WO2020255224A1 - Abnormality detection device, learning device, abnormality detection method, learning method, abnormality detection program, and learning program - Google Patents

Abnormality detection device, learning device, abnormality detection method, learning method, abnormality detection program, and learning program Download PDF

Info

Publication number
WO2020255224A1
WO2020255224A1 PCT/JP2019/023973 JP2019023973W WO2020255224A1 WO 2020255224 A1 WO2020255224 A1 WO 2020255224A1 JP 2019023973 W JP2019023973 W JP 2019023973W WO 2020255224 A1 WO2020255224 A1 WO 2020255224A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
cell
restored
learning
restoration
Prior art date
Application number
PCT/JP2019/023973
Other languages
French (fr)
Japanese (ja)
Inventor
崇之 梅田
慎吾 安藤
淳 嵯峨田
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2019/023973 priority Critical patent/WO2020255224A1/en
Publication of WO2020255224A1 publication Critical patent/WO2020255224A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis

Definitions

  • the disclosed technology relates to an abnormality detection device, a learning device, an abnormality detection method, a learning method, an abnormality detection program, and a learning program.
  • Anomaly detection is an important technology in modern industry. Its applications are wide-ranging, such as visual inspection of products, deterioration detection of industrial machines themselves, and deterioration detection of various infrastructures.
  • Patent Documents 1 and 2 For this problem, a technique for reducing abnormal state data required for learning data has been proposed (Patent Documents 1 and 2).
  • the disclosed technology was made in view of the above points, and is an abnormality detection device, a learning device, an abnormality detection method, a learning method, and an abnormality detection capable of detecting an abnormality location without requiring abnormality state data.
  • the purpose is to provide programs and learning programs.
  • the first aspect of the present disclosure is an abnormality detection device, in which a mask processing unit that generates a mask image that masks the cell for each cell in which the input image is divided, and the mask image as input for each cell.
  • a restoration unit that generates a restoration image using a pre-learned restoration model for restoring an image and acquires a restoration cell image that is the cell in the restoration image, and the restoration cell acquired for each cell. It is configured to include a joining unit that generates a combined image in which images are combined, and an abnormality detecting unit that compares the combined image with the input image and detects an abnormal portion.
  • a second aspect of the present disclosure is a learning device, in which a mask processing unit that generates a mask image that masks the cell for each cell in which a learning image representing a normal state is divided, and a mask for each cell.
  • a restored image is generated by using an image as an input and a restored model for restoring the image, a restored cell image which is the cell in the restored image is acquired, and the restored cell image and the learning are used for each cell. It is configured to include a learning unit that learns the restoration model so that the cell of the image matches.
  • a third aspect of the present disclosure is an abnormality detection method, in which the mask processing unit generates a mask image masking the cell for each cell in which the input image is divided, and the restoration unit generates the mask image for each cell.
  • the mask processing unit uses the mask image as input, a restored image is generated using a pre-learned restoration model for restoring the image, the restored cell image which is the cell in the restored image is acquired, and the joining portion is for each cell.
  • a combined image is generated by combining the restored cell images acquired in the above, and the abnormality detection unit compares the combined image with the input image and detects an abnormal portion.
  • a fourth aspect of the present disclosure is a learning method, in which the mask processing unit generates a mask image masking the cell for each cell in which the learning image representing the normal state is divided, and the learning unit generates the cell.
  • the mask processing unit generates a mask image masking the cell for each cell in which the learning image representing the normal state is divided, and the learning unit generates the cell.
  • the mask image is input, a restored image is generated using a restored model for restoring the image, a restored cell image which is the cell in the restored image is acquired, and the restored cell is obtained for each cell.
  • the restoration model is trained so that the image and the cell of the training image match.
  • a fifth aspect of the present disclosure is an abnormality detection program, in which a mask image masking the cell is generated for each cell in which the input image is divided, and the mask image is input to each cell to restore the image.
  • a restored image is generated, a restored cell image which is the cell in the restored image is acquired, and a combined image obtained by combining the restored cell images acquired for each cell is obtained. It is a program for causing a computer to generate and compare the combined image with the input image to detect an abnormal portion.
  • a sixth aspect of the present disclosure is a learning program, in which a mask image masking the cell is generated for each cell in which a learning image representing a normal state is divided, and the mask image is input to each cell.
  • a restored image is generated using a restored model for restoring an image, a restored cell image which is the cell in the restored image is acquired, and the restored cell image and the cell of the learning image are obtained for each cell.
  • a learning model representing a normal state is divided into a plurality of cells, and a restoration model for restoring a masked image of each cell to the original state is learned.
  • the input image is similarly divided into a plurality of cells, and the image masking each cell is input to the learned restoration model.
  • the restored cell images which are the masked parts of the restored image output from the restored model, and taking the difference from the input image, the part with a large difference is detected as an abnormal part.
  • M 0 to M n are masks, and only the cells to be masked are 1 and the others are 0.
  • G 0 to G n are mask images in which each cell is masked.
  • the mask images G 0 to G n are input to the restoration model R, and the obtained outputs are the restoration images C 0 to C n , respectively.
  • the restoration model is a deep neural network that reconstructs the input image, for example, U-Net shown in Non-Patent Document 1 and Dilated Conv. It is preferable to use a network structure using layers.
  • the partial images L 0 to L n are obtained by copying 8 cells in the vicinity of the restored cell from the learning image I and combining the restored cell image with the center cell.
  • the combined image A is a restored image having the same size as the learning image I, in which the restored cell images are combined.
  • the first classifier FL takes the combined image A as an input and discriminates whether or not it is a true image.
  • the second discriminator F A receives as input each of the partial images L 0 ⁇ L n, identifying respectively whether the true image.
  • Loss function L R on restoring model R is as follows. * Denotes multiplication for each element, as an object only the portion masked, calculates the loss function L R comprising matching degree for each pixel.
  • First discriminator F L the loss function L L for the second discriminator F A, the L A is as follows.
  • the loss function L R, L L learns recovery model R to optimize L A, first discriminator F L, and a second discriminator F A. As a result, the masked portion is restored, and the restoration model R is learned so that the restored cell image becomes natural with respect to the image of the peripheral portion and the combined image becomes natural.
  • mask images G 0 to G n for each cell are input to the restoration model R as in the case of learning, and the restored cell images extracted from the output image are combined to form a combined image. Get A. At this time, even if the cell represents an abnormal state, it is restored as representing a normal state in the restored cell image.
  • the abnormality detection map H is obtained by taking the difference between the input image I and the combined image A.
  • H IA
  • the combined image A is all restored to the normal system including the abnormal part by the restoration model R. Therefore, by taking the difference from the input image I including the abnormal part, ideally, the value other than the abnormal part becomes 0 and the value of the abnormal part becomes 1, and the abnormal part can be detected.
  • FIG. 3 is a block diagram showing a hardware configuration of the learning device 10 of the present embodiment.
  • the learning device 10 includes a CPU (Central Processing Unit) 11, a ROM (Read Only Memory) 12, a RAM (Random Access Memory) 13, a storage 14, an input unit 15, a display unit 16, and a communication interface (Random Access Memory) 13. It has an I / F) 17. Each configuration is communicably connected to each other via a bus 19.
  • CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • storage 14 an input unit
  • I / F communication interface
  • Each configuration is communicably connected to each other via a bus 19.
  • the CPU 11 is a central arithmetic processing unit that executes various programs and controls each part. That is, the CPU 11 reads the program from the ROM 12 or the storage 14, and executes the program using the RAM 13 as a work area. The CPU 11 controls each of the above configurations and performs various arithmetic processes according to the program stored in the ROM 12 or the storage 14.
  • the ROM 12 or the storage 14 stores a learning program for learning the restoration model.
  • the learning program may be one program, or may be a group of programs composed of a plurality of programs or modules.
  • the ROM 12 stores various programs and various data.
  • the RAM 13 temporarily stores a program or data as a work area.
  • the storage 14 is composed of an HDD (Hard Disk Drive) or an SSD (Solid State Drive), and stores various programs including an operating system and various data.
  • the input unit 15 includes a pointing device such as a mouse and a keyboard, and is used for performing various inputs.
  • the display unit 16 is, for example, a liquid crystal display and displays various types of information.
  • the display unit 16 may adopt a touch panel method and function as an input unit 15.
  • the communication interface 17 is an interface for communicating with other devices, and for example, standards such as Ethernet (registered trademark), FDDI, and Wi-Fi (registered trademark) are used.
  • FIG. 4 is a block diagram showing an example of the functional configuration of the learning device 10.
  • the learning device 10 can be represented by a configuration including a learning data storage unit 20, a mask processing unit 22, and a learning unit 24.
  • the learning data storage unit 20 stores a plurality of learning images representing a normal state.
  • the mask processing unit 22 generates a mask image in which only the cell is masked for each cell in which the learning image is divided for each of the plurality of learning images.
  • the learning unit 24 generates a restored image for each of the plurality of learning images by inputting a mask image masking the cell for each cell and using the restoration model, and the restoration cell which is the cell in the restoration image. An image is acquired, and a combined image is generated by combining the restored cell images acquired for each cell.
  • Learning unit 24 for each of a plurality of learning images, the loss function L R, L L, by optimizing the L A, and the cells restored the cell image and learning images per cell match and ,
  • the combined image is identified as a true image by the first classifier, and the partial image in which the cell of the learning image is replaced with the restored cell image for each cell is the true image by the second classifier.
  • the reconstruction model, the first classifier, and the second classifier are trained so that they can be identified as.
  • FIG. 3 is a block diagram showing a hardware configuration of the abnormality detection device 50 of the present embodiment.
  • the abnormality detection device 50 has a CPU (Central Processing Unit) 11, a ROM (Read Only Memory) 12, a RAM (Random Access Memory) 13, a storage 14, and an input unit, similarly to the learning device 10. It has a display unit 16 and a communication interface (I / F) 17.
  • the ROM 12 or the storage 14 stores an abnormality detection program for detecting an abnormality portion of the input image.
  • FIG. 5 is a block diagram showing an example of the functional configuration of the abnormality detection device 50.
  • the abnormality detection device 50 includes a mask processing unit 60, a model storage unit 62, a restoration unit 64, a coupling unit 66, and an abnormality detection unit 68.
  • the mask processing unit 60 generates a mask image in which only the cell is masked for each cell in which the input image is divided.
  • the model storage unit 62 stores the restored model learned by the learning device 10.
  • the restoration unit 64 inputs a mask image for each cell, generates a restoration image using the restoration model, and acquires the restoration cell image which is the cell in the restoration image.
  • the combining unit 66 generates a combined image in which the restored cell images acquired for each cell are combined.
  • the abnormality detection unit 68 compares the combined image with the input image and detects the abnormality portion. For example, a region consisting of pixels whose pixel value difference is equal to or greater than a threshold value is detected as an abnormal portion.
  • FIG. 6 is a flowchart showing the flow of the learning process by the learning device 10.
  • the learning process is performed by the CPU 11 reading the learning program from the ROM 12 or the storage 14, expanding it into the RAM 13 and executing it. Further, a learning image in a normal state is stored in advance in the learning data storage unit 20 of the learning device 10.
  • step S100 the CPU 11, as the mask processing unit 22, generates a mask image in which only the cell is masked for each cell in which the learning image is divided for each of the plurality of learning images.
  • step S102 the CPU 11, as the learning unit 24, generates a restored image by using the restoration model, inputting a mask image masking the cell for each cell for each of the plurality of learning images.
  • step S104 as the learning unit 24, the CPU 11 acquires the restored cell image, which is the cell in the restored image, for each cell of each of the plurality of learning images, and combines the acquired restored cell images for each cell. Generate a combined image.
  • step S106 CPU 11 has a learning section 24, for each of a plurality of learning images, so as to optimize the loss function L R, L L, the L A, recovery model, first discriminator, and a second Learn the classifier.
  • the cells of the restored cell image and the learning image match each cell, the combined image is identified as a true image by the first classifier, and the learning image is identified for each cell.
  • the restored model, the first classifier, and the second classifier are trained so that the partial image in which the cell is replaced with the restored cell image is identified by the second classifier as the true image.
  • step S108 the CPU 11 determines whether or not to end the repetition, and if it is determined not to end the repetition, the process returns to step S100. On the other hand, when the CPU 11 determines that the repetition is finished, the CPU 11 ends the learning processing routine.
  • FIG. 7 is a flowchart showing the flow of abnormality detection processing by the abnormality detection device 50.
  • the abnormality detection process is performed by the CPU 11 reading the abnormality detection program from the ROM 12 or the storage 14, expanding it into the RAM 13 and executing it.
  • the model storage unit 62 of the abnormality detection device 50 stores the restored model learned by the learning device 10.
  • the input unit 15 inputs an input image to be detected to the abnormality detection device 50.
  • step S110 the CPU 11, as the mask processing unit 60, generates a mask image in which only the cell is masked for each cell in which the input image is divided.
  • step S112 the CPU 11 generates a restored image as the restoration unit 64 by inputting a mask image for each cell and using the restoration model, and acquires the restoration cell image which is the cell in the restoration image.
  • step S114 the CPU 11 generates a combined image in which the restored cell images acquired for each cell are combined as the combining unit 66.
  • step S116 the CPU 11, as the abnormality detection unit 68, compares the combined image with the input image, detects the abnormality portion, displays it on the display unit 16, and ends the abnormality detection processing routine.
  • the learning device generates a mask image in which the cells are masked for each cell in which the learning image representing the normal state is divided, and the mask image is input to each cell as an image.
  • a restored image is generated using the restored model for restoring the image, and the restored cell image, which is a cell in the restored image, is acquired.
  • the learning device generates a combined image by combining the restored cell images acquired for each cell.
  • the restored cell image and the learning image match each cell, the combined image is identified as a true image by the first classifier, and the learning device is used for learning cell by cell.
  • the restoration model, the first classifier, and the second classifier are trained so that the image in which the cell of the image is replaced with the restored cell image is identified as a true image by the second classifier. As a result, it is possible to learn a restoration model for detecting an abnormal portion without requiring abnormal state data.
  • the abnormality detection device generates a mask image that masks the cells for each cell in which the input image is divided.
  • the anomaly detection device takes a mask image as an input for each cell, uses a pre-learned restoration model for restoring the image, generates a restoration image, and acquires a restoration cell image which is a cell in the restoration image.
  • the abnormality detection device generates a combined image in which the restored cell images acquired for each cell are combined, compares the combined image with the input image, and detects an abnormal portion.
  • the abnormal location can be detected without requiring the abnormal status data.
  • the abnormal portion can be detected without recognizing the type of abnormality, it can be used as a pre-stage of various abnormality detecting techniques.
  • the number of divided grids is fixed, but learning / restoration may be performed for each of the plurality of grids to obtain a plurality of abnormality detection maps H.
  • learning / restoration may be performed for each of the plurality of grids to obtain a plurality of abnormality detection maps H.
  • the learning device and the abnormality detection device may be configured as one device.
  • the program is pre-installed in the specification of the present application, it is also possible to provide the program by storing it in a computer-readable recording medium.
  • processors other than the CPU may execute various processes in which the CPU reads the software (program) and executes the software (program) in each of the above embodiments.
  • the processors include PLD (Programmable Logic Device) whose circuit configuration can be changed after manufacturing FPGA (Field-Programmable Gate Array), and ASIC (Application Specific Integrated Circuit) for executing ASIC (Application Special Integrated Circuit).
  • PLD Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • ASIC Application Specific Integrated Circuit
  • An example is a dedicated electric circuit or the like, which is a processor having a circuit configuration designed exclusively for the purpose.
  • the learning process and the abnormality detection process may be executed by one of these various processors, or a combination of two or more processors of the same type or different types (for example, a plurality of FPGAs, and a CPU and an FPGA). It may be executed in combination with).
  • the hardware structure of these various processors is, more specifically, an electric circuit in which circuit elements such as semiconductor elements are combined.
  • the program is a non-temporary storage medium such as a CD-ROM (Compact Disk Read Only Memory), a DVD-ROM (Digital entirely Disk Online Memory), and a USB (Universal Serial Bus) memory. It may be provided in the form. Further, the program may be downloaded from an external device via a network.
  • Anomaly detection device With memory With at least one processor connected to the memory Including The processor A mask image that masks the cell is generated for each cell in which the input image is divided. For each cell, the mask image is input, a restored image is generated using a pre-learned restoration model for restoring the image, and the restored cell image which is the cell in the restored image is acquired. A combined image obtained by combining the restored cell images acquired for each cell is generated. An abnormal portion is detected by comparing the combined image with the input image.
  • Anomaly detection device configured as.
  • a non-temporary storage medium that stores a program that can be executed by a computer to execute anomaly detection processing.
  • the abnormality detection process is A mask image that masks the cell is generated for each cell in which the input image is divided. For each cell, the mask image is input, a restored image is generated using a pre-learned restoration model for restoring the image, and the restored cell image which is the cell in the restored image is acquired. A combined image obtained by combining the restored cell images acquired for each cell is generated.
  • a non-temporary storage medium that detects an abnormal portion by comparing the combined image with the input image.
  • (Appendix 3) It ’s a learning device, With memory With at least one processor connected to the memory Including The processor A mask image that masks the cell is generated for each cell in which the learning image representing the normal state is divided. For each cell, the mask image is input, a restored image is generated using the restored model for restoring the image, and the restored cell image which is the cell in the restored image is acquired. The restoration model is trained so that the restoration cell image and the cell of the learning image match for each cell.
  • a learning device configured to be.
  • a non-temporary storage medium that stores a program that can be executed by a computer to perform a learning process.
  • the learning process is A mask image that masks the cell is generated for each cell in which the learning image representing the normal state is divided. For each cell, the mask image is input, a restored image is generated using the restored model for restoring the image, and the restored cell image which is the cell in the restored image is acquired.
  • a non-temporary storage medium that learns the restoration model so that the restoration cell image and the cell of the learning image match for each cell.

Abstract

A mask processing unit (60) generates, for each cell obtained by dividing an input image, a mask image in which the cell is masked. A restoration unit (64) receives the mask image as an input, generates a restored image for each cell using a pre-learned restoration model for image restoration, and acquires a restored cell image that is a cell in the restored image. A combination unit (66) generates a combined image by combining the restored cell images acquired for the respective cells. An abnormality detection unit (68) compares the combined image with the input image and detects an abnormal part.

Description

異常検知装置、学習装置、異常検知方法、学習方法、異常検知プログラム、及び学習プログラムAnomaly detection device, learning device, anomaly detection method, learning method, anomaly detection program, and learning program
 開示の技術は、異常検知装置、学習装置、異常検知方法、学習方法、異常検知プログラム、及び学習プログラムに関する。 The disclosed technology relates to an abnormality detection device, a learning device, an abnormality detection method, a learning method, an abnormality detection program, and a learning program.
 異常検知は現代産業において重要な技術である。製品の外観検査、産業機械自体の劣化検知、種々のインフラストラクチャーの劣化検知など、その応用は多岐に渡る。 Anomaly detection is an important technology in modern industry. Its applications are wide-ranging, such as visual inspection of products, deterioration detection of industrial machines themselves, and deterioration detection of various infrastructures.
 旧来人手による異常状態の検知が行われてきたが、昨今の機械学習の高度化に伴い、検査対象を撮影した画像から機械学習による異常検知が提案されている。 Although abnormal conditions have been detected manually by old visitors, with the recent advancement of machine learning, abnormality detection by machine learning has been proposed from images taken of inspection targets.
 機械学習に基づく異常検知においては、一般に異常状態のデータが大量に必要であるが、異常状態が起こる頻度の低さを理由にデータ確保が困難である。 In abnormality detection based on machine learning, a large amount of abnormal state data is generally required, but it is difficult to secure data due to the low frequency of abnormal state occurrence.
 この課題に対して従来から学習データに必要な異常状態のデータ削減を目的とした技術が提案されている(特許文献1,2)。 For this problem, a technique for reducing abnormal state data required for learning data has been proposed (Patent Documents 1 and 2).
特開2016-110290JP 2016-110290 特開2018-81442JP-A-2018-81442
 従来技術における大きな課題として、依然として一定量の異常状態データが必要である点がある。モデル学習時に種々の異常状態を列挙する必要があるが、実世界においては当初想定しえなかった異常が起こることもある。従来技術ではこれに対応することが困難である。 A major issue in the prior art is that a certain amount of abnormal state data is still required. It is necessary to enumerate various abnormal states during model learning, but in the real world, abnormalities that were not initially expected may occur. It is difficult to deal with this with the prior art.
 開示の技術は、上記の点に鑑みてなされたものであり、異常状態データを必要とせずに、異常箇所を検知することができる異常検知装置、学習装置、異常検知方法、学習方法、異常検知プログラム、及び学習プログラムを提供することを目的とする。 The disclosed technology was made in view of the above points, and is an abnormality detection device, a learning device, an abnormality detection method, a learning method, and an abnormality detection capable of detecting an abnormality location without requiring abnormality state data. The purpose is to provide programs and learning programs.
 本開示の第1態様は、異常検知装置であって、入力画像を分割したセル毎に、前記セルをマスクしたマスク画像を生成するマスク処理部と、前記セル毎に、前記マスク画像を入力として、画像を復元するための予め学習された復元モデルを用いて、復元画像を生成し、前記復元画像における前記セルである復元セル画像を取得する復元部と、前記セル毎に取得した前記復元セル画像を結合した結合画像を生成する結合部と、前記結合画像と前記入力画像とを比較して、異常箇所を検知する異常検知部と、を含んで構成されている。 The first aspect of the present disclosure is an abnormality detection device, in which a mask processing unit that generates a mask image that masks the cell for each cell in which the input image is divided, and the mask image as input for each cell. , A restoration unit that generates a restoration image using a pre-learned restoration model for restoring an image and acquires a restoration cell image that is the cell in the restoration image, and the restoration cell acquired for each cell. It is configured to include a joining unit that generates a combined image in which images are combined, and an abnormality detecting unit that compares the combined image with the input image and detects an abnormal portion.
 本開示の第2態様は、学習装置であって、正常状態を表す学習用画像を分割したセル毎に、前記セルをマスクしたマスク画像を生成するマスク処理部と、前記セル毎に、前記マスク画像を入力として、画像を復元するための復元モデルを用いて、復元画像を生成し、前記復元画像における前記セルである復元セル画像を取得し、前記セル毎に前記復元セル画像と前記学習用画像の前記セルとが一致するように、前記復元モデルを学習する学習部と、を含んで構成されている。 A second aspect of the present disclosure is a learning device, in which a mask processing unit that generates a mask image that masks the cell for each cell in which a learning image representing a normal state is divided, and a mask for each cell. A restored image is generated by using an image as an input and a restored model for restoring the image, a restored cell image which is the cell in the restored image is acquired, and the restored cell image and the learning are used for each cell. It is configured to include a learning unit that learns the restoration model so that the cell of the image matches.
 本開示の第3態様は、異常検知方法であって、マスク処理部が、入力画像を分割したセル毎に、前記セルをマスクしたマスク画像を生成し、復元部が、前記セル毎に、前記マスク画像を入力として、画像を復元するための予め学習された復元モデルを用いて、復元画像を生成し、前記復元画像における前記セルである復元セル画像を取得し、結合部が、前記セル毎に取得した前記復元セル画像を結合した結合画像を生成し、異常検知部が、前記結合画像と前記入力画像とを比較して、異常箇所を検知する。 A third aspect of the present disclosure is an abnormality detection method, in which the mask processing unit generates a mask image masking the cell for each cell in which the input image is divided, and the restoration unit generates the mask image for each cell. Using the mask image as input, a restored image is generated using a pre-learned restoration model for restoring the image, the restored cell image which is the cell in the restored image is acquired, and the joining portion is for each cell. A combined image is generated by combining the restored cell images acquired in the above, and the abnormality detection unit compares the combined image with the input image and detects an abnormal portion.
 本開示の第4態様は、学習方法であって、マスク処理部が、正常状態を表す学習用画像を分割したセル毎に、前記セルをマスクしたマスク画像を生成し、学習部が、前記セル毎に、前記マスク画像を入力として、画像を復元するための復元モデルを用いて、復元画像を生成し、前記復元画像における前記セルである復元セル画像を取得し、前記セル毎に前記復元セル画像と前記学習用画像の前記セルとが一致するように、前記復元モデルを学習する。 A fourth aspect of the present disclosure is a learning method, in which the mask processing unit generates a mask image masking the cell for each cell in which the learning image representing the normal state is divided, and the learning unit generates the cell. Each time, the mask image is input, a restored image is generated using a restored model for restoring the image, a restored cell image which is the cell in the restored image is acquired, and the restored cell is obtained for each cell. The restoration model is trained so that the image and the cell of the training image match.
 本開示の第5態様は、異常検知プログラムであって、入力画像を分割したセル毎に、前記セルをマスクしたマスク画像を生成し、前記セル毎に、前記マスク画像を入力として、画像を復元するための予め学習された復元モデルを用いて、復元画像を生成し、前記復元画像における前記セルである復元セル画像を取得し、前記セル毎に取得した前記復元セル画像を結合した結合画像を生成し、前記結合画像と前記入力画像とを比較して、異常箇所を検知することをコンピュータに実行させるためのプログラムである。 A fifth aspect of the present disclosure is an abnormality detection program, in which a mask image masking the cell is generated for each cell in which the input image is divided, and the mask image is input to each cell to restore the image. A restored image is generated, a restored cell image which is the cell in the restored image is acquired, and a combined image obtained by combining the restored cell images acquired for each cell is obtained. It is a program for causing a computer to generate and compare the combined image with the input image to detect an abnormal portion.
 本開示の第6態様は、学習プログラムであって、正常状態を表す学習用画像を分割したセル毎に、前記セルをマスクしたマスク画像を生成し、前記セル毎に、前記マスク画像を入力として、画像を復元するための復元モデルを用いて、復元画像を生成し、前記復元画像における前記セルである復元セル画像を取得し、前記セル毎に前記復元セル画像と前記学習用画像の前記セルとが一致するように、前記復元モデルを学習することをコンピュータに実行させるためのプログラムである。 A sixth aspect of the present disclosure is a learning program, in which a mask image masking the cell is generated for each cell in which a learning image representing a normal state is divided, and the mask image is input to each cell. , A restored image is generated using a restored model for restoring an image, a restored cell image which is the cell in the restored image is acquired, and the restored cell image and the cell of the learning image are obtained for each cell. Is a program for causing a computer to learn the restoration model so as to match.
 開示の技術によれば、異常状態データを必要とせずに、異常箇所を検知することができる。 According to the disclosed technology, it is possible to detect an abnormal part without requiring abnormal state data.
復元モデルを学習する方法を説明するための図である。It is a figure for demonstrating the method of learning the restoration model. 異常箇所を検知する方法を説明するための図である。It is a figure for demonstrating the method of detecting an abnormal part. 本実施形態の学習装置及び異常検知装置として機能するコンピュータの一例の概略ブロック図である。It is a schematic block diagram of an example of a computer functioning as a learning device and an abnormality detection device of this embodiment. 本実施形態の学習装置の構成を示すブロック図である。It is a block diagram which shows the structure of the learning apparatus of this embodiment. 本実施形態の異常検知装置の構成を示すブロック図である。It is a block diagram which shows the structure of the abnormality detection device of this embodiment. 本実施形態の学習装置の学習処理ルーチンを示すフローチャートである。It is a flowchart which shows the learning processing routine of the learning apparatus of this embodiment. 本実施形態の異常検知装置の異常検知処理ルーチンを示すフローチャートである。It is a flowchart which shows the abnormality detection processing routine of the abnormality detection apparatus of this embodiment.
 以下、開示の技術の実施形態の一例を、図面を参照しつつ説明する。なお、各図面において同一又は等価な構成要素及び部分には同一の参照符号を付与している。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。 Hereinafter, an example of the embodiment of the disclosed technology will be described with reference to the drawings. The same reference numerals are given to the same or equivalent components and parts in each drawing. In addition, the dimensional ratios in the drawings are exaggerated for convenience of explanation and may differ from the actual ratios.
<本実施形態の概要>
 本実施形態では、正常状態を表す学習用画像を複数のセルに分割し、各セルをマスクした画像を元通りに復元する復元モデルを学習する。
<Outline of this embodiment>
In the present embodiment, a learning model representing a normal state is divided into a plurality of cells, and a restoration model for restoring a masked image of each cell to the original state is learned.
 テスト時には、同様に入力画像を複数のセルに分割し、各セルをマスクした画像を、学習した復元モデルに入力する。復元モデルから出力された復元画像のマスク部分である復元セル画像を結合し、入力画像との差分を取ることで、差分が大きい箇所を、異常箇所として検知する。 At the time of the test, the input image is similarly divided into a plurality of cells, and the image masking each cell is input to the learned restoration model. By combining the restored cell images, which are the masked parts of the restored image output from the restored model, and taking the difference from the input image, the part with a large difference is detected as an abnormal part.
 以下に、学習時の処理、及びテスト時の処理を具体的に説明する。 The processing during learning and the processing during testing will be explained in detail below.
 まず、復元モデルを学習する際に必要な教師データについて図1を用いて説明する。 First, the teacher data required for learning the restoration model will be described with reference to FIG.
 学習用画像Iは正常状態を表す画像である。これを任意の数のセルに分割する、ここではグリッド数=4として16セル(=4*4)に分割した場合について説明する。 The learning image I is an image showing a normal state. This will be divided into an arbitrary number of cells. Here, a case where the number of grids = 4 and the cells are divided into 16 cells (= 4 * 4) will be described.
 M~Mはマスクであり、マスクするべきセルのみ1、その他は0となる画像である。 M 0 to M n are masks, and only the cells to be masked are 1 and the others are 0.
 G~Gは各セルをマスクしたマスク画像である。マスク画像は、例えば、セル部分を塗りつぶした画像である。だたし、n=16である。 G 0 to G n are mask images in which each cell is masked. The mask image is, for example, an image in which the cell portion is filled. However, n = 16.
 復元モデルRにマスク画像G~Gをそれぞれに入力し、得られる出力がそれぞれ復元画像C~Cである。 The mask images G 0 to G n are input to the restoration model R, and the obtained outputs are the restoration images C 0 to C n , respectively.
 復元モデルは、入力された画像を再構成する深層ニューラルネットワークであり、例えば非特許文献1に示されるU-Netや、非特許文献2に示されるDilated Conv.層を用いたネットワーク構造を用いると良い。 The restoration model is a deep neural network that reconstructs the input image, for example, U-Net shown in Non-Patent Document 1 and Dilated Conv. It is preferable to use a network structure using layers.
 部分画像L~Lは、復元したセルの近傍8セルを学習用画像Iからコピーし、中心セルに復元セル画像を結合したものである。 The partial images L 0 to L n are obtained by copying 8 cells in the vicinity of the restored cell from the learning image I and combining the restored cell image with the center cell.
 部分画像L’~L’は、部分画像L~Lと同様の位置・サイズの画像であるが、中心セルは復元セル画像ではなく学習用画像Iの当該セルからコピーしたものである。 The partial images L 0'to L n'are images having the same position and size as the partial images L 0 to L n , but the center cell is not a restored cell image but a copy from the cell of the learning image I. is there.
 結合画像Aは、復元セル画像を結合した、学習用画像Iと同様のサイズの復元画像である。 The combined image A is a restored image having the same size as the learning image I, in which the restored cell images are combined.
 部分画像L~Lおよび結合画像Aを、非特許文献1に示されるGANの識別器と同様に構成した第1識別器F及び第2識別器Fに入力する。ここで、第1識別器Fは、結合画像Aを入力とし、真の画像であるか否かを識別する。また、第2識別器Fは、部分画像L~Lの各々を入力とし、真の画像であるか否かを各々識別する。
Liu Y. et.al., "Deep Blind Image Inpainting" , インターネット検索<URL:https://arxiv.org/pdf/1712.09078.pdf> Yu J. et.al., "Generative Image Inpainting with Contextual Attention" , インターネット検索<URL:http://openaccess.thecvf.com/content_cvpr_2018/papers/Yu_Generative_Image_Inpainting_CVPR_2018_paper.pdf> Ian J. Goodfellow et al., "Generative Adversarial Nets", インターネット検索<URL:http://datascienceassn.org/sites/default/files/Generative%20Adversarial%20Nets.pdf>
The partial images L 0 ~ L n and combined image A, input to the first discriminator F L and a second discriminator F A which is constructed similarly to the GAN discriminator shown in Non-Patent Document 1. Here, the first classifier FL takes the combined image A as an input and discriminates whether or not it is a true image. The second discriminator F A receives as input each of the partial images L 0 ~ L n, identifying respectively whether the true image.
Liu Y. et.al., "Deep Blind Image Inpainting", Internet Search <URL: https://arxiv.org/pdf/1712.09078.pdf> Yu J. et.al., "Generative Image Inpainting with Contextual Attention", Internet Search <URL: http://openaccess.thecvf.com/content_cvpr_2018/papers/Yu_Generative_Image_Inpainting_CVPR_2018_paper.pdf> Ian J. Goodfellow et al., "Generative Adversarial Nets", Internet Search <URL: http://datascienceassn.org/sites/default/files/Generative%20Adversarial%20Nets.pdf>
 復元モデルRに関する損失関数Lは次の通りである。*は要素ごとの乗算を意味し、マスクした部分のみを対象として、画素単位での一致度を含む損失関数Lを計算する。 Loss function L R on restoring model R is as follows. * Denotes multiplication for each element, as an object only the portion masked, calculates the loss function L R comprising matching degree for each pixel.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 第1識別器F、第2識別器Fに関する損失関数L、Lは次の通りである。 First discriminator F L, the loss function L L for the second discriminator F A, the L A is as follows.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002

Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 上記損失関数L、L、Lを最適化するように復元モデルR、第1識別器F、及び第2識別器Fを学習する。これにより、マスクした部分を復元し、復元セル画像が、周辺部分の画像に対して自然となり、かつ、結合画像が自然となるように復元モデルRが学習される。 The loss function L R, L L, learns recovery model R to optimize L A, first discriminator F L, and a second discriminator F A. As a result, the masked portion is restored, and the restoration model R is learned so that the restored cell image becomes natural with respect to the image of the peripheral portion and the combined image becomes natural.
 次に、学習により得られた復元モデルRを用いて、実際に異常を検知する際の処理について図2を参照して説明する。 Next, using the restoration model R obtained by learning, the processing when actually detecting an abnormality will be described with reference to FIG.
 任意の入力画像Iに対して、学習時と同様に、セル毎のマスク画像G~Gを復元モデルRにそれぞれ入力し、出力された画像から抽出された復元セル画像を結合した結合画像を得る。このとき、異常状態を表すセルであっても、復元セル画像では正常状態を表すものとして復元されている。 For any input image I, mask images G 0 to G n for each cell are input to the restoration model R as in the case of learning, and the restored cell images extracted from the output image are combined to form a combined image. Get A. At this time, even if the cell represents an abnormal state, it is restored as representing a normal state in the restored cell image.
 そして、以下の式に示すように、入力画像Iと結合画像Aとの差分を取ることにより異常検知マップHを得る。
H=I-A
Then, as shown in the following equation, the abnormality detection map H is obtained by taking the difference between the input image I and the combined image A.
H = IA
 ここで、結合画像Aは、復元モデルRによって異常箇所を含めて全て正常系に復元されている。そのため異常箇所を含む入力画像Iとの差分を取ることで、理想的には異常箇所以外の値は0に、異常箇所の値は1となり、異常箇所の検知が可能となる。 Here, the combined image A is all restored to the normal system including the abnormal part by the restoration model R. Therefore, by taking the difference from the input image I including the abnormal part, ideally, the value other than the abnormal part becomes 0 and the value of the abnormal part becomes 1, and the abnormal part can be detected.
<本実施形態に係る学習装置の構成>
 図3は、本実施形態の学習装置10のハードウェア構成を示すブロック図である。
<Structure of learning device according to this embodiment>
FIG. 3 is a block diagram showing a hardware configuration of the learning device 10 of the present embodiment.
 図3に示すように、学習装置10は、CPU(Central Processing Unit)11、ROM(Read Only Memory)12、RAM(Random Access Memory)13、ストレージ14、入力部15、表示部16及び通信インタフェース(I/F)17を有する。各構成は、バス19を介して相互に通信可能に接続されている。 As shown in FIG. 3, the learning device 10 includes a CPU (Central Processing Unit) 11, a ROM (Read Only Memory) 12, a RAM (Random Access Memory) 13, a storage 14, an input unit 15, a display unit 16, and a communication interface (Random Access Memory) 13. It has an I / F) 17. Each configuration is communicably connected to each other via a bus 19.
 CPU11は、中央演算処理ユニットであり、各種プログラムを実行したり、各部を制御したりする。すなわち、CPU11は、ROM12又はストレージ14からプログラムを読み出し、RAM13を作業領域としてプログラムを実行する。CPU11は、ROM12又はストレージ14に記憶されているプログラムに従って、上記各構成の制御及び各種の演算処理を行う。本実施形態では、ROM12又はストレージ14には、復元モデルを学習するための学習プログラムが格納されている。学習プログラムは、1つのプログラムであっても良いし、複数のプログラム又はモジュールで構成されるプログラム群であっても良い。 The CPU 11 is a central arithmetic processing unit that executes various programs and controls each part. That is, the CPU 11 reads the program from the ROM 12 or the storage 14, and executes the program using the RAM 13 as a work area. The CPU 11 controls each of the above configurations and performs various arithmetic processes according to the program stored in the ROM 12 or the storage 14. In the present embodiment, the ROM 12 or the storage 14 stores a learning program for learning the restoration model. The learning program may be one program, or may be a group of programs composed of a plurality of programs or modules.
 ROM12は、各種プログラム及び各種データを格納する。RAM13は、作業領域として一時的にプログラム又はデータを記憶する。ストレージ14は、HDD(Hard Disk Drive)又はSSD(Solid State Drive)により構成され、オペレーティングシステムを含む各種プログラム、及び各種データを格納する。 ROM 12 stores various programs and various data. The RAM 13 temporarily stores a program or data as a work area. The storage 14 is composed of an HDD (Hard Disk Drive) or an SSD (Solid State Drive), and stores various programs including an operating system and various data.
 入力部15は、マウス等のポインティングデバイス、及びキーボードを含み、各種の入力を行うために使用される。 The input unit 15 includes a pointing device such as a mouse and a keyboard, and is used for performing various inputs.
 表示部16は、例えば、液晶ディスプレイであり、各種の情報を表示する。表示部16は、タッチパネル方式を採用して、入力部15として機能しても良い。 The display unit 16 is, for example, a liquid crystal display and displays various types of information. The display unit 16 may adopt a touch panel method and function as an input unit 15.
 通信インタフェース17は、他の機器と通信するためのインタフェースであり、例えば、イーサネット(登録商標)、FDDI、Wi-Fi(登録商標)等の規格が用いられる。 The communication interface 17 is an interface for communicating with other devices, and for example, standards such as Ethernet (registered trademark), FDDI, and Wi-Fi (registered trademark) are used.
 次に、学習装置10の機能構成について説明する。図4は、学習装置10の機能構成の例を示すブロック図である。 Next, the functional configuration of the learning device 10 will be described. FIG. 4 is a block diagram showing an example of the functional configuration of the learning device 10.
 学習装置10は、学習データ記憶部20と、マスク処理部22と、学習部24とを含んだ構成で表すことができる。 The learning device 10 can be represented by a configuration including a learning data storage unit 20, a mask processing unit 22, and a learning unit 24.
 学習データ記憶部20には、正常状態を表す複数の学習用画像が記憶されている。 The learning data storage unit 20 stores a plurality of learning images representing a normal state.
 マスク処理部22は、複数の学習用画像の各々について、当該学習用画像を分割したセル毎に、当該セルのみをマスクしたマスク画像を各々生成する。 The mask processing unit 22 generates a mask image in which only the cell is masked for each cell in which the learning image is divided for each of the plurality of learning images.
 学習部24は、複数の学習用画像の各々について、セル毎に、当該セルをマスクしたマスク画像を入力として、復元モデルを用いて、復元画像を生成し、復元画像における当該セルである復元セル画像を取得し、セル毎に取得した復元セル画像を結合した結合画像を生成する。 The learning unit 24 generates a restored image for each of the plurality of learning images by inputting a mask image masking the cell for each cell and using the restoration model, and the restoration cell which is the cell in the restoration image. An image is acquired, and a combined image is generated by combining the restored cell images acquired for each cell.
 学習部24は、複数の学習用画像の各々について、上記損失関数L、L,Lを最適化することにより、セル毎に復元セル画像と学習用画像のセルとが一致し、かつ、結合画像が、第1識別器によって真の画像であると識別され、かつ、セル毎に、学習用画像のセルを、復元セル画像に置き換えた部分画像が、第2識別器によって真の画像であると識別されるように、復元モデル、第1識別器、及び第2識別器を学習する。 Learning unit 24, for each of a plurality of learning images, the loss function L R, L L, by optimizing the L A, and the cells restored the cell image and learning images per cell match and , The combined image is identified as a true image by the first classifier, and the partial image in which the cell of the learning image is replaced with the restored cell image for each cell is the true image by the second classifier. The reconstruction model, the first classifier, and the second classifier are trained so that they can be identified as.
<本実施形態に係る異常検知装置の構成>
 上記図3は、本実施形態の異常検知装置50のハードウェア構成を示すブロック図である。
<Configuration of abnormality detection device according to this embodiment>
FIG. 3 is a block diagram showing a hardware configuration of the abnormality detection device 50 of the present embodiment.
 上記図3に示すように、異常検知装置50は、学習装置10と同様に、CPU(Central Processing Unit)11、ROM(Read Only Memory)12、RAM(Random Access Memory)13、ストレージ14、入力部15、表示部16及び通信インタフェース(I/F)17を有する。本実施形態では、ROM12又はストレージ14には、入力画像の異常箇所を検知するための異常検知プログラムが格納されている。 As shown in FIG. 3, the abnormality detection device 50 has a CPU (Central Processing Unit) 11, a ROM (Read Only Memory) 12, a RAM (Random Access Memory) 13, a storage 14, and an input unit, similarly to the learning device 10. It has a display unit 16 and a communication interface (I / F) 17. In the present embodiment, the ROM 12 or the storage 14 stores an abnormality detection program for detecting an abnormality portion of the input image.
 次に、異常検知装置50の機能構成について説明する。図5は、異常検知装置50の機能構成の例を示すブロック図である。 Next, the functional configuration of the abnormality detection device 50 will be described. FIG. 5 is a block diagram showing an example of the functional configuration of the abnormality detection device 50.
 異常検知装置50は、機能的には、図5に示すように、マスク処理部60、モデル記憶部62、復元部64、結合部66、及び異常検知部68を備えている。 Functionally, as shown in FIG. 5, the abnormality detection device 50 includes a mask processing unit 60, a model storage unit 62, a restoration unit 64, a coupling unit 66, and an abnormality detection unit 68.
 マスク処理部60は、入力画像を分割したセル毎に、当該セルのみをマスクしたマスク画像を各々生成する。 The mask processing unit 60 generates a mask image in which only the cell is masked for each cell in which the input image is divided.
 モデル記憶部62には、学習装置10によって学習された復元モデルが記憶されている。 The model storage unit 62 stores the restored model learned by the learning device 10.
 復元部64は、セル毎に、マスク画像を入力として、復元モデルを用いて、復元画像を生成し、復元画像における当該セルである復元セル画像を取得する。 The restoration unit 64 inputs a mask image for each cell, generates a restoration image using the restoration model, and acquires the restoration cell image which is the cell in the restoration image.
 結合部66は、セル毎に取得した復元セル画像を結合した結合画像を生成する。 The combining unit 66 generates a combined image in which the restored cell images acquired for each cell are combined.
 異常検知部68は、結合画像と入力画像とを比較して、異常箇所を検知する。例えば、画素値の差分が閾値以上となる画素からなる領域を、異常箇所として検知する。 The abnormality detection unit 68 compares the combined image with the input image and detects the abnormality portion. For example, a region consisting of pixels whose pixel value difference is equal to or greater than a threshold value is detected as an abnormal portion.
<本実施形態に係る学習装置の作用>
 次に、学習装置10の作用について説明する。図6は、学習装置10による学習処理の流れを示すフローチャートである。CPU11がROM12又はストレージ14から学習プログラムを読み出して、RAM13に展開して実行することにより、学習処理が行なわれる。また、学習装置10の学習データ記憶部20に、正常状態の学習用画像が予め記憶されている。
<Operation of the learning device according to this embodiment>
Next, the operation of the learning device 10 will be described. FIG. 6 is a flowchart showing the flow of the learning process by the learning device 10. The learning process is performed by the CPU 11 reading the learning program from the ROM 12 or the storage 14, expanding it into the RAM 13 and executing it. Further, a learning image in a normal state is stored in advance in the learning data storage unit 20 of the learning device 10.
 ステップS100において、CPU11は、マスク処理部22として、複数の学習用画像の各々について、当該学習用画像を分割したセル毎に、当該セルのみをマスクしたマスク画像を各々生成する。 In step S100, the CPU 11, as the mask processing unit 22, generates a mask image in which only the cell is masked for each cell in which the learning image is divided for each of the plurality of learning images.
 ステップS102では、CPU11は、学習部24として、複数の学習用画像の各々について、セル毎に、当該セルをマスクしたマスク画像を入力として、復元モデルを用いて、復元画像を生成する。 In step S102, the CPU 11, as the learning unit 24, generates a restored image by using the restoration model, inputting a mask image masking the cell for each cell for each of the plurality of learning images.
 ステップS104では、CPU11は、学習部24として、複数の学習用画像の各々について、セル毎に、復元画像における当該セルである復元セル画像を取得し、セル毎に取得した復元セル画像を結合した結合画像を生成する。 In step S104, as the learning unit 24, the CPU 11 acquires the restored cell image, which is the cell in the restored image, for each cell of each of the plurality of learning images, and combines the acquired restored cell images for each cell. Generate a combined image.
 ステップS106では、CPU11は、学習部24として、複数の学習用画像の各々について、上記損失関数L、L,Lを最適化するように、復元モデル、第1識別器、及び第2識別器を学習する。これにより、セル毎に復元セル画像と学習用画像のセルとが一致し、かつ、結合画像が、第1識別器によって真の画像であると識別され、かつ、セル毎に、学習用画像のセルを、復元セル画像に置き換えた部分画像が、第2識別器によって真の画像であると識別されるように、復元モデル、第1識別器、及び第2識別器が学習される。 In step S106, CPU 11 has a learning section 24, for each of a plurality of learning images, so as to optimize the loss function L R, L L, the L A, recovery model, first discriminator, and a second Learn the classifier. As a result, the cells of the restored cell image and the learning image match each cell, the combined image is identified as a true image by the first classifier, and the learning image is identified for each cell. The restored model, the first classifier, and the second classifier are trained so that the partial image in which the cell is replaced with the restored cell image is identified by the second classifier as the true image.
 ステップS108では、CPU11は、繰り返しを終了するか否かを判定し、繰り返しを終了しないと判定された場合には、上記ステップS100へ戻る。一方、CPU11は、繰り返しを終了すると判定した場合には、学習処理ルーチンを終了する。 In step S108, the CPU 11 determines whether or not to end the repetition, and if it is determined not to end the repetition, the process returns to step S100. On the other hand, when the CPU 11 determines that the repetition is finished, the CPU 11 ends the learning processing routine.
<本実施形態に係る異常検知装置の作用>
 次に、異常検知装置50の作用について説明する。
<Operation of the abnormality detection device according to this embodiment>
Next, the operation of the abnormality detection device 50 will be described.
 図7は、異常検知装置50による異常検知処理の流れを示すフローチャートである。CPU11がROM12又はストレージ14から異常検知プログラムを読み出して、RAM13に展開して実行することにより、異常検知処理が行なわれる。また、異常検知装置50のモデル記憶部62に、学習装置10によって学習された復元モデルが記憶されている。また、入力部15により、異常検知装置50に、検知対象となる入力画像が入力される。 FIG. 7 is a flowchart showing the flow of abnormality detection processing by the abnormality detection device 50. The abnormality detection process is performed by the CPU 11 reading the abnormality detection program from the ROM 12 or the storage 14, expanding it into the RAM 13 and executing it. Further, the model storage unit 62 of the abnormality detection device 50 stores the restored model learned by the learning device 10. Further, the input unit 15 inputs an input image to be detected to the abnormality detection device 50.
 ステップS110で、CPU11は、マスク処理部60として、入力画像を分割したセル毎に、当該セルのみをマスクしたマスク画像を各々生成する。 In step S110, the CPU 11, as the mask processing unit 60, generates a mask image in which only the cell is masked for each cell in which the input image is divided.
 ステップS112で、CPU11は、復元部64として、セル毎に、マスク画像を入力として、復元モデルを用いて、復元画像を生成し、復元画像における当該セルである復元セル画像を取得する。 In step S112, the CPU 11 generates a restored image as the restoration unit 64 by inputting a mask image for each cell and using the restoration model, and acquires the restoration cell image which is the cell in the restoration image.
 ステップS114で、CPU11は、結合部66として、セル毎に取得した復元セル画像を結合した結合画像を生成する。 In step S114, the CPU 11 generates a combined image in which the restored cell images acquired for each cell are combined as the combining unit 66.
 ステップS116で、CPU11は、異常検知部68として、結合画像と入力画像とを比較して、異常箇所を検知し、表示部16により表示し、異常検知処理ルーチンを終了する。 In step S116, the CPU 11, as the abnormality detection unit 68, compares the combined image with the input image, detects the abnormality portion, displays it on the display unit 16, and ends the abnormality detection processing routine.
 以上説明したように、本実施形態に係る学習装置は、正常状態を表す学習用画像を分割したセル毎に、セルをマスクしたマスク画像を生成し、セル毎に、マスク画像を入力として、画像を復元するための復元モデルを用いて、復元画像を生成し、復元画像におけるセルである復元セル画像を取得する。学習装置は、セル毎に取得した復元セル画像を結合した結合画像を生成する。学習装置は、セル毎に復元セル画像と学習用画像の当該セルとが一致し、かつ、結合画像が、第1識別器によって真の画像であると識別され、かつ、セル毎に、学習用画像のセルを、復元セル画像に置き換えた画像が、第2識別器によって真の画像であると識別されるように、復元モデル、第1識別器、及び第2識別器を学習する。これにより、異常状態データを必要とせずに、異常箇所を検知するための復元モデルを学習することができる。 As described above, the learning device according to the present embodiment generates a mask image in which the cells are masked for each cell in which the learning image representing the normal state is divided, and the mask image is input to each cell as an image. A restored image is generated using the restored model for restoring the image, and the restored cell image, which is a cell in the restored image, is acquired. The learning device generates a combined image by combining the restored cell images acquired for each cell. In the learning device, the restored cell image and the learning image match each cell, the combined image is identified as a true image by the first classifier, and the learning device is used for learning cell by cell. The restoration model, the first classifier, and the second classifier are trained so that the image in which the cell of the image is replaced with the restored cell image is identified as a true image by the second classifier. As a result, it is possible to learn a restoration model for detecting an abnormal portion without requiring abnormal state data.
 本実施形態に係る異常検知装置は、入力画像を分割したセル毎に、セルをマスクしたマスク画像を生成する。異常検知装置は、セル毎に、マスク画像を入力として、画像を復元するための予め学習された復元モデルを用いて、復元画像を生成し、復元画像におけるセルである復元セル画像を取得する。異常検知装置は、セル毎に取得した復元セル画像を結合した結合画像を生成し、結合画像と入力画像とを比較して、異常箇所を検知する。これにより、異常状態データを必要とせずに、異常箇所を検知することができる。また、異常の種類を認識せずに、異常箇所の検知が可能なため、種々の異常検知技術の前段として使用することができる。 The abnormality detection device according to the present embodiment generates a mask image that masks the cells for each cell in which the input image is divided. The anomaly detection device takes a mask image as an input for each cell, uses a pre-learned restoration model for restoring the image, generates a restoration image, and acquires a restoration cell image which is a cell in the restoration image. The abnormality detection device generates a combined image in which the restored cell images acquired for each cell are combined, compares the combined image with the input image, and detects an abnormal portion. As a result, the abnormal location can be detected without requiring the abnormal status data. Further, since the abnormal portion can be detected without recognizing the type of abnormality, it can be used as a pre-stage of various abnormality detecting techniques.
<変形例>
 なお、本発明は、上述した実施形態に限定されるものではなく、この発明の要旨を逸脱しない範囲内で様々な変形や応用が可能である。
<Modification example>
The present invention is not limited to the above-described embodiment, and various modifications and applications are possible without departing from the gist of the present invention.
 例えば、本実施形態では分割グリッド数を固定していたが、複数のグリッド数の各々で学習・復元を行って、複数の異常検知マップHを得るようにしてもよい。このようにして得られた複数の異常検知マップHの平均を取ることで、異常箇所のスケールの変動にも対応することが可能である。 For example, in the present embodiment, the number of divided grids is fixed, but learning / restoration may be performed for each of the plurality of grids to obtain a plurality of abnormality detection maps H. By taking the average of the plurality of abnormality detection maps H obtained in this way, it is possible to deal with fluctuations in the scale of the abnormal portion.
 また、学習装置と異常検知装置とを一つの装置として構成してもよい。また、本願明細書中において、プログラムが予めインストールされている実施形態として説明したが、当該プログラムを、コンピュータ読み取り可能な記録媒体に格納して提供することも可能である。 Further, the learning device and the abnormality detection device may be configured as one device. Further, although described as an embodiment in which the program is pre-installed in the specification of the present application, it is also possible to provide the program by storing it in a computer-readable recording medium.
 また、上記各実施形態でCPUがソフトウェア(プログラム)を読み込んで実行した各種処理を、CPU以外の各種のプロセッサが実行してもよい。この場合のプロセッサとしては、FPGA(Field-Programmable Gate Array)等の製造後に回路構成を変更可能なPLD(Programmable Logic Device)、及びASIC(Application Specific Integrated Circuit)等の特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路等が例示される。また、学習処理及び異常検知処理を、これらの各種のプロセッサのうちの1つで実行してもよいし、同種又は異種の2つ以上のプロセッサの組み合わせ(例えば、複数のFPGA、及びCPUとFPGAとの組み合わせ等)で実行してもよい。また、これらの各種のプロセッサのハードウェア的な構造は、より具体的には、半導体素子等の回路素子を組み合わせた電気回路である。 Further, various processors other than the CPU may execute various processes in which the CPU reads the software (program) and executes the software (program) in each of the above embodiments. In this case, the processors include PLD (Programmable Logic Device) whose circuit configuration can be changed after manufacturing FPGA (Field-Programmable Gate Array), and ASIC (Application Specific Integrated Circuit) for executing ASIC (Application Special Integrated Circuit). An example is a dedicated electric circuit or the like, which is a processor having a circuit configuration designed exclusively for the purpose. Further, the learning process and the abnormality detection process may be executed by one of these various processors, or a combination of two or more processors of the same type or different types (for example, a plurality of FPGAs, and a CPU and an FPGA). It may be executed in combination with). Further, the hardware structure of these various processors is, more specifically, an electric circuit in which circuit elements such as semiconductor elements are combined.
 また、上記各実施形態では、学習プログラム及び異常検知プログラムがストレージ14に予め記憶(インストール)されている態様を説明したが、これに限定されない。プログラムは、CD-ROM(Compact Disk Read Only Memory)、DVD-ROM(Digital Versatile Disk Read Only Memory)、及びUSB(Universal Serial Bus)メモリ等の非一時的(non-transitory)記憶媒体に記憶された形態で提供されてもよい。また、プログラムは、ネットワークを介して外部装置からダウンロードされる形態としてもよい。 Further, in each of the above embodiments, the mode in which the learning program and the abnormality detection program are stored (installed) in the storage 14 in advance has been described, but the present invention is not limited to this. The program is a non-temporary storage medium such as a CD-ROM (Compact Disk Read Only Memory), a DVD-ROM (Digital Versailles Disk Online Memory), and a USB (Universal Serial Bus) memory. It may be provided in the form. Further, the program may be downloaded from an external device via a network.
 以上の実施形態に関し、更に以下の付記を開示する。 Regarding the above embodiments, the following additional notes will be further disclosed.
 (付記項1)
 異常検知装置であって、
 メモリと、
 前記メモリに接続された少なくとも1つのプロセッサと、
 を含み、
 前記プロセッサは、
 入力画像を分割したセル毎に、前記セルをマスクしたマスク画像を生成し、
 前記セル毎に、前記マスク画像を入力として、画像を復元するための予め学習された復元モデルを用いて、復元画像を生成し、前記復元画像における前記セルである復元セル画像を取得し、
 前記セル毎に取得した前記復元セル画像を結合した結合画像を生成し、
 前記結合画像と前記入力画像とを比較して、異常箇所を検知する、
 ように構成される
異常検知装置。
(Appendix 1)
Anomaly detection device
With memory
With at least one processor connected to the memory
Including
The processor
A mask image that masks the cell is generated for each cell in which the input image is divided.
For each cell, the mask image is input, a restored image is generated using a pre-learned restoration model for restoring the image, and the restored cell image which is the cell in the restored image is acquired.
A combined image obtained by combining the restored cell images acquired for each cell is generated.
An abnormal portion is detected by comparing the combined image with the input image.
Anomaly detection device configured as.
 (付記項2)
 異常検知処理を実行するようにコンピュータによって実行可能なプログラムを記憶した非一時的記憶媒体であって、
 前記異常検知処理は、
 入力画像を分割したセル毎に、前記セルをマスクしたマスク画像を生成し、
 前記セル毎に、前記マスク画像を入力として、画像を復元するための予め学習された復元モデルを用いて、復元画像を生成し、前記復元画像における前記セルである復元セル画像を取得し、
 前記セル毎に取得した前記復元セル画像を結合した結合画像を生成し、
 前記結合画像と前記入力画像とを比較して、異常箇所を検知する
 非一時的記憶媒体。
(Appendix 2)
A non-temporary storage medium that stores a program that can be executed by a computer to execute anomaly detection processing.
The abnormality detection process is
A mask image that masks the cell is generated for each cell in which the input image is divided.
For each cell, the mask image is input, a restored image is generated using a pre-learned restoration model for restoring the image, and the restored cell image which is the cell in the restored image is acquired.
A combined image obtained by combining the restored cell images acquired for each cell is generated.
A non-temporary storage medium that detects an abnormal portion by comparing the combined image with the input image.
 (付記項3)
 学習装置であって、
 メモリと、
 前記メモリに接続された少なくとも1つのプロセッサと、
 を含み、
 前記プロセッサは、
 正常状態を表す学習用画像を分割したセル毎に、前記セルをマスクしたマスク画像を生成し、
 前記セル毎に、前記マスク画像を入力として、画像を復元するための復元モデルを用いて、復元画像を生成し、前記復元画像における前記セルである復元セル画像を取得し、
 前記セル毎に前記復元セル画像と前記学習用画像の前記セルとが一致するように、前記復元モデルを学習する、
 ように構成される
学習装置。
(Appendix 3)
It ’s a learning device,
With memory
With at least one processor connected to the memory
Including
The processor
A mask image that masks the cell is generated for each cell in which the learning image representing the normal state is divided.
For each cell, the mask image is input, a restored image is generated using the restored model for restoring the image, and the restored cell image which is the cell in the restored image is acquired.
The restoration model is trained so that the restoration cell image and the cell of the learning image match for each cell.
A learning device configured to be.
 (付記項4)
 学習処理を実行するようにコンピュータによって実行可能なプログラムを記憶した非一時的記憶媒体であって、
 前記学習処理は、
 正常状態を表す学習用画像を分割したセル毎に、前記セルをマスクしたマスク画像を生成し、
 前記セル毎に、前記マスク画像を入力として、画像を復元するための復元モデルを用いて、復元画像を生成し、前記復元画像における前記セルである復元セル画像を取得し、
 前記セル毎に前記復元セル画像と前記学習用画像の前記セルとが一致するように、前記復元モデルを学習する
 非一時的記憶媒体。
(Appendix 4)
A non-temporary storage medium that stores a program that can be executed by a computer to perform a learning process.
The learning process is
A mask image that masks the cell is generated for each cell in which the learning image representing the normal state is divided.
For each cell, the mask image is input, a restored image is generated using the restored model for restoring the image, and the restored cell image which is the cell in the restored image is acquired.
A non-temporary storage medium that learns the restoration model so that the restoration cell image and the cell of the learning image match for each cell.
10   学習装置
20   学習データ記憶部
22、60    マスク処理部
24   学習部
50   異常検知装置
62   モデル記憶部
64   復元部
66   結合部
68   異常検知部
10 Learning device 20 Learning data storage unit 22, 60 Mask processing unit 24 Learning unit 50 Anomaly detection device 62 Model storage unit 64 Restoration unit 66 Coupling unit 68 Anomaly detection unit

Claims (7)

  1.  入力画像を分割したセル毎に、前記セルをマスクしたマスク画像を生成するマスク処理部と、
     前記セル毎に、前記マスク画像を入力として、画像を復元するための予め学習された復元モデルを用いて、復元画像を生成し、前記復元画像における前記セルである復元セル画像を取得する復元部と、
     前記セル毎に取得した前記復元セル画像を結合した結合画像を生成する結合部と、
     前記結合画像と前記入力画像とを比較して、異常箇所を検知する異常検知部と、
     を含む異常検知装置。
    A mask processing unit that generates a mask image that masks the cells for each cell in which the input image is divided,
    A restoration unit that receives the mask image as input for each cell, generates a restoration image using a pre-learned restoration model for restoring the image, and acquires a restoration cell image that is the cell in the restoration image. When,
    A combined portion that generates a combined image by combining the restored cell images acquired for each cell, and
    An abnormality detection unit that detects an abnormality by comparing the combined image with the input image,
    Anomaly detection device including.
  2.  正常状態を表す学習用画像を分割したセル毎に、前記セルをマスクしたマスク画像を生成するマスク処理部と、
     前記セル毎に、前記マスク画像を入力として、画像を復元するための復元モデルを用いて、復元画像を生成し、前記復元画像における前記セルである復元セル画像を取得し、
     前記セル毎に前記復元セル画像と前記学習用画像の前記セルとが一致するように、前記復元モデルを学習する学習部と、
     を含む学習装置。
    A mask processing unit that generates a mask image that masks the cell for each cell in which the learning image representing the normal state is divided.
    For each cell, the mask image is input, a restored image is generated using the restored model for restoring the image, and the restored cell image which is the cell in the restored image is acquired.
    A learning unit that learns the restoration model so that the restoration cell image and the cell of the learning image match for each cell.
    Learning device including.
  3.  前記学習部は、
     前記セル毎に、前記マスク画像を入力として、画像を復元するための復元モデルを用いて、復元画像を生成し、前記復元画像における前記セルである復元セル画像を取得し、
     前記セル毎に取得した前記復元セル画像を結合した結合画像を生成し、
     前記セル毎に前記復元セル画像と前記学習用画像の前記セルとが一致し、かつ、
     前記結合画像が、第1識別器によって真の画像であると識別され、かつ、
     前記セル毎に、学習用画像の前記セルを、前記復元セル画像に置き換えた画像が、第2識別器によって真の画像であると識別されるように、前記復元モデル、前記第1識別器、及び前記第2識別器を学習する請求項2記載の学習装置。
    The learning unit
    For each cell, the mask image is input, a restored image is generated using the restored model for restoring the image, and the restored cell image which is the cell in the restored image is acquired.
    A combined image obtained by combining the restored cell images acquired for each cell is generated.
    For each cell, the restored cell image and the cell of the learning image match, and
    The combined image is identified by the first classifier as a true image and
    For each cell, the restored model, the first classifier, so that the image in which the cell of the learning image is replaced with the restored cell image is identified as a true image by the second classifier. The learning device according to claim 2, wherein the second classifier is learned.
  4.  マスク処理部が、入力画像を分割したセル毎に、前記セルをマスクしたマスク画像を生成し、
     復元部が、前記セル毎に、前記マスク画像を入力として、画像を復元するための予め学習された復元モデルを用いて、復元画像を生成し、前記復元画像における前記セルである復元セル画像を取得し、
     結合部が、前記セル毎に取得した前記復元セル画像を結合した結合画像を生成し、
     異常検知部が、前記結合画像と前記入力画像とを比較して、異常箇所を検知する
     異常検知方法。
    The mask processing unit generates a mask image that masks the cells for each cell that divides the input image.
    The restoration unit generates a restoration image for each cell by inputting the mask image and using a pre-learned restoration model for restoring the image, and generates a restoration cell image which is the cell in the restoration image. Acquired,
    The merged portion generates a merged image in which the restored cell images acquired for each cell are combined.
    An abnormality detection method in which an abnormality detection unit detects an abnormality by comparing the combined image with the input image.
  5.  マスク処理部が、正常状態を表す学習用画像を分割したセル毎に、前記セルをマスクしたマスク画像を生成し、
     学習部が、前記セル毎に、前記マスク画像を入力として、画像を復元するための復元モデルを用いて、復元画像を生成し、前記復元画像における前記セルである復元セル画像を取得し、
     前記セル毎に前記復元セル画像と前記学習用画像の前記セルとが一致するように、前記復元モデルを学習する
     学習方法。
    The mask processing unit generates a mask image in which the cell is masked for each cell in which the learning image representing the normal state is divided.
    The learning unit generates a restored image using the restored model for restoring the image by inputting the mask image for each cell, and acquires the restored cell image which is the cell in the restored image.
    A learning method in which the restoration model is learned so that the restoration cell image and the cell of the learning image match for each cell.
  6.  入力画像を分割したセル毎に、前記セルをマスクしたマスク画像を生成し、
     前記セル毎に、前記マスク画像を入力として、画像を復元するための予め学習された復元モデルを用いて、復元画像を生成し、前記復元画像における前記セルである復元セル画像を取得し、
     前記セル毎に取得した前記復元セル画像を結合した結合画像を生成し、
     前記結合画像と前記入力画像とを比較して、異常箇所を検知する
     ことをコンピュータに実行させるための異常検知プログラム。
    A mask image that masks the cell is generated for each cell in which the input image is divided.
    For each cell, the mask image is input, a restored image is generated using a pre-learned restoration model for restoring the image, and the restored cell image which is the cell in the restored image is acquired.
    A combined image obtained by combining the restored cell images acquired for each cell is generated.
    An abnormality detection program for causing a computer to detect an abnormal part by comparing the combined image with the input image.
  7.  正常状態を表す学習用画像を分割したセル毎に、前記セルをマスクしたマスク画像を生成し、
     前記セル毎に、前記マスク画像を入力として、画像を復元するための復元モデルを用いて、復元画像を生成し、前記復元画像における前記セルである復元セル画像を取得し、
     前記セル毎に前記復元セル画像と前記学習用画像の前記セルとが一致するように、前記復元モデルを学習する
     ことをコンピュータに実行させるための学習プログラム。
    A mask image that masks the cell is generated for each cell in which the learning image representing the normal state is divided.
    For each cell, the mask image is input, a restored image is generated using the restored model for restoring the image, and the restored cell image which is the cell in the restored image is acquired.
    A learning program for causing a computer to learn the restoration model so that the restoration cell image and the cell of the learning image match for each cell.
PCT/JP2019/023973 2019-06-17 2019-06-17 Abnormality detection device, learning device, abnormality detection method, learning method, abnormality detection program, and learning program WO2020255224A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/023973 WO2020255224A1 (en) 2019-06-17 2019-06-17 Abnormality detection device, learning device, abnormality detection method, learning method, abnormality detection program, and learning program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/023973 WO2020255224A1 (en) 2019-06-17 2019-06-17 Abnormality detection device, learning device, abnormality detection method, learning method, abnormality detection program, and learning program

Publications (1)

Publication Number Publication Date
WO2020255224A1 true WO2020255224A1 (en) 2020-12-24

Family

ID=74037610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/023973 WO2020255224A1 (en) 2019-06-17 2019-06-17 Abnormality detection device, learning device, abnormality detection method, learning method, abnormality detection program, and learning program

Country Status (1)

Country Link
WO (1) WO2020255224A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113240011A (en) * 2021-05-14 2021-08-10 烟台海颐软件股份有限公司 Deep learning driven abnormity identification and repair method and intelligent system
WO2022181299A1 (en) * 2021-02-24 2022-09-01 株式会社クレスコ Information processing device, information processing method, and information processing program
WO2022185494A1 (en) * 2021-03-04 2022-09-09 富士通株式会社 Abnormality detection program, abnormality detection method, and information processing device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008229161A (en) * 2007-03-22 2008-10-02 Fujifilm Corp Image component separating apparatus, method and program and normal image generating apparatus, method and program
JP2014221163A (en) * 2013-05-14 2014-11-27 国立大学法人九州工業大学 Image diagnosis support device and support method
WO2019087803A1 (en) * 2017-10-31 2019-05-09 日本電気株式会社 Image processing device, image processing method, and recording medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008229161A (en) * 2007-03-22 2008-10-02 Fujifilm Corp Image component separating apparatus, method and program and normal image generating apparatus, method and program
JP2014221163A (en) * 2013-05-14 2014-11-27 国立大学法人九州工業大学 Image diagnosis support device and support method
WO2019087803A1 (en) * 2017-10-31 2019-05-09 日本電気株式会社 Image processing device, image processing method, and recording medium

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022181299A1 (en) * 2021-02-24 2022-09-01 株式会社クレスコ Information processing device, information processing method, and information processing program
JP2022128923A (en) * 2021-02-24 2022-09-05 株式会社クレスコ Information processing device, information processing method and information processing program
JP7148657B2 (en) 2021-02-24 2022-10-05 株式会社クレスコ Information processing device, information processing method and information processing program
WO2022185494A1 (en) * 2021-03-04 2022-09-09 富士通株式会社 Abnormality detection program, abnormality detection method, and information processing device
CN113240011A (en) * 2021-05-14 2021-08-10 烟台海颐软件股份有限公司 Deep learning driven abnormity identification and repair method and intelligent system

Similar Documents

Publication Publication Date Title
JP6547275B2 (en) INFORMATION PROCESSING SYSTEM, INFORMATION PROCESSING DEVICE, INFORMATION PROCESSING METHOD, AND PROGRAM
US11501163B2 (en) Abnormality detection device, abnormality detection method, and storage medium
WO2020255224A1 (en) Abnormality detection device, learning device, abnormality detection method, learning method, abnormality detection program, and learning program
US20180174062A1 (en) Root cause analysis for sequences of datacenter states
US10915701B2 (en) Caption association techniques
US8549478B2 (en) Graphical user interface input element identification
WO2018105028A1 (en) Inspection device and inspection method
Shang et al. Scalable algorithms for tractable Schatten quasi-norm minimization
EP2854053A1 (en) Defect prediction method and device
US11443069B2 (en) Root cause analysis of vulnerability of neural networks to adversarial examples
Ghosh et al. Pattern classification of fabric defects using support vector machines
CN113033537A (en) Method, apparatus, device, medium and program product for training a model
JP7032366B2 (en) Operations support system and method
US20190095876A1 (en) Method and system for determining maintenance policy of complex forming device
US10885593B2 (en) Hybrid classification system
JP2020042754A (en) Classification device, classification method, classification program, and inspection device
JP6767312B2 (en) Detection system, detection method and detection program
Kim et al. Locally most powerful Bayesian test for out-of-distribution detection using deep generative models
WO2020234977A1 (en) Information processing device, creation method, and creation program
JP7307215B2 (en) Operation support system and method
JP7409606B2 (en) Image processing device, image processing method and program
US11348213B2 (en) Multistage process model training
JP2022003446A (en) Information processing device
US20220180495A1 (en) Abnormality detection apparatus, control method, and program
US20230316731A1 (en) Information processing apparatus, information processing method, and non-transitory computer-readable storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19933552

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19933552

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP