 10 μm) was prepared, and while pressing with a pressure of 7.5 MPa from the first resin layer side, the temperature: 80 ° C. The first transfer pattern was formed by heating in.
調製された第一の樹脂層を温度:30℃及び湿度:70%RHの環境下で1時間静置した。次に、シリコーン樹脂製の20mm×20mmの型(凹部の深さ:10μm、ピッチ:10μm)を用意し、上記第一の樹脂層側から7.5MPaの圧力で押圧しながら、温度:80℃で60秒間加熱することによって第一の転写パターンを形成した。 [Formation of the first transfer pattern]
The prepared first resin layer was allowed to stand for 1 hour in an environment of temperature: 30 ° C. and humidity: 70% RH. Next, a 20 mm × 20 mm mold made of silicone resin (depth of recess: 10 μm, pitch: 10 μm) was prepared, and while pressing with a pressure of 7.5 MPa from the first resin layer side, the temperature: 80 ° C. The first transfer pattern was formed by heating in.
[第二の樹脂層の形成]
第一の転写パターンを設けた第一の樹脂層上に、ポリビニルアルコール(富士フイルム和光純薬株式会社製、分子量1500)の10質量%水溶液を滴下し、スピンコートすることによって液膜を形成した。その後、オーブンによって温度:60℃に加熱し、水分量を低減することによって、厚さ:10μmの第二の樹脂層を形成し、第一の樹脂層及び第二の樹脂層の2層からなる樹脂層を得た。 [Formation of second resin layer]
A 10% by mass aqueous solution of polyvinyl alcohol (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., molecular weight 1500) was dropped onto the first resin layer provided with the first transfer pattern, and a liquid film was formed by spin coating. .. Then, it is heated to a temperature of 60 ° C. by an oven to reduce the amount of water, thereby forming a second resin layer having a thickness of 10 μm, which is composed of two layers, a first resin layer and a second resin layer. A resin layer was obtained.
第一の転写パターンを設けた第一の樹脂層上に、ポリビニルアルコール(富士フイルム和光純薬株式会社製、分子量1500)の10質量%水溶液を滴下し、スピンコートすることによって液膜を形成した。その後、オーブンによって温度:60℃に加熱し、水分量を低減することによって、厚さ:10μmの第二の樹脂層を形成し、第一の樹脂層及び第二の樹脂層の2層からなる樹脂層を得た。 [Formation of second resin layer]
A 10% by mass aqueous solution of polyvinyl alcohol (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., molecular weight 1500) was dropped onto the first resin layer provided with the first transfer pattern, and a liquid film was formed by spin coating. .. Then, it is heated to a temperature of 60 ° C. by an oven to reduce the amount of water, thereby forming a second resin layer having a thickness of 10 μm, which is composed of two layers, a first resin layer and a second resin layer. A resin layer was obtained.
[第二の転写パターンの形成]
上述のように調製した樹脂層を温度:30℃及び湿度70%RHの環境下で1時間静置した。次に、ポリイミド製の20mm×20mmの型(凹部の深さ:46μm、ピッチ:150μm)を用意し、上記第二の樹脂層側から7.5MPaの圧力で押圧しながら、温度:80℃で60秒間加熱することによって第二の転写パターンを形成した。 [Formation of second transfer pattern]
The resin layer prepared as described above was allowed to stand for 1 hour in an environment of temperature: 30 ° C. and humidity of 70% RH. Next, a 20 mm × 20 mm mold made of polyimide (depth of recess: 46 μm, pitch: 150 μm) was prepared, and while pressing with a pressure of 7.5 MPa from the second resin layer side, the temperature was 80 ° C. A second transfer pattern was formed by heating for 60 seconds.
上述のように調製した樹脂層を温度:30℃及び湿度70%RHの環境下で1時間静置した。次に、ポリイミド製の20mm×20mmの型(凹部の深さ:46μm、ピッチ:150μm)を用意し、上記第二の樹脂層側から7.5MPaの圧力で押圧しながら、温度:80℃で60秒間加熱することによって第二の転写パターンを形成した。 [Formation of second transfer pattern]
The resin layer prepared as described above was allowed to stand for 1 hour in an environment of temperature: 30 ° C. and humidity of 70% RH. Next, a 20 mm × 20 mm mold made of polyimide (depth of recess: 46 μm, pitch: 150 μm) was prepared, and while pressing with a pressure of 7.5 MPa from the second resin layer side, the temperature was 80 ° C. A second transfer pattern was formed by heating for 60 seconds.
[転写パターンを有する樹脂層の変形]
基材として、ゴム硬さ(デュロメーター硬度)が47、縦:25mm、横:40mm、厚さが0.3mmのシリコーンフィルム(アズワン株式会社製、製品名:6-9085-14)を用意した。延伸倍率が2.0倍となるように延伸したシリコーンフィルム上に、ポリビニルアルコール系接着剤を塗布した。上述の第二の転写パターンを設けた樹脂層をPETフィルムからはく離し、第一の樹脂層がシリコーンフィルム側に接するようにして基材上に樹脂層を接着した。その後、室内に30分間静置した後、温度:30℃及び湿度:90%RHの環境下で1時間静置した。 [Deformation of resin layer with transfer pattern]
As a base material, a silicone film (manufactured by AS ONE Corporation, product name: 6-9085-14) having a rubber hardness (durometer hardness) of 47, a length of 25 mm, a width of 40 mm, and a thickness of 0.3 mm was prepared. A polyvinyl alcohol-based adhesive was applied onto the silicone film stretched so that the stretch ratio was 2.0 times. The resin layer provided with the second transfer pattern described above was separated from the PET film, and the resin layer was adhered onto the base material so that the first resin layer was in contact with the silicone film side. Then, after allowing to stand indoors for 30 minutes, it was allowed to stand for 1 hour in an environment of temperature: 30 ° C. and humidity: 90% RH.
基材として、ゴム硬さ(デュロメーター硬度)が47、縦:25mm、横:40mm、厚さが0.3mmのシリコーンフィルム(アズワン株式会社製、製品名:6-9085-14)を用意した。延伸倍率が2.0倍となるように延伸したシリコーンフィルム上に、ポリビニルアルコール系接着剤を塗布した。上述の第二の転写パターンを設けた樹脂層をPETフィルムからはく離し、第一の樹脂層がシリコーンフィルム側に接するようにして基材上に樹脂層を接着した。その後、室内に30分間静置した後、温度:30℃及び湿度:90%RHの環境下で1時間静置した。 [Deformation of resin layer with transfer pattern]
As a base material, a silicone film (manufactured by AS ONE Corporation, product name: 6-9085-14) having a rubber hardness (durometer hardness) of 47, a length of 25 mm, a width of 40 mm, and a thickness of 0.3 mm was prepared. A polyvinyl alcohol-based adhesive was applied onto the silicone film stretched so that the stretch ratio was 2.0 times. The resin layer provided with the second transfer pattern described above was separated from the PET film, and the resin layer was adhered onto the base material so that the first resin layer was in contact with the silicone film side. Then, after allowing to stand indoors for 30 minutes, it was allowed to stand for 1 hour in an environment of temperature: 30 ° C. and humidity: 90% RH.
その後、シリコーンフィルムを徐々に収縮させて上記樹脂層を変形し、転写パターンの一部を示す断面を電子顕微鏡によって観察した。結果を図7の(c)に示す。図7に示す電子顕微鏡写真において、第一の樹脂層4c及び第二の樹脂層6cを確認できる。図7の(a)は、第二の樹脂層を形成した際の樹脂層の断面を観察した電子顕微鏡写真であり、図7の(b)は第二の転写パターンを形成した歳の樹脂層の断面を観測した電子顕微鏡写真である。図7の(c)は、より具体的には、シリコーンフィルムの延伸倍率が2.0の状態を基準として、シリコーンフィルムの圧縮比が1.5である状態までシリコーンフィルムを収縮させて得られた樹脂層の断面を観測した電子顕微鏡写真である。
After that, the silicone film was gradually shrunk to deform the resin layer, and a cross section showing a part of the transfer pattern was observed with an electron microscope. The results are shown in FIG. 7 (c). In the electron micrograph shown in FIG. 7, the first resin layer 4c and the second resin layer 6c can be confirmed. FIG. 7A is an electron micrograph of observing a cross section of the resin layer when the second resin layer is formed, and FIG. 7B is an age-old resin layer forming the second transfer pattern. It is an electron micrograph which observed the cross section of. More specifically, FIG. 7 (c) is obtained by shrinking the silicone film until the compression ratio of the silicone film is 1.5, based on the state where the draw ratio of the silicone film is 2.0. It is an electron micrograph which observed the cross section of the resin layer.
本開示によれば、アスペクト比の大きなパターン等を容易に形成可能なパターン形成方法を提供することができる。本開示によればまた、アスペクト比の大きなパターン等を有するパターン付き基材を容易に製造可能なパターン付き基材の製造方法を提供することができる。本開示によればまた、アスペクト比の大きなパターン等を有する焼結体を容易に製造可能なパターン付き焼結体の製造方法を提供することができる。
According to the present disclosure, it is possible to provide a pattern forming method capable of easily forming a pattern having a large aspect ratio or the like. According to the present disclosure, it is also possible to provide a method for producing a patterned substrate, which can easily produce a patterned substrate having a pattern having a large aspect ratio or the like. According to the present disclosure, it is also possible to provide a method for producing a patterned sintered body, which can easily produce a sintered body having a pattern having a large aspect ratio or the like.
2…基材、4…第一の樹脂層、6…第二の樹脂層、10…パターン付き基材、20…焼結体、52…型(第一の型)、54…第二の型。
2 ... base material, 4 ... first resin layer, 6 ... second resin layer, 10 ... patterned base material, 20 ... sintered body, 52 ... mold (first mold), 54 ... second mold ..
Claims (30)
- 樹脂層に対して型を押圧して転写パターンを設ける工程と、
前記押圧の方向と直交する方向に沿って前記樹脂層を変形させる工程と、を有する、パターン形成方法。 The process of pressing the mold against the resin layer to provide a transfer pattern,
A pattern forming method comprising a step of deforming the resin layer along a direction orthogonal to the pressing direction. - 前記樹脂層が複数の層を有する、請求項1に記載のパターン形成方法。 The pattern forming method according to claim 1, wherein the resin layer has a plurality of layers.
- 前記樹脂層が、第一の樹脂層と、第二の樹脂層とを有する、請求項1又は2に記載のパターン形成方法。 The pattern forming method according to claim 1 or 2, wherein the resin layer has a first resin layer and a second resin layer.
- 前記第一の樹脂層が、前記第一の樹脂層の前記第二の樹脂層側の面にパターンを有する、請求項3に記載のパターン形成方法。 The pattern forming method according to claim 3, wherein the first resin layer has a pattern on the surface of the first resin layer on the side of the second resin layer.
- 前記転写パターンを設ける工程が、前記樹脂層と前記型とを対向させて押圧しながら加熱することによって、前記転写パターンを設ける工程である、請求項1~4のいずれか一項に記載のパターン形成方法。 The pattern according to any one of claims 1 to 4, wherein the step of providing the transfer pattern is a step of providing the transfer pattern by heating the resin layer and the mold while pressing them against each other. Forming method.
- 前記転写パターンを設ける工程が、前記樹脂層と前記型とを対向させて押圧しながら前記樹脂層に光照射することによって、前記転写パターンを設ける工程である、請求項1~5のいずれか一項に記載のパターン形成方法。 Any one of claims 1 to 5, wherein the step of providing the transfer pattern is a step of providing the transfer pattern by irradiating the resin layer with light while pressing the resin layer and the mold against each other. The pattern forming method described in the section.
- 前記樹脂層を変形させた後、前記樹脂層に熱又は光を照射する工程を更に有する、請求項1~6のいずれか一項に記載のパターン形成方法。 The pattern forming method according to any one of claims 1 to 6, further comprising a step of irradiating the resin layer with heat or light after deforming the resin layer.
- ポリマーを含有する樹脂層に対して型を押圧して転写パターンを形成する工程と、
前記押圧の方向と直交する方向に沿って前記樹脂層を変形させる工程と、を有する、パターン付き基材の製造方法。 The process of forming a transfer pattern by pressing the mold against the resin layer containing the polymer,
A method for producing a patterned base material, comprising a step of deforming the resin layer along a direction orthogonal to the pressing direction. - 伸縮性を有する基材と、前記基材上に設けられ、ポリマーを含有する樹脂層とを有する積層体の積層方向に対して、型を押し当てて、前記樹脂層の前記基材側とは反対側の面に転写パターンを形成する工程と、
前記積層方向と直交する方向に沿って前記樹脂層を変形させる工程と、を有する、パターン付き基材の製造方法。 The mold is pressed against the stacking direction of the laminate having the elastic base material and the resin layer provided on the base material and containing the polymer, and the base material side of the resin layer is The process of forming a transfer pattern on the opposite surface and
A method for producing a patterned base material, comprising a step of deforming the resin layer along a direction orthogonal to the laminating direction. - 前記樹脂層を変形させる工程が、前記積層方向とは直交する方向に沿って前記基材を収縮させることによって前記樹脂層を変形させる工程である、請求項9に記載の製造方法。 The manufacturing method according to claim 9, wherein the step of deforming the resin layer is a step of deforming the resin layer by shrinking the base material along a direction orthogonal to the laminating direction.
- 前記樹脂層を変形させる工程が、前記積層方向とは直交する方向に沿って前記基材を収縮させることによって前記転写パターンよりアスペクト比の大きなパターンを形成する工程である、請求項9又は10に記載の製造方法。 The step of deforming the resin layer is a step of forming a pattern having a larger aspect ratio than the transfer pattern by shrinking the base material along a direction orthogonal to the stacking direction, according to claim 9 or 10. The manufacturing method described.
- 前記基材が、弾性体、光応答ゲル、及び温度応答ゲルからなる群より選択される少なくとも1種を含む、請求項9~11のいずれか一項に記載の製造方法。 The production method according to any one of claims 9 to 11, wherein the base material contains at least one selected from the group consisting of an elastic body, a photoresponsive gel, and a temperature-responsive gel.
- 前記基材がシリコーン樹脂を含有する、請求項9~12のいずれか一項に記載の製造方法。 The production method according to any one of claims 9 to 12, wherein the base material contains a silicone resin.
- 前記樹脂層が複数の層を有する、請求項9~13のいずれか一項に記載の製造方法。 The production method according to any one of claims 9 to 13, wherein the resin layer has a plurality of layers.
- 前記樹脂層が、第一の樹脂層と、第二の樹脂層とを有する、請求項9~14のいずれか一項に記載の製造方法。 The production method according to any one of claims 9 to 14, wherein the resin layer has a first resin layer and a second resin layer.
- 前記第一の樹脂層は、前記第二の樹脂層と、前記基材との間に位置し、
前記第一の樹脂層が前記基材側とは反対側の面にパターンを有する、請求項15に記載の製造方法。 The first resin layer is located between the second resin layer and the base material.
The production method according to claim 15, wherein the first resin layer has a pattern on a surface opposite to the base material side. - 前記型の凹部のアスペクト比が5~10である、請求項9~16のいずれか一項に記載の製造方法。 The manufacturing method according to any one of claims 9 to 16, wherein the concave portion of the mold has an aspect ratio of 5 to 10.
- 前記転写パターンを設ける工程が、前記樹脂層と前記型とを対向させて加熱することによって、前記転写パターンを設ける工程である、請求項9~17のいずれか一項に記載の製造方法。 The manufacturing method according to any one of claims 9 to 17, wherein the step of providing the transfer pattern is a step of providing the transfer pattern by heating the resin layer and the mold so as to face each other.
- 前記転写パターンを設ける工程が、前記樹脂層と前記型とを対向させて押圧しながら前記樹脂層に光照射することによって、前記転写パターンを設ける工程である、請求項9~18のいずれか一項に記載の製造方法。 Any one of claims 9 to 18, wherein the step of providing the transfer pattern is a step of providing the transfer pattern by irradiating the resin layer with light while pressing the resin layer and the mold against each other. The manufacturing method described in the section.
- 前記樹脂層を変形させた後、前記樹脂層に熱又は光を照射する工程を更に有する、請求項9~19のいずれか一項に記載の製造方法。 The production method according to any one of claims 9 to 19, further comprising a step of irradiating the resin layer with heat or light after deforming the resin layer.
- 前記ポリマーが、熱可塑性ポリマー及び熱硬化性ポリマーからなる群より選択される少なくとも1種を含む、請求項9~20のいずれか一項に記載の製造方法。 The production method according to any one of claims 9 to 20, wherein the polymer comprises at least one selected from the group consisting of a thermoplastic polymer and a thermosetting polymer.
- 前記ポリマーがポリビニルアルコールを含む、請求項9~21のいずれか一項に記載の製造方法。 The production method according to any one of claims 9 to 21, wherein the polymer contains polyvinyl alcohol.
- 前記ポリマーが重合性の官能基を有する、請求項9~22のいずれか一項に記載の製造方法。 The production method according to any one of claims 9 to 22, wherein the polymer has a polymerizable functional group.
- 前記樹脂層が、前記ポリマーの他に、無機粒子を含有する、請求項9~23のいずれか一項に記載の製造方法。 The production method according to any one of claims 9 to 23, wherein the resin layer contains inorganic particles in addition to the polymer.
- 前記無機粒子が、酸化マグネシウム、酸化チタン、酸化ジルコニウム、酸化鉄、酸化アルミニウム、酸化ケイ素、窒化ケイ素、窒化アルミニウム、炭化ケイ素、ハイドロキシアパタイト及びフェライトからなる群より選択される少なくとも1種を含む、請求項24に記載の製造方法。 Claimed that the inorganic particles include at least one selected from the group consisting of magnesium oxide, titanium oxide, zirconium oxide, iron oxide, aluminum oxide, silicon oxide, silicon nitride, aluminum nitride, silicon carbide, hydroxyapatite and ferrite. Item 24. The production method according to Item 24.
- 前記樹脂層が、前記ポリマーの他に、重合性化合物を含有する、請求項9~25のいずれか一項に記載の製造方法。 The production method according to any one of claims 9 to 25, wherein the resin layer contains a polymerizable compound in addition to the polymer.
- 前記重合性化合物が、光重合性化合物及び熱重合性化合物からなる群より選択される少なくとも1種を含む、請求項26に記載の製造方法。 The production method according to claim 26, wherein the polymerizable compound contains at least one selected from the group consisting of a photopolymerizable compound and a thermopolymerizable compound.
- 伸縮性を有する基材と、前記基材上に設けられ、ポリマー及び無機粒子を含有する樹脂層と、を有する積層体の積層方向に対して、型を押し当てて、前記樹脂層の前記基材側とは反対側の面に転写パターンを形成する工程と、
前記積層方向とは直交する方向に沿って前記基材を収縮させることによって前記樹脂層を変形させる工程と、
前記樹脂層を焼成し、前記無機粒子の焼結体を形成する工程と、を有する、パターン付き焼結体の製造方法。 The base of the resin layer is pressed against the stacking direction of the laminate having the stretchable base material and the resin layer provided on the base material and containing the polymer and inorganic particles. The process of forming a transfer pattern on the surface opposite to the material side,
A step of deforming the resin layer by shrinking the base material along a direction orthogonal to the laminating direction.
A method for producing a patterned sintered body, comprising a step of firing the resin layer to form a sintered body of the inorganic particles. - 前記樹脂層を変形させる工程が、前記積層方向とは直交する方向に沿って前記基材を収縮させることによって前記樹脂層を変形させる工程である、請求項28に記載の製造方法。 28. The manufacturing method according to claim 28, wherein the step of deforming the resin layer is a step of deforming the resin layer by shrinking the base material along a direction orthogonal to the laminating direction.
- 前記樹脂層を変形させる工程が、前記積層方向とは直交する方向に沿って前記基材を収縮させることによって前記転写パターンよりアスペクト比の大きなパターンを形成する工程である、請求項28又は29に記載の製造方法。 28 or 29, wherein the step of deforming the resin layer is a step of forming a pattern having a larger aspect ratio than the transfer pattern by shrinking the base material along a direction orthogonal to the laminating direction. The manufacturing method described.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021528222A JPWO2020255925A1 (en) | 2019-06-19 | 2020-06-15 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962863277P | 2019-06-19 | 2019-06-19 | |
US62/863,277 | 2019-06-19 | ||
JPPCT/JP2019/041178 | 2019-10-18 | ||
PCT/JP2019/041178 WO2020255433A1 (en) | 2019-06-19 | 2019-10-18 | Pattern formation method, method for producing patterned substrate, and method for producing patterned sintered body |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020255925A1 true WO2020255925A1 (en) | 2020-12-24 |
Family
ID=74037643
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/041178 WO2020255433A1 (en) | 2019-06-19 | 2019-10-18 | Pattern formation method, method for producing patterned substrate, and method for producing patterned sintered body |
PCT/JP2020/023437 WO2020255925A1 (en) | 2019-06-19 | 2020-06-15 | Method for forming pattern, method for manufacturing substrate with pattern, and method for manufacturing sintered body with pattern |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/041178 WO2020255433A1 (en) | 2019-06-19 | 2019-10-18 | Pattern formation method, method for producing patterned substrate, and method for producing patterned sintered body |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2020255925A1 (en) |
WO (2) | WO2020255433A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007276441A (en) * | 2005-09-06 | 2007-10-25 | Canon Inc | Method and apparatus for manufacturing structure having pattern, and method for manufacturing mold |
JP2008090238A (en) * | 2006-10-05 | 2008-04-17 | Asahi Kasei Corp | Wire grid polarizing plate and method of manufacturing the same |
JP2008100419A (en) * | 2006-10-18 | 2008-05-01 | Nippon Telegr & Teleph Corp <Ntt> | Method and apparatus for producing minute structure |
WO2009098946A1 (en) * | 2008-01-24 | 2009-08-13 | Hirobumi Itou | Process for producing corrugated plate and corrugated plate |
JP2016065981A (en) * | 2014-09-25 | 2016-04-28 | Jx日鉱日石エネルギー株式会社 | Method of manufacturing member with concavo-convex pattern |
-
2019
- 2019-10-18 WO PCT/JP2019/041178 patent/WO2020255433A1/en active Application Filing
-
2020
- 2020-06-15 WO PCT/JP2020/023437 patent/WO2020255925A1/en active Application Filing
- 2020-06-15 JP JP2021528222A patent/JPWO2020255925A1/ja active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007276441A (en) * | 2005-09-06 | 2007-10-25 | Canon Inc | Method and apparatus for manufacturing structure having pattern, and method for manufacturing mold |
JP2008090238A (en) * | 2006-10-05 | 2008-04-17 | Asahi Kasei Corp | Wire grid polarizing plate and method of manufacturing the same |
JP2008100419A (en) * | 2006-10-18 | 2008-05-01 | Nippon Telegr & Teleph Corp <Ntt> | Method and apparatus for producing minute structure |
WO2009098946A1 (en) * | 2008-01-24 | 2009-08-13 | Hirobumi Itou | Process for producing corrugated plate and corrugated plate |
JP2016065981A (en) * | 2014-09-25 | 2016-04-28 | Jx日鉱日石エネルギー株式会社 | Method of manufacturing member with concavo-convex pattern |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020255925A1 (en) | 2020-12-24 |
WO2020255433A1 (en) | 2020-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10899120B2 (en) | Process for transferring microstructures to a final substrate | |
JP5182658B2 (en) | Method for producing uneven pattern forming sheet and method for producing optical element | |
MX2011005900A (en) | Method for producing patterned materials. | |
TW200932656A (en) | Method of micro/nano imprinting | |
CN103209812A (en) | Method and apparatus for producing a nanostructured or smooth polymer article | |
KR101565835B1 (en) | Fabrication method of replication mold, fine structures using the same and its applications thereof. | |
KR101416625B1 (en) | Manufacturing method of polymer mold for forming fine pattern, polymer mold manufactured by the same, and method for forming fine pattern using the smae | |
Yin et al. | Hierarchical surface wrinkles directed by wrinkled templates | |
Zhong et al. | Microstructure formation via roll-to-roll UV embossing using a flexible mould made from a laminated polymer–copper film | |
JP2008302591A (en) | Irregularly patterned sheet, method of manufacturing irregularly pattered sheet, optical diffuser, original sheet plate for manufacture of optical diffuser and method of manufacturing optical diffuser | |
CN109311663B (en) | Layered microstructure, mold for preparing layered microstructure and preparation method of mold | |
TWI461277B (en) | Mold for imprinting and method for manufacturing the same | |
JP2008304701A (en) | Uneven pattern formed sheet, its manufacturing method, process sheet original plate for manufacturing light diffusion body, and method for manufacturing light diffusion body | |
US8632717B2 (en) | Method of nanoimprinting a piezoelectric polymeric material for forming high aspect ratio nanopillars | |
WO2020255925A1 (en) | Method for forming pattern, method for manufacturing substrate with pattern, and method for manufacturing sintered body with pattern | |
CN103513304B (en) | Light diffusing sheet and its manufacture method, film in the original and its manufacture method, 2 process moldings | |
JP2016198914A (en) | Compact | |
JP5682841B2 (en) | Process sheet master for manufacturing light diffuser and method for manufacturing light diffuser | |
JP2011071399A (en) | Nanoimprint pattern formation method | |
Park et al. | Fabrication of zinc oxide nanostructures using solvent-assisted capillary lithography | |
TW201731670A (en) | Structure | |
TWI571381B (en) | Protective film and manufacturing method thereof | |
KR101593457B1 (en) | Photo curable polymer resin composites of pyrrole based and method for fabricating fine pattern using the same | |
Dumond et al. | Superhydrophobic surfaces with embedded protective sawtooth ring microstructures | |
KR101884248B1 (en) | Method for continuously arranging particle on large area |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20826439 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021528222 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20826439 Country of ref document: EP Kind code of ref document: A1 |