WO2020253156A1 - 一种用于移动毫米波通信系统的数据驱动波束跟踪方法和装置 - Google Patents

一种用于移动毫米波通信系统的数据驱动波束跟踪方法和装置 Download PDF

Info

Publication number
WO2020253156A1
WO2020253156A1 PCT/CN2019/124539 CN2019124539W WO2020253156A1 WO 2020253156 A1 WO2020253156 A1 WO 2020253156A1 CN 2019124539 W CN2019124539 W CN 2019124539W WO 2020253156 A1 WO2020253156 A1 WO 2020253156A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
beam tracking
preset
millimeter wave
wave communication
Prior art date
Application number
PCT/CN2019/124539
Other languages
English (en)
French (fr)
Other versions
WO2020253156A9 (zh
Inventor
全智
马嫄
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Priority to EP19933796.5A priority Critical patent/EP3876434A4/en
Priority to US17/311,681 priority patent/US11533095B2/en
Publication of WO2020253156A1 publication Critical patent/WO2020253156A1/zh
Publication of WO2020253156A9 publication Critical patent/WO2020253156A9/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming

Definitions

  • the invention belongs to the field of wireless communication, and particularly relates to a data-driven beam tracking method and device for a mobile millimeter wave communication system.
  • the occupancy rate of the radio spectrum has become higher and higher.
  • some frequencies of the radio spectrum have become saturated, even if GMSK modulation or various multiple access technologies are used to expand
  • the capacity of the communication system and the improvement of the utilization rate of the frequency spectrum are also difficult to meet the needs of future communication. Therefore, the realization of high-speed and broadband wireless communication is bound to have such a trend: the development of new spectrum resources in the high frequency band. Because of its short wavelength and bandwidth, millimeter wave can effectively solve many practical problems in high-speed broadband wireless access technology, and has a wide range of application prospects.
  • the millimeter wave frequency band is an important way to achieve high-speed connections. It provides license-free bandwidth of multiple GHz, which is almost 200 times the bandwidth allocated to WiFi and cellular networks.
  • millimeter-wave radios are affected by mobility and dynamic environments compared to frequency bands below 6 GHz.
  • the path loss of a signal is inversely proportional to the wavelength. Because the wavelength is small, the path loss at 60 GHz is 625 times the path loss at 2.4 GHz.
  • the strength of the millimeter wave signal decays rapidly as the distance increases, so it is necessary to use a highly directional antenna to overcome severe propagation loss.
  • the width of the directional beam formed based on the beamforming technology is very narrow, so the directional beam is particularly sensitive to the mobility of the user equipment (UE). Only when the beams of the transmitter are well aligned can reliable communication be possible. Since the mobile state of the UE is unknown, in order to find the best weight vector, the traditional exhaustive search scans all possible beam directions until the best beam direction is found. This process will bring a delay of several seconds, so it is not suitable for mobile millimeter wave communication systems.
  • base tracking technology can be used to develop a precoding algorithm. However, this method requires the transmitter to obtain channel information before precoding. Therefore, reliable channel estimation is required to calculate the weight vector. Since the directional beam has not been formed, when the signal-to-noise ratio is low, the performance of the channel estimation algorithm is poor.
  • some fast beam tracking schemes are proposed to adapt the array weight vector to the time-varying beam spatial channel.
  • a hierarchical codebook is used to search for the best weight vector.
  • the hierarchical search starts with two wide beams, checks which beam returns more power, and then searches that part of the space with a narrower beam.
  • Hierarchical search only requires log-level measurement times.
  • nearby signal directions will collide in the same beam, and the conflicting signals will be combined destructively to cancel each other.
  • the layered algorithm may choose the wrong direction and use a narrower beam for exploration.
  • the present invention proposes a data driving method for tracking beam spatial channels based on the dynamic linearization representation of the time-varying pseudo-gradient parameter estimation process. Unlike traditional model-based methods that require channel information before precoding, the data driving method proposed in the present invention only depends on input and output measurement data. Based on the shortcomings of the prior art, the present invention proposes a data-driven beam tracking method, which can find the best beam vector and reduce the alignment time.
  • the motivation of the present invention is to observe that the adaptive beam tracking process can be modeled as a general discrete nonlinear system. Unlike the model-based method, the data-driven method only relies on real-time input/output (I/O) measurement data without explicit Or implicitly use system structure or dynamic information.
  • the proposed beam tracking scheme searches for the best beam by minimizing the tracking error by using a series of equivalent local dynamic linearizations of time-varying parameters called pseudo partial derivatives (PPD). You can use only online I/O measurement data to estimate the step size and PPD parameters.
  • PPD pseudo partial derivatives
  • the present invention uses a multi-resolution beamforming codebook to generate beam vectors used in the data-driven beam tracking scheme.
  • ( ⁇ ) T and ( ⁇ ) H respectively represent transpose and conjugate transpose; E represents the expectation operator; £ represents the set of complex numbers; o represents the Hadamard product.
  • a series of data tests and experimental numerical analysis related to the present invention show that, compared with the traditional scheme, the data-driven beam tracking method proposed by the present invention has good tracking performance and shorter alignment time.
  • the present invention aims to provide a data-driven beam tracking method and device for a mobile millimeter wave communication system.
  • a data-driven beam tracking method for a mobile millimeter wave communication system characterized in that the method includes the following steps:
  • the preset target SNR is: ⁇ * ;
  • the preset tracking error is: ⁇ ;
  • the default small normal number is: ⁇ ;
  • the preset maximum number of measurement iterations is: t max ;
  • Data-driven beam tracking performs the following steps:
  • ⁇ (k) is the received signal-to-noise ratio (SNR) at the UE
  • ⁇ (k) is the array weight vector
  • E is the expected operator
  • £ is the set of complex numbers
  • t is the current iteration number
  • ⁇ (k) is called Pseudo partial derivative (PPD)
  • ( ⁇ ) T , ( ⁇ ) H represent transpose and conjugate transpose respectively
  • N is the number of code words in the codebook
  • is a variable used to control the array weight to keep the main lobe directional gain as constant as possible.
  • the present invention uses beam rotation technology to generate weight vectors with the same shape but different steering angles, and calculates all weight vectors based on only one weight vector:
  • the form of the array steering vector of the present invention is:
  • the pseudo-partial derivative (PPD) of the present invention Is the PPD measured at the kth time, and
  • the present invention uses an improved projection algorithm to estimate the PPD parameter ⁇ (k).
  • the standard function of PPD estimation is
  • the present invention also provides a data-driven beam tracking device used in a mobile millimeter wave communication system, characterized in that the device includes the following modules:
  • the target SNR preset module the preset target SNR is: ⁇ * ;
  • Tracking error preset module the preset tracking error is: ⁇ ;
  • the small normal number preset module the default small normal number is: ⁇ ;
  • the maximum number of measurement iterations preset module is: t max ;
  • Estimated parameter preset module preset estimated parameters based on differential evolution algorithm ⁇ , ⁇ , ⁇ and ⁇ .
  • a data-driven beam tracking execution module that performs calculations in the following steps according to preset module parameters and their values
  • ⁇ (k) is the received signal-to-noise ratio (SNR) at the UE
  • ⁇ (k) is the array weight vector
  • E is the expected operator
  • £ is the set of complex numbers
  • t is the current iteration number
  • ⁇ (k) is called Pseudo partial derivative (PPD)
  • ( ⁇ ) T , ( ⁇ ) H represent transpose and conjugate transpose respectively
  • N is the number of code words in the codebook
  • is a variable used to control the array weight to keep the main lobe directional gain as constant as possible.
  • the data-driven beam tracking device provided by the present invention further includes a weight vector generation module.
  • the weight vector generation module uses beam rotation technology to generate weight vectors with the same shape but different steering angles. , Calculate all weight vectors based on only one weight vector:
  • the data-driven beam tracking device provided by the present invention further includes an array steering vector setting module, and the array steering vector setting module sets the array steering vector in the form of:
  • the data-driven beam tracking device provided by the present invention further includes a pseudo-partial derivative setting module, and the pseudo-partial derivative setting module sets the pseudo-partial derivative (PPD) Is the PPD measured at the kth time, and
  • PPD pseudo-partial derivative
  • the data-driven beam tracking device provided by the present invention further includes a PPD parameter estimation module, the PPD parameter estimation module uses an improved projection algorithm to estimate the PPD parameter ⁇ (k).
  • the standard function of PPD estimation is:
  • the present invention proposes a beam tracking scheme for weight adaptation using only real-time measurement data.
  • the present invention proposes a data-driven beam tracking scheme to track time-varying beam spatial channels, and its purpose is to find candidate beam vectors ⁇ (k) to achieve the target SNR ⁇ * for reliable communication between the BS and the user.
  • the present invention proposes a data-driven beam tracking scheme for mobile millimeter wave communication systems.
  • the proposed data-driven method is based on the dynamic linearized representation of the time-varying pseudo-gradient parameter estimation process.
  • the present invention can further accelerate beam tracking with low overhead through beam rotation.
  • the simulation result of the present invention shows that the solution can achieve faster tracking performance than the existing reliable communication solution.
  • Figure 1 is a block diagram of the mmWave MISO system of the present invention
  • Figure 2 is a geometric relationship between the ULA of the BS and the mobile UE of the present invention
  • Figure 3 is a frame structure of beam tracking and data transmission within the channel coherence time of the present invention.
  • Figure 4 is one of the beam patterns in the continuous spatial domain of the present invention.
  • FIG. 5 is a diagram of beam coverage of a multi-resolution (multi-resolution) layered codebook of the present invention
  • Figure 6 is one of the hierarchical search examples using multipath in the present invention.
  • Fig. 7 is a schematic diagram of data-driven beam tracking according to a preferred embodiment of the present invention.
  • first, second, etc. may be used in the embodiments of the present invention to describe the method and the corresponding device, these keywords should not be limited to these terms. These terms are only used to distinguish keywords from each other.
  • the first beam tracking method and corresponding device may also be referred to as the second beam tracking method and corresponding device.
  • the second beam tracking method and corresponding device may also be referred to as It is called the first beam tracking method and corresponding device.
  • the word “if” as used herein can be interpreted as “when” or “when” or “in response to determination” or “in response to detection”.
  • the phrase “if determined” or “if detected (statement or event)” can be interpreted as “when determined” or “in response to determination” or “when detected (statement or event) )” or “in response to detection (statement or event)”.
  • the present invention adopts a geometric channel model with L paths between the BS and the UE, which is given by:
  • g l is the complex gain of the l- th path
  • u t ( ⁇ ) is the array-oriented vector, namely
  • d is the distance between adjacent antenna arrays
  • is the propagation wavelength
  • Indicates that the spatial frequency is Indicates the starting angle.
  • multiple antennas can be used to form a directional narrow beam for millimeter wave communication. Therefore, the beams between the transmitter and the receiver need to be well aligned for high-quality communication.
  • the solution for beam alignment needs to scan the entire space and try various beams until they find the best beam, especially for mobile UEs. Such a long delay makes the deployment of millimeter wave links difficult to implement.
  • the present invention regards the ULA center of the BS as the origin, and assumes that the directions parallel and perpendicular to the ULA are the x-axis and the y-axis, respectively. Then, the geometric relationship between the ULA and the mobile UE can be represented in Figure 2, where ⁇ t is the physical direction between the ULA and the UE in the time slot t.
  • K t K t out of K
  • K t K t out of K
  • the BS selects one of the K t weight vectors to achieve the target SNR ⁇ * for reliable communication between the BS and the user. Then use the selected weight vector for data transmission (ie, 1 ⁇ K ⁇ K t ).
  • the adaptive beam tracking process can be simulated as a general discrete nonlinear system process, and the relationship between the array weight vector ⁇ (k) and the received SNR can be described by a given general discrete time system as follows :
  • ⁇ (k) f( ⁇ (k-1),..., ⁇ (kn p ), ⁇ (k),..., ⁇ (kn s )),
  • ⁇ (k) is the received SNR at the UE at the kth moment
  • n p and n s are any reasonable unknown order
  • f(g) is an unknown nonlinear function
  • Assumption 1 is a typical condition of a general nonlinear system. Since the rate of change of the system's array weight vector ⁇ (k) is always limited, it can be reasonably assumed that the partial derivative of f(g) with respect to ⁇ (k) is continuous. According to the law of conservation of energy, a finite change in input energy cannot lead to an infinite change in output energy. Therefore, assumption 2 is reasonable in the present invention.
  • the present invention proposes a data-driven beam tracking scheme to track time-varying beam spatial channels. Its purpose is to find candidate beam vector ⁇ (k) to achieve reliable communication between BS and user The target SNR ⁇ * .
  • the present invention considers the following standard functions:
  • is the step constant
  • ⁇ (k) in the formula is unknown, but it is related to the input and output of the system until time k. Therefore, ⁇ (k) can be regarded as a time-varying parameter.
  • the present invention uses an improved projection algorithm to estimate the PPD parameter ⁇ (k). Define the standard function for PPD estimation
  • is a small normal number, if
  • the reset scheme can enhance the tracking ability of the estimation algorithm.
  • the following data-driven beam tracking solution proposed by the present invention is a main step of a preferred embodiment of the present invention.
  • the present invention proposes a novel multi-resolution (multi-resolution) beamforming codebook design method.
  • the quantized space angle The form of the array steering vector is:
  • the data-driven beam tracking algorithm is as follows:
  • the target SNR is: ⁇ * ;
  • the tracking error is: ⁇ ;
  • the small normal number is: ⁇ ;
  • Data-driven beam tracking performs the following steps:
  • N is the number of code words in the codebook
  • is a variable used to control the array weight to keep the main lobe directional gain as constant as possible.
  • the present invention uses beam rotation technology to generate weight vectors with the same shape but different steering angles. Therefore, the present invention can calculate all weight vectors based on only one weight vector, as described below:
  • Fig. 4 shows an example of the beam pattern of the proposed codebook design. From Figure 4, the present invention observes that the proposed beam pattern has almost constant main lobe directivity gain for each beam.
  • the numerical analysis process is as follows:
  • Numerical analysis can be used as a part of the preferred embodiments of the present invention to explain, paraphrase and evaluate the technical effects of the data-driven beam tracking scheme proposed by the present invention.
  • the present invention compares the proposed scheme with traditional exhaustive search and hierarchical search algorithms. That is, the present invention first describes the comparison scheme, and then displays and discusses the obtained simulation results.
  • Hierarchical search As shown in Figure 5 of the specification, in the hierarchical search, 2 m codewords in the mth layer are established at the BS. The i-th codeword of the m-th layer is expressed as.
  • the BS performs a bidirectional tree search on m layers to find the best beamforming codeword. In each layer, the BS has two candidate beamforming codewords, which are the two child codewords of the parent codeword found in the previous layer. Then select the code word with higher SNR and use it as the parent code word of the next layer. Compared with the lower layer codeword, the higher layer codeword can obtain a narrower beam main lobe with larger directional gain.
  • the robustness of hierarchical search is low.
  • nearby signal directions will collide in the same beam. Therefore, conflicting signals can be destructively combined to cancel each other's power.
  • the paths L1 and L2 have close directions, and therefore will collide in the same wide beam. Assuming that L1 and L2 have opposite phases, they will cancel each other's power so that the signal sent by the left beam (for example, direction 90° to 0°) has a higher power.
  • the layered algorithm will amplify the wrong directions and search for them with a narrower beam.
  • the beam direction at the BS must be adjusted according to the location of the UE. As shown in Figure 7 of the specification, we assume that the initial beam alignment has been established, where the physical direction ⁇ between the BS and the UE is 25° and the SNR at the UE is 22 dB. Then ⁇ changes as the UE moves, so that the SNR at the UE is significantly reduced.
  • fast beam tracking is performed based on the proposed data-driven method, where based on real-time measurement, the BS obtains the best beam direction with the highest SNR.
  • the invention proposes a data-driven beam tracking scheme for a mobile millimeter wave communication system by using real-time measurement data.
  • the proposed data-driven method is based on the dynamic linearized representation of the time-varying pseudo-gradient parameter estimation process.
  • the present invention can reduce overhead through beam rotation and further accelerate beam tracking.
  • the simulation result of the present invention shows that the solution can achieve faster tracking performance than the existing reliable communication solution.
  • the above method operation and its corresponding device can add device, module, device, hardware, pin connection or memory, processor difference To expand the functionality.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the method steps is only a logical or functional division, and there may be other divisions in actual implementation, for example, multiple units or components. Can be combined or integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as the individual steps of the method and device separation components may or may not be logically or physically separated, or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the method steps, their implementation, and functional units in the various embodiments of the present invention may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit may be implemented in the form of hardware, or may be implemented in the form of hardware plus software functional units.
  • the above method and device can be an integrated unit implemented in the form of a software functional unit, and can be stored in a computer readable storage medium.
  • the above-mentioned software functional unit is stored in a storage medium, and includes several instructions to make a computer device (which can be a personal computer, a server, or a network device, etc.) or a processor (Processor) execute the method described in each embodiment of the present invention. Part of the steps.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or wave disk, etc., which can store program code medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)
  • Radio Relay Systems (AREA)

Abstract

本发明通过使用实时测量数据,为移动毫米波通信系统提出了一种数据驱动的波束跟踪方案。所提出的数据驱动方法基于时变伪梯度参数估计过程的动态线性化表示。通过为码本设计引入一种有效的方法,本发明可以通过波束旋转以降低开销进一步加速波束跟踪。本发明的仿真结果表明,该方案可以实现比现有可靠通信方案更好的跟踪性能。

Description

一种用于移动毫米波通信系统的数据驱动波束跟踪方法和装置 技术领域
本发明属于无线通信领域,尤其涉及一种用于移动毫米波通信系统的数据驱动波束跟踪方法和装置。
背景技术
随着5G技术的到来,个人移动通信技术的高速发展,导致无线电频谱的占用率越来越高,其中,无线电频谱的某些频率已经趋于饱和,即便采用GMSK调制或各种多址技术扩大通信系统的容量,提高频谱的利用率,也难以满足未来通信的需要,因此实现高速、宽带的无线通信势必有着这样一种趋势:在高频段开发新的频谱资源。毫米波由于其波长短、频带宽,可以有效地解决高速宽带无线接入技术中的许多现实难题,具有广泛的应用前景。
毫米波频带是实现高速连接的重要方法,它提供多个GHz的免许可带宽,几乎是分配给WiFi和蜂窝网络的带宽的200倍。然而,与低于6GHz的频段相比,毫米波无线电受到移动性和动态环境的影响。信号的路径损耗与波长成反比,由于波长较小,60GHz时的路径损耗是2.4GHz时的路径损耗的625倍。毫米波信号的强度随着距离增长而快速衰减,因此需要使用高度定向的天线来克服严重的传播损耗。
基于波束形成技术形成的定向波束的宽度很窄,因此定向波束对用户设备(UE)的移动性特别敏感。只有当发射机的波束对齐良好时,才可能进行可靠的通信。由于UE的移动状态未知,为了找到最佳权重向量,传统的穷举搜索扫描所有可能的波束方向,直到找到最佳波束方向。这个过程会带来长达几秒钟的延迟,因此不适合移动毫米波通信系统。为了执行精确的波束形成,利用mmWave信道的稀疏性质,可使用基追踪技术开发预编码算法。然而,该方法要求发射机需要在预编码之前获得信道信息。因此,需要可靠的信道估计来计算权重向量。由于尚未形成定向波束,当信噪比较低时,信道估计算法的性能较差。
为了在没有信道信息的情况下加速波束跟踪过程,提出了一些快速波束跟踪方案以使阵列权重向量适应时变波束空间信道。例如,为了保证通信链路的质量,使用分级码本来搜索最佳权重向量。分层搜索以两个宽波束开始,检查哪个波束返回更多功率,然后用更窄的波束搜索该部分空间。分层搜索只需要对数级别的测量次数。然而,在宽波束搜索中,附近的信号方向将在同一波束内发生碰撞,冲突信号破坏性地组合以相互抵消,导致分层算法可能选择错误的方向并用更窄的波束进行探索。为了保证移动用户毫米波通信的可靠性,需要快速波束跟踪以使阵列权重向量适应时变波束空间信道。为了找到最佳波束对准,传统的穷举搜索法扫描所有可能的波束方向,由此造成了长达数秒的延迟,因此,不适合移动毫米波通 信系统。本发明提出了一种基于时变伪梯度参数估计过程的动态线性化表示的跟踪波束空间信道的数据驱动方法。与在预编码之前需要信道信息的基于模型的传统方法不同,本发明所提出的数据驱动方法仅取决于输入和输出测量数据。基于现有技术的不足,本发明提出了一种数据驱动的波束跟踪方法,可以找到最佳的波束矢量,减少对准时间。本发明的动机是观察到自适应波束跟踪过程可以建模为一般离散非线性系统,与基于模型的方法不同,数据驱动方法仅依赖于实时输入/输出(I/O)测量数据,而无需明确或隐含地使用系统结构或动态信息。所提出的波束跟踪方案通过使用称为伪偏导数(PPD)的时变参数的一系列等效局部动态线性化来最小化跟踪误差来搜索最佳波束。可以仅使用在线I/O测量数据来估计步长和PPD参数。为了加速波束跟踪过程,本发明采用多分辨率波束形成码本来生成数据驱动波束跟踪方案中使用的波束矢量。仿真结果表明,该方法可以保证通信链路的质量,同时减少时变波束空间信道的跟踪时间。本发明中,(·) T,(·) H分别表示转置和共轭转置;E表示期望运算符;£表示复数的集合;o表示Hadamard乘积。
本发明相关的一系列数据测试与实验数值分析表明,与传统方案相比,本发明所提出的数据驱动波束跟踪方法具有良好的跟踪性能和更短的对准时间。
发明内容
本发明旨在提供一种用于移动毫米波通信系统的数据驱动波束跟踪方法和装置。
为了实现上述目的,本发明的技术方案如下:一种用于移动毫米波通信系统的数据驱动波束跟踪方法,其特征在于,所述方法包含以下步骤:
1:预设预测量数据集为:W=[ω(1),ω(2)],Γ=[γ(1),γ(2)];
2:预设目标SNR为:γ *
3:预设跟踪误差为:ò;
4:预设小正常数为:σ;
5:预设最大测量迭代次数为:t max
6:预设基于差分进化算法的估计参数
Figure PCTCN2019124539-appb-000001
η,ρ,μ和λ。
数据驱动的波束跟踪执行如下步骤:
7:对于t<t max
8:计算
Figure PCTCN2019124539-appb-000002
9:如果
Figure PCTCN2019124539-appb-000003
或||Δω(k)|| 2<=σ,或
Figure PCTCN2019124539-appb-000004
那么
Figure PCTCN2019124539-appb-000005
在UE处
为给定的ω(k+1)计算
Figure PCTCN2019124539-appb-000006
10:如果
Figure PCTCN2019124539-appb-000007
停止计算,
Γ(k+1)←[Γ(k),γ(k+1)]
W←[W,ω(k+1)];
t←t+1,k←k+1
11:返回γ(k);
其中γ(k)为UE处的接收信噪比(SNR),ω(k)为阵列权重向量,E表示期望运算符;£表示复数的集合;t为当前迭代次数,Φ(k)称为伪偏导数(PPD),(·) T,(·) H分别表示转置和共轭转置,
Figure PCTCN2019124539-appb-000008
优选地,本发明通过在量化角度子集上添加阵列导向矢量,将码本W={ω(1),ω(2),...,ω(N)}设计为
Figure PCTCN2019124539-appb-000009
其中N是码本中码字的数量,δ是一个变量,用于控制阵列权重以保持主瓣方向性增益尽可能恒定。
优选地,本发明为了进一步降低波束追踪的复杂性,采用波束旋转技术生成具有相同形状但不同转向角的权重向量,仅基于一个权重向量计算所有权重向量:
Figure PCTCN2019124539-appb-000010
对于2≤i≤N,其中o表示Hadamard乘积,ψ是码本中权重向量的波束宽度。
优选地,本发明阵列导向矢量的形式为:
Figure PCTCN2019124539-appb-000011
优选地,本发明的伪偏导数(PPD,pseudo-partial derivative)
Figure PCTCN2019124539-appb-000012
是第k次测量的PPD,且||Φ(k)|| 2≤c。
优选地,本发明使用改进投影算法来估计PPD参数Φ(k)。PPD估计的标准函数为
Figure PCTCN2019124539-appb-000013
其中μ>0是权重因子。求解最佳条件:
Figure PCTCN2019124539-appb-000014
Figure PCTCN2019124539-appb-000015
其中η是步长常数。
另,本发明还提供一种数据驱动波束跟踪装置,用于移动毫米波通信系统,其特征在于,所述装置包含以下模块:
预测量数据集预设模块,预设预测量数据集为:W=[ω(1),ω(2)],Γ=[γ(1),γ(2)];
目标SNR预设模块,预设目标SNR为:γ *
跟踪误差预设模块,预设跟踪误差为:ò;
小正常数预设模块,预设小正常数为:σ;
最大测量迭代次数预设模块,预设最大测量迭代次数为:t max
估计参数预设模块,预设基于差分进化算法的估计参数
Figure PCTCN2019124539-appb-000016
η,ρ,μ和λ。
数据驱动波束跟踪执行模块,所述数据驱动波束跟踪执行模块按照预设模块预设参数及其数值进行如下步骤的计算
对于t<t max
计算
Figure PCTCN2019124539-appb-000017
如果
Figure PCTCN2019124539-appb-000018
或||Δω(k)|| 2<=σ,或
Figure PCTCN2019124539-appb-000019
那么
Figure PCTCN2019124539-appb-000020
在UE处为给定的ω(k+1)计算
Figure PCTCN2019124539-appb-000021
如果
Figure PCTCN2019124539-appb-000022
停止计算,
Γ(k+1)←[Γ(k),γ(k+1)]
W←[W,ω(k+1)];
t←t+1,k←k+1
返回γ(k);
其中γ(k)为UE处的接收信噪比(SNR),ω(k)为阵列权重向量,E表示期望运算符;£表示复数的集合;t为当前迭代次数,Φ(k)称为伪偏导数(PPD),(·) T,(·) H分别表示转置和共轭转置,
Figure PCTCN2019124539-appb-000023
优选地,本发明所提供的数据驱动波束跟踪装置还包括码本设计模块,所述码本设计模块通过在量化角度子集上添加阵列导向矢量,将码本W={ω(1),ω(2),...,ω(N)}设计为
Figure PCTCN2019124539-appb-000024
其中N是码本中码字的数量,δ是一个变量,用于控制阵列权重以保持主瓣方向性增益尽可能恒定。
优选地,本发明所提供的数据驱动波束跟踪装置还包括权重向量生成模块,为了进一步降低波束跟踪的复杂性,所述权重向量生成模块采用波束旋转技术生成具有相同形状但不同转向角的权重向量,仅基于一个权重向量计算所有权重向量:
Figure PCTCN2019124539-appb-000025
对于2≤i≤N,其中o表示Hadamard乘积,ψ是码本中权重向量的波束宽度。
优选地,本发明所提供的数据驱动波束跟踪装置还包括阵列导向矢量设置模块,所述阵列导向矢量设置模块设置阵列导向矢量的形式为:
Figure PCTCN2019124539-appb-000026
优选地,本发明所提供的数据驱动波束跟踪装置还包括伪偏导数设置模块,所述伪偏导数设置模块设置其中伪偏导数(PPD,pseudo-partial derivative)
Figure PCTCN2019124539-appb-000027
是第k次测量的PPD,且||Φ(k)|| 2≤c。
优选地,本发明所提供的数据驱动波束跟踪装置还包括PPD参数估计模块,所述PPD参数估计模块使用改进投影算法来估计PPD参数Φ(k)。PPD估计的标准函数为:
Figure PCTCN2019124539-appb-000028
其中μ>0是权重因子。
求解最佳条件:
Figure PCTCN2019124539-appb-000029
Figure PCTCN2019124539-appb-000030
其中η是步长常数。
本发明提出了仅使用实时测量数据的用于权重自适应的波束跟踪方案,来自于申请人观察到自适应波束跟踪过程可以模拟为一般离散非线性系统过程,为了确保通信不被用户移动性中断,本发明提出了一种数据驱动的波束跟踪方案来跟踪时变波束空间信道,其目的是找到候选波束矢量ω(k)以实现BS与用户之间可靠通信的目标SNRγ *。通过使用实时测量数据,本发明为移动毫米波通信系统提出了一种数据驱动的波束跟踪方案。所提出的数据驱动方法基于时变伪梯度参数估计过程的动态线性化表示。通过为码本设计引入一种有效的方法,本发明可以通过波束旋转以低开销进一步加速波束跟踪。本发明的仿真结果表明,该方案可以实现比现有可靠通信方案更快的跟踪性能。
附图说明
图1是本发明的mmWave MISO系统的框图的一种;
图2是本发明BS的ULA与移动UE之间的几何关系的一种;
图3是本发明信道相干时间内波束跟踪和数据传输的帧结构的一种;
图4是本发明连续空间域上的波束图案之一;
图5是本发明多分辨率(multi-resolution)分层码本的波束覆盖的图示;
图6是本发明使用多路径的分层搜索示例之一;
图7是本发明一种优选实施例的数据驱动波束跟踪示意图。
具体实施方式
为了更好的理解本发明的技术方案,下面结合附图对本发明实施例进行详细描述。
应当明确,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
在本发明实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本发明。在本发明实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应当理解,尽管在本发明实施例中可能采用术语第一、第二等来描述方法和相应装置,但这些关键词不应限于这些术语。这些术语仅用来将关键词彼此区分开。例如,在不脱离本发明实施例范围的情况下,第一波束跟踪方法和相应装置也可以被称为第二波束跟踪方法和相应装置,类似地,第二波束跟踪方法和相应装置也可以被称为第一波束跟踪方法和相应装置。
取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”或“响应于检测”。类似地,取决于语境,短语“如果确定”或“如果检测(陈述的条件或事件)”可以被解释成为“当确定时”或“响应于确定”或“当检测(陈述的条件或事件)时”或“响应于检测(陈述的条件或事件)”。
如说明书附图1所示,对于毫米波多输入单输出系统,其在BS处具有N t个发射天线的均匀线性阵列(ULA),在移动UE处具有单个接收天线。在第k个时刻的下行链路中的接收信号可以由下式表示:
Figure PCTCN2019124539-appb-000031
其中P是发射功率,
Figure PCTCN2019124539-appb-000032
是信道向量,
Figure PCTCN2019124539-appb-000033
是BS处的阵列权重向量, x(k)∈£是具有归一化功率E{x(k) 2}=1的发射符号,n(k)~CN(0,σ 2)是加性高斯白噪声(AWGN)。因此,UE处的接收信噪比(SNR)为:
Figure PCTCN2019124539-appb-000034
由于预期毫米波信道具有有限的散射,本发明采用具有BS和UE之间的L条路径的几何信道模型,其由下式给出:
其中g l是第l条路径的复数增益,u t(·)是数组导向矢量,即
Figure PCTCN2019124539-appb-000035
Figure PCTCN2019124539-appb-000036
其中d是相邻天线阵列之间的距离,λ是传播波长,
Figure PCTCN2019124539-appb-000037
表示空间频率为
Figure PCTCN2019124539-appb-000038
表示出发角。本发明可以用矩阵形式重写信道矩阵:h=Ag
其中,
Figure PCTCN2019124539-appb-000039
基于波束成形,可以使用多个天线形成用于毫米波通信的定向窄波束。因此,发射机和接收机之间的波束需要很好地对准以进行高质量通信。目前,用于波束对准的解决方案需要扫描整个空间,尝试各种波束直到它们找到最佳波束,尤其是对于移动UE,如此长的延迟使得毫米波链路的部署难以实施。
在不失一般性的情况下,本发明将BS的ULA中心视为原点,并假设与ULA平行和垂直的方向分别是x轴和y轴。然后,ULA和移动UE之间的几何关系可以在图2中表示,其中α t是时隙t中ULA和UE之间的物理方向。
如图3所示,假设在信道相干时间内发送K个连续符号。在这些K个传输符号中,其中K t个(K tout of K)用于波束跟踪。在跟踪周期期间,即1≤K≤K t,BS选择K t个权重向量其中一个,以实现目标SNR γ *,用于BS与用户之间的可靠通信。然后采用所选择的权重向量进行数据传输(即1≤K≤K t)。
在本发明中,提出了仅使用实时测量数据的用于权重自适应的波束跟踪方案。本发明来自于申请人观察到自适应波束跟踪过程可以模拟为一般离散非线性系统过程,且阵列权重向量ω(k)与接收的SNR之间的关系可以通过给定的一般离散时间系统描述如下:
γ(k)=f(γ(k-1),...,γ(k-n p),ω(k),...,ω(k-n s)),
其中γ(k)是在第k个时刻UE处的接收SNR,n p和n s是任一合理未知阶数,并且f(g)是未知非线性函数。
非线性系统的动态线性化表示基于以下假设:假设1:f(g)相对于ω(k)的偏导数是连续的。假设2:系统是Lipschitz的,例如:对于任意的k来说,|Δs(k)|≤c||Δω(k)||,其中,
Figure PCTCN2019124539-appb-000040
且c是一个正常数。
定理1:对于满足假设1和2的非线性系统,一定存在一个参数Φ(k),称为伪偏导数(PPD),这样系统可以转换成以下等价动态线性化数据模型:Δγ(k)=Φ T(k)Δω(k),
其中
Figure PCTCN2019124539-appb-000041
是第k次测量的PPD,且||Φ(k)|| 2≤c。
从现实的角度来看,上述假设都是正确的。假设1是一般非线性系统的典型条件。由于系统的阵列权重向量ω(k)的变化率总是有限的,可以合理地假设f(g)相对于ω(k)的偏导数是连续的。根据能量守恒定律,输入能量的有限变化不可能导致输出能量的无限变化。因此,在本发明假设2是合理的。
为了确保通信不被用户移动性中断,本发明提出了一种数据驱动的波束跟踪方案来跟踪时变波束空间信道,其目的是找到候选波束矢量ω(k)以实现BS与用户之间可靠通信的目标SNRγ *。本发明考虑以下标准函数:
J(ω(k))=|γ *-γ(k)| 2+λ||ω(k)-ω(k-1)|| 2,
其中λ是权重因子。重写上述公式为:
Figure PCTCN2019124539-appb-000042
其中
Figure PCTCN2019124539-appb-000043
是Φ(k)的估计值。求解最优条件:
Figure PCTCN2019124539-appb-000044
Figure PCTCN2019124539-appb-000045
其中ρ是步长常数。
注意公式中的参数Φ(k)是未知的,但是与系统输入和输出有关,直到时刻k。因此,可以将Φ(k)视为时变参数。本发明使用改进投影算法来估计PPD参数Φ(k)。定义PPD估计的标准函数
Figure PCTCN2019124539-appb-000046
其中μ>0是权重因子。求解最佳条件:
Figure PCTCN2019124539-appb-000047
Figure PCTCN2019124539-appb-000048
其中η是步长常数。为了准确跟踪迭代变化参数Φ(k)并确保Δω(k)≠0不等于0,使用以下复位方案:
Figure PCTCN2019124539-appb-000049
其中
Figure PCTCN2019124539-appb-000050
是PPD的第一个元素的初始值,σ是一个小的正常数,如果||Δω(k)|| 2或者
Figure PCTCN2019124539-appb-000051
太小,则重置
Figure PCTCN2019124539-appb-000052
该重置方案可以增强估计算法的跟踪能力。
以下本发明所提出的数据驱动波束跟踪方案为本发明优选实施例的一种的主要步骤。
码本设计:
为了在低开销的同时加快波束跟踪,本发明提出了一种新颖的多分辨率(multi-resolution)波束成形码本设计方法。考虑到量化空间角
Figure PCTCN2019124539-appb-000053
阵列导向矢量的形式为:
Figure PCTCN2019124539-appb-000054
作为实施例的一种,数据驱动的波束跟踪算法如下:
设:
1:预设预测量数据集为:W=[ω(1),ω(2)],Γ=[γ(1),γ(2)];
2:目标SNR为:γ *
3:跟踪误差为:ò;
4:小正常数为:σ;
5:最大测量迭代次数为:t max
6:基于差分进化算法的估计参数
Figure PCTCN2019124539-appb-000055
η,ρ,μ和λ。
数据驱动的波束跟踪执行如下步骤:
7:对于t<t max
8:计算
Figure PCTCN2019124539-appb-000056
9:如果
Figure PCTCN2019124539-appb-000057
或||Δω(k)|| 2<=σ,或
Figure PCTCN2019124539-appb-000058
那么
Figure PCTCN2019124539-appb-000059
在UE
处为给定的ω(k+1)计算
Figure PCTCN2019124539-appb-000060
10:如果
Figure PCTCN2019124539-appb-000061
停止计算,
Γ(k+1)←[Γ(k),γ(k+1)]
W←[W,ω(k+1)];
t←t+1,k←k+1
11:返回γ(k);
通过在量化角度子集上添加阵列导向矢量,将码本W={ω(1),ω(2),...,ω(N)}设计为
Figure PCTCN2019124539-appb-000062
其中N是码本中码字的数量,δ是一个变量,用于控制阵列权重以保持主瓣方向性增益尽可能恒定。为了进一步降低波束跟踪的复杂性,本发明采用波束旋转技术生成具有相同形状但不同转向角的权重向量。因此,本发明可以仅基于一个权重向量计算所有权重向量,如 下所述:
Figure PCTCN2019124539-appb-000063
对于2≤i≤N,其中o表示Hadamard乘积,ψ是码本中权重向量的波束宽度。
附图4示出了所提出的码本设计的波束图案的示例。从图4中,本发明观察到所提出的波束模式具有几乎恒定的每个波束的主瓣方向性增益。
作为一种优选具体实施例的部分,数值分析过程如下:
数值分析可以作为本发明优选实施例的一部分,以对本发明所提出的数据驱动波束跟踪方案进行技术效果阐释、释义和评估。对于性能评估,本发明将提出的方案与传统的穷举搜索和分层搜索算法进行比较。也即,本发明首先描述比较方案,然后展示和讨论获得的模拟结果。
在本发明所提出的方案中,我们假设BS配备有N t=64个天线的ULA,其中
1)BS与UE之间的路径数设置为L=3,包括一条LOS路径和两条NLOS路径;
2)且当2≤l≤3;
3)发射功率P=30mW;
4)目标SNR s *=20dB,以建立可靠的通信。
作为一种优选具体实施例的部分,将本发明提出的方案与以下方案进行比较:
分层搜索:如说明书附图5所示,在分层搜索中,在BS处建立第m层中的2 m个码字。第m层的第i个码字表示为。BS对m层执行双向树搜索以找到最佳波束形成码字。在每一层中,BS具有两个候选波束成形码字,它们是在上一层中找到的父码字的两个子码字。然后选择具有较高SNR的码字并将其作为下一层的父码字。与较低层的码字相比,较高层的码字能够获得具有较大方向增益的较窄的波束主瓣。
然而,在实际应用中,分层搜索的鲁棒性较低。在先前层中的宽波束搜索中,附近的信号方向将在同一波束内发生碰撞。因此,冲突信号可以破坏性地组合以抵消彼此的功率。如说明书附图6所示,路径L1和L2具有接近的方向,因此将在相同的宽波束中碰撞。假设L1和L2具有相反的相位,它们将抵消彼此的功率,使得左波束发送的信号(例如方向90°到0°)具有更高的功率。从而导致分层算法将放大错误的方向并用更窄的波束搜索它们。
波束跟踪的总测量数:
为了保证通信质量,必须根据UE的位置调整BS处的波束方向。如说明书附图7所示, 我们假设已经建立了初始波束对准,其中BS和UE之间的物理方向α是25°并且UE处的SNR是22dB。然后α随着UE的移动而改变,从而UE处的SNR显著降低。
Figure PCTCN2019124539-appb-000064
表I:测量次数比较
Figure PCTCN2019124539-appb-000065
表II:在UE的不同移动范围下,本发明所提出的数据驱动方法测量次数比较
为了保证用户移动性下通信的可靠性,基于所提出的数据驱动方法执行快速波束跟踪,其中基于实时测量,BS获得具有最高SNR的最佳波束方向。
然后,我们比较所提出方法、穷举搜索法、分层搜索法找到最佳码字所需的测量次数。如表I所示,所提出的数据驱动方案通过比穷举搜索和分层算法更少数量的测量迭代收敛到最佳波束方向。
在表II中,我们比较了UE的移动范围不同时,为了保证可靠通信,所提出方法需要的测量总次数。当α=10°时,已建立初始波束对准。从表II可以观察到,随着移动UE的移动范围增加,测量的总次数增加。
本发明通过使用实时测量数据,为移动毫米波通信系统提出了一种数据驱动的波束跟踪方案。所提出的数据驱动方法基于时变伪梯度参数估计过程的动态线性化表示。通过为码本设计引入一种有效的方法,使得本发明可以通过波束旋转降低开销进一步加速波束跟踪。本发明的仿真结果表明,该方案可以实现比现有可靠通信方案更快的跟踪性能。
在所有上述实施方式中,为实现一些特殊的数据传输、读/写功能的要求,上述方法操作 过程中及其相应装置可以增加装置、模块、器件、硬件、引脚连接或存储器、处理器差异来扩展功能。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的方法,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本发明所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述方法步骤的划分,仅仅为一种逻辑或功能划分,实际实现时可以有另外的划分方式,例如,多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为方法的各个步骤、装置分离部件说明的单元可以是或者也可以不是逻辑或物理上分开的,也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各方法步骤及其实现、功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述方法和装置可以以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机装置(可以是个人计算机,服务器,或者网络装置等)或处理器(Processor)执行本发明各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者波盘等各种可以存储程序代码的介质。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明保护的范围之内。
应说明的是:以上实施例仅用以更清晰地解释、阐述本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (12)

  1. 一种用于移动毫米波通信系统的数据驱动波束跟踪方法,其特征在于,所述方法包含以下步骤:
    1):预设预测量数据集为:W=[ω(1),ω(2)],Γ=[γ(1),γ(2)];
    2):预设目标SNR为:γ *
    3):预设跟踪误差为:ò;
    4):预设小正常数为:σ;
    5):预设最大测量迭代次数为:t max
    6):预设基于差分进化算法的估计参数
    Figure PCTCN2019124539-appb-100001
    η,ρ,μ和λ。
    数据驱动的波束跟踪执行如下步骤:
    7):对于t<t max
    8):计算
    Figure PCTCN2019124539-appb-100002
    9):如果
    Figure PCTCN2019124539-appb-100003
    或||Δω(k)|| 2<=σ,或
    Figure PCTCN2019124539-appb-100004
    那么
    Figure PCTCN2019124539-appb-100005
    在UE处为给定的ω(k+1)计算
    Figure PCTCN2019124539-appb-100006
    10):如果
    Figure PCTCN2019124539-appb-100007
    停止计算,
    Figure PCTCN2019124539-appb-100008
    11):返回γ(k);
    其中γ(k)为UE处的接收信噪比(SNR),ω(k)为阵列权重向量,E表示期望运算符;
    Figure PCTCN2019124539-appb-100009
    表示复数的集合;t为当前迭代次数,Φ(k)称为伪偏导数(PPD),(·) T,(·) H分别表示转置和共轭转置,
    Figure PCTCN2019124539-appb-100010
  2. 如权利要求1所述的用于移动毫米波通信系统的数据驱动波束跟踪方法,其特征在于,通过在量化角度子集上添加阵列导向矢量,将码本W={ω(1),ω(2),...,ω(N)}设计为
    Figure PCTCN2019124539-appb-100011
    其中N是码本中码字的数量,δ是一个变量,用于控制阵列权重以保持主瓣方向性增益尽可能恒定。
  3. 如权利要求1所述的用于移动毫米波通信系统的数据驱动波束跟踪方法,其特征在于,为了进一步降低波束跟踪的复杂性,采用波束旋转技术生成具有相同形状但不同转向角的权重向量,仅基于一个权重向量计算所有权重向量:
    Figure PCTCN2019124539-appb-100012
    对于2≤i≤N,其中o表示Hadamard乘积,ψ是码本中权重向量的波束宽度。
  4. 如权利要求1所述的用于移动毫米波通信系统的数据驱动波束跟踪方法,其特征在于,阵列导向矢量的形式为:
    Figure PCTCN2019124539-appb-100013
  5. 如权利要求1所述的用于移动毫米波通信系统的数据驱动波束跟踪方法,其特征在于,其中伪偏导数(PPD,pseudo-partial derivative)
    Figure PCTCN2019124539-appb-100014
    是第k次测量的PPD,且||Φ(k)|| 2≤c。
  6. 如权利要求5所述的用于移动毫米波通信系统的数据驱动波束跟踪方法,其特征在于,使用改进投影算法来估计PPD参数Φ(k)。PPD估计的标准函数为
    Figure PCTCN2019124539-appb-100015
    其中μ>0是权重因子。求解最佳条件:
    Figure PCTCN2019124539-appb-100016
    Figure PCTCN2019124539-appb-100017
    其中η是步长常数。
  7. 一种数据驱动波束跟踪装置,用于移动毫米波通信系统,其特征在于,所述装置包含以下模块:
    预测量数据集预设模块,预设预测量数据集为:W=[ω(1),ω(2)],Γ=[γ(1),γ(2)];
    目标SNR预设模块,预设目标SNR为:γ *
    跟踪误差预设模块,预设跟踪误差为:ò;
    小正常数预设模块,预设小正常数为:σ;
    最大测量迭代次数预设模块,预设最大测量迭代次数为:t max
    估计参数预设模块,预设基于差分进化算法的估计参数
    Figure PCTCN2019124539-appb-100018
    η,ρ,μ和λ。
    数据驱动波束跟踪执行模块,所述数据驱动波束跟踪执行模块按照预设模块预设参数及其数值进行如下步骤的计算
    对于t<t max
    计算
    Figure PCTCN2019124539-appb-100019
    如果
    Figure PCTCN2019124539-appb-100020
    或||Δω(k)|| 2<=σ
    Figure PCTCN2019124539-appb-100021
    那么
    Figure PCTCN2019124539-appb-100022
    在UE处为给定的ω(k+1)计算
    Figure PCTCN2019124539-appb-100023
    如果
    Figure PCTCN2019124539-appb-100024
    停止计算,
    Γ(k+1)←[Γ(k),γ(k+1)]
    W←[W,ω(k+1)]
    t←t+1,k←k+1
    返回γ(k));
    其中γ(k)为UE处的接收信噪比(SNR),ω(k)为阵列权重向量,E表示期望运算符;
    Figure PCTCN2019124539-appb-100025
    表示复数的集合;t为当前迭代次数,Φ(k)称为伪偏导数(PPD),(·) T,(·) H分别表示转置和共轭转置,
    Figure PCTCN2019124539-appb-100026
  8. 如权利要求7所述的用于移动毫米波通信系统的数据驱动波束跟踪装置,其特征在于,还包括码本设计模块,所述码本设计模块通过在量化角度子集上添加阵列导向矢量,将码本 W={ω(1),ω(2),...,ω(N)}设计为
    Figure PCTCN2019124539-appb-100027
    其中N是码本中码字的数量,δ是一个变量,用于控制阵列权重以保持主瓣方向性增益尽可能恒定。
  9. 如权利要求7所述的用于移动毫米波通信系统的数据驱动波束跟踪装置,其特征在于,还包括权重向量生成模块,为了进一步降低波束跟踪的复杂性,所述权重向量生成模块采用波束旋转技术生成具有相同形状但不同转向角的权重向量,仅基于一个权重向量计算所有权重向量:
    Figure PCTCN2019124539-appb-100028
    对于2≤i≤N,其中o表示Hadamard乘积,ψ是码本中权重向量的波束宽度。
  10. 如权利要求7所述的用于移动毫米波通信系统的数据驱动波束跟踪装置,其特征在于,还包括阵列导向矢量设置模块,所述阵列导向矢量设置模块设置阵列导向矢量的形式为:
    Figure PCTCN2019124539-appb-100029
  11. 如权利要求7所述的用于移动毫米波通信系统的数据驱动波束跟踪装置,其特征在于,还包括伪偏导数设置模块,所述伪偏导数设置模块设置其中伪偏导数(PPD,pseudo-partialderivative)
    Figure PCTCN2019124539-appb-100030
    是第k次测量的PPD,且||Φ(k)|| 2≤c。
  12. 如权利要求11所述的用于移动毫米波通信系统的数据驱动波束跟踪装置,其特征在于,还包括PPD参数估计模块,所述PPD参数估计模块使用改进投影算法来估计PPD参数Φ(k)。PPD估计的标准函数为:
    Figure PCTCN2019124539-appb-100031
    其中μ>0是权重因子。求解最佳条件:
    Figure PCTCN2019124539-appb-100032
    Figure PCTCN2019124539-appb-100033
    其中η是步长常数。
PCT/CN2019/124539 2019-06-21 2019-12-11 一种用于移动毫米波通信系统的数据驱动波束跟踪方法和装置 WO2020253156A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19933796.5A EP3876434A4 (en) 2019-06-21 2019-12-11 DATA-DRIVEN BEAM TRACKING METHOD AND APPARATUS FOR A MOBILE MILLIMETER WAVE COMMUNICATION SYSTEM
US17/311,681 US11533095B2 (en) 2019-06-21 2019-12-11 Data-driven beam tracking method and device for mobile millimeter wave communication system and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910543566.1A CN110365383A (zh) 2019-06-21 2019-06-21 一种用于移动毫米波通信系统的数据驱动波束跟踪方法和装置
CN201910543566.1 2019-06-21

Publications (2)

Publication Number Publication Date
WO2020253156A1 true WO2020253156A1 (zh) 2020-12-24
WO2020253156A9 WO2020253156A9 (zh) 2021-03-11

Family

ID=68216601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/124539 WO2020253156A1 (zh) 2019-06-21 2019-12-11 一种用于移动毫米波通信系统的数据驱动波束跟踪方法和装置

Country Status (4)

Country Link
US (1) US11533095B2 (zh)
EP (1) EP3876434A4 (zh)
CN (1) CN110365383A (zh)
WO (1) WO2020253156A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110365383A (zh) 2019-06-21 2019-10-22 深圳大学 一种用于移动毫米波通信系统的数据驱动波束跟踪方法和装置
CN114980032A (zh) * 2022-06-06 2022-08-30 厦门大学 基于感通一体的v2v波束跟踪方法
CN115051739B (zh) * 2022-06-16 2023-07-07 北京航空航天大学 一种基于短码长信息论的非自适应性波束对准方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101971517A (zh) * 2008-03-11 2011-02-09 英特尔公司 具有快速自适应波束跟踪的毫米波wpan通信系统
CN102741710A (zh) * 2009-11-20 2012-10-17 雪佛龙美国公司 考虑波束方位的用于衰减地震数据中的多次波的系统和方法
CN106537804A (zh) * 2014-07-15 2017-03-22 高通股份有限公司 用于在毫米波接入系统中进行波束跟踪的非对称能力驱动方法
EP3185453A1 (en) * 2014-09-23 2017-06-28 Huawei Technologies Co., Ltd. Beam tracking method, device and system
CN110365383A (zh) * 2019-06-21 2019-10-22 深圳大学 一种用于移动毫米波通信系统的数据驱动波束跟踪方法和装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100033909A (ko) * 2008-09-22 2010-03-31 엘지전자 주식회사 전송 전력 제어 방법 및 그에 따른 송신단 기기
JP6255281B2 (ja) * 2014-02-27 2017-12-27 パナソニック株式会社 無線通信装置及び指向性制御方法
KR102516804B1 (ko) * 2018-03-07 2023-03-31 삼성전자주식회사 무선 통신 시스템에서 동기를 추적하기 위한 장치 및 방법
US11233559B2 (en) * 2018-12-07 2022-01-25 Qualcomm Incorporated Frequency offset adjustment for beam switching in wireless communications

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101971517A (zh) * 2008-03-11 2011-02-09 英特尔公司 具有快速自适应波束跟踪的毫米波wpan通信系统
CN102741710A (zh) * 2009-11-20 2012-10-17 雪佛龙美国公司 考虑波束方位的用于衰减地震数据中的多次波的系统和方法
CN106537804A (zh) * 2014-07-15 2017-03-22 高通股份有限公司 用于在毫米波接入系统中进行波束跟踪的非对称能力驱动方法
EP3185453A1 (en) * 2014-09-23 2017-06-28 Huawei Technologies Co., Ltd. Beam tracking method, device and system
CN110365383A (zh) * 2019-06-21 2019-10-22 深圳大学 一种用于移动毫米波通信系统的数据驱动波束跟踪方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3876434A4 *

Also Published As

Publication number Publication date
WO2020253156A9 (zh) 2021-03-11
CN110365383A (zh) 2019-10-22
US11533095B2 (en) 2022-12-20
EP3876434A4 (en) 2022-01-12
EP3876434A1 (en) 2021-09-08
US20220123804A1 (en) 2022-04-21

Similar Documents

Publication Publication Date Title
Chen et al. Robust transmission for reconfigurable intelligent surface aided millimeter wave vehicular communications with statistical CSI
Palacios et al. Adaptive codebook optimization for beam training on off-the-shelf ieee 802.11 ad devices
Zhou et al. Beam-forecast: Facilitating mobile 60 GHz networks via model-driven beam steering
Zheng et al. Massive MIMO channel models: A survey
US20180248596A1 (en) Channel estimation for millimeter-wave communication/data link and the corresponding codebook design
WO2020253156A1 (zh) 一种用于移动毫米波通信系统的数据驱动波束跟踪方法和装置
EP3387805B1 (en) Method and computer implemented method for decoding symbol transmitted over mmwave channel, receiver for receiving and decoding symbols transmitted over mmwave channel
Kokshoorn et al. Fast channel estimation for millimetre wave wireless systems using overlapped beam patterns
Shtaiwi et al. RIS-assisted mmWave channel estimation using convolutional neural networks
Chen et al. Channel estimation of IRS-aided communication systems with hybrid multiobjective optimization
Shaddad et al. Channel estimation for intelligent reflecting surface in 6G wireless network via deep learning technique
JP2010166316A (ja) Mimo通信システム
Moon et al. Deep neural network for beam and blockage prediction in 3GPP-based indoor hotspot environments
Zou et al. Step-wisely refinement based beam searching scheme for 60 GHz communications
Deng et al. NLOS error mitigation based on modified Kaiman filter for mobile location in cellular networks
Liu et al. Near-Field Multiuser Beam-Training for Extremely Large-Scale MIMO Systems
Okoth et al. An efficient codebook-based beam training technique for millimeter-wave communication systems
Garcia et al. Scalable phase-coherent beam-training for dense millimeter-wave networks
Ma et al. Data-driven beam tracking for mobile millimeter-wave communication systems without channel estimation
Almosa et al. Performance Analysis of DoA Estimation for FDD Cell Free Systems Based on Compressive Sensing Technique
Narottama et al. Modular quantum machine learning for channel estimation in STAR-RIS assisted communication systems
Ghosh et al. UB3: Best Beam Identification in Millimeter Wave Systems via Pure Exploration Unimodal Bandits
Armeniakos et al. Comprehensive Analysis of Maximum Power Association Policy for Cellular Networks Using Distance and Angular Coordinates
Lv et al. ALNN‐based LOS/NLOS identification in 3D millimetre wave channel
Yaman et al. Enhanced binary search time-efficient mmWave beamforming algorithm for NLOS environments

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19933796

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019933796

Country of ref document: EP

Effective date: 20210604

NENP Non-entry into the national phase

Ref country code: DE