WO2020255432A1 - Transport device - Google Patents
Transport device Download PDFInfo
- Publication number
- WO2020255432A1 WO2020255432A1 PCT/JP2019/038986 JP2019038986W WO2020255432A1 WO 2020255432 A1 WO2020255432 A1 WO 2020255432A1 JP 2019038986 W JP2019038986 W JP 2019038986W WO 2020255432 A1 WO2020255432 A1 WO 2020255432A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pulley
- pinion
- transport device
- movement locus
- tooth
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/02—Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H19/00—Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion
- F16H19/02—Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion for interconverting rotary or oscillating motion and reciprocating motion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H19/00—Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion
- F16H19/02—Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion for interconverting rotary or oscillating motion and reciprocating motion
- F16H19/04—Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion for interconverting rotary or oscillating motion and reciprocating motion comprising a rack
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G35/00—Mechanical conveyors not otherwise provided for
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G47/00—Article or material-handling devices associated with conveyors; Methods employing such devices
- B65G47/74—Feeding, transfer, or discharging devices of particular kinds or types
- B65G47/90—Devices for picking-up and depositing articles or materials
Definitions
- the present disclosure relates to a transport device.
- a transfer device such as a rack and pinion that utilizes the meshing of gears in order to move an object along a movement locus
- a transfer device such as a rack and pinion that utilizes the meshing of gears in order to move an object along a movement locus
- the rack is installed parallel to the movement locus, and an actuator for rotationally driving the pinion is provided, and the rotational force of the actuator is linearized by the meshing of the rack and pinion. Converts to driving force and moves the object.
- it is necessary to provide teeth along the entire section of the movement locus it hinders cost reduction.
- An object of the present disclosure is to achieve cost reduction in installing teeth along a movement locus in a transport device that moves an object along a movement locus.
- the transport device of the present disclosure moves an object along a movement locus.
- the transport device of the present disclosure also includes the following pulleys, belts, pinions, and a plurality of tooth groups.
- the pulley is rotationally driven by a predetermined actuator.
- the belt is stretched along the movement locus and meshes with the pulley.
- the pinion is then mechanically coupled to the pulley and rotates in synchronization with the pulley.
- the tooth group is a line of teeth that mesh with the pinion.
- the plurality of tooth groups are provided at a plurality of locations along the movement locus.
- the pinion moves along the movement trajectory together with the pulley, the section between the tooth groups moves without meshing with the tooth group, and the section where the tooth group exists is the tooth group. It meshes and moves.
- the transport device of the present disclosure has the effect of potentially achieving cost reduction regarding the installation of teeth along the movement locus.
- the transport device 1 of the embodiment will be described with reference to FIGS. 1 to 5.
- the transport device 1 is incorporated into a predetermined production line, for example, and moves the target object 2 to be transported along a linear movement locus ⁇ .
- the robot hand is illustrated as the object 2 to be moved.
- the robot hand has a known configuration having a chuck for grasping a predetermined article, an elevating mechanism for driving the chuck, and the like.
- the pulley 3 is rotationally driven by a predetermined actuator 7.
- the pulley 3 has, for example, an external tooth 3a that meshes with a tooth 4a provided on one surface of the belt 4, a regulation edge 3b that prevents the belt 4 from coming off, and a through hole 3c through which the output shaft 7a of the actuator 7 penetrates.
- the actuator 7 has, for example, a well-known structure in which an electric motor (not shown) and a speed reducer (not shown) are arranged coaxially. Further, the pulley 3 and the output shaft 7a are coaxial with each other by fitting the key 8a provided in the output shaft 7a into the key groove 8b provided in the through hole 3c. Further, the electric motor is energized and controlled by a command from a control device (not shown) that controls the production line, for example.
- a control device not shown
- the X-axis, Y-axis, and Z-axis Cartesian coordinate systems are defined in the space where the transport device 1 exists, and the Z-axis is parallel to the output shaft 7a axis, that is, the pulley 3. Is defined as.
- the actuator 7 is screwed to the mounting plate 10. More specifically, in the main body 7b of the actuator 7, the portion on the tip end side where the output shaft 7a protrudes has a reduced diameter, and the mounting plate 10 is provided with a through hole 10a into which the reduced diameter portion fits. ing. Then, the actuator 7 is screwed to the mounting plate 10 in a state where the reduced diameter portion is fitted into the through hole 10a and the step portion 7c is abutted against the mounting plate 10.
- the output shaft 7a is rotatably supported by a bearing (not shown) built in the main body 7b.
- both ends of the belt 4 are fixed to a predetermined fixing portion ⁇ 1 and stretched parallel to the movement locus ⁇ .
- the movement locus ⁇ is set parallel to the X-axis, and the belt 4 is stretched parallel to the X-axis.
- idlers 11A and 11B for engaging the belt 4 with the pulley 3 are arranged on both sides of the pulley 3 in the X-axis direction. Therefore, the belt 4 projects to one side in the Y-axis direction in the range where the pulley 3 exists and in the vicinity of both sides of this range with respect to the range of the X-axis.
- Both the idlers 11A and 11B have a shaft portion 11a screwed to the mounting plate 10, a rotating body 11b rotating around the shaft portion 11a, and a bearing inserted between the shaft portion 11a and the rotating body 11b. It has 11c. Further, the axes of the output shafts 7a and the axes of the shaft portions 11a of the idlers 11A and 11B each exist in one plane perpendicular to the Y axis and parallel to the Z axis.
- the bearing 11c is, for example, held by surrounding a plurality of spheres with two raceway rings, the raceway ring on the inner peripheral side is press-fitted and fixed to the shaft portion 11a, and the raceway ring on the outer peripheral side is fixed to the rotating body 11b. It is press-fitted and fixed.
- the rotating body 11b has a cylindrical outer peripheral surface that contacts the other side surface having no teeth on both sides of the belt 4, and slides with respect to the belt 4 in response to the rotation of the pulley 3. Rotate without. Further, the tips of the shaft portions 11a of the idlers 11A and 11B are both screwed to the tip side plate 12 different from the mounting plate 10.
- a bearing 12a that rotatably supports the tip of the output shaft 7a is mounted on the tip-side plate 12.
- the bearing 12a is, for example, holding a plurality of spheres while being surrounded by two raceway rings, the raceway ring on the inner peripheral side is press-fitted and fixed to the output shaft 7a, and the raceway ring on the outer peripheral side is press-fitted into the tip side plate 12. It is fixed. From the above, when the actuator 7 operates and the output shaft 7a rotates, the pulley 3 moves in parallel with the X-axis together with the actuator 7.
- a guide 2a fitted to the rail ⁇ 2 is attached to the object 2, and the rail ⁇ 2 is provided parallel to the movement locus ⁇ . Then, by fitting the rail ⁇ 2 and the guide 2a, the object 2 can stably follow the movement locus ⁇ .
- the pinion 5 is arranged between the pulley 3 and the tip side plate 12, is mechanically connected to the pulley 3, and rotates in synchronization with the pulley 3. More specifically, the pinion 5 is provided with a through hole 5a through which the output shaft 7a penetrates.
- the output shaft 7a and the pinion 5 are coaxial with each other by, for example, the same fitting structure as the key 8a and the key groove 8b.
- the pinion 5 is sandwiched and held by the pulley 3 and the raceway ring on the inner peripheral side of the bearing 12a. As a result, when the output shaft 7a rotates, the pinion 5 rotates at the same rotation speed as the pulley 3. From the above, when the pulley 3 is rotationally driven by the actuator 7, the pinion 5 moves in the X-axis direction together with the actuator 7 and the pulley 3.
- the pinion 5 is a spur gear having external teeth 5b, and the tooth profile is formed by, for example, a trochoid curve.
- the tooth group 6A consists of a plurality of teeth that mesh with the pinion 5 arranged in a straight line, and more specifically, for example, five pins 6p arranged in parallel with each other. That is, each pin 6p constituting the tooth group 6A is oriented in a direction parallel to the Z axis and perpendicular to the X axis and the Y axis. Further, the five pins 6p are arranged in a row parallel to the X axis. Further, among the five pins 6p, the diameter D1 of the pins 6pe existing at both ends of the tooth group 6A is smaller than the diameter D2 of the other three pins 6p. The distance between the axes of the pins 6p adjacent to each other in the X-axis direction is the same among the four axes even if the diameter of the pins 6pe is small.
- the pin 6p has a core portion fixed at a predetermined position along the movement locus, and a cylindrical body 6a covering the outer peripheral side of the core portion.
- the core portion is, for example, a cylindrical body, and is press-fitted and fixed to five press-fitting holes provided at predetermined positions. Then, the cylindrical body 6a covers the outer peripheral side of the portion of the core portion protruding from the press-fitting hole.
- a retaining component 6b for preventing the cylindrical body 6a from falling off is attached to one end of the core portion.
- the pinion 5 meshes with the tooth group 6A when its outer teeth 5b come into contact with the cylindrical body 6a.
- a needle roller may be interposed between the outer circumference of the core portion and the inner circumference of the cylindrical body 6a.
- the tooth groups 6B and 6C have the same configuration as the tooth groups 6A.
- the tooth groups 6A, 6B, and 6C are provided at three positions apart from each other along the movement locus ⁇ . Therefore, the pinion 5 moves between the tooth groups 6A and 6B and between the tooth groups 6B and 6C without meshing with the tooth groups 6A to 6C, and each of the tooth groups 6A to 6C exists.
- the sections move in mesh with the tooth groups 6A to 6C, respectively.
- the transport device 1 of the example moves the object 2 along the linear movement locus ⁇ , and the following pulley 3, belt 4, pinion 5, and tooth group 6A, It includes 6B and 6C.
- the pulley 3 is rotationally driven by the actuator 7, and the belt 4 is stretched parallel to the movement locus ⁇ and meshes with the pulley 3.
- the pinion 5 is mechanically connected to the pulley 3 and rotates in synchronization with the pulley 3, and the teeth groups 6A, 6B, and 6C have teeth that mesh with the pinion 5 arranged in a straight line.
- the tooth groups 6A, 6B, and 6C are provided at a plurality of locations along the movement locus ⁇ . Further, when the pulley 3 is rotationally driven, the pinion 5 moves in parallel with the movement locus ⁇ together with the pulley 3, and the sections between the tooth groups 6A and 6B and between the tooth groups 6B and 6C are the tooth groups 6A and 6B. , 6C move without meshing with each other, and the section in which the tooth groups 6A, 6B, 6C exist meshes with the tooth groups 6A, 6B, 6C, respectively.
- the object 2 can be accurately arranged at the target position. Further, in the section between the tooth groups 6A and 6B and between the tooth groups 6B and 6C, the object 2 is moved by the meshing of the pulley 3 and the belt 4 regardless of the meshing of the pinion 5, so that the speed is higher than before. Moreover, the object 2 can be moved quietly.
- the object 2 can be positioned with high accuracy in the vicinity of the target position where accuracy is required, and the object 2 is fast and quiet in the section where accuracy is not required. Can be moved to.
- the tooth group 6A, 6B and 6C are composed of a plurality of pins 6p arranged in parallel with each other. As a result, the tooth groups 6A to 6C can be easily provided by arranging the pins 6p at the required positions on the production line.
- the diameter D1 of the pins 6pe existing at both ends of the tooth groups 6A to 6C is smaller than the diameter D2 of the other pins 6p.
- the belt 4 is elastically moved to one side in the X-axis direction. It is growing to.
- the pinion 5 reaches the pin 6pe located at the other end of the tooth group 6B in the X-axis direction, the belt 4 tries to reduce the elongation, so that the pinion 5 is accelerated to one side in the X-axis direction. , The pin 6pe is shocked.
- the outer peripheral side of the pin 6p is covered with the cylindrical body 6a, and the pinion 5 meshes with the tooth groups 6A to 6C when its outer teeth 5b come into contact with the cylindrical body 6a.
- backlash can be eliminated in the meshing between the pinion 5 and the tooth groups 6A to 6C. Therefore, the meshing between the pinion 5 and the tooth groups 6A to 6C can be stabilized and made quiet.
- the present invention can be considered in various modified examples without departing from the gist thereof.
- the tooth groups 6A to 6C are composed of rows of pins 6p, but the tooth groups 6A to 6C may be formed by a rack having a small number of teeth.
- a pin gear can be adopted for the pinion 5.
- the robot hand is illustrated as the object 2 to be moved, but the object 2 is not limited to the robot hand.
- a shelf on which tools and parts are placed may be moved as the object 2.
- two transport devices 1 may be combined to move the object 2 in the biaxial direction.
- the object 2 is moved along the linear movement locus ⁇ , but the mode of the movement locus ⁇ is not limited to the straight line.
- the movement locus ⁇ may be set in an arc shape, and the two tooth groups 6A and 6B may be provided apart along the arc shape movement locus ⁇ .
- the belt 4 is stretched along the arc-shaped movement locus ⁇ .
- each of the tooth groups 6A and 6B each of the five teeth may be provided with the same pins 6p as in the embodiment, and the five pins 6p may be arranged along the movement locus ⁇ .
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Robotics (AREA)
- Transmission Devices (AREA)
- Manipulator (AREA)
- Specific Conveyance Elements (AREA)
Abstract
[Problem] To achieve a reduction in cost with respect to the installation of teeth along a movement trajectory in a transport device 1 that causes an object to move along the movement trajectory. [Solution] A transport device 1 in which a pulley 3 is rotationally driven by an actuator 7, and a belt 4 is stretched parallel to a movement trajectory and meshes with the pulley 3. A pinion 5 is mechanically coupled with the pulley 3 and rotates synchronously with the pulley 3, and teeth groups 6A, 6B, 6C are such that each tooth meshing with the pinion 5 is lined up in a straight line. The teeth groups 6A, 6B, 6C are present so as to be set apart from each other at a plurality of locations along the movement trajectory. When the pulley 3 is rotationally driven, the pinion 5 moves parallel to the movement trajectory together with the pulley 3, segments between the teeth groups 6A, 6B and between the teeth groups 6B, 6C move without meshing with the teeth groups 6A, 6B, 6C, and segments at which the teeth groups 6A, 6B, 6C are present move while meshing with the respective teeth groups 6A, 6B, 6C.
Description
本開示は搬送装置に関する。
The present disclosure relates to a transport device.
従来より、対象物を移動軌跡に沿って移動させるため、ラックアンドピニオン等の歯車同士の噛み合いを利用する搬送装置が公知となっている(例えば、特許文献1~3参照。)。つまり、特許文献1~3の搬送装置によれば、ラックを移動軌跡に平行に設置するとともに、ピニオンを回転駆動するアクチュエータを装備し、ラックアンドピニオンの噛み合いにより、アクチュエータの回転力を直線的な駆動力に変換して対象物を移動させる。しかし、移動軌跡の全区間に沿って歯を設ける必要があるので、コストダウンの妨げになっている。
Conventionally, a transfer device such as a rack and pinion that utilizes the meshing of gears in order to move an object along a movement locus has been known (see, for example, Patent Documents 1 to 3). That is, according to the transport devices of Patent Documents 1 to 3, the rack is installed parallel to the movement locus, and an actuator for rotationally driving the pinion is provided, and the rotational force of the actuator is linearized by the meshing of the rack and pinion. Converts to driving force and moves the object. However, since it is necessary to provide teeth along the entire section of the movement locus, it hinders cost reduction.
本開示は、対象物を移動軌跡に沿って移動させる搬送装置において、移動軌跡に沿う歯の設置に関しコストダウンを達成することを課題とする。
An object of the present disclosure is to achieve cost reduction in installing teeth along a movement locus in a transport device that moves an object along a movement locus.
本開示の搬送装置は、対象物を移動軌跡に沿って移動させるものである。また、本開示の搬送装置は、次のプーリー、ベルト、ピニオン、および、複数の歯群を備える。 まず、プーリーは、所定のアクチュエータにより回転駆動される。次に、ベルトは、移動軌跡に沿って張り渡されてプーリーに噛み合う。次に、ピニオンは、プーリーと機械的に連結され、プーリーと同期して回転する。また、歯群は、ピニオンとかみ合う歯が並ぶものである。
The transport device of the present disclosure moves an object along a movement locus. The transport device of the present disclosure also includes the following pulleys, belts, pinions, and a plurality of tooth groups. First, the pulley is rotationally driven by a predetermined actuator. Next, the belt is stretched along the movement locus and meshes with the pulley. The pinion is then mechanically coupled to the pulley and rotates in synchronization with the pulley. In addition, the tooth group is a line of teeth that mesh with the pinion.
そして、複数の歯群は、移動軌跡に沿って複数個所に離れて設けられている。また、ピニオンは、プーリーが回転駆動されると、プーリーとともに移動軌跡に沿って移動し、歯群同士の間の区間は歯群と噛み合うことなく移動し、歯群が存在する区間は歯群と噛み合って移動する。 これにより、本開示の搬送装置は、潜在的に、移動軌跡に沿う歯の設置に関しコストダウンを達成する、という効果を奏する。
The plurality of tooth groups are provided at a plurality of locations along the movement locus. In addition, when the pulley is rotationally driven, the pinion moves along the movement trajectory together with the pulley, the section between the tooth groups moves without meshing with the tooth group, and the section where the tooth group exists is the tooth group. It meshes and moves. As a result, the transport device of the present disclosure has the effect of potentially achieving cost reduction regarding the installation of teeth along the movement locus.
本開示を実施するための形態を以下の実施例により詳細に説明する。
The embodiment for carrying out the present disclosure will be described in detail with reference to the following examples.
〔実施例の構成〕 実施例の搬送装置1を、図1~図5を用いて説明する。 搬送装置1は、例えば、所定の製造ラインに組み入れられ、搬送の対象となる対象物2を直線状の移動軌跡βに沿って移動させるものであり、次のプーリー3、ベルト4、ピニオン5、および、複数の歯群6A、6B、6Cを備える。 なお、実施例では、移動させる対象物2としてロボットハンドを例示する。ロボットハンドは、所定の物品を掴むチャック、チャックを駆動する昇降機構等を有する公知の構成である。
[Structure of Example] The transport device 1 of the embodiment will be described with reference to FIGS. 1 to 5. The transport device 1 is incorporated into a predetermined production line, for example, and moves the target object 2 to be transported along a linear movement locus β. The following pulley 3, belt 4, pinion 5, And a plurality of tooth groups 6A, 6B, 6C. In the embodiment, the robot hand is illustrated as the object 2 to be moved. The robot hand has a known configuration having a chuck for grasping a predetermined article, an elevating mechanism for driving the chuck, and the like.
まず、プーリー3は、所定のアクチュエータ7により回転駆動される。 プーリー3は、例えば、ベルト4の一方側の面に設けた歯4aと噛み合う外歯3a、ベルト4の外れを防止する規制縁3b、および、アクチュエータ7の出力軸7aが貫通する貫通穴3cを有する。
First, the pulley 3 is rotationally driven by a predetermined actuator 7. The pulley 3 has, for example, an external tooth 3a that meshes with a tooth 4a provided on one surface of the belt 4, a regulation edge 3b that prevents the belt 4 from coming off, and a through hole 3c through which the output shaft 7a of the actuator 7 penetrates. Have.
アクチュエータ7は、例えば、電動モータ(図示せず。)と減速機(図示せず。)とを同軸に配置した周知構造を有する。さらに、プーリー3と出力軸7aとは、出力軸7aに設けたキー8aが貫通穴3cに設けたキー溝8bに嵌まることで同軸をなす。また、電動モータは、例えば、製造ラインを制御する制御装置(図示せず。)からの指令により通電制御される。 なお、以下の説明では、搬送装置1が存在する空間においてX軸、Y軸、Z軸の直交座標系を定義し、Z軸が出力軸7aの軸、つまり、プーリー3の軸と平行であると定義する。
The actuator 7 has, for example, a well-known structure in which an electric motor (not shown) and a speed reducer (not shown) are arranged coaxially. Further, the pulley 3 and the output shaft 7a are coaxial with each other by fitting the key 8a provided in the output shaft 7a into the key groove 8b provided in the through hole 3c. Further, the electric motor is energized and controlled by a command from a control device (not shown) that controls the production line, for example. In the following description, the X-axis, Y-axis, and Z-axis Cartesian coordinate systems are defined in the space where the transport device 1 exists, and the Z-axis is parallel to the output shaft 7a axis, that is, the pulley 3. Is defined as.
また、アクチュエータ7は、取付プレート10にねじ締結されている。 より具体的には、アクチュエータ7の本体7bの内、出力軸7aが突き出る先端側の部分は縮径しており、取付プレート10には、縮径している部分が嵌る貫通穴10aが設けられている。そして、アクチュエータ7は、縮径している部分を貫通穴10aに嵌めて段部7cを取付プレート10に突き当てた状態で、取付プレート10にねじ締結されている。 なお、出力軸7aは、本体7bに内蔵された軸受(図示せず。)により、回転自在に支持されている。
Further, the actuator 7 is screwed to the mounting plate 10. More specifically, in the main body 7b of the actuator 7, the portion on the tip end side where the output shaft 7a protrudes has a reduced diameter, and the mounting plate 10 is provided with a through hole 10a into which the reduced diameter portion fits. ing. Then, the actuator 7 is screwed to the mounting plate 10 in a state where the reduced diameter portion is fitted into the through hole 10a and the step portion 7c is abutted against the mounting plate 10. The output shaft 7a is rotatably supported by a bearing (not shown) built in the main body 7b.
次に、ベルト4は、両端が所定の固定部α1に固定され、移動軌跡βに平行に張り渡されている。移動軌跡βは、X軸に平行に設定されており、ベルト4は、X軸に平行に張り渡されている。また、プーリー3のX軸方向の両側には、ベルト4をプーリー3に噛み合わせるアイドラ11A、11Bが配置されている。このため、ベルト4は、X軸の範囲に関し、プーリー3が存在する範囲、および、この範囲の両側近傍では、Y軸方向の一方側に突き出ている。
Next, both ends of the belt 4 are fixed to a predetermined fixing portion α1 and stretched parallel to the movement locus β. The movement locus β is set parallel to the X-axis, and the belt 4 is stretched parallel to the X-axis. Further, idlers 11A and 11B for engaging the belt 4 with the pulley 3 are arranged on both sides of the pulley 3 in the X-axis direction. Therefore, the belt 4 projects to one side in the Y-axis direction in the range where the pulley 3 exists and in the vicinity of both sides of this range with respect to the range of the X-axis.
アイドラ11A、11Bは、両方とも、取付プレート10にねじ締結される軸部11a、軸部11aの周囲を回転する回転体11b、および、軸部11aと回転体11bとの間に介挿される軸受11cを有する。また、出力軸7aの軸、アイドラ11A、11Bそれぞれの軸部11aの軸は、3軸ともY軸に垂直な1つの平面に存在し、Z軸に平行である。
Both the idlers 11A and 11B have a shaft portion 11a screwed to the mounting plate 10, a rotating body 11b rotating around the shaft portion 11a, and a bearing inserted between the shaft portion 11a and the rotating body 11b. It has 11c. Further, the axes of the output shafts 7a and the axes of the shaft portions 11a of the idlers 11A and 11B each exist in one plane perpendicular to the Y axis and parallel to the Z axis.
さらに、出力軸7aの軸とアイドラ11A、11Bそれぞれの軸部11aの軸との距離は、互いに等しい。なお、軸受11cは、例えば、2つの軌道輪で複数の球体を囲みつつ保持するものであり、内周側の軌道輪は軸部11aに圧入固定され、外周側の軌道輪は回転体11bに圧入固定されている。
Further, the distances between the shaft of the output shaft 7a and the shafts of the shaft portions 11a of the idlers 11A and 11B are equal to each other. The bearing 11c is, for example, held by surrounding a plurality of spheres with two raceway rings, the raceway ring on the inner peripheral side is press-fitted and fixed to the shaft portion 11a, and the raceway ring on the outer peripheral side is fixed to the rotating body 11b. It is press-fitted and fixed.
ここで、回転体11bは、ベルト4の両面の内、歯を有しない他方側の面に接触する円筒状の外周面を有し、プーリー3の回転に応じて、ベルト4に対して滑ることなく回転する。また、アイドラ11A、11Bそれぞれの軸部11aの先端は、両方とも、取付プレート10とは別の先端側プレート12にねじ締結されている。
Here, the rotating body 11b has a cylindrical outer peripheral surface that contacts the other side surface having no teeth on both sides of the belt 4, and slides with respect to the belt 4 in response to the rotation of the pulley 3. Rotate without. Further, the tips of the shaft portions 11a of the idlers 11A and 11B are both screwed to the tip side plate 12 different from the mounting plate 10.
また、先端側プレート12には、出力軸7aの先端部を回転自在に支持する軸受12aが装着されている。軸受12aは、例えば、2つの軌道輪で複数の球体を囲みつつ保持するものであり、内周側の軌道輪は出力軸7aに圧入固定され、外周側の軌道輪は先端側プレート12に圧入固定されている。 以上により、プーリー3は、アクチュエータ7が動作して出力軸7aが回転すると、アクチュエータ7とともにX軸に平行に移動する。
A bearing 12a that rotatably supports the tip of the output shaft 7a is mounted on the tip-side plate 12. The bearing 12a is, for example, holding a plurality of spheres while being surrounded by two raceway rings, the raceway ring on the inner peripheral side is press-fitted and fixed to the output shaft 7a, and the raceway ring on the outer peripheral side is press-fitted into the tip side plate 12. It is fixed. From the above, when the actuator 7 operates and the output shaft 7a rotates, the pulley 3 moves in parallel with the X-axis together with the actuator 7.
なお、対象物2には、レールα2に嵌合するガイド2aが組み付けられており、レールα2は、移動軌跡βに平行に設けられている。そして、レールα2とガイド2aとの嵌合により、対象物2は、移動軌跡βを安定してたどることができる。
A guide 2a fitted to the rail α2 is attached to the object 2, and the rail α2 is provided parallel to the movement locus β. Then, by fitting the rail α2 and the guide 2a, the object 2 can stably follow the movement locus β.
次に、ピニオン5は、プーリー3と先端側プレート12との間に配置されてプーリー3と機械的に連結され、プーリー3と同期して回転する。 より具体的には、ピニオン5には、出力軸7aが貫通する貫通穴5aが設けられている。そして、出力軸7aとピニオン5とは、例えば、キー8aおよびキー溝8bと同様の嵌合構造により同軸をなす。
Next, the pinion 5 is arranged between the pulley 3 and the tip side plate 12, is mechanically connected to the pulley 3, and rotates in synchronization with the pulley 3. More specifically, the pinion 5 is provided with a through hole 5a through which the output shaft 7a penetrates. The output shaft 7a and the pinion 5 are coaxial with each other by, for example, the same fitting structure as the key 8a and the key groove 8b.
また、ピニオン5は、プーリー3と軸受12aの内周側の軌道輪とにより挟まれて保持されている。これにより、ピニオン5は、出力軸7aが回転すると、プーリー3と同じ回転数で回転する。 以上により、ピニオン5は、アクチュエータ7によりプーリー3が回転駆動されると、アクチュエータ7およびプーリー3とともにX軸方向に移動する。 なお、ピニオン5は、外歯5bを有する平歯車であり、歯形が、例えば、トロコイド曲線で形づくられている。
Further, the pinion 5 is sandwiched and held by the pulley 3 and the raceway ring on the inner peripheral side of the bearing 12a. As a result, when the output shaft 7a rotates, the pinion 5 rotates at the same rotation speed as the pulley 3. From the above, when the pulley 3 is rotationally driven by the actuator 7, the pinion 5 moves in the X-axis direction together with the actuator 7 and the pulley 3. The pinion 5 is a spur gear having external teeth 5b, and the tooth profile is formed by, for example, a trochoid curve.
次に、歯群6Aは、ピニオン5とかみ合う複数の歯が直線状に並ぶものであり、より具体的には、例えば、互いに平行に並ぶ5本のピン6pからなる。すなわち、歯群6Aを構成するそれぞれのピン6pは、Z軸に平行、かつ、X軸およびY軸に垂直となる方向を向いている。また、5本のピン6pは、X軸と平行な列をなして並んでいる。さらに、5本のピン6pの内、歯群6Aの両端に存在するピン6peの径D1は、他の3本のピン6pの径D2よりも小さい。なお、X軸の方向に隣り合うピン6p同士の軸間の距離は、ピン6peの径が小さくても、4つの軸間で全て同一である。
Next, the tooth group 6A consists of a plurality of teeth that mesh with the pinion 5 arranged in a straight line, and more specifically, for example, five pins 6p arranged in parallel with each other. That is, each pin 6p constituting the tooth group 6A is oriented in a direction parallel to the Z axis and perpendicular to the X axis and the Y axis. Further, the five pins 6p are arranged in a row parallel to the X axis. Further, among the five pins 6p, the diameter D1 of the pins 6pe existing at both ends of the tooth group 6A is smaller than the diameter D2 of the other three pins 6p. The distance between the axes of the pins 6p adjacent to each other in the X-axis direction is the same among the four axes even if the diameter of the pins 6pe is small.
また、ピン6pは、移動軌跡に沿う所定の位置に固定される芯部、および、芯部の外周側を覆う円筒体6aを有する。ここで、芯部は、例えば、円柱体であり、所定の位置に設けられた5つの圧入穴に圧入されて固定されている。そして、円筒体6aは、芯部の内、圧入穴から突き出ている部分の外周側を覆う。さらに、芯部の一端には、円筒体6aの脱落を防止する抜け止め部品6bが装着されている。 以上により、ピニオン5は、自身の外歯5bが円筒体6aに接触することで歯群6Aと噛み合う。このとき、円筒体6aは、自身の外周面が外歯5bの歯面に対して滑ることなく、芯部の周囲を回転する。なお、芯部の外周と円筒体6aの内周との間にニードルローラを介在させてもよい。
Further, the pin 6p has a core portion fixed at a predetermined position along the movement locus, and a cylindrical body 6a covering the outer peripheral side of the core portion. Here, the core portion is, for example, a cylindrical body, and is press-fitted and fixed to five press-fitting holes provided at predetermined positions. Then, the cylindrical body 6a covers the outer peripheral side of the portion of the core portion protruding from the press-fitting hole. Further, a retaining component 6b for preventing the cylindrical body 6a from falling off is attached to one end of the core portion. As described above, the pinion 5 meshes with the tooth group 6A when its outer teeth 5b come into contact with the cylindrical body 6a. At this time, the cylindrical body 6a rotates around the core portion without the outer peripheral surface of the cylindrical body 6a sliding with respect to the tooth surface of the outer teeth 5b. A needle roller may be interposed between the outer circumference of the core portion and the inner circumference of the cylindrical body 6a.
また、歯群6B、6Cも歯群6Aと同様の構成である。そして、歯群6A、6B、6Cは、移動軌跡βに沿って3か所に互いに離れて設けられている。このため、ピニオン5は、歯群6A、6B同士の間、および、歯群6B、6C同士の間の区間は歯群6A~6Cと噛み合うことなく移動し、歯群6A~6Cそれぞれが存在する区間は、それぞれ歯群6A~6Cと噛み合って移動する。
Further, the tooth groups 6B and 6C have the same configuration as the tooth groups 6A. The tooth groups 6A, 6B, and 6C are provided at three positions apart from each other along the movement locus β. Therefore, the pinion 5 moves between the tooth groups 6A and 6B and between the tooth groups 6B and 6C without meshing with the tooth groups 6A to 6C, and each of the tooth groups 6A to 6C exists. The sections move in mesh with the tooth groups 6A to 6C, respectively.
〔実施例の効果〕 実施例の搬送装置1は、対象物2を直線状の移動軌跡βに沿って移動させるものであり、次のプーリー3、ベルト4、ピニオン5、および、歯群6A、6B、6Cを備える。 まず、プーリー3は、アクチュエータ7により回転駆動され、ベルト4は、移動軌跡βに平行に張り渡されてプーリー3に噛み合う。また、ピニオン5は、プーリー3と機械的に連結され、プーリー3と同期して回転し、歯群6A、6B、6Cは、それぞれピニオン5とかみ合う歯が直線状に並ぶものである。
[Effect of Example] The transport device 1 of the example moves the object 2 along the linear movement locus β, and the following pulley 3, belt 4, pinion 5, and tooth group 6A, It includes 6B and 6C. First, the pulley 3 is rotationally driven by the actuator 7, and the belt 4 is stretched parallel to the movement locus β and meshes with the pulley 3. Further, the pinion 5 is mechanically connected to the pulley 3 and rotates in synchronization with the pulley 3, and the teeth groups 6A, 6B, and 6C have teeth that mesh with the pinion 5 arranged in a straight line.
そして、歯群6A、6B、6Cは、移動軌跡βに沿って複数個所に離れて設けられている。また、ピニオン5は、プーリー3が回転駆動されると、プーリー3とともに移動軌跡βに平行に移動し、歯群6A、6Bの間、歯群6B、6Cの間の区間は歯群6A、6B、6Cと噛み合うことなく移動し、歯群6A、6B、6Cが存在する区間はそれぞれ歯群6A、6B、6Cと噛み合って移動する。
The tooth groups 6A, 6B, and 6C are provided at a plurality of locations along the movement locus β. Further, when the pulley 3 is rotationally driven, the pinion 5 moves in parallel with the movement locus β together with the pulley 3, and the sections between the tooth groups 6A and 6B and between the tooth groups 6B and 6C are the tooth groups 6A and 6B. , 6C move without meshing with each other, and the section in which the tooth groups 6A, 6B, 6C exist meshes with the tooth groups 6A, 6B, 6C, respectively.
これにより、製造ラインにおいて、対象物2の搬送先として、例えば、3つの目標位置が設定されている場合に、ピニオン5の移動軌跡において、これら3つの目標位置に対応する位置γ1、γ2、γ3の近傍にのみ、それぞれ歯群6A、6B、6Cを配置することにより、従来のラックにおいて必要とされていた歯の大部分を省くことができる。このため、ラック設置に関連するコストダウンを達成することができる。
As a result, in the production line, for example, when three target positions are set as the transport destinations of the object 2, in the movement locus of the pinion 5, the positions γ1, γ2, and γ3 corresponding to these three target positions are set. By arranging the tooth groups 6A, 6B, and 6C, respectively, only in the vicinity of, most of the teeth required in the conventional rack can be omitted. Therefore, it is possible to achieve cost reduction related to rack installation.
なお、位置γ1、γ2、γ3の近傍には、それぞれ歯群6A、6B、6Cを配置してピニオン5と噛み合わせるので、対象物2を精度よく目標位置に配置することができる。 また、歯群6A、6Bの間、歯群6B、6Cの間の区間では、ピニオン5の噛み合いによらず、プーリー3とベルト4との噛み合いにより対象物2を移動させるので、従来よりも高速、かつ、静粛に対象物2を移動させることができる。
Since the tooth groups 6A, 6B, and 6C are arranged in the vicinity of the positions γ1, γ2, and γ3, respectively, and mesh with the pinion 5, the object 2 can be accurately arranged at the target position. Further, in the section between the tooth groups 6A and 6B and between the tooth groups 6B and 6C, the object 2 is moved by the meshing of the pulley 3 and the belt 4 regardless of the meshing of the pinion 5, so that the speed is higher than before. Moreover, the object 2 can be moved quietly.
つまり、搬送装置1によれば、精度を必要とする目標位置の近傍では、対象物2を高精度に位置決めすることができ、精度を必要としない区間では、対象物2を高速、かつ、静粛に移動させることができる。
That is, according to the transport device 1, the object 2 can be positioned with high accuracy in the vicinity of the target position where accuracy is required, and the object 2 is fast and quiet in the section where accuracy is not required. Can be moved to.
また、搬送装置1によれば、歯群6A、
6B、6Cは、互いに平行に並ぶ複数のピン6pからなる。 これにより、製造ラインの必要箇所にピン6pを配置することで、簡便に歯群6A~6Cを設けることができる。 Further, according to thetransport device 1, the tooth group 6A,
6B and 6C are composed of a plurality of pins 6p arranged in parallel with each other. As a result, thetooth groups 6A to 6C can be easily provided by arranging the pins 6p at the required positions on the production line.
6B、6Cは、互いに平行に並ぶ複数のピン6pからなる。 これにより、製造ラインの必要箇所にピン6pを配置することで、簡便に歯群6A~6Cを設けることができる。 Further, according to the
6B and 6C are composed of a plurality of pins 6p arranged in parallel with each other. As a result, the
また、搬送装置1によれば、歯群6A~6Cのそれぞれの両端に存在するピン6peの径D1は、他のピン6pの径D2よりも小径である。 例えば、歯群6A、6Bの間でベルト4とプーリー3の噛み合いにより対象物2がX軸方向の一方側に向かって移動しているとき、ベルト4は、弾性により、X軸方向の一方側に伸びている。この状態で、ピニオン5が、歯群6BのX軸方向他端に位置するピン6peに到達すると、ベルト4は、伸びを低減しようとするので、ピニオン5をX軸方向の一方側に加速し、ピン6peに衝撃を与えてしまう。
Further, according to the transport device 1, the diameter D1 of the pins 6pe existing at both ends of the tooth groups 6A to 6C is smaller than the diameter D2 of the other pins 6p. For example, when the object 2 is moving toward one side in the X-axis direction due to the engagement of the belt 4 and the pulley 3 between the tooth groups 6A and 6B, the belt 4 is elastically moved to one side in the X-axis direction. It is growing to. In this state, when the pinion 5 reaches the pin 6pe located at the other end of the tooth group 6B in the X-axis direction, the belt 4 tries to reduce the elongation, so that the pinion 5 is accelerated to one side in the X-axis direction. , The pin 6pe is shocked.
そこで、歯群6A~6Cのそれぞれの両端に存在するピン6peを、他のピン6pよりも小径にすることで、ベルト4の伸びの低減に伴うピニオン5の一時的な加速を吸収する緩衝区間を設けることができる。このため、ピニオン5が歯群6A~6Cに到達したときの衝撃を緩和することができる。
Therefore, by making the pins 6pe existing at both ends of the tooth groups 6A to 6C smaller in diameter than the other pins 6p, a buffer section that absorbs the temporary acceleration of the pinion 5 due to the reduction in the elongation of the belt 4 Can be provided. Therefore, the impact when the pinion 5 reaches the tooth groups 6A to 6C can be alleviated.
さらに、搬送装置1によれば、ピン6pの外周側は円筒体6aにより覆われ、ピニオン5は、自身の外歯5bが円筒体6aに接触することで歯群6A~6Cと噛み合う。 これにより、ピニオン5と歯群6A~6Cとの噛み合いにおいて、バックラッシをなくすことができる。このため、ピニオン5と歯群6A~6Cとの噛み合いを安定させて静粛にすることができる。
Further, according to the transport device 1, the outer peripheral side of the pin 6p is covered with the cylindrical body 6a, and the pinion 5 meshes with the tooth groups 6A to 6C when its outer teeth 5b come into contact with the cylindrical body 6a. As a result, backlash can be eliminated in the meshing between the pinion 5 and the tooth groups 6A to 6C. Therefore, the meshing between the pinion 5 and the tooth groups 6A to 6C can be stabilized and made quiet.
〔変形例〕 本願発明は、その要旨を逸脱しない範囲で様々な変形例を考えることができる。 例えば、実施例の搬送装置1によれば、歯群6A~6Cをピン6pの列により構成していたが、歯数の少ないラックにより歯群6A~6Cを構成してもよい。この場合、ピニオン5にピン歯車を採用することができる。
[Modified Examples] The present invention can be considered in various modified examples without departing from the gist thereof. For example, according to the transport device 1 of the embodiment, the tooth groups 6A to 6C are composed of rows of pins 6p, but the tooth groups 6A to 6C may be formed by a rack having a small number of teeth. In this case, a pin gear can be adopted for the pinion 5.
また、実施例の搬送装置1では、移動させる対象物2としてロボットハンドを例示したが、対象物2は、ロボットハンドに限定されない。例えば、工具や部品が載った棚を対象物2として移動させてもよい。また、搬送装置1を2台組み合わせて、対象物2を2軸方向に移動させるようにしてもよい。
Further, in the transport device 1 of the embodiment, the robot hand is illustrated as the object 2 to be moved, but the object 2 is not limited to the robot hand. For example, a shelf on which tools and parts are placed may be moved as the object 2. Further, two transport devices 1 may be combined to move the object 2 in the biaxial direction.
さらに、実施例の搬送装置1では、対象物2を直線状の移動軌跡βに沿って移動させていたが、移動軌跡βの態様は直線に限定されない。例えば、図6に示すように、移動軌跡βを円弧状に設定するとともに、2つの歯群6A、6Bを、円弧状の移動軌跡βに沿って離して設けてもよい。この場合、ベルト4は、円弧状の移動軌跡βに沿って、張り渡されている。また、歯群6A、6Bそれぞれにおいて、5本の歯それぞれを実施例と同様のピン6pにより設け、5本のピン6pを移動軌跡βに沿って並べてもよい。
Further, in the transport device 1 of the embodiment, the object 2 is moved along the linear movement locus β, but the mode of the movement locus β is not limited to the straight line. For example, as shown in FIG. 6, the movement locus β may be set in an arc shape, and the two tooth groups 6A and 6B may be provided apart along the arc shape movement locus β. In this case, the belt 4 is stretched along the arc-shaped movement locus β. Further, in each of the tooth groups 6A and 6B, each of the five teeth may be provided with the same pins 6p as in the embodiment, and the five pins 6p may be arranged along the movement locus β.
1 搬送装置 2 対象物 3 プーリー 4 ベルト 5 ピニオン 6A、6B、6C 歯群 7 アクチュエータ
1 Conveyor device 2 Object 3 Pulley 4 Belt 5 Pinion 6A, 6B, 6C Tooth group 7 Actuator
Claims (4)
- 対象物(2)を所定の移動軌跡(β)に沿って移動させる搬送装置(1)において、 所定のアクチュエータ(7)により回転駆動されるプーリー(3)と、 前記移動軌跡に沿って張り渡されて前記プーリーに噛み合うベルト(4)と、 前記プーリーと機械的に連結され、前記プーリーと同期して回転するピニオン(5)と、 前記ピニオンとかみ合う歯が並ぶ複数の歯群(6A、6B、6C)とを備え、 この複数の歯群は、前記移動軌跡に沿って複数個所に離れて設けられており、 前記ピニオンは、前記プーリーが回転駆動されると、前記プーリーとともに前記移動軌跡に沿って移動し、前記歯群同士の間の区間は前記歯群と噛み合うことなく移動し、前記歯群が存在する区間は前記歯群と噛み合って移動することを特徴とする搬送装置。 In a transport device (1) that moves an object (2) along a predetermined movement locus (β), a pulley (3) that is rotationally driven by a predetermined actuator (7) and a pulley (3) that is stretched along the movement locus. A belt (4) that meshes with the pulley, a pinion (5) that is mechanically connected to the pulley and rotates in synchronization with the pulley, and a plurality of tooth groups (6A, 6B) in which teeth that mesh with the pinion are lined up. , 6C), and the plurality of tooth groups are provided at a plurality of locations along the movement locus, and when the pulley is rotationally driven, the pinion and the pulley follow the movement locus. A transport device that moves along the teeth, the section between the tooth groups moves without meshing with the tooth group, and the section in which the tooth group exists meshes with the tooth group.
- 請求項1に記載の搬送装置において、 前記歯群は、前記移動軌跡に沿って並ぶ複数のピン(6p、6pe)からなることを特徴とする搬送装置。 The transport device according to claim 1, wherein the tooth group includes a plurality of pins (6p, 6pe) arranged along the movement locus.
- 請求項2に記載の搬送装置において、 前記歯群の端に存在するピン(6pe)は、他のピンよりも小径であることを特徴とする搬送装置。 The transport device according to claim 2, wherein the pin (6pe) existing at the end of the tooth group has a smaller diameter than the other pins.
- 請求項2または請求項3に記載の搬送装置において、 前記ピンは、前記移動軌跡に沿う所定の位置に固定される芯部、および、この芯部の外周側を覆う円筒体(6a)を有し、 前記ピニオンは、自身の歯(5b)が前記円筒体に接触することで前記歯群と噛み合うことを特徴とする搬送装置。 In the transport device according to claim 2 or 3, the pin has a core portion fixed at a predetermined position along the movement locus, and a cylindrical body (6a) covering the outer peripheral side of the core portion. However, the pinion is a transport device characterized in that its own teeth (5b) come into contact with the cylindrical body and mesh with the tooth group.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-113283 | 2019-06-19 | ||
JP2019113283A JP6572470B1 (en) | 2019-06-19 | 2019-06-19 | Transport device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020255432A1 true WO2020255432A1 (en) | 2020-12-24 |
Family
ID=67909587
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/038986 WO2020255432A1 (en) | 2019-06-19 | 2019-10-02 | Transport device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6572470B1 (en) |
WO (1) | WO2020255432A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000220727A (en) * | 1998-11-25 | 2000-08-08 | Hirata Corp | Toothed pulley, manufacture thereof, straight line moving device, industry device, work conveying system, and conveying device |
JP2002340128A (en) * | 2001-05-11 | 2002-11-27 | Murata Mach Ltd | Linear moving mechanism for moving body |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5898136U (en) * | 1981-12-21 | 1983-07-04 | アルク株式会社 | feeding device |
DE3223526C1 (en) * | 1982-06-24 | 1983-11-03 | Holtschmidt Entwicklungen KG, 8900 Augsburg | Timing belt drive |
JPH0746472Y2 (en) * | 1991-03-19 | 1995-10-25 | 株式会社安川電機 | Straight running device |
JPH08121558A (en) * | 1994-10-20 | 1996-05-14 | Sony Corp | Drive mechanism |
JPH09229153A (en) * | 1996-02-26 | 1997-09-02 | Nichirin Tekkosho:Kk | Extrusion type linear driving apparatus with guide using linear guide |
JP2005140162A (en) * | 2003-11-04 | 2005-06-02 | Tokkyokiki Corp | Damping device |
-
2019
- 2019-06-19 JP JP2019113283A patent/JP6572470B1/en not_active Expired - Fee Related
- 2019-10-02 WO PCT/JP2019/038986 patent/WO2020255432A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000220727A (en) * | 1998-11-25 | 2000-08-08 | Hirata Corp | Toothed pulley, manufacture thereof, straight line moving device, industry device, work conveying system, and conveying device |
JP2002340128A (en) * | 2001-05-11 | 2002-11-27 | Murata Mach Ltd | Linear moving mechanism for moving body |
Also Published As
Publication number | Publication date |
---|---|
JP6572470B1 (en) | 2019-09-11 |
JP2020203360A (en) | 2020-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1880809A1 (en) | Arm structure of industrial robot | |
US20150123416A1 (en) | Robot hand for gripping cylindrical object and robot having the robot hand | |
US7237449B2 (en) | Drive mechanism and movable table unit provided with the same | |
EP3262320B1 (en) | High speed rod-style linear actuator | |
CN106078677B (en) | Robot | |
KR200450505Y1 (en) | Gear reducer | |
KR20090113108A (en) | Plasma cutting machine for a metal tube | |
JP2019214102A (en) | Wrist unit of robot | |
JP2018135558A (en) | Workpiece rotation device and film deposition apparatus with the same | |
CN101983296A (en) | Cylinder device | |
JP4926782B2 (en) | Needle roller assembly method and needle roller assembly apparatus | |
WO2020255432A1 (en) | Transport device | |
JP6032028B2 (en) | Linear motion guide device | |
US10843349B2 (en) | Conveyance device | |
KR20120067239A (en) | One axis robot using belt | |
KR20180004883A (en) | Actuator for robot with high speed structure with two belt | |
CN100424378C (en) | Actuator control system | |
KR20200041879A (en) | Conveying device for moving the workpiece in a rotary and / or linear manner | |
WO2017081771A1 (en) | Shaft device, mounting head, and surface mounting device | |
US20210268642A1 (en) | Bearing, Gear Device, and Robot | |
JP2694511B2 (en) | Cartesian robot wrist axis | |
EP3255304A1 (en) | Drive transmission device | |
JPH08112787A (en) | Robot | |
KR100327540B1 (en) | Linear transfer apparatus for manufacturing products | |
KR101705018B1 (en) | Bevel reducer and the transfer device using the same having a transfer function |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19933681 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19933681 Country of ref document: EP Kind code of ref document: A1 |