WO2020253717A1 - 一种抗热斑超密排布光伏组件 - Google Patents

一种抗热斑超密排布光伏组件 Download PDF

Info

Publication number
WO2020253717A1
WO2020253717A1 PCT/CN2020/096550 CN2020096550W WO2020253717A1 WO 2020253717 A1 WO2020253717 A1 WO 2020253717A1 CN 2020096550 W CN2020096550 W CN 2020096550W WO 2020253717 A1 WO2020253717 A1 WO 2020253717A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
string
layer
photovoltaic module
diode
Prior art date
Application number
PCT/CN2020/096550
Other languages
English (en)
French (fr)
Inventor
张国明
陶爱兵
Original Assignee
苏州携创新能源科技有限公司
无锡携创新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州携创新能源科技有限公司, 无锡携创新能源科技有限公司 filed Critical 苏州携创新能源科技有限公司
Publication of WO2020253717A1 publication Critical patent/WO2020253717A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/044PV modules or arrays of single PV cells including bypass diodes
    • H01L31/0443PV modules or arrays of single PV cells including bypass diodes comprising bypass diodes integrated or directly associated with the devices, e.g. bypass diodes integrated or formed in or on the same substrate as the photovoltaic cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/34Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present application relates to the field of photovoltaic modules, in particular to a photovoltaic module that is resistant to hot spots and arranged in an ultra-dense arrangement.
  • a large number of cells is prone to the risk of hot spots, which brings trouble to the shingled design.
  • a heat-spot-resistant ultra-densely arranged photovoltaic module characterized in that the heat-spot-resistant ultra-densely arranged photovoltaic module includes a front protective layer, a battery layer, a back protective layer, an adhesive film layer and a junction box, and a front protective layer and a battery layer And the back protection layer are stacked in sequence from top to bottom.
  • the adhesive film layer is filled on both sides of the battery layer, wraps the battery layer and bonds the front protection layer and the back protection layer into a whole;
  • the battery layer includes M battery modules, The two ends of M battery modules are connected by bus bars to form a series structure, each battery module includes N battery strings, M ⁇ 2 and N ⁇ 2, both ends of N battery strings in the same battery module Connected by a bus bar to form a parallel structure, the distance between two adjacent battery strings is 0.2m ⁇ 1.5mm, and the cells in the N battery strings in a battery module are also connected by L inter-string interconnecting bars Form a parallel structure, L is an integer; each battery string includes K battery slices, and the K battery slices are arranged in sequence and connected in series to form a battery string through inter-chip interconnecting bars.
  • the distance between two adjacent battery slices It is -1.5mm ⁇ 1.5mm, and the spacing is less than 0, which means that two adjacent battery slices overlap; the two adjacent battery modules in series are provided with a lead-out diode between the lead-out lines and any one of the battery modules
  • An interconnection bar diode is installed between the inter-string interconnection bar and any one of the adjacent battery modules. The interconnection bar diode divides the battery string into several parts along the direction of the battery string and protects them respectively.
  • interconnection bar diodes between two adjacent battery modules are connected to the lead wires of two adjacent battery modules, and the lead wires of each battery module are installed with interconnection bars in the battery modules.
  • Lead-out diodes are respectively installed between the interconnection bars of the diodes.
  • bus bars at the tails of two adjacent battery modules are connected to the lead wires of two adjacent battery modules, and the bus bars at the tails of two adjacent battery modules are connected to the lead wires of each battery module.
  • Lead-out diodes are respectively arranged between the wires.
  • a further technical solution is that for any one of the lead-out diodes and the interconnection bar diodes, the diode is built in the battery layer, or the diode is arranged outside the protective layer and electrically connected to the battery layer.
  • the heat-spot-resistant ultra-densely arranged photovoltaic modules are realized as a vertical structure or a horizontal structure, and the vertical structure means that the direction of the battery string is parallel to the long side of the heat-resistant ultra-densely arranged photovoltaic modules , Horizontal structure refers to a structure in which the direction of the battery string is parallel to the short side of the hot spot-resistant ultra-densely arranged photovoltaic module.
  • a further technical solution is that the bus bars at both ends of the battery string are bent on the back of the battery sheet, and an insulating material is arranged between the bent bus bar and the battery sheet.
  • bus bar is led out from the front of the battery sheet and bent to the back of the battery sheet, or the bus bar is led out from the back of the battery sheet and bent to the back of the battery sheet.
  • a further technical solution is that each battery slice in the N battery strings in a battery module is connected by an inter-series interconnection bar, or every several battery slices are connected by an inter-series interconnection bar.
  • a further technical solution is that the lead-out diodes protect the entire row of shading, and the interconnection bar diodes protect the entire row of shading.
  • This application discloses a hot spot-resistant ultra-densely arranged photovoltaic module. Aiming at the situation that the number of cells in a single string loop is relatively large, the virtual line is drawn by the existing inter-string interconnection strips on the back of the ultra-densely arranged photovoltaic module. The design of dividing the single string loop and adding diodes between the strings can separate the upper and lower areas of the battery string.
  • Each diode corresponds to a diode segmentation area, which can isolate the diode segmentation area corresponding to the shade area to ensure normal power generation in other areas Therefore, the heat-spot resistance and performance of the ultra-densely arranged photovoltaic modules can be improved, and the actual power generation of the ultra-densely arranged photovoltaic modules can be increased.
  • the bus bar folding design is adopted in the ultra-densely arranged photovoltaic modules, which reduces the occupied area of the bus bar, thereby reducing the size of the entire photovoltaic module and increasing the power generation efficiency of the photovoltaic module.
  • FIG. 1 is a diagram of the laminated structure of the hot spot resistant ultra-densely arranged photovoltaic module in the present application.
  • Figure 2 is a structural diagram of the bus bar bending.
  • Figure 3 is another structure diagram of the bus bar bending.
  • FIG. 4 is a structural diagram of the lead-out diode and the interconnection bar diode in the battery layer of the present application.
  • Fig. 5 is another structural diagram of the lead-out diode and the interconnection bar diode in the battery layer of the present application.
  • Fig. 6 is a structural diagram of the lead-out diode connected between the tail end of the battery module and the lead-out line in the battery layer of the present application.
  • Fig. 7 is a structural diagram of the implementation shown in Fig. 5 applied to the laminated assembly structure.
  • FIG. 8 is a structural diagram applied to the implementation shown in FIG. 4 in the case where the battery layer is formed by a single battery string in series.
  • Fig. 9 is a structural diagram applied to the implementation shown in Fig. 5 in a case where the battery layer is formed by a single battery string in series.
  • Fig. 10 is a structural diagram of the implementation shown in Fig. 5 applied to a horizontally structured, thermal-spot-resistant, ultra-densely arranged photovoltaic module.
  • the heat-resistant ultra-densely arranged photovoltaic module includes a front protective layer 1, a battery layer 2, a back protective layer 3, and an adhesive film layer 4. And the junction box, which is not shown in Figure 1.
  • the front protective layer 1, the battery layer 2, and the back protective layer 3 are laminated from top to bottom.
  • the front protective layer 1 is made of organic transparent materials such as tempered glass or solar panels to protect the front of the entire solar photovoltaic module.
  • the back protection layer 3 is made of toughened glass, PET or a composite material containing PET to protect the back of the entire solar photovoltaic module.
  • the adhesive film layer 4 is filled on both sides of the battery layer 2, and the adhesive film layer 4 is made of EVA film, POE film, PVB film or silica gel, etc., used to wrap the battery layer 2 and protect the front protective layer 1 and the back Layer 3 is bonded as a whole.
  • the battery layer 2 includes at least two battery strings, please refer to Figures 2 and 3.
  • Each battery string includes K battery slices 5, and K battery slices 5 are arranged in sequence and connected in series by the inter-chip interconnecting strip 6 to form a battery string, K ⁇ 1.
  • the distance between two adjacent solar cells is -1.5mm ⁇ 1.5mm, and the distance is less than 0, which means that two adjacent solar cells are overlapped.
  • a laminated module structure is formed.
  • the two ends of the at least two battery strings are connected by a bus bar 7 to form a series or parallel structure.
  • the bus bar 7 at the head of the battery string is also provided with a lead wire 8.
  • the bus bars 7 at both ends of the battery string are bent on the back of the battery sheet 5.
  • the upper side of the diagram shows the front side of the battery sheet, and the lower side shows the back side of the battery sheet.
  • An insulating material 9 is arranged between the bent bus bar 7 and the battery sheet 5, and the insulating material 9 isolates the battery sheet 5 from the bus bar 7 to prevent short circuit.
  • the bus bar 7 is drawn from the front of the cell 5 and bent on the back of the cell 5, as shown in FIG. 2.
  • the second type is that the bus bar 7 is led out from the back of the battery sheet 5 and is directly bent on the back side to form a structure that is also bent on the back of the battery sheet 5, as shown in FIG. 3.
  • the battery strings in the battery layer 2 are connected by the bus bars 7 at both ends to form a series-parallel structure, that is, the battery layer 2 includes M battery modules, and the two ends of the M battery modules are connected by the bus bars 7 to form a series structure.
  • a battery module includes N battery strings. The two ends of the N battery strings in the same battery module are connected by bus bars 7 to form a parallel structure. The distance between two adjacent battery strings is 0.2m ⁇ 1.5mm , The battery strings in the battery layer 2 are formed in an ultra-dense arrangement.
  • M ⁇ 2, N 1, it means that the battery layer 2 is composed of several battery strings in series;
  • the battery slices in the N battery strings in a battery module are also connected by L inter-string interconnecting strips 10 to form a parallel structure.
  • inter-string interconnecting strips 10 are all made of electrical connection materials, which can be realized as photovoltaic ribbons, conductive tape or conductive glue, etc., but the inter-chip interconnecting bars and The inter-string interconnection bar is mainly used to draw the current of the battery slices, the inter-slice interconnection strip mainly draws the current of the same string of battery slices, the inter-string interconnection strips mainly draw the current of different strings of cells, and the bus bar is mainly used to draw out multiple strings of batteries The current of the string, the current carried by the interconnection bar and the bus bar are different, so the material size is also different, so different names are used to distinguish in this application.
  • two adjacent battery modules in series are provided with a lead-out diode 11 between the lead-out wires 8.
  • the lead-out diode 11 is used to protect the internal circuit of the photovoltaic module, and a lead-out diode 11 protects its connection.
  • Two adjacent battery modules are installed between any inter-string interconnection bar 10 in a battery module and any inter-string interconnection bar 10 in an adjacent battery module, and the interconnection bar diode 12 runs along the battery string.
  • the battery string is divided into several parts and protected separately. As shown in Figure 4, the interconnection bar diode 12 separates the upper and lower parts of the battery module.
  • the interconnection bar diode 12 protects the battery on the lower side, and the lead-out diode 11 is on top The cells on the side are protected, and the interconnection bar diodes 12 are installed between the inter-string interconnection bars 10 to better protect the internal circuit of the photovoltaic module.
  • the lead-out diode 11 can protect the entire row of shading, and the interconnection bar diode 12 can protect the entire row of shading.
  • a lead-out diode is added at the lead-out position of two adjacent battery modules to protect the two battery modules separately to increase the actual power generation of the photovoltaic module.
  • the interconnection bar diode 12 between two adjacent battery modules is connected to the lead wires 8 of the two adjacent battery modules, and the lead wires of each battery module are connected to the battery modules.
  • Lead-out diodes 11 are installed between the interconnection bars 10 of the interconnection bar diodes 12 respectively.
  • the interconnection bar diodes 12 protect the lower part of the battery.
  • the left-hand lead-out diode 11 individually controls the left battery module.
  • the lead-out diode 11 on the side individually controls the battery module on the right side, so that no matter which channel is shaded or other abnormalities, it will be short-circuited, and will not affect the normal operation and power generation of other circuits.
  • the diode is built in the battery layer and the diode is laminated inside the glue film, or the diode is arranged outside the protective layer and electrically connected to the battery layer 2, For example, set in a junction box.
  • a lead-out diode 11 is further provided at the tail of the battery module and the direction of the lead-out line.
  • the tail of the battery module represents the other end of the lead-out part, that is, in two adjacent battery modules.
  • a lead-out diode 11 is provided between the lead wire 8 of each battery module and the bus bar 7 at the other end of two adjacent battery modules, as shown in FIG. 6.
  • the implementation of Figures 4-6 can also be realized.
  • the interconnection bar diode 12 is directly connected to the battery slices connecting the two battery strings, as shown in Figure 4.
  • the implementation shown in Figure 8 is used in the case of a single battery string in series
  • the implementation shown in Figure 5 is used in the case of a single battery string in series as shown in Figure 9 and Figure 6
  • the implementation method remains the same, so this application is not shown separately.
  • the heat-spot-resistant ultra-densely arranged photovoltaic module of the present application is realized as a vertical structure or a horizontal structure.
  • the vertical structure represents a structure in which the direction of the battery string is parallel to the long side of the heat-resistant ultra-densely arranged photovoltaic module
  • the horizontal structure Represents the structure where the direction of the battery string is parallel to the short side of the heat-resistant ultra-densely arranged photovoltaic module.
  • Figures 4-9 all take the heat-resistant ultra-densely arranged photovoltaic module to achieve a vertical structure as an example.
  • the densely arranged photovoltaic module adopts a horizontal structure, it is divided into a plurality of even-numbered battery modules arranged in series, and the arrangement of the diodes is similar to the vertical structure, as shown in Figure 10.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本申请公开了一种抗热斑超密排布光伏组件,涉及光伏组件领域,该抗热斑超密排布光伏组件在常规超密排布光伏组件的排布结构的基础上,不仅在串联的相邻两个电池模组的引出线之间设置引出线二极管,而且在这相邻两个电池模组的中的任意串间互联条之间安装互联条二极管,通过超密排布光伏组件背面本身已有的串间互联条进行引出虚拟线,实现分割单串回路,在串间增加二极管的设计可以将电池串的上下区域分开控制,每个二极管对应控制一个二极管分割区,可以将遮阴区所对应的二极管分割区隔离,可以改进超密排布光伏组件的抗热斑的能力和性能,同时增加实际发电量。

Description

一种抗热斑超密排布光伏组件 技术领域
本申请涉及光伏组件领域,尤其是一种抗热斑超密排布光伏组件。
背景技术
随着能源价格的上涨,开发利用新能源成为当今能源领域研究的主要课题。由于太阳能具有无污染、无地域性限制、取之不竭等优点,研究太阳能发电成为开发利用新能源的主要方向。利用太阳能电池发电是当今人们使用太阳能的一种主要方式。
目前的光伏组件主流产品分为整片、半片和叠片三种,组件厂基本都是依靠提高电池片的效率来提高光伏组件整体的发电效率,受制于爬电距离的要求,光伏组件的发电效率得不好很好的解决。随着叠瓦的逐步市场化,叠瓦将整片电池片划片的等份也很多,常规为5等分或者6等分,这种做法使得电池片尺寸减小,单串的回路上电池片数量就比较多,从抗热斑设计要求来看,电池片数量多就容易出现热斑的风险,给叠瓦的设计带到困扰。
技术问题
电池片数量多就容易出现热斑的风险,给叠瓦的设计带到困扰。
技术解决方案
一种抗热斑超密排布光伏组件,其特征在于,抗热斑超密排布光伏组件包括正面保护层、电池层、背面保护层、胶膜层以及接线盒,正面保护层、电池层和背面保护层从上至下依次层叠,胶膜层填充在电池层两侧、对电池层形成包裹并将正面保护层和背面保护层粘接成一个整体;电池层包括M个电池模组,M个电池模组的两端通过汇流条相连形成串联结构,每个电池模组中包括N个电池串,M≥2且N≥2,同一个电池模组中的N个电池串的两端通过汇流条相连形成并联结构,相邻两个电池串之间的间距为0.2m~1.5mm,一个电池模组中的N个电池串中的电池片之间还通过L根串间互联条相连形成并联结构,L为整数;每个电池串中包括K个电池片,K个电池片依次排列并通过片间互联条串联形成电池串,K≥1,相邻两个电池片之间的间距为-1.5mm~1.5mm,间距小于0表示相邻两个电池片重叠;串联的相邻两个电池模组在引出线之间设置有引出线二极管且在一个电池模组中的任意一根串间互联条与相邻电池模组中的任意一根串间互联条之间安装有互联条二极管,互联条二极管沿着电池串的方向将电池串分为若干部分并分别进行保护。
其进一步的技术方案为,相邻两个电池模组之间的互联条二极管与相邻两个电池模组的引出线相连,每一个电池模组的引出线与电池模组中安装有互联条二极管的串间互联条之间分别安装有引出线二极管。
其进一步的技术方案为,相邻两个电池模组尾部的汇流条与相邻两个电池模组的引出线相连,相邻两个电池模组尾部的汇流条与每一个电池模组的引出线之间分别设置有引出线二极管。
其进一步的技术方案为,对于各个引出线二极管和互联条二极管中的任意一个二极管,二极管内置在电池层中,或者,二极管设置在保护层外部并与电池层电性相连。
其进一步的技术方案为,抗热斑超密排布光伏组件实现为立式结构或卧式结构,立式结构表示电池串的方向与抗热斑超密排布光伏组件的长边平行的结构,卧式结构表示电池串的方向与抗热斑超密排布光伏组件的短边平行的结构。
其进一步的技术方案为,电池串的两端的汇流条折弯于电池片的背面,折弯后的汇流条与电池片之间设置有绝缘材料。
其进一步的技术方案为,汇流条从电池片的正面引出并折弯于电池片的背面,或者,汇流条从电池片的背面引出并折弯于电池片的背面。
其进一步的技术方案为,一个电池模组中的N个电池串中的每片电池片上都采用串间互联条连接,或者,每隔若干片电池片采用串间互联条连接。
其进一步的技术方案为,当M=1、N≥2时,电池层由若干个电池串并联构成。
其进一步的技术方案为,引出线二极管针对整列遮阴实现保护,互联条二极管针对整排遮阴实现保护。
有益效果
本申请公开了一种抗热斑超密排布光伏组件,针对单串回路电池片数量比较多的情况,通过超密排布光伏组件背面本身已有的串间互联条进行引出虚拟线,实现分割单串回路,在串间增加二极管的设计可以将电池串的上下区域分开控制,每个二极管对应控制一个二极管分割区,可以将遮阴区所对应的二极管分割区隔离,保证其他区域正常发电,从而可以改进超密排布光伏组件的抗热斑的能力和性能,同时增加超密排布光伏组件的实际发电量。另外在超密排布光伏组件中采用汇流条翻折设计,减少了汇流条的占用面积,从而可以缩减整个光伏组件的尺寸,增加光伏组件的发电效率。
附图说明
图1是本申请中的抗热斑超密排布光伏组件的层叠结构图。
图2是汇流条折弯的一种结构图。
图3是汇流条折弯的另一种结构图。
图4是本申请的电池层中的引出线二极管和互联条二极管的结构图。
图5是本申请的电池层中的引出线二极管和互联条二极管的另一结构图。
图6是本申请的电池层中电池模组尾端与引出线之间连接引出线二极管的结构图。
图7是图5所示的实现方式在叠片组件结构中应用的结构图。
图8是图4所示的实现方式在电池层由单串电池串串联形成的情况中应用的结构图。
图9是图5所示的实现方式在电池层由单串电池串串联形成的情况中应用的结构图。
图10是图5所示的实现方式在卧式结构的抗热斑超密排布光伏组件中应用的结构图。
本发明的实施方式
下面结合附图对本申请的具体实施方式做进一步说明。
本申请公开了一种抗热斑超密排布光伏组件,请参考图1,该抗热斑超密排布光伏组件包括正面保护层1、电池层2、背面保护层3、胶膜层4以及接线盒,图1中未示出接线盒。正面保护层1、电池层2和背面保护层3从上至下依次层叠,正面保护层1采用钢化玻璃或阳光板等有机透明材料,用于保护整个太阳能光伏组件的正面。背面保护层3采用钢化玻璃、PET或含有PET的复合材料,用于保护整个太阳能光伏组件的背面。胶膜层4填充在电池层2两侧,胶膜层4采用EVA胶膜、POE胶膜、PVB胶膜或硅胶等材料,用于对电池层2形成包裹并将正面保护层1和背面保护层3粘接成一个整体。
电池层2包括至少两个电池串,请参考图2和3,每个电池串中包括K个电池片5,K个电池片5依次排列并通过片间互联条6串联形成电池串,K≥1。相邻两个电池片之间的间距为-1.5mm~1.5mm,间距小于0表示相邻两个电池片重叠,则此时形成为叠片组件结构。这至少两个电池串的两端通过汇流条7相连形成串联或并联结构,根据实际需要,电池串头部的汇流条7还设置有引出线8。电池串两端的汇流条7折弯于电池片5的背面,在图2和3以图上方表示电池片正面、下方表示电池片背面。折弯后的汇流条7与电池片5之间设置有绝缘材料9,绝缘材料9将电池片5与汇流条7隔离,防止发生短路。实际应用时,汇流条7的折弯方式有两种,第一种是汇流条7从电池片5的正面引出并折弯于电池片5的背面,即如图2所示。第二种是汇流条7从电池片5的背面引出并在背面直接进行折弯,同样形成折弯于电池片5的背面的结构,如图3所示。
电池层2中的电池串通过两端的汇流条7相连形成串并联结构,也即电池层2中包括M个电池模组,M个电池模组的两端通过汇流条7相连形成串联结构,每个电池模组中包括N个电池串,同一个电池模组中的N个电池串的两端通过汇流条7相连形成并联结构,相邻两个电池串之间的间距为0.2m~1.5mm,电池层2中的电池串形成为超密排布结构。M≥1且N≥1,当M=1、N=1时,表示电池层2中仅包括一个电池串;当M=1、N≥2时,表示电池层2由若干个电池串并联构成;当M≥2、N=1时,表示电池层2由若干个电池串串联构成;当M≥2、N≥2时,表示电池层2由若干个电池串串联和并联构成。请参考图4示出了较为常见的M=2、N=3的示意图。另外,一个电池模组中的N个电池串中的电池片之间还通过L根串间互联条10相连形成并联结构,L为整数,可以每片电池片上都采用串间互联条10连接,也可以每隔几片电池片采用串间互联条10连接。需要说明的是,本申请中的汇流条、片间互联条和串间互联条均采用电性连接材料制成,可以实现为光伏焊带、导电胶带或导电胶等,但片间互联条和串间互联条主要用于引出电池片的电流,片间互联条主要引出同一串的电池片的电流,串间互联条主要引出不同串的电池片的电流,汇流条主要用于引出多串电池串的电流,互联条和汇流条承载的电流大小不同,因此材料尺寸也不同,因此在本申请中采用不同的名称进行区分。
在电池层2中,串联的相邻两个电池模组在引出线8之间设置有引出线二极管11,该引出线二极管11用于保护光伏组件的内部电路,一个引出线二极管11保护其连接的相邻两个电池模组。另外,一个电池模组中的任意一根串间互联条10与相邻电池模组中的任意一根串间互联条10之间还安装有互联条二极管12,互联条二极管12沿着电池串的方向将电池串分为若干部分并分别进行保护,如图4中互联条二极管12将电池模组分别上下两部分,互联条二极管12对下侧的电池片做保护,引出线二极管11对上侧的电池片做保护,在串间互联条10之间安装互联条二极管12可以更好的保护光伏组件的内部电路。引出线二极管11可以针对整列遮阴实现保护,互联条二极管12可以针对整排遮阴实现保护,当光伏组件下侧的电池片被整排遮挡后,互联条二极管12启动工作,互联条二极管12下方的电池片短路,上方的电池片继续工作发电,从而可以提高发电效率。
在另一种实现方式中,在图4的基础上,在相邻两个电池模组的引出线位置增加一个引出线二极管,对两个电池模组分别做保护,提高光伏组件的实际发电量。如图5所示,相邻两个电池模组之间的互联条二极管12与相邻两个电池模组的引出线8相连,每一个电池模组的引出线与该电池模组中安装有互联条二极管12的串间互联条10之间分别安装有引出线二极管11,互联条二极管12对下面部分的电池片做保护,左侧的引出线二极管11单独控制左侧的电池模组,右侧的引出线二极管11单独控制右侧的电池模组,这样不管是哪一路有被遮阴或者别的异常都会被短路,不影响其他电路的正常工作发电。对于各个引出线二极管11和互联条二极管12中的任意一个二极管,二极管内置在电池层中,将二极管层压在胶膜内部,或者,二极管设置在保护层外部并与电池层2电性相连,比如设置在接线盒中。
在另一种实现方式中,电池模组尾部与引出线方向还设置有引出线二极管11,电池模组尾部表示相对于设置有引出线部分的另一端,也即相邻两个电池模组中每一个电池模组的引出线8与相邻两个电池模组的另一端的汇流条7之间分别设置有引出线二极管11,如图6所示。
图4-6的实现方式在实际应用时可以相互结合,且上述各种实现方式中,当抗热斑超密排布光伏组件实现为叠片组件结构时同样适用,当采用叠片组件结构时,相邻两个电池片重叠,电池串之间的串间互联条10直接由电池串中的片间互联条6实现,则图4-6的实现方式在叠片组件结构中的实现方式是类似的,比如图5所示的实现方式应用在叠片组件结构中的结构如图7所示。
另外,当电池层2直接由若干个电池串串联构成时,图4-6的实现方式同样是可以实现的,此时互联条二极管12直接连接在相连两个电池串的电池片上,图4所示的实现方式应用在单串电池串串联情况中的结构如图8所示,图5所示的实现方式应用在单串电池串串联情况中的结构如图9所示,图6所示的实现方式不变因此本申请不再单独图示。
本申请的抗热斑超密排布光伏组件实现为立式结构或卧式结构,立式结构表示电池串的方向与抗热斑超密排布光伏组件的长边平行的结构,卧式结构表示电池串的方向与抗热斑超密排布光伏组件的短边平行的结构,图4-9都以抗热斑超密排布光伏组件实现为立式结构为例,当抗热斑超密排布光伏组件采用卧式结构时,分为多个偶数个电池模组串联排列,二极管的设置方式与立式结构是类似的,如图10所示。
以上所述的仅是本申请的优选实施方式,本申请不限于以上实施例。可以理解,本领域技术人员在不脱离本申请的精神和构思的前提下直接导出或联想到的其他改进和变化,均应认为包含在本申请的保护范围之内。

Claims (10)

  1. 一种抗热斑超密排布光伏组件,其特征在于,所述抗热斑超密排布光伏组件包括正面保护层、电池层、背面保护层、胶膜层以及接线盒,所述正面保护层、电池层和背面保护层从上至下依次层叠,所述胶膜层填充在所述电池层两侧、对所述电池层形成包裹并将所述正面保护层和所述背面保护层粘接成一个整体;所述电池层包括M个电池模组,所述M个电池模组的两端通过汇流条相连形成串联结构,每个所述电池模组中包括N个电池串,M≥2且N≥2,同一个电池模组中的N个电池串的两端通过汇流条相连形成并联结构,相邻两个电池串之间的间距为0.2m~1.5mm,一个电池模组中的N个电池串中的电池片之间还通过L根串间互联条相连形成并联结构,L为整数;每个所述电池串中包括K个电池片,所述K个电池片依次排列并通过片间互联条串联形成电池串,K≥1,相邻两个电池片之间的间距为-1.5mm~1.5mm,间距小于0表示相邻两个电池片重叠;串联的相邻两个电池模组在引出线之间设置有引出线二极管且在所述一个电池模组中的任意一根串间互联条与相邻电池模组中的任意一根串间互联条之间安装有互联条二极管,所述互联条二极管沿着电池串的方向将电池串分为若干部分并分别进行保护。
  2. 根据权利要求1所述的抗热斑超密排布光伏组件,其特征在于,相邻两个电池模组之间的互联条二极管与所述相邻两个电池模组的引出线相连,每一个电池模组的引出线与所述电池模组中安装有互联条二极管的串间互联条之间分别安装有引出线二极管。
  3. 根据权利要求1所述的抗热斑超密排布光伏组件,其特征在于,相邻两个电池模组尾部的汇流条与所述相邻两个电池模组的引出线相连,所述相邻两个电池模组尾部的汇流条与每一个电池模组的引出线之间分别设置有引出线二极管。
  4. 根据权利要求1-3任一所述的抗热斑超密排布光伏组件,其特征在于,对于各个引出线二极管和互联条二极管中的任意一个二极管,所述二极管内置在所述电池层中,或者,所述二极管设置在保护层外部并与所述电池层电性相连。
  5. 根据权利要求1-3任一所述的抗热斑超密排布光伏组件,其特征在于,所述抗热斑超密排布光伏组件实现为立式结构或卧式结构,所述立式结构表示电池串的方向与所述抗热斑超密排布光伏组件的长边平行的结构,所述卧式结构表示电池串的方向与所述抗热斑超密排布光伏组件的短边平行的结构。
  6. 根据权利要求1所述的抗热斑超密排布光伏组件,其特征在于,电池串的两端的汇流条折弯于电池片的背面,折弯后的所述汇流条与电池片之间设置有绝缘材料。
  7. 根据权利要求6所述的抗热斑超密排布光伏组件,其特征在于,所述汇流条从电池片的正面引出并折弯于电池片的背面,或者,所述汇流条从电池片的背面引出并折弯于电池片的背面。
  8. 根据权利要求1-3任一所述的抗热斑超密排布光伏组件,其特征在于,一个电池模组中的N个电池串中的每片电池片上都采用所述串间互联条连接,或者,每隔若干片电池片采用所述串间互联条连接。
  9. 根据权利要求1-3任一所述的抗热斑超密排布光伏组件,其特征在于,当M=1、N≥2时,所述电池层由若干个电池串并联构成。
  10. 根据权利要求1-3任一所述的抗热斑超密排布光伏组件,其特征在于,所述引出线二极管针对整列遮阴实现保护,所述互联条二极管针对整排遮阴实现保护。
PCT/CN2020/096550 2019-06-18 2020-06-17 一种抗热斑超密排布光伏组件 WO2020253717A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201920910518.7U CN209708996U (zh) 2019-06-18 2019-06-18 一种抗热斑超密排布光伏组件
CN201920910518.7 2019-06-18

Publications (1)

Publication Number Publication Date
WO2020253717A1 true WO2020253717A1 (zh) 2020-12-24

Family

ID=68651628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/096550 WO2020253717A1 (zh) 2019-06-18 2020-06-17 一种抗热斑超密排布光伏组件

Country Status (2)

Country Link
CN (1) CN209708996U (zh)
WO (1) WO2020253717A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111129167A (zh) * 2018-10-31 2020-05-08 湖南红太阳新能源科技有限公司 一种新型单玻光伏组件
CN209708996U (zh) * 2019-06-18 2019-11-29 苏州携创新能源科技有限公司 一种抗热斑超密排布光伏组件
CN112420867B (zh) * 2020-11-27 2021-08-10 江苏新源太阳能科技有限公司 一种无热斑光伏组件及其加工工艺
CN113594281B (zh) * 2021-07-30 2023-07-28 成都中建材光电材料有限公司 一种抗热斑光伏发电玻璃及制作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102664205A (zh) * 2012-05-22 2012-09-12 天津力神电池股份有限公司 一种基于多二极管模块的防遮挡太阳能电池组件
CN105097975A (zh) * 2015-09-06 2015-11-25 江苏东昇光伏科技有限公司 太阳能电池组件
CN106449832A (zh) * 2016-09-06 2017-02-22 苏州阿特斯阳光电力科技有限公司 一种太阳能电池组件及制作方法
CN208422933U (zh) * 2018-06-21 2019-01-22 苏州阿特斯阳光电力科技有限公司 光伏组件
CN209708996U (zh) * 2019-06-18 2019-11-29 苏州携创新能源科技有限公司 一种抗热斑超密排布光伏组件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102664205A (zh) * 2012-05-22 2012-09-12 天津力神电池股份有限公司 一种基于多二极管模块的防遮挡太阳能电池组件
CN105097975A (zh) * 2015-09-06 2015-11-25 江苏东昇光伏科技有限公司 太阳能电池组件
CN106449832A (zh) * 2016-09-06 2017-02-22 苏州阿特斯阳光电力科技有限公司 一种太阳能电池组件及制作方法
CN208422933U (zh) * 2018-06-21 2019-01-22 苏州阿特斯阳光电力科技有限公司 光伏组件
CN209708996U (zh) * 2019-06-18 2019-11-29 苏州携创新能源科技有限公司 一种抗热斑超密排布光伏组件

Also Published As

Publication number Publication date
CN209708996U (zh) 2019-11-29

Similar Documents

Publication Publication Date Title
WO2020253717A1 (zh) 一种抗热斑超密排布光伏组件
JP6932186B2 (ja) 太陽電池モジュール及び太陽電池アレイ
EP3783670A1 (en) Shingled photovoltaic module with dual power generation units
EP3751625B1 (en) Solar cell string, string group, assembly, and manufacturing method thereof
CN202231045U (zh) 太阳能电池组件
CN101304054B (zh) 用于玻璃幕墙的太阳能电池组件
CN209561428U (zh) 一种叠瓦光伏组件
WO2021008573A1 (zh) 一种抗热斑单板块光伏组件
CN110277460A (zh) 太阳能电池片及光伏组件
CN103367491B (zh) 一种双面太阳能电池组件
CN109301020A (zh) 叠加光伏组件及其制造方法
JP5637089B2 (ja) 太陽電池モジュール
CN111106194A (zh) 一种双面太阳能电池片及光伏组件
CN111354809A (zh) 一种双玻光伏组件及制备方法
CN215451425U (zh) 一种mbb半片太阳能光伏组件
CN210182396U (zh) 太阳能电池片及光伏组件
CN212085018U (zh) 一种叠瓦光伏组件
CN213752721U (zh) 一种太阳能光伏组件
CN209822663U (zh) 一种抗热斑单板块光伏组件
CN110854224B (zh) 一种太阳能光伏组件及其组装方法
CN208873736U (zh) 叠加光伏组件
CN208271925U (zh) 一种太阳能光伏组件
CN202601655U (zh) 一种可双面发电的太阳能电池组件
CN216213494U (zh) 光伏组件
CN219497807U (zh) 一种轻质光伏组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20825932

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20825932

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29.03.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20825932

Country of ref document: EP

Kind code of ref document: A1