WO2020253713A1 - 路损参考信号指示方法及装置、终端、基站及存储介质 - Google Patents
路损参考信号指示方法及装置、终端、基站及存储介质 Download PDFInfo
- Publication number
- WO2020253713A1 WO2020253713A1 PCT/CN2020/096534 CN2020096534W WO2020253713A1 WO 2020253713 A1 WO2020253713 A1 WO 2020253713A1 CN 2020096534 W CN2020096534 W CN 2020096534W WO 2020253713 A1 WO2020253713 A1 WO 2020253713A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reference signal
- signal
- spatial relationship
- uplink transmission
- path loss
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/18—TPC being performed according to specific parameters
- H04W52/24—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
- H04W52/242—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/06—TPC algorithms
- H04W52/14—Separate analysis of uplink or downlink
- H04W52/146—Uplink power control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
- H04L5/0051—Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
Definitions
- the embodiments of the present invention relate to, but are not limited to, a path loss reference signal indicating method and device, terminal, base station, and storage medium.
- the high frequency band with ultra-wide bandwidth (ie millimeter wave communication) has become an important direction for the development of mobile communication in the future, attracting the attention of academia and industry worldwide.
- the advantages of millimeter waves have become more and more attractive.
- 3GPP 3rd Generation Partnership Project
- high-band communications will become an important innovation point of 5G New Radio Access Technology (5G New RAT, 5G new radio access technology) due to its significant advantages of large bandwidth.
- the flexibility of the uplink transmission beam parameter configuration is higher than the flexibility of the path loss reference signal parameter configuration used for uplink transmission power control.
- the beam relationship of the path loss reference signal used for uplink transmission power control and the target uplink transmission beam relationship cannot be updated synchronously, and the path loss measurement is unreliable, which is not conducive to uplink power control;
- the path loss reference signal parameter configuration used for uplink transmission power control has low flexibility.
- frequent RRC reconfiguration Radio Resource Control Reconfiguration, RRC Reconfiguration
- the effective time is long and the signaling overhead is huge. Conducive to system stability.
- At least one embodiment of the present invention provides a path loss reference signal indicating method and device, a terminal, a base station, and a storage medium, which realize the combination of the beam pair information of uplink transmission and the path loss reference signal used for uplink transmission power control. Synchronization Update.
- At least one embodiment of the present invention provides a path loss reference signal indicating method, including:
- At least one embodiment of the present invention provides a path loss reference signal indicating method, including:
- the uplink transmission spatial relationship parameter in the uplink transmission control signaling indicates a path loss reference signal used for uplink transmission power control.
- At least one embodiment of the present invention provides a terminal, including a memory and a processor, the memory stores a program, and when the program is read and executed by the processor, implements the path loss reference signal described in any embodiment Indication method.
- At least one embodiment of the present invention provides a base station, including a memory and a processor, the memory stores a program, and when the program is read and executed by the processor, implements the path loss reference signal described in any embodiment Indication method.
- At least one embodiment of the present invention provides a computer-readable storage medium, the computer-readable storage medium stores one or more programs, and the one or more programs can be executed by one or more processors to implement any The path loss reference signal indication method described in an embodiment.
- an embodiment of the present invention includes receiving uplink transmission control signaling sent by a base station; determining uplink transmission spatial relationship parameters according to the uplink transmission control signaling; determining the parameters for Path loss reference signal for uplink transmission power control.
- the solution provided in this embodiment determines the path loss reference signal according to the spatial relationship parameters, which saves signaling overhead; improves the flexibility of the path loss reference signal configuration for uplink transmission power control, and makes it consistent with the flexibility of the uplink transmission beam configuration.
- the beam pair information of uplink transmission and the beam pair information of the path loss reference signal used for uplink transmission power control are updated synchronously.
- Fig. 1 is a schematic structural diagram of a hybrid analog-digital beamforming transceiver used in an embodiment of the application;
- FIG. 2 is a schematic flowchart of a method for indicating a path loss reference signal according to an embodiment of the application
- FIG. 3 is a schematic diagram of a method for determining a path loss reference signal used for uplink transmission power control according to a reference signal associated with an uplink transmission spatial relationship in this application;
- FIG. 4 is an example of determining the path loss reference signal used for uplink transmission power control according to the reference signal associated with the spatial relationship of uplink transmission in this application;
- FIG. 5 is another example of determining the path loss reference signal used for uplink transmission power control according to the reference signal associated with the spatial relationship of uplink transmission in this application;
- FIG. 6 is an example of determining a path loss reference signal used for uplink transmission power control according to reference signals associated with the spatial relationship of uplink transmission in this application;
- FIG. 7 is a schematic flowchart of another path loss reference signal indication method provided by this application.
- FIG. 8 is a block diagram of a terminal provided by an embodiment of the present invention.
- FIG. 9 is a block diagram of a base station provided by an embodiment of the present invention.
- FIG. 10 is a block diagram of a computer-readable storage medium according to an embodiment of the present invention.
- FIG 1 is a schematic structural diagram of a hybrid analog-digital beamforming transceiver used in an embodiment of the application.
- the transmitter and receiver of the transceiver system are equipped with multiple antenna units and multiple radio frequency links.
- Each RF link is connected to the antenna array unit (partial connection scenarios are not excluded), and each antenna unit has a digital keying phase shifter, which realizes the millimeter wave system by controlling the phase shift of the signals on multiple antenna units
- the analog beamforming Beamforming
- each signal stream is loaded with a precoding antenna weight vector (Antenna Weight Vector, AWV) through a digital keying phase shifter, and sent from the multi-antenna unit to the high Frequency band physical propagation channel; at the receiving end, the radio frequency signal stream received by the multi-antenna unit is weighted and combined into a single signal stream. After the receiving end radio frequency demodulation, the receiver finally obtains multiple received signal streams, which are sampled by the digital baseband And receive.
- the sending end can be regarded as a base station, and the receiving end can be regarded as a terminal.
- a beam can be a resource (for example, a spatial filter at the transmitting end, a spatial filter at the receiving end, precoding at the transmitting end, precoding at the receiving end, antenna port, antenna weight vector, antenna weight matrix, etc.), and the beam sequence number can be replaced with a resource index (For example, reference signal resource index), because the beam can be bound to some time-frequency code resources for transmission.
- the beam may also be a transmission (transmission/reception) mode; the transmission mode may include space division multiplexing, frequency domain/time domain diversity, and so on.
- the base station can perform quasi co-location (quasi co-location) configuration for the two reference signals and inform the terminal to describe the channel characteristic assumption.
- the parameters involved in the quasi co-location include at least: Doppler spread, Doppler shift, delay spread, average delay, average gain and space parameters.
- the spatial parameters may include spatial receiving parameters, such as the angle of arrival, the spatial correlation of the received beam, the average delay, and the correlation of the time-frequency channel response (including phase information).
- the base station can configure the spatial relationship between the two reference signals and inform the terminal to describe the channel characteristic assumption.
- the spatial relationship configuration includes a spatial filter configuration.
- the reference signal includes at least one of the following:
- Channel State Information Reference Signal Channel State Information Reference Signal, CSI-RS
- Channel State Information Interference Measurement Signal CSI-IM
- DL DMRS Downlink demodulation reference signal
- Uplink demodulation reference signal (UL DMRS);
- Random Access Channel signal Random Access Channel, RACH
- Synchronization signal Synchronization Signal, SS
- Synchronization signal block Synchronization Signal block, SS block
- Primary synchronization signal Primary Synchronization Signal, PSS
- SSS Secondary Synchronization Signal
- An embodiment of the present application provides a method for indicating path loss reference signals, which aims to realize the combination of the beam pair information of uplink transmission and the path loss reference signal used for uplink transmission power control without additional signaling overhead. Synchronization Update.
- FIG. 2 is a schematic flowchart of a method for indicating a path loss reference signal according to an embodiment of the application, which is applied to a terminal and includes the following steps:
- Step 201 Receive control signaling for uplink transmission sent by a base station.
- the terminal receives the uplink transmission control signaling sent by the base station, and based on the uplink transmission control signaling, the terminal determines the uplink transmission control parameter.
- the uplink transmission control signaling carries uplink transmission control parameters.
- the uplink transmission control parameters include but are not limited to uplink transmission spatial relationship parameters.
- the uplink transmission control parameter does not include the path loss reference signal indication. It should be noted that it does not include additional information dedicated to path loss parameter signal indication.
- the uplink transmission spatial relationship parameter is used to indicate the path loss reference signal.
- the uplink transmission control signaling includes but is not limited to at least one of the following:
- MAC-CE Media Access Control-Control Element
- Radio Resource Control Setup or Reconfiguration (Radio Resource Control Setup/Reconfiguration, RRC Setup/Reconfiguration) signaling;
- DCI Downlink Control Information
- Step 202 Determine uplink transmission spatial relationship parameters according to the uplink transmission control signaling.
- the terminal determines the uplink transmission spatial relationship parameter based on the uplink transmission control signaling.
- the uplink transmission control signaling carries the uplink transmission spatial relationship parameter.
- the spatial relationship parameter includes, but is not limited to, the reference signal associated with the spatial relationship, where the reference signal associated with the spatial relationship of the uplink signal can be understood as the spatial filter used by the terminal to transmit the uplink signal and the space for transmitting or receiving the reference signal. The filters are consistent.
- uplink transmission airspace parameters can be determined from one or more of MAC-CE, DCI, and RRC Setup/Reconfiguration.
- Step 203 Determine a path loss reference signal used for uplink transmission power control according to the uplink transmission spatial relationship parameter.
- the solution provided in this embodiment does not require additional control signaling to indicate the path loss reference signal, which is beneficial to save signaling overhead; does not require RRC reconfiguration, which is beneficial to stable traffic and improves system robustness; and the path loss of uplink transmission power control is improved
- the flexibility of the reference signal configuration is consistent with the flexibility of the uplink transmission beam configuration; the beam pair information of the uplink transmission and the beam pair information of the path loss reference signal used for uplink transmission power control are updated synchronously; the path loss measurement is improved Accuracy; Conducive to uplink interference suppression; Conducive to terminal energy saving.
- the airspace relationship parameter includes a reference signal associated with the airspace relationship
- determining a path loss reference signal for uplink transmission power control according to the uplink transmission spatial relationship parameter includes:
- the reference signal associated with the spatial relationship of the target uplink channel or signal is a downlink signal
- the reference signal associated with the spatial relationship of the target uplink channel or signal is used as the path loss reference of the target uplink channel or signal transmission power control signal.
- the airspace relationship parameter includes a reference signal associated with the airspace relationship
- determining a path loss reference signal for uplink transmission power control according to the uplink transmission spatial relationship parameter includes:
- the reference signal associated with the spatial relationship of the target uplink channel or signal when the reference signal associated with the spatial relationship of the target uplink channel or signal is not a downlink signal, it will be associated with the target uplink channel or signal through a multi-level spatial relationship and be the first downlink signal.
- the N reference signal is used as the path loss reference signal for the target uplink channel or signal transmission power control, wherein the association through a multi-level spatial relationship means that there is a Nth reference signal between the target uplink channel or signal and the Nth reference signal.
- -1 level reference signal, and N>1, starting from the target uplink channel or signal, each level is associated with its next level through a spatial relationship. Assuming N 2, that is, the path loss reference signal of the target uplink channel or signal is its second reference signal.
- the target uplink channel or signal and the second reference signal include a first-level reference signal, which is called the first reference signal.
- the channel or signal is associated with the first reference signal through a spatial relationship
- the first reference signal is associated with the second reference signal through a spatial relationship
- the target uplink channel or signal to the Nth reference signal includes an N-1 level reference signal
- the order is the first level to the N-1 level, where the target uplink channel or signal is associated with the first-level reference signal through a spatial relationship, and the first-level reference signal is associated with the second-level reference signal through a spatial relationship.
- the N-1th level reference signal and the Nth level reference signal are related by a spatial relationship.
- the target uplink channel or signal includes but is not limited to at least one of the following:
- PUSCH Physical Uplink Shared Channel
- PUCCH Physical Uplink Control Channel
- PRACH Physical Random Access Channel
- SRS Sounding Reference Signal
- Uplink demodulation reference signal (UL DMRS)
- Phase-tracking reference signal PTRS
- the target uplink channel is PUCCH
- the spatial relationship parameters of PUCCH are obtained from RRC Setup signaling
- the reference signal associated with PUCCH is CSI-RS#1, which means that the CSI-RS resourceId (resource identifier) is 1.
- CSI-RS signal, and CSI-RS#1 is a downlink signal, then the reference signal CSI-RS#1 associated with the PUCCH is used as the path loss reference signal for the PUCCH transmission power control;
- FIG. 3 is a flowchart of a method for a terminal to determine a path loss reference signal for uplink transmission power control according to a reference signal associated with the spatial relationship of the target uplink channel or signal according to an embodiment of the present invention.
- this step defines several nodes, each node represents a signal, and the nodes are associated through spatial relationship.
- the reference signal associated with the spatial relationship of the parent node signal is the child node signal of the parent node.
- the target uplink channel or signal is defined as the root node, and the node where the reference signal associated with the spatial relationship of the target uplink channel or signal is located is the child node of the root node, and the root node is also the parent node of the child node.
- There is a child node associated with the airspace relationship that is, the reference signal associated with the airspace relationship of the parent node is the child node of the parent node.
- Each node has its own node index value i, which defines the index of the target uplink channel or signal as 0, and the node index value of the child node is the node index value of its parent node plus 1. It should be noted that this definition is only an example, and other node index values can be set as needed.
- the terminal traverses each node in the direction from the parent node to the child node until it finds that the reference signal associated with the spatial relationship of a node is a downlink signal, and then the downlink signal is used as the uplink transmission power Control the path loss reference signal and end the traversal.
- Step 301 Set the node index value i to 0, which represents the root node
- Step 302 Determine whether the reference signal associated with the spatial relationship of node i is a downlink signal, if it is a downlink signal, go to step 304; if it is not a downlink signal, go to step 303;
- Step 303 Change the node index value i to i+1, and return to step 302;
- Step 304 Determine that the path loss reference signal of the uplink channel or signal is a reference signal associated with the spatial relationship of node i, and end.
- the method for the terminal to determine the path loss reference signal multiplexes the spatial relationship parameters in the uplink transmission control signaling to achieve the binding of the target uplink transmission channel or signal to the beam relationship of the path loss reference signal.
- the beam relationship of the path loss reference signal of the target uplink transmission channel or signal is switched synchronously without additional signaling instructions.
- Fig. 4, Fig. 5, and Fig. 6 are three examples of determining the path loss reference signal.
- CSI-RS#2 representing CSI-RS resource Id (resource identifier)
- the reference signal is an uplink signal
- the second reference signal is used as the path loss reference signal
- the target uplink channel and the path loss reference signal are associated through a two-level spatial relationship, and there is a first level reference signal (ie, the first reference signal) in between.
- the spatial relationship parameter of PUSCH (PUSCH-related reference signal) and the spatial relationship parameter of SRS (SRS-related reference signal) can be carried in different uplink transmission control signaling, such as one carried in DCI and one It is carried in RRC Setup signaling.
- FIG. 7 is a schematic flowchart of another path loss reference signal indication method provided by an embodiment of the application, which is applied to a base station, as shown in FIG. 7, includes the following steps:
- Step 701 Send uplink transmission control signaling to a terminal, where the uplink transmission spatial relationship parameter in the uplink transmission control signaling indicates a path loss reference signal used for uplink transmission power control
- the base station sends uplink transmission control signaling to the terminal, and based on the uplink control signaling, instructs the terminal to uplink transmission control parameters.
- the uplink transmission control signaling includes but is not limited to: 1) MAC-CE signaling; 2) RRC setup/reconfiguration signaling; 3) DCI control signaling.
- the uplink transmission control parameters include, but are not limited to, uplink transmission spatial relationship.
- the uplink transmission control parameter does not include the path loss reference signal indication. It should be noted that it does not include additional information dedicated to path loss parameter signal indication.
- the uplink transmission spatial relationship parameter is used to indicate the path loss reference signal.
- the airspace relationship parameter includes a reference signal associated with the airspace relationship
- the uplink transmission spatial relationship parameter in the uplink transmission control signaling indicates that the path loss reference signal used for uplink transmission power control includes: for any target uplink channel or signal, when the spatial relationship of the target uplink channel or signal is associated When the reference signal is a downlink signal, the reference signal associated with the spatial relationship of the target uplink channel or signal is the path loss reference signal of the target uplink channel or signal transmission power control.
- the spatial relationship parameter includes a reference signal associated with the spatial relationship;
- the uplink transmission spatial relationship parameter in the uplink transmission control signaling indicates that the path loss reference signal used for uplink transmission power control includes:
- the Nth reference signal associated with the target uplink channel or signal through a multi-level spatial relationship and being a downlink signal is the target uplink channel or signal
- a path loss reference signal for signal transmission power control where the association through a multi-level spatial relationship means that there is an N-1 level reference signal between the target uplink channel or signal and the Nth reference signal, N>1, Starting from the target uplink channel or signal, each level is associated with its next level through a spatial relationship.
- an embodiment of the present invention provides a terminal 80, including a memory 810 and a processor 820.
- the memory 810 stores a program.
- the path loss reference signal indication method here refers to a path loss reference signal indication method applied to the terminal side.
- an embodiment of the present invention provides a base station 90, including a memory 910 and a processor 920.
- the memory 910 stores a program.
- any The path loss reference signal indication method described in an embodiment it should be noted that the path loss reference signal indication method here refers to the path loss reference signal indication method applied to the base station side.
- an embodiment of the present invention provides a computer-readable storage medium 100.
- the computer-readable storage medium stores one or more programs 110, and the one or more programs 110 can be stored by one or more programs. Executed by each processor to implement the path loss reference signal indication method described in any embodiment.
- Such software may be distributed on a computer-readable medium
- the computer-readable medium may include a computer storage medium (or non-transitory medium) and a communication medium (or transitory medium).
- the term computer storage medium includes volatile and non-volatile memory implemented in any method or technology for storing information (such as computer-readable instructions, data structures, program modules, or other data).
- Computer storage media include but are not limited to RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cassette, tape, magnetic disk storage or other magnetic storage device, or Any other medium used to store desired information and that can be accessed by a computer.
- communication media usually contain computer-readable instructions, data structures, program modules, or other data in a modulated data signal such as carrier waves or other transmission mechanisms, and may include any information delivery media .
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请公开了一种路损参考信号指示方法及装置、终端、基站及存储介质,该路损参考信号指示方法包括:接收基站发送的上行传输控制信令;根据所述上行传输控制信令确定上行传输空域关系参数;根据所述上行传输空域关系参数确定用于上行传输功率控制的路损参考信号。本实施例提供的方案,根据空域关系参数确定路损参考信号,节省了信令开销,提升了上行传输功率控制的路损参考信号配置灵活度。
Description
本申请要求在2019年6月19日提交中国专利局、申请号为201910530521.0的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
本发明实施例涉及但不限于一种路损参考信号指示方法及装置、终端、基站及存储介质。
超宽带宽的高频段(即毫米波通信),成为未来移动通信发展的重要方向,吸引了全球的学术界和产业界的目光。特别是,在当下日益拥塞的频谱资源和物理网大量接入时,毫米波的优势变得越来越有吸引力,在很多标准组织,例如IEEE(Institute of Electrical and Electronics Engineers,电气和电子工程师协会)、3GPP(3rd Generation Partnership Project,第三代合作伙伴计划)都已经展开相应的标准化工作。例如,在3GPP标准组,高频段通信凭借着其大带宽的显著优势将会成为5G New Radio Access Technology(5G New RAT,5G新型无线接入技术)的重要创新点。
现有5G通信系统中,要求支持基于波束对的上行功率控制方法,但是上行传输的波束参数配置的灵活度高于用于上行传输功率控制的路损参考信号参数配置的灵活度,这导致在实际通信系统中,发生波束切换时,用于上行传输功率控制的路损参考信号的波束关系与目标上行传输的波束关系无法同步更新,路损测量不可靠,不利于上行功率控制;另外,由于用于上行传输功率控制的路损参考信号参数配置的灵活度较低,发生波束切换时,需要频繁进行RRC重配(Radio Resource Control Reconfiguration,RRC Reconfiguration),生效时间长且信令开销巨大,不利于系统稳定。
发明内容
本发明至少一实施例提供了一种路损参考信号指示方法及装置、终端、基站及存储介质,实现上行传输的波束对信息与用于上行传输功率控制的路损参考信号的波束对信息的同步更新。
本发明至少一实施例提供一种路损参考信号指示方法,包括:
接收基站发送的上行传输控制信令;
根据所述上行传输控制信令确定上行传输空域关系参数;
根据所述上行传输空域关系参数确定用于上行传输功率控制的路损参考信号。
本发明至少一实施例提供一种路损参考信号指示方法,包括:
向终端发送上行传输控制信令,所述上行传输控制信令中的上行传输空域关系参数指示用于上行传输功率控制的路损参考信号。
本发明至少一实施例提供一种终端,包括存储器和处理器,所述存储器存储有程序,所述程序在被所述处理器读取执行时,实现任一实施例所述的路损参考信号指示方法。
本发明至少一实施例提供一种基站,包括存储器和处理器,所述存储器存储有程序,所述程序在被所述处理器读取执行时,实现任一实施例所述的路损参考信号指示方法。
本发明至少一实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现任一实施例所述的路损参考信号指示方法。
与相关技术相比,本发明一实施例中,包括接收基站发送的上行传输控制信令;根据所述上行传输控制信令确定上行传输空域关系参数;根据所述上行传输空域关系参数确定用于上行传输功率控制的路损参考信号。本实施例提供的方案,根据空域关系参数确定路损参考信号,节省了信令开销;提升了上行 传输功率控制的路损参考信号配置灵活度,使之与上行传输的波束配置灵活度一致,实现上行传输的波束对信息与用于上行传输功率控制的路损参考信号的波束对信息的同步更新。
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1为本申请实施例采用的混合模拟数字波束赋型收发机结构示意图;
图2为本申请一实施例提供的一种路损参考信号指示方法的流程示意图;
图3为本申请中根据上行传输的空域关系关联的参考信号确定用于该上行传输功率控制的路损参考信号的方法示意图;
图4为本申请中一种根据上行传输的空域关系关联的参考信号确定用于该上行传输功率控制的路损参考信号的实例;
图5为本申请中另一种根据上行传输的空域关系关联的参考信号确定用于该上行传输功率控制的路损参考信号的实例;
图6为本申请中根据上行传输的空域关系关联的参考信号确定用于该上行传输功率控制的路损参考信号的实例;
图7为本申请提供的另一种路损参考信号指示方法的流程示意图;
图8为本发明一实施例提供的终端框图;
图9为本发明一实施例提供的基站框图;
图10为本发明一实施例提供的计算机可读存储介质框图。
为使本申请的目的、技术方案和优点更加清楚明白,下文中将结合附图对本申请的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
图1为本申请实施例所采用的混合模拟数字波束赋型收发机结构示意图。该收发机系统的发送端和接收端配置多天线单元和多个射频链路。每个射频链路与天线阵列单元相互连接(不排斥部分连接场景),且每个天线单元拥有一个数字键控移相器,通过控制多个天线单元上的信号的相移,实现毫米波系统的模拟波束赋形(Beamforming)。在混合模拟数字波束赋形收发机中,存在多条射频信号流,每条信号流通过数字键控移相器加载预编码天线权重矢量(Antenna Weight Vector,AWV),从多天线单元发送到高频段物理传播信道;在接收端,由多天线单元所接收到的射频信号流被加权合并成单一信号流,经过接收端射频解调,接收机最终获得多条接收信号流,并被数字基带采样和接收。本实施例中,发送端可以认为是基站,接收端可以认为是终端。
波束可以为一种资源(例如发送端空间滤波器,接收端空间滤波器,发端预编码,收端预编码、天线端口,天线权重矢量,天线权重矩阵等),波束序号可以被替换为资源索引(例如参考信号资源索引),因为波束可以与一些时频码资源进行传输上的绑定。波束也可以为一种传输(发送/接收)方式;所述的传输方式可以包括空分复用、频域/时域分集等。
基站可以对于两个参考信号进行准共址(Quasi co-location)配置,并告知终端,以描述信道特征假设。所述的准共址涉及的参数至少包括:多普勒扩展、多普勒平移、时延拓展、平均时延、平均增益和空间参数。本实施例中,空间 参数,可以包括空间接收参数,例如到达角、接收波束的空间相关性、平均时延、时频信道响应的相关性(包括相位信息)。
另外,基站可以对于两个参考信号进行空域关系配置,并告知终端,以描述信道特征假设。空域关系配置包括空间滤波器配置。
所述参考信号包括如下至少之一:
1)信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS);
2)信道状态信息干扰测量信号(Channel State Information Interference Measurement Signal,CSI-IM);
3)解调参考信号(Demodulation Reference Signal,DMRS);
4)下行解调参考信号(Downlink demodulation reference signal,DL DMRS);
5)上行解调参考信号(Uplink demodulation reference signal,UL DMRS);
6)信道探测参考信号(Sounding Reference Signal,SRS);
7)相位追踪参考信号(Phase-tracking reference signal,PTRS);
8)随机接入信道信号(Random Access Channel,RACH);
9)同步信号(Synchronization Signal,SS);
10)同步信号块(Synchronization Signal block,SS block);
11)主同步信号(Primary Synchronization Signal,PSS);
12)副同步信号(Secondary Synchronization Signal,SSS);
本申请一实施例提供一种路损参考信号指示方法,旨在无需额外信令开销的条件下,实现上行传输的波束对信息与用于上行传输功率控制的路损参考信号的波束对信息的同步更新。
图2为本申请一实施例提供的一种路损参考信号指示方法的流程示意图, 应用于终端,包括如下步骤:
步骤201:接收基站发送的上行传输的控制信令。
终端接收基站发送的上行传输控制信令,基于所述上行传输控制信令,终端确定上行传输控制参数。具体的,上行传输控制信令中携带上行传输控制参数。所述上行传输控制参数包括但不限于上行传输空域关系参数。
所述上行传输控制参数不包括路损参考信号指示。需要说明的是,是指不包括额外的专用于路损参数信号指示的信息。本实施例中,使用上行传输空域关系参数来指示路损参考信号。
在一实施例中,所述上行传输控制信令包括但不限于以下至少之一:
媒体接入控制-控制元素(Media Access Control-Control Element,MAC-CE)信令;
无线资源控制建立或重配(Radio Resource Control Setup/Reconfiguration,RRC Setup/Reconfiguration)信令;
下行控制信息(Downlink Control Information,DCI)信令。
步骤202:根据所述上行传输控制信令确定上行传输空域关系参数。
本步骤中,所述终端基于上行传输控制信令确定上行传输空域关系参数,具体的,所述上行传输控制信令中携带上行传输空域关系参数。所述空域关系参数包括但不限于空域关系关联的参考信号,其中,上行信号的空域关系关联的参考信号可以理解为终端用于发送该上行信号的空间滤波器与发射或接收该参考信号的空间滤波器一致。
需要说明的是,可以从MAC-CE、DCI、RRC Setup/Reconfiguration其中一种或多种中确定上行传输空域参数。
步骤203:根据所述上行传输空域关系参数确定用于上行传输功率控制的路损参考信号。
本实施例提供的方案,无需额外控制信令指示路损参考信号,有利于节省信令开销;无需RRC重配,有利于流量稳定,提升系统鲁棒性;提升了上行传输功率控制的路损参考信号配置灵活度,使之与上行传输的波束配置灵活度一致;实现上行传输的波束对信息与用于上行传输功率控制的路损参考信号的波束对信息的同步更新;提升了路损测量的准确度;有利于上行干扰抑制;有利于终端节能。
在一实施例中,所述空域关系参数包括空域关系关联的参考信号;
所述步骤203中,根据所述上行传输空域关系参数确定用于上行传输功率控制的路损参考信号包括:包括:
对任一目标上行信道或信号:
当所述目标上行信道或信号的空域关系关联的参考信号为下行信号时,将所述目标上行信道或信号的空域关系关联的参考信号作为所述目标上行信道或信号传输功率控制的路损参考信号。
在一实施例中,所述空域关系参数包括空域关系关联的参考信号;
所述步骤203中,根据所述上行传输空域关系参数确定用于上行传输功率控制的路损参考信号包括:包括:
对任一目标上行信道或信号,当所述目标上行信道或信号的空域关系关联的参考信号非下行信号时,将与所述目标上行信道或信号通过多级空域关系关联且为下行信号的第N参考信号作为所述目标上行信道或信号传输功率控制的路损参考信号,其中,所述通过多级空域关系关联是指所述目标上行信道或信号与所述第N参考信号之间存在N-1级参考信号,且N>1,从所述目标上行信道或信号开始,每级与其下一级通过空域关系关联。假设N=2,即目标上行信道或信号的路损参考信号为其第二参考信号,目标上行信道或信号与第二参考信号之间包括一级参考信号,称为第一参考信号,目标上行信道或信号与第一参考信号通过空域关系关联,第一参考信号与第二参考信号通过空域关系关联; 又比如,目标上行信道或信号到第N参考信号之间包括N-1级参考信号,依次为第一级至第N-1级,其中,目标上行信道或信号与第一级参考信号之间通过空域关系关联,第一级参考信号与第二级参考信号之间通过空域关系关联,依次类推,第N-1级参考信号与第N级参考信号(即第N参考信号)之间通过空域关系关联。
本申请的一个实施例中,所述目标上行信道或信号包括但不限于以下至少之一:
物理上行共享信道(Physical Uplink Shared Channel,PUSCH);
物理上行控制信道(Physical Uplink Control Channel,PUCCH);
物理随机接入信道(Physical Random Access Channel,PRACH);
信道探测参考信号(Sounding Reference Signal,SRS);
上行解调参考信号(Uplink demodulation reference signal,UL DMRS);
相位追踪参考信号(Phase-tracking reference signal,PTRS)。
举例来说,目标上行信道为PUCCH,从RRC Setup信令中获取PUCCH的空域关系参数,获取到PUCCH关联的参考信号为CSI-RS#1,表示CSI-RS resource Id(资源标识)为1的CSI-RS信号,且CSI-RS#1为下行信号,则将所述PUCCH关联的参考信号CSI-RS#1作为用于该PUCCH传输功率控制的路损参考信号;
图3为本发明一实施例提供的终端根据所述目标上行信道或信号的空域关系关联的参考信号确定用于上行传输功率控制的路损参考信号的方法流程图。
为了描述清晰,本步骤定义若干个节点,每个节点代表一个信号,节点之间通过空域关系进行关联,具体地,父节点信号的空域关系关联的参考信号为该父节点的子节点信号。目标上行信道或信号定义为根节点,目标上行信道或信号的空域关系关联的参考信号所在的节点为所述根节点的子节点,该根节点 也是该子节点的父节点,所述子节点同样存在与其通过空域关系关联的子节点,即父节点的空域关系关联的参考信号为该父节点的子节点。每一个节点具有各自的节点索引值i,定义所述目标上行信道或信号的索引为0,子节点的节点索引值为其父节点的节点索引值加1。需要说明的是,此定义仅为示例,可以根据需要设置其他节点索引值。
本步骤中,终端从根节点开始,按照父节点向子节点的方向,遍历每个节点,直至找到某节点的空域关系关联的参考信号为下行信号,则将该下行信号作为所述上行传输功率控制的路损参考信号,并结束遍历。
如图3所示,包括:
步骤301:将节点索引值i置为0,表示根节点;
步骤302:判断节点i的空域关系关联的参考信号是否为下行信号,如果是下行信号,则进入步骤304;如果不是下行信号,进入步骤303;
步骤303:将节点索引值i变为i+1,返回步骤302;
步骤304,确定所述上行信道或信号的路损参考信号为节点i的空域关系关联的参考信号,结束。
本实施例中,所述终端确定路损参考信号的方法复用上行传输控制信令中的空域关系参数,以实现目标上行传输信道或信号与其路损参考信号的波束关系进行绑定,当发生波束切换时,目标上行传输信道或信号的路损参考信号的波束关系进行同步切换,且无需额外的信令指示。
示例性的,图4、图5、图6为确定路损参考信号的三个示例。
如图4所示,对于PUCCH传输,该PUCCH信号为根节点41(该节点索引值i=0),其空域关系关联的参考信号为CSI-RS#2(表示CSI-RS resource Id(资源标识)=2的CSI-RS信号),即节点42(该节点索引值i=1),该参考信号为下行信号,则终端指示CSI-RS#2为该PUCCH传输功率控制的路损参考信 号。
如图5所示,对于PUSCH传输,该PUSCH信号为根节点51(该节点索引值i=0),其空域关系关联的参考信号为SRS#1(表示SRS resource Id=1的SRS信号),该参考信号为上行信号,则终端向其子节点,即节点52(该节点索引值i=1)遍历,节点52即为第一参考信号,节点52(SRS#1)的空域关系关联的参考信号为CSI-RS#5(节点53,该节点索引值i=2),节点53即为第二参考信号,该参考信号为下行信号,则CSI-RS#5为该PUSCH信道传输功率控制的路损参考信号。本实施例中,将第二参考信号作为路损参考信号,目标上行信道与路损参考信号通过两级空域关系关联,其中间存在一级参考信号(即第一参考信号)。
需要说明的是,PUSCH的空域关系参数(PUSCH关联的参考信号)和SRS的空域关系参数(SRS关联的参考信号)可以在不同的上行传输控制信令中携带,比如一个在DCI中携带,一个在RRC Setup信令中携带。
如图6所述,对于SRS传输,该SRS信号为根节点61(该节点索引值i=0),其空域关系关联的参考信号为CSI-RS#2(节点62,该节点索引值i=1),该参考信号为下行信号,则CSI-RS#2为该SRS信号传输功率控制的路损参考信号。
图7为本申请一实施例提供的另一种路损参考信号指示方法的流程示意图,应用于基站,如图7所示,包括如下步骤:
步骤701:向终端发送上行传输控制信令,所述上行传输控制信令中的上行传输空域关系参数指示用于上行传输功率控制的路损参考信
基站向终端发送上行传输控制信令,基于所述上行控制信令,指示终端上行传输控制参数。
所述上行传输控制信令包括但不限于:1)MAC-CE信令;2)RRC建立/重配信令;3)DCI控制信令。
所述上行传输控制参数包括但不限于上行传输空域关系。
所述上行传输控制参数不包括路损参考信号指示。需要说明的是,是指不包括额外的专用于路损参数信号指示的信息。本实施例中,使用上行传输空域关系参数来指示路损参考信号。
在一实施例中,所述空域关系参数包括空域关系关联的参考信号;
所述上行传输控制信令中的上行传输空域关系参数指示用于上行传输功率控制的路损参考信号包括:对任一目标上行信道或信号,当所述目标上行信道或信号的空域关系关联的参考信号为下行信号时,所述目标上行信道或信号的空域关系关联的参考信号为所述目标上行信道或信号传输功率控制的路损参考信号。
在一实施例中,所述空域关系参数包括空域关系关联的参考信号;所述上行传输控制信令中的上行传输空域关系参数指示用于上行传输功率控制的路损参考信号包括:
当所述目标上行信道或信号的空域关系关联的参考信号非下行信号时,与所述目标上行信道或信号通过多级空域关系关联且为下行信号的第N参考信号为所述目标上行信道或信号传输功率控制的路损参考信号,其中,所述通过多级空域关系关联是指所述目标上行信道或信号与所述第N参考信号之间存在N-1级参考信号,N>1,从所述目标上行信道或信号开始,每级与其下一级通过空域关系关联。
如图8所示,本发明一实施例提供一种终端80,包括存储器810和处理器820,所述存储器810存储有程序,所述程序在被所述处理器820读取执行时,实现任一实施例所述的路损参考信号指示方法,需要说明的是,此处路损参考信号指示方法是指应用于终端侧的路损参考信号指示方法。
如图9所示,本发明一实施例提供一种基站90,包括存储器910和处理器920,所述存储器910存储有程序,所述程序在被所述处理器920读取执行时,实现任一实施例所述的路损参考信号指示方法。需要说明的是,此处路损参考 信号指示方法是指应用于基站侧的路损参考信号指示方法。
如图10所示,本发明一实施例提供一种计算机可读存储介质100,所述计算机可读存储介质存储有一个或者多个程序110,所述一个或者多个程序110可被一个或者多个处理器执行,以实现任一实施例所述的路损参考信号指示方法。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
Claims (12)
- 一种路损参考信号指示方法,包括:接收基站发送的上行传输控制信令;根据所述上行传输控制信令,确定上行传输空域关系参数;根据所述上行传输空域关系参数,确定用于上行传输功率控制的路损参考信号。
- 根据权利要求1所述的方法,其中,所述空域关系参数包括空域关系关联的参考信号;所述根据所述上行传输空域关系参数,确定用于上行传输功率控制的路损参考信号,包括:对任一目标上行信道或信号,在所述目标上行信道或信号的空域关系关联的参考信号为下行信号的情况下,将所述目标上行信道或信号的空域关系关联的参考信号,作为所述目标上行信道或信号传输功率控制的路损参考信号。
- 根据权利要求1所述的方法,其中,所述空域关系参数包括空域关系关联的参考信号;所述根据所述上行传输空域关系参数,确定用于上行传输功率控制的路损参考信号包括:对任一目标上行信道或信号,在所述目标上行信道或信号的空域关系关联的参考信号为非下行信号的情况下,将与所述目标上行信道或信号通过多级空域关系关联且为下行信号的第N级参考信号,作为所述目标上行信道或信号传输功率控制的路损参考信号,其中,所述通过多级空域关系关联是指所述目标上行信道或信号与所述第N级参考信号之间存在N-1级参考信号,且N>1,从所述目标上行信道或信号开始,每级与其下一级通过空域关系关联。
- 根据权利要求2或3所述的方法,其中,所述目标上行信道或信号包括以下至少之一:物理上行共享信道、物理上行控制信道、物理随机接入信道、信道探测参考信号、上行解调参考信号、相位追踪参考信号。
- 根据权利要求1至3任一所述的方法,其中,所述上行传输控制信令包括以下至少之一:媒体接入控制-控制元素信令、无线资源控制建立或重配信令、下行控制信息信令。
- 一种路损参考信号指示方法,包括:向终端发送上行传输控制信令,所述上行传输控制信令中的上行传输空域关系参数指示用于上行传输功率控制的路损参考信号。
- 根据权利要求6所述的方法,其中,所述空域关系参数包括空域关系关联的参考信号;所述上行传输控制信令中的上行传输空域关系参数指示用于上行传输功率控制的路损参考信号,包括:对任一目标上行信道或信号,在所述目标上行信道或信号的空域关系关联的参考信号为下行信号的情况下,将所述目标上行信道或信号的空域关系关联的参考信号,作为所述目标上行信道或信号传输功率控制的路损参考信号。
- 根据权利要求6所述的方法,其中,所述空域关系参数包括空域关系关联的参考信号;所述上行传输控制信令中的上行传输空域关系参数指示用于上行传输功率控制的路损参考信号,包括:在所述目标上行信道或信号的空域关系关联的参考信号非下行信号的情况下,将与所述目标上行信道或信号通过多级空域关系关联且为下行信号的第N级参考信号,作为所述目标上行信道或信号传输功率控制的路损参考信号,其中,所述通过多级空域关系关联是指所述目标上行信道或信号与所述第N级参考信号之间存在N-1级参考信号,且N>1,从所述目标上行信道或所述目标信号开始,每级与其下一级通过空域关系关联。
- 根据权利要求6至8任一所述的方法,其中,所述上行传输控制信令包括以下至少之一:媒体接入控制-控制元素信令、无线资源控制建立或重配信令、下行控制信息信令。
- 一种终端,包括存储器和处理器,所述存储器存储有程序,所述程序 在被所述处理器读取执行时,实现如权利要求1至5任一项所述的路损参考信号指示方法。
- 一种基站,包括存储器和处理器,所述存储器存储有程序,所述程序在被所述处理器读取执行时,实现如权利要求6至9任一项所述的路损参考信号指示方法。
- 一种计算机可读存储介质,所述计算机可读存储介质存储有至少一个程序,所述至少一个程序可被至少一个处理器执行,以实现如权利要求1至9任一项所述的路损参考信号指示方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20826554.6A EP3975460A4 (en) | 2019-06-19 | 2020-06-17 | Path loss reference signal indicating method and device, terminal, base station, and storage medium |
US17/619,738 US12108344B2 (en) | 2019-06-19 | 2020-06-17 | Method and device for indicating path loss reference signal, terminal, base station and storage medium |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910530521.0A CN110535605B (zh) | 2019-06-19 | 2019-06-19 | 路损参考信号指示方法及装置、终端、基站及存储介质 |
CN201910530521.0 | 2019-06-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020253713A1 true WO2020253713A1 (zh) | 2020-12-24 |
Family
ID=68659516
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/096534 WO2020253713A1 (zh) | 2019-06-19 | 2020-06-17 | 路损参考信号指示方法及装置、终端、基站及存储介质 |
Country Status (4)
Country | Link |
---|---|
US (1) | US12108344B2 (zh) |
EP (1) | EP3975460A4 (zh) |
CN (1) | CN110535605B (zh) |
WO (1) | WO2020253713A1 (zh) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110535605B (zh) * | 2019-06-19 | 2024-06-14 | 中兴通讯股份有限公司 | 路损参考信号指示方法及装置、终端、基站及存储介质 |
JP7362757B2 (ja) * | 2019-10-03 | 2023-10-17 | 株式会社Nttドコモ | 端末、無線通信方法、基地局及びシステム |
CN111277395B (zh) * | 2020-01-20 | 2022-10-25 | 北京紫光展锐通信技术有限公司 | 一种路损参考信号的确定方法及装置 |
CN111901086A (zh) * | 2020-04-29 | 2020-11-06 | 中兴通讯股份有限公司 | 信息指示、确定、载频信息确定方法、通信节点及介质 |
WO2021223212A1 (en) * | 2020-05-08 | 2021-11-11 | Qualcomm Incorporated | Pathloss reference signal update for multiple resources |
CN111901859A (zh) * | 2020-05-14 | 2020-11-06 | 中兴通讯股份有限公司 | 功率控制方法、装置、服务节点、终端及存储介质 |
CN113839751B (zh) * | 2020-06-08 | 2023-05-09 | 中国移动通信有限公司研究院 | 路径损耗参考信号更新及指示更新方法、设备及介质 |
WO2022086644A1 (en) * | 2020-10-22 | 2022-04-28 | Apple Inc. | Techniques for pathloss reference signal enhancements |
CN116830707A (zh) | 2021-01-13 | 2023-09-29 | 苹果公司 | 上行链路空间关系切换延迟 |
CN115088208B (zh) * | 2021-01-14 | 2023-11-10 | 苹果公司 | 用于未许可频带中的路径损耗参考信号测量的技术 |
WO2022165656A1 (en) * | 2021-02-03 | 2022-08-11 | Qualcomm Incorporated | Techniques for implicit pathloss reference signaling in transmission configuration indicators |
CN116418471A (zh) * | 2021-12-30 | 2023-07-11 | 华为技术有限公司 | 一种路损参考信号确定方法及相关装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015117018A1 (en) * | 2014-01-31 | 2015-08-06 | Huawei Technologies Co., Ltd. | Device, network, and method for network adaptation and utilizing a downlink discovery reference signal |
CN109151969A (zh) * | 2017-06-16 | 2019-01-04 | 中兴通讯股份有限公司 | 发送功率的确定方法及装置、终端 |
CN109803362A (zh) * | 2017-11-17 | 2019-05-24 | 中兴通讯股份有限公司 | 功率控制方法、ue、基站、参数配置方法和控制方法 |
CN110535605A (zh) * | 2019-06-19 | 2019-12-03 | 中兴通讯股份有限公司 | 路损参考信号指示方法及装置、终端、基站及存储介质 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102395184B (zh) * | 2011-06-30 | 2015-08-26 | 电信科学技术研究院 | 一种实施上行功率控制的方法及装置 |
CN106413067B (zh) * | 2011-08-18 | 2019-11-29 | 华为技术有限公司 | 上行功率控制的方法、装置及计算机可读存储介质 |
ES2861202T3 (es) * | 2018-05-10 | 2021-10-06 | Asustek Comp Inc | Procedimiento y aparato para la indicación de haz para la transmisión de enlace ascendente en un sistema de comunicación inalámbrica |
US10959210B2 (en) * | 2018-05-30 | 2021-03-23 | Intel Corporation | Downlink reference resource selection for uplink transmissions |
WO2020024295A1 (en) * | 2018-08-03 | 2020-02-06 | Nec Corporation | Timing adjustment |
KR102450969B1 (ko) * | 2018-08-09 | 2022-10-05 | 삼성전자 주식회사 | 무선 통신 시스템에서 경로감쇄 결정 방법 및 장치 |
CN112534892B (zh) * | 2018-08-09 | 2024-08-13 | 联想(新加坡)私人有限公司 | 用于上行链路传输功率分配的装置及其方法 |
CN113273278A (zh) * | 2019-01-11 | 2021-08-17 | 联想(北京)有限公司 | 启用面板特定配置和传输的方法和装置 |
-
2019
- 2019-06-19 CN CN201910530521.0A patent/CN110535605B/zh active Active
-
2020
- 2020-06-17 WO PCT/CN2020/096534 patent/WO2020253713A1/zh unknown
- 2020-06-17 EP EP20826554.6A patent/EP3975460A4/en active Pending
- 2020-06-17 US US17/619,738 patent/US12108344B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015117018A1 (en) * | 2014-01-31 | 2015-08-06 | Huawei Technologies Co., Ltd. | Device, network, and method for network adaptation and utilizing a downlink discovery reference signal |
CN109151969A (zh) * | 2017-06-16 | 2019-01-04 | 中兴通讯股份有限公司 | 发送功率的确定方法及装置、终端 |
CN109803362A (zh) * | 2017-11-17 | 2019-05-24 | 中兴通讯股份有限公司 | 功率控制方法、ue、基站、参数配置方法和控制方法 |
CN110535605A (zh) * | 2019-06-19 | 2019-12-03 | 中兴通讯股份有限公司 | 路损参考信号指示方法及装置、终端、基站及存储介质 |
Non-Patent Citations (4)
Title |
---|
ERICSSON: "Remaining issues for NR power control", 3GPP DRAFT; R1-1807265_NR_PC_ISSUES_V0, vol. RAN WG1, 12 May 2018 (2018-05-12), Busan, Korea, pages 1 - 7, XP051462998 * |
ERICSSON: "Signalling reduction for beam-based UL power control", 3GPP DRAFT; R1-1907475 SIGNALLING REDUCTION FOR BEAM-BASED POWER CONTROL, vol. RAN WG1, 3 May 2019 (2019-05-03), Reno, USA, pages 1 - 3, XP051709488 * |
See also references of EP3975460A4 |
ZTE: "Summary2 for Al 7.1.5 Maintenance for UL power control", 3GPP DRAFT; R1-1903458 SUMMARY 2 FOR AL 7.1.5 MAINTENANCE FOR UL POWERCONTROL_V2_NOKIA_QC, vol. RAN WG1, 27 February 2019 (2019-02-27), Athens, Greece, pages 1 - 26, XP051601126 * |
Also Published As
Publication number | Publication date |
---|---|
EP3975460A1 (en) | 2022-03-30 |
US20220361114A1 (en) | 2022-11-10 |
CN110535605B (zh) | 2024-06-14 |
US12108344B2 (en) | 2024-10-01 |
EP3975460A4 (en) | 2023-06-28 |
CN110535605A (zh) | 2019-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020253713A1 (zh) | 路损参考信号指示方法及装置、终端、基站及存储介质 | |
EP3845014B1 (en) | Timing advance in new radio | |
US11082103B2 (en) | Apparatus and method for beam management in wireless communication system | |
WO2019214649A1 (zh) | 信道配置、功控方法和装置、用户设备、基站及存储介质 | |
US11910202B2 (en) | Transmission control method, sounding reference signal transmission method, terminal, base station and medium | |
TW202015465A (zh) | 準同位框架之增強方法及使用者設備 | |
US20220167384A1 (en) | Transmission instruction method, device, terminal, base station and storage medium | |
WO2018202215A1 (zh) | 配置上行信号的方法及装置、确定上行信号的方法及装置 | |
US20200252182A1 (en) | Method for transmitting srs and terminal therefor | |
WO2020063958A1 (zh) | 信号发送、资源确定方法、装置、终端、基站和存储介质 | |
US20240137887A1 (en) | Apparatus and method for supporting synchronization of reconfigurable intelligent surface (ris) reflection pattern in wireless communication system | |
US10383038B2 (en) | Apparatus and methods for providing and receiving system information in a wireless communications network | |
WO2023070468A1 (zh) | 随机接入方法、装置、设备及存储介质 | |
WO2023125344A1 (zh) | 一种关联关系的确定方法、装置、芯片及模组设备 | |
US20240063865A1 (en) | Apparatus and method for transmitting and receiving signal according to channel state in wireless communication system | |
US20240357377A1 (en) | Apparatus, system, and interference avoidance method | |
US20230300760A1 (en) | Terminal and communication method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20826554 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020826554 Country of ref document: EP Effective date: 20211223 |