WO2020255232A1 - Data encoding device, data decoding device, data communication system, data communication method, and computer-readable recording medium - Google Patents

Data encoding device, data decoding device, data communication system, data communication method, and computer-readable recording medium Download PDF

Info

Publication number
WO2020255232A1
WO2020255232A1 PCT/JP2019/023983 JP2019023983W WO2020255232A1 WO 2020255232 A1 WO2020255232 A1 WO 2020255232A1 JP 2019023983 W JP2019023983 W JP 2019023983W WO 2020255232 A1 WO2020255232 A1 WO 2020255232A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
displacement
time
data
specific surface
Prior art date
Application number
PCT/JP2019/023983
Other languages
French (fr)
Japanese (ja)
Inventor
巡 高田
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2021528082A priority Critical patent/JP7287463B2/en
Priority to PCT/JP2019/023983 priority patent/WO2020255232A1/en
Publication of WO2020255232A1 publication Critical patent/WO2020255232A1/en
Priority to JP2023084086A priority patent/JP7485155B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces

Definitions

  • the present invention relates to a data encoding device, a data decoding device, a data communication system, and a data communication method for encoding or decoding in-plane displacement data obtained from an image of an object, and further, these. It relates to a computer-readable recording medium on which a program for realizing the program is recorded.
  • Patent Document 1 derives an in-plane displacement component of a portion to be determined from an image of a structure such as a bridge as a subject, and determines the state of the structure based on the derived in-plane displacement component.
  • the device is disclosed.
  • the device disclosed in Patent Document 1 first acquires a plurality of images from a visible camera in chronological order. Then, the apparatus disclosed in Patent Document 1 subtracts a component due to the displacement of the entire surface to be determined from the optical flow of the acquired image or the displacement vector field obtained by the image correlation method to obtain the surface. Derivation of the internal displacement component.
  • the apparatus disclosed in Patent Document 1 obtains the in-plane displacement distribution from the derived in-plane displacement component, and compares the obtained in-plane displacement distribution with the reference in-plane displacement distribution. At this time, if damage such as an opening due to cracks occurs, there will be a difference between the two in-plane distributions. Therefore, the apparatus disclosed in Patent Document 1 detects defects such as cracks from the comparison result.
  • the data of the in-plane displacement component derived by the apparatus disclosed in Patent Document 1 is transmitted to a data server or the like via a network for recording, and is accumulated there.
  • the data of the in-plane displacement component thus obtained has a characteristic that the amount of data is very large, and there is a problem that a large cost is required for transmission and storage via the network.
  • the conditions of the moving image data obtained by photographing the structure are 2048 ⁇ 2048 pixels, a frame rate of 80 fps, and a time of 10 seconds.
  • the amount of in-plane displacement component data is about 26 GB.
  • MPEG has been known as a compression format for moving image data, and it is considered that the cost can be reduced by compressing the in-plane displacement component data using such a compression format. Be done.
  • MPEG is a compression method for efficiently compressing two-dimensional data in time series
  • the in-plane displacement component data is composed of a floating-point format input signal. Therefore, even if the cost can be reduced, the distortion generated when compressed at a high compression rate may significantly reduce the accuracy in determining the state by damage detection.
  • An example of an object of the present invention can solve the above problem and reduce the cost of transmission and storage while maintaining sufficient spatial resolution in coding or decoding of data indicating in-plane displacement extracted from an image.
  • a data encoding device, a data decoding device, a data communication system, a data communication method, and a computer-readable recording medium can solve the above problem and reduce the cost of transmission and storage while maintaining sufficient spatial resolution in coding or decoding of data indicating in-plane displacement extracted from an image.
  • the data encoding device in one aspect of the present invention is From the total surface displacement of the object on the specific surface measured from the time-series image of the object, and the in-plane displacement of the object on the specific surface measured from the total surface displacement and the time-series image.
  • a reference signal generator that generates a reference signal and whose level changes according to the stress generated on the specific surface of the object.
  • a regression coefficient calculation unit that calculates a regression coefficient that indicates the degree of interlocking between the time-series change in the level of the reference signal and the time-series change in the in-plane displacement using the reference signal and the in-plane displacement.
  • a data output unit that outputs the reference signal and the regression coefficient as data indicating the in-plane displacement. It is characterized by having.
  • the data decoding device in one aspect of the present invention is It shows the degree of interlocking between the reference signal whose level changes according to the stress generated on the specific surface of the object and the time-series change of the level of the reference signal and the time-series change of the in-plane displacement on the specific surface of the object.
  • the data communication system in one aspect of the present invention includes a data encoding device and a data decoding device.
  • the data encoding device is From the total surface displacement of the object on the specific surface measured from the time-series image of the object, and the in-plane displacement of the object on the specific surface measured from the total surface displacement and the time-series image.
  • a reference signal generator that generates a reference signal and whose level changes according to the stress generated on the specific surface of the object.
  • a regression coefficient calculation unit that calculates a regression coefficient that indicates the degree of interlocking between the time-series change in the level of the reference signal and the time-series change in the in-plane displacement using the reference signal and the in-plane displacement.
  • a data output unit that outputs the reference signal and the regression coefficient as data indicating the in-plane displacement is provided.
  • the data decoding device It shows the degree of interlocking between the reference signal whose level changes according to the stress generated on the specific surface of the object and the time-series change of the level of the reference signal and the time-series change of the in-plane displacement on the specific surface of the object.
  • Regression coefficient, data acquisition unit and It includes a data decoding unit that restores the in-plane displacement of the object on a specific surface by using the acquired reference signal and the regression coefficient. It is characterized by that.
  • the data communication method in one aspect of the present invention is a data communication method using a data coding device and a data decoding device.
  • A The entire surface displacement of the object on a specific surface measured from the time-series image of the object by the data encoding device, and the entire surface displacement and the object measured from the time-series image.
  • steps and (C) A step in which the reference signal and the regression coefficient are output as data indicating the in-plane displacement by the data encoding device.
  • step D A reference signal whose level changes according to the stress generated on the specific surface of the object by the data decoding device, and a time-series change in the level of the reference signal and an in-plane displacement of the object on the specific surface.
  • step E A step of restoring the in-plane displacement of the object on a specific surface using the reference signal and the regression coefficient acquired by the data decoding device. It is characterized by having.
  • the first computer-readable recording medium in one aspect of the present invention is On the computer (A) Overall surface displacement of the object on a specific surface measured from a time-series image of the object, and in-plane displacement of the object on a specific surface measured from the entire surface displacement and the time-series image. From, to the step of generating a reference signal, the level changes according to the stress generated on the specific surface of the object.
  • the second computer-readable recording medium in one aspect of the present invention is On the computer (A) A reference signal whose level changes according to the stress generated on the specific surface of the object, and a time-series change in the level of the reference signal and a time-series change in the in-plane displacement on the specific surface of the object. To get the regression coefficient, which indicates the degree, step and (B) A step of restoring the in-plane displacement of the object on a specific surface using the acquired reference signal and the regression coefficient. It is characterized by recording a program including an instruction to execute.
  • FIG. 1 is a block diagram showing a configuration of a data communication system according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing more specifically the configuration of the data communication system according to the embodiment of the present invention.
  • FIG. 3 is a diagram illustrating a component included in the displacement observed on the image pickup surface of the image pickup apparatus at a certain point when the measurement target area of the object is photographed.
  • FIG. 4 is a diagram simulating the state of the two-dimensional spatial distribution of the displacements ( ⁇ x ij , ⁇ y ij ) observed in a specific area on the image of the measurement target area.
  • 5 (a) to 5 (c) are diagrams for explaining the processing performed by the regression coefficient calculation unit in the embodiment of the present invention, respectively.
  • FIG. 1 is a block diagram showing a configuration of a data communication system according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing more specifically the configuration of the data communication system according to the embodiment of the present invention.
  • FIG. 6 is a flow chart showing the operation of the data encoding device according to the embodiment of the present invention.
  • FIG. 7 is a flow chart showing the operation of the data decoding device according to the embodiment of the present invention.
  • FIG. 8 is a block diagram showing an example of a computer that realizes the data encoding device or the data decoding device according to the embodiment of the present invention.
  • FIG. 1 is a block diagram showing a configuration of a data communication system according to an embodiment of the present invention.
  • the data communication system 10 in the present embodiment shown in FIG. 1 is a system for data communication of in-plane displacement data obtained from an image of an object.
  • the data communication system 10 includes a data coding device 20 and a data decoding device 30. Further, the data coding device 20 and the data decoding device 30 are connected to each other via a network 40 such as the Internet.
  • the data coding device 20 shown in FIG. 1 is a device that encodes in-plane displacement data obtained from an image of an object. As shown in FIG. 1, the data coding device 20 includes a reference signal generation unit 21, a regression coefficient calculation unit 22, and a data output unit 23.
  • the reference signal generation unit 21 generates a reference signal whose level changes according to the stress generated on the specific surface of the object from the displacement of the entire surface and the displacement in the surface.
  • the regression coefficient calculation unit 22 calculates the regression coefficient, which indicates the degree of interlocking between the time-series change in the level of the reference signal and the time-series change in the in-plane displacement, using the reference signal and the in-plane displacement.
  • the data output unit 23 outputs the reference signal and the regression coefficient to the data decoding device 30 as data indicating the in-plane displacement.
  • the data decoding device 30 shown in FIG. 2 is a device that decodes the data indicating the in-plane displacement output from the data coding device 20.
  • the data decoding device 30 shown in FIG. 2 includes a data acquisition unit 31 and a data decoding unit 32.
  • the data acquisition unit 31 acquires the reference signal and the regression coefficient output by the data encoding device 20.
  • the data decoding unit 32 restores the in-plane displacement on the specific surface of the object by using the reference signal and the regression coefficient.
  • the data indicating the in-plane displacement is transmitted after being converted into a reference signal and a regression coefficient, instead of reducing the size of itself. Therefore, according to the present embodiment, it is possible to reduce the cost of transmission and storage while maintaining sufficient spatial resolution in coding or decoding of data indicating in-plane displacement extracted from an image. ..
  • FIG. 2 is a block diagram showing more specifically the configuration of the data communication system according to the embodiment of the present invention.
  • the object whose in-plane displacement is measured is the bridge 60, and when the bridge 60 is bent by the load of the vehicle 61 passing through the bridge 60, the bridge The in-plane displacement in the measurement target area set to 60 is measured.
  • the measurement target area include bridge girders and plate slabs.
  • an imaging device 50 is connected to the data coding device 20.
  • the image pickup device 50 is a camera capable of shooting a moving image, and outputs a time-series image for each frame. Specifically, the image pickup apparatus 50 takes pictures at set intervals and continuously outputs image data of the taken images.
  • the image pickup apparatus 50 is arranged so that the floor slab (bottom surface), which is the measurement target area of the bridge 60, can be photographed.
  • the data coding device 20 is an image data acquisition unit in addition to the reference signal generation unit 21, the regression coefficient calculation unit 22, and the data output unit 23 described above. 24, an overall surface displacement measuring unit 25, an in-plane displacement measuring unit 26, and a storage unit 27 are provided.
  • the image data acquisition unit 24 acquires the output image data, and transfers the acquired image data to the entire surface displacement measurement unit 25 and the in-plane displacement measurement unit 26. Output.
  • the entire surface displacement measuring unit 25 measures the displacement of the entire surface on the specific surface of the object from the time-series image of the object.
  • the entire surface displacement measuring unit 25 acquires a time-series image output by the imaging device 50, uses an image captured at an arbitrary time as a reference image, and uses the other images as processed images. Then, the entire surface displacement measuring unit 25 describes each point of the region corresponding to the measurement target region on the specific surface in the reference image (hereinafter referred to as “specific region”) in the processed image for each processed image.
  • the displacement is calculated by searching for each corresponding position.
  • the displacement with respect to the specific region for each processed image calculated in this way is the displacement distribution.
  • the entire surface displacement measuring unit 25 searches for a location (coordinate) in the processed image that is most similar to a location (coordinate) in the specific region, and calculates the displacement of the specified location (coordinate). To do.
  • SAD Sum of Squared Difference
  • SSD Serial of Absolute Difference
  • NCC Normalized
  • a method of searching for the position (coordinates) having the highest correlation by using a similarity correlation function such as Cross-Correlation) or ZNCC (Zero-means Normalized Cross-Correlation) can be mentioned.
  • the distribution of displacement with respect to the specific area in the processed image can be obtained. Further, by performing the same processing for each processed image, it is possible to obtain a displacement distribution with respect to a specific region for each processed image.
  • the specific coordinates of the measurement target area are defined as (i, j)), and the calculated displacement is expressed as ( ⁇ x ij , ⁇ y ij ).
  • the entire surface displacement measuring unit 25 uses the calculated displacement ( ⁇ x ij , ⁇ y ij ) and the imaging information to determine the amount of movement ( ⁇ x, ⁇ y) in the surface direction and the amount of movement in the normal direction ( ⁇ x, ⁇ y) of the measurement target area. ⁇ z) and is calculated. Further, in the entire surface displacement measuring unit 25, the calculated displacement ( ⁇ x ij , ⁇ y ij ) and the amount of movement ( ⁇ x, ⁇ y, ⁇ z) are the total surface displacement.
  • the entire surface displacement measuring unit 25 stores the calculated displacement ( ⁇ x ij , ⁇ y ij ) and the movement amount ( ⁇ x, ⁇ y, ⁇ z) in the storage unit 27 as the entire surface displacement information.
  • the photographing information include the size of one pixel of the solid-state image sensor in the image pickup device 50, the focal length of the lens, the image pickup distance from the image pickup device 50 to the measurement target area, the shooting frame rate, and the like.
  • the in-plane displacement measuring unit 26 measures the in-plane displacement of the bridge 60 on a specific surface from the movement amount ( ⁇ x, ⁇ y, ⁇ z) calculated by the overall surface displacement measuring unit 25 and the time series image.
  • the in-plane displacement is expressed as ( ⁇ x ij , ⁇ y ij ).
  • FIG. 3 is a diagram illustrating a component included in the displacement observed on the image pickup surface of the image pickup apparatus at a certain point when the measurement target area of the object is photographed. Further, in FIG. 3, the bridge 60, which is an object, is loaded by the passing vehicle 61, and as a result, the measurement target area is moved by the amount of movement ( ⁇ x, ⁇ y, ⁇ z) in the three-dimensional direction. Shown.
  • the measurement target area of the bridge 60 has a movement amount ( ⁇ x, ⁇ y, ⁇ z) in the horizontal and vertical directions (X, Y directions) and the normal direction (Z direction) on the screen. It has occurred.
  • the measurement target area moves parallel to the image pickup surface of the image pickup apparatus 50 by the amount ( ⁇ x, ⁇ y) moved in the horizontal direction and the vertical direction (X, Y direction) in the screen. Further, the image pickup device 50 is approached by the amount ( ⁇ z) of the movement in the normal direction (Z direction). Therefore, the imaging distance is shortened by the movement amount ⁇ z.
  • a displacement ⁇ zx ij due to the movement amount ⁇ z is generated in addition to the displacement ⁇ x caused by the movement amount ⁇ x of the measurement target region in the horizontal direction (X direction) with respect to the imaging surface of the imaging device 50. ..
  • the displacement ⁇ zy ij due to the moving amount ⁇ z also occurs.
  • the in-plane displacement ( ⁇ x ij , ⁇ y ij ) due to the surface deformation of the measurement target region is such that the surface displacement changes continuously in a healthy region without defects such as cracks. In the region that straddles the cracks, the surface displacement does not change continuously but changes discontinuously. As described above, the surface displacement distribution is different between the healthy region without defects and the region with some defects.
  • the displacements ( ⁇ x ij , ⁇ y ij ) observed at the point A (i, j) can be represented by the following equations 1 and 2 as shown in FIG. 4 described later.
  • the imaging distance from the principal point of the lens to the measurement target region is L
  • the lens focal length of the imaging device 50 is f
  • the coordinates from the imaging center are (i, j)
  • the displacement ( ⁇ x, ⁇ y) associated with ( ⁇ x, ⁇ y) and the displacement ( ⁇ zx ij , ⁇ zy ij ) associated with the movement in the normal direction ( ⁇ z) are represented by the following equations 3 and 4, respectively.
  • the displacement ( ⁇ x, ⁇ y) accompanying the movement ( ⁇ x, ⁇ y) in the plane direction indicated by the above equations 3 and 4 is the displacement ( ⁇ x, ⁇ y) at the point A. It can be seen that it is constant regardless of the coordinates. It can also be seen that the displacement ( ⁇ z x ij , ⁇ zy ij ) accompanying the movement in the normal direction ( ⁇ z) increases as the coordinates of the point A move away from the origin.
  • the in-plane displacement ( ⁇ x ij , ⁇ y ij ) of the measurement target area shows the distribution of continuous and discontinuous displacement according to the position of defects such as cracks on the surface, regardless of the coordinates of the coordinates of point A. ..
  • FIG. 4 is a diagram simulating the state of the two-dimensional spatial distribution (hereinafter referred to as the displacement distribution) of the displacements ( ⁇ x ij , ⁇ y ij ) observed in a specific area on the image of the measurement target area. is there.
  • the displacement ( ⁇ x ij , ⁇ y ij ) of each coordinate of the specific region calculated by the entire surface displacement measuring unit 25 is expressed as a displacement vector.
  • the displacement vector is the displacement ( ⁇ x, ⁇ y) accompanying the movement ( ⁇ x, ⁇ y) in the plane direction observed in a uniform direction and magnitude over the entire screen, and the vector group radial from the imaging center of the screen.
  • the displacement ( ⁇ x, ⁇ y) accompanying the movement in the plane direction ( ⁇ x, ⁇ y) is basically observed in a uniform direction and size over the entire screen. Therefore, the displacement ( ⁇ x ij , ⁇ y ij ) calculated by the entire surface displacement measuring unit 25 at each coordinate of the specific region centered on the imaging center is added with plus or minus depending on the direction of displacement, and this is used as the displacement vector. To do. Then, by adding all the displacement vectors at the target coordinates and calculating the average, the displacement ( ⁇ x, ⁇ y) accompanying the movement in the plane direction ( ⁇ x, ⁇ y) is calculated.
  • the displacements ( ⁇ x ij , ⁇ y ij ) first calculated by the entire surface displacement measuring unit 25 are actually composed of composite vectors (Fig. 4: ultra-thick solid line arrows) as shown in FIG. There is. Then, this combined vector ( ⁇ x ij, ⁇ y ij), as can be seen from Figure 4, the displacement vector associated with movement in the normal direction ( ⁇ z) ( ⁇ zx ij, ⁇ zy ij) ( 3, 4: Medium solid line (Arrow), displacement vector ( ⁇ x, ⁇ y) due to in-plane movement ( ⁇ x, ⁇ y) (Fig. 3, Fig. 4: thick solid line arrow), and in-plane due to surface deformation and displacement of the measurement target area.
  • the displacement ( ⁇ x ij , ⁇ y ij ) (Fig. 3, Fig. 4: Fine solid line arrow) is included.
  • the vector obtained by subtracting the displacement vector ( ⁇ x, ⁇ y) accompanying the in-plane movement ( ⁇ x, ⁇ y) from this composite vector ( ⁇ x ij , ⁇ y ij ) is the movement in the normal direction ( ⁇ z).
  • the composite vector of the displacement vector ( ⁇ z x ij , ⁇ zy ijj ) and the in-plane displacement ( ⁇ x ij , ⁇ y ij ) accompanying the movement ( ⁇ z) in the normal direction at a certain coordinate (i, j) is R mes (i, i, Then, if j), these can be represented by the following equation 8.
  • the above number 8 can be expressed as the following number 9.
  • R mes (i, j) at the coordinates (i, j) can be treated as being substantially equal to the displacement vector component ( ⁇ z x ij , ⁇ zy ij ) accompanying the movement in the normal direction ( ⁇ z).
  • the displacement vector when the movement amount ⁇ z in the normal direction is given is represented by R (i, j) shown in Equations 6 to 8.
  • the entire surface displacement measuring unit 25 uses the displacement vector magnitude R mes (i, j) obtained by Eq. 9, and the displacement vector ( ⁇ z x ij , ⁇ zy ij ) accompanying the movement in the normal direction ( ⁇ z). ) Estimates the rate of enlargement / reduction of the magnitude R (i, j) of the displacement vector. Specifically, the entire surface displacement measuring unit 25 estimates the magnification of R (i, j) by obtaining the proportionality constant k that minimizes the evaluation function E (k) shown in Equation 10 below.
  • the entire surface displacement measuring unit 25 applies the least squares method to the above equation 10 to calculate the proportionality constant k.
  • the evaluation function E (k) in addition to the sum of squares of the difference between R mes (i, j) and R (i, j) shown in the above equation 10, the sum of absolute values and the sum of other powers Etc. may be used.
  • the entire surface displacement measuring unit 25 applies the calculated proportionality constant k to the above equation 7 as a constant indicating the ratio of enlargement / reduction to calculate the movement amount ⁇ z. Then, the entire surface displacement measuring unit applies the calculated ⁇ z, the displacement ( ⁇ x, ⁇ y) accompanying the movement in the surface direction ( ⁇ x, ⁇ y), and the imaging information to the above equation 3, thereby increasing the amount of movement ⁇ x. And ⁇ y are also calculated.
  • the entire surface displacement measuring unit 25 determines the amount of movement of the measurement target area in the surface direction and the amount of movement of the measurement target area in the normal direction for each image taken by the imaging device 50, that is, for each frame of the time series image. Is calculated. Then, the entire surface displacement measuring unit 25 stores the movement amount calculated for each frame of the time-series image in the storage unit 27 as the entire surface displacement information. Further, in this case, the displacement information of the entire surface can be treated as a time-series signal with the time interval of photographing as the sampling interval.
  • the in-plane displacement measuring unit 26 measures the in-plane displacement on a specific surface of the object from the displacement of the entire surface and the time-series image of the object.
  • the in-plane displacement measuring unit 26 moves the measurement target area in the plane direction ( ⁇ x, ⁇ y) calculated by the entire surface displacement measuring unit 25, and the movement amount in the normal direction of the measurement target area.
  • the in-plane displacement ( ⁇ x ij , ⁇ y ij ) of the measurement target area is calculated from the first calculated displacement (displacement vector ( ⁇ x ij , ⁇ y ij )), and the in-plane displacement is calculated. Is performed frame by frame of the time-series image.
  • the in-plane displacement ( ⁇ x ij, ⁇ y ij) in order to calculate the the displacement vector calculated by the in-plane displacement measuring unit 26 ( ⁇ x ij, ⁇ y ij) from the amount of movement of the measurement target area ( It can be seen that the displacement component generated by ( ⁇ x, ⁇ y, ⁇ z) should be subtracted. That is, the in-plane displacement measuring unit 26 calculates the in-plane displacement ( ⁇ x ij , ⁇ y ij ) by using the following equations 11 and 12.
  • the in-plane displacement measuring unit 26 calculates the in-plane displacement ( ⁇ x ij , ⁇ y ij ) each time the image pickup apparatus 50 takes an image, that is, in chronological order. Then, the in-plane displacement measuring unit 26 stores the in-plane displacement calculated for each frame of the time-series image in the storage unit 27 as the in-plane displacement information. Further, in this case, the in-plane displacement information can be treated as a time-series signal with the shooting time interval as the sampling interval. In addition, in this specification, in-plane displacement information is also referred to as "in-plane displacement signal".
  • the reference signal generation unit 21 calculates the time-series change ⁇ (t) of the strain in the specific direction of the point of interest from the in-plane displacement of the point of interest on the specific surface of the object in the specific direction.
  • a signal indicating the time-series change ⁇ (t) of the calculated distortion is generated as a reference signal.
  • a point of interest is specified in advance in a measurement target area on a specific surface by an operator or the like of the data communication system 10. As shown in FIG. 2, when the object is a bridge 60 and the measurement target area is a floor slab, a point on the floor slab is designated as a point of interest.
  • the reference signal generation unit 21 determines a plurality of points (for example, four points) surrounding the point of interest.
  • the area surrounded by each point is referred to as a "local area”.
  • the reference signal generation unit 21 acquires in-plane displacement information at each of the determined points from the storage unit 27.
  • the reference signal generation unit 21 uses the acquired in-plane displacement information of each point to determine the length of the local region in the specific direction, as in the case of the point of interest.
  • the rate of change is obtained, and the obtained rate of change is defined as the time-series change ⁇ (t) of the strain.
  • the reference signal generation unit 21 performs singular value decomposition using the acquired in-plane displacement information of each point, thereby performing the singular value decomposition in the direction in which the local region has the largest change. To identify. Then, the reference signal generation unit 21 obtains the rate of change of the length of the local region in the specified direction, and sets the obtained rate of change as the time-series change ⁇ (t) of the strain.
  • the reference signal generation unit 21 stores the reference signal obtained from the calculated time-series change in distortion in the storage unit 27 as reference signal information.
  • the regression coefficient calculation unit 22 calculates the regression coefficient for each point (i, j) in the measurement target region on the specific surface.
  • the regression coefficient calculation unit 22 first identifies the time-series change of the in-plane displacement from the in-plane displacement information stored in the storage unit 27, and from the reference signal information stored in the storage unit 27, the reference signal Identify time-series changes in levels. Then, the regression coefficient calculation unit 22 is based on the time-series change in the level of the specified reference signal and the time-series change in the in-plane displacement also specified for each point (i, j) in the measurement target region on the specific surface. , Calculate the regression coefficient indicating the degree of interlocking between the two.
  • FIG. 5 (a) to 5 (c) are diagrams for explaining the processing performed by the regression coefficient calculation unit in the embodiment of the present invention, respectively.
  • the regression coefficient calculation unit 22 first performs a time-series change in the level of the reference signal and an in-plane displacement ( ⁇ x ij ,) at a specific point (i, j). ⁇ ⁇ y ij ) is identified as a time series change.
  • the in-plane displacement is identified at this time, may be either one of the in-plane displacement Derutaderutawai ij in the in-plane displacement Derutaderutax ij and y directions in the x-direction may be both.
  • one of the in-plane displacements includes, for example, in-plane displacement of the bridge 60 in the longitudinal direction when the object is the bridge 60.
  • the average in-plane displacement of the in-plane displacement Derutaderutawai ij in the in-plane displacement Derutaderutax ij and y direction in the x direction may be specified.
  • the regression coefficient calculation unit 22 performs a reference signal and in-plane displacement for each point (i, j), along the time series, that is, for each frame of the time series image. Compare with. Then, as shown in FIG. 5 (c), the regression coefficient calculation unit 22 shows the relationship between the time-series change in the level of the reference signal and the time-series change in the in-plane displacement for each point (i, j). A straight line is obtained, and the slope is calculated as a regression coefficient. Further, the calculation of the regression line and the calculation of the regression coefficient are performed in each of the x direction and the y direction, and in reality, the regression coefficient in the x direction and the regression coefficient in the y direction are calculated.
  • the data output unit 23 uses the reference signal information stored in the storage unit 27 and the regression coefficient calculated for each point (i, j) as data indicating the in-plane displacement as a network. It is output to the data decoding device 30 via the 40.
  • the data decoding device 30 is constructed by a program on the operating system of a terminal device such as a PC (Personal Computer), a smartphone, or a tablet terminal.
  • the data decoding device 30 is connected to the display device 33 of the terminal device.
  • the data acquisition unit 31 acquires the reference signal information output from the data output unit 23 of the data coding device 20 and the regression coefficient calculated for each point (i, j). ..
  • the data decoding unit 32 multiplies the level of the reference signal specified by the reference signal information by the regression coefficient for each point (i, j) along the time series, thereby multiplying the bridge 60. Restore the in-plane displacement in the measurement target area of. Further, the data decoding unit 32 generates image data for displaying the restored in-plane displacement, outputs the generated image data to the display device 33, and displays the in-plane displacement on the screen.
  • the operation of the data communication system 10 according to the embodiment of the present invention will be described with reference to FIGS. 6 and 7.
  • the operations of the data coding device 20 and the data decoding device 30 will be described with reference to FIGS. 1 to 5 as appropriate.
  • the data communication method is implemented by operating the data communication system 10, that is, the data coding device 20 and the data decoding device 30. Therefore, the description of the data communication method in the present embodiment will be replaced with the following description of the operation of the data coding device 20 and the data decoding device 30.
  • FIG. 6 is a flow chart showing the operation of the data encoding device according to the embodiment of the present invention.
  • the image data acquisition unit 24 acquires the output image data, and obtains the acquired image data for each frame.
  • the data is output to the entire surface displacement measuring unit 25 and the in-plane displacement measuring unit 26 (step A1).
  • the entire surface displacement measuring unit 25 measures the displacement of the entire surface of the measurement target area of the bridge 60, which is an object, for each frame (step). A2). Further, the entire surface displacement measuring unit 25 stores the measurement result as the entire surface displacement information in the storage unit 27.
  • the in-plane displacement measuring unit 26 uses the image data of the time-series image output in step A1 and the entire surface displacement measured in step A2, and the bridge 60, which is an object, is used for each frame.
  • the in-plane displacement in the measurement target area of is measured (step A3). Further, the in-plane displacement measuring unit 26 stores the measurement result in the storage unit 27 as in-plane displacement information.
  • the reference signal generation unit 21 changes its level according to the stress generated on the specific surface of the object from the total surface displacement measured in step A2 and the in-plane displacement measured in step A3. A reference signal is generated (step A4). Further, the reference signal generation unit 21 stores the generated reference signal as reference signal information in the storage unit 27.
  • the regression coefficient calculation unit 22 uses the reference signal generated in step A4 and the in-plane displacement measured in step A3 for each point (i, j) in the measurement target region on the specific surface. , Calculate a regression coefficient indicating the degree of interlocking between the time-series change in the level of the reference signal and the time-series change in the in-plane displacement (step A5).
  • the data output unit 23 uses the reference signal generated in step A4 and the regression coefficient for each point (i, j) calculated in step A5 as data indicating in-plane displacement via the network 40. Then, the data is transmitted to the data decoding device 30 (step A6). By executing step A6, the processing in the data encoding device 20 is completed.
  • FIG. 7 is a flow chart showing the operation of the data decoding device according to the embodiment of the present invention.
  • the data acquisition unit 31 receives data indicating in-plane displacement transmitted from the data coding device 20, that is, a reference signal and a point (i, j). ) Acquire the regression coefficient for each (step B1).
  • the data decoding unit 32 restores the in-plane displacement on the specific surface of the object by using the reference signal acquired in step B1 and the regression coefficient for each point (i, j) (step B2).
  • the data decoding unit 32 After that, the data decoding unit 32 generates image data for displaying the restored in-plane displacement, outputs the generated image data to the display device 33, and displays the in-plane displacement on the screen (step B3). ). By executing step B3, the process in the data decoding device 30 is completed.
  • the amount of data can be reduced without reducing the data itself indicating the in-plane displacement.
  • the present embodiment in coding or decoding of data indicating in-plane displacement extracted from an image, it is possible to reduce the cost of transmission and storage while maintaining sufficient spatial resolution.
  • the regression coefficient for each point (i, j) transmitted as data indicating the in-plane displacement uses an image compression method (JPEC-XR or the like) corresponding to floating-point pixel representation. It can be compressed. In this case, the data indicating the in-plane displacement can be further compressed.
  • the reference signal transmitted as data indicating in-plane displacement can be compressed using an audio compression method (MPEG4-ALS, etc.) that supports floating point numbers.
  • MPEG4-ALS audio compression method
  • the data indicating the in-plane displacement can be further compressed.
  • Modification 1 Next, Modifications 1 to 4 of the embodiment of the present invention will be described.
  • the present modification 1 it is a condition that the entire surface displacement measuring unit 25 measures the displacement of the entire surface in the in-plane direction of the specific surface of the object and the direction of applying the external force applied to the object. ..
  • the object is the bridge 60, and the external force is applied in the normal direction, so that the above conditions are satisfied.
  • the reference signal generation unit 21 calculates the time-series change D (t) of the total surface displacement in the external force application direction, and refers to the signal indicating the calculated time-series change of the total surface displacement. Generate as a signal. Specifically, the signal generation unit 13 specifies the time-series change of the movement amount ( ⁇ z) in the normal direction measured by the whole surface displacement measurement unit 25 from the whole surface displacement information, and the specified movement amount. Let the time-series change D (t) of ( ⁇ z) be the reference signal.
  • the imaging device 50 is sufficiently fixed in a place that is not easily affected by an external force, and the stress fluctuation due to the external force and the displacement of the entire surface in the application direction of the external force are linked. Useful in some cases.
  • the reference signal generation unit 21 first calculates the local strain on the specific surface of the object by using the in-plane displacement, and further integrates the local strain on the entire specific surface to integrate the local strain on the entire specific surface of the object. Calculate the time-series change of strain over a specific surface. Then, the reference signal generation unit 21 generates a signal indicating the time-series change of the calculated distortion as a reference signal.
  • the reference signal generation unit 21 obtains the local strain ⁇ (t, i, j) from the local deformation state at the coordinates (i, j) of the measurement target region for each frame of the image data. First, a plurality of points (for example, 4 points) surrounding the coordinates (i, j) are determined. The area surrounded by each point here is also referred to as a "local area”.
  • the reference signal generation unit 21 acquires in-plane displacement information at each of the determined points from the storage unit 17, and performs local singular value decomposition using the in-plane displacement information of each acquired point. Identify the direction of greatest change in the region. Then, the reference signal generation unit 21 obtains the rate of change of the length of the local region in the specified direction, and sets the obtained rate of change as the local strain s (t, i, j).
  • the reference signal generation unit 21 integrates the local strain s (t, i, j) over the entire measurement target region, calculates the distortion amount S (t) over the entire measurement target region, and calculates it.
  • the distorted amount S (t) be the reference signal.
  • the reference signal is obtained from the local strain. Therefore, in the present modification 2, when the imaging device 50 is not sufficiently fixed, the stress fluctuation due to the external force and the displacement of the entire surface in the application direction of the external force are linked. It is also useful when the sex is low.
  • the reference signal generation unit 21 determines a plurality of points (for example, four points) surrounding the coordinates (i, j), and the storage unit 17 determines each of the determined points. Acquire in-plane displacement information. However, in the present modification 3, unlike the modification 2, the reference signal generation unit 21 uses the acquired in-plane displacement information of each point to indicate the singular values ⁇ 1 and ⁇ 2 ( ⁇ ) indicating the local deformation in the local region. 1 ⁇ ⁇ 2 ) and the singular vector v 1 are obtained.
  • the singular vector v 1 here is a left singular vector corresponding to the singular value ⁇ 1 , but in the present modification 3, it may be determined that other singular vectors are selected.
  • the reference signal generation unit 21 calculates the local aperture vector v op (t, i, j) representing the local aperture direction and magnitude in the local region using the equation 13.
  • the reference signal generation unit 21 performs principal component analysis of the calculated local aperture vector to specify the first principal component. Specifically, the reference signal generation unit 21 takes the distribution of the point cloud by v op (t, i, j) at time t as an input, and derives the maximum spread direction of the point cloud by principal component analysis. Further, the reference signal generation unit 21 uses S (t) as the standard deviation of the first principal component axis obtained by the principal component analysis, and uses this as the reference signal. In the present modification 3, by using the principal component analysis, a more robust reference signal can be obtained for the noise included in the in-plane displacement.
  • the reference signal generation unit 21 first calculates the local strain s (t, i, j) for each coordinate (i, j), as in the modification 2. Further, the reference signal generation unit 21 also calculates the time-series change D (t) of the displacement of the entire surface in the external force application direction, as in the modification 1. Subsequently, the reference signal generation unit 21 calculates the regression coefficient w (i, j) of the local strain s (t, i, j) and the time series change D (t) for each coordinate (i, j). ..
  • the reference signal generation unit 21 uses the above equation 1 to represent the local aperture direction and size in the local region, as in the modification 3, the local aperture vector v op (t, i, j). Is calculated.
  • the reference signal generation unit 21 multiplies each of the local aperture vectors v op (t, i, j), which is the first principal component, by the regression coefficient w (i, j) as a weight. Further, the reference signal generation unit 21 performs the same principal component analysis as the modification 3 for the local aperture vector v op (t, i, j) after the weight multiplication at the time t.
  • S (t) be the standard deviation of the first principal component axis obtained by principal component analysis, and use this as the reference signal.
  • S (t) be the standard deviation of the first principal component axis obtained by principal component analysis, and use this as the reference signal.
  • this modification 4 it is possible to obtain a more robust reference signal for noise included in the in-plane displacement by reducing the contribution of the local aperture vector to the principal component analysis at a point where the degree of interlocking with the external force is low. it can.
  • the first program in the present embodiment may be any program that causes a computer to execute steps A1 to A6 shown in FIG.
  • the computer processor functions and processes as a reference signal generation unit 21, a regression coefficient calculation unit 22, a data output unit 23, an image data acquisition unit 24, an overall surface displacement measurement unit 25, and an in-plane displacement measurement unit 26. To do.
  • the first program in the present embodiment may be executed by a computer system constructed by a plurality of computers.
  • each computer has a reference signal generation unit 21, a regression coefficient calculation unit 22, a data output unit 23, an image data acquisition unit 24, an overall surface displacement measurement unit 25, and an in-plane displacement measurement unit 26, respectively. It may function as either.
  • the second program in the present embodiment may be any program that causes the computer to execute steps B1 to B3 shown in FIG.
  • the data decoding device 30 By installing this program on a computer and executing it, the data decoding device 30 according to the present embodiment can be realized.
  • the computer processor functions as a data acquisition unit 31 and a data decoding unit 32 to perform processing.
  • the second program in the present embodiment may be executed by a computer system constructed by a plurality of computers.
  • each computer may function as either a data acquisition unit 31 or a data decoding unit 32, respectively.
  • FIG. 8 is a block diagram showing an example of a computer that realizes a data encoding device or a data decoding device according to the embodiment of the present invention.
  • the computer 110 includes a CPU (CentralProcessingUnit) 111, a main memory 112, a storage device 113, an input interface 114, a display controller 115, a data reader / writer 116, and a communication interface 117. To be equipped with. Each of these parts is connected to each other via a bus 121 so as to be capable of data communication.
  • the computer 110 may include a GPU (Graphics Processing Unit) or an FPGA (Field-Programmable Gate Array) in addition to the CPU 111 or in place of the CPU 111.
  • GPU Graphics Processing Unit
  • FPGA Field-Programmable Gate Array
  • the CPU 111 expands the programs (codes) of the present embodiment stored in the storage device 113 into the main memory 112 and executes them in a predetermined order to perform various operations.
  • the main memory 112 is typically a volatile storage device such as a DRAM (Dynamic Random Access Memory).
  • the program according to the present embodiment is provided in a state of being stored in a computer-readable recording medium 120.
  • the program in the present embodiment may be distributed on the Internet connected via the communication interface 117.
  • the storage device 113 include a semiconductor storage device such as a flash memory in addition to a hard disk drive.
  • the input interface 114 mediates data transmission between the CPU 111 and an input device 118 such as a keyboard and mouse.
  • the display controller 115 is connected to the display device 119 and controls the display on the display device 119.
  • the data reader / writer 116 mediates the data transmission between the CPU 111 and the recording medium 120, reads the program from the recording medium 120, and writes the processing result in the computer 110 to the recording medium 120.
  • the communication interface 117 mediates data transmission between the CPU 111 and another computer.
  • the recording medium 120 include a general-purpose semiconductor storage device such as CF (CompactFlash (registered trademark)) and SD (SecureDigital), a magnetic recording medium such as a flexible disk, or a CD-.
  • CF CompactFlash (registered trademark)
  • SD Secure Digital
  • magnetic recording medium such as a flexible disk
  • CD- CompactDiskReadOnlyMemory
  • optical recording media such as ROM (CompactDiskReadOnlyMemory).
  • the data coding device 20 and the data decoding device 30 in the present embodiment can also be realized by using hardware corresponding to each part instead of the computer in which the program is installed. Further, the data encoding device 20 and the data decoding device 30 may be partially realized by a program and the rest may be realized by hardware.
  • a data encoding device characterized in that it comprises.
  • Appendix 2 The data encoding device according to Appendix 1.
  • An overall surface displacement measuring unit that measures the displacement of the entire surface from the time-series image of the object.
  • An in-plane displacement measuring unit that measures the in-plane displacement from the entire surface displacement and the time-series image. Is further equipped, A data encoding device characterized in that.
  • Appendix 3 The data coding apparatus according to Appendix 1 or 2.
  • the regression coefficient calculation unit calculates the regression coefficient for each point by using the reference signal and the in-plane displacement at the point.
  • the data output unit outputs the reference signal and the regression coefficient at the point for each point.
  • the reference signal generation unit calculates the time-series change of the strain of the attention point in the specific direction from the in-plane displacement of the point of interest on the specific surface in the specific direction, and calculates the time-series change of the strain.
  • the indicated signal is generated as the reference signal.
  • a data encoding device characterized in that.
  • the data encoding device according to any one of Supplementary note 1 to 3.
  • the reference signal generation unit calculates the time-series change of the displacement of the entire surface in the application direction, and generates a signal indicating the calculated time-series change of the displacement of the entire surface as the reference signal.
  • the reference signal generation unit calculates the local strain on the specific surface of the object by using the in-plane displacement, and further integrates the local strain on the entire specific surface to integrate the local strain on the entire specific surface of the object.
  • the time-series change of the strain in the above is calculated, and a signal indicating the calculated time-series change of the distortion is generated as the reference signal.
  • a data encoding device characterized in that.
  • the data encoding device is From the total surface displacement of the object on the specific surface measured from the time-series image of the object, and the in-plane displacement of the object on the specific surface measured from the total surface displacement and the time-series image.
  • a reference signal generator that generates a reference signal and whose level changes according to the stress generated on the specific surface of the object.
  • a regression coefficient calculation unit that calculates a regression coefficient that indicates the degree of interlocking between the time-series change in the level of the reference signal and the time-series change in the in-plane displacement using the reference signal and the in-plane displacement.
  • a data output unit that outputs the reference signal and the regression coefficient as data indicating the in-plane displacement is provided.
  • the data decoding device It shows the degree of interlocking between the reference signal whose level changes according to the stress generated on the specific surface of the object and the time-series change of the level of the reference signal and the time-series change of the in-plane displacement on the specific surface of the object.
  • Regression coefficient, data acquisition unit and It includes a data decoding unit that restores the in-plane displacement of the object on a specific surface by using the acquired reference signal and the regression coefficient.
  • a data communication system characterized by that.
  • (Appendix 9) A data communication method using a data encoding device and a data decoding device.
  • A The entire surface displacement of the object on a specific surface measured from the time-series image of the object by the data encoding device, and the entire surface displacement and the object measured from the time-series image. From the in-plane displacement on the specific surface of the object, the level changes according to the stress generated on the specific surface of the object, the step of generating a reference signal, and (B) Regression coefficient indicating the degree of interlocking between the time-series change in the level of the reference signal and the time-series change in the in-plane displacement by the data coding device using the reference signal and the in-plane displacement.
  • steps and (C) A step in which the reference signal and the regression coefficient are output as data indicating the in-plane displacement by the data encoding device.
  • D) A reference signal whose level changes according to the stress generated on the specific surface of the object by the data decoding device, and a time-series change in the level of the reference signal and an in-plane displacement of the object on the specific surface.
  • the step and (E) A step of restoring the in-plane displacement of the object on a specific surface using the reference signal and the regression coefficient acquired by the data decoding device.
  • a data communication method characterized by having.
  • Appendix 10 The data communication method described in Appendix 9
  • F A step of measuring the displacement of the entire surface from the time-series image of the object by the data encoding device.
  • G A step of measuring the in-plane displacement from the entire surface displacement and the time-series image by the data encoding device. Further have, A data communication method characterized by that.
  • step (Appendix 14) The data communication method according to any one of Appendix 9 to 11.
  • the local strain on the specific surface of the object is calculated by using the in-plane displacement, and the local strain is integrated over the entire specific surface to calculate the local strain on the specific surface of the object.
  • the time-series change of the distortion in the whole is calculated, and the signal indicating the calculated time-series change of the distortion is generated as the reference signal.
  • Appendix 16 The computer-readable recording medium according to Appendix 15.
  • the program is on the computer (D) A step of measuring the displacement of the entire surface from the time-series image of the object, and (E) A step of measuring the in-plane displacement from the entire surface displacement and the time-series image. Including further instructions to execute, A computer-readable recording medium characterized by that.
  • Appendix 17 A computer-readable recording medium according to Appendix 15 or 16.
  • the regression coefficient is calculated for each point by using the reference signal and the in-plane displacement at the point.
  • the reference signal and the regression coefficient at the point are output for each point.
  • (Appendix 18) A computer-readable recording medium according to any one of Appendix 15 to 17.
  • the time-series change of the strain of the attention point in the specific direction is calculated from the in-plane displacement of the point of interest on the specific surface in the specific direction, and the calculated time-series change of the strain is calculated. Is generated as the reference signal.
  • Appendix 19 A computer-readable recording medium according to any one of Appendix 15 to 17.
  • the total surface displacement is measured in the in-plane direction of the specific surface of the object and in the direction of applying an external force applied to the object.
  • the time-series change of the total surface displacement in the application direction is calculated, and a signal indicating the calculated time-series change of the total surface displacement is generated as the reference signal.
  • a computer-readable recording medium characterized by that.
  • (Appendix 20) A computer-readable recording medium according to any one of Appendix 15 to 17.
  • the local strain on the specific surface of the object is calculated by using the in-plane displacement, and the local strain is integrated over the entire specific surface to calculate the local strain on the specific surface of the object.
  • the time-series change of the distortion in the whole is calculated, and the signal indicating the calculated time-series change of the distortion is generated as the reference signal.
  • the present invention in coding or decoding of data indicating in-plane displacement extracted from an image, it is possible to reduce the cost of transmission and storage while maintaining sufficient spatial resolution.
  • the present invention is useful for a system for determining the state of a structure such as a bridge from an image.
  • Data communication system 20
  • Data coding device 21
  • Reference signal generation unit 22
  • Regression coefficient calculation unit 23
  • Data output unit 24
  • Image data acquisition unit 25
  • Overall plane displacement measurement unit 26
  • In-plane displacement measurement unit 27
  • Storage unit 30
  • Data decoding device 31
  • Data acquisition Part 32
  • Data decoding part 33
  • Display device 40
  • Network 50 Imaging device 60
  • Bridge 110
  • Computer 112
  • Main memory 113
  • Storage device 114
  • Input interface 115
  • Display controller 116
  • Data reader / writer 117
  • Communication interface 118
  • Input device 119
  • Display device 120 Recording medium 121 Bus

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

When encoding or decoding data that indicates an in-plane displacement extracted from an image, the present invention reduces the cost required for transmission and accumulation, while maintaining a sufficient spatial resolution. This data encoding device 20 is provided with: a reference signal generation unit 21 which generates a reference signal, the level of which varies in accordance with stress generated on a specific surface of an object, from a whole surface displacement on the specific surface of the object, which is measured from time series images of the object, and an in-plane displacement in the specific surface of the object, which is measured from the whole surface displacement and the time series images; a regression coefficient calculation unit 22 which calculates, by using the reference signal and the in-plane displacement, regression coefficients that indicate an interlocking degree between time series variations at a level of the reference signal and time series variations in the in-plane displacement; and a data output unit 23 which outputs the reference signal and the regression coefficient as data indicating the in-plane displacement.

Description

データ符号化装置、データ復号装置、データ通信システム、データ通信方法、及びコンピュータ読み取り可能な記録媒体Data encoders, data decoders, data communication systems, data communication methods, and computer-readable recording media
 本発明は、対象物の画像から得られた面内変位のデータを符号化又は復号するための、データ符号化装置、データ復号装置、データ通信システム、及びデータ通信方法に関し、更には、これらを実現するためのプログラムを記録したコンピュータ読み取り可能な記録媒体に関する。 The present invention relates to a data encoding device, a data decoding device, a data communication system, and a data communication method for encoding or decoding in-plane displacement data obtained from an image of an object, and further, these. It relates to a computer-readable recording medium on which a program for realizing the program is recorded.
 従来から、橋梁などの構造物の状態を非接触によって判定する技術が提案されている(例えば、特許文献1参照)。このような判定技術によれば、点検員は、構造物に接触することなく、構造物の点検を行うことができる。このような判定技術は、点検員が容易に近づけない場所に接地されている構造物に対して特に有用である。 Conventionally, a technique for determining the state of a structure such as a bridge by non-contact has been proposed (see, for example, Patent Document 1). According to such a determination technique, the inspector can inspect the structure without touching the structure. Such a determination technique is particularly useful for structures that are grounded in places that inspectors cannot easily approach.
 特許文献1は、橋梁等の構造物を被写体とした画像から、判定対象となっている部分の面内変位成分を導出し、導出した面内変位成分に基づいて、構造物の状態を判定する装置を開示している。 Patent Document 1 derives an in-plane displacement component of a portion to be determined from an image of a structure such as a bridge as a subject, and determines the state of the structure based on the derived in-plane displacement component. The device is disclosed.
 具体的には、特許文献1に開示された装置は、まず、可視カメラから、複数の画像を時系列に沿って取得する。そして、特許文献1に開示された装置は、取得した画像のオプティカルフローから、又は画像相関法によって得た変位ベクトル場から、判定対象となる面全体の変位に起因する成分を差し引くことで、面内変位成分を導出する。 Specifically, the device disclosed in Patent Document 1 first acquires a plurality of images from a visible camera in chronological order. Then, the apparatus disclosed in Patent Document 1 subtracts a component due to the displacement of the entire surface to be determined from the optical flow of the acquired image or the displacement vector field obtained by the image correlation method to obtain the surface. Derivation of the internal displacement component.
 次いで、特許文献1に開示された装置は、導出した面内変位成分から、面内変位分布を求め、求めた面内変位分布と、基準となる面内変位分布とを比較する。このとき、ひび割れによる開口などの損傷が発生していると、2つの面内分布に相違点が生じるため、特許文献1に開示された装置は、比較結果から、ひび割れ等の欠陥を検出する。 Next, the apparatus disclosed in Patent Document 1 obtains the in-plane displacement distribution from the derived in-plane displacement component, and compares the obtained in-plane displacement distribution with the reference in-plane displacement distribution. At this time, if damage such as an opening due to cracks occurs, there will be a difference between the two in-plane distributions. Therefore, the apparatus disclosed in Patent Document 1 detects defects such as cracks from the comparison result.
国際公開第2016/152075International Publication No. 2016/152075
 ところで、特許文献1に開示された装置によって導出された面内変位成分のデータは、記録のために、データサーバ等に、ネットワークを介して伝送され、そこで蓄積される。しかしながら、このようにして得られた面内変位成分のデータには、データ量が非常に大きいという特性があり、ネットワークを介した伝送及び蓄積を行うために多大なコストを要するという問題がある。 By the way, the data of the in-plane displacement component derived by the apparatus disclosed in Patent Document 1 is transmitted to a data server or the like via a network for recording, and is accumulated there. However, the data of the in-plane displacement component thus obtained has a characteristic that the amount of data is very large, and there is a problem that a large cost is required for transmission and storage via the network.
 例えば、構造物を撮影した動画像データの条件が、画素数2048×2048、フレームレート80fps、時間10秒間であるとする。この場合、各画素座標についてX方向及びY方向の変位(各32bit浮動小数点)が得られるとすると、面内変位成分のデータのデータ量は、約26GBとなる。 For example, it is assumed that the conditions of the moving image data obtained by photographing the structure are 2048 × 2048 pixels, a frame rate of 80 fps, and a time of 10 seconds. In this case, assuming that displacements in the X and Y directions (32-bit floating point numbers each) are obtained for each pixel coordinate, the amount of in-plane displacement component data is about 26 GB.
 また、従来から、動画像データの圧縮形式としては、MPEGが知られており、このような圧縮形式を用いて、面内変位成分のデータに対して圧縮を行えば、コストを削減できるとも考えられる。しかしながら、MPEGは、時系列の2次元データを効率的に圧縮するための圧縮方式であるのに対して、面内変位成分のデータは、浮動小数点形式の入力信号で構成されている。このため、コストを削減できても、高い圧縮率で圧縮した時に生じる歪みにより、損傷検知による状態の判断の際において精度が大きく低下する可能性がある。 Further, conventionally, MPEG has been known as a compression format for moving image data, and it is considered that the cost can be reduced by compressing the in-plane displacement component data using such a compression format. Be done. However, while MPEG is a compression method for efficiently compressing two-dimensional data in time series, the in-plane displacement component data is composed of a floating-point format input signal. Therefore, even if the cost can be reduced, the distortion generated when compressed at a high compression rate may significantly reduce the accuracy in determining the state by damage detection.
 また、解像度を間引く(縮小する)などの方法を用いて、データのサイズを削減することも可能ではあるが、損傷検知の際の十分な空間分解能を保ちつつ、コスト低減が可能な実用レベルまでデータのサイズを削減することは困難である。 It is also possible to reduce the size of the data by using methods such as thinning out (reducing) the resolution, but to a practical level where cost can be reduced while maintaining sufficient spatial resolution when detecting damage. It is difficult to reduce the size of the data.
 本発明の目的の一例は、上記問題を解消し、画像から抽出した面内変位を示すデータの符号化又は復号において、十分な空間分解能を保ちつつ、伝送及び蓄積にかかるコストの低減を図り得る、データ符号化装置、データ復号装置、データ通信システム、データ通信方法、及びコンピュータ読み取り可能な記録媒体を提供することにある。 An example of an object of the present invention can solve the above problem and reduce the cost of transmission and storage while maintaining sufficient spatial resolution in coding or decoding of data indicating in-plane displacement extracted from an image. , A data encoding device, a data decoding device, a data communication system, a data communication method, and a computer-readable recording medium.
 上記目的を達成するため、本発明の一側面におけるデータ符号化装置は、
 対象物の時系列画像から計測された、前記対象物の特定表面における面全体変位と、前記面全体変位及び前記時系列画像から計測された、前記対象物の特定表面における面内変位とから、前記対象物の特定表面に発生する応力に合わせてレベルが変化する、参照信号を生成する、参照信号生成部と、
 前記参照信号と前記面内変位とを用いて、前記参照信号のレベルの時系列変化と前記面内変位の時系列変化との連動度を示す、回帰係数を算出する、回帰係数算出部と、
 前記参照信号及び前記回帰係数を、前記面内変位を示すデータとして出力する、データ出力部と、
を備えている、ことを特徴とする。
In order to achieve the above object, the data encoding device in one aspect of the present invention is
From the total surface displacement of the object on the specific surface measured from the time-series image of the object, and the in-plane displacement of the object on the specific surface measured from the total surface displacement and the time-series image. A reference signal generator that generates a reference signal and whose level changes according to the stress generated on the specific surface of the object.
A regression coefficient calculation unit that calculates a regression coefficient that indicates the degree of interlocking between the time-series change in the level of the reference signal and the time-series change in the in-plane displacement using the reference signal and the in-plane displacement.
A data output unit that outputs the reference signal and the regression coefficient as data indicating the in-plane displacement.
It is characterized by having.
 上記目的を達成するため、本発明の一側面におけるデータ復号装置は、
対象物の特定表面に発生する応力に合わせてレベルが変化する参照信号、及び前記参照信号のレベルの時系列変化と前記対象物の特定表面における面内変位の時系列変化との連動度を示す回帰係数、を取得する、データ取得部と、
 取得された、前記参照信号及び前記回帰係数を用いて、前記対象物の特定表面における面内変位を復元する、データ復号部と、
を備えている、
ことを特徴とする。
In order to achieve the above object, the data decoding device in one aspect of the present invention is
It shows the degree of interlocking between the reference signal whose level changes according to the stress generated on the specific surface of the object and the time-series change of the level of the reference signal and the time-series change of the in-plane displacement on the specific surface of the object. Regression coefficient, data acquisition unit and
A data decoding unit that restores the in-plane displacement of the object on a specific surface by using the acquired reference signal and the regression coefficient.
Is equipped with
It is characterized by that.
 上記目的を達成するため、本発明の一側面におけるデータ通信システムは、データ符号化装置とデータ復号装置とを備え、
 前記データ符号化装置は、
対象物の時系列画像から計測された、前記対象物の特定表面における面全体変位と、前記面全体変位及び前記時系列画像から計測された、前記対象物の特定表面における面内変位とから、前記対象物の特定表面に発生する応力に合わせてレベルが変化する、参照信号を生成する、参照信号生成部と、
前記参照信号と前記面内変位とを用いて、前記参照信号のレベルの時系列変化と前記面内変位の時系列変化との連動度を示す、回帰係数を算出する、回帰係数算出部と、
前記参照信号及び前記回帰係数を、前記面内変位を示すデータとして出力する、データ出力部と、を備え、
 前記データ復号装置は、
対象物の特定表面に発生する応力に合わせてレベルが変化する参照信号、及び前記参照信号のレベルの時系列変化と前記対象物の特定表面における面内変位の時系列変化との連動度を示す回帰係数、を取得する、データ取得部と、
取得された、前記参照信号及び前記回帰係数を用いて、前記対象物の特定表面における面内変位を復元する、データ復号部と、を備えている、
ことを特徴とする。
In order to achieve the above object, the data communication system in one aspect of the present invention includes a data encoding device and a data decoding device.
The data encoding device is
From the total surface displacement of the object on the specific surface measured from the time-series image of the object, and the in-plane displacement of the object on the specific surface measured from the total surface displacement and the time-series image. A reference signal generator that generates a reference signal and whose level changes according to the stress generated on the specific surface of the object.
A regression coefficient calculation unit that calculates a regression coefficient that indicates the degree of interlocking between the time-series change in the level of the reference signal and the time-series change in the in-plane displacement using the reference signal and the in-plane displacement.
A data output unit that outputs the reference signal and the regression coefficient as data indicating the in-plane displacement is provided.
The data decoding device
It shows the degree of interlocking between the reference signal whose level changes according to the stress generated on the specific surface of the object and the time-series change of the level of the reference signal and the time-series change of the in-plane displacement on the specific surface of the object. Regression coefficient, data acquisition unit and
It includes a data decoding unit that restores the in-plane displacement of the object on a specific surface by using the acquired reference signal and the regression coefficient.
It is characterized by that.
 また、上記目的を達成するため、本発明の一側面におけるデータ通信方法は、データ符号化装置とデータ復号装置と用いたデータ通信方法であって、
(a)前記データ符号化装置によって、対象物の時系列画像から計測された、前記対象物の特定表面における面全体変位と、前記面全体変位及び前記時系列画像から計測された、前記対象物の特定表面における面内変位とから、前記対象物の特定表面に発生する応力に合わせてレベルが変化する、参照信号を生成する、ステップと、
(b)前記データ符号化装置によって、前記参照信号と前記面内変位とを用いて、前記参照信号のレベルの時系列変化と前記面内変位の時系列変化との連動度を示す、回帰係数を算出する、ステップと、
(c)前記データ符号化装置によって、前記参照信号及び前記回帰係数を、前記面内変位を示すデータとして出力する、ステップと、
(d)前記データ復号装置によって、対象物の特定表面に発生する応力に合わせてレベルが変化する参照信号、及び前記参照信号のレベルの時系列変化と前記対象物の特定表面における面内変位の時系列変化との連動度を示す回帰係数、を取得する、ステップと、
(e)前記データ復号装置によって、取得された、前記参照信号及び前記回帰係数を用いて、前記対象物の特定表面における面内変位を復元する、ステップと、
を有する、ことを特徴とする。
Further, in order to achieve the above object, the data communication method in one aspect of the present invention is a data communication method using a data coding device and a data decoding device.
(A) The entire surface displacement of the object on a specific surface measured from the time-series image of the object by the data encoding device, and the entire surface displacement and the object measured from the time-series image. From the in-plane displacement on the specific surface of the object, the level changes according to the stress generated on the specific surface of the object, the step of generating a reference signal, and
(B) Regression coefficient indicating the degree of interlocking between the time-series change in the level of the reference signal and the time-series change in the in-plane displacement by the data coding device using the reference signal and the in-plane displacement. To calculate, steps and
(C) A step in which the reference signal and the regression coefficient are output as data indicating the in-plane displacement by the data encoding device.
(D) A reference signal whose level changes according to the stress generated on the specific surface of the object by the data decoding device, and a time-series change in the level of the reference signal and an in-plane displacement of the object on the specific surface. To get the regression coefficient, which indicates the degree of interlocking with the time series change, the step and
(E) A step of restoring the in-plane displacement of the object on a specific surface using the reference signal and the regression coefficient acquired by the data decoding device.
It is characterized by having.
 更に、上記目的を達成するため、本発明の一側面における第1のコンピュータ読み取り可能な記録媒体は、
コンピュータに、
(a)対象物の時系列画像から計測された、前記対象物の特定表面における面全体変位と、前記面全体変位及び前記時系列画像から計測された、前記対象物の特定表面における面内変位とから、前記対象物の特定表面に発生する応力に合わせてレベルが変化する、参照信号を生成する、ステップと、
(b)前記参照信号と前記面内変位とを用いて、前記参照信号のレベルの時系列変化と前記面内変位の時系列変化との連動度を示す、回帰係数を算出する、ステップと、
(c)前記参照信号及び前記回帰係数を、前記面内変位を示すデータとして出力する、ステップと、
を実行させる命令を含む、プログラムを記録していることを特徴とする。
Further, in order to achieve the above object, the first computer-readable recording medium in one aspect of the present invention is
On the computer
(A) Overall surface displacement of the object on a specific surface measured from a time-series image of the object, and in-plane displacement of the object on a specific surface measured from the entire surface displacement and the time-series image. From, to the step of generating a reference signal, the level changes according to the stress generated on the specific surface of the object.
(B) Using the reference signal and the in-plane displacement, a step of calculating a regression coefficient indicating the degree of interlocking between the time-series change in the level of the reference signal and the time-series change in the in-plane displacement, and
(C) A step of outputting the reference signal and the regression coefficient as data indicating the in-plane displacement.
It is characterized by recording a program including an instruction to execute.
 更に、上記目的を達成するため、本発明の一側面における第2のコンピュータ読み取り可能な記録媒体は、
コンピュータに、
(a)対象物の特定表面に発生する応力に合わせてレベルが変化する参照信号、及び前記参照信号のレベルの時系列変化と前記対象物の特定表面における面内変位の時系列変化との連動度を示す回帰係数、を取得する、ステップと、
(b)取得された、前記参照信号及び前記回帰係数を用いて、前記対象物の特定表面における面内変位を復元する、ステップと、
を実行させる命令を含む、プログラムを記録していることを特徴とする。
Further, in order to achieve the above object, the second computer-readable recording medium in one aspect of the present invention is
On the computer
(A) A reference signal whose level changes according to the stress generated on the specific surface of the object, and a time-series change in the level of the reference signal and a time-series change in the in-plane displacement on the specific surface of the object. To get the regression coefficient, which indicates the degree, step and
(B) A step of restoring the in-plane displacement of the object on a specific surface using the acquired reference signal and the regression coefficient.
It is characterized by recording a program including an instruction to execute.
 以上のように、本発明によれば、画像から抽出した面内変位を示すデータの符号化又は復号において、十分な空間分解能を保ちつつ、伝送及び蓄積にかかるコストの低減を図ることができる。 As described above, according to the present invention, in coding or decoding of data indicating in-plane displacement extracted from an image, it is possible to reduce the cost of transmission and storage while maintaining sufficient spatial resolution.
図1は、本発明の実施の形態におけるデータ通信システムの構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of a data communication system according to an embodiment of the present invention. 図2は、本発明の実施の形態におけるデータ通信システムの構成をより具体的に示すブロック図である。FIG. 2 is a block diagram showing more specifically the configuration of the data communication system according to the embodiment of the present invention. 図3は、対象物の計測対象領域を撮影した際に、ある点における撮像装置の撮像面上で観測される変位に含まれる成分を説明した図である。FIG. 3 is a diagram illustrating a component included in the displacement observed on the image pickup surface of the image pickup apparatus at a certain point when the measurement target area of the object is photographed. 図4は、計測対象領域を撮影した画像上の特定領域で観察される変位(δxij,δyij)の2次元空間分布の様子を模擬的に示した図である。FIG. 4 is a diagram simulating the state of the two-dimensional spatial distribution of the displacements (δx ij , δy ij ) observed in a specific area on the image of the measurement target area. 図5(a)~図5(c)は、それぞれ、本発明の実施の形態において回帰係数算出部によって行われる処理を説明するための図である。5 (a) to 5 (c) are diagrams for explaining the processing performed by the regression coefficient calculation unit in the embodiment of the present invention, respectively. 図6は、本発明の実施の形態におけるデータ符号化装置の動作を示すフロー図である。FIG. 6 is a flow chart showing the operation of the data encoding device according to the embodiment of the present invention. 図7は、本発明の実施の形態におけるデータ復号装置の動作を示すフロー図である。FIG. 7 is a flow chart showing the operation of the data decoding device according to the embodiment of the present invention. 図8は、本発明の実施の形態におけるデータ符号化装置又はデータ復号装置を実現するコンピュータの一例を示すブロック図である。FIG. 8 is a block diagram showing an example of a computer that realizes the data encoding device or the data decoding device according to the embodiment of the present invention.
(実施の形態)
 以下、本発明の実施の形態における、データ符号化装置、データ復号装置、データ通信システム、データ通信方法、及びプログラムについて、図1~図8を参照しながら説明する。
(Embodiment)
Hereinafter, the data encoding device, the data decoding device, the data communication system, the data communication method, and the program according to the embodiment of the present invention will be described with reference to FIGS. 1 to 8.
[システム構成]
 最初に、図1を用いて、本実施の形態におけるデータ符号化装置、データ復号装置、及びデータ通信システムの構成について説明する。図1は、本発明の実施の形態におけるデータ通信システムの構成を示すブロック図である。
[System configuration]
First, the configuration of the data coding device, the data decoding device, and the data communication system in the present embodiment will be described with reference to FIG. FIG. 1 is a block diagram showing a configuration of a data communication system according to an embodiment of the present invention.
 図1に示す本実施の形態におけるデータ通信システム10は、対象物の画像から得られた面内変位のデータのデータ通信を行うためのシステムである。図1に示すように、データ通信システム10は、データ符号化装置20と、データ復号装置30とを備えている。また、データ符号化装置20とデータ復号装置30とは、インターネット等のネットワーク40を介して接続されている。 The data communication system 10 in the present embodiment shown in FIG. 1 is a system for data communication of in-plane displacement data obtained from an image of an object. As shown in FIG. 1, the data communication system 10 includes a data coding device 20 and a data decoding device 30. Further, the data coding device 20 and the data decoding device 30 are connected to each other via a network 40 such as the Internet.
 また、図1に示すデータ符号化装置20は、対象物の画像から得られた面内変位のデータを符号化する装置である。図1に示すように、データ符号化装置20は、参照信号生成部21と、回帰係数算出部22と、データ出力部23と、を備えている。 Further, the data coding device 20 shown in FIG. 1 is a device that encodes in-plane displacement data obtained from an image of an object. As shown in FIG. 1, the data coding device 20 includes a reference signal generation unit 21, a regression coefficient calculation unit 22, and a data output unit 23.
 このうち、参照信号生成部21は、面全体変位と面内変位とから、対象物の特定表面に発生する応力に合わせてレベルが変化する、参照信号を生成する。 Of these, the reference signal generation unit 21 generates a reference signal whose level changes according to the stress generated on the specific surface of the object from the displacement of the entire surface and the displacement in the surface.
 また、回帰係数算出部22は、参照信号と面内変位とを用いて、参照信号のレベルの時系列変化と面内変位の時系列変化との連動度を示す、回帰係数を算出する。データ出力部23は、参照信号及び回帰係数を、面内変位を示すデータとして、データ復号装置30に出力する。 Further, the regression coefficient calculation unit 22 calculates the regression coefficient, which indicates the degree of interlocking between the time-series change in the level of the reference signal and the time-series change in the in-plane displacement, using the reference signal and the in-plane displacement. The data output unit 23 outputs the reference signal and the regression coefficient to the data decoding device 30 as data indicating the in-plane displacement.
 また、図2に示すデータ復号装置30は、データ符号化装置20から出力された、面内変位を示すデータを復号する装置である。図2に示すデータ復号装置30は、データ取得部31と、データ復号部32とを備えている。 Further, the data decoding device 30 shown in FIG. 2 is a device that decodes the data indicating the in-plane displacement output from the data coding device 20. The data decoding device 30 shown in FIG. 2 includes a data acquisition unit 31 and a data decoding unit 32.
 データ取得部31は、データ符号化装置20によって出力された、参照信号及び回帰係数を取得する。データ復号部32は、参照信号及び回帰係数を用いて、対象物の特定表面における面内変位を復元する。 The data acquisition unit 31 acquires the reference signal and the regression coefficient output by the data encoding device 20. The data decoding unit 32 restores the in-plane displacement on the specific surface of the object by using the reference signal and the regression coefficient.
 このように、本実施の形態では、面内変位を示すデータは、それ自体のサイズを削減するのではなく、参照信号と回帰係数とに変換されてから伝送される。従って、本実施の形態によれば、画像から抽出した面内変位を示すデータの符号化又は復号において、十分な空間分解能を保ちつつ、伝送及び蓄積にかかるコストの低減を図ることが可能となる。 As described above, in the present embodiment, the data indicating the in-plane displacement is transmitted after being converted into a reference signal and a regression coefficient, instead of reducing the size of itself. Therefore, according to the present embodiment, it is possible to reduce the cost of transmission and storage while maintaining sufficient spatial resolution in coding or decoding of data indicating in-plane displacement extracted from an image. ..
 次に、図2~図5を用いて、本実施の形態における、データ符号化装置20、データ復号装置30、及びデータ通信システム10の構成及び機能についてより詳細に説明する。図2は、本発明の実施の形態におけるデータ通信システムの構成をより具体的に示すブロック図である。 Next, the configurations and functions of the data encoding device 20, the data decoding device 30, and the data communication system 10 in the present embodiment will be described in more detail with reference to FIGS. 2 to 5. FIG. 2 is a block diagram showing more specifically the configuration of the data communication system according to the embodiment of the present invention.
 図2に示すように、本実施の形態では、面内変位が計測される対象物は、橋梁60であり、橋梁60を通過する車両61による加重によって、橋梁60が撓んだときに、橋梁60に設定された計測対象領域における面内変位が計測される。計測対象領域としては、橋梁の桁、床版等が挙げられる。 As shown in FIG. 2, in the present embodiment, the object whose in-plane displacement is measured is the bridge 60, and when the bridge 60 is bent by the load of the vehicle 61 passing through the bridge 60, the bridge The in-plane displacement in the measurement target area set to 60 is measured. Examples of the measurement target area include bridge girders and plate slabs.
 また、図2に示すように、データ符号化装置20には、撮像装置50が接続されている。撮像装置50は、動画を撮影可能なカメラであり、時系列画像をフレーム毎に出力する。具体的には、撮像装置50は、設定間隔をおいて、撮影を行い、撮影した画像の画像データを連続的に出力する。本実施の形態では、図2に示すように、撮像装置50は、橋梁60の計測対象領域である床版(底面)を撮影できるように、配置されている。 Further, as shown in FIG. 2, an imaging device 50 is connected to the data coding device 20. The image pickup device 50 is a camera capable of shooting a moving image, and outputs a time-series image for each frame. Specifically, the image pickup apparatus 50 takes pictures at set intervals and continuously outputs image data of the taken images. In the present embodiment, as shown in FIG. 2, the image pickup apparatus 50 is arranged so that the floor slab (bottom surface), which is the measurement target area of the bridge 60, can be photographed.
 更に、図2に示すように、本実施の形態では、データ符号化装置20は、上述した、参照信号生成部21、回帰係数算出部22、及びデータ出力部23に加えて、画像データ取得部24と、面全体変位計測部25と、面内変位計測部26と、記憶部27とを備えている。 Further, as shown in FIG. 2, in the present embodiment, the data coding device 20 is an image data acquisition unit in addition to the reference signal generation unit 21, the regression coefficient calculation unit 22, and the data output unit 23 described above. 24, an overall surface displacement measuring unit 25, an in-plane displacement measuring unit 26, and a storage unit 27 are provided.
 画像データ取得部24は、撮像装置50から画像データが出力されると、出力された画像データを取得し、取得した画像データを、面全体変位計測部25と、面内変位計測部26とに出力する。 When the image data is output from the imaging device 50, the image data acquisition unit 24 acquires the output image data, and transfers the acquired image data to the entire surface displacement measurement unit 25 and the in-plane displacement measurement unit 26. Output.
 面全体変位計測部25は、対象物の時系列画像から、対象物の特定表面における面全体変位を計測する。本実施の形態では、面全体変位計測部25は、撮像装置50が出力する時系列画像を取得し、任意の時刻に撮像された画像を基準画像とし、それ以外を処理画像とする。そして、面全体変位計測部25は、基準画像内での特定表面上の計測対象領域に対応する領域(以下「特定領域」と表記する)の各点について、処理画像毎に、処理画像内で対応する位置をそれぞれ探索して、変位を算出する。このようにして算出された処理画像毎の特定領域に対する変位が、変位分布となる。 The entire surface displacement measuring unit 25 measures the displacement of the entire surface on the specific surface of the object from the time-series image of the object. In the present embodiment, the entire surface displacement measuring unit 25 acquires a time-series image output by the imaging device 50, uses an image captured at an arbitrary time as a reference image, and uses the other images as processed images. Then, the entire surface displacement measuring unit 25 describes each point of the region corresponding to the measurement target region on the specific surface in the reference image (hereinafter referred to as “specific region”) in the processed image for each processed image. The displacement is calculated by searching for each corresponding position. The displacement with respect to the specific region for each processed image calculated in this way is the displacement distribution.
 具体的には、面全体変位計測部25は、特定領域内のある箇所(座標)に最も類似している処理画像における箇所(座標)を探索して、特定した箇所(座標)の変位を算出する。類似している箇所の特定手法としては、例えば、ある箇所(座標)、およびその周辺の座標の輝度値を用いて、SAD(Sum of Squared Difference)、SSD(Sum of Absolute Difference)、NCC(Normalized Cross-Correlation)、ZNCC(Zero-means Normalized Cross-Correlation)等の類似度相関関数を用いて、最も相関が高い位置(座標)を探索する手法が挙げられる。 Specifically, the entire surface displacement measuring unit 25 searches for a location (coordinate) in the processed image that is most similar to a location (coordinate) in the specific region, and calculates the displacement of the specified location (coordinate). To do. As a method for identifying similar parts, for example, SAD (Sum of Squared Difference), SSD (Sum of Absolute Difference), and NCC (Normalized) are used by using the brightness values of a certain place (coordinates) and the coordinates around it. A method of searching for the position (coordinates) having the highest correlation by using a similarity correlation function such as Cross-Correlation) or ZNCC (Zero-means Normalized Cross-Correlation) can be mentioned.
 このような算出処理を、特定領域内の各座標に対して繰り返し実施することで、その処理画像における特定領域に対する変位の分布を得ることができる。また同様の処理を、処理画像毎に行うことで、処理画像毎に特定領域に対する変位分布を得ることができる。ここで、計測対象領域の特定の座標を(i,j))とし、算出される変位を(δxij, δyij)と表記することとする。 By repeatedly performing such a calculation process for each coordinate in the specific area, the distribution of displacement with respect to the specific area in the processed image can be obtained. Further, by performing the same processing for each processed image, it is possible to obtain a displacement distribution with respect to a specific region for each processed image. Here, the specific coordinates of the measurement target area are defined as (i, j)), and the calculated displacement is expressed as (δ x ij , δ y ij ).
 続いて、面全体変位計測部25は、算出した変位(δxij,δyij)と、撮影情報とから、計測対象領域の面方向における移動量(Δx、Δy)と法線方向における移動量(Δz)とを算出する。また、面全体変位計測部25は、算出した変位(δxij,δyij)と、移動量(Δx、Δy、Δz)が、面全体変位となる。また、面全体変位計測部25は、算出した変位(δxij,δyij)と、移動量(Δx、Δy、Δz)とを、面全体変位情報として、記憶部27に格納する。撮影情報としては、撮像装置50における固体撮像素子の1画素のサイズ、レンズの焦点距離、撮像装置50から計測対象領域までの撮像距離、撮影フレームレート、等が挙げられる。 Subsequently, the entire surface displacement measuring unit 25 uses the calculated displacement (δx ij , δy ij ) and the imaging information to determine the amount of movement (Δx, Δy) in the surface direction and the amount of movement in the normal direction (Δx, Δy) of the measurement target area. Δz) and is calculated. Further, in the entire surface displacement measuring unit 25, the calculated displacement (δx ij , δy ij ) and the amount of movement (Δx, Δy, Δz) are the total surface displacement. Further, the entire surface displacement measuring unit 25 stores the calculated displacement (δx ij , δy ij ) and the movement amount (Δx, Δy, Δz) in the storage unit 27 as the entire surface displacement information. Examples of the photographing information include the size of one pixel of the solid-state image sensor in the image pickup device 50, the focal length of the lens, the image pickup distance from the image pickup device 50 to the measurement target area, the shooting frame rate, and the like.
 面内変位計測部26は、面全体変位計測部25によって計算された移動量(Δx、Δy、Δz)と時系列画像とから、橋梁60の特定表面における面内変位を計測する。ここで、面内変位については、(δδxij ,δδyij)と表記する。 The in-plane displacement measuring unit 26 measures the in-plane displacement of the bridge 60 on a specific surface from the movement amount (Δx, Δy, Δz) calculated by the overall surface displacement measuring unit 25 and the time series image. Here, the in-plane displacement is expressed as (δδx ij , δδy ij ).
 続いて、図3及び図4を用いて、面全体変位計測部25及び面内変位計測部26における処理について具体的に説明する。図3は、対象物の計測対象領域を撮影した際に、ある点における撮像装置の撮像面上で観測される変位に含まれる成分を説明した図である。また、図3では、対象物である橋梁60が、通過する車両61によって、負荷を受け、その結果、計測対象領域が3次元方向に移動量(Δx、Δy、Δz)分だけ移動した状態を示している。 Subsequently, with reference to FIGS. 3 and 4, the processing in the entire surface displacement measuring unit 25 and the in-plane displacement measuring unit 26 will be specifically described. FIG. 3 is a diagram illustrating a component included in the displacement observed on the image pickup surface of the image pickup apparatus at a certain point when the measurement target area of the object is photographed. Further, in FIG. 3, the bridge 60, which is an object, is loaded by the passing vehicle 61, and as a result, the measurement target area is moved by the amount of movement (Δx, Δy, Δz) in the three-dimensional direction. Shown.
 ここで、撮像装置50の撮像面の中心、つまりレンズの光軸と撮像面との交点となる撮像中心にあたる点を原点とした座標系を考える。この座標系において、撮像装置50の撮像面上の座標(i, j)の点Aにおいて観測される変位(δxij,δyij)について考える。なお、撮像装置50の撮像面上の座標(i, j)は、撮影された画像上の座標に置き換えることもできる。 Here, consider a coordinate system having the center of the imaging surface of the imaging device 50, that is, the point corresponding to the imaging center at the intersection of the optical axis of the lens and the imaging surface as the origin. In this coordinate system, consider the displacements (δ x ij , δ y ij ) observed at the point A of the coordinates (i, j) on the image pickup surface of the image pickup apparatus 50. The coordinates (i, j) on the imaging surface of the imaging device 50 can be replaced with the coordinates on the captured image.
 図3の状態では、橋梁60の計測対象領域には、画面上の水平方向及び垂直方向(X,Y方向)と、法線方向(Z方向)において、移動量(Δx、Δy、Δz)が発生している。計測対象領域は、画面内の水平方向及び垂直方向(X,Y方向)に移動した分(Δx、Δy)だけ、撮像装置50の撮像面に対して平行に移動する。また、法線方向(Z方向)に移動した分(Δz)だけ撮像装置50に近づく。そのため、撮像距離は移動量Δzだけ短くなる。 In the state of FIG. 3, the measurement target area of the bridge 60 has a movement amount (Δx, Δy, Δz) in the horizontal and vertical directions (X, Y directions) and the normal direction (Z direction) on the screen. It has occurred. The measurement target area moves parallel to the image pickup surface of the image pickup apparatus 50 by the amount (Δx, Δy) moved in the horizontal direction and the vertical direction (X, Y direction) in the screen. Further, the image pickup device 50 is approached by the amount (Δz) of the movement in the normal direction (Z direction). Therefore, the imaging distance is shortened by the movement amount Δz.
 これにより、図3に示すように、撮像装置50の撮像面に対して水平方向(X方向)における計測対象領域の移動量Δxによって生じる変位δxとは別に、移動量Δzによる変位δzxijが生じる。同様に、撮像装置50の撮像面には、画面に対して垂直方向(Y方向)における撮像装置50の移動量Δyによって生じる変位δyとは別に、移動量Δzによる変位δzyijも生じる。 As a result, as shown in FIG. 3, a displacement δzx ij due to the movement amount Δz is generated in addition to the displacement δx caused by the movement amount Δx of the measurement target region in the horizontal direction (X direction) with respect to the imaging surface of the imaging device 50. .. Similarly, on the imaging surface of the imaging device 50, in addition to the displacement δy caused by the moving amount Δy of the imaging device 50 in the direction perpendicular to the screen (Y direction), the displacement δzy ij due to the moving amount Δz also occurs.
 また、橋梁60が負荷を受けたことによって計測対象領域の表面が変形した場合(ΔΔXij,ΔΔYij)、それに伴って撮像装置50の撮像面には、面内変位(δδxij,δδyij)も重ね合わされる。 Further, when the surface of the measurement target area is deformed due to the load on the bridge 60 (ΔΔX ij , ΔΔY ij ), the in-plane displacement (δδx ij , δδy ij ) is changed on the imaging surface of the imaging device 50 accordingly. Are also superimposed.
 ここで、計測対象領域の表面の変形に伴う面内変位(δδxij ,δδyij)は、例えば、ひび割れのような欠陥がない健全な領域では、表面の変位は連続的に変化するのに対し、ひび割れをまたぐ領域では表面の変位は連続的に変化せずに不連続に変化する。このように、欠陥がない健全な領域と何らかの欠陥がある領域とでは、表面の変位の分布が異なるという特徴を示す。 Here, the in-plane displacement (δδ x ij , δδy ij ) due to the surface deformation of the measurement target region is such that the surface displacement changes continuously in a healthy region without defects such as cracks. In the region that straddles the cracks, the surface displacement does not change continuously but changes discontinuously. As described above, the surface displacement distribution is different between the healthy region without defects and the region with some defects.
 そして、計測対象領域では、発生する全ての変位が足し合わされて、合成ベクトルとなって観察される。すなわち、点A(i, j)で観測される変位(δxij,δyij)は、後述の図4に示すように、以下の数1及び数2によって表すことができる。 Then, in the measurement target region, all the generated displacements are added up and observed as a composite vector. That is, the displacements (δ x ij , δ y ij ) observed at the point A (i, j) can be represented by the following equations 1 and 2 as shown in FIG. 4 described later.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで、レンズの主点から計測対象領域までの撮像距離をL、撮像装置50のレンズ焦点距離をf、撮像中心からの座標を(i,j)とすると、対象物60の面方向の移動(Δx, Δy)に伴う変位(δx, δy)、法線方向の移動(Δz)に伴う変位(δzxij,δzyij)は、それぞれ、下記の数3、数4で表される。 Here, assuming that the imaging distance from the principal point of the lens to the measurement target region is L, the lens focal length of the imaging device 50 is f, and the coordinates from the imaging center are (i, j), the movement of the object 60 in the plane direction. The displacement (δx, δy) associated with (Δx, Δy) and the displacement (δzx ij , δzy ij ) associated with the movement in the normal direction (Δz) are represented by the following equations 3 and 4, respectively.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 計測対象領域がすべて同じ3次元の動きをしていると仮定すると、上記の数3及び数4で示される面方向の移動(Δx, Δy)に伴う変位(δx, δy)は、点Aの座標によらず一定であることがわかる。また、法線方向の移動(Δz)に伴う変位(δzxij ,δzyij)は、点Aの座標が原点から離れるほど大きくなることがわかる。一方、計測対象領域の面内変位(δδxij ,δδyij)は、点Aの座標の座標によらず、表面のひび割れなどの欠陥の位置などに応じて連続・不連続な変位の分布を示す。 Assuming that all the measurement target regions have the same three-dimensional movement, the displacement (δx, δy) accompanying the movement (Δx, Δy) in the plane direction indicated by the above equations 3 and 4 is the displacement (δx, δy) at the point A. It can be seen that it is constant regardless of the coordinates. It can also be seen that the displacement (δz x ij , δzy ij ) accompanying the movement in the normal direction (Δz) increases as the coordinates of the point A move away from the origin. On the other hand, the in-plane displacement (δδ x ij , δδy ij ) of the measurement target area shows the distribution of continuous and discontinuous displacement according to the position of defects such as cracks on the surface, regardless of the coordinates of the coordinates of point A. ..
 図4は、計測対象領域を撮影した画像上の特定領域で観察される変位(δxij,δyij)の2次元空間分布(以下、変位分布とする)の様子を模擬的に示した図である。図4に示すように面全体変位計測部25が算出する特定領域の各座標の変位(δxij,δyij)を変位ベクトルとして表記する。この場合、変位ベクトルは、画面全体で一様な方向及び大きさで観察される面方向の移動(Δx, Δy)に伴う変位(δx, δy)と、画面の撮像中心から放射状のベクトル群として観察される法線方向の移動(Δz)に伴う変位(δzxij ,δzyij)と、計測対象領域の表面の変形に伴う面内変位(δδxij ,δδyij)との合成成分として表される。 FIG. 4 is a diagram simulating the state of the two-dimensional spatial distribution (hereinafter referred to as the displacement distribution) of the displacements (δx ij , δy ij ) observed in a specific area on the image of the measurement target area. is there. As shown in FIG. 4, the displacement (δx ij , δy ij ) of each coordinate of the specific region calculated by the entire surface displacement measuring unit 25 is expressed as a displacement vector. In this case, the displacement vector is the displacement (δx, δy) accompanying the movement (Δx, Δy) in the plane direction observed in a uniform direction and magnitude over the entire screen, and the vector group radial from the imaging center of the screen. displacement caused by the movement in the normal direction (Delta] z) observed (δzx ij, δzy ij) denoted the deformation plane displacement due to the surface of the measurement target region (δδx ij, δδy ij) as a synthesis component for the ..
 続いて、面方向の移動(Δx,Δy)に伴う変位 (δx, δy)を算出する方法について説明する。図4に示すように、面方向の移動(Δx, Δy)に伴う変位(δx, δy)は、基本的には画面全体で一様な方向及び大きさで観察される。そこで、面全体変位計測部25によって、撮像中心を中心とした特定領域の各座標において算出された変位(δxij,δyij)に、変位の方向によってプラスマイナスを付加し、これを変位ベクトルとする。そして、対象となる各座標における変位ベクトルを全て足し合わせ、平均を算出することにより、面方向の移動(Δx, Δy)に伴う変位(δx,δy)が算出される。 Next, a method of calculating the displacement (δx, δy) accompanying the movement in the plane direction (Δx, Δy) will be described. As shown in FIG. 4, the displacement (δx, δy) accompanying the movement in the plane direction (Δx, Δy) is basically observed in a uniform direction and size over the entire screen. Therefore, the displacement (δ x ij , δ y ij ) calculated by the entire surface displacement measuring unit 25 at each coordinate of the specific region centered on the imaging center is added with plus or minus depending on the direction of displacement, and this is used as the displacement vector. To do. Then, by adding all the displacement vectors at the target coordinates and calculating the average, the displacement (δx, δy) accompanying the movement in the plane direction (Δx, Δy) is calculated.
 次に、法線方向の移動(Δz)に伴う変位ベクトル(δzxij ,δzyij)を算出する方法について述べる。まず、法線方向の移動(Δz)に伴う変位ベクトル(δzxij ,δzyij)のみが発生する状態を考える。そのベクトルの大きさR(i,j)は、特定領域の移動量Δzが特定領域内で一定であれば、下記の数5に示すように、撮像中心からの距離に比例した値となる。また、下記の数6に示すように比例定数をkと置けば、数5は、数7のようにも表される。 Next, the method of calculating the displacement vector (δz x ij , δzy ij ) accompanying the movement in the normal direction (Δz) will be described. First, consider a state in which only the displacement vectors (δz x ij , δzy ij ) that accompany the movement in the normal direction (Δz) occur. If the movement amount Δz of the specific region is constant within the specific region, the magnitude R (i, j) of the vector becomes a value proportional to the distance from the imaging center as shown in Equation 5 below. Further, if the proportionality constant is set as k as shown in the following equation 6, the equation 5 is also expressed as the equation 7.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 一方、実際に、面全体変位計測部25によって最初に算出される変位(δxij,δyij)は、図4に示すように、合成ベクトル(図4:超太実線の矢印)で構成されている。そして、この合成ベクトル(δxij,δyij)は、図4からもわかるとおり、法線方向の移動(Δz)に伴う変位ベクトル(δzxij ,δzyij)(図3、図4:中実線の矢印)と、面内方向の移動(Δx, Δy)に伴う変位ベクトル(δx, δy)(図3、図4:太実線の矢印)と、計測対象領域の表面の変形及び変位に伴う面内変位(δδxij ,δδyij)(図3、図4:細実線の矢印)とを含んでいる。 On the other hand, the displacements (δ x ij , δ y ij ) first calculated by the entire surface displacement measuring unit 25 are actually composed of composite vectors (Fig. 4: ultra-thick solid line arrows) as shown in FIG. There is. Then, this combined vector (δx ij, δy ij), as can be seen from Figure 4, the displacement vector associated with movement in the normal direction (Δz) (δzx ij, δzy ij) ( 3, 4: Medium solid line (Arrow), displacement vector (δx, δy) due to in-plane movement (Δx, Δy) (Fig. 3, Fig. 4: thick solid line arrow), and in-plane due to surface deformation and displacement of the measurement target area. The displacement (δδ x ij , δδy ij ) (Fig. 3, Fig. 4: Fine solid line arrow) is included.
 従って、この合成ベクトル(δxij,δyij)から、面内方向の移動(Δx, Δy)に伴う変位ベクトル(δx, δy)を減算して得られたベクトルは、法線方向の移動(Δz)に伴う変位ベクトル(δzxij ,δzyij)と、面内変位(δδxij ,δδyij)との合成ベクトルに相当する。 Therefore, the vector obtained by subtracting the displacement vector (δx, δy) accompanying the in-plane movement (Δx, Δy) from this composite vector (δx ij , δy ij ) is the movement in the normal direction (Δz). ) Corresponds to the composite vector of the displacement vector (δ z x ij , δ zy ij ) and the in-plane displacement (δ δ x ij , δ δ y ij ).
 よって、ある座標(i,j)における法線方向の移動(Δz)に伴う変位ベクトル(δzxij ,δzyijj)と面内変位(δδxij ,δδyij)との合成ベクトルをRmes(i ,j)とすると、これらは下記の数8で表すことができる。 Therefore, the composite vector of the displacement vector (δz x ij , δzy ijj ) and the in-plane displacement (δδx ij , δδy ij ) accompanying the movement (Δz) in the normal direction at a certain coordinate (i, j) is R mes (i, i, Then, if j), these can be represented by the following equation 8.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 ところで、面内変位(δδxij ,δδyij)は、面内方向の移動(Δx, Δy)に伴う変位ベクトル(δx, δy)及び法線方向の移動(Δz)に伴う変位ベクトル(δzxij ,δzyij)に比べると、十分に小さいとみなせる。そのため、支配的な成分である面内方向の移動(Δx, Δy)に伴う変位ベクトル(δx, δy)及び法線方向の移動(Δz)に伴う変位ベクトル(δzxij ,δzyij)に着目すると、上記の数8は、下記の数9のように表すことができる。
Figure JPOXMLDOC01-appb-M000009
Incidentally, the in-plane displacement (δδx ij, δδy ij), the displacement vector associated with movement of the plane direction (Δx, Δy) (δx, δy) , and the normal direction displacement vector associated with movement (Delta] z) of (δzx ij, Compared to δzy ij ), it can be regarded as sufficiently small. Therefore, when focusing on the displacement vector (δx, δy) associated with the in-plane movement (Δx, Δy) and the displacement vector (δzx ij , δzy ij ) associated with the normal movement (Δz), which are the dominant components. , The above number 8 can be expressed as the following number 9.
Figure JPOXMLDOC01-appb-M000009
 この場合、座標(i, j)におけるRmes(i ,j)は、法線方向の移動(Δz)に伴う変位ベクトル成分(δzxij ,δzyij)とほぼ等しいとして扱うことができる。このとき、法線方向の移動量Δzを与えた時の変位ベクトルは、数6~数8に示すR(i, j)で表される。 In this case, R mes (i, j) at the coordinates (i, j) can be treated as being substantially equal to the displacement vector component (δz x ij , δzy ij ) accompanying the movement in the normal direction (Δz). At this time, the displacement vector when the movement amount Δz in the normal direction is given is represented by R (i, j) shown in Equations 6 to 8.
 このため、面全体変位計測部25は、数9によって求めた変位ベクトルの大きさRmes(i ,j)を用いて、法線方向の移動(Δz)に伴う変位ベクトル(δzxij ,δzyij)による変位ベクトルの大きさR(i ,j)の拡大・縮小の割合を推定する。具体的には、面全体変位計測部25は、下記の数10に示す評価関数E(k)を最少にする比例定数kを求めることによって、R(i ,j)の倍率を推定する。 Therefore, the entire surface displacement measuring unit 25 uses the displacement vector magnitude R mes (i, j) obtained by Eq. 9, and the displacement vector (δz x ij , δzy ij ) accompanying the movement in the normal direction (Δz). ) Estimates the rate of enlargement / reduction of the magnitude R (i, j) of the displacement vector. Specifically, the entire surface displacement measuring unit 25 estimates the magnification of R (i, j) by obtaining the proportionality constant k that minimizes the evaluation function E (k) shown in Equation 10 below.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 従って、面全体変位計測部25は、上記の数10に最小2乗法を適用して、比例定数kを算出する。また、評価関数E(k)としては、上記の数10に示したRmes(i ,j)とR(i ,j)との差の2乗和以外に、絶対値和、他の累乗和等が用いられていても良い。 Therefore, the entire surface displacement measuring unit 25 applies the least squares method to the above equation 10 to calculate the proportionality constant k. As the evaluation function E (k), in addition to the sum of squares of the difference between R mes (i, j) and R (i, j) shown in the above equation 10, the sum of absolute values and the sum of other powers Etc. may be used.
 そして、面全体変位計測部25は、算出した比例定数kを、拡大・縮小の割合を示す定数として、上記数7に適用して、移動量Δzを算出する。そして、面全体変位計測部は、算出したΔzと、面方向の移動(Δx, Δy)に伴う変位(δx,δy)と、撮影情報とを、上記数3に適用することによって、移動量Δx及びΔyも算出する。 Then, the entire surface displacement measuring unit 25 applies the calculated proportionality constant k to the above equation 7 as a constant indicating the ratio of enlargement / reduction to calculate the movement amount Δz. Then, the entire surface displacement measuring unit applies the calculated Δz, the displacement (δx, δy) accompanying the movement in the surface direction (Δx, Δy), and the imaging information to the above equation 3, thereby increasing the amount of movement Δx. And Δy are also calculated.
 また、面全体変位計測部25は、撮像装置50による撮影の毎、即ち、時系列画像のフレーム毎に、計測対象領域の面方向における移動量と、計測対象領域の法線方向における移動量とを算出する。そして、面全体変位計測部25は、時系列画像のフレーム毎に算出した移動量を、面全体変位情報として、記憶部27に格納する。また、この場合、面全体変位情報は、撮影の時間間隔をサンプリング間隔とした時系列信号として扱うことができる。 Further, the entire surface displacement measuring unit 25 determines the amount of movement of the measurement target area in the surface direction and the amount of movement of the measurement target area in the normal direction for each image taken by the imaging device 50, that is, for each frame of the time series image. Is calculated. Then, the entire surface displacement measuring unit 25 stores the movement amount calculated for each frame of the time-series image in the storage unit 27 as the entire surface displacement information. Further, in this case, the displacement information of the entire surface can be treated as a time-series signal with the time interval of photographing as the sampling interval.
 面内変位計測部26は、面全体変位と対象物の時系列画像とから、対象物の特定表面における面内変位を計測する。本実施の形態では、面内変位計測部26は、面全体変位計測部25によって算出された計測対象領域の面方向における移動量(Δx, Δy)、及び計測対象領域の法線方向における移動量(Δz)を用いて、最初に算出された変位(変位ベクトル(δxij,δyij)から、計測対象領域の面内変位(δδxij ,δδyij)を算出する。また、面内変位の算出は、時系列画像のフレーム毎に行われている。 The in-plane displacement measuring unit 26 measures the in-plane displacement on a specific surface of the object from the displacement of the entire surface and the time-series image of the object. In the present embodiment, the in-plane displacement measuring unit 26 moves the measurement target area in the plane direction (Δx, Δy) calculated by the entire surface displacement measuring unit 25, and the movement amount in the normal direction of the measurement target area. Using (Δz), the in-plane displacement (δδx ij , δδy ij ) of the measurement target area is calculated from the first calculated displacement (displacement vector (δx ij , δy ij )), and the in-plane displacement is calculated. Is performed frame by frame of the time-series image.
 図4によると、面内変位(δδxij ,δδyij)を算出するためには、面内変位計測部26によって算出された変位ベクトル(δxij,δyij)から、計測対象領域の移動量(Δx ,Δy ,Δz)によって発生する変位成分を減算すれば良いことが分かる。つまり、面内変位計測部26は、下記の数11及び数12を用いることによって、面内変位(δδxij ,δδyij)を算出する。 According to FIG. 4, the in-plane displacement (δδx ij, δδy ij) in order to calculate the the displacement vector calculated by the in-plane displacement measuring unit 26 (δx ij, δy ij) from the amount of movement of the measurement target area ( It can be seen that the displacement component generated by (Δx, Δy, Δz) should be subtracted. That is, the in-plane displacement measuring unit 26 calculates the in-plane displacement (δδ x ij , δδy ij ) by using the following equations 11 and 12.
 また、面内変位計測部26は、撮像装置50によって撮影が行われる度に、即ち、時系列に沿って、面内変位(δδxij ,δδyij)を算出する。そして、面内変位計測部26は、時系列画像のフレーム毎に算出した面内変位を、面内変位情報として、記憶部27に格納する。また、この場合、面内変位情報は、撮影の時間間隔をサンプリング間隔とした時系列信号として扱うことができる。なお、本明細書においては、面内変位情報は、「面内変位信号」とも表記する。 Further, the in-plane displacement measuring unit 26 calculates the in-plane displacement (δδx ij , δδy ij ) each time the image pickup apparatus 50 takes an image, that is, in chronological order. Then, the in-plane displacement measuring unit 26 stores the in-plane displacement calculated for each frame of the time-series image in the storage unit 27 as the in-plane displacement information. Further, in this case, the in-plane displacement information can be treated as a time-series signal with the shooting time interval as the sampling interval. In addition, in this specification, in-plane displacement information is also referred to as "in-plane displacement signal".
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 参照信号生成部21は、本実施の形態では、対象物の特定表面上の注目点の特定方向における面内変位から、注目点の特定方向における歪みの時系列変化ε(t)を算出し、算出した歪みの時系列変化ε(t)を示す信号を、参照信号として生成する。 In the present embodiment, the reference signal generation unit 21 calculates the time-series change ε (t) of the strain in the specific direction of the point of interest from the in-plane displacement of the point of interest on the specific surface of the object in the specific direction. A signal indicating the time-series change ε (t) of the calculated distortion is generated as a reference signal.
 具体的には、予め、データ通信システム10の操作者等によって、特定表面上の計測対象領域において注目点が指定される。図2に示すように、対象物が橋梁60であり、計測対象領域が床版である場合は、床版上の点が注目点として指定される。 Specifically, a point of interest is specified in advance in a measurement target area on a specific surface by an operator or the like of the data communication system 10. As shown in FIG. 2, when the object is a bridge 60 and the measurement target area is a floor slab, a point on the floor slab is designated as a point of interest.
 参照信号生成部21は、注目点が指定されると、注目点を取り囲む複数の点(例えば4点)を決定する。ここで、各点で囲まれた領域を「局所領域」とする。次に、参照信号生成部21は、記憶部27から、決定した点それぞれにおける面内変位情報を取得する。 When a point of interest is specified, the reference signal generation unit 21 determines a plurality of points (for example, four points) surrounding the point of interest. Here, the area surrounded by each point is referred to as a "local area". Next, the reference signal generation unit 21 acquires in-plane displacement information at each of the determined points from the storage unit 27.
 そして、特定方向についても、注目点と同様に、予め指定されている場合は、参照信号生成部21は、取得した各点の面内変位情報を用いて、局所領域の特定方向における長さの変化率を求め、求めた変化率を歪みの時系列変化ε(t)とする。 Then, as in the case of the point of interest, the reference signal generation unit 21 uses the acquired in-plane displacement information of each point to determine the length of the local region in the specific direction, as in the case of the point of interest. The rate of change is obtained, and the obtained rate of change is defined as the time-series change ε (t) of the strain.
 一方、特定方向が予め指定されていない場合は、参照信号生成部21は、取得した各点の面内変位情報を用いて、特異値分解を実施することによって、局所領域の最も変化の大きい方向を特定する。そして、参照信号生成部21は、特定した方向における局所領域の長さの変化率を求め、求めた変化率を歪みの時系列変化ε(t)とする。 On the other hand, when the specific direction is not specified in advance, the reference signal generation unit 21 performs singular value decomposition using the acquired in-plane displacement information of each point, thereby performing the singular value decomposition in the direction in which the local region has the largest change. To identify. Then, the reference signal generation unit 21 obtains the rate of change of the length of the local region in the specified direction, and sets the obtained rate of change as the time-series change ε (t) of the strain.
 その後、参照信号生成部21は、算出した歪みの時系列変化から得られた参照信号を、参照信号情報として、記憶部27に格納する。 After that, the reference signal generation unit 21 stores the reference signal obtained from the calculated time-series change in distortion in the storage unit 27 as reference signal information.
 回帰係数算出部22は、本実施の形態では、特定表面上の計測対象領域の点(i,j)毎に、回帰係数を算出する。回帰係数算出部22は、まず、記憶部27に格納されている面内変位情報から、面内変位の時系列変化を特定し、記憶部27に格納されている参照信号情報から、参照信号のレベルの時系列変化を特定する。そして、回帰係数算出部22は、特定表面上の計測対象領域の点(i,j)毎に、特定した参照信号のレベルの時系列変化と、同じく特定した面内変位の時系列変化とから、両者の連動度を示す回帰係数を算出する。 In the present embodiment, the regression coefficient calculation unit 22 calculates the regression coefficient for each point (i, j) in the measurement target region on the specific surface. The regression coefficient calculation unit 22 first identifies the time-series change of the in-plane displacement from the in-plane displacement information stored in the storage unit 27, and from the reference signal information stored in the storage unit 27, the reference signal Identify time-series changes in levels. Then, the regression coefficient calculation unit 22 is based on the time-series change in the level of the specified reference signal and the time-series change in the in-plane displacement also specified for each point (i, j) in the measurement target region on the specific surface. , Calculate the regression coefficient indicating the degree of interlocking between the two.
 ここで、図5を用いて、回帰係数算出部22による処理について説明する。図5(a)~図5(c)は、それぞれ、本発明の実施の形態において回帰係数算出部によって行われる処理を説明するための図である。 Here, the processing by the regression coefficient calculation unit 22 will be described with reference to FIG. 5 (a) to 5 (c) are diagrams for explaining the processing performed by the regression coefficient calculation unit in the embodiment of the present invention, respectively.
 具体的には、最初に回帰係数算出部22は、図5(a)に示すように、参照信号のレベルの時系列変化と、特定の点(i,j)における面内変位(δδxij ,δδyij)の時系列変化とを特定する。また、このとき特定される面内変位は、x方向における面内変位δδxij 及びy方向における面内変位δδyijのうちいずれか一方であっても良いし、両方であっても良い。前者の場合、一方の面内変位としては、例えば、対象物が橋梁60であれば、橋梁60の長手方向における面内変位が挙げられる。また、後者の場合は、x方向における面内変位δδxij とy方向における面内変位δδyijとの平均の面内変位が、特定されても良い。 Specifically, first, as shown in FIG. 5A, the regression coefficient calculation unit 22 first performs a time-series change in the level of the reference signal and an in-plane displacement (δδ x ij ,) at a specific point (i, j). δ δ y ij ) is identified as a time series change. The in-plane displacement is identified at this time, may be either one of the in-plane displacement Derutaderutawai ij in the in-plane displacement Derutaderutax ij and y directions in the x-direction may be both. In the former case, one of the in-plane displacements includes, for example, in-plane displacement of the bridge 60 in the longitudinal direction when the object is the bridge 60. In the latter case, the average in-plane displacement of the in-plane displacement Derutaderutawai ij in the in-plane displacement Derutaderutax ij and y direction in the x direction may be specified.
 次いで、回帰係数算出部22は、図5(b)に示すように、点(i,j)毎に、時系列に沿って、即ち、時系列画像のフレーム毎に、参照信号と面内変位とを比較する。そして、回帰係数算出部22は、図5(c)に示すように、点(i,j)毎に、参照信号のレベルの時系列変化と面内変位の時系列変化との関係を示す回帰直線を求め、更に、その傾きを回帰係数として算出する。また、回帰直線の算出、及び回帰係数の算出は、x方向及びy方向それぞれについて行われており、実際には、x方向における回帰係数と、y方向における回帰係数とが算出されている。 Next, as shown in FIG. 5B, the regression coefficient calculation unit 22 performs a reference signal and in-plane displacement for each point (i, j), along the time series, that is, for each frame of the time series image. Compare with. Then, as shown in FIG. 5 (c), the regression coefficient calculation unit 22 shows the relationship between the time-series change in the level of the reference signal and the time-series change in the in-plane displacement for each point (i, j). A straight line is obtained, and the slope is calculated as a regression coefficient. Further, the calculation of the regression line and the calculation of the regression coefficient are performed in each of the x direction and the y direction, and in reality, the regression coefficient in the x direction and the regression coefficient in the y direction are calculated.
 データ出力部23は、本実施の形態では、記憶部27に格納されている参照信号情報と、点(i,j)毎に算出された回帰係数とを、面内変位を示すデータとして、ネットワーク40を介して、データ復号装置30へと出力する。 In the present embodiment, the data output unit 23 uses the reference signal information stored in the storage unit 27 and the regression coefficient calculated for each point (i, j) as data indicating the in-plane displacement as a network. It is output to the data decoding device 30 via the 40.
 データ復号装置30は、本実施の形態では、例えば、PC(Personal Computer)、スマートフォン、タブレット型端末、といった端末装置のオペレーティングシステム上に、プログラムによって構築されている。データ復号装置30は、端末装置の表示装置33に接続されている。 In the present embodiment, the data decoding device 30 is constructed by a program on the operating system of a terminal device such as a PC (Personal Computer), a smartphone, or a tablet terminal. The data decoding device 30 is connected to the display device 33 of the terminal device.
 データ復号装置30において、データ取得部31は、データ符号化装置20のデータ出力部23から出力されてきた、参照信号情報と、点(i,j)毎に算出された回帰係数とを取得する。 In the data decoding device 30, the data acquisition unit 31 acquires the reference signal information output from the data output unit 23 of the data coding device 20 and the regression coefficient calculated for each point (i, j). ..
 データ復号部32は、本実施の形態では、点(i,j)毎に、時系列に沿って、参照信号情報で特定される参照信号のレベルに、回帰係数を乗算することによって、橋梁60の計測対象領域での面内変位を復元する。また、データ復号部32は、復元した面内変位を表示するための画像データを生成し、生成した画像データを表示装置33に出力して、その画面上に面内変位を表示させる。 In the present embodiment, the data decoding unit 32 multiplies the level of the reference signal specified by the reference signal information by the regression coefficient for each point (i, j) along the time series, thereby multiplying the bridge 60. Restore the in-plane displacement in the measurement target area of. Further, the data decoding unit 32 generates image data for displaying the restored in-plane displacement, outputs the generated image data to the display device 33, and displays the in-plane displacement on the screen.
[装置動作]
 次に、本発明の実施の形態におけるデータ通信システム10の動作について図6及び図7を用いて説明する。以下においては、適宜図1~図5を参照しながら、データ符号化装置20及びデータ復号装置30それぞれの動作を説明する。また、本実施の形態1では、データ通信システム10、即ち、データ符号化装置20及びデータ復号装置30を動作させることによって、データ通信方法が実施される。よって、本実施の形態におけるデータ通信方法の説明は、以下のデータ符号化装置20及びデータ復号装置30の動作説明に代える。
[Device operation]
Next, the operation of the data communication system 10 according to the embodiment of the present invention will be described with reference to FIGS. 6 and 7. In the following, the operations of the data coding device 20 and the data decoding device 30 will be described with reference to FIGS. 1 to 5 as appropriate. Further, in the first embodiment, the data communication method is implemented by operating the data communication system 10, that is, the data coding device 20 and the data decoding device 30. Therefore, the description of the data communication method in the present embodiment will be replaced with the following description of the operation of the data coding device 20 and the data decoding device 30.
 最初に図6を用いて、データ符号化装置20の動作について説明する。図6は、本発明の実施の形態におけるデータ符号化装置の動作を示すフロー図である。 First, the operation of the data encoding device 20 will be described with reference to FIG. FIG. 6 is a flow chart showing the operation of the data encoding device according to the embodiment of the present invention.
 図6に示すように、最初に、画像データ取得部24は、撮像装置50から時系列画像の画像データが出力されると、出力された画像データを取得し、取得した画像データを、フレーム毎に、面全体変位計測部25及び面内変位計測部26に出力する(ステップA1)。 As shown in FIG. 6, first, when the image data of the time-series image is output from the image pickup apparatus 50, the image data acquisition unit 24 acquires the output image data, and obtains the acquired image data for each frame. The data is output to the entire surface displacement measuring unit 25 and the in-plane displacement measuring unit 26 (step A1).
 次に、面全体変位計測部25は、ステップA1によって時系列画像の画像データが出力されてくると、フレーム毎に、対象物である橋梁60の計測対象領域の面全体変位を計測する(ステップA2)。また、面全体変位計測部25は、計測結果を、面全体変位情報として、記憶部27に格納する。 Next, when the image data of the time-series image is output in step A1, the entire surface displacement measuring unit 25 measures the displacement of the entire surface of the measurement target area of the bridge 60, which is an object, for each frame (step). A2). Further, the entire surface displacement measuring unit 25 stores the measurement result as the entire surface displacement information in the storage unit 27.
 次に、面内変位計測部26は、ステップA1で出力されてきた時系列画像の画像データと、ステップA2で計測された面全体変位とを用いて、フレーム毎に、対象物である橋梁60の計測対象領域における面内変位を計測する(ステップA3)。また、面内変位計測部26は、計測結果を、面内変位情報として、記憶部27に格納する。 Next, the in-plane displacement measuring unit 26 uses the image data of the time-series image output in step A1 and the entire surface displacement measured in step A2, and the bridge 60, which is an object, is used for each frame. The in-plane displacement in the measurement target area of is measured (step A3). Further, the in-plane displacement measuring unit 26 stores the measurement result in the storage unit 27 as in-plane displacement information.
 次に、参照信号生成部21は、ステップA2で計測された面全体変位と、ステップA3で計測された面内変位とから、対象物の特定表面に発生する応力に合わせてレベルが変化する、参照信号を生成する(ステップA4)。また、参照信号生成部21は、生成した参照信号を、参照信号情報として、記憶部27に格納する。 Next, the reference signal generation unit 21 changes its level according to the stress generated on the specific surface of the object from the total surface displacement measured in step A2 and the in-plane displacement measured in step A3. A reference signal is generated (step A4). Further, the reference signal generation unit 21 stores the generated reference signal as reference signal information in the storage unit 27.
 次に、回帰係数算出部22は、ステップA4で生成された参照信号と、ステップA3で計測された面内変位とを用いて、特定表面上の計測対象領域の点(i,j)毎に、参照信号のレベルの時系列変化と面内変位の時系列変化との連動度を示す、回帰係数を算出する(ステップA5)。 Next, the regression coefficient calculation unit 22 uses the reference signal generated in step A4 and the in-plane displacement measured in step A3 for each point (i, j) in the measurement target region on the specific surface. , Calculate a regression coefficient indicating the degree of interlocking between the time-series change in the level of the reference signal and the time-series change in the in-plane displacement (step A5).
 次に、データ出力部23は、ステップA4で生成された参照信号と、ステップA5で算出された点(i,j)毎の回帰係数とを、面内変位を示すデータとして、ネットワーク40を介して、データ復号装置30に送信する(ステップA6)。ステップA6の実行により、データ符号化装置20での処理は終了する。 Next, the data output unit 23 uses the reference signal generated in step A4 and the regression coefficient for each point (i, j) calculated in step A5 as data indicating in-plane displacement via the network 40. Then, the data is transmitted to the data decoding device 30 (step A6). By executing step A6, the processing in the data encoding device 20 is completed.
 続いて、図7を用いて、データ復号装置30の動作について説明する。図7は、本発明の実施の形態におけるデータ復号装置の動作を示すフロー図である。 Subsequently, the operation of the data decoding device 30 will be described with reference to FIG. 7. FIG. 7 is a flow chart showing the operation of the data decoding device according to the embodiment of the present invention.
 図7に示すように、最初に、データ復号装置30において、データ取得部31は、データ符号化装置20から送信されてきた、面内変位を示すデータ、即ち、参照信号及び点(i,j)毎の回帰係数を取得する(ステップB1)。 As shown in FIG. 7, first, in the data decoding device 30, the data acquisition unit 31 receives data indicating in-plane displacement transmitted from the data coding device 20, that is, a reference signal and a point (i, j). ) Acquire the regression coefficient for each (step B1).
 次に、データ復号部32は、ステップB1で取得された参照信号及び点(i,j)毎の回帰係数を用いて、対象物の特定表面における面内変位を復元する(ステップB2)。 Next, the data decoding unit 32 restores the in-plane displacement on the specific surface of the object by using the reference signal acquired in step B1 and the regression coefficient for each point (i, j) (step B2).
 その後、データ復号部32は、復元した面内変位を表示するための画像データを生成し、生成した画像データを表示装置33に出力して、その画面上に面内変位を表示させる(ステップB3)。ステップB3の実行により、データ復号装置30における処理は終了する。 After that, the data decoding unit 32 generates image data for displaying the restored in-plane displacement, outputs the generated image data to the display device 33, and displays the in-plane displacement on the screen (step B3). ). By executing step B3, the process in the data decoding device 30 is completed.
(実施の形態における効果)
 以上のように本実施の形態1によれば、面内変位を示すデータ自体を削減することなく、そのデータ量を小さくすることができる。本実施の形態によれば、画像から抽出した面内変位を示すデータの符号化又は復号において、十分な空間分解能を保ちつつ、伝送及び蓄積にかかるコストの低減を図ることが可能となる。
(Effect in embodiment)
As described above, according to the first embodiment, the amount of data can be reduced without reducing the data itself indicating the in-plane displacement. According to the present embodiment, in coding or decoding of data indicating in-plane displacement extracted from an image, it is possible to reduce the cost of transmission and storage while maintaining sufficient spatial resolution.
 また、本実施の形態において、面内変位を示すデータとして送信される点(i,j)毎の回帰係数は、浮動小数点の画素表現に対応した画像圧縮方式(JPEC-XR等)を用いて圧縮することができる。この場合は、面内変位を示すデータを更に圧縮することができる。 Further, in the present embodiment, the regression coefficient for each point (i, j) transmitted as data indicating the in-plane displacement uses an image compression method (JPEC-XR or the like) corresponding to floating-point pixel representation. It can be compressed. In this case, the data indicating the in-plane displacement can be further compressed.
 加えて、面内変位を示すデータとして送信される参照信号は、浮動小数点に対応したオーディオ圧縮方式(MPEG4-ALS等)を用いて圧縮することができる。この場合も、面内変位を示すデータを更に圧縮することができる。 In addition, the reference signal transmitted as data indicating in-plane displacement can be compressed using an audio compression method (MPEG4-ALS, etc.) that supports floating point numbers. In this case as well, the data indicating the in-plane displacement can be further compressed.
[変形例1]
 次に、本発明の実施の形態の変形例1~変形例4について説明する。まず、本変形例1では、面全体変位計測部25が、対象物の特定表面の面内方向、及び対象物に印加される外力の印加方向において、面全体変位を計測することが条件となる。なお、上述した実施の形態では、対象物が橋梁60であり、外力の印加方向が法線方向であるので、上記条件は満たされている。
[Modification 1]
Next, Modifications 1 to 4 of the embodiment of the present invention will be described. First, in the present modification 1, it is a condition that the entire surface displacement measuring unit 25 measures the displacement of the entire surface in the in-plane direction of the specific surface of the object and the direction of applying the external force applied to the object. .. In the above-described embodiment, the object is the bridge 60, and the external force is applied in the normal direction, so that the above conditions are satisfied.
 そして、本変形例1においては、参照信号生成部21は、外力印加方向における面全体変位の時系列変化D(t)を算出し、算出した面全体変位の時系列変化を示す信号を、参照信号として生成する。具体的には、信号生成部13は、面全体変位情報から、面全体変位計測部25によって計測された、法線方向における移動量(Δz)の時系列変化を特定し、この特定した移動量(Δz)の時系列変化D(t)を参照信号とする。 Then, in the present modification 1, the reference signal generation unit 21 calculates the time-series change D (t) of the total surface displacement in the external force application direction, and refers to the signal indicating the calculated time-series change of the total surface displacement. Generate as a signal. Specifically, the signal generation unit 13 specifies the time-series change of the movement amount (Δz) in the normal direction measured by the whole surface displacement measurement unit 25 from the whole surface displacement information, and the specified movement amount. Let the time-series change D (t) of (Δz) be the reference signal.
 本変形例1によれば、上述した実施の形態と異なり、注目点の指定、更には、特定方向の指定が必要ないため、橋梁60の点検員における負担が軽減される。なお、本変形例1は、撮像装置50が、外力の影響を受けにくいところに十分に固定されており、且つ、外力による応力変動と外力の印加方向における面全体変位とが連動している、場合に有用である。 According to the first modification, unlike the above-described embodiment, it is not necessary to specify the point of interest and the specific direction, so that the burden on the inspector of the bridge 60 is reduced. In the first modification, the imaging device 50 is sufficiently fixed in a place that is not easily affected by an external force, and the stress fluctuation due to the external force and the displacement of the entire surface in the application direction of the external force are linked. Useful in some cases.
[変形例2]
 本変形例2では、参照信号生成部21は、まず、面内変位を用いて、対象物の特定表面における局所歪みを算出し、更に、局所歪みを特定表面全体について積算して、対象物の特定表面全体における歪みの時系列変化を算出する。そして、参照信号生成部21は、算出した歪みの時系列変化を示す信号を、参照信号として生成する。
[Modification 2]
In the present modification 2, the reference signal generation unit 21 first calculates the local strain on the specific surface of the object by using the in-plane displacement, and further integrates the local strain on the entire specific surface to integrate the local strain on the entire specific surface of the object. Calculate the time-series change of strain over a specific surface. Then, the reference signal generation unit 21 generates a signal indicating the time-series change of the calculated distortion as a reference signal.
 具体的には、参照信号生成部21は、画像データのフレーム毎に、計測対象領域の座標(i,j)での局所的な変形状態から局所歪みε(t,i,j)を求めるため、まず、座標(i,j)を取り囲む複数の点(例えば4点)を決定する。ここでの各点で囲まれた領域も「局所領域」とする。 Specifically, the reference signal generation unit 21 obtains the local strain ε (t, i, j) from the local deformation state at the coordinates (i, j) of the measurement target region for each frame of the image data. First, a plurality of points (for example, 4 points) surrounding the coordinates (i, j) are determined. The area surrounded by each point here is also referred to as a "local area".
 次いで、参照信号生成部21は、記憶部17から、決定した点それぞれにおける面内変位情報を取得し、取得した各点の面内変位情報を用いて、特異値分解を実施することによって、局所領域の最も変化の大きい方向を特定する。そして、参照信号生成部21は、特定した方向における局所領域の長さの変化率を求め、求めた変化率を局所歪みs(t,i,j)とする。 Next, the reference signal generation unit 21 acquires in-plane displacement information at each of the determined points from the storage unit 17, and performs local singular value decomposition using the in-plane displacement information of each acquired point. Identify the direction of greatest change in the region. Then, the reference signal generation unit 21 obtains the rate of change of the length of the local region in the specified direction, and sets the obtained rate of change as the local strain s (t, i, j).
 続いて、参照信号生成部21は、局所歪みs(t,i,j)を、計測対象領域全体に亘って積算して、計測対象領域の全体にわたる歪み量S(t)を算出し、算出した歪み量S(t)を参照信号とする。本変形例2では、参照信号は、局所歪みから求められるため、本変形例2は、撮像装置50の固定が不十分な場合、外力による応力変動と外力の印加方向における面全体変位との連動性が低い場合にも有用である。 Subsequently, the reference signal generation unit 21 integrates the local strain s (t, i, j) over the entire measurement target region, calculates the distortion amount S (t) over the entire measurement target region, and calculates it. Let the distorted amount S (t) be the reference signal. In the present modification 2, the reference signal is obtained from the local strain. Therefore, in the present modification 2, when the imaging device 50 is not sufficiently fixed, the stress fluctuation due to the external force and the displacement of the entire surface in the application direction of the external force are linked. It is also useful when the sex is low.
[変形例3]
 本変形例3でも、変形例2と同様に、参照信号生成部21は、座標(i,j)を取り囲む複数の点(例えば4点)を決定し、記憶部17から、決定した点それぞれにおける面内変位情報を取得する。但し、本変形例3では、変形例2と異なり、参照信号生成部21は、取得した各点の面内変位情報を用いて、局所領域における局所変形を示す特異値σ1、σ2(σ1≧σ2)及び特異ベクトルv1を求める。なお、ここでの特異ベクトルv1は、特異値σ1に対応する左特異ベクトルとするが、本変形例3では、それ以外の特異ベクトルが選ばれるように決められていても良い。
[Modification 3]
In the present modification 3, as in the modification 2, the reference signal generation unit 21 determines a plurality of points (for example, four points) surrounding the coordinates (i, j), and the storage unit 17 determines each of the determined points. Acquire in-plane displacement information. However, in the present modification 3, unlike the modification 2, the reference signal generation unit 21 uses the acquired in-plane displacement information of each point to indicate the singular values σ 1 and σ 2 (σ) indicating the local deformation in the local region. 1 ≧ σ 2 ) and the singular vector v 1 are obtained. The singular vector v 1 here is a left singular vector corresponding to the singular value σ 1 , but in the present modification 3, it may be determined that other singular vectors are selected.
 次いで、参照信号生成部21は、数13を用いて、局所領域での局所的な開口方向及び大きさを表す局所開口ベクトルvop(t,i,j)を算出する。 Next, the reference signal generation unit 21 calculates the local aperture vector v op (t, i, j) representing the local aperture direction and magnitude in the local region using the equation 13.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 次に、参照信号生成部21は、算出した局所開口ベクトルの主成分分析を行って、第1主成分を特定する。具体的には、参照信号生成部21は、時刻tにおけるvop(t,i,j)による点群の分布を入力として、点群の最大の広がり方向を、主成分分析により導出する。更に、参照信号生成部21は、主成分分析により得られた第1主成分軸の標準偏差をS(t)とし、これを参照信号とする。本変形例3では、主成分分析を用いることにより、面内変位に含まれるノイズに対して、より頑健な参照信号を得ることができる。 Next, the reference signal generation unit 21 performs principal component analysis of the calculated local aperture vector to specify the first principal component. Specifically, the reference signal generation unit 21 takes the distribution of the point cloud by v op (t, i, j) at time t as an input, and derives the maximum spread direction of the point cloud by principal component analysis. Further, the reference signal generation unit 21 uses S (t) as the standard deviation of the first principal component axis obtained by the principal component analysis, and uses this as the reference signal. In the present modification 3, by using the principal component analysis, a more robust reference signal can be obtained for the noise included in the in-plane displacement.
[変形例4]
 本変形例4では、変形例2と同様に、参照信号生成部21は、まず、座標(i,j)毎に局所歪みs(t,i,j)を算出する。また、参照信号生成部21は、変形例1と同様に、外力印加方向における面全体変位の時系列変化D(t)も算出する。続いて、参照信号生成部21は、座標(i,j)毎に、局所歪みs(t,i,j)と時系列変化D(t)との回帰係数w(i,j)を算出する。
[Modification example 4]
In the present modification 4, the reference signal generation unit 21 first calculates the local strain s (t, i, j) for each coordinate (i, j), as in the modification 2. Further, the reference signal generation unit 21 also calculates the time-series change D (t) of the displacement of the entire surface in the external force application direction, as in the modification 1. Subsequently, the reference signal generation unit 21 calculates the regression coefficient w (i, j) of the local strain s (t, i, j) and the time series change D (t) for each coordinate (i, j). ..
 続いて、参照信号生成部21は、変形例3と同様に、上記数1を用いて、局所領域での局所的な開口方向及び大きさを表す局所開口ベクトルvop(t,i,j)を算出する。 Subsequently, the reference signal generation unit 21 uses the above equation 1 to represent the local aperture direction and size in the local region, as in the modification 3, the local aperture vector v op (t, i, j). Is calculated.
 次に、参照信号生成部21は、第1主成分となる局所開口ベクトルvop(t,i,j)それぞれに、重みとして、回帰係数w(i,j)を乗算する。更に、参照信号生成部21は、時刻tにおける重み乗算後の局所開口ベクトルvop(t,i,j)に対して、変形例3と同様の主成分分析を行う。主成分分析により得られた第1主成分軸の標準偏差をS(t)とし、これを参照信号とする。本変形例4では、外力と連動度の低い点において、局所開口ベクトルの主成分分析への寄与度を下げることにより、面内変位に含まれるノイズに対してより頑健な参照信号を得ることができる。 Next, the reference signal generation unit 21 multiplies each of the local aperture vectors v op (t, i, j), which is the first principal component, by the regression coefficient w (i, j) as a weight. Further, the reference signal generation unit 21 performs the same principal component analysis as the modification 3 for the local aperture vector v op (t, i, j) after the weight multiplication at the time t. Let S (t) be the standard deviation of the first principal component axis obtained by principal component analysis, and use this as the reference signal. In this modification 4, it is possible to obtain a more robust reference signal for noise included in the in-plane displacement by reducing the contribution of the local aperture vector to the principal component analysis at a point where the degree of interlocking with the external force is low. it can.
[プログラム]
 本実施の形態における第1のプログラムは、コンピュータに、図6に示すステップA1~A6を実行させるプログラムであれば良い。このプログラムをコンピュータにインストールし、実行することによって、本実施の形態におけるデータ符号化装置20を実現することができる。この場合、コンピュータのプロセッサは、参照信号生成部21、回帰係数算出部22、データ出力部23、画像データ取得部24、面全体変位計測部25、及び面内変位計測部26として機能し、処理を行なう。
[program]
The first program in the present embodiment may be any program that causes a computer to execute steps A1 to A6 shown in FIG. By installing this program on a computer and executing it, the data encoding device 20 according to the present embodiment can be realized. In this case, the computer processor functions and processes as a reference signal generation unit 21, a regression coefficient calculation unit 22, a data output unit 23, an image data acquisition unit 24, an overall surface displacement measurement unit 25, and an in-plane displacement measurement unit 26. To do.
 また、本実施の形態における第1のプログラムは、複数のコンピュータによって構築されたコンピュータシステムによって実行されても良い。この場合は、例えば、各コンピュータが、それぞれ、参照信号生成部21、回帰係数算出部22、データ出力部23、画像データ取得部24、面全体変位計測部25、及び面内変位計測部26のいずれかとして機能しても良い。 Further, the first program in the present embodiment may be executed by a computer system constructed by a plurality of computers. In this case, for example, each computer has a reference signal generation unit 21, a regression coefficient calculation unit 22, a data output unit 23, an image data acquisition unit 24, an overall surface displacement measurement unit 25, and an in-plane displacement measurement unit 26, respectively. It may function as either.
 本実施の形態における第2のプログラムは、コンピュータに、図7に示すステップB1~B3を実行させるプログラムであれば良い。このプログラムをコンピュータにインストールし、実行することによって、本実施の形態におけるデータ復号化装置30を実現することができる。この場合、コンピュータのプロセッサは、データ取得部31及びデータ復号部32として機能し、処理を行なう。 The second program in the present embodiment may be any program that causes the computer to execute steps B1 to B3 shown in FIG. By installing this program on a computer and executing it, the data decoding device 30 according to the present embodiment can be realized. In this case, the computer processor functions as a data acquisition unit 31 and a data decoding unit 32 to perform processing.
 また、本実施の形態における第2のプログラムは、複数のコンピュータによって構築されたコンピュータシステムによって実行されても良い。この場合は、例えば、各コンピュータが、それぞれ、データ取得部31及びデータ復号部32のいずれかとして機能しても良い。 Further, the second program in the present embodiment may be executed by a computer system constructed by a plurality of computers. In this case, for example, each computer may function as either a data acquisition unit 31 or a data decoding unit 32, respectively.
 ここで、本実施の形態における第1のプログラムを実行することによって、データ符号化装置20を実現するコンピュータと、第本実施の形態における第2のプログラムを実行することによって、データ復号装置30を実現するコンピュータとについて図8を用いて説明する。 Here, the computer that realizes the data encoding device 20 by executing the first program in the present embodiment and the data decoding device 30 by executing the second program in the present embodiment. The computer to be realized will be described with reference to FIG.
 図8は、本発明の実施の形態におけるデータ符号化装置又はデータ復号装置を実現するコンピュータの一例を示すブロック図である。図8に示すように、コンピュータ110は、CPU(CentralProcessing Unit)111と、メインメモリ112と、記憶装置113と、入力インターフェイス114と、表示コントローラ115と、データリーダ/ライタ116と、通信インターフェイス117とを備える。これらの各部は、バス121を介して、互いにデータ通信可能に接続される。また、コンピュータ110は、CPU111に加えて、又はCPU111に代えて、GPU(Graphics Processing Unit)、又はFPGA(Field-Programmable Gate Array)を備えていても良い。 FIG. 8 is a block diagram showing an example of a computer that realizes a data encoding device or a data decoding device according to the embodiment of the present invention. As shown in FIG. 8, the computer 110 includes a CPU (CentralProcessingUnit) 111, a main memory 112, a storage device 113, an input interface 114, a display controller 115, a data reader / writer 116, and a communication interface 117. To be equipped with. Each of these parts is connected to each other via a bus 121 so as to be capable of data communication. Further, the computer 110 may include a GPU (Graphics Processing Unit) or an FPGA (Field-Programmable Gate Array) in addition to the CPU 111 or in place of the CPU 111.
 CPU111は、記憶装置113に格納された、本実施の形態におけるプログラム(コード)をメインメモリ112に展開し、これらを所定順序で実行することにより、各種の演算を実施する。メインメモリ112は、典型的には、DRAM(Dynamic Random Access Memory)等の揮発性の記憶装置である。また、本実施の形態におけるプログラムは、コンピュータ読み取り可能な記録媒体120に格納された状態で提供される。なお、本実施の形態におけるプログラムは、通信インターフェイス117を介して接続されたインターネット上で流通するものであっても良い。 The CPU 111 expands the programs (codes) of the present embodiment stored in the storage device 113 into the main memory 112 and executes them in a predetermined order to perform various operations. The main memory 112 is typically a volatile storage device such as a DRAM (Dynamic Random Access Memory). Further, the program according to the present embodiment is provided in a state of being stored in a computer-readable recording medium 120. The program in the present embodiment may be distributed on the Internet connected via the communication interface 117.
 また、記憶装置113の具体例としては、ハードディスクドライブの他、フラッシュメモリ等の半導体記憶装置が挙げられる。入力インターフェイス114は、CPU111と、キーボード及びマウスといった入力機器118との間のデータ伝送を仲介する。表示コントローラ115は、ディスプレイ装置119と接続され、ディスプレイ装置119での表示を制御する。 Further, specific examples of the storage device 113 include a semiconductor storage device such as a flash memory in addition to a hard disk drive. The input interface 114 mediates data transmission between the CPU 111 and an input device 118 such as a keyboard and mouse. The display controller 115 is connected to the display device 119 and controls the display on the display device 119.
 データリーダ/ライタ116は、CPU111と記録媒体120との間のデータ伝送を仲介し、記録媒体120からのプログラムの読み出し、及びコンピュータ110における処理結果の記録媒体120への書き込みを実行する。通信インターフェイス117は、CPU111と、他のコンピュータとの間のデータ伝送を仲介する。 The data reader / writer 116 mediates the data transmission between the CPU 111 and the recording medium 120, reads the program from the recording medium 120, and writes the processing result in the computer 110 to the recording medium 120. The communication interface 117 mediates data transmission between the CPU 111 and another computer.
 また、記録媒体120の具体例としては、CF(Compact Flash(登録商標))及びSD(Secure Digital)等の汎用的な半導体記憶デバイス、フレキシブルディスク(Flexible Disk)等の磁気記録媒体、又はCD-ROM(Compact Disk Read Only Memory)などの光学記録媒体が挙げられる。 Specific examples of the recording medium 120 include a general-purpose semiconductor storage device such as CF (CompactFlash (registered trademark)) and SD (SecureDigital), a magnetic recording medium such as a flexible disk, or a CD-. Examples include optical recording media such as ROM (CompactDiskReadOnlyMemory).
 なお、本実施の形態におけるデータ符号化装置20及びデータ復号装置30は、プログラムがインストールされたコンピュータではなく、各部に対応したハードウェアを用いることによっても実現可能である。更に、データ符号化装置20及びデータ復号装置30は、一部がプログラムで実現され、残りの部分がハードウェアで実現されていてもよい。 The data coding device 20 and the data decoding device 30 in the present embodiment can also be realized by using hardware corresponding to each part instead of the computer in which the program is installed. Further, the data encoding device 20 and the data decoding device 30 may be partially realized by a program and the rest may be realized by hardware.
 上述した実施の形態の一部又は全部は、以下に記載する(付記1)~(付記21)によって表現することができるが、以下の記載に限定されるものではない。 A part or all of the above-described embodiments can be expressed by the following (Appendix 1) to (Appendix 21), but the present invention is not limited to the following description.
(付記1)
 対象物の時系列画像から計測された、前記対象物の特定表面における面全体変位と、前記面全体変位及び前記時系列画像から計測された、前記対象物の特定表面における面内変位とから、前記対象物の特定表面に発生する応力に合わせてレベルが変化する、参照信号を生成する、参照信号生成部と、
 前記参照信号と前記面内変位とを用いて、前記参照信号のレベルの時系列変化と前記面内変位の時系列変化との連動度を示す、回帰係数を算出する、回帰係数算出部と、
 前記参照信号及び前記回帰係数を、前記面内変位を示すデータとして出力する、データ出力部と、
を備えている、ことを特徴とするデータ符号化装置。
(Appendix 1)
From the total surface displacement of the object on the specific surface measured from the time-series image of the object, and the in-plane displacement of the object on the specific surface measured from the total surface displacement and the time-series image. A reference signal generator that generates a reference signal and whose level changes according to the stress generated on the specific surface of the object.
A regression coefficient calculation unit that calculates a regression coefficient that indicates the degree of interlocking between the time-series change in the level of the reference signal and the time-series change in the in-plane displacement using the reference signal and the in-plane displacement.
A data output unit that outputs the reference signal and the regression coefficient as data indicating the in-plane displacement.
A data encoding device, characterized in that it comprises.
(付記2)
付記1に記載のデータ符号化装置であって、
 前記対象物の前記時系列画像から、前記面全体変位を計測する、面全体変位計測部と、
 前記面全体変位及び前記時系列画像から、前記面内変位を計測する、面内変位計測部と、
を更に備えている、
ことを特徴とするデータ符号化装置。
(Appendix 2)
The data encoding device according to Appendix 1.
An overall surface displacement measuring unit that measures the displacement of the entire surface from the time-series image of the object.
An in-plane displacement measuring unit that measures the in-plane displacement from the entire surface displacement and the time-series image.
Is further equipped,
A data encoding device characterized in that.
(付記3)
付記1または2に記載のデータ符号化装置であって、
 前記面内変位が、前記対象物の特定表面上の点毎に、計測されている場合に、
 前記回帰係数算出部が、前記点毎に、前記参照信号と当該点における前記面内変位とを用いて、前記回帰係数を算出し、
 前記データ出力部が、前記点毎に、当該点における前記参照信号及び前記回帰係数を出力する、
ことを特徴とするデータ符号化装置。
(Appendix 3)
The data coding apparatus according to Appendix 1 or 2.
When the in-plane displacement is measured for each point on the specific surface of the object,
The regression coefficient calculation unit calculates the regression coefficient for each point by using the reference signal and the in-plane displacement at the point.
The data output unit outputs the reference signal and the regression coefficient at the point for each point.
A data encoding device characterized in that.
(付記4)
付記1~3のいずれかに記載のデータ符号化装置であって、
 前記参照信号生成部が、前記特定表面上の注目点の特定方向における前記面内変位から、前記注目点の前記特定方向における歪みの時系列変化を算出し、算出した前記歪みの時系列変化を示す信号を、前記参照信号として生成する、
ことを特徴とするデータ符号化装置。
(Appendix 4)
The data encoding device according to any one of Supplementary note 1 to 3.
The reference signal generation unit calculates the time-series change of the strain of the attention point in the specific direction from the in-plane displacement of the point of interest on the specific surface in the specific direction, and calculates the time-series change of the strain. The indicated signal is generated as the reference signal.
A data encoding device characterized in that.
(付記5)
付記1~3のいずれかに記載のデータ符号化装置であって、
 前記面全体変位が、前記対象物の特定表面の面内方向、及び前記対象物に印加される外力の印加方向において、計測されている場合に、
 前記参照信号生成部が、前記印加方向における前記面全体変位の時系列変化を算出し、算出した前記面全体変位の時系列変化を示す信号を、前記参照信号として生成する、
ことを特徴とするデータ符号化装置。
(Appendix 5)
The data encoding device according to any one of Supplementary note 1 to 3.
When the total surface displacement is measured in the in-plane direction of the specific surface of the object and in the direction of applying an external force applied to the object.
The reference signal generation unit calculates the time-series change of the displacement of the entire surface in the application direction, and generates a signal indicating the calculated time-series change of the displacement of the entire surface as the reference signal.
A data encoding device characterized in that.
(付記6)
付記1~3のいずれかに記載のデータ符号化装置であって、
 前記参照信号生成部が、前記面内変位を用いて、前記対象物の特定表面における局所歪みを算出し、更に、前記局所歪みを前記特定表面全体について積算して、前記対象物の特定表面全体における歪みの時系列変化を算出し、算出した前記歪みの時系列変化を示す信号を、前記参照信号として生成する、
ことを特徴とするデータ符号化装置。
(Appendix 6)
The data encoding device according to any one of Supplementary note 1 to 3.
The reference signal generation unit calculates the local strain on the specific surface of the object by using the in-plane displacement, and further integrates the local strain on the entire specific surface to integrate the local strain on the entire specific surface of the object. The time-series change of the strain in the above is calculated, and a signal indicating the calculated time-series change of the distortion is generated as the reference signal.
A data encoding device characterized in that.
(付記7)
 対象物の特定表面に発生する応力に合わせてレベルが変化する参照信号、及び前記参照信号のレベルの時系列変化と前記対象物の特定表面における面内変位の時系列変化との連動度を示す回帰係数、を取得する、データ取得部と、
 取得された、前記参照信号及び前記回帰係数を用いて、前記対象物の特定表面における面内変位を復元する、データ復号部と、
を備えている、
ことを特徴とするデータ復号装置。
(Appendix 7)
It shows the degree of interlocking between the reference signal whose level changes according to the stress generated on the specific surface of the object and the time-series change of the level of the reference signal and the time-series change of the in-plane displacement on the specific surface of the object. Regression coefficient, data acquisition unit and
A data decoding unit that restores the in-plane displacement of the object on a specific surface by using the acquired reference signal and the regression coefficient.
Is equipped with
A data decoding device characterized in that.
(付記8)
 データ符号化装置とデータ復号装置とを備え、
 前記データ符号化装置は、
対象物の時系列画像から計測された、前記対象物の特定表面における面全体変位と、前記面全体変位及び前記時系列画像から計測された、前記対象物の特定表面における面内変位とから、前記対象物の特定表面に発生する応力に合わせてレベルが変化する、参照信号を生成する、参照信号生成部と、
前記参照信号と前記面内変位とを用いて、前記参照信号のレベルの時系列変化と前記面内変位の時系列変化との連動度を示す、回帰係数を算出する、回帰係数算出部と、
前記参照信号及び前記回帰係数を、前記面内変位を示すデータとして出力する、データ出力部と、を備え、
 前記データ復号装置は、
対象物の特定表面に発生する応力に合わせてレベルが変化する参照信号、及び前記参照信号のレベルの時系列変化と前記対象物の特定表面における面内変位の時系列変化との連動度を示す回帰係数、を取得する、データ取得部と、
取得された、前記参照信号及び前記回帰係数を用いて、前記対象物の特定表面における面内変位を復元する、データ復号部と、を備えている、
ことを特徴とするデータ通信システム。
(Appendix 8)
Equipped with a data encoding device and a data decoding device
The data encoding device is
From the total surface displacement of the object on the specific surface measured from the time-series image of the object, and the in-plane displacement of the object on the specific surface measured from the total surface displacement and the time-series image. A reference signal generator that generates a reference signal and whose level changes according to the stress generated on the specific surface of the object.
A regression coefficient calculation unit that calculates a regression coefficient that indicates the degree of interlocking between the time-series change in the level of the reference signal and the time-series change in the in-plane displacement using the reference signal and the in-plane displacement.
A data output unit that outputs the reference signal and the regression coefficient as data indicating the in-plane displacement is provided.
The data decoding device
It shows the degree of interlocking between the reference signal whose level changes according to the stress generated on the specific surface of the object and the time-series change of the level of the reference signal and the time-series change of the in-plane displacement on the specific surface of the object. Regression coefficient, data acquisition unit and
It includes a data decoding unit that restores the in-plane displacement of the object on a specific surface by using the acquired reference signal and the regression coefficient.
A data communication system characterized by that.
(付記9)
 データ符号化装置とデータ復号装置と用いたデータ通信方法であって、
(a)前記データ符号化装置によって、対象物の時系列画像から計測された、前記対象物の特定表面における面全体変位と、前記面全体変位及び前記時系列画像から計測された、前記対象物の特定表面における面内変位とから、前記対象物の特定表面に発生する応力に合わせてレベルが変化する、参照信号を生成する、ステップと、
(b)前記データ符号化装置によって、前記参照信号と前記面内変位とを用いて、前記参照信号のレベルの時系列変化と前記面内変位の時系列変化との連動度を示す、回帰係数を算出する、ステップと、
(c)前記データ符号化装置によって、前記参照信号及び前記回帰係数を、前記面内変位を示すデータとして出力する、ステップと、
(d)前記データ復号装置によって、対象物の特定表面に発生する応力に合わせてレベルが変化する参照信号、及び前記参照信号のレベルの時系列変化と前記対象物の特定表面における面内変位の時系列変化との連動度を示す回帰係数、を取得する、ステップと、
(e)前記データ復号装置によって、取得された、前記参照信号及び前記回帰係数を用いて、前記対象物の特定表面における面内変位を復元する、ステップと、
を有する、ことを特徴とするデータ通信方法。
(Appendix 9)
A data communication method using a data encoding device and a data decoding device.
(A) The entire surface displacement of the object on a specific surface measured from the time-series image of the object by the data encoding device, and the entire surface displacement and the object measured from the time-series image. From the in-plane displacement on the specific surface of the object, the level changes according to the stress generated on the specific surface of the object, the step of generating a reference signal, and
(B) Regression coefficient indicating the degree of interlocking between the time-series change in the level of the reference signal and the time-series change in the in-plane displacement by the data coding device using the reference signal and the in-plane displacement. To calculate, steps and
(C) A step in which the reference signal and the regression coefficient are output as data indicating the in-plane displacement by the data encoding device.
(D) A reference signal whose level changes according to the stress generated on the specific surface of the object by the data decoding device, and a time-series change in the level of the reference signal and an in-plane displacement of the object on the specific surface. To get the regression coefficient, which indicates the degree of interlocking with the time series change, the step and
(E) A step of restoring the in-plane displacement of the object on a specific surface using the reference signal and the regression coefficient acquired by the data decoding device.
A data communication method characterized by having.
(付記10)
付記9に記載のデータ通信方法であって、
(f)前記データ符号化装置によって、前記対象物の前記時系列画像から、前記面全体変位を計測する、ステップと、
(g)前記データ符号化装置によって、前記面全体変位及び前記時系列画像から、前記面内変位を計測する、ステップと、
を更に有する、
ことを特徴とするデータ通信方法。
(Appendix 10)
The data communication method described in Appendix 9
(F) A step of measuring the displacement of the entire surface from the time-series image of the object by the data encoding device.
(G) A step of measuring the in-plane displacement from the entire surface displacement and the time-series image by the data encoding device.
Further have,
A data communication method characterized by that.
(付記11)
付記9または10に記載のデータ通信方法であって、
 前記面内変位が、前記対象物の特定表面上の点毎に、計測されている場合に、
 前記(b)のステップにおいて、前記点毎に、前記参照信号と当該点における前記面内変位とを用いて、前記回帰係数を算出し、
 前記(c)のステップにおいて、前記点毎に、当該点における前記参照信号及び前記回帰係数を出力する、
ことを特徴とするデータ通信方法。
(Appendix 11)
The data communication method according to Appendix 9 or 10.
When the in-plane displacement is measured for each point on the specific surface of the object,
In the step (b), the regression coefficient is calculated for each point by using the reference signal and the in-plane displacement at the point.
In the step (c), the reference signal and the regression coefficient at the point are output for each point.
A data communication method characterized by that.
(付記12)
付記9~11のいずれかに記載のデータ通信方法であって、
 前記(a)のステップにおいて、前記特定表面上の注目点の特定方向における前記面内変位から、前記注目点の前記特定方向における歪みの時系列変化を算出し、算出した前記歪みの時系列変化を示す信号を、前記参照信号として生成する、
ことを特徴とするデータ通信方法。
(Appendix 12)
The data communication method according to any one of Appendix 9 to 11.
In the step (a), the time-series change of the strain of the attention point in the specific direction is calculated from the in-plane displacement of the point of interest on the specific surface in the specific direction, and the calculated time-series change of the strain is calculated. Is generated as the reference signal.
A data communication method characterized by that.
(付記13)
付記9~11のいずれかに記載のデータ通信方法であって、
 前記面全体変位が、前記対象物の特定表面の面内方向、及び前記対象物に印加される外力の印加方向において、計測されている場合に、
 前記(a)のステップにおいて、前記印加方向における前記面全体変位の時系列変化を算出し、算出した前記面全体変位の時系列変化を示す信号を、前記参照信号として生成する、
ことを特徴とするデータ通信方法。
(Appendix 13)
The data communication method according to any one of Appendix 9 to 11.
When the total surface displacement is measured in the in-plane direction of the specific surface of the object and in the direction of applying an external force applied to the object.
In the step (a), the time-series change of the displacement of the entire surface in the application direction is calculated, and a signal indicating the calculated time-series change of the displacement of the entire surface is generated as the reference signal.
A data communication method characterized by that.
(付記14)
付記9~11のいずれかに記載のデータ通信方法であって、
 前記(a)のステップにおいて、前記面内変位を用いて、前記対象物の特定表面における局所歪みを算出し、更に、前記局所歪みを前記特定表面全体について積算して、前記対象物の特定表面全体における歪みの時系列変化を算出し、算出した前記歪みの時系列変化を示す信号を、前記参照信号として生成する、
ことを特徴とするデータ通信方法。
(Appendix 14)
The data communication method according to any one of Appendix 9 to 11.
In the step (a), the local strain on the specific surface of the object is calculated by using the in-plane displacement, and the local strain is integrated over the entire specific surface to calculate the local strain on the specific surface of the object. The time-series change of the distortion in the whole is calculated, and the signal indicating the calculated time-series change of the distortion is generated as the reference signal.
A data communication method characterized by that.
(付記15)
コンピュータに、
(a)対象物の時系列画像から計測された、前記対象物の特定表面における面全体変位と、前記面全体変位及び前記時系列画像から計測された、前記対象物の特定表面における面内変位とから、前記対象物の特定表面に発生する応力に合わせてレベルが変化する、参照信号を生成する、ステップと、
(b)前記参照信号と前記面内変位とを用いて、前記参照信号のレベルの時系列変化と前記面内変位の時系列変化との連動度を示す、回帰係数を算出する、ステップと、
(c)前記参照信号及び前記回帰係数を、前記面内変位を示すデータとして出力する、ステップと、
を実行させる命令を含む、プログラムを記録しているコンピュータ読み取り可能な記録媒体。
(Appendix 15)
On the computer
(A) Overall surface displacement of the object on a specific surface measured from a time-series image of the object, and in-plane displacement of the object on a specific surface measured from the entire surface displacement and the time-series image. From, to the step of generating a reference signal, the level changes according to the stress generated on the specific surface of the object.
(B) Using the reference signal and the in-plane displacement, a step of calculating a regression coefficient indicating the degree of interlocking between the time-series change in the level of the reference signal and the time-series change in the in-plane displacement, and
(C) A step of outputting the reference signal and the regression coefficient as data indicating the in-plane displacement, and
A computer-readable recording medium on which the program is recorded, including instructions to execute.
(付記16)
付記15に記載のコンピュータ読み取り可能な記録媒体であって、
前記プログラムが、前記コンピュータに、
(d)前記対象物の前記時系列画像から、前記面全体変位を計測する、ステップと、
(e)前記面全体変位及び前記時系列画像から、前記面内変位を計測する、ステップと、
を実行させる命令を更に含む、
ことを特徴とするコンピュータ読み取り可能な記録媒体。
(Appendix 16)
The computer-readable recording medium according to Appendix 15.
The program is on the computer
(D) A step of measuring the displacement of the entire surface from the time-series image of the object, and
(E) A step of measuring the in-plane displacement from the entire surface displacement and the time-series image.
Including further instructions to execute,
A computer-readable recording medium characterized by that.
(付記17)
付記15または16に記載のコンピュータ読み取り可能な記録媒体であって、
 前記面内変位が、前記対象物の特定表面上の点毎に、計測されている場合に、
 前記(b)のステップにおいて、前記点毎に、前記参照信号と当該点における前記面内変位とを用いて、前記回帰係数を算出し、
 前記(c)のステップにおいて、前記点毎に、当該点における前記参照信号及び前記回帰係数を出力する、
ことを特徴とするコンピュータ読み取り可能な記録媒体。
(Appendix 17)
A computer-readable recording medium according to Appendix 15 or 16.
When the in-plane displacement is measured for each point on the specific surface of the object,
In the step (b), the regression coefficient is calculated for each point by using the reference signal and the in-plane displacement at the point.
In the step (c), the reference signal and the regression coefficient at the point are output for each point.
A computer-readable recording medium characterized by that.
(付記18)
付記15~17のいずれかに記載のコンピュータ読み取り可能な記録媒体であって、
 前記(a)のステップにおいて、前記特定表面上の注目点の特定方向における前記面内変位から、前記注目点の前記特定方向における歪みの時系列変化を算出し、算出した前記歪みの時系列変化を示す信号を、前記参照信号として生成する、
ことを特徴とするコンピュータ読み取り可能な記録媒体。
(Appendix 18)
A computer-readable recording medium according to any one of Appendix 15 to 17.
In the step (a), the time-series change of the strain of the attention point in the specific direction is calculated from the in-plane displacement of the point of interest on the specific surface in the specific direction, and the calculated time-series change of the strain is calculated. Is generated as the reference signal.
A computer-readable recording medium characterized by that.
(付記19)
付記15~17のいずれかに記載のコンピュータ読み取り可能な記録媒体であって、
 前記面全体変位が、前記対象物の特定表面の面内方向、及び前記対象物に印加される外力の印加方向において、計測されている場合に、
 前記(a)のステップにおいて、前記印加方向における前記面全体変位の時系列変化を算出し、算出した前記面全体変位の時系列変化を示す信号を、前記参照信号として生成する、
ことを特徴とするコンピュータ読み取り可能な記録媒体。
(Appendix 19)
A computer-readable recording medium according to any one of Appendix 15 to 17.
When the total surface displacement is measured in the in-plane direction of the specific surface of the object and in the direction of applying an external force applied to the object.
In the step (a), the time-series change of the total surface displacement in the application direction is calculated, and a signal indicating the calculated time-series change of the total surface displacement is generated as the reference signal.
A computer-readable recording medium characterized by that.
(付記20)
付記15~17のいずれかに記載のコンピュータ読み取り可能な記録媒体であって、
 前記(a)のステップにおいて、前記面内変位を用いて、前記対象物の特定表面における局所歪みを算出し、更に、前記局所歪みを前記特定表面全体について積算して、前記対象物の特定表面全体における歪みの時系列変化を算出し、算出した前記歪みの時系列変化を示す信号を、前記参照信号として生成する、
ことを特徴とするコンピュータ読み取り可能な記録媒体。
(Appendix 20)
A computer-readable recording medium according to any one of Appendix 15 to 17.
In the step (a), the local strain on the specific surface of the object is calculated by using the in-plane displacement, and the local strain is integrated over the entire specific surface to calculate the local strain on the specific surface of the object. The time-series change of the distortion in the whole is calculated, and the signal indicating the calculated time-series change of the distortion is generated as the reference signal.
A computer-readable recording medium characterized by that.
(付記21)
コンピュータに、
(a)対象物の特定表面に発生する応力に合わせてレベルが変化する参照信号、及び前記参照信号のレベルの時系列変化と前記対象物の特定表面における面内変位の時系列変化との連動度を示す回帰係数、を取得する、ステップと、
(b)取得された、前記参照信号及び前記回帰係数を用いて、前記対象物の特定表面における面内変位を復元する、ステップと、
を実行させる命令を含む、プログラムを記録しているコンピュータ読み取り可能な記録媒体。
(Appendix 21)
On the computer
(A) A reference signal whose level changes according to the stress generated on the specific surface of the object, and a time-series change in the level of the reference signal and a time-series change in the in-plane displacement on the specific surface of the object. To get the regression coefficient, which indicates the degree, step and
(B) A step of restoring the in-plane displacement of the object on a specific surface using the acquired reference signal and the regression coefficient.
A computer-readable recording medium on which the program is recorded, including instructions to execute.
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記実施の形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
Although the present invention has been described above with reference to the embodiments, the present invention is not limited to the above embodiments. Various changes that can be understood by those skilled in the art can be made within the scope of the present invention in terms of the structure and details of the present invention.
 以上のように、本発明によれば、画像から抽出した面内変位を示すデータの符号化又は復号において、十分な空間分解能を保ちつつ、伝送及び蓄積にかかるコストの低減を図ることができる。本発明は、本発明は、橋梁などの構造物の状態を画像から判定するシステムに有用である。 As described above, according to the present invention, in coding or decoding of data indicating in-plane displacement extracted from an image, it is possible to reduce the cost of transmission and storage while maintaining sufficient spatial resolution. The present invention is useful for a system for determining the state of a structure such as a bridge from an image.
 10 データ通信システム
 20 データ符号化装置
 21 参照信号生成部
 22 回帰係数算出部
 23 データ出力部
 24 画像データ取得部
 25 面全体変位計測部
 26 面内変位計測部
 27 記憶部
 30 データ復号装置
 31 データ取得部
 32 データ復号部
 33 表示装置
 40 ネットワーク
 50 撮像装置
 60 橋梁
 110 コンピュータ
 111 CPU
 112 メインメモリ
 113 記憶装置
 114 入力インターフェイス
 115 表示コントローラ
 116 データリーダ/ライタ
 117 通信インターフェイス
 118 入力機器
 119 ディスプレイ装置
 120 記録媒体
 121 バス
10 Data communication system 20 Data coding device 21 Reference signal generation unit 22 Regression coefficient calculation unit 23 Data output unit 24 Image data acquisition unit 25 Overall plane displacement measurement unit 26 In-plane displacement measurement unit 27 Storage unit 30 Data decoding device 31 Data acquisition Part 32 Data decoding part 33 Display device 40 Network 50 Imaging device 60 Bridge 110 Computer 111 CPU
112 Main memory 113 Storage device 114 Input interface 115 Display controller 116 Data reader / writer 117 Communication interface 118 Input device 119 Display device 120 Recording medium 121 Bus

Claims (21)

  1.  対象物の時系列画像から計測された、前記対象物の特定表面における面全体変位と、前記面全体変位及び前記時系列画像から計測された、前記対象物の特定表面における面内変位とから、前記対象物の特定表面に発生する応力に合わせてレベルが変化する、参照信号を生成する、参照信号生成手段と、
     前記参照信号と前記面内変位とを用いて、前記参照信号のレベルの時系列変化と前記面内変位の時系列変化との連動度を示す、回帰係数を算出する、回帰係数算出手段と、
     前記参照信号及び前記回帰係数を、前記面内変位を示すデータとして出力する、データ出力手段と、
    を備えている、ことを特徴とするデータ符号化装置。
    From the total surface displacement of the object on the specific surface measured from the time-series image of the object, and the in-plane displacement of the object on the specific surface measured from the total surface displacement and the time-series image. A reference signal generating means that generates a reference signal whose level changes according to the stress generated on the specific surface of the object.
    A regression coefficient calculating means for calculating a regression coefficient, which indicates the degree of interlocking between the time-series change in the level of the reference signal and the time-series change in the in-plane displacement using the reference signal and the in-plane displacement.
    A data output means that outputs the reference signal and the regression coefficient as data indicating the in-plane displacement.
    A data encoding device, characterized in that it comprises.
  2. 請求項1に記載のデータ符号化装置であって、
     前記対象物の前記時系列画像から、前記面全体変位を計測する、面全体変位計測手段と、
     前記面全体変位及び前記時系列画像から、前記面内変位を計測する、面内変位計測手段と、
    を更に備えている、
    ことを特徴とするデータ符号化装置。
    The data encoding device according to claim 1.
    An overall surface displacement measuring means that measures the displacement of the entire surface from the time-series image of the object.
    An in-plane displacement measuring means that measures the in-plane displacement from the entire surface displacement and the time-series image.
    Is further equipped,
    A data encoding device characterized in that.
  3. 請求項1または2に記載のデータ符号化装置であって、
     前記面内変位が、前記対象物の特定表面上の点毎に、計測されている場合に、
     前記回帰係数算出手段が、前記点毎に、前記参照信号と当該点における前記面内変位とを用いて、前記回帰係数を算出し、
     前記データ出力手段が、前記点毎に、当該点における前記参照信号及び前記回帰係数を出力する、
    ことを特徴とするデータ符号化装置。
    The data encoding device according to claim 1 or 2.
    When the in-plane displacement is measured for each point on the specific surface of the object,
    The regression coefficient calculating means calculates the regression coefficient for each point by using the reference signal and the in-plane displacement at the point.
    The data output means outputs the reference signal and the regression coefficient at the point for each point.
    A data encoding device characterized in that.
  4. 請求項1~3のいずれかに記載のデータ符号化装置であって、
     前記参照信号生成手段が、前記特定表面上の注目点の特定方向における前記面内変位から、前記注目点の前記特定方向における歪みの時系列変化を算出し、算出した前記歪みの時系列変化を示す信号を、前記参照信号として生成する、
    ことを特徴とするデータ符号化装置。
    The data encoding device according to any one of claims 1 to 3.
    The reference signal generating means calculates the time-series change of the strain of the attention point in the specific direction from the in-plane displacement of the point of interest on the specific surface in the specific direction, and calculates the time-series change of the strain. The indicated signal is generated as the reference signal.
    A data encoding device characterized in that.
  5. 請求項1~3のいずれかに記載のデータ符号化装置であって、
     前記面全体変位が、前記対象物の特定表面の面内方向、及び前記対象物に印加される外力の印加方向において、計測されている場合に、
     前記参照信号生成手段が、前記印加方向における前記面全体変位の時系列変化を算出し、算出した前記面全体変位の時系列変化を示す信号を、前記参照信号として生成する、
    ことを特徴とするデータ符号化装置。
    The data encoding device according to any one of claims 1 to 3.
    When the total surface displacement is measured in the in-plane direction of the specific surface of the object and in the direction of applying an external force applied to the object.
    The reference signal generating means calculates the time-series change of the displacement of the entire surface in the application direction, and generates a signal indicating the calculated time-series change of the displacement of the entire surface as the reference signal.
    A data encoding device characterized in that.
  6. 請求項1~3のいずれかに記載のデータ符号化装置であって、
     前記参照信号生成手段が、前記面内変位を用いて、前記対象物の特定表面における局所歪みを算出し、更に、前記局所歪みを前記特定表面全体について積算して、前記対象物の特定表面全体における歪みの時系列変化を算出し、算出した前記歪みの時系列変化を示す信号を、前記参照信号として生成する、
    ことを特徴とするデータ符号化装置。
    The data encoding device according to any one of claims 1 to 3.
    The reference signal generating means calculates the local strain on the specific surface of the object by using the in-plane displacement, and further integrates the local strain on the entire specific surface to integrate the local strain on the entire specific surface of the object. The time-series change of the strain in the above is calculated, and a signal indicating the calculated time-series change of the distortion is generated as the reference signal.
    A data encoding device characterized in that.
  7.  対象物の特定表面に発生する応力に合わせてレベルが変化する参照信号、及び前記参照信号のレベルの時系列変化と前記対象物の特定表面における面内変位の時系列変化との連動度を示す回帰係数、を取得する、データ取得手段と、
     取得された、前記参照信号及び前記回帰係数を用いて、前記対象物の特定表面における面内変位を復元する、データ復号手段と、
    を備えている、
    ことを特徴とするデータ復号装置。
    It shows the degree of interlocking between the reference signal whose level changes according to the stress generated on the specific surface of the object and the time-series change of the level of the reference signal and the time-series change of the in-plane displacement on the specific surface of the object. Regression coefficient, data acquisition means, and
    A data decoding means that restores the in-plane displacement of the object on a specific surface using the acquired reference signal and the regression coefficient.
    Is equipped with
    A data decoding device characterized in that.
  8.  データ符号化装置とデータ復号装置とを備え、
     前記データ符号化装置は、
    対象物の時系列画像から計測された、前記対象物の特定表面における面全体変位と、前記面全体変位及び前記時系列画像から計測された、前記対象物の特定表面における面内変位とから、前記対象物の特定表面に発生する応力に合わせてレベルが変化する、参照信号を生成する、参照信号生成手段と、
    前記参照信号と前記面内変位とを用いて、前記参照信号のレベルの時系列変化と前記面内変位の時系列変化との連動度を示す、回帰係数を算出する、回帰係数算出手段と、
    前記参照信号及び前記回帰係数を、前記面内変位を示すデータとして出力する、データ出力手段と、を備え、
     前記データ復号装置は、
    対象物の特定表面に発生する応力に合わせてレベルが変化する参照信号、及び前記参照信号のレベルの時系列変化と前記対象物の特定表面における面内変位の時系列変化との連動度を示す回帰係数、を取得する、データ取得手段と、
    取得された、前記参照信号及び前記回帰係数を用いて、前記対象物の特定表面における面内変位を復元する、データ復号手段と、を備えている、
    ことを特徴とするデータ通信システム。
    Equipped with a data encoding device and a data decoding device
    The data encoding device is
    From the total surface displacement of the object on the specific surface measured from the time-series image of the object, and the in-plane displacement of the object on the specific surface measured from the total surface displacement and the time-series image. A reference signal generating means that generates a reference signal whose level changes according to the stress generated on the specific surface of the object.
    A regression coefficient calculating means for calculating a regression coefficient, which indicates the degree of interlocking between the time-series change in the level of the reference signal and the time-series change in the in-plane displacement using the reference signal and the in-plane displacement.
    A data output means for outputting the reference signal and the regression coefficient as data indicating the in-plane displacement is provided.
    The data decoding device
    It shows the degree of interlocking between the reference signal whose level changes according to the stress generated on the specific surface of the object and the time-series change of the level of the reference signal and the time-series change of the in-plane displacement on the specific surface of the object. Regression coefficient, data acquisition means, and
    A data decoding means that restores an in-plane displacement on a specific surface of the object by using the acquired reference signal and the regression coefficient is provided.
    A data communication system characterized by that.
  9.  データ符号化装置とデータ復号装置と用いたデータ通信方法であって、
    (a)前記データ符号化装置によって、対象物の時系列画像から計測された、前記対象物の特定表面における面全体変位と、前記面全体変位及び前記時系列画像から計測された、前記対象物の特定表面における面内変位とから、前記対象物の特定表面に発生する応力に合わせてレベルが変化する、参照信号を生成し、
    (b)前記データ符号化装置によって、前記参照信号と前記面内変位とを用いて、前記参照信号のレベルの時系列変化と前記面内変位の時系列変化との連動度を示す、回帰係数を算出し、
    (c)前記データ符号化装置によって、前記参照信号及び前記回帰係数を、前記面内変位を示すデータとして出力し、
    (d)前記データ復号装置によって、対象物の特定表面に発生する応力に合わせてレベルが変化する参照信号、及び前記参照信号のレベルの時系列変化と前記対象物の特定表面における面内変位の時系列変化との連動度を示す回帰係数、を取得し、
    (e)前記データ復号装置によって、取得された、前記参照信号及び前記回帰係数を用いて、前記対象物の特定表面における面内変位を復元する、
    ことを特徴とするデータ通信方法。
    A data communication method using a data encoding device and a data decoding device.
    (A) The entire surface displacement of the object on a specific surface measured from the time-series image of the object by the data encoding device, and the entire surface displacement and the object measured from the time-series image. From the in-plane displacement on the specific surface of the object, generate a reference signal whose level changes according to the stress generated on the specific surface of the object.
    (B) Regression coefficient indicating the degree of interlocking between the time-series change in the level of the reference signal and the time-series change in the in-plane displacement by the data coding device using the reference signal and the in-plane displacement. Is calculated and
    (C) The data encoding device outputs the reference signal and the regression coefficient as data indicating the in-plane displacement.
    (D) A reference signal whose level changes according to the stress generated on the specific surface of the object by the data decoding device, and a time-series change in the level of the reference signal and an in-plane displacement of the object on the specific surface. Obtain the regression coefficient, which indicates the degree of interlocking with the time series change,
    (E) Using the reference signal and the regression coefficient acquired by the data decoding device, the in-plane displacement of the object on a specific surface is restored.
    A data communication method characterized by that.
  10. 請求項9に記載のデータ通信方法であって、更に、
    (f)前記データ符号化装置によって、前記対象物の前記時系列画像から、前記面全体変位を計測し、
    (g)前記データ符号化装置によって、前記面全体変位及び前記時系列画像から、前記面内変位を計測する、
    ことを特徴とするデータ通信方法。
    The data communication method according to claim 9, further.
    (F) The data coding device measures the displacement of the entire surface from the time-series image of the object.
    (G) The data coding device measures the in-plane displacement from the entire surface displacement and the time-series image.
    A data communication method characterized by that.
  11. 請求項9または10に記載のデータ通信方法であって、
     前記面内変位が、前記対象物の特定表面上の点毎に、計測されている場合に、
     前記(b)において、前記点毎に、前記参照信号と当該点における前記面内変位とを用いて、前記回帰係数を算出し、
     前記(c)において、前記点毎に、当該点における前記参照信号及び前記回帰係数を出力する、
    ことを特徴とするデータ通信方法。
    The data communication method according to claim 9 or 10.
    When the in-plane displacement is measured for each point on the specific surface of the object,
    In (b), the regression coefficient is calculated for each of the points by using the reference signal and the in-plane displacement at the point.
    In the above (c), the reference signal and the regression coefficient at the point are output for each point.
    A data communication method characterized by that.
  12. 請求項9~11のいずれかに記載のデータ通信方法であって、
     前記(a)において、前記特定表面上の注目点の特定方向における前記面内変位から、前記注目点の前記特定方向における歪みの時系列変化を算出し、算出した前記歪みの時系列変化を示す信号を、前記参照信号として生成する、
    ことを特徴とするデータ通信方法。
    The data communication method according to any one of claims 9 to 11.
    In (a), the time-series change of the strain of the attention point in the specific direction is calculated from the in-plane displacement of the point of interest on the specific surface in the specific direction, and the calculated time-series change of the strain is shown. Generate a signal as the reference signal,
    A data communication method characterized by that.
  13. 請求項9~11のいずれかに記載のデータ通信方法であって、
     前記面全体変位が、前記対象物の特定表面の面内方向、及び前記対象物に印加される外力の印加方向において、計測されている場合に、
     前記(a)において、前記印加方向における前記面全体変位の時系列変化を算出し、算出した前記面全体変位の時系列変化を示す信号を、前記参照信号として生成する、
    ことを特徴とするデータ通信方法。
    The data communication method according to any one of claims 9 to 11.
    When the total surface displacement is measured in the in-plane direction of the specific surface of the object and in the direction of applying an external force applied to the object.
    In (a), the time-series change of the total surface displacement in the application direction is calculated, and a signal indicating the calculated time-series change of the total surface displacement is generated as the reference signal.
    A data communication method characterized by that.
  14. 請求項9~11のいずれかに記載のデータ通信方法であって、
     前記(a)において、前記面内変位を用いて、前記対象物の特定表面における局所歪みを算出し、更に、前記局所歪みを前記特定表面全体について積算して、前記対象物の特定表面全体における歪みの時系列変化を算出し、算出した前記歪みの時系列変化を示す信号を、前記参照信号として生成する、
    ことを特徴とするデータ通信方法。
    The data communication method according to any one of claims 9 to 11.
    In (a), the in-plane displacement is used to calculate the local strain on the specific surface of the object, and the local strain is integrated for the entire specific surface to be integrated on the entire specific surface of the object. A time-series change in strain is calculated, and a signal indicating the calculated time-series change in distortion is generated as the reference signal.
    A data communication method characterized by that.
  15. コンピュータに、
    (a)対象物の時系列画像から計測された、前記対象物の特定表面における面全体変位と、前記面全体変位及び前記時系列画像から計測された、前記対象物の特定表面における面内変位とから、前記対象物の特定表面に発生する応力に合わせてレベルが変化する、参照信号を生成する、ステップと、
    (b)前記参照信号と前記面内変位とを用いて、前記参照信号のレベルの時系列変化と前記面内変位の時系列変化との連動度を示す、回帰係数を算出する、ステップと、
    (c)前記参照信号及び前記回帰係数を、前記面内変位を示すデータとして出力する、ステップと、
    を実行させる命令を含む、プログラムを記録しているコンピュータ読み取り可能な記録媒体。
    On the computer
    (A) Overall surface displacement of the object on a specific surface measured from a time-series image of the object, and in-plane displacement of the object on a specific surface measured from the entire surface displacement and the time-series image. From, to the step of generating a reference signal, the level changes according to the stress generated on the specific surface of the object.
    (B) Using the reference signal and the in-plane displacement, a step of calculating a regression coefficient indicating the degree of interlocking between the time-series change in the level of the reference signal and the time-series change in the in-plane displacement, and
    (C) A step of outputting the reference signal and the regression coefficient as data indicating the in-plane displacement, and
    A computer-readable recording medium on which the program is recorded, including instructions to execute.
  16. 請求項15に記載のコンピュータ読み取り可能な記録媒体であって、
    前記プログラムが、前記コンピュータに、
    (d)前記対象物の前記時系列画像から、前記面全体変位を計測する、ステップと、
    (e)前記面全体変位及び前記時系列画像から、前記面内変位を計測する、ステップと、
    を実行させる命令を更に含む、
    ことを特徴とするコンピュータ読み取り可能な記録媒体。
    The computer-readable recording medium according to claim 15.
    The program is on the computer
    (D) A step of measuring the displacement of the entire surface from the time-series image of the object, and
    (E) A step of measuring the in-plane displacement from the entire surface displacement and the time-series image.
    Including further instructions to execute,
    A computer-readable recording medium characterized by that.
  17. 請求項15または16に記載のコンピュータ読み取り可能な記録媒体であって、
     前記面内変位が、前記対象物の特定表面上の点毎に、計測されている場合に、
     前記(b)のステップにおいて、前記点毎に、前記参照信号と当該点における前記面内変位とを用いて、前記回帰係数を算出し、
     前記(c)のステップにおいて、前記点毎に、当該点における前記参照信号及び前記回帰係数を出力する、
    ことを特徴とするコンピュータ読み取り可能な記録媒体。
    A computer-readable recording medium according to claim 15 or 16.
    When the in-plane displacement is measured for each point on the specific surface of the object,
    In the step (b), the regression coefficient is calculated for each point by using the reference signal and the in-plane displacement at the point.
    In the step (c), the reference signal and the regression coefficient at the point are output for each point.
    A computer-readable recording medium characterized by that.
  18. 請求項15~17のいずれかに記載のコンピュータ読み取り可能な記録媒体であって、
     前記(a)のステップにおいて、前記特定表面上の注目点の特定方向における前記面内変位から、前記注目点の前記特定方向における歪みの時系列変化を算出し、算出した前記歪みの時系列変化を示す信号を、前記参照信号として生成する、
    ことを特徴とするコンピュータ読み取り可能な記録媒体。
    A computer-readable recording medium according to any one of claims 15 to 17.
    In the step (a), the time-series change of the strain of the attention point in the specific direction is calculated from the in-plane displacement of the point of interest on the specific surface in the specific direction, and the calculated time-series change of the strain is calculated. Is generated as the reference signal.
    A computer-readable recording medium characterized by that.
  19. 請求項15~17のいずれかに記載のコンピュータ読み取り可能な記録媒体であって、
     前記面全体変位が、前記対象物の特定表面の面内方向、及び前記対象物に印加される外力の印加方向において、計測されている場合に、
     前記(a)のステップにおいて、前記印加方向における前記面全体変位の時系列変化を算出し、算出した前記面全体変位の時系列変化を示す信号を、前記参照信号として生成する、
    ことを特徴とするコンピュータ読み取り可能な記録媒体。
    A computer-readable recording medium according to any one of claims 15 to 17.
    When the total surface displacement is measured in the in-plane direction of the specific surface of the object and in the direction of applying an external force applied to the object.
    In the step (a), the time-series change of the total surface displacement in the application direction is calculated, and a signal indicating the calculated time-series change of the total surface displacement is generated as the reference signal.
    A computer-readable recording medium characterized by that.
  20. 請求項15~17のいずれかに記載のコンピュータ読み取り可能な記録媒体であって、
     前記(a)のステップにおいて、前記面内変位を用いて、前記対象物の特定表面における局所歪みを算出し、更に、前記局所歪みを前記特定表面全体について積算して、前記対象物の特定表面全体における歪みの時系列変化を算出し、算出した前記歪みの時系列変化を示す信号を、前記参照信号として生成する、
    ことを特徴とするコンピュータ読み取り可能な記録媒体。
    A computer-readable recording medium according to any one of claims 15 to 17.
    In the step (a), the local strain on the specific surface of the object is calculated by using the in-plane displacement, and the local strain is integrated over the entire specific surface to calculate the local strain on the specific surface of the object. The time-series change of the distortion in the whole is calculated, and the signal indicating the calculated time-series change of the distortion is generated as the reference signal.
    A computer-readable recording medium characterized by that.
  21. コンピュータに、
    (a)対象物の特定表面に発生する応力に合わせてレベルが変化する参照信号、及び前記参照信号のレベルの時系列変化と前記対象物の特定表面における面内変位の時系列変化との連動度を示す回帰係数、を取得する、ステップと、
    (b)取得された、前記参照信号及び前記回帰係数を用いて、前記対象物の特定表面における面内変位を復元する、ステップと、
    を実行させる命令を含む、プログラムを記録しているコンピュータ読み取り可能な記録媒体。
    On the computer
    (A) A reference signal whose level changes according to the stress generated on the specific surface of the object, and a time-series change in the level of the reference signal and a time-series change in the in-plane displacement on the specific surface of the object. To get the regression coefficient, which indicates the degree, step and
    (B) A step of restoring the in-plane displacement of the object on a specific surface using the acquired reference signal and the regression coefficient.
    A computer-readable recording medium on which the program is recorded, including instructions to execute.
PCT/JP2019/023983 2019-06-17 2019-06-17 Data encoding device, data decoding device, data communication system, data communication method, and computer-readable recording medium WO2020255232A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021528082A JP7287463B2 (en) 2019-06-17 2019-06-17 DATA ENCODER, DATA COMMUNICATION SYSTEM, DATA COMMUNICATION METHOD, AND PROGRAM
PCT/JP2019/023983 WO2020255232A1 (en) 2019-06-17 2019-06-17 Data encoding device, data decoding device, data communication system, data communication method, and computer-readable recording medium
JP2023084086A JP7485155B2 (en) 2019-06-17 2023-05-22 Data encoding program and data encoding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/023983 WO2020255232A1 (en) 2019-06-17 2019-06-17 Data encoding device, data decoding device, data communication system, data communication method, and computer-readable recording medium

Publications (1)

Publication Number Publication Date
WO2020255232A1 true WO2020255232A1 (en) 2020-12-24

Family

ID=74037607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/023983 WO2020255232A1 (en) 2019-06-17 2019-06-17 Data encoding device, data decoding device, data communication system, data communication method, and computer-readable recording medium

Country Status (2)

Country Link
JP (2) JP7287463B2 (en)
WO (1) WO2020255232A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008232998A (en) * 2007-03-23 2008-10-02 Osaka Univ Method and device for measuring stress fluctuation distribution of structure, defect detecting method of structure, and risk assessing method of structure
WO2019054419A1 (en) * 2017-09-12 2019-03-21 日本電気株式会社 State determining device, state determining method, and computer-readable recording medium

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8600147B2 (en) 2009-06-03 2013-12-03 The United States of America as represented by the Secreatary of the Navy System and method for remote measurement of displacement and strain fields
JP4948660B2 (en) 2010-05-14 2012-06-06 西日本旅客鉄道株式会社 Structure displacement measurement method
JP6511892B2 (en) 2015-03-20 2019-05-15 日本電気株式会社 State determination apparatus for a structure, state determination system, and state determination method
US10945205B2 (en) 2017-09-15 2021-03-09 Qualcomm Incorporated Techniques and apparatuses for wakeup signal transmission

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008232998A (en) * 2007-03-23 2008-10-02 Osaka Univ Method and device for measuring stress fluctuation distribution of structure, defect detecting method of structure, and risk assessing method of structure
WO2019054419A1 (en) * 2017-09-12 2019-03-21 日本電気株式会社 State determining device, state determining method, and computer-readable recording medium

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAKAGAMI, TAKAHIDE ET AL.: "Development of a Self-reference Lock-in Thermography for Remote Nondestructive Testing of Fatigue Crack (1st Report, Fundamental Study Using Welded Steel Samples", TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENAINEERS SERIES A., vol. 72, no. no. 724, December 2006 (2006-12-01), pages 50 - 57, XP055773678 *

Also Published As

Publication number Publication date
JP2023103459A (en) 2023-07-26
JP7287463B2 (en) 2023-06-06
JP7485155B2 (en) 2024-05-16
JPWO2020255232A1 (en) 2020-12-24

Similar Documents

Publication Publication Date Title
Feng et al. Computer vision for SHM of civil infrastructure: From dynamic response measurement to damage detection–A review
Jana et al. Computer vision‐based real‐time cable tension estimation in Dubrovnik cable‐stayed bridge using moving handheld video camera
Wang et al. Quantitative error assessment in pattern matching: effects of intensity pattern noise, interpolation, strain and image contrast on motion measurements
JP6954368B2 (en) Displacement component detection device, displacement component detection method, and program
Khaloo et al. Pixel‐wise structural motion tracking from rectified repurposed videos
US10852208B2 (en) Quantifying gas leak rates using frame images acquired by a camera
Sun et al. Non-contact optical sensing of asphalt mixture deformation using 3D stereo vision
Liu et al. Vision-based displacement measurement sensor using modified Taylor approximation approach
US11846498B2 (en) Displacement amount measuring device, displacement amount measuring method, and recording medium
JP6813025B2 (en) Status determination device, status determination method, and program
KR102026427B1 (en) Measurement System for concrete crack using smartphone
JP7238984B2 (en) Vibration measuring device, vibration measuring method, and program
Wang et al. Effects of compressed speckle image on digital image correlation for vibration measurement
Miao et al. Phase-based vibration imaging for structural dynamics applications: Marker-free full-field displacement measurements with confidence measures
Merainani et al. Subspace-based modal identification and uncertainty quantification from video image flows
US20200348168A1 (en) Measurement system, correction processing apparatus, correction processing method, and computer-readable recording medium
WO2020255231A1 (en) Displacement measurement device, displacement measurement method, and computer-readable recording medium
WO2020255232A1 (en) Data encoding device, data decoding device, data communication system, data communication method, and computer-readable recording medium
JP6996569B2 (en) Measurement system, correction processing device, correction processing method, and program
US11365963B2 (en) State determination apparatus, state determination method, and computer-readable recording medium
JPWO2019186985A1 (en) Vibration measurement system, vibration measurement device, vibration measurement method, and program
JP6954382B2 (en) Vibration reliability calculation device, vibration reliability calculation method, and program
Terán et al. Detection and magnification of bridge displacements using video images
JPWO2016142965A1 (en) Video processing apparatus, video processing method, and recording medium for storing video processing program
Li et al. Super-sensitivity full-field measurement of structural vibration with an adaptive incoherent optical method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19933650

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021528082

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19933650

Country of ref document: EP

Kind code of ref document: A1