WO2020255435A1 - Axial-gap rotating electric machine - Google Patents

Axial-gap rotating electric machine Download PDF

Info

Publication number
WO2020255435A1
WO2020255435A1 PCT/JP2019/042417 JP2019042417W WO2020255435A1 WO 2020255435 A1 WO2020255435 A1 WO 2020255435A1 JP 2019042417 W JP2019042417 W JP 2019042417W WO 2020255435 A1 WO2020255435 A1 WO 2020255435A1
Authority
WO
WIPO (PCT)
Prior art keywords
base
electric machine
rotor
resin
rotary electric
Prior art date
Application number
PCT/JP2019/042417
Other languages
French (fr)
Japanese (ja)
Inventor
博洋 床井
賢二 池田
瑞紀 中原
利文 鈴木
高橋 秀一
恭永 米岡
酒井 亨
高橋 大作
潤 櫻井
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Priority to CN201980093187.5A priority Critical patent/CN113508511B/en
Publication of WO2020255435A1 publication Critical patent/WO2020255435A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets

Definitions

  • the present invention relates to an axial gap type rotary electric machine.
  • the axial gap type rotary electric machine has a structure in which a disk-shaped rotor and a stator are arranged so as to face each other in the direction of the axis of rotation. Since the facing area between the rotor and the stator, which is the torque generation surface, increases in proportion to the square of the rotor diameter, a shape with a small aspect ratio, that is, a shape with a radial dimension larger than the shaft length, can be used to increase output. It has the feature that it is easy to improve characteristics such as efficiency.
  • the rotor of this axial gap type rotary electric machine consists of a yoke fastened to a rotating shaft and a magnet placed on the surface of the yoke, and there is a rotor in which the magnet and the yoke are integrally molded with resin.
  • Patent Document 1 discloses a rotor in which a permanent magnet arranged on one end face of the back yoke is held in the back yoke by a retaining means made of a molded synthetic resin.
  • An object of the present invention is to provide an axial gap type rotary electric machine capable of preventing the rotor from being damaged even if the resin of the rotor integrally molded with the magnet and the yoke deteriorates.
  • the present invention includes an axial having a rotor and a stator arranged to face the rotor via a gap provided along the central axis direction of the rotor.
  • the rotor includes a base, a groove provided on the end face of the base on the stator side along the circumferential direction of the rotor, a magnet arranged in the groove, and the said.
  • a resin for molding and fixing a magnet in the groove is provided, the base has a recess that communicates with the groove and is filled with the resin, and the stator side of the resin filled in the recess has the recess. It is characterized in that a part of the base is adjacent to each other.
  • FIG. 5 is an enlarged cross-sectional view of a rotor according to a fifth embodiment of the present invention. It is sectional drawing which fitted the shaft to the rotor according to 6th Embodiment of this invention.
  • FIG. 5 is an enlarged cross-sectional view of a rotor according to a fifth embodiment of the present invention. It is sectional drawing which fitted the shaft to the rotor according to 6th Embodiment of this invention.
  • FIG. 5 is an enlarged cross-sectional view of a rotor according to a sixth embodiment of the present invention. It is sectional drawing which fitted the shaft to the rotor according to 7th Embodiment of this invention. It is an enlarged sectional view of the rotor according to 7th Embodiment of this invention. It is sectional drawing which fitted the shaft to the rotor according to 8th Embodiment of this invention.
  • FIG. 5 is an enlarged cross-sectional view of a rotor according to an eighth embodiment of the present invention.
  • FIG. 5 is an enlarged cross-sectional view of a rotor according to another embodiment of the present invention. It is an enlarged sectional view of the rotor according to another embodiment of this invention.
  • FIG. 1A is a cross-sectional perspective view of an axial gap type motor using a rotor according to the first embodiment of the present invention
  • FIG. 1B is a cross-sectional perspective view of a rotor fitted with a shaft according to the first embodiment
  • FIG. 1C is a first aspect of the present invention. It is an enlarged sectional view of the rotor according to an embodiment.
  • the resin is omitted so that the shapes inside the permanent magnet and the yoke can be seen.
  • the axial gap type motor 1000 (hereinafter referred to as the motor 1000) is a double rotor type rotary electric machine that faces the stator (stator) 100 so as to be sandwiched between the two rotors (rotors) 200. is there.
  • the motor 1000 includes a stator 100, a rotor 200, a housing 300, a bracket 400, a shaft 500, and a bearing 600.
  • the stator 100 has a plurality of (12 in this embodiment) core members 140 arranged in an annular shape around the shaft 500.
  • Each core member 140 is wound around a core 110 whose both end surfaces are substantially trapezoidal pillars, a tubular bobbin (not shown) covering the side surface of the core 110, and a side surface of the core 110 via the bobbin. It includes a coil 120.
  • Each of the twelve core members 140 arranged in an annular shape is integrally molded by the resin 130 in the housing 300, and is molded into one stator 100.
  • As the core 110 a laminated body of an electromagnetic steel plate or an amorphous metal, or a soft magnetic material such as a dust core can be used.
  • the rotor 200 faces the stator 100 via a gap provided along the axis 700 direction.
  • the shaft 500 that meshes with the rotor 200 is rotatably supported by the bracket 400 via the bearing 600, and rotates with the rotating rotor 200 by passing electricity through the stator 100 to output the rotational force of the rotor 200.
  • the bracket 400 rotatably supports the shaft 500 via a bearing 600 and is fixed to both ends of the housing 300 to protect the rotor 200.
  • a terminal block (not shown) having a terminal for electrically connecting to the coil 120 is provided on the outer peripheral side surface of the housing 300, and the primary side electric wire and the secondary side electric wire are electrically connected. You can do it.
  • the rotor 200 is arranged in a substantially disk-shaped base 220, a groove 222 provided on an end surface 221 of the base 220 on the stator 100 side along the circumferential direction of the rotor 200, and a groove 222.
  • a permanent magnet (magnet) 210 and a resin 230 (see FIG. 1A) for molding and fixing the permanent magnet 210 in the groove 222 are provided.
  • the base 220 is a substantially disk-shaped member composed of a soft magnetic material such as iron or dust core and acting as a joint iron (yoke). It supports the permanent magnet 210 and is coupled to the shaft 500 so as to rotate. doing. Further, the end surface 221 of the base 220 on the stator 100 side is provided with a groove 222 along the circumferential direction of the rotor 200 as described above.
  • the permanent magnet 210 is a ring-shaped disk and is arranged in the groove 222 of the base 220.
  • the groove 222 is composed of an inner peripheral wall 223, an outer peripheral wall 224, and a bottom surface 225.
  • the inner peripheral wall 223 forms a space for filling the resin 230 with the inner peripheral side surface 2102 of the permanent magnet 210. Therefore, the distance from the axis 700 is smaller on the inner peripheral wall 223 than on the inner peripheral side surface 2102 of the permanent magnet 210. Further, the inner peripheral wall 223 is provided with a recess 2231.
  • a small diameter surface 2241 with which the outer peripheral side surface 2101 of the permanent magnet 210 abuts is formed on the bottom surface 225 side of the outer peripheral wall 224.
  • a large-diameter surface 2242 is formed on the stator 100 side of the outer peripheral wall 224, and a recess 2243 is formed on the outer peripheral wall 224 between the small-diameter surface 2241 and the large-diameter surface 2242.
  • the recess 2231 is formed on the entire circumference of the inner peripheral wall 223, but may be formed only on a part of the inner peripheral wall 223. Further, although the recess 2243 is formed on the entire circumference of the outer peripheral wall 224, it may be formed only on a part of the outer peripheral wall 224 instead of the entire circumference.
  • the outer peripheral side surface 2101 of the permanent magnet 210 comes into contact with the small diameter surface 2241 of the outer peripheral wall 224. Therefore, the permanent magnet 210 is fixed in the circumferential direction of the base 220. Further, the inner peripheral side surface 2102 of the permanent magnet 210 is formed so that the inner diameter increases toward the stator 100 side in the axial center 700 direction. That is, the permanent magnet 210 is formed with a hole whose inner diameter expands toward the stator 100 side.
  • the permanent magnet 210 is formed of a bond magnet or a ferrite magnet, generates a magnetic field, and repeatedly attracts and repels the magnetic force generated from the core member 140 of the stator 100 to rotate the rotor 200 around the axis 700. Therefore, the surface of the ring-shaped permanent magnet 210 is magnetized so as to have the number of magnetic poles corresponding to the number of phases of the AC power supply and the number of core members 140.
  • a permanent magnet 210 and a resin 230 filled by molding are arranged in the groove 222 of the base 220, and the permanent magnet 210 is molded and fixed to the base 220.
  • the resin 230 is filled and solidified between the large-diameter surface 2242 and the recess 2243 of the outer peripheral wall 224 and the outer peripheral side surface 2101 of the permanent magnet 210, and between the inner peripheral wall 223 and the inner peripheral side surface 2102 of the permanent magnet 210.
  • the base 220, the permanent magnet 210, and the resin 230 are made of materials having a coefficient of linear expansion close to each other to reduce the thermal stress generated in the rotor 200.
  • the base 220 has recesses 2231 and 243 that communicate with the groove 222 and are filled with the resin 230, and the recesses 2231 and 243 are filled with the resin 230. Focusing on the configuration other than the base, the convex portions 2301,302 are formed by the resin entering the recesses 2231 and 243. Then, a part of the base 220 (recesses 2231,243 in the base 220) is on the stator 100 side (lower side in FIG. 1C) of the convex portions 2301,302 which are the resins 230 filled in the two recesses 2231 and 243.
  • the stopper portions 2232 and 2244 which are the portions on the stator 100 side of the above, are adjacent to each other.
  • the stopper portions 2232 and 2244 can prevent the magnet of the rotor from being attracted to the stator side by the magnetic attraction force and coming off from the base.
  • the base 220 is the base 220 when the rotor 200 is viewed along the axes AA and BB parallel to the axis 700 in the cross section of the rotor 200 including the axis 700 of the rotor 200.
  • the stopper portions 2232 and 2244, which are a part of the stopper portion 2232, 2244, are provided with recesses 2231, 243 provided so that convex portions 2301, 302, which are a part of the resin 230, appear adjacent to each other on the opposite side of the stator 100.
  • the convex portions 2301,302 which are the resin 230 filled in the concave portions 2231, 243, are covered with the concave portions 2231, 243 and the resin 230, and are provided inside the rotor 200.
  • the base 220 of the present embodiment includes two recesses that communicate with the groove 222 and are filled with the resin 230, but may include only one recess.
  • the motor 1000 having such a configuration operates as follows.
  • the output line from the inverter is connected to the primary side of the terminal block, and a three-phase alternating current is applied to the coil 120.
  • a rotating magnetic field is formed in the stator 100, and torque is generated by attracting and repelling the DC magnetic field formed in the rotor 200 by the permanent magnet 210.
  • the motor is driven, not only the centrifugal force generated in the radial direction of the permanent magnet 210 arranged in the groove 222 of the rotor 200 but also the magnetic attraction force is generated on the stator 100 side in the axial direction 700 direction.
  • the base 220 has recesses 2231 and 243 that communicate with the groove 222 and are filled with the resin 230, and the convex portions 2301,302 that are the resin 230 filled in the recesses 2231 and 243.
  • the stopper portions 2232 and 2244 which are a part of the base 220 (the portion of the recesses 2231 and 243 on the stator 100 side), are adjacent to the stator 100 side of the resin 230 so as to hinder the movement of the resin 230 along the axis 700 direction. doing.
  • the convex portions 2301,302, which are the resin 230 in the recesses 2231,243, are located inside the rotor 200, so that the convex portions 2301,302, which are the resin 230 in the recesses 2231,243, come into contact with the outside air. Is blocked. Therefore, the convex portions 2301,302, which are the resins 230 in the concave portions 2231,243, are prevented from being easily deteriorated by environmental substances such as oxygen and the heat of the outside air like the resin 230 exposed on the surface of the rotor 200.
  • the holding function of the permanent magnet 210 (the function of restraining the permanent magnet 210 in the direction of the axis 700) from being lowered due to the continuous use of the rotor 200.
  • the recess 2231 is formed in an annular shape on the entire circumference of the inner peripheral wall 223 and the recess 2241 is formed in an annular shape on the entire circumference of the outer peripheral wall 224 of the groove 222, the holding function of the permanent magnet 210 can be further enhanced.
  • the resin 230 and the permanent magnet 210 are brought into contact with each other via the inner peripheral side surface 2102 of the permanent magnet 210 whose inner diameter increases toward the stator 100 side to hold the permanent magnet 210 of the resin 230.
  • the function (the function of restraining the permanent magnet 210 in the direction of the axis 700) is enhanced. That is, the permanent magnet 210 can be held firmly on the base 220 as compared with the case where the inner peripheral side surface of the permanent magnet 210 is provided substantially vertically.
  • the magnetic resistance of the permanent magnet 210 against the leakage flux is increased, and the decrease in motor output and efficiency is suppressed. Can be done. Further, by using the ring-shaped permanent magnet 210, it is possible to prevent the permanent magnet 210 from scattering even if the centrifugal force becomes large.
  • the base 220 can be manufactured at low cost because the recesses 2231 and 243 can be easily additionally processed by cutting the groove 222 with a lathe with respect to the disk-shaped structure manufactured by casting or forging.
  • FIG. 2A is a sectional perspective view in which the shaft 500 is fitted to the rotor 201 according to the second embodiment of the present invention
  • FIG. 2B is an enlarged sectional view of the rotor 201 according to the second embodiment of the present invention.
  • the resin 231 is omitted so that the shapes inside the permanent magnet 211 and the base 220 can be seen.
  • the difference between this embodiment and the first embodiment is the shape of the permanent magnet 211 and the resin 231. Therefore, since the cross section of the motor is the same as that of FIG. 1A, the description is omitted, and the description of the parts, configurations, etc. that overlap with the first embodiment is omitted in principle.
  • the rotor 201 includes a substantially disk-shaped base 220 and a groove 222 provided on the end surface 221 of the base 220 on the stator 100 side along the circumferential direction of the rotor 201.
  • a permanent magnet 211 having a number of magnetic poles arranged in the groove 222 at a predetermined interval and a resin 231 for molding and fixing the permanent magnet 211 having a number of magnetic poles in the groove 222 are provided. Since the base 220 is the same as that of the first embodiment, the description thereof will be omitted.
  • the permanent magnet 211 is a fan-shaped plate, and the number of magnetic poles is arranged in the groove 222 of the base 220.
  • the outer peripheral side surface 2111 of the permanent magnet 211 is in contact with the small diameter surface 2241.
  • the permanent magnet 211 is formed of a bond magnet or a ferrite magnet, generates a magnetic field, and repeatedly attracts and repels the magnetic force generated from the core member 140 of the stator 100, and the axis 700.
  • the rotor 201 is rotated around the magnet. Therefore, a permanent magnet 211 having a number of magnetic poles corresponding to the number of phases of the AC power supply and the number of core members 140 is arranged in the groove 222 of the base 220.
  • the periphery of the permanent magnet 211 arranged in the groove 222 of the base 220 is filled with the resin 231.
  • the inner peripheral side surface 2112 of the permanent magnet 211 is formed so that the distance between the groove 222 and the inner peripheral wall 223 increases toward the stator 100 side in the axial direction 700 direction. Therefore, the permanent magnet 211 cannot move in the stator 100 side in the axial direction 700 direction and in the inner diameter direction of the base 220 due to the resin 231 in contact with the inner peripheral side surface 2112 of the permanent magnet 211.
  • the outer peripheral side surface 2111 of the permanent magnet 211 having the number of magnetic poles is in contact with the small diameter surface 2241 and the resin 230 is filled between the large diameter surface 2242 and the recess 2243, it moves in the outer diameter direction of the base 220. Can not.
  • the inner peripheral wall 223 and the outer peripheral wall 224 forming the groove 222 of the base 220 are formed with the recesses 2231 and the recesses 2243, respectively, filled with the resin 231 and the convex portions 2311 and 2312. It is formed. Therefore, the base 220 has recesses 2231 and 243 that communicate with the groove 222 and are filled with the resin 231, and the convex portions 2311 and 2312, which are the resins 231 filled in the recesses 2231 and 243, are on the stator 100 side.
  • the stopper portions 2232 and 2244 which are a part of the base 220 (the portion of the recesses 2231 and 243 on the stator 100 side), are adjacent to each other so as to hinder the movement of the resin 231 along the axis 700 direction. That is, the base 220 is the base 220 when the rotor 201 is viewed along the axes AA and BB parallel to the axis 700 in the cross section of the rotor 201 including the axis 700 of the rotor 201.
  • the stoppers 2232 and 2244 which are part of the above, are provided with recesses 2231,243 provided so that the convex portions 2311 and 2312, which are a part of the resin 231 and appear adjacent to each other, on the opposite side of the stator 100. Further, the convex portions 2311 and 2312, which are the resins 231 filled in the concave portions 2231 and 243, are covered with the concave portions 2231 and 243 and the resin 231 and are provided inside the rotor 201.
  • the resin 231 is filled between the outer peripheral wall 224 of the groove 222 of the base 220 and the outer peripheral side surface 2111 of the permanent magnet 211, and between the inner peripheral wall 223 of the base 220 and the inner peripheral side surface 2112 of the permanent magnet 211. Not only is it filled between the permanent magnets 211 adjacent to the base 220 in the circumferential direction. Therefore, the permanent magnet 211 cannot move in the circumferential direction. Further, the resin 231 filled between the permanent magnets 211 adjacent to each other in the circumferential direction is the resin 231 filled between the outer peripheral wall 224 of the groove 222 of the base 220 and the outer peripheral side surface 2111 of the permanent magnet 211, and the base. The resin 231 filled between the inner peripheral wall 223 of 220 and the inner peripheral side surface 2112 of the permanent magnet 211 is connected.
  • the permanent magnet 211 is not an annulus but a divided configuration. Therefore, the outer peripheral side surface 2111 of the permanent magnet 211 can be brought into contact with the small diameter surface 2241 of the outer peripheral wall 224 of the groove 222 without making the outer diameter of the permanent magnet 211 highly accurate, and the processing cost of the permanent magnet 211 can be suppressed. Can be done. Further, in a high-power motor or a high-power density motor, a large centrifugal force is applied to the permanent magnet 211 because the rotor has a larger diameter and a higher speed. Since the permanent magnet 210 of the first embodiment has a ring shape, tensile stress is generated with respect to centrifugal force.
  • the permanent magnet 211 of the present embodiment since the permanent magnet 211 of the present embodiment has a divided structure, no tensile stress is generated with respect to the centrifugal force. Therefore, the large centrifugal force becomes a force that tends to scatter the permanent magnet 211 in the outer diameter direction as it is.
  • the rotor 201 according to the present embodiment since each of the outer peripheral side surfaces 2111 of the permanent magnets 211 having a divided configuration comes into contact with the small diameter surface 2241, it is possible to prevent each of the permanent magnets 211 from scattering in the outer diameter direction. it can.
  • the abutting portion abutting on the outer peripheral side surface 2111 of the permanent magnet is made of resin
  • the small diameter surface 2241 in contact with the outer peripheral side surface 2111 of the permanent magnet 211 is formed of iron, a dust core, or the like, it can be made thinner, and the outer diameter of the rotor 201 can be reduced.
  • the small diameter surface 2221 is provided on the outer peripheral wall 224 on the bottom surface 225 side of the groove 222, the bending moment in the outer diameter direction applied to the outer peripheral wall 224 can be reduced by the centrifugal force acting on the permanent magnet 211, and the outer peripheral wall 224 can be formed.
  • the small diameter surface 2241 makes the wall thicker, and the rigidity can be increased. Further, by providing a gap between the permanent magnets 211 having the number of magnetic poles, the magnetic resistance of the permanent magnets 211 against the leakage flux can be increased, and a decrease in motor output and efficiency can be suppressed.
  • the shape of the permanent magnet is not limited to the shape of the permanent magnet 211 shown in FIGS. 2A and 2B.
  • a permanent magnet 212 having an axially reduced portion 2121 that is tapered in the circumferential direction of the base 220 toward the stator 100 in the axial center 700 direction may be used. Good.
  • the permanent magnet 212 can be easily manufactured by molding a bond magnet in which magnetic powder and resin are mixed by injection molding. Further, when the permanent magnet 212 is manufactured by sintering, the axially reduced portion 2121 can be formed without increasing the processing cost by using the die punching taper.
  • FIG. 4A is a sectional perspective view in which the shaft 500 is fitted to the rotor 202 according to the third embodiment of the present invention
  • FIG. 4B is an enlarged sectional view of the rotor 202 according to the third embodiment of the present invention.
  • the resin 232 is omitted so that the shapes inside the permanent magnet 211 and the base 240 can be seen.
  • the difference between this embodiment and the second embodiment is the shape of the inner peripheral wall 243 and the outer peripheral wall 244 in the groove 242 of the base 240, and the shape of the resin 232. Therefore, since the cross section of the motor is substantially the same as that of FIG. 1A, it is omitted, and the description of parts, configurations, etc. that overlap with the second embodiment is omitted in principle.
  • the rotor 202 includes a substantially disk-shaped base 240, and a groove 242 provided on the end surface 241 of the base 240 on the stator 100 side along the circumferential direction of the rotor 202.
  • a permanent magnet 211 having a number of magnetic poles arranged in the groove 242 and a resin 232 for molding and fixing the permanent magnet 211 having a number of magnetic poles in the groove 242 are provided.
  • the base 240 is provided with a groove 242 on the end surface 241 on the stator 100 side along the circumferential direction of the rotor 202.
  • the groove 242 is composed of an inner peripheral wall 243, an outer peripheral wall 244, and a bottom surface 245.
  • the inner peripheral wall 243 is provided with a recess 2431 on the bottom surface 245 side
  • the outer peripheral wall 244 is provided with a recess 2441 on the bottom surface 245 side.
  • the resin 232 is filled in the groove 242 in which the permanent magnet 211 is arranged. That is, between the inner peripheral wall 243 and the inner peripheral side surface 2112 of the permanent magnet 211, between the outer peripheral wall 244 and the outer peripheral side surface 2111 of the permanent magnet 211 (recessed portion 2441), and between the permanent magnets 211 adjacent to each other in the circumferential direction.
  • the resin 232 is filled. Since the outer peripheral wall 244 and the outer peripheral side surface 2111 of the permanent magnet 211 are not opened in the axial direction 700 direction, the resin cannot be directly filled.
  • the resin 232 can be filled between the outer peripheral wall 244 and the outer peripheral side surface 2111 of the permanent magnets 211.
  • the resin 232 filled between the permanent magnets 211 adjacent to each other in the circumferential direction includes the resin 232 filled between the inner peripheral wall 243 and the inner peripheral side surface 2112 of the permanent magnets 211, and the outer peripheral wall 244 and the permanent magnets 211.
  • the resin 232 filled between the outer peripheral side surfaces 2111 is connected.
  • the resin 232 is filled between the inner peripheral wall 243 and the inner peripheral side surface 2112 of the permanent magnet 211, so that the recess 2431 of the inner peripheral wall 243 is filled with the resin 232, and the resin is formed between the permanent magnets 211 adjacent to each other in the circumferential direction.
  • the resin 232 is filled in the recess 2441 of the outer peripheral wall 244. Therefore, the base 240 has recesses 2431 and 2441 that are filled with the resin 232 that communicates with the groove 242, and the convex portions 2321 and 322 that are the resin 232 filled in the recesses 2431 and 2441 are provided on the stator 100 side.
  • the stopper portions 2431 and 442 which are a part of the base 240 (the portion of the recesses 2431 and 441 on the stator 100 side), are adjacent to each other so as to hinder the movement of the resin 232 along the axis 700 direction. That is, when the base 240 is viewed in the cross section of the rotor 202 including the axis 700 of the rotor 202, the rotor 202 is viewed along the axes AA and BB directions parallel to the axis 700 (see FIG. 4B).
  • the stopper portion 2431,442 which is a part of the base 240, is provided with a concave portion 2431,241 provided so that the convex portions 2321,322, which are a part of the resin 232, appear adjacent to each other on the opposite side of the stator 100. There is. Further, the convex portions 2321 and 322, which are the resin 232 filled in the concave portions 2431 and 441, are covered with the concave portions 2431 and 441 and the resin 232 and are provided inside the rotor 202.
  • the convex portions 2321 and 322, which are the resin 232 in the concave portions 2431 and 441 are located inside the rotor 202, the convex portions 2321 and 2322, which are the resin 232 in the concave portions 2431 and 441, and the outside air Contact is cut off. Therefore, the convex portions 2321 and 322, which are the resin 232 in the concave portions 2431 and 441, are prevented from being easily deteriorated by environmental substances such as oxygen and the heat of the outside air like the resin 232 exposed on the surface of the rotor 202.
  • the holding function of the permanent magnet 211 (the restraining function of the permanent magnet 211 in the direction of the axis 700) from being lowered due to the continuous use of the rotor 202.
  • the recess 2431 is formed in an annular shape on the entire circumference of the inner peripheral wall 243 and the recess 2441 is formed on the entire circumference of the outer peripheral wall 244, the holding function of the permanent magnet 211 can be further enhanced.
  • the inner peripheral side surface 2112 of the permanent magnet 211 is formed so that the distance between the groove 242 and the inner peripheral wall 243 increases toward the stator 100 in the axial 700 direction. Therefore, by bringing the resin 232 and the permanent magnet 211 into contact with each other via the inner peripheral side surface 2112 of the permanent magnet 211, the holding function of the permanent magnet 211 of the resin 232 (the function of restraining the permanent magnet 211 in the axis 700 direction). ) Is being strengthened. That is, the permanent magnet 211 can be held firmly on the base 240 as compared with the case where the inner peripheral side surface of the permanent magnet 211 is provided substantially vertically.
  • FIG. 5A is a sectional perspective view in which the shaft 500 is fitted to the rotor 203 according to the fourth embodiment of the present invention
  • FIG. 5B is an enlarged sectional view of the rotor 203 according to the fourth embodiment of the present invention.
  • the resin 233 is omitted so that the shapes inside the permanent magnet 211 and the base 250 can be seen.
  • the difference between this embodiment and the second embodiment is the shape of the base 250 and the resin 233. Therefore, since the cross section of the motor is substantially the same as that of FIG. 1A, it is omitted, and the description of parts, configurations, etc. that overlap with the second embodiment is omitted in principle.
  • the rotor 203 includes a substantially disk-shaped base 250, and a groove 252 provided on the end surface 251 of the base 250 on the stator 100 side along the circumferential direction of the rotor 203.
  • a permanent magnet 211 having a number of magnetic poles arranged in the groove 252 and a resin 233 for molding and fixing the permanent magnet 211 having a number of magnetic poles in the groove 252 are provided.
  • the base 250 is provided with a groove 252 on the end surface 251 on the stator 100 side along the circumferential direction of the rotor 203.
  • the groove 252 is composed of an inner peripheral wall 253, an outer peripheral wall 254, and a bottom surface 255.
  • one or more blind holes 256 are provided on the end surface 257 of the base 250 on the anti-stator 100 side.
  • the blind hole 256 communicates with the groove 252 through an opening 258 formed in the inner peripheral wall 253.
  • the portion surrounded by the bottom portion 2561 and the peripheral surface 2562 of the blind hole 256 forms a recess 2563.
  • a small diameter surface 2541 with which the outer peripheral side surface 2111 of the permanent magnet 211 abuts is provided on the bottom surface 255 side of the outer peripheral wall 254, and a large diameter surface 2542 is formed on the stator 100 side of the outer peripheral wall 254. Since the small diameter surface 2541 and the large diameter surface 2542 are the same as the small diameter surface 2241 and the large diameter surface 2242 of the second embodiment, the description thereof will be omitted.
  • the resin 233 is filled in the groove 252 in which the permanent magnet 211 is arranged. That is, the resin 233 is filled between the inner peripheral wall 253 and the inner peripheral side surface 2112 of the permanent magnet 211, between the outer peripheral wall 254 and the outer peripheral side surface 2111 of the permanent magnet 211, and between the permanent magnets 211 adjacent to each other in the circumferential direction. Will be done.
  • the resin 233 filled between the permanent magnets 211 adjacent to each other in the circumferential direction includes the resin 233 filled between the inner peripheral wall 253 and the inner peripheral side surface 2112 of the permanent magnets 211, and the outer peripheral wall 264 and the permanent magnets 211.
  • the resin 233 filled between the outer peripheral side surfaces 2111 is connected.
  • the blind hole 256 is filled with the resin 233 through the opening 258 of the inner peripheral wall 253, and the recess 2563 is filled with the resin.
  • 233 is filled. Therefore, the base 250 has a recess 2563 filled with the groove 252 and the resin 233, and the axial center 700 of the resin 233 is located on the stator 100 side of the convex portion 2331 which is the resin 233 filled in the recess 2563.
  • the bottom 2561 of the blind hole 256 which is a part of the base 250, is adjacent so as to hinder the movement along the direction.
  • the base 250 is a part of the base 250 when the rotor 203 is viewed along the axis AA direction parallel to the axis 700 in the cross section of the rotor 203 including the axis 700 of the rotor 203.
  • the bottom portion 2561 of the blind hole 256 is provided with a recess 2563 provided on the opposite side of the stator 100 so that a convex portion 2331 which is a part of the resin 233 appears adjacent to the bottom portion 2561.
  • the convex portion 2331 which is the resin 233 filled in the concave portion 2563, is covered with the concave portion 2563 and another resin 233, and is provided inside the rotor 203.
  • the convex portion 2331 which is the resin 233 filled in the blind hole 256 is located inside the rotor 203, the contact between the convex portion 2331 which is the resin 233 in the concave portion 2563 and the outside air is blocked. To. Therefore, the convex portion 2331, which is the resin 233 in the concave portion 2563, is prevented from being easily deteriorated by an environmental substance such as oxygen or the heat of the outside air like the resin 233 exposed on the surface of the rotor 203. It is possible to prevent the holding function of the permanent magnet 211 (the function of restraining the permanent magnet 211 in the direction of the axis 700) from being deteriorated by the continuous use of the rotor 203.
  • the distance between the inner peripheral side surface 2112 of the permanent magnet 211 and the inner peripheral wall 253 of the groove 252 is formed so as to expand toward the stator 100 side in the axial center 700 direction as in the third embodiment. Therefore, by bringing the resin 233 and the permanent magnet 211 into contact with each other via the inner peripheral side surface 2112 of the permanent magnet 211, the holding function of the permanent magnet 211 of the resin 233 (the function of restraining the permanent magnet 211 in the axial center 700 direction). ) Is being strengthened. That is, the permanent magnet 211 can be held firmly on the base 250 as compared with the case where the inner peripheral side surface of the permanent magnet 211 is provided substantially vertically.
  • a recess 2563 is provided which communicates with the groove 252 and is filled with the resin 233 by a simple process of providing a plurality of blind holes 256 on the end surface 257 on the anti-stator 100 side of the base 250. It becomes possible.
  • one or more blind holes 256 are provided on the end surface 257 of the base 250 on the anti-stator 100 side, but it is preferable that the number of blind holes is large as long as the strength of the base 250 is not impaired. ..
  • FIG. 6A is a sectional perspective view in which the shaft 500 is fitted to the rotor 204 according to the fifth embodiment of the present invention
  • FIG. 6B is an enlarged sectional view of the rotor 204 according to the fifth embodiment of the present invention.
  • the resin 234 is omitted so that the shapes inside the permanent magnet 211 and the base 260 can be seen.
  • the difference between this embodiment and the second embodiment is the shape of the base 260 and the resin 234. Therefore, since the cross section of the motor is substantially the same as that of FIG. 1A, it is omitted, and the description of parts, configurations, etc. that overlap with the second embodiment is omitted in principle.
  • the rotor 204 includes a substantially disk-shaped base 260 and a groove 262 provided on the end surface 261 of the base 260 on the stator 100 side along the circumferential direction of the rotor 204.
  • a permanent magnet 211 having the number of magnetic poles arranged in the groove 262 and a resin 234 for molding and fixing the permanent magnets 211 having the number of magnetic poles in the groove 262 are provided.
  • the base 260 is provided with a groove 262 on the end surface 261 on the stator 100 side along the circumferential direction of the rotor 204.
  • the groove 262 is composed of an inner peripheral wall 263, an outer peripheral wall 264, and a bottom surface 265. Further, the inner peripheral wall 263 rises at an acute angle with respect to the bottom surface 265, and the portion sandwiched between the inner peripheral wall 263 and the bottom surface 265 forms a recess 2631. At this time, since the recess 2631 only processes the inner peripheral wall 263 at an acute angle with respect to the bottom surface 265, the inner peripheral wall 263 and the bottom surface 265 can be continuously processed by a lathe, and the man-hours can be reduced. Since the outer peripheral wall 264 (small diameter surface 2461 and large diameter surface 2642) has the same configuration as that of the fourth embodiment, the description thereof will be omitted.
  • the resin 234 is filled in the groove 262 in which the permanent magnet 211 is arranged. That is, the resin 234 is filled between the inner peripheral wall 263 and the inner peripheral side surface 2112 of the permanent magnet 211, between the outer peripheral wall 264 and the outer peripheral side surface 2111 of the permanent magnet 211, and between the permanent magnets 211 adjacent to each other in the circumferential direction. Will be done.
  • the resin 234 filled between the permanent magnets 211 adjacent to each other in the circumferential direction includes the resin 234 filled between the inner peripheral wall 263 and the inner peripheral side surface 2112 of the permanent magnets 211, and the outer peripheral wall 264 and the permanent magnets 211.
  • the resin 234 filled between the outer peripheral side surfaces 2111 is connected.
  • the recess 2631 is filled with the resin 234 by filling the resin 234 between the inner peripheral wall 263 and the inner peripheral side surface 2112 of the permanent magnet 211. Therefore, the base 260 has a recess 2631 in which the groove 262 and the resin 234 communicate with each other are filled, and a part of the base 260 is on the stator 100 side of the convex portion 2341 which is the resin 234 filled in the recess 2631.
  • the inner peripheral wall 263 is adjacent to the inner peripheral wall 263.
  • the base 260 is a part of the base 260 when the rotor 204 is viewed along the axis AA direction parallel to the axis 700 in the cross section of the rotor 204 including the axis 700 of the rotor 204.
  • a recess 2631 is provided on the opposite side of the stator 100 of the inner peripheral wall 263, so that a convex portion 2341 which is a part of the resin 234 appears adjacently.
  • the convex portion 2341 which is the resin 234 filled in the concave portion 2631, is covered with the concave portion 2631 (inner peripheral wall 243 and the bottom surface 245) and the resin 234, and is provided inside the rotor 204.
  • the convex portion 2341 which is the resin 234 filled in the concave portion 2631 is located inside the rotor 204, the contact between the convex portion 2341 which is the resin 234 filled in the concave portion 2631 and the outside air is blocked. Will be done. Therefore, the convex portion 2341, which is the resin 234 filled in the concave portion 2631, is prevented from being easily deteriorated by an environmental substance such as oxygen or the heat of the outside air like the resin 234 exposed on the surface of the rotor 204. Therefore, it is possible to prevent the holding function of the permanent magnet 211 (the restraining function of the permanent magnet 211 in the direction of the axis 700) from being lowered due to the continuous use of the rotor 204.
  • the inner peripheral side surface 2112 of the permanent magnet 211 and the inner peripheral wall 263 of the groove 262 are formed so that the distance from the axial center 700 increases toward the stator 100 side in the axial center 700 direction. Therefore, by bringing the resin 234 and the permanent magnet 211 into contact with each other via the inner peripheral side surface 2112 of the permanent magnet 211, the holding function of the permanent magnet 211 of the resin 234 (the function of restraining the permanent magnet 211 in the axial center 700 direction). ) Is being strengthened. That is, the permanent magnet 211 can be held firmly on the base 260 as compared with the case where the inner peripheral side surface of the permanent magnet 211 is provided substantially vertically. Further, according to the present embodiment, the recess according to the present invention can be provided by a simple process of inclining the inner peripheral wall 263 toward the bottom surface 265 side of the groove 262.
  • FIG. 7A is a sectional perspective view in which the shaft 500 is fitted to the rotor 205 according to the sixth embodiment of the present invention
  • FIG. 7B is an enlarged sectional view of the rotor 205 according to the sixth embodiment of the present invention.
  • the resin 235 is omitted so that the shapes inside the permanent magnet 211 and the base 270 can be seen.
  • the rotor 205 includes a substantially disk-shaped base 270 and a groove 272 provided on the end surface 271 of the base 270 on the stator 100 side along the circumferential direction of the rotor 205.
  • the head 2771 is separated from the bottom surface 275 in the screw hole 276 formed in the bottom surface 275 of the groove 272 between the permanent magnets 211 having the number of magnetic poles arranged in the groove 272 and the permanent magnets 211 adjacent to each other in the circumferential direction of the base 270. It is provided with a screw 277 screwed in the state of being screwed, and a resin 235 for molding and fixing a permanent magnet 211 having a number of magnetic poles in the groove 272.
  • the base 270 is provided with a groove 272 on the end surface 271 on the stator 100 side along the circumferential direction of the rotor 205.
  • the groove 272 is composed of an inner peripheral wall 273, an outer peripheral wall 274, and a bottom surface 275.
  • screw holes 276 are provided between the permanent magnets 211 adjacent to each other in the circumferential direction of the base 270.
  • a screw 277 is screwed so that the head 2771 is separated from the bottom surface 275. Therefore, the body portion 2772 of the screw 277 protrudes from the bottom surface 275, and the recess 2773 is formed by the head portion 2771 and the body portion 2772.
  • the inner peripheral wall 273 is formed on a flat peripheral surface.
  • the outer peripheral wall 274 small diameter surface 2741 and large diameter surface 2742
  • the description thereof will be omitted.
  • the resin 235 is filled in the groove 272 in which the permanent magnet 211 is arranged. That is, the resin 235 is filled between the inner peripheral wall 273 and the inner peripheral side surface 2112 of the permanent magnet 211, between the outer peripheral wall 274 and the outer peripheral side surface 2111 of the permanent magnet 211, and between the permanent magnets 211 adjacent to each other in the circumferential direction. Will be done.
  • the resin 235 filled between the permanent magnets 211 adjacent to each other in the circumferential direction includes the resin 235 filled between the inner peripheral wall 273 and the inner peripheral side surface 2112 (see FIG. 8A) of the permanent magnets 211 and the outer peripheral wall 274.
  • the resin 235 filled between the permanent magnet 211 and the outer peripheral side surface 2111 is connected.
  • the base 270 has a recess 2773 that communicates with the groove 272 and is filled with the resin 235, and the axial center 700 of the resin 235 is located on the stator 100 side of the convex portion 2351 which is the resin 235 filled in the recess 2773. Adjacent to the head 2771 of the screw 277, which is part of the base 270 so as to impede movement along the direction. That is, the base 270 is the base 270 when the rotor 205 is viewed along the axis AA direction (see FIG.
  • a recess 2773 is provided on the opposite side of the stator 100 in the head portion 2771 of the screw 277, which is a part of the screw 277 so that a convex portion 2351 which is a part of the resin 235 appears adjacently. Further, the convex portion 2351 is covered with the concave portion 2773 and the resin 235, and is provided inside the rotor 205.
  • the convex portion 2351 which is the resin 235 filled in the body portion 2772 is located inside the rotor 205, the convex portion 2351 which is the resin 235 filled in the concave portion 2737 and the outside air come into contact with each other. It is blocked. Therefore, the convex portion 2351, which is the resin 235 filled in the concave portion 2773, is prevented from being easily deteriorated by an environmental substance such as oxygen or the heat of the outside air like the resin 235 exposed on the surface of the rotor 205. Therefore, it is possible to prevent the holding function of the permanent magnet 211 (the function of restraining the permanent magnet 211 in the direction of the axis 700) from being deteriorated by the continuous use of the rotor 205.
  • the inner peripheral side surface 2112 of the permanent magnet 211 (see FIG. 7A) and the inner peripheral wall 273 of the groove 272 are formed so that the distance from the axial center 700 increases toward the stator 100 side in the axial center 700 direction. .. Therefore, by bringing the resin 235 and the permanent magnet 211 into contact with each other via the inner peripheral side surface 2112 of the permanent magnet 211, the holding function of the permanent magnet 211 of the resin 235 (the function of restraining the permanent magnet 211 in the axial center 700 direction). ) Is being strengthened. That is, the permanent magnet 211 can be held firmly on the base 270 as compared with the case where the inner peripheral side surface of the permanent magnet 211 is provided substantially vertically.
  • the recess 2773 according to the present invention can be provided by a simple structure in which a screw hole is provided in the bottom surface 275 of the base 270 and a screw having a head is screwed.
  • the inner peripheral wall 273 and the outer peripheral wall 274 of the base 270 may have the same shape as that of the first embodiment. That is, a recess 2231 is formed on the inner peripheral wall 273, the outer wall 274 has a small diameter surface 2241 on the bottom surface 275 side, a large diameter surface 2242 on the stator 100 side, and a recess 2243 between the small diameter surface 2241 and the large diameter surface 2242. It may be formed. This further prevents the resin 235 from coming off from the base 270. Further, the embodiment in which screw holes 276 are provided between the permanent magnets 211 adjacent to each other on the bottom surface 275 of the base 270 in the circumferential direction and screws 277 are screwed into each of the screw holes 276 is shown. There may be one or more 276s. Further, a plurality of screw holes 276 may be provided between the adjacent permanent magnets 211.
  • FIG. 8A is a sectional perspective view in which the shaft 500 is fitted to the rotor 206 according to the seventh embodiment of the present invention
  • FIG. 8B is an enlarged sectional view of the rotor 206 according to the seventh embodiment of the present invention.
  • the resin 236 is omitted so that the shapes inside the permanent magnet 211 and the base 280 can be seen.
  • the difference between this embodiment and the second embodiment is the shape of the base 280 and the resin 236. Therefore, since the cross section of the motor is substantially the same as that of FIG. 1A, it is omitted, and the description of parts, configurations, etc. that overlap with the second embodiment is omitted in principle.
  • the rotor 206 includes a substantially disk-shaped base 280 and a groove 282 provided on the end surface 281 of the base 280 on the stator 100 side along the circumferential direction of the rotor 206.
  • a through hole 286 provided in the bottom surface 285 of the groove 282 between the permanent magnets 211 having the number of magnetic poles arranged in the groove 282 and the permanent magnets 211 adjacent to each other in the circumferential direction, and the end surface 287 on the anti-stator 100 side of the base 280.
  • the base 280 is provided with a groove 282 on the end surface 281 on the stator 100 side along the circumferential direction of the rotor 206.
  • the groove 282 is composed of an inner peripheral wall 283, an outer peripheral wall 284, and a bottom surface 285.
  • the bottom surface 285 is provided with a through hole 286 between the permanent magnets 211 adjacent to each other in the circumferential direction of the base 280.
  • a counterbore hole 288 is provided in the end surface 287 on the anti-stator 100 side of the base 280 of the through hole 286, and a recess 2881 is formed.
  • the inner peripheral wall 283 and the outer peripheral wall 284 small diameter surface 2841 and large diameter surface 2842
  • the description thereof will be omitted.
  • the resin 236 is filled in the groove 282 in which the permanent magnet 211 is arranged. That is, the resin 236 is filled between the inner peripheral wall 283 and the inner peripheral side surface 2112 of the permanent magnet 211, between the outer peripheral wall 284 and the outer peripheral side surface 2111 of the permanent magnet 211, and between the permanent magnets 211 adjacent to each other in the circumferential direction. Will be done.
  • the resin 236 filled between the permanent magnets 211 adjacent to each other in the circumferential direction includes the resin 236 filled between the inner peripheral wall 283 and the inner peripheral side surface 2112 of the permanent magnets 211, and the outer peripheral wall 284 and the permanent magnets 211.
  • the resin 236 filled between the outer peripheral side surfaces 2111 is connected.
  • the base 280 has a recess 2881 in which the resin 236 is filled through the groove 282 and the through hole 286, and the convex portion 2361, which is the resin 236 filled in the recess 2881, is on the stator 100 side.
  • the bottom 2882 of the counterbore hole 288, which is a part of the base 280, is adjacent so as to hinder the movement of the resin 236 along the axis 700 direction. That is, the base 280 is the base 280 when the rotor 206 is viewed along the axis AA direction (see FIG.
  • a recess 2881 is provided on the opposite side of the bottom 2882 of the counterbore hole 288, which is a part of the hole 288, so that a convex portion 2361, which is a part of the resin 236, appears adjacently.
  • the convex portion 2361, which is the resin 236 filled in the concave portion 2881, is covered with the side surface 2883, the bottom portion 2882, and the resin 236 of the counterbore hole 288, and is provided inside the rotor 206.
  • the convex portion 2361 which is the resin 236 filled in the counterbore hole 288 is located inside the rotor 206, the contact between the convex portion 2361 which is the resin 236 in the concave portion 2861 and the outside air is blocked. To. Therefore, the convex portion 2361, which is the resin 236 in the concave portion 2861, is prevented from being easily deteriorated by an environmental substance such as oxygen or the heat of the outside air like the resin 236 exposed on the surface of the rotor 206. It is possible to prevent the holding function of the permanent magnet 211 (the function of restraining the permanent magnet 211 in the direction of the axis 700) from being deteriorated by the continuous use of the rotor 206.
  • the distance between the inner peripheral side surface 2112 of the permanent magnet 211 (see FIG. 8A) and the inner peripheral wall 283 of the groove 282 is formed so as to expand toward the stator 100 side in the axial 700 direction as in the sixth embodiment.
  • the holding function of the permanent magnet 211 of the resin 236 (the function of restraining the permanent magnet 211 in the axial center 700 direction). ) Is being strengthened. That is, the permanent magnet 211 can be held firmly on the base 280 as compared with the case where the inner peripheral side surface of the permanent magnet 211 is provided substantially vertically.
  • the recess according to the present invention can be provided by a simple process of providing a through hole 286 and a counterbore hole 288 in the base 280.
  • stator of the resin 236 having a recess that communicates with the groove 282 and is filled with the resin 236 and is filled with the resin 236.
  • a part of the base 280 may be adjacent to the 100 side, and may be a tapered hole, a female screw hole, a hole inclined in the axis 700 direction, or the like.
  • the inner peripheral wall 283 and the outer peripheral wall 284 of the base 280 may have the same shape as that of the first embodiment. That is, a recess 2231 is formed on the inner peripheral wall 283, the outer wall 284 has a small diameter surface 2241 on the bottom surface 285 side, a large diameter surface 2242 on the stator 100 side, and a recess 2243 between the small diameter surface 2241 and the large diameter surface 2242. It may be formed. This further prevents the resin 236 from coming off from the base 280.
  • At least one through hole 286 and counterbore hole 288 may be provided between the permanent magnets 211 adjacent to the bottom surface 285 of the base 280 in the circumferential direction.
  • FIG. 9A is a sectional perspective view in which the shaft 500 is fitted to the rotor 207 according to the eighth embodiment of the present invention
  • FIG. 9B is an enlarged sectional view of the rotor 207 according to the eighth embodiment of the present invention.
  • the resin 237 is omitted so that the shapes inside the permanent magnet 211 and the base 290 can be seen.
  • this embodiment has the shape and material of the base 290 and the back yoke 297. Therefore, since the cross section of the motor is substantially the same as that of FIG. 1A, it is omitted, and the description of parts, configurations, etc. that overlap with the second embodiment is omitted in principle. Further, the resin 237 is different from the second embodiment in that it also covers the back yoke 297, but since the shapes are substantially the same, the description thereof is omitted in principle.
  • the rotor 207 includes a substantially disk-shaped base 290, a groove 292 provided on the end surface 291 of the base 290 on the stator 100 side along the circumferential direction of the rotor 207. It includes a permanent magnet 211 having a number of magnetic poles arranged in the groove 292, a small groove 296 provided on the bottom surface 295 of the groove 292 along the circumferential direction of the rotor 207, and a back yoke 297 arranged in the small groove 296.
  • the base 290 is formed of a non-magnetic strength member, and a groove 292 is provided on the end surface 291 on the stator 100 side along the circumferential direction of the rotor 207.
  • the groove 292 is composed of an inner peripheral wall 293, an outer peripheral wall 294, and a bottom surface 295.
  • the bottom surface 295 is provided with small grooves 296 provided along the circumferential direction.
  • the back yoke 297 is made of a soft magnetic material and is arranged in the small groove 296. Since the inner peripheral wall 293 and the outer peripheral wall 294 of the groove 292 have the same configuration as that of the second embodiment, the description thereof will be omitted.
  • the base 290 is formed of a non-magnetic strength member, and the small groove 296 having a width narrower and a depth shallower than the groove 292 along the circumferential direction of the rotor 207 on the bottom surface 295 of the groove 292 of the base 290. Is provided. Then, after arranging the back yoke 297 made of a low-loss soft magnetic material such as a laminated steel plate or a dust core in the small groove 296, the permanent magnet 211 is arranged in the groove 292 and integrally molded with the resin 237. With this configuration, the eddy current loss of the base 290 can be reduced.
  • the back yoke 297 can be fixed to the base 290 by molding and fixing the permanent magnet 211 to the groove 292 of the base 290, it is not necessary to separately provide a component for holding the back yoke 297, and the cost can be suppressed. it can.
  • the present invention is not limited to the above-described embodiment, and includes various modifications.
  • the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations.
  • it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.
  • the embodiment of the present invention may have the following aspects. That is, in the above embodiment, an example is shown in which a double rotor type axial gap rotary electric machine is used for the motor 1000 so that the stator 100 is sandwiched between two rotors so as to face each other. However, a so-called single rotor type having one rotor is provided. An axial gap rotary electric motor may be used.
  • the depth of the groove of the base and the thickness of the permanent magnet and the resin are substantially the same so that the end face of the rotor facing the stator 100 is flat, but the present invention is not limited to this.
  • the thickness of the permanent magnet 213 may be made thinner than the depth of the groove 222 of the base 220 so that the permanent magnet 213 is covered with the resin 238.
  • the resin 239 and the base 220 that form the end face 2091 of the rotor 209 facing the stator 100 by making the thickness of the permanent magnet 214 thicker than the depth of the groove 222 of the base 220.
  • the surface 2141 of the permanent magnets 214 may be configured to be closest to the stator 100. With this configuration, leakage of magnetic flux emitted from the stator 100 and the permanent magnet 214 can be reduced, and motor output and efficiency can be increased.
  • the base 220 is used in FIGS. 10 and 11, it goes without saying that another base may be used.

Abstract

This axial-gap rotating electric machine (1000) is provided with a rotor (200) and a stator (100) disposed facing the rotor (200) with a gap interposed therebetween, said gap being provided along the shaft center (700) direction of the rotor (200). The rotor (200) is provided with: a base (220); a groove (222) provided on the end surface (221) of the base (220) on the stator (100) side thereof along the circumferential direction of the rotor (200); a magnet (210) disposed in the groove (222); and a resin (230) for fixing the magnet (210) in the groove (222) by molding. The base (220) has recessed portions (2231), (2243) that are in communication with the groove (222) and are filled with the resin (230). Part of the base (220) is adjacent to the stator (100) side of the resin (230), which is filled in the recessed portions (2231), (2243).

Description

アキシャルギャップ型回転電機Axial gap type rotary electric machine
 本発明は、アキシャルギャップ型回転電機に関する。 The present invention relates to an axial gap type rotary electric machine.
 アキシャルギャップ型の回転電機は、円盤状のロータとステータが回転軸心方向に対向して配置された構造をもつ。トルクの発生面となるロータとステータの対向面積が、ロータ径の2乗に比例して増加するため、アスペクト比の小さな形状即ち軸長よりも径方向寸法が大きな形状とすることで、出力や効率などの特性を高めやすい特長がある。 The axial gap type rotary electric machine has a structure in which a disk-shaped rotor and a stator are arranged so as to face each other in the direction of the axis of rotation. Since the facing area between the rotor and the stator, which is the torque generation surface, increases in proportion to the square of the rotor diameter, a shape with a small aspect ratio, that is, a shape with a radial dimension larger than the shaft length, can be used to increase output. It has the feature that it is easy to improve characteristics such as efficiency.
 このアキシャルギャップ型回転電機のロータは、回転軸に締結されたヨークと、その表面に配置された磁石からなり、磁石とヨークを樹脂で一体にモールドしたロータがある。例えば、特許文献1には、バックヨークの一方の端面上に配置された永久磁石がモールド成型された合成樹脂からなる抜止め手段によりバックヨークに保持されたロータが開示されている。 The rotor of this axial gap type rotary electric machine consists of a yoke fastened to a rotating shaft and a magnet placed on the surface of the yoke, and there is a rotor in which the magnet and the yoke are integrally molded with resin. For example, Patent Document 1 discloses a rotor in which a permanent magnet arranged on one end face of the back yoke is held in the back yoke by a retaining means made of a molded synthetic resin.
特開2008-86142号公報Japanese Unexamined Patent Publication No. 2008-86142
 特許文献1に開示されたアキシャルギャップ型回転電機のロータでは、モールド成型された合成樹脂からなる抜止め手段は外気と接しているため、酸素等の環境物質や外気の熱により劣化し、永久磁石を保持できなくなる恐れがある。本発明の目的は、磁石とヨークを一体にモールドしたロータの樹脂が劣化してもロータが破損することを防止できるアキシャルギャップ型回転電機を提供することにある。 In the rotor of the axial gap type rotary electric machine disclosed in Patent Document 1, since the retaining means made of molded synthetic resin is in contact with the outside air, it deteriorates due to environmental substances such as oxygen and the heat of the outside air, and is a permanent magnet. May not be able to hold. An object of the present invention is to provide an axial gap type rotary electric machine capable of preventing the rotor from being damaged even if the resin of the rotor integrally molded with the magnet and the yoke deteriorates.
 上記課題を解決するために、本発明は、回転子と、前記回転子の中心軸方向に沿って設けられたギャップを介して前記回転子と対向して配置された固定子とを備えたアキシャルギャップ型回転電機において、前記回転子は、基台と、前記基台における固定子側の端面に前記回転子の周方向に沿って設けられた溝と、前記溝に配置された磁石と、前記磁石を前記溝内にモールド固定する樹脂とを備え、前記基台は、前記溝と連通し前記樹脂が充填される凹部を有し、前記凹部に充填された樹脂の固定子側には、前記基台の一部が隣接していることを特徴とする。 In order to solve the above problems, the present invention includes an axial having a rotor and a stator arranged to face the rotor via a gap provided along the central axis direction of the rotor. In the gap type rotor, the rotor includes a base, a groove provided on the end face of the base on the stator side along the circumferential direction of the rotor, a magnet arranged in the groove, and the said. A resin for molding and fixing a magnet in the groove is provided, the base has a recess that communicates with the groove and is filled with the resin, and the stator side of the resin filled in the recess has the recess. It is characterized in that a part of the base is adjacent to each other.
 本発明によれば、磁石とヨークを樹脂で一体にモールドしたロータにおける当該樹脂の劣化や破損を防止できるので、ロータを長寿命化できる。上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 According to the present invention, it is possible to prevent deterioration and damage of the resin in a rotor in which a magnet and a yoke are integrally molded with a resin, so that the life of the rotor can be extended. Issues, configurations and effects other than those described above will be clarified by the description of the following embodiments.
本発明の第1実施形態によるロータを用いたアキシャルギャップ型モータの断面斜視図である。It is sectional drawing of the axial gap type motor using the rotor according to 1st Embodiment of this invention. 本発明の第1実施形態によるロータにシャフトを勘合した断面斜視図である。It is sectional drawing which fitted the shaft to the rotor by 1st Embodiment of this invention. 本発明の第1実施形態によるロータの拡大断面図である。It is an enlarged sectional view of the rotor according to 1st Embodiment of this invention. 本発明の第2実施形態によるロータにシャフトを勘合した断面斜視図である。It is sectional drawing which fitted the shaft to the rotor according to 2nd Embodiment of this invention. 本発明の第2実施形態によるロータの拡大断面図である。It is an enlarged sectional view of the rotor according to the 2nd Embodiment of this invention. 本発明の第2実施形態によるロータに用いられる複数の永久磁石における他の形状を示す斜視図である。It is a perspective view which shows the other shape in the plurality of permanent magnets used for the rotor by 2nd Embodiment of this invention. 本発明の第3実施形態によるロータにシャフトを勘合した断面斜視図である。It is sectional drawing which fitted the shaft to the rotor according to 3rd Embodiment of this invention. 本発明の第3実施形態によるロータの拡大断面図である。It is an enlarged sectional view of the rotor according to the 3rd Embodiment of this invention. 本発明の第4実施形態によるロータにシャフトを勘合した断面斜視図である。It is sectional drawing which fitted the shaft to the rotor according to 4th Embodiment of this invention. 本発明の第4実施形態によるロータの拡大断面図である。It is an enlarged sectional view of the rotor according to 4th Embodiment of this invention. 本発明の第5実施形態によるロータにシャフトを勘合した断面斜視図である。It is sectional drawing which fitted the shaft to the rotor according to 5th Embodiment of this invention. 本発明の第5実施形態によるロータの拡大断面図である。FIG. 5 is an enlarged cross-sectional view of a rotor according to a fifth embodiment of the present invention. 本発明の第6実施形態によるロータにシャフトを勘合した断面斜視図である。It is sectional drawing which fitted the shaft to the rotor according to 6th Embodiment of this invention. 本発明の第6実施形態によるロータの拡大断面図である。FIG. 5 is an enlarged cross-sectional view of a rotor according to a sixth embodiment of the present invention. 本発明の第7実施形態によるロータにシャフトを勘合した断面斜視図である。It is sectional drawing which fitted the shaft to the rotor according to 7th Embodiment of this invention. 本発明の第7実施形態によるロータの拡大断面図である。It is an enlarged sectional view of the rotor according to 7th Embodiment of this invention. 本発明の第8実施形態によるロータにシャフトを勘合した断面斜視図である。It is sectional drawing which fitted the shaft to the rotor according to 8th Embodiment of this invention. 本発明の第8実施形態によるロータの拡大断面図である。FIG. 5 is an enlarged cross-sectional view of a rotor according to an eighth embodiment of the present invention. 本発明の他の実施形態によるロータの拡大断面図である。FIG. 5 is an enlarged cross-sectional view of a rotor according to another embodiment of the present invention. 本発明の他の実施形態によるロータの拡大断面図である。It is an enlarged sectional view of the rotor according to another embodiment of this invention.
 以下、図面を用いて、本発明の第1~第8の実施形態によるアキシャルギャップ型モータのロータの構成及び動作について説明する。なお、各図において、同一符号は同一部分を示す。 Hereinafter, the configuration and operation of the rotor of the axial gap type motor according to the first to eighth embodiments of the present invention will be described with reference to the drawings. In each figure, the same reference numerals indicate the same parts.
 〔第1実施形態〕
 図1Aは本発明の第1実施形態によるロータを用いたアキシャルギャップ型モータの断面斜視図、図1Bは第1実施形態によるロータにシャフトを勘合した断面斜視図、図1Cは本発明の第1実施形態によるロータの拡大断面図である。なお、図1Bのロータは、永久磁石およびヨーク内部の形状がわかるよう、樹脂を省略している。
[First Embodiment]
1A is a cross-sectional perspective view of an axial gap type motor using a rotor according to the first embodiment of the present invention, FIG. 1B is a cross-sectional perspective view of a rotor fitted with a shaft according to the first embodiment, and FIG. 1C is a first aspect of the present invention. It is an enlarged sectional view of the rotor according to an embodiment. In the rotor of FIG. 1B, the resin is omitted so that the shapes inside the permanent magnet and the yoke can be seen.
 図1Aに示すように、アキシャルギャップ型モータ1000(以下、モータ1000という)は、ステータ(固定子)100を2つのロータ(回転子)200が挟むように面対向するダブルロータ型の回転電機である。モータ1000は、ステータ100と、ロータ200と、ハウジング300と、ブラケット400と、シャフト500と、軸受600とを備えている。 As shown in FIG. 1A, the axial gap type motor 1000 (hereinafter referred to as the motor 1000) is a double rotor type rotary electric machine that faces the stator (stator) 100 so as to be sandwiched between the two rotors (rotors) 200. is there. The motor 1000 includes a stator 100, a rotor 200, a housing 300, a bracket 400, a shaft 500, and a bearing 600.
 ステータ100は、シャフト500を中心として環状に配列した複数(本実施形態では12個)のコアメンバ140を有している。各コアメンバ140は、両端面が概略台形の柱体であるコア110と、コア110の側面を被覆する筒状のボビン(図示せず)と、ボビンを介してコア110の側面に巻き回されたコイル120とを備える。環状に配列された12個のコアメンバ140の夫々は、ハウジング300内に樹脂130によって一体的にモールド加工され、1つのステータ100に成形されている。コア110としては、電磁鋼板やアモルファス金属の積層体や、圧粉磁心等の軟磁性体が利用可能である。 The stator 100 has a plurality of (12 in this embodiment) core members 140 arranged in an annular shape around the shaft 500. Each core member 140 is wound around a core 110 whose both end surfaces are substantially trapezoidal pillars, a tubular bobbin (not shown) covering the side surface of the core 110, and a side surface of the core 110 via the bobbin. It includes a coil 120. Each of the twelve core members 140 arranged in an annular shape is integrally molded by the resin 130 in the housing 300, and is molded into one stator 100. As the core 110, a laminated body of an electromagnetic steel plate or an amorphous metal, or a soft magnetic material such as a dust core can be used.
 ロータ200は、軸心700方向に沿って設けられたギャップを介してステータ100に対向している。ロータ200と勘合するシャフト500は、軸受600を介して回転自在にブラケット400により支持され、ステータ100に電気を流すことにより回転するロータ200と供回りしロータ200の回転力を出力する。ブラケット400は、軸受600を介してシャフト500を回転自在に支持するとともに、ハウジング300の両端に固定され、ロータ200を保護する。ハウジング300の外周側面には、コイル120と電気的に接続する端子を備える端子台(図示せず)が設けられており、1次側の電線と2次側の電線を電気的に接続されることができるようになっている。 The rotor 200 faces the stator 100 via a gap provided along the axis 700 direction. The shaft 500 that meshes with the rotor 200 is rotatably supported by the bracket 400 via the bearing 600, and rotates with the rotating rotor 200 by passing electricity through the stator 100 to output the rotational force of the rotor 200. The bracket 400 rotatably supports the shaft 500 via a bearing 600 and is fixed to both ends of the housing 300 to protect the rotor 200. A terminal block (not shown) having a terminal for electrically connecting to the coil 120 is provided on the outer peripheral side surface of the housing 300, and the primary side electric wire and the secondary side electric wire are electrically connected. You can do it.
 図1Bに示すように、ロータ200は、略円盤状の基台220と、基台220のステータ100側の端面221にロータ200の周方向に沿って設けられた溝222と、溝222に配置された永久磁石(磁石)210と、永久磁石210を溝222内にモールド固定する樹脂230(図1A参照)とを備えている。 As shown in FIG. 1B, the rotor 200 is arranged in a substantially disk-shaped base 220, a groove 222 provided on an end surface 221 of the base 220 on the stator 100 side along the circumferential direction of the rotor 200, and a groove 222. A permanent magnet (magnet) 210 and a resin 230 (see FIG. 1A) for molding and fixing the permanent magnet 210 in the groove 222 are provided.
 基台220は、鉄や圧粉磁心などの軟磁性体で構成され継鉄(ヨーク)の役割する略円盤状の部材で、永久磁石210を支持するとともに、供回りするようにシャフト500と結合している。また、基台220のステータ100側の端面221には上記のとおりロータ200の周方向に沿って溝222が設けられている。永久磁石210はリング状の円板で、基台220の溝222に配置されている。 The base 220 is a substantially disk-shaped member composed of a soft magnetic material such as iron or dust core and acting as a joint iron (yoke). It supports the permanent magnet 210 and is coupled to the shaft 500 so as to rotate. doing. Further, the end surface 221 of the base 220 on the stator 100 side is provided with a groove 222 along the circumferential direction of the rotor 200 as described above. The permanent magnet 210 is a ring-shaped disk and is arranged in the groove 222 of the base 220.
 図1Cに示すように、溝222は、内周壁223と外周壁224と底面225により構成されている。 As shown in FIG. 1C, the groove 222 is composed of an inner peripheral wall 223, an outer peripheral wall 224, and a bottom surface 225.
 内周壁223は、永久磁石210を溝222に配置したときに、永久磁石210の内周側面2102との間に樹脂230を充填するための空間を形成する。そのため、軸心700からの距離が永久磁石210の内周側面2102よりも内周壁223の方が小さくなっている。また、内周壁223には凹部2231が設けられている。 When the permanent magnet 210 is arranged in the groove 222, the inner peripheral wall 223 forms a space for filling the resin 230 with the inner peripheral side surface 2102 of the permanent magnet 210. Therefore, the distance from the axis 700 is smaller on the inner peripheral wall 223 than on the inner peripheral side surface 2102 of the permanent magnet 210. Further, the inner peripheral wall 223 is provided with a recess 2231.
 外周壁224の底面225側には、永久磁石210の外周側面2101が当接する小径面2241が形成されている。そして、外周壁224のステータ100側には、大径面2242が形成され、小径面2241と大径面2242の間の外周壁224には凹部2243が形成されている。 On the bottom surface 225 side of the outer peripheral wall 224, a small diameter surface 2241 with which the outer peripheral side surface 2101 of the permanent magnet 210 abuts is formed. A large-diameter surface 2242 is formed on the stator 100 side of the outer peripheral wall 224, and a recess 2243 is formed on the outer peripheral wall 224 between the small-diameter surface 2241 and the large-diameter surface 2242.
 なお、本実施形態では、凹部2231を内周壁223の全周に形成しているが内周壁223の一部にのみ形成してもよい。また、凹部2243を外周壁224の全周に形成しているが、同様に外周壁224の全周ではなく一部にのみ形成してもよい。なお、凹部2231,2243に充填された樹脂230の強度を高めるには、遠心力や温度上昇などに伴い樹脂230に発生する応力を低減する必要がある。このため、凹部2231,2243を加工する場合、角にR面取りを設けることが好ましい。 In the present embodiment, the recess 2231 is formed on the entire circumference of the inner peripheral wall 223, but may be formed only on a part of the inner peripheral wall 223. Further, although the recess 2243 is formed on the entire circumference of the outer peripheral wall 224, it may be formed only on a part of the outer peripheral wall 224 instead of the entire circumference. In order to increase the strength of the resin 230 filled in the recesses 2231 and 243, it is necessary to reduce the stress generated in the resin 230 due to centrifugal force or temperature rise. Therefore, when processing the recesses 2231 and 243, it is preferable to provide R chamfers at the corners.
 永久磁石210の外周側面2101は、外周壁224の小径面2241と当接する。そのため、永久磁石210は、基台220の周方向に固定されている。また、永久磁石210の内周側面2102は、軸心700方向において、ステータ100側に向かって内径が拡大するように形成されている。即ち、永久磁石210にはステータ100側に向かって内径が拡大する孔が形成されている。なお、永久磁石210はボンド磁石やフェライト磁石により形成されており磁界を発生させ、ステータ100のコアメンバ140から発生する磁力に対し吸引・反発を繰り返し、軸心700を中心にロータ200を回転させる。そのため、交流電源の位相数とコアメンバ140の個数に対応する磁極数を備えるように、リング状の永久磁石210の表面には着磁がされている。 The outer peripheral side surface 2101 of the permanent magnet 210 comes into contact with the small diameter surface 2241 of the outer peripheral wall 224. Therefore, the permanent magnet 210 is fixed in the circumferential direction of the base 220. Further, the inner peripheral side surface 2102 of the permanent magnet 210 is formed so that the inner diameter increases toward the stator 100 side in the axial center 700 direction. That is, the permanent magnet 210 is formed with a hole whose inner diameter expands toward the stator 100 side. The permanent magnet 210 is formed of a bond magnet or a ferrite magnet, generates a magnetic field, and repeatedly attracts and repels the magnetic force generated from the core member 140 of the stator 100 to rotate the rotor 200 around the axis 700. Therefore, the surface of the ring-shaped permanent magnet 210 is magnetized so as to have the number of magnetic poles corresponding to the number of phases of the AC power supply and the number of core members 140.
 基台220の溝222には永久磁石210とモールド成形によって充填される樹脂230とが配置され、永久磁石210を基台220にモールド固定する。外周壁224の大径面2242及び凹部2243と永久磁石210の外周側面2101との間と、内周壁223と永久磁石210の内周側面2102との間に樹脂230は充填され固化している。また、基台220と永久磁石210、樹脂230は、線膨張係数の近い材料を用いて作製し、ロータ200に発生する熱応力を低減させることが好ましい。 A permanent magnet 210 and a resin 230 filled by molding are arranged in the groove 222 of the base 220, and the permanent magnet 210 is molded and fixed to the base 220. The resin 230 is filled and solidified between the large-diameter surface 2242 and the recess 2243 of the outer peripheral wall 224 and the outer peripheral side surface 2101 of the permanent magnet 210, and between the inner peripheral wall 223 and the inner peripheral side surface 2102 of the permanent magnet 210. Further, it is preferable that the base 220, the permanent magnet 210, and the resin 230 are made of materials having a coefficient of linear expansion close to each other to reduce the thermal stress generated in the rotor 200.
 そして、基台220は溝222と連通し樹脂230が充填される凹部2231,2243を有し、凹部2231,2243には樹脂230が充填される。基台以外の構成に着目すれば、凹部2231,2243に樹脂が入り込むことにより凸部2301,2302が形成されている。そして、2つの凹部2231,2243に充填された樹脂230である凸部2301,2302のステータ100側(図1Cにおける下側)には、基台220の一部(基台220における凹部2231,2243のステータ100側の部分)であるストッパ部2232,2244がそれぞれ隣接している。ストッパ部2232,2244により、ロータの磁石が磁気吸引力によってステータ側に引き寄せられ、基台から外れることを防止することができる。言い換えれば、基台220は、ロータ200の軸心700を含むロータ200の断面において、軸心700と平行な軸線A-A、B-B方向に沿ってロータ200をみたときに、基台220の一部であるストッパ部2232,2244のステータ100の反対側に樹脂230の一部である凸部2301,2302が隣接して現れるように設けられた凹部2231,2243を備えている。また、凹部2231,2243に充填された樹脂230である凸部2301,2302は、凹部2231,2243と樹脂230に覆われており、ロータ200の内部に備わっている。なお、本実施形態の基台220は、溝222と連通し樹脂230が充填される凹部を2つ備えるが、凹部を1つだけ備えるようにしてもよい。 Then, the base 220 has recesses 2231 and 243 that communicate with the groove 222 and are filled with the resin 230, and the recesses 2231 and 243 are filled with the resin 230. Focusing on the configuration other than the base, the convex portions 2301,302 are formed by the resin entering the recesses 2231 and 243. Then, a part of the base 220 ( recesses 2231,243 in the base 220) is on the stator 100 side (lower side in FIG. 1C) of the convex portions 2301,302 which are the resins 230 filled in the two recesses 2231 and 243. The stopper portions 2232 and 2244, which are the portions on the stator 100 side of the above, are adjacent to each other. The stopper portions 2232 and 2244 can prevent the magnet of the rotor from being attracted to the stator side by the magnetic attraction force and coming off from the base. In other words, the base 220 is the base 220 when the rotor 200 is viewed along the axes AA and BB parallel to the axis 700 in the cross section of the rotor 200 including the axis 700 of the rotor 200. The stopper portions 2232 and 2244, which are a part of the stopper portion 2232, 2244, are provided with recesses 2231, 243 provided so that convex portions 2301, 302, which are a part of the resin 230, appear adjacent to each other on the opposite side of the stator 100. Further, the convex portions 2301,302, which are the resin 230 filled in the concave portions 2231, 243, are covered with the concave portions 2231, 243 and the resin 230, and are provided inside the rotor 200. The base 220 of the present embodiment includes two recesses that communicate with the groove 222 and are filled with the resin 230, but may include only one recess.
 このような構成を有するモータ1000は、以下のように動作する。端子台の1次側にインバータからの出力線が接続され、コイル120に3相の交流電流が通電する。これにより、ステータ100には回転磁界が形成され、永久磁石210によりロータ200に形成された直流磁界と吸引反発してトルクを発生する。モータ駆動時には、ロータ200の溝222に配置された永久磁石210に対してその径方向に生じる遠心力だけでなく軸心700方向のステータ100側に磁気吸引力が発生している。 The motor 1000 having such a configuration operates as follows. The output line from the inverter is connected to the primary side of the terminal block, and a three-phase alternating current is applied to the coil 120. As a result, a rotating magnetic field is formed in the stator 100, and torque is generated by attracting and repelling the DC magnetic field formed in the rotor 200 by the permanent magnet 210. When the motor is driven, not only the centrifugal force generated in the radial direction of the permanent magnet 210 arranged in the groove 222 of the rotor 200 but also the magnetic attraction force is generated on the stator 100 side in the axial direction 700 direction.
 本実施形態では、基台220は、溝222と連通して樹脂230が充填される凹部2231,2243を有しており、その凹部2231,2243に充填された樹脂230である凸部2301,2302のステータ100側には、樹脂230の軸心700方向に沿った移動を阻害するように基台220の一部(凹部2231,2243のステータ100側の部分)であるストッパ部2232,2244が隣接している。この構造では凹部2231,2243内の樹脂230である凸部2301,2302はロータ200の内部に位置することになるため、凹部2231,2243内の樹脂230である凸部2301,2302と外気の接触が遮断される。したがって、凹部2231,2243内の樹脂230である凸部2301,2302は、ロータ200の表面に露出している樹脂230のように酸素等の環境物質や外気の熱によって容易に劣化することが抑制されるため、ロータ200の継続使用により永久磁石210の保持機能(軸心700方向における永久磁石210の拘束機能)が低下することを防止できる。なお、本実施形態では凹部2231を内周壁223の全周に、凹部2241を溝222の外周壁224の全周にそれぞれ環状に形成しているため、永久磁石210の保持機能をさらに増強できる。 In the present embodiment, the base 220 has recesses 2231 and 243 that communicate with the groove 222 and are filled with the resin 230, and the convex portions 2301,302 that are the resin 230 filled in the recesses 2231 and 243. The stopper portions 2232 and 2244, which are a part of the base 220 (the portion of the recesses 2231 and 243 on the stator 100 side), are adjacent to the stator 100 side of the resin 230 so as to hinder the movement of the resin 230 along the axis 700 direction. doing. In this structure, the convex portions 2301,302, which are the resin 230 in the recesses 2231,243, are located inside the rotor 200, so that the convex portions 2301,302, which are the resin 230 in the recesses 2231,243, come into contact with the outside air. Is blocked. Therefore, the convex portions 2301,302, which are the resins 230 in the concave portions 2231,243, are prevented from being easily deteriorated by environmental substances such as oxygen and the heat of the outside air like the resin 230 exposed on the surface of the rotor 200. Therefore, it is possible to prevent the holding function of the permanent magnet 210 (the function of restraining the permanent magnet 210 in the direction of the axis 700) from being lowered due to the continuous use of the rotor 200. In the present embodiment, since the recess 2231 is formed in an annular shape on the entire circumference of the inner peripheral wall 223 and the recess 2241 is formed in an annular shape on the entire circumference of the outer peripheral wall 224 of the groove 222, the holding function of the permanent magnet 210 can be further enhanced.
 本実施形態では、樹脂230と永久磁石210とを、ステータ100側に向かって内径が拡大する永久磁石210の内周側面2102を介して互いに当接させることで、樹脂230の永久磁石210の保持機能(軸心700方向における永久磁石210の拘束機能)を増強している。すなわち永久磁石210の内周側面を略鉛直に設けた場合と比較して永久磁石210を基台220上に強固に保持できる。 In the present embodiment, the resin 230 and the permanent magnet 210 are brought into contact with each other via the inner peripheral side surface 2102 of the permanent magnet 210 whose inner diameter increases toward the stator 100 side to hold the permanent magnet 210 of the resin 230. The function (the function of restraining the permanent magnet 210 in the direction of the axis 700) is enhanced. That is, the permanent magnet 210 can be held firmly on the base 220 as compared with the case where the inner peripheral side surface of the permanent magnet 210 is provided substantially vertically.
 また、基台220の内周壁223及び外周壁224と、永久磁石210の間に隙間を設けることにより、永久磁石210の漏れ磁束に対する磁気抵抗が高められ、モータ出力や効率の低下を抑制することができる。また、リング状の永久磁石210を用いることにより、遠心力が大きくなっても永久磁石210の飛散を防止することができる。 Further, by providing a gap between the inner peripheral wall 223 and the outer peripheral wall 224 of the base 220 and the permanent magnet 210, the magnetic resistance of the permanent magnet 210 against the leakage flux is increased, and the decrease in motor output and efficiency is suppressed. Can be done. Further, by using the ring-shaped permanent magnet 210, it is possible to prevent the permanent magnet 210 from scattering even if the centrifugal force becomes large.
 また、基台220は、鋳造や鍛造で製作した円盤状の構造に対して旋盤で溝222を切削することで凹部2231,2243を簡単に追加加工でき、低コストで作製することができる。 Further, the base 220 can be manufactured at low cost because the recesses 2231 and 243 can be easily additionally processed by cutting the groove 222 with a lathe with respect to the disk-shaped structure manufactured by casting or forging.
 〔第2実施形態〕
 次に、本発明の第2実施形態によるロータについて図面を用いて説明する。図2Aは、本発明の第2実施形態によるロータ201にシャフト500を勘合した断面斜視図、図2Bは本発明の第2実施形態によるロータ201の拡大断面図である。なお、図2Aの反負荷側のロータ201(下側)は、永久磁石211および基台220内部の形状がわかるよう、樹脂231を省略している。
[Second Embodiment]
Next, the rotor according to the second embodiment of the present invention will be described with reference to the drawings. FIG. 2A is a sectional perspective view in which the shaft 500 is fitted to the rotor 201 according to the second embodiment of the present invention, and FIG. 2B is an enlarged sectional view of the rotor 201 according to the second embodiment of the present invention. In the rotor 201 (lower side) on the counterload side of FIG. 2A, the resin 231 is omitted so that the shapes inside the permanent magnet 211 and the base 220 can be seen.
 本実施形態が第1実施形態と異なる点は、永久磁石211と樹脂231の形状である。したがって、モータの断面は図1Aと同じため省略し、第1実施例と重複する部品、構成等に関しては原則として説明を割愛する。 The difference between this embodiment and the first embodiment is the shape of the permanent magnet 211 and the resin 231. Therefore, since the cross section of the motor is the same as that of FIG. 1A, the description is omitted, and the description of the parts, configurations, etc. that overlap with the first embodiment is omitted in principle.
 図2Aに示すように、本実施形態によるロータ201は、略円盤状の基台220と、基台220のステータ100側の端面221にロータ201の周方向に沿って設けられた溝222と、溝222に所定の間隔で配置された磁極数の永久磁石211と、磁極数の永久磁石211を溝222内にモールド固定する樹脂231とを備えている。基台220は第1実施形態と同一であるため説明を省略する。永久磁石211は扇状の板で、基台220の溝222内に磁極数が配置されている。 As shown in FIG. 2A, the rotor 201 according to the present embodiment includes a substantially disk-shaped base 220 and a groove 222 provided on the end surface 221 of the base 220 on the stator 100 side along the circumferential direction of the rotor 201. A permanent magnet 211 having a number of magnetic poles arranged in the groove 222 at a predetermined interval and a resin 231 for molding and fixing the permanent magnet 211 having a number of magnetic poles in the groove 222 are provided. Since the base 220 is the same as that of the first embodiment, the description thereof will be omitted. The permanent magnet 211 is a fan-shaped plate, and the number of magnetic poles is arranged in the groove 222 of the base 220.
 図2Bに示すよう永久磁石211の外周側面2111は小径面2241に当接している。なお、永久磁石211は、第1実施形態と同様に、ボンド磁石やフェライト磁石により形成されており磁界を発生させ、ステータ100のコアメンバ140から発生する磁力に対し吸引・反発を繰り返し、軸心700を中心にロータ201を回転させる。そのため、基台220の溝222内には交流電源の位相数とコアメンバ140の個数に対応する磁極数の永久磁石211が配置されている。 As shown in FIG. 2B, the outer peripheral side surface 2111 of the permanent magnet 211 is in contact with the small diameter surface 2241. As in the first embodiment, the permanent magnet 211 is formed of a bond magnet or a ferrite magnet, generates a magnetic field, and repeatedly attracts and repels the magnetic force generated from the core member 140 of the stator 100, and the axis 700. The rotor 201 is rotated around the magnet. Therefore, a permanent magnet 211 having a number of magnetic poles corresponding to the number of phases of the AC power supply and the number of core members 140 is arranged in the groove 222 of the base 220.
 また、基台220の溝222に配置された永久磁石211の周囲は樹脂231により充填されている。永久磁石211の内周側面2112は、溝222の内周壁223との間隔が、軸心700方向においてステータ100側に向かって拡大するように形成されている。そのため、永久磁石211の内周側面2112と当接する樹脂231により永久磁石211は、軸心700方向のステータ100側と基台220の内径方向に移動できない。また、磁極数の永久磁石211の外周側面2111は小径面2241とそれぞれ当接し、大径面2242及び凹部2243との間に樹脂230が充填されているため、基台220の外径方向へ移動できない。 Further, the periphery of the permanent magnet 211 arranged in the groove 222 of the base 220 is filled with the resin 231. The inner peripheral side surface 2112 of the permanent magnet 211 is formed so that the distance between the groove 222 and the inner peripheral wall 223 increases toward the stator 100 side in the axial direction 700 direction. Therefore, the permanent magnet 211 cannot move in the stator 100 side in the axial direction 700 direction and in the inner diameter direction of the base 220 due to the resin 231 in contact with the inner peripheral side surface 2112 of the permanent magnet 211. Further, since the outer peripheral side surface 2111 of the permanent magnet 211 having the number of magnetic poles is in contact with the small diameter surface 2241 and the resin 230 is filled between the large diameter surface 2242 and the recess 2243, it moves in the outer diameter direction of the base 220. Can not.
 そして、第1実施形態と同様に、基台220の溝222を構成する内周壁223と外周壁224にはそれぞれ凹部2231と凹部2243が形成され、樹脂231が充填され、凸部2311,2312が形成されている。そのため、基台220は、溝222と連通し、樹脂231が充填される凹部2231,2243を有し、凹部2231,2243に充填された樹脂231である凸部2311,2312のステータ100側には、樹脂231の軸心700方向に沿った移動を阻害するように基台220の一部(凹部2231,2243のステータ100側の部分)であるストッパ部2232,2244がそれぞれ隣接している。即ち、基台220は、ロータ201の軸心700を含むロータ201の断面において、軸心700と平行な軸線A-A、B-B方向に沿ってロータ201を見たときに、基台220の一部であるストッパ部2232,2244のステータ100の反対側に樹脂231の一部である凸部2311,2312が隣接して現れるように設けられた凹部2231,2243を備えている。また、凹部2231,2243に充填された樹脂231である凸部2311,2312は、凹部2231,2243と樹脂231に覆われており、ロータ201の内部に備わっている。 Then, as in the first embodiment, the inner peripheral wall 223 and the outer peripheral wall 224 forming the groove 222 of the base 220 are formed with the recesses 2231 and the recesses 2243, respectively, filled with the resin 231 and the convex portions 2311 and 2312. It is formed. Therefore, the base 220 has recesses 2231 and 243 that communicate with the groove 222 and are filled with the resin 231, and the convex portions 2311 and 2312, which are the resins 231 filled in the recesses 2231 and 243, are on the stator 100 side. , The stopper portions 2232 and 2244, which are a part of the base 220 (the portion of the recesses 2231 and 243 on the stator 100 side), are adjacent to each other so as to hinder the movement of the resin 231 along the axis 700 direction. That is, the base 220 is the base 220 when the rotor 201 is viewed along the axes AA and BB parallel to the axis 700 in the cross section of the rotor 201 including the axis 700 of the rotor 201. The stoppers 2232 and 2244, which are part of the above, are provided with recesses 2231,243 provided so that the convex portions 2311 and 2312, which are a part of the resin 231 and appear adjacent to each other, on the opposite side of the stator 100. Further, the convex portions 2311 and 2312, which are the resins 231 filled in the concave portions 2231 and 243, are covered with the concave portions 2231 and 243 and the resin 231 and are provided inside the rotor 201.
 また、樹脂231は、基台220の溝222の外周壁224と永久磁石211の外周側面2111との間と、基台220の内周壁223と永久磁石211の内周側面2112との間に充填されるだけでなく、基台220の周方向に隣合う永久磁石211の間にも充填されている。そのため、永久磁石211は周方向に移動できない。また、周方向に隣合う永久磁石211の間に充填された樹脂231は、基台220の溝222の外周壁224と永久磁石211の外周側面2111の間に充填された樹脂231と、基台220の内周壁223と永久磁石211の内周側面2112との間に充填された樹脂231とを連結させている。 Further, the resin 231 is filled between the outer peripheral wall 224 of the groove 222 of the base 220 and the outer peripheral side surface 2111 of the permanent magnet 211, and between the inner peripheral wall 223 of the base 220 and the inner peripheral side surface 2112 of the permanent magnet 211. Not only is it filled between the permanent magnets 211 adjacent to the base 220 in the circumferential direction. Therefore, the permanent magnet 211 cannot move in the circumferential direction. Further, the resin 231 filled between the permanent magnets 211 adjacent to each other in the circumferential direction is the resin 231 filled between the outer peripheral wall 224 of the groove 222 of the base 220 and the outer peripheral side surface 2111 of the permanent magnet 211, and the base. The resin 231 filled between the inner peripheral wall 223 of 220 and the inner peripheral side surface 2112 of the permanent magnet 211 is connected.
 本実施形態では第1実施形態と異なり永久磁石211が円環ではなく分割した構成となっている。そのため、永久磁石211の外径を高精度にしなくても、溝222の外周壁224における小径面2241に永久磁石211の外周側面2111を当接することができ、永久磁石211の加工コストを抑えることができる。また、高出力モータや高出力密度モータでは、ロータが大径化、高速化するため、永久磁石211に大きな遠心力が掛かる。第1実施形態の永久磁石210はリング状であるため、遠心力に対して引張応力が発生する。一方、本実施形態の永久磁石211は分割した構成となっているため、遠心力に対して引張応力が発生しない。そのため、大きな遠心力がそのまま永久磁石211を外径方向に飛散しようとする力となる。しかし、本実施形態によるロータ201は、分割した構成となっている永久磁石211の外周側面2111のそれぞれが小径面2241と当接するため、永久磁石211のそれぞれが外径方向に飛散することを防止できる。また、永久磁石の外周側面2111に当接する当接部が樹脂により形成された比較例によるロータでは遠心力に耐えられるように当接部を厚くする必要がある。しかし、本実施形態では永久磁石211の外周側面2111と当接する小径面2241が鉄や圧粉磁心などにより形成されているため薄くでき、ロータ201の外径を小型化できる。また、小径面2241を溝222の底面225側の外周壁224に設けているので、永久磁石211に働く遠心力により外周壁224にかかる外径方向の曲げモーメントを小さくできるとともに、外周壁224は小径面2241により厚肉化され、剛性を高めることもできる。また、磁極数の永久磁石211の間に隙間を設けることにより、永久磁石211の漏れ磁束に対する磁気抵抗が高められ、モータ出力や効率の低下を抑制することができる。 In the present embodiment, unlike the first embodiment, the permanent magnet 211 is not an annulus but a divided configuration. Therefore, the outer peripheral side surface 2111 of the permanent magnet 211 can be brought into contact with the small diameter surface 2241 of the outer peripheral wall 224 of the groove 222 without making the outer diameter of the permanent magnet 211 highly accurate, and the processing cost of the permanent magnet 211 can be suppressed. Can be done. Further, in a high-power motor or a high-power density motor, a large centrifugal force is applied to the permanent magnet 211 because the rotor has a larger diameter and a higher speed. Since the permanent magnet 210 of the first embodiment has a ring shape, tensile stress is generated with respect to centrifugal force. On the other hand, since the permanent magnet 211 of the present embodiment has a divided structure, no tensile stress is generated with respect to the centrifugal force. Therefore, the large centrifugal force becomes a force that tends to scatter the permanent magnet 211 in the outer diameter direction as it is. However, in the rotor 201 according to the present embodiment, since each of the outer peripheral side surfaces 2111 of the permanent magnets 211 having a divided configuration comes into contact with the small diameter surface 2241, it is possible to prevent each of the permanent magnets 211 from scattering in the outer diameter direction. it can. Further, in the rotor according to the comparative example in which the abutting portion abutting on the outer peripheral side surface 2111 of the permanent magnet is made of resin, it is necessary to make the abutting portion thick so as to withstand the centrifugal force. However, in the present embodiment, since the small diameter surface 2241 in contact with the outer peripheral side surface 2111 of the permanent magnet 211 is formed of iron, a dust core, or the like, it can be made thinner, and the outer diameter of the rotor 201 can be reduced. Further, since the small diameter surface 2221 is provided on the outer peripheral wall 224 on the bottom surface 225 side of the groove 222, the bending moment in the outer diameter direction applied to the outer peripheral wall 224 can be reduced by the centrifugal force acting on the permanent magnet 211, and the outer peripheral wall 224 can be formed. The small diameter surface 2241 makes the wall thicker, and the rigidity can be increased. Further, by providing a gap between the permanent magnets 211 having the number of magnetic poles, the magnetic resistance of the permanent magnets 211 against the leakage flux can be increased, and a decrease in motor output and efficiency can be suppressed.
 なお、永久磁石の形状は図2A,2Bに示した永久磁石211の形状に限らない。例えば、図3に示すように、軸心700方向においてステータ100に向かい基台220の周方向における長さが縮小しテーパ形状となった軸方向縮小部2121を備えた永久磁石212を用いてもよい。周方向に隣合う永久磁石212の間に充填された樹脂231により軸方向縮小部2121も覆われることにより、永久磁石212が軸心700方向においてステータ100側に向かって移動することを防止することができる。なお、永久磁石212は磁粉と樹脂を混合したボンド磁石を射出成型により成型することにより容易に作製することができる。また、焼結により永久磁石212を作製する場合は、金型の抜きテーパを利用することで、加工費を増加させることなく軸方向縮小部2121を形成させることができる。 The shape of the permanent magnet is not limited to the shape of the permanent magnet 211 shown in FIGS. 2A and 2B. For example, as shown in FIG. 3, a permanent magnet 212 having an axially reduced portion 2121 that is tapered in the circumferential direction of the base 220 toward the stator 100 in the axial center 700 direction may be used. Good. By covering the axially reduced portion 2121 with the resin 231 filled between the permanent magnets 212 adjacent to each other in the circumferential direction, it is possible to prevent the permanent magnets 212 from moving toward the stator 100 in the axial direction 700. Can be done. The permanent magnet 212 can be easily manufactured by molding a bond magnet in which magnetic powder and resin are mixed by injection molding. Further, when the permanent magnet 212 is manufactured by sintering, the axially reduced portion 2121 can be formed without increasing the processing cost by using the die punching taper.
 〔第3実施形態〕
 次に、本発明の第3実施形態によるロータについて図面を用いて説明する。図4Aは、本発明の第3実施形態によるロータ202にシャフト500を勘合した断面斜視図、図4Bは本発明の第3実施形態によるロータ202の拡大断面図である。なお、図4Aの反負荷側のロータ202(下側)は、永久磁石211および基台240内部の形状がわかるよう、樹脂232を省略している。
[Third Embodiment]
Next, the rotor according to the third embodiment of the present invention will be described with reference to the drawings. FIG. 4A is a sectional perspective view in which the shaft 500 is fitted to the rotor 202 according to the third embodiment of the present invention, and FIG. 4B is an enlarged sectional view of the rotor 202 according to the third embodiment of the present invention. In the rotor 202 (lower side) on the counterload side of FIG. 4A, the resin 232 is omitted so that the shapes inside the permanent magnet 211 and the base 240 can be seen.
 本実施形態が第2実施形態と異なる点は、基台240の溝242における内周壁243と外周壁244の形状、と樹脂232の形状である。したがって、モータの断面は図1Aと略同一のため省略し、第2実施例と重複する部品、構成等に関しては原則として説明を割愛する。 The difference between this embodiment and the second embodiment is the shape of the inner peripheral wall 243 and the outer peripheral wall 244 in the groove 242 of the base 240, and the shape of the resin 232. Therefore, since the cross section of the motor is substantially the same as that of FIG. 1A, it is omitted, and the description of parts, configurations, etc. that overlap with the second embodiment is omitted in principle.
 図4Aに示すように、本実施形態によるロータ202は、略円盤状の基台240と、基台240のステータ100側の端面241にロータ202の周方向に沿って設けられた溝242と、溝242に配置された磁極数の永久磁石211と、磁極数の永久磁石211を溝242内にモールド固定する樹脂232とを備えている。基台240は、ステータ100側の端面241にロータ202の周方向に沿って溝242が設けられている。 As shown in FIG. 4A, the rotor 202 according to the present embodiment includes a substantially disk-shaped base 240, and a groove 242 provided on the end surface 241 of the base 240 on the stator 100 side along the circumferential direction of the rotor 202. A permanent magnet 211 having a number of magnetic poles arranged in the groove 242 and a resin 232 for molding and fixing the permanent magnet 211 having a number of magnetic poles in the groove 242 are provided. The base 240 is provided with a groove 242 on the end surface 241 on the stator 100 side along the circumferential direction of the rotor 202.
 図4Bに示すように溝242は、内周壁243と外周壁244と底面245により構成されている。内周壁243には底面245側に凹部2431が設けられ、外周壁244には底面245側に凹部2441が設けられている。このとき、凹部2431,2441の軸心700方向におけるステータ100の反対側の側面は溝242の底面245と同一面となっているため、凹部2431,2441の加工は旋盤により溝242の底面245と連続的に加工できバイトの位置合わせが不要で工数を低減させることができる。また、永久磁石211は第2実施形態と同一であるため説明を省略する。 As shown in FIG. 4B, the groove 242 is composed of an inner peripheral wall 243, an outer peripheral wall 244, and a bottom surface 245. The inner peripheral wall 243 is provided with a recess 2431 on the bottom surface 245 side, and the outer peripheral wall 244 is provided with a recess 2441 on the bottom surface 245 side. At this time, since the side surface of the recess 2431,241 in the direction of the axial center 700 on the opposite side of the stator 100 is the same surface as the bottom surface 245 of the groove 242, the recess 2431,241 is machined with the bottom surface 245 of the groove 242 by a lathe. It can be machined continuously and the man-hours can be reduced because there is no need to align the cutting tool. Further, since the permanent magnet 211 is the same as that of the second embodiment, the description thereof will be omitted.
 樹脂232は、永久磁石211が配置された溝242に充填される。即ち、内周壁243と永久磁石211の内周側面2112の間と、外周壁244と永久磁石211の外周側面2111の間(凹部2441)と、周方向に隣合う永久磁石211の間のそれぞれに樹脂232は充填される。なお、外周壁244と永久磁石211の外周側面2111の間は軸心700方向に開口していないため、樹脂を直接充填することができない。しかし、凹部2441に周方向に隣合う永久磁石211の間に樹脂232を充填し流動させることにより、外周壁244と永久磁石211の外周側面2111の間に樹脂232を充填することができる。また、周方向に隣合う永久磁石211の間に充填された樹脂232は、内周壁243と永久磁石211の内周側面2112の間に充填された樹脂232と、外周壁244と永久磁石211の外周側面2111の間に充填された樹脂232とを連結する。 The resin 232 is filled in the groove 242 in which the permanent magnet 211 is arranged. That is, between the inner peripheral wall 243 and the inner peripheral side surface 2112 of the permanent magnet 211, between the outer peripheral wall 244 and the outer peripheral side surface 2111 of the permanent magnet 211 (recessed portion 2441), and between the permanent magnets 211 adjacent to each other in the circumferential direction. The resin 232 is filled. Since the outer peripheral wall 244 and the outer peripheral side surface 2111 of the permanent magnet 211 are not opened in the axial direction 700 direction, the resin cannot be directly filled. However, by filling and flowing the resin 232 between the permanent magnets 211 adjacent to each other in the circumferential direction in the recess 2441, the resin 232 can be filled between the outer peripheral wall 244 and the outer peripheral side surface 2111 of the permanent magnets 211. Further, the resin 232 filled between the permanent magnets 211 adjacent to each other in the circumferential direction includes the resin 232 filled between the inner peripheral wall 243 and the inner peripheral side surface 2112 of the permanent magnets 211, and the outer peripheral wall 244 and the permanent magnets 211. The resin 232 filled between the outer peripheral side surfaces 2111 is connected.
 また、内周壁243と永久磁石211の内周側面2112の間に樹脂232が充填されることにより内周壁243の凹部2431に樹脂232が充填され、周方向に隣合う永久磁石211の間に樹脂232が充填されることにより外周壁244の凹部2441に樹脂232が充填される。そのため、基台240は、溝242と連通し樹脂232が充填される凹部2431、2441を有し、凹部2431、2441に充填された樹脂232である凸部2321,2322のステータ100側には、樹脂232の軸心700方向に沿った移動を阻害するように基台240の一部(凹部2431,2441のステータ100側の部分)であるストッパ部2431,2442が隣接している。即ち、基台240は、ロータ202の軸心700を含むロータ202の断面において、軸心700と平行な軸線A-A、B-B方向(図4B参照)に沿ってロータ202をみたときに、基台240の一部であるストッパ部2431,2442のステータ100の反対側に樹脂232の一部である凸部2321,2322が隣接して現れるように設けられた凹部2431,2441を備えている。また、凹部2431,2441に充填された樹脂232である凸部2321,2322は、凹部2431,2441と樹脂232に覆われており、ロータ202の内部に備わっている。 Further, the resin 232 is filled between the inner peripheral wall 243 and the inner peripheral side surface 2112 of the permanent magnet 211, so that the recess 2431 of the inner peripheral wall 243 is filled with the resin 232, and the resin is formed between the permanent magnets 211 adjacent to each other in the circumferential direction. By filling the 232, the resin 232 is filled in the recess 2441 of the outer peripheral wall 244. Therefore, the base 240 has recesses 2431 and 2441 that are filled with the resin 232 that communicates with the groove 242, and the convex portions 2321 and 322 that are the resin 232 filled in the recesses 2431 and 2441 are provided on the stator 100 side. The stopper portions 2431 and 442, which are a part of the base 240 (the portion of the recesses 2431 and 441 on the stator 100 side), are adjacent to each other so as to hinder the movement of the resin 232 along the axis 700 direction. That is, when the base 240 is viewed in the cross section of the rotor 202 including the axis 700 of the rotor 202, the rotor 202 is viewed along the axes AA and BB directions parallel to the axis 700 (see FIG. 4B). The stopper portion 2431,442, which is a part of the base 240, is provided with a concave portion 2431,241 provided so that the convex portions 2321,322, which are a part of the resin 232, appear adjacent to each other on the opposite side of the stator 100. There is. Further, the convex portions 2321 and 322, which are the resin 232 filled in the concave portions 2431 and 441, are covered with the concave portions 2431 and 441 and the resin 232 and are provided inside the rotor 202.
 本実施形態では、凹部2431,2441内の樹脂232である凸部2321,2322はロータ202の内部に位置することになるため、凹部2431,2441内の樹脂232である凸部2321,2322と外気の接触が遮断される。したがって、凹部2431,2441内の樹脂232である凸部2321,2322は、ロータ202の表面に露出している樹脂232のように酸素等の環境物質や外気の熱によって容易に劣化することが抑制されるため、ロータ202の継続使用により永久磁石211の保持機能(軸心700方向における永久磁石211の拘束機能)が低下することを防止できる。なお、本実施形態では凹部2431を内周壁243の全周に、凹部2441を外周壁244の全周に、それぞれ環状に形成しているため、永久磁石211の保持機能をさらに増強できる。 In the present embodiment, since the convex portions 2321 and 322, which are the resin 232 in the concave portions 2431 and 441, are located inside the rotor 202, the convex portions 2321 and 2322, which are the resin 232 in the concave portions 2431 and 441, and the outside air Contact is cut off. Therefore, the convex portions 2321 and 322, which are the resin 232 in the concave portions 2431 and 441, are prevented from being easily deteriorated by environmental substances such as oxygen and the heat of the outside air like the resin 232 exposed on the surface of the rotor 202. Therefore, it is possible to prevent the holding function of the permanent magnet 211 (the restraining function of the permanent magnet 211 in the direction of the axis 700) from being lowered due to the continuous use of the rotor 202. In the present embodiment, since the recess 2431 is formed in an annular shape on the entire circumference of the inner peripheral wall 243 and the recess 2441 is formed on the entire circumference of the outer peripheral wall 244, the holding function of the permanent magnet 211 can be further enhanced.
 また、永久磁石211の内周側面2112は、溝242の内周壁243との間隔が軸心700方向においてステータ100側に向かって拡大するように形成されている。そのため、樹脂232と永久磁石211とを、永久磁石211の内周側面2112を介して互いに当接させることで、樹脂232の永久磁石211の保持機能(軸心700方向における永久磁石211の拘束機能)を増強している。すなわち永久磁石211の内周側面を略鉛直に設けた場合と比較して永久磁石211を基台240上に強固に保持できる。 Further, the inner peripheral side surface 2112 of the permanent magnet 211 is formed so that the distance between the groove 242 and the inner peripheral wall 243 increases toward the stator 100 in the axial 700 direction. Therefore, by bringing the resin 232 and the permanent magnet 211 into contact with each other via the inner peripheral side surface 2112 of the permanent magnet 211, the holding function of the permanent magnet 211 of the resin 232 (the function of restraining the permanent magnet 211 in the axis 700 direction). ) Is being strengthened. That is, the permanent magnet 211 can be held firmly on the base 240 as compared with the case where the inner peripheral side surface of the permanent magnet 211 is provided substantially vertically.
 〔第4実施形態〕
 次に、本発明の第4実施形態によるロータについて図面を用いて説明する。図5Aは、本発明の第4実施形態によるロータ203にシャフト500を勘合した断面斜視図、図5Bは本発明の第4実施形態によるロータ203の拡大断面図である。なお、図5Aの反負荷側のロータ203(下側)は、永久磁石211および基台250内部の形状がわかるよう、樹脂233を省略している。
[Fourth Embodiment]
Next, the rotor according to the fourth embodiment of the present invention will be described with reference to the drawings. FIG. 5A is a sectional perspective view in which the shaft 500 is fitted to the rotor 203 according to the fourth embodiment of the present invention, and FIG. 5B is an enlarged sectional view of the rotor 203 according to the fourth embodiment of the present invention. In the rotor 203 (lower side) on the counterload side of FIG. 5A, the resin 233 is omitted so that the shapes inside the permanent magnet 211 and the base 250 can be seen.
 本実施形態が第2実施形態と異なる点は、基台250と樹脂233の形状である。したがって、モータの断面は図1Aと略同一のため省略し、第2実施例と重複する部品、構成等に関しては原則として説明を割愛する。 The difference between this embodiment and the second embodiment is the shape of the base 250 and the resin 233. Therefore, since the cross section of the motor is substantially the same as that of FIG. 1A, it is omitted, and the description of parts, configurations, etc. that overlap with the second embodiment is omitted in principle.
 図5Aに示すように、本実施形態によるロータ203は、略円盤状の基台250と、基台250のステータ100側の端面251にロータ203の周方向に沿って設けられた溝252と、溝252に配置された磁極数の永久磁石211と、磁極数の永久磁石211を溝252内にモールド固定する樹脂233とを備えている。基台250は、ステータ100側の端面251にはロータ203の周方向に沿って溝252が設けられている。 As shown in FIG. 5A, the rotor 203 according to the present embodiment includes a substantially disk-shaped base 250, and a groove 252 provided on the end surface 251 of the base 250 on the stator 100 side along the circumferential direction of the rotor 203. A permanent magnet 211 having a number of magnetic poles arranged in the groove 252 and a resin 233 for molding and fixing the permanent magnet 211 having a number of magnetic poles in the groove 252 are provided. The base 250 is provided with a groove 252 on the end surface 251 on the stator 100 side along the circumferential direction of the rotor 203.
 図5Bに示すように、溝252は、内周壁253と外周壁254と底面255により構成されている。また、基台250の反ステータ100側の端面257には止まり穴256が1つ以上設けられている。止まり穴256は、内周壁253に形成される開口部258を介して溝252と連通する。そして、止まり穴256の底部2561と周面2562により囲まれた部分は凹部2563を形成する。また、外周壁254の底面255側には、永久磁石211の外周側面2111が当接する小径面2541が設けられ、外周壁254のステータ100側には、大径面2542が形成されている。なお、小径面2541と大径面2542は第2実施形態の小径面2241と大径面2242と同様であるため説明を省略する。 As shown in FIG. 5B, the groove 252 is composed of an inner peripheral wall 253, an outer peripheral wall 254, and a bottom surface 255. Further, one or more blind holes 256 are provided on the end surface 257 of the base 250 on the anti-stator 100 side. The blind hole 256 communicates with the groove 252 through an opening 258 formed in the inner peripheral wall 253. Then, the portion surrounded by the bottom portion 2561 and the peripheral surface 2562 of the blind hole 256 forms a recess 2563. Further, a small diameter surface 2541 with which the outer peripheral side surface 2111 of the permanent magnet 211 abuts is provided on the bottom surface 255 side of the outer peripheral wall 254, and a large diameter surface 2542 is formed on the stator 100 side of the outer peripheral wall 254. Since the small diameter surface 2541 and the large diameter surface 2542 are the same as the small diameter surface 2241 and the large diameter surface 2242 of the second embodiment, the description thereof will be omitted.
 樹脂233は、永久磁石211が配置された溝252に充填される。即ち、内周壁253と永久磁石211の内周側面2112の間と、外周壁254と永久磁石211の外周側面2111の間と、周方向に隣合う永久磁石211の間のそれぞれに樹脂233は充填される。なお、周方向に隣合う永久磁石211の間に充填された樹脂233は、内周壁253と永久磁石211の内周側面2112の間に充填された樹脂233と、外周壁264と永久磁石211の外周側面2111の間に充填された樹脂233とを連結する。 The resin 233 is filled in the groove 252 in which the permanent magnet 211 is arranged. That is, the resin 233 is filled between the inner peripheral wall 253 and the inner peripheral side surface 2112 of the permanent magnet 211, between the outer peripheral wall 254 and the outer peripheral side surface 2111 of the permanent magnet 211, and between the permanent magnets 211 adjacent to each other in the circumferential direction. Will be done. The resin 233 filled between the permanent magnets 211 adjacent to each other in the circumferential direction includes the resin 233 filled between the inner peripheral wall 253 and the inner peripheral side surface 2112 of the permanent magnets 211, and the outer peripheral wall 264 and the permanent magnets 211. The resin 233 filled between the outer peripheral side surfaces 2111 is connected.
 また、内周壁253と永久磁石211の内周側面2112の間に樹脂233が充填されることにより、内周壁253の開口部258を介して止まり穴256に樹脂233が充填され、凹部2563に樹脂233が充填される。そのため、基台250は、溝252と連通し樹脂233が充填される凹部2563を有し、凹部2563に充填された樹脂233である凸部2331のステータ100側には、樹脂233の軸心700方向に沿った移動を阻害するように基台250の一部である止まり穴256の底部2561が隣接している。即ち、基台250は、ロータ203の軸心700を含むロータ203の断面において、軸心700と平行な軸線A-A方向に沿ってロータ203をみたときに、基台250の一部である止まり穴256の底部2561においてステータ100の反対側に樹脂233の一部である凸部2331が隣接して現れるように設けられた凹部2563を備えている。また、凹部2563に充填された樹脂233である凸部2331は、凹部2563と他の樹脂233に覆われており、ロータ203の内部に備わっている。 Further, by filling the resin 233 between the inner peripheral wall 253 and the inner peripheral side surface 2112 of the permanent magnet 211, the blind hole 256 is filled with the resin 233 through the opening 258 of the inner peripheral wall 253, and the recess 2563 is filled with the resin. 233 is filled. Therefore, the base 250 has a recess 2563 filled with the groove 252 and the resin 233, and the axial center 700 of the resin 233 is located on the stator 100 side of the convex portion 2331 which is the resin 233 filled in the recess 2563. The bottom 2561 of the blind hole 256, which is a part of the base 250, is adjacent so as to hinder the movement along the direction. That is, the base 250 is a part of the base 250 when the rotor 203 is viewed along the axis AA direction parallel to the axis 700 in the cross section of the rotor 203 including the axis 700 of the rotor 203. The bottom portion 2561 of the blind hole 256 is provided with a recess 2563 provided on the opposite side of the stator 100 so that a convex portion 2331 which is a part of the resin 233 appears adjacent to the bottom portion 2561. The convex portion 2331, which is the resin 233 filled in the concave portion 2563, is covered with the concave portion 2563 and another resin 233, and is provided inside the rotor 203.
 本実施形態では、止まり穴256に充填された樹脂233である凸部2331はロータ203の内部に位置することになるため、凹部2563内の樹脂233である凸部2331と外気の接触が遮断される。したがって、凹部2563内の樹脂233である凸部2331は、ロータ203の表面に露出している樹脂233のように酸素等の環境物質や外気の熱によって容易に劣化することが抑制されるため、ロータ203の継続使用により永久磁石211の保持機能(軸心700方向における永久磁石211の拘束機能)が低下することを防止できる。 In the present embodiment, since the convex portion 2331 which is the resin 233 filled in the blind hole 256 is located inside the rotor 203, the contact between the convex portion 2331 which is the resin 233 in the concave portion 2563 and the outside air is blocked. To. Therefore, the convex portion 2331, which is the resin 233 in the concave portion 2563, is prevented from being easily deteriorated by an environmental substance such as oxygen or the heat of the outside air like the resin 233 exposed on the surface of the rotor 203. It is possible to prevent the holding function of the permanent magnet 211 (the function of restraining the permanent magnet 211 in the direction of the axis 700) from being deteriorated by the continuous use of the rotor 203.
 また、永久磁石211の内周側面2112と溝252の内周壁253との間隔は、第3実施形態と同様に軸心700方向においてステータ100側に向かって拡大するように形成されている。そのため、樹脂233と永久磁石211とを、永久磁石211の内周側面2112を介して互いに当接させることで、樹脂233の永久磁石211の保持機能(軸心700方向における永久磁石211の拘束機能)を増強している。すなわち永久磁石211の内周側面を略鉛直に設けた場合と比較して永久磁石211を基台250上に強固に保持できる。 Further, the distance between the inner peripheral side surface 2112 of the permanent magnet 211 and the inner peripheral wall 253 of the groove 252 is formed so as to expand toward the stator 100 side in the axial center 700 direction as in the third embodiment. Therefore, by bringing the resin 233 and the permanent magnet 211 into contact with each other via the inner peripheral side surface 2112 of the permanent magnet 211, the holding function of the permanent magnet 211 of the resin 233 (the function of restraining the permanent magnet 211 in the axial center 700 direction). ) Is being strengthened. That is, the permanent magnet 211 can be held firmly on the base 250 as compared with the case where the inner peripheral side surface of the permanent magnet 211 is provided substantially vertically.
 また、本実施形態によれは、基台250の反ステータ100側の端面257に複数の止まり穴256を設けるという簡単な加工により、溝252と連通して樹脂233が充填される凹部2563を設けることが可能となる。なお、本実施形態において、基台250の反ステータ100側の端面257に止まり穴256を1つ以上設けるとしたが、基台250の強度を損なわない限りにおいて止まり穴の数は多い方が好ましい。 Further, according to the present embodiment, a recess 2563 is provided which communicates with the groove 252 and is filled with the resin 233 by a simple process of providing a plurality of blind holes 256 on the end surface 257 on the anti-stator 100 side of the base 250. It becomes possible. In the present embodiment, one or more blind holes 256 are provided on the end surface 257 of the base 250 on the anti-stator 100 side, but it is preferable that the number of blind holes is large as long as the strength of the base 250 is not impaired. ..
 〔第5実施形態〕
 次に、本発明の第5実施形態によるロータについて図面を用いて説明する。図6Aは、本発明の第5実施形態によるロータ204にシャフト500を勘合した断面斜視図、図6Bは、本発明の第5実施形態によるロータ204の拡大断面図である。なお、図6Aの反負荷側のロータ204(下側)は、永久磁石211および基台260内部の形状がわかるよう、樹脂234を省略している。
[Fifth Embodiment]
Next, the rotor according to the fifth embodiment of the present invention will be described with reference to the drawings. FIG. 6A is a sectional perspective view in which the shaft 500 is fitted to the rotor 204 according to the fifth embodiment of the present invention, and FIG. 6B is an enlarged sectional view of the rotor 204 according to the fifth embodiment of the present invention. In the rotor 204 (lower side) on the counterload side of FIG. 6A, the resin 234 is omitted so that the shapes inside the permanent magnet 211 and the base 260 can be seen.
 本実施形態が第2実施形態と異なる点は、基台260と樹脂234の形状である。したがって、モータの断面は図1Aと略同一であるため省略し、第2実施例と重複する部品、構成等に関しては原則として説明を割愛する。 The difference between this embodiment and the second embodiment is the shape of the base 260 and the resin 234. Therefore, since the cross section of the motor is substantially the same as that of FIG. 1A, it is omitted, and the description of parts, configurations, etc. that overlap with the second embodiment is omitted in principle.
 図6Aに示すように、本実施形態によるロータ204は、略円盤状の基台260と、基台260のステータ100側の端面261にロータ204の周方向に沿って設けられた溝262と、溝262に配置された磁極数の永久磁石211と、磁極数分の永久磁石211を溝262内にモールド固定する樹脂234とを備えている。基台260は、ステータ100側の端面261にはロータ204の周方向に沿って溝262が設けられている。 As shown in FIG. 6A, the rotor 204 according to the present embodiment includes a substantially disk-shaped base 260 and a groove 262 provided on the end surface 261 of the base 260 on the stator 100 side along the circumferential direction of the rotor 204. A permanent magnet 211 having the number of magnetic poles arranged in the groove 262 and a resin 234 for molding and fixing the permanent magnets 211 having the number of magnetic poles in the groove 262 are provided. The base 260 is provided with a groove 262 on the end surface 261 on the stator 100 side along the circumferential direction of the rotor 204.
 図6Bに示すように、溝262は、内周壁263と外周壁264と底面265により構成されている。また、内周壁263は底面265に対して鋭角に立ち上がり、内周壁263と底面265により挟まれた部分が凹部2631を形成している。このとき、凹部2631は、底面265に対して鋭角に内周壁263を加工するだけなので、内周壁263と底面265は旋盤により連続的に加工でき工数を低減させることができる。なお、外周壁264(小径面2641と大径面2642)は、第4実施形態と同じ構成であるため説明を省略する。 As shown in FIG. 6B, the groove 262 is composed of an inner peripheral wall 263, an outer peripheral wall 264, and a bottom surface 265. Further, the inner peripheral wall 263 rises at an acute angle with respect to the bottom surface 265, and the portion sandwiched between the inner peripheral wall 263 and the bottom surface 265 forms a recess 2631. At this time, since the recess 2631 only processes the inner peripheral wall 263 at an acute angle with respect to the bottom surface 265, the inner peripheral wall 263 and the bottom surface 265 can be continuously processed by a lathe, and the man-hours can be reduced. Since the outer peripheral wall 264 (small diameter surface 2461 and large diameter surface 2642) has the same configuration as that of the fourth embodiment, the description thereof will be omitted.
 樹脂234は、永久磁石211が配置された溝262に充填される。即ち、内周壁263と永久磁石211の内周側面2112の間と、外周壁264と永久磁石211の外周側面2111の間と、周方向に隣合う永久磁石211の間のそれぞれに樹脂234は充填される。なお、周方向に隣合う永久磁石211の間に充填された樹脂234は、内周壁263と永久磁石211の内周側面2112の間に充填された樹脂234と、外周壁264と永久磁石211の外周側面2111の間に充填された樹脂234とを連結する。 The resin 234 is filled in the groove 262 in which the permanent magnet 211 is arranged. That is, the resin 234 is filled between the inner peripheral wall 263 and the inner peripheral side surface 2112 of the permanent magnet 211, between the outer peripheral wall 264 and the outer peripheral side surface 2111 of the permanent magnet 211, and between the permanent magnets 211 adjacent to each other in the circumferential direction. Will be done. The resin 234 filled between the permanent magnets 211 adjacent to each other in the circumferential direction includes the resin 234 filled between the inner peripheral wall 263 and the inner peripheral side surface 2112 of the permanent magnets 211, and the outer peripheral wall 264 and the permanent magnets 211. The resin 234 filled between the outer peripheral side surfaces 2111 is connected.
 また、内周壁263と永久磁石211の内周側面2112の間に樹脂234が充填されることにより凹部2631に樹脂234が充填される。そのため、基台260は、溝262と連通し樹脂234が充填される凹部2631を有し、凹部2631に充填された樹脂234である凸部2341のステータ100側には、基台260の一部である内周壁263が隣接している。即ち、基台260は、ロータ204の軸心700を含むロータ204の断面において、軸心700と平行な軸線A-A方向に沿ってロータ204をみたときに、基台260の一部である内周壁263のステータ100の反対側に樹脂234の一部である凸部2341が隣接して現れるように設けられた凹部2631を備えている。また、凹部2631に充填された樹脂234である凸部2341は、凹部2631(内周壁243と底面245)と樹脂234に覆われており、ロータ204の内部に備わっている。 Further, the recess 2631 is filled with the resin 234 by filling the resin 234 between the inner peripheral wall 263 and the inner peripheral side surface 2112 of the permanent magnet 211. Therefore, the base 260 has a recess 2631 in which the groove 262 and the resin 234 communicate with each other are filled, and a part of the base 260 is on the stator 100 side of the convex portion 2341 which is the resin 234 filled in the recess 2631. The inner peripheral wall 263 is adjacent to the inner peripheral wall 263. That is, the base 260 is a part of the base 260 when the rotor 204 is viewed along the axis AA direction parallel to the axis 700 in the cross section of the rotor 204 including the axis 700 of the rotor 204. On the opposite side of the stator 100 of the inner peripheral wall 263, a recess 2631 is provided so that a convex portion 2341 which is a part of the resin 234 appears adjacently. The convex portion 2341, which is the resin 234 filled in the concave portion 2631, is covered with the concave portion 2631 (inner peripheral wall 243 and the bottom surface 245) and the resin 234, and is provided inside the rotor 204.
 本実施形態では、凹部2631に充填された樹脂234である凸部2341はロータ204の内部に位置することになるため、凹部2631に充填された樹脂234である凸部2341と外気の接触が遮断される。したがって、凹部2631に充填された樹脂234である凸部2341は、ロータ204の表面に露出している樹脂234のように酸素等の環境物質や外気の熱によって容易に劣化することが抑制されるため、ロータ204の継続使用により永久磁石211の保持機能(軸心700方向における永久磁石211の拘束機能)が低下することを防止できる。 In the present embodiment, since the convex portion 2341 which is the resin 234 filled in the concave portion 2631 is located inside the rotor 204, the contact between the convex portion 2341 which is the resin 234 filled in the concave portion 2631 and the outside air is blocked. Will be done. Therefore, the convex portion 2341, which is the resin 234 filled in the concave portion 2631, is prevented from being easily deteriorated by an environmental substance such as oxygen or the heat of the outside air like the resin 234 exposed on the surface of the rotor 204. Therefore, it is possible to prevent the holding function of the permanent magnet 211 (the restraining function of the permanent magnet 211 in the direction of the axis 700) from being lowered due to the continuous use of the rotor 204.
 また、永久磁石211の内周側面2112と溝262の内周壁263は、軸心700方向においてステータ100側に向かって軸心700との間隔が拡大するように形成されている。そのため、樹脂234と永久磁石211とを、永久磁石211の内周側面2112を介して互いに当接させることで、樹脂234の永久磁石211の保持機能(軸心700方向における永久磁石211の拘束機能)を増強している。すなわち永久磁石211の内周側面を略鉛直に設けた場合と比較して永久磁石211を基台260上に強固に保持できる。また、本実施形態によれは、内周壁263を溝262の底面265側に傾斜させるという簡単な加工により、本発明に係る凹部を設けることが可能となる。 Further, the inner peripheral side surface 2112 of the permanent magnet 211 and the inner peripheral wall 263 of the groove 262 are formed so that the distance from the axial center 700 increases toward the stator 100 side in the axial center 700 direction. Therefore, by bringing the resin 234 and the permanent magnet 211 into contact with each other via the inner peripheral side surface 2112 of the permanent magnet 211, the holding function of the permanent magnet 211 of the resin 234 (the function of restraining the permanent magnet 211 in the axial center 700 direction). ) Is being strengthened. That is, the permanent magnet 211 can be held firmly on the base 260 as compared with the case where the inner peripheral side surface of the permanent magnet 211 is provided substantially vertically. Further, according to the present embodiment, the recess according to the present invention can be provided by a simple process of inclining the inner peripheral wall 263 toward the bottom surface 265 side of the groove 262.
 〔第6実施形態〕
 次に、本発明の第6実施形態によるロータについて図面を用いて説明する。図7Aは、本発明の第6実施形態によるロータ205にシャフト500を勘合した断面斜視図、図7Bは本発明の第6実施形態によるロータ205の拡大断面図である。なお、図7Aの反負荷側のロータ205(下側)は、永久磁石211および基台270内部の形状がわかるよう、樹脂235を省略している。
[Sixth Embodiment]
Next, the rotor according to the sixth embodiment of the present invention will be described with reference to the drawings. FIG. 7A is a sectional perspective view in which the shaft 500 is fitted to the rotor 205 according to the sixth embodiment of the present invention, and FIG. 7B is an enlarged sectional view of the rotor 205 according to the sixth embodiment of the present invention. In the rotor 205 (lower side) on the counterload side of FIG. 7A, the resin 235 is omitted so that the shapes inside the permanent magnet 211 and the base 270 can be seen.
 本実施形態が第2実施形態と異なる点は、基台270と樹脂235の形状である。したがって、モータの断面は図1Aと略同一であるため省略し、第2実施例と重複する部品、構成等に関しては原則として説明を割愛する。 The difference between this embodiment and the second embodiment is the shape of the base 270 and the resin 235. Therefore, since the cross section of the motor is substantially the same as that of FIG. 1A, it is omitted, and the description of parts, configurations, etc. that overlap with the second embodiment is omitted in principle.
 図7Aに示すように、本実施形態によるロータ205は、略円盤状の基台270と、基台270のステータ100側の端面271にロータ205の周方向に沿って設けられた溝272と、溝272に配置された磁極数の永久磁石211と、基台270の周方向に隣合う永久磁石211の間において溝272の底面275に形成されたネジ穴276に頭部2771を底面275から離した状態に螺合させたネジ277と、磁極数の永久磁石211を溝272内にモールド固定する樹脂235とを備えている。基台270は、ステータ100側の端面271にロータ205の周方向に沿って溝272が設けられている。 As shown in FIG. 7A, the rotor 205 according to the present embodiment includes a substantially disk-shaped base 270 and a groove 272 provided on the end surface 271 of the base 270 on the stator 100 side along the circumferential direction of the rotor 205. The head 2771 is separated from the bottom surface 275 in the screw hole 276 formed in the bottom surface 275 of the groove 272 between the permanent magnets 211 having the number of magnetic poles arranged in the groove 272 and the permanent magnets 211 adjacent to each other in the circumferential direction of the base 270. It is provided with a screw 277 screwed in the state of being screwed, and a resin 235 for molding and fixing a permanent magnet 211 having a number of magnetic poles in the groove 272. The base 270 is provided with a groove 272 on the end surface 271 on the stator 100 side along the circumferential direction of the rotor 205.
 図7Bに示すように、溝272は、内周壁273と外周壁274と底面275により構成されている。底面275には、基台270の周方向に隣合う永久磁石211の間にネジ穴276がそれぞれ設けられている。ネジ穴276には、ネジ277が頭部2771を底面275から離れた状態に螺合している。そのため、ネジ277の胴部2772が底面275から突出し、頭部2771と胴部2772により凹部2773が形成されている。また、内周壁273は平らな周面に形成されている。また、外周壁274(小径面2741と大径面2742)は、第4実施形態と同じ構成であるため説明を省略する。 As shown in FIG. 7B, the groove 272 is composed of an inner peripheral wall 273, an outer peripheral wall 274, and a bottom surface 275. On the bottom surface 275, screw holes 276 are provided between the permanent magnets 211 adjacent to each other in the circumferential direction of the base 270. In the screw hole 276, a screw 277 is screwed so that the head 2771 is separated from the bottom surface 275. Therefore, the body portion 2772 of the screw 277 protrudes from the bottom surface 275, and the recess 2773 is formed by the head portion 2771 and the body portion 2772. Further, the inner peripheral wall 273 is formed on a flat peripheral surface. Further, since the outer peripheral wall 274 (small diameter surface 2741 and large diameter surface 2742) has the same configuration as that of the fourth embodiment, the description thereof will be omitted.
 樹脂235は、永久磁石211が配置された溝272に充填される。即ち、内周壁273と永久磁石211の内周側面2112の間と、外周壁274と永久磁石211の外周側面2111の間と、周方向に隣合う永久磁石211の間のそれぞれに樹脂235は充填される。なお、周方向に隣合う永久磁石211の間に充填された樹脂235は、内周壁273と永久磁石211の内周側面2112(図8A参照)の間に充填された樹脂235と、外周壁274と永久磁石211の外周側面2111(図8A参照)の間に充填された樹脂235とを連結する。 The resin 235 is filled in the groove 272 in which the permanent magnet 211 is arranged. That is, the resin 235 is filled between the inner peripheral wall 273 and the inner peripheral side surface 2112 of the permanent magnet 211, between the outer peripheral wall 274 and the outer peripheral side surface 2111 of the permanent magnet 211, and between the permanent magnets 211 adjacent to each other in the circumferential direction. Will be done. The resin 235 filled between the permanent magnets 211 adjacent to each other in the circumferential direction includes the resin 235 filled between the inner peripheral wall 273 and the inner peripheral side surface 2112 (see FIG. 8A) of the permanent magnets 211 and the outer peripheral wall 274. The resin 235 filled between the permanent magnet 211 and the outer peripheral side surface 2111 (see FIG. 8A) is connected.
 また、周方向に隣合う永久磁石211の間に樹脂235が充填されることにより、頭部2771と胴部2772により形成された凹部2773には樹脂235が充填される。そのため、基台270は、溝272と連通し樹脂235が充填される凹部2773を有し、凹部2773に充填された樹脂235である凸部2351のステータ100側には、樹脂235の軸心700方向に沿った移動を阻害するように基台270の一部となっているネジ277の頭部2771が隣接している。即ち、基台270は、ロータ205の軸心700を含むロータ205の断面において、軸心700と平行な軸線A-A方向(図7B参照)に沿ってロータ205をみたときに、基台270の一部となっているネジ277の頭部2771におけるステータ100の反対側に、樹脂235の一部である凸部2351が隣接して現れるように設けられた凹部2773を備えている。また、凸部2351は、凹部2773と樹脂235に覆われており、ロータ205の内部に備わっている。 Further, by filling the resin 235 between the permanent magnets 211 adjacent to each other in the circumferential direction, the resin 235 is filled in the recess 2773 formed by the head 2771 and the body 2772. Therefore, the base 270 has a recess 2773 that communicates with the groove 272 and is filled with the resin 235, and the axial center 700 of the resin 235 is located on the stator 100 side of the convex portion 2351 which is the resin 235 filled in the recess 2773. Adjacent to the head 2771 of the screw 277, which is part of the base 270 so as to impede movement along the direction. That is, the base 270 is the base 270 when the rotor 205 is viewed along the axis AA direction (see FIG. 7B) parallel to the axis 700 in the cross section of the rotor 205 including the axis 700 of the rotor 205. On the opposite side of the stator 100 in the head portion 2771 of the screw 277, which is a part of the screw 277, a recess 2773 is provided so that a convex portion 2351 which is a part of the resin 235 appears adjacently. Further, the convex portion 2351 is covered with the concave portion 2773 and the resin 235, and is provided inside the rotor 205.
 本実施形態では、胴部2772に充填された樹脂235である凸部2351はロータ205の内部に位置することになるため、凹部2773に充填された樹脂235である凸部2351と外気の接触が遮断される。したがって、凹部2773に充填された樹脂235である凸部2351は、ロータ205の表面に露出している樹脂235のように酸素等の環境物質や外気の熱によって容易に劣化することが抑制されるため、ロータ205の継続使用により永久磁石211の保持機能(軸心700方向における永久磁石211の拘束機能)が低下することを防止できる。 In the present embodiment, since the convex portion 2351 which is the resin 235 filled in the body portion 2772 is located inside the rotor 205, the convex portion 2351 which is the resin 235 filled in the concave portion 2737 and the outside air come into contact with each other. It is blocked. Therefore, the convex portion 2351, which is the resin 235 filled in the concave portion 2773, is prevented from being easily deteriorated by an environmental substance such as oxygen or the heat of the outside air like the resin 235 exposed on the surface of the rotor 205. Therefore, it is possible to prevent the holding function of the permanent magnet 211 (the function of restraining the permanent magnet 211 in the direction of the axis 700) from being deteriorated by the continuous use of the rotor 205.
 また、永久磁石211の内周側面2112(図7A参照)と溝272の内周壁273は、軸心700方向においてステータ100側に向かって軸心700との間隔が拡大するように形成されている。そのため、樹脂235と永久磁石211とを、永久磁石211の内周側面2112を介して互いに当接させることで、樹脂235の永久磁石211の保持機能(軸心700方向における永久磁石211の拘束機能)を増強している。すなわち永久磁石211の内周側面を略鉛直に設けた場合と比較して永久磁石211を基台270上に強固に保持できる。 Further, the inner peripheral side surface 2112 of the permanent magnet 211 (see FIG. 7A) and the inner peripheral wall 273 of the groove 272 are formed so that the distance from the axial center 700 increases toward the stator 100 side in the axial center 700 direction. .. Therefore, by bringing the resin 235 and the permanent magnet 211 into contact with each other via the inner peripheral side surface 2112 of the permanent magnet 211, the holding function of the permanent magnet 211 of the resin 235 (the function of restraining the permanent magnet 211 in the axial center 700 direction). ) Is being strengthened. That is, the permanent magnet 211 can be held firmly on the base 270 as compared with the case where the inner peripheral side surface of the permanent magnet 211 is provided substantially vertically.
 また、本実施形態によれは、基台270の底面275にネジ穴を設け、頭部を有するネジを螺合するという簡単な構造により、本発明に係る凹部2773を設けることが可能となる。 Further, according to the present embodiment, the recess 2773 according to the present invention can be provided by a simple structure in which a screw hole is provided in the bottom surface 275 of the base 270 and a screw having a head is screwed.
 なお、基台270の内周壁273と外周壁274を第1実施形態と同様な形状としてもよい。即ち、内周壁273に凹部2231を形成し、外周壁274には底面275側に小径面2241を、ステータ100側に大径面2242を、小径面2241と大径面2242の間の凹部2243を形成しても良い。これにより、さらに樹脂235の基台270からの離脱を防止できる。また、基台270の底面275に周方向に隣合う永久磁石211の間にネジ穴276をそれぞれ設け、ネジ穴276のそれぞれにネジ277が螺合されている実施形態を示したが、ネジ穴276は1つ以上あればよい。また、隣合う永久磁石211の間に複数のネジ穴276を設けてもよい。 The inner peripheral wall 273 and the outer peripheral wall 274 of the base 270 may have the same shape as that of the first embodiment. That is, a recess 2231 is formed on the inner peripheral wall 273, the outer wall 274 has a small diameter surface 2241 on the bottom surface 275 side, a large diameter surface 2242 on the stator 100 side, and a recess 2243 between the small diameter surface 2241 and the large diameter surface 2242. It may be formed. This further prevents the resin 235 from coming off from the base 270. Further, the embodiment in which screw holes 276 are provided between the permanent magnets 211 adjacent to each other on the bottom surface 275 of the base 270 in the circumferential direction and screws 277 are screwed into each of the screw holes 276 is shown. There may be one or more 276s. Further, a plurality of screw holes 276 may be provided between the adjacent permanent magnets 211.
 〔第7実施形態〕
 次に、本発明の第7実施形態によるロータについて図面を用いて説明する。図8Aは、本発明の第7実施形態によるロータ206にシャフト500を勘合した断面斜視図、図8Bは本発明の第7実施形態によるロータ206の拡大断面図である。なお、図8Aの反負荷側のロータ206(下側)は、永久磁石211および基台280内部の形状がわかるよう、樹脂236を省略している。
[7th Embodiment]
Next, the rotor according to the seventh embodiment of the present invention will be described with reference to the drawings. FIG. 8A is a sectional perspective view in which the shaft 500 is fitted to the rotor 206 according to the seventh embodiment of the present invention, and FIG. 8B is an enlarged sectional view of the rotor 206 according to the seventh embodiment of the present invention. In the rotor 206 (lower side) on the counterload side of FIG. 8A, the resin 236 is omitted so that the shapes inside the permanent magnet 211 and the base 280 can be seen.
 本実施形態が第2実施形態と異なる点は、基台280と樹脂236の形状である。したがって、モータの断面は図1Aと略同一であるため省略し、第2実施例と重複する部品、構成等に関しては原則として説明を割愛する。 The difference between this embodiment and the second embodiment is the shape of the base 280 and the resin 236. Therefore, since the cross section of the motor is substantially the same as that of FIG. 1A, it is omitted, and the description of parts, configurations, etc. that overlap with the second embodiment is omitted in principle.
 図8Aに示すように、本実施形態によるロータ206は、略円盤状の基台280と、基台280のステータ100側の端面281にロータ206の周方向に沿って設けられた溝282と、溝282に配置された磁極数の永久磁石211と、周方向に隣合う永久磁石211の間の溝282の底面285に設けられた貫通孔286と、基台280における反ステータ100側の端面287に貫通した貫通孔286と連通するザグリ穴288と、磁極数の永久磁石211を溝282内にモールド固定する樹脂236とを備えている。基台280は、ステータ100側の端面281にロータ206の周方向に沿って溝282が設けられている。 As shown in FIG. 8A, the rotor 206 according to the present embodiment includes a substantially disk-shaped base 280 and a groove 282 provided on the end surface 281 of the base 280 on the stator 100 side along the circumferential direction of the rotor 206. A through hole 286 provided in the bottom surface 285 of the groove 282 between the permanent magnets 211 having the number of magnetic poles arranged in the groove 282 and the permanent magnets 211 adjacent to each other in the circumferential direction, and the end surface 287 on the anti-stator 100 side of the base 280. It is provided with a counterbore hole 288 that communicates with a through hole 286 that penetrates through the magnet, and a resin 236 that mold-fixes a permanent magnet 211 having a number of magnetic poles in the groove 282. The base 280 is provided with a groove 282 on the end surface 281 on the stator 100 side along the circumferential direction of the rotor 206.
 図8Bに示すように、溝282は、内周壁283と外周壁284と底面285により構成されている。底面285には、基台280の周方向に隣合う永久磁石211の間に貫通孔286が設けられている。貫通孔286の基台280における反ステータ100側の端面287にはザグリ穴288が設けられ、凹部2881が形成されている。また、内周壁283と外周壁284(小径面2841と大径面2842)は、第6実施形態と同じ構成であるため説明を省略する。 As shown in FIG. 8B, the groove 282 is composed of an inner peripheral wall 283, an outer peripheral wall 284, and a bottom surface 285. The bottom surface 285 is provided with a through hole 286 between the permanent magnets 211 adjacent to each other in the circumferential direction of the base 280. A counterbore hole 288 is provided in the end surface 287 on the anti-stator 100 side of the base 280 of the through hole 286, and a recess 2881 is formed. Further, since the inner peripheral wall 283 and the outer peripheral wall 284 (small diameter surface 2841 and large diameter surface 2842) have the same configuration as that of the sixth embodiment, the description thereof will be omitted.
 樹脂236は、永久磁石211が配置された溝282に充填される。即ち、内周壁283と永久磁石211の内周側面2112の間と、外周壁284と永久磁石211の外周側面2111の間と、周方向に隣合う永久磁石211の間のそれぞれに樹脂236は充填される。なお、周方向に隣合う永久磁石211の間に充填された樹脂236は、内周壁283と永久磁石211の内周側面2112の間に充填された樹脂236と、外周壁284と永久磁石211の外周側面2111の間に充填された樹脂236とを連結する。 The resin 236 is filled in the groove 282 in which the permanent magnet 211 is arranged. That is, the resin 236 is filled between the inner peripheral wall 283 and the inner peripheral side surface 2112 of the permanent magnet 211, between the outer peripheral wall 284 and the outer peripheral side surface 2111 of the permanent magnet 211, and between the permanent magnets 211 adjacent to each other in the circumferential direction. Will be done. The resin 236 filled between the permanent magnets 211 adjacent to each other in the circumferential direction includes the resin 236 filled between the inner peripheral wall 283 and the inner peripheral side surface 2112 of the permanent magnets 211, and the outer peripheral wall 284 and the permanent magnets 211. The resin 236 filled between the outer peripheral side surfaces 2111 is connected.
 また、周方向に隣合う永久磁石211の間のそれぞれに樹脂236が充填されることにより、貫通孔286とザグリ穴288に樹脂236が充填される。そのため、基台280は、溝282と貫通孔286を介して連通し樹脂236が充填される凹部2881を有し、凹部2881に充填された樹脂236である凸部2361のステータ100側には、樹脂236の軸心700方向に沿った移動を阻害するように基台280の一部であるザクリ穴288の底部2882が隣接している。即ち、基台280は、ロータ206の軸心700を含むロータ206の断面において、軸心700と平行な軸線A-A方向(図8B参照)に沿ってロータ206をみたときに、基台280の一部であるザクリ穴288の底部2882の反対側に樹脂236の一部である凸部2361が隣接して現れるように設けられた凹部2881を備えている。また、凹部2881に充填された樹脂236である凸部2361は、ザグリ穴288の側面2883と底部2882と樹脂236に覆われており、ロータ206の内部に備わっている。 Further, the resin 236 is filled in the through hole 286 and the counterbore hole 288 by filling the resin 236 between the permanent magnets 211 adjacent to each other in the circumferential direction. Therefore, the base 280 has a recess 2881 in which the resin 236 is filled through the groove 282 and the through hole 286, and the convex portion 2361, which is the resin 236 filled in the recess 2881, is on the stator 100 side. The bottom 2882 of the counterbore hole 288, which is a part of the base 280, is adjacent so as to hinder the movement of the resin 236 along the axis 700 direction. That is, the base 280 is the base 280 when the rotor 206 is viewed along the axis AA direction (see FIG. 8B) parallel to the axis 700 in the cross section of the rotor 206 including the axis 700 of the rotor 206. A recess 2881 is provided on the opposite side of the bottom 2882 of the counterbore hole 288, which is a part of the hole 288, so that a convex portion 2361, which is a part of the resin 236, appears adjacently. The convex portion 2361, which is the resin 236 filled in the concave portion 2881, is covered with the side surface 2883, the bottom portion 2882, and the resin 236 of the counterbore hole 288, and is provided inside the rotor 206.
 本実施形態では、ザグリ穴288に充填された樹脂236である凸部2361はロータ206の内部に位置することになるため、凹部2861内の樹脂236である凸部2361と外気の接触が遮断される。したがって、凹部2861内の樹脂236である凸部2361は、ロータ206の表面に露出している樹脂236のように酸素等の環境物質や外気の熱によって容易に劣化することが抑制されるため、ロータ206の継続使用により永久磁石211の保持機能(軸心700方向における永久磁石211の拘束機能)が低下することを防止できる。 In the present embodiment, since the convex portion 2361 which is the resin 236 filled in the counterbore hole 288 is located inside the rotor 206, the contact between the convex portion 2361 which is the resin 236 in the concave portion 2861 and the outside air is blocked. To. Therefore, the convex portion 2361, which is the resin 236 in the concave portion 2861, is prevented from being easily deteriorated by an environmental substance such as oxygen or the heat of the outside air like the resin 236 exposed on the surface of the rotor 206. It is possible to prevent the holding function of the permanent magnet 211 (the function of restraining the permanent magnet 211 in the direction of the axis 700) from being deteriorated by the continuous use of the rotor 206.
 また、永久磁石211の内周側面2112(図8A参照)と溝282の内周壁283との間隔は、第6実施形態と同様に軸心700方向においてステータ100側に向かって拡大するように形成されている。そのため、樹脂236と永久磁石211とを、永久磁石211の内周側面2112を介して互いに当接させることで、樹脂236の永久磁石211の保持機能(軸心700方向における永久磁石211の拘束機能)を増強している。すなわち永久磁石211の内周側面を略鉛直に設けた場合と比較して永久磁石211を基台280上に強固に保持できる。また、本実施形態によれは、基台280に貫通孔286とザグリ穴288を設けるという簡単な加工により、本発明に係る凹部を設けることが可能となる。 Further, the distance between the inner peripheral side surface 2112 of the permanent magnet 211 (see FIG. 8A) and the inner peripheral wall 283 of the groove 282 is formed so as to expand toward the stator 100 side in the axial 700 direction as in the sixth embodiment. Has been done. Therefore, by bringing the resin 236 and the permanent magnet 211 into contact with each other via the inner peripheral side surface 2112 of the permanent magnet 211, the holding function of the permanent magnet 211 of the resin 236 (the function of restraining the permanent magnet 211 in the axial center 700 direction). ) Is being strengthened. That is, the permanent magnet 211 can be held firmly on the base 280 as compared with the case where the inner peripheral side surface of the permanent magnet 211 is provided substantially vertically. Further, according to the present embodiment, the recess according to the present invention can be provided by a simple process of providing a through hole 286 and a counterbore hole 288 in the base 280.
 なお、本実施形態では、ザグリ穴288(段付き穴)を用いた例を示したが、溝282と連通し、樹脂236が充填される凹部を有し、凹部に充填された樹脂236のステータ100側には基台280の一部が隣接していればよく、テーパ穴やメネジ穴、軸心700方向に傾斜した穴等であってもよい。 In this embodiment, an example using a counterbore hole 288 (stepped hole) is shown, but the stator of the resin 236 having a recess that communicates with the groove 282 and is filled with the resin 236 and is filled with the resin 236. A part of the base 280 may be adjacent to the 100 side, and may be a tapered hole, a female screw hole, a hole inclined in the axis 700 direction, or the like.
 また、基台280の内周壁283と外周壁284を第1実施形態と同様な形状としてもよい。即ち、内周壁283に凹部2231を形成し、外周壁284には底面285側に小径面2241を、ステータ100側に大径面2242を、小径面2241と大径面2242の間の凹部2243を形成しても良い。これにより、さらに樹脂236の基台280からの離脱を防止できる。 Further, the inner peripheral wall 283 and the outer peripheral wall 284 of the base 280 may have the same shape as that of the first embodiment. That is, a recess 2231 is formed on the inner peripheral wall 283, the outer wall 284 has a small diameter surface 2241 on the bottom surface 285 side, a large diameter surface 2242 on the stator 100 side, and a recess 2243 between the small diameter surface 2241 and the large diameter surface 2242. It may be formed. This further prevents the resin 236 from coming off from the base 280.
 また、貫通孔286とザグリ穴288は、基台280の底面285に周方向に隣合う永久磁石211の間のいずれかに少なくとも1つ設ければよい。 Further, at least one through hole 286 and counterbore hole 288 may be provided between the permanent magnets 211 adjacent to the bottom surface 285 of the base 280 in the circumferential direction.
 〔第8実施形態〕
 次に、本発明の第8実施形態によるロータについて図面を用いて説明する。図9Aは、本発明の第8実施形態によるロータ207にシャフト500を勘合した断面斜視図、図9Bは本発明の第8実施形態によるロータ207の拡大断面図である。なお、図9Aの反負荷側のロータ207(下側)は、永久磁石211および基台290内部の形状がわかるよう、樹脂237を省略している。
[8th Embodiment]
Next, the rotor according to the eighth embodiment of the present invention will be described with reference to the drawings. FIG. 9A is a sectional perspective view in which the shaft 500 is fitted to the rotor 207 according to the eighth embodiment of the present invention, and FIG. 9B is an enlarged sectional view of the rotor 207 according to the eighth embodiment of the present invention. In the rotor 207 (lower side) on the counterload side of FIG. 9A, the resin 237 is omitted so that the shapes inside the permanent magnet 211 and the base 290 can be seen.
 本実施形態が第2実施形態と異なる点は、基台290の形状・材質と、バックヨーク297を有する点である。したがって、モータの断面は図1Aと略同一であるため省略し、第2実施例と重複する部品、構成等に関しては原則として説明を割愛する。また、樹脂237は、バックヨーク297も覆う点が第2実施形態と異なるが、形状が略同一となるため、原則として説明を割愛する。 The difference between this embodiment and the second embodiment is that it has the shape and material of the base 290 and the back yoke 297. Therefore, since the cross section of the motor is substantially the same as that of FIG. 1A, it is omitted, and the description of parts, configurations, etc. that overlap with the second embodiment is omitted in principle. Further, the resin 237 is different from the second embodiment in that it also covers the back yoke 297, but since the shapes are substantially the same, the description thereof is omitted in principle.
 図9Aに示すように、本実施形態によるロータ207は、略円盤状の基台290と、基台290のステータ100側の端面291にロータ207の周方向に沿って設けられた溝292と、溝292に配置された磁極数の永久磁石211と、溝292の底面295にロータ207の周方向に沿って設けられた小溝296と、小溝296に配置されたバックヨーク297とを備えている。基台290は非磁性体の強度部材により形成され、ステータ100側の端面291にロータ207の周方向に沿って溝292が設けられている。 As shown in FIG. 9A, the rotor 207 according to the present embodiment includes a substantially disk-shaped base 290, a groove 292 provided on the end surface 291 of the base 290 on the stator 100 side along the circumferential direction of the rotor 207. It includes a permanent magnet 211 having a number of magnetic poles arranged in the groove 292, a small groove 296 provided on the bottom surface 295 of the groove 292 along the circumferential direction of the rotor 207, and a back yoke 297 arranged in the small groove 296. The base 290 is formed of a non-magnetic strength member, and a groove 292 is provided on the end surface 291 on the stator 100 side along the circumferential direction of the rotor 207.
 図9Bに示すように、溝292は、内周壁293と外周壁294と底面295により構成されている。底面295には、周方向に沿って設けられた小溝296がそれぞれ設けられている。また、バックヨーク297は軟磁性の材料で構成され、小溝296に配置されている。なお、溝292の内周壁293と外周壁294は、第2実施形態と同じ構成であるため説明を省略する。 As shown in FIG. 9B, the groove 292 is composed of an inner peripheral wall 293, an outer peripheral wall 294, and a bottom surface 295. The bottom surface 295 is provided with small grooves 296 provided along the circumferential direction. Further, the back yoke 297 is made of a soft magnetic material and is arranged in the small groove 296. Since the inner peripheral wall 293 and the outer peripheral wall 294 of the groove 292 have the same configuration as that of the second embodiment, the description thereof will be omitted.
 本実施形態では、基台290を非磁性体の強度部材により形成し、基台290の溝292の底面295にロータ207の周方向に沿って溝292よりも幅が狭く深さが浅い小溝296を設けている。そして、小溝296に積層鋼板や圧粉磁心など低損失な軟磁性材で構成されたバックヨーク297を配置した後に、溝292に永久磁石211を配置し、樹脂237で一体にモールドしている。このように構成することにより、基台290の渦電流損失を低減させることができる。そして、モータ1000を高効率化できるだけでなく、ロータ207の温度上昇を低減させることができる。そのため、モータ1000稼働時の樹脂237の温度を低下させ、ロータの寿命をのばすことができる。また、永久磁石211を基台290の溝292にモールド固定することにより、バックヨーク297を基台290に固定できるため、バックヨーク297を保持する部品を別途設ける必要が無くコストを抑制することができる。 In the present embodiment, the base 290 is formed of a non-magnetic strength member, and the small groove 296 having a width narrower and a depth shallower than the groove 292 along the circumferential direction of the rotor 207 on the bottom surface 295 of the groove 292 of the base 290. Is provided. Then, after arranging the back yoke 297 made of a low-loss soft magnetic material such as a laminated steel plate or a dust core in the small groove 296, the permanent magnet 211 is arranged in the groove 292 and integrally molded with the resin 237. With this configuration, the eddy current loss of the base 290 can be reduced. Not only can the efficiency of the motor 1000 be improved, but the temperature rise of the rotor 207 can be reduced. Therefore, the temperature of the resin 237 during operation of the motor 1000 can be lowered, and the life of the rotor can be extended. Further, since the back yoke 297 can be fixed to the base 290 by molding and fixing the permanent magnet 211 to the groove 292 of the base 290, it is not necessary to separately provide a component for holding the back yoke 297, and the cost can be suppressed. it can.
 なお、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上述した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the above-described embodiment, and includes various modifications. For example, the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations. Further, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Further, it is possible to add / delete / replace a part of the configuration of each embodiment with another configuration.
 なお、本発明の実施形態は、以下の態様であってもよい。即ち、上記の実施形態では、モータ1000に、ステータ100を2つのロータが挟むように面対向するダブルロータ型アキシャルギャップ回転電機を用いた例を示したが、1つのロータを備える所謂シングルロータ型アキシャルギャップ回転電機を用いてもよい。 The embodiment of the present invention may have the following aspects. That is, in the above embodiment, an example is shown in which a double rotor type axial gap rotary electric machine is used for the motor 1000 so that the stator 100 is sandwiched between two rotors so as to face each other. However, a so-called single rotor type having one rotor is provided. An axial gap rotary electric motor may be used.
 また、上記の実施形態では、ステータ100に対向するロータの端面を平面となるように基台の溝の深さと、永久磁石と樹脂の厚みを略同一にしたがこれに限定されない。例えば、図10に示すロータ208のように永久磁石213の厚みを基台220の溝222の深さよりも薄くして永久磁石213を樹脂238が覆う構成にしてもよい。また、図11に示すロータ209のように、永久磁石214の厚みを基台220の溝222の深さよりも厚くし、ステータ100に対向するロータ209の端面2091を形成する樹脂239と基台220と永久磁石214の表面のうち、永久磁石214の表面2141が最もステータ100に近接する構成にしてもよい。このように構成することにより、ステータ100と永久磁石214から放出される磁束の漏れを少なくすることができ、モータ出力や効率を高めることができる。なお、図10,11では基台220を用いて示したが、他の基台を用いてもよいのは勿論である。 Further, in the above embodiment, the depth of the groove of the base and the thickness of the permanent magnet and the resin are substantially the same so that the end face of the rotor facing the stator 100 is flat, but the present invention is not limited to this. For example, as in the rotor 208 shown in FIG. 10, the thickness of the permanent magnet 213 may be made thinner than the depth of the groove 222 of the base 220 so that the permanent magnet 213 is covered with the resin 238. Further, as in the rotor 209 shown in FIG. 11, the resin 239 and the base 220 that form the end face 2091 of the rotor 209 facing the stator 100 by making the thickness of the permanent magnet 214 thicker than the depth of the groove 222 of the base 220. Of the surfaces of the permanent magnets 214, the surface 2141 of the permanent magnets 214 may be configured to be closest to the stator 100. With this configuration, leakage of magnetic flux emitted from the stator 100 and the permanent magnet 214 can be reduced, and motor output and efficiency can be increased. Although the base 220 is used in FIGS. 10 and 11, it goes without saying that another base may be used.
1000…アキシャルギャップ型モータ(モータ)、100…ステータ(固定子)、200,201,202,203,204,205,206,207,208,209…ロータ(回転子)、210,211,212,213,214…永久磁石(磁石)、220,240,250,260,270,280,290…基台、222,242,252,262,272,282,292…溝、223,243,253,263,273,283,293…内周壁、224,244,254,264,274,284,294…外周壁、225,245,255,265,275,285,295…底面、2231,2243,2431,2441…凹部、230,231,232,233,234,235,236,237…樹脂、700…回転軸心 1000 ... axial gap type motor (motor), 100 ... stator (stator), 200, 201, 202, 203, 204, 205, 206, 207, 208, 209 ... rotor (rotor), 210, 211,212, 213,214 ... Permanent magnet (magnet), 220,240,250,260,270,280,290 ... Base, 222,242,252,262,272,282,292 ... Groove, 223,243,253,263 , 273,283,293 ... Inner peripheral wall, 224,244,254,264,274,284,294 ... Outer wall, 225,245,255,265,275,285,295 ... Bottom surface, 2231,243,2431,441 … Recess, 230, 231,232, 233, 234, 235, 236, 237… Resin, 700… Rotating axis

Claims (14)

  1.  回転子と、前記回転子の中心軸方向に沿って設けられたギャップを介して前記回転子と対向して配置された固定子とを備えたアキシャルギャップ型回転電機において、
     前記回転子は、基台と、前記基台における固定子側の端面に前記回転子の周方向に沿って設けられた溝と、前記溝に配置された磁石と、前記磁石を前記溝内にモールド固定する樹脂とを備え、
     前記基台は、前記溝と連通し前記樹脂が充填される凹部を有し、前記凹部に充填された樹脂の固定子側には、前記基台の一部が隣接していることを特徴とするアキシャルギャップ型回転電機。
    In an axial gap type rotary electric machine provided with a rotor and a stator arranged to face the rotor via a gap provided along the central axis direction of the rotor.
    The rotor includes a base, a groove provided on the end face of the base on the stator side along the circumferential direction of the rotor, a magnet arranged in the groove, and the magnet in the groove. Equipped with a resin to fix the mold,
    The base has a recess that communicates with the groove and is filled with the resin, and a part of the base is adjacent to the stator side of the resin filled in the recess. Axial gap type rotary electric machine.
  2.  請求項1に記載のアキシャルギャップ型回転電機であって、
     前記凹部が、前記溝の内周壁に形成されていることを特徴とするアキシャルギャップ型回転電機。
    The axial gap type rotary electric machine according to claim 1.
    An axial gap type rotary electric machine characterized in that the recess is formed on the inner peripheral wall of the groove.
  3.  請求項1に記載のアキシャルギャップ型回転電機であって、
     前記凹部が、前記溝の内周壁の全周に環状に形成されていることを特徴とするアキシャルギャップ型回転電機。
    The axial gap type rotary electric machine according to claim 1.
    An axial gap type rotary electric machine characterized in that the recess is formed in an annular shape on the entire circumference of the inner peripheral wall of the groove.
  4.  請求項1に記載のアキシャルギャップ型回転電機であって、
     前記凹部が、前記溝の底面と、当該底面に対して鋭角に立ち上がった内周壁に挟まれた部分であることを特徴とするアキシャルギャップ型の回転電機。
    The axial gap type rotary electric machine according to claim 1.
    An axial gap type rotary electric machine, wherein the recess is a portion sandwiched between a bottom surface of the groove and an inner peripheral wall that rises at an acute angle with respect to the bottom surface.
  5.  請求項1に記載のアキシャルギャップ型回転電機であって、
     前記凹部が、前記基台における反固定子側の端面に設けられた止まり穴によって形成されており、
     前記止まり穴は、前記溝の側壁に形成された開口部を介して前記溝と連通することを特徴とするアキシャルギャップ型回転電機。
    The axial gap type rotary electric machine according to claim 1.
    The recess is formed by a blind hole provided on the end face on the anti-stator side of the base.
    An axial gap type rotary electric machine, wherein the blind hole communicates with the groove through an opening formed in a side wall of the groove.
  6.  請求項1に記載のアキシャルギャップ型回転電機であって、
     前記凹部が、前記基台の前記溝の底面に形成されたネジ穴に、頭部を前記底面から離した状態に螺合させたネジにより形成されていることを特徴とするアキシャルギャップ型回転電機。
    The axial gap type rotary electric machine according to claim 1.
    The axial gap type rotary electric machine is characterized in that the recess is formed by a screw in which a head is screwed into a screw hole formed in the bottom surface of the groove of the base so that the head is separated from the bottom surface. ..
  7.  請求項1に記載のアキシャルギャップ型回転電機であって、
     前記凹部が、前記基台における反固定子側の端面に設けられたザグリ穴によって形成されており、
     前記ザグリ穴は、前記溝の底面に設けられた貫通孔と連通していることを特徴とするアキシャルギャップ型回転電機。
    The axial gap type rotary electric machine according to claim 1.
    The recess is formed by a counterbore hole provided on the end face on the anti-stator side of the base.
    The axial gap type rotary electric machine, characterized in that the counterbore hole communicates with a through hole provided on the bottom surface of the groove.
  8.  請求項1に記載のアキシャルギャップ型回転電機であって、
     前記溝の底側の外側内周壁と前記磁石の外径側面が当接することを特徴とするアキシャルギャップ型回転電機。
    The axial gap type rotary electric machine according to claim 1.
    An axial gap type rotary electric machine characterized in that the outer inner peripheral wall on the bottom side of the groove and the outer diameter side surface of the magnet are in contact with each other.
  9.  請求項1に記載のアキシャルギャップ型回転電機であって、
     前記磁石がリング状であることを特徴とするアキシャルギャップ型回転電機。
    The axial gap type rotary electric machine according to claim 1.
    An axial gap type rotary electric machine characterized in that the magnet has a ring shape.
  10.  請求項1に記載のアキシャルギャップ型回転電機であって、
     前記磁石が前記基台の周方向に沿って複数配列されていることを特徴とするアキシャルギャップ型回転電機。
    The axial gap type rotary electric machine according to claim 1.
    An axial gap type rotary electric machine characterized in that a plurality of the magnets are arranged along the circumferential direction of the base.
  11.  請求項10に記載のアキシャルギャップ型回転電機であって、
     前記磁石には、それぞれ、前記基台の軸方向において前記固定子側に向かって、前記基台の周方向おける長さが縮小する軸方向縮小部が設けられていることを特徴とするアキシャルギャップ型回転電機。
    The axial gap type rotary electric machine according to claim 10.
    Each of the magnets is provided with an axial reduction portion in which the length of the base in the circumferential direction is reduced toward the stator side in the axial direction of the base. Type rotary electric machine.
  12.  請求項1に記載のアキシャルギャップ型回転電機であって、
     前記基台が軟磁性の材料で構成され、前記磁石の間を磁束で結合することを特徴とするアキシャルギャップ型回転電機。
    The axial gap type rotary electric machine according to claim 1.
    An axial gap type rotary electric machine in which the base is made of a soft magnetic material and the magnets are coupled by magnetic flux.
  13.  請求項1に記載のアキシャルギャップ型回転電機であって、
     前記基台が非磁性体の強度部材により形成され、
     前記基台と前記磁石の間に軟磁性の材料で構成された継鉄が備わることを特徴とするアキシャルギャップ型回転電機。
    The axial gap type rotary electric machine according to claim 1.
    The base is formed of a non-magnetic strength member,
    An axial gap type rotary electric machine characterized in that a joint iron made of a soft magnetic material is provided between the base and the magnet.
  14.  請求項1に記載のアキシャルギャップ型回転電機であって、
     前記固定子に対向する前記回転子の面を形成する前記樹脂と前記基台と前記磁石の表面のうち、前記磁石の表面が最も前記固定子に近接していることを特徴とするアキシャルギャップ型回転電機。
    The axial gap type rotary electric machine according to claim 1.
    An axial gap type characterized in that the surface of the magnet is closest to the stator among the surfaces of the resin, the base and the magnet forming the surface of the rotor facing the stator. Rotating electric machine.
PCT/JP2019/042417 2019-06-20 2019-10-29 Axial-gap rotating electric machine WO2020255435A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980093187.5A CN113508511B (en) 2019-06-20 2019-10-29 Axial gap type rotating electrical machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-114668 2019-06-20
JP2019114668A JP7212587B2 (en) 2019-06-20 2019-06-20 Axial gap type rotary electric machine

Publications (1)

Publication Number Publication Date
WO2020255435A1 true WO2020255435A1 (en) 2020-12-24

Family

ID=73644223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042417 WO2020255435A1 (en) 2019-06-20 2019-10-29 Axial-gap rotating electric machine

Country Status (4)

Country Link
JP (1) JP7212587B2 (en)
CN (1) CN113508511B (en)
TW (1) TWI703795B (en)
WO (1) WO2020255435A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022121855A1 (en) 2022-08-30 2024-02-29 Hirschvogel Holding GmbH Rotor disk and method for producing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002218685A (en) * 2001-01-16 2002-08-02 Isuzu Motors Ltd Permanent magnetic assembly and method for manufacturing the same
JP2011509064A (en) * 2008-01-07 2011-03-17 エヴォ エレクトリック リミテッド Rotor for electric machine
JP2011139600A (en) * 2009-12-28 2011-07-14 Hitachi Industrial Equipment Systems Co Ltd Axial gap rotary electric machine and rotor used in the same
WO2017029926A1 (en) * 2015-08-18 2017-02-23 株式会社神戸製鋼所 Axial gap type dynamo-electric machine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4599088B2 (en) * 2004-05-13 2010-12-15 東芝コンシューマエレクトロニクス・ホールディングス株式会社 Rotor for rotating electrical machine and method for manufacturing the same
JP2006014520A (en) * 2004-06-28 2006-01-12 Toshiba Corp External rotation type rotor of dynamo-electric machine
US8680736B2 (en) * 2008-11-10 2014-03-25 Hitachi Industrial Equipment Systems Co., Ltd. Armature core, motor using same, and axial gap electrical rotating machine using same
JP5777450B2 (en) * 2011-06-30 2015-09-09 株式会社三井ハイテック Method for manufacturing laminated iron core with permanent magnet sealed with resin
JP6044488B2 (en) * 2013-08-30 2016-12-14 トヨタ自動車株式会社 Coil insulator fixing method and structure, stator, and rotating electric machine
WO2018138852A1 (en) * 2017-01-27 2018-08-02 株式会社日立産機システム Rotating electrical machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002218685A (en) * 2001-01-16 2002-08-02 Isuzu Motors Ltd Permanent magnetic assembly and method for manufacturing the same
JP2011509064A (en) * 2008-01-07 2011-03-17 エヴォ エレクトリック リミテッド Rotor for electric machine
JP2011139600A (en) * 2009-12-28 2011-07-14 Hitachi Industrial Equipment Systems Co Ltd Axial gap rotary electric machine and rotor used in the same
WO2017029926A1 (en) * 2015-08-18 2017-02-23 株式会社神戸製鋼所 Axial gap type dynamo-electric machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022121855A1 (en) 2022-08-30 2024-02-29 Hirschvogel Holding GmbH Rotor disk and method for producing the same

Also Published As

Publication number Publication date
JP2021002914A (en) 2021-01-07
CN113508511A (en) 2021-10-15
JP7212587B2 (en) 2023-01-25
CN113508511B (en) 2023-09-19
TWI703795B (en) 2020-09-01
TW202101861A (en) 2021-01-01

Similar Documents

Publication Publication Date Title
JP2007074776A (en) Rotating electric machine
JP2009148158A6 (en) Permanent excitation type synchronous machine with shell magnet
JP7007150B2 (en) Axial gap type rotary electric machine
JP2009148158A (en) Permanently excited synchronous machine with shell magnet
WO2013121590A1 (en) Rotary electric machine
JP2008131682A (en) Axial air gap type motor
JP2012186901A (en) Permanent magnet synchronous machine
JP6591084B2 (en) Rotor and rotating electric machine
TW201626692A (en) Axial gap type rotating electrical machine
JP2006304539A (en) Rotor structure of axial gap rotating electric machine
WO2020255435A1 (en) Axial-gap rotating electric machine
US20160308410A1 (en) Electric machine and method for producing an electric machine
JP2001157393A (en) Rotor structure for inner rotor-type motor
JP6112970B2 (en) Permanent magnet rotating electric machine
JP2018057155A (en) Rotator of rotating electrical machine
JP2006304532A (en) Rotor structure of axial gap rotating electric machine
JPWO2019008930A1 (en) Stator and motor
JPWO2019150500A1 (en) Rotor member, rotor and rotating electric machine
JP4556408B2 (en) Claw pole type rotating machine
WO2021149131A1 (en) Stator and rotating electrical machine using the same
JP2006304562A (en) Rotor structure of axial gap rotating electric machine
WO2015114794A1 (en) Axial gap type rotating electric machine
US20230387775A1 (en) Magnetic-geared motor and magnetic gear
WO2023095444A1 (en) Motor
KR102121128B1 (en) Stator Core of Outer Rotor Type Motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19933851

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19933851

Country of ref document: EP

Kind code of ref document: A1