WO2020252674A1 - Configurable minimization of drive test reporting - Google Patents

Configurable minimization of drive test reporting Download PDF

Info

Publication number
WO2020252674A1
WO2020252674A1 PCT/CN2019/091804 CN2019091804W WO2020252674A1 WO 2020252674 A1 WO2020252674 A1 WO 2020252674A1 CN 2019091804 W CN2019091804 W CN 2019091804W WO 2020252674 A1 WO2020252674 A1 WO 2020252674A1
Authority
WO
WIPO (PCT)
Prior art keywords
mdt
mdt reporting
reporting
indication
determining
Prior art date
Application number
PCT/CN2019/091804
Other languages
French (fr)
Inventor
Tom Chin
Nitin Pant
Xiaochen Chen
Xipeng Zhu
Huichun LIU
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2019/091804 priority Critical patent/WO2020252674A1/en
Publication of WO2020252674A1 publication Critical patent/WO2020252674A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data

Definitions

  • aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for configurable minimization of drive test (MDT) reporting.
  • MDT drive test
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) .
  • multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) .
  • LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • UMTS Universal Mobile Telecommunications System
  • a wireless communication network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) .
  • a user equipment (UE) may communicate with a base station (BS) via the downlink and uplink.
  • the downlink (or forward link) refers to the communication link from the BS to the UE
  • the uplink (or reverse link) refers to the communication link from the UE to the BS.
  • a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a 5G Node B, and/or the like.
  • New Radio which may also be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • 3GPP Third Generation Partnership Project
  • NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • OFDM orthogonal frequency division multiplexing
  • SC-FDM e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM)
  • DFT-s-OFDM discrete Fourier transform spread OFDM
  • MIMO multiple-input multiple-output
  • a method of wireless communication may include determining whether minimization of drive test (MDT) reporting for the UE is enabled; and selectively transmitting, to a base station (BS) and based at least in part on whether MDT reporting for the UE is enabled, an indication of an MDT reporting capability associated with the UE.
  • MDT minimization of drive test
  • a UE for wireless communication may include memory and one or more processors operatively coupled to the memory.
  • the memory and the one or more processors may be configured to determine whether MDT reporting for the UE is enabled; and selectively transmit, to a BS and based at least in part on whether MDT reporting for the UE is enabled, an indication of an MDT reporting capability associated with the UE.
  • a non-transitory computer-readable medium may store one or more instructions for wireless communication.
  • the one or more instructions when executed by one or more processors of a UE, may cause the one or more processors to: determine whether MDT reporting for the UE is enabled; and selectively transmit, to a BS and based at least in part on whether MDT reporting for the UE is enabled, an indication of an MDT reporting capability associated with the UE.
  • an apparatus for wireless communication may include means for determining whether MDT reporting for the apparatus is enabled; and means for selectively transmitting, to a BS and based at least in part on whether MDT reporting for the apparatus is enabled, an indication of an MDT reporting capability associated with the apparatus.
  • Fig. 1 is a block diagram conceptually illustrating an example of a wireless communication network, in accordance with various aspects of the present disclosure.
  • Fig. 2 is a block diagram conceptually illustrating an example of a base station in communication with a user equipment (UE) in a wireless communication network, in accordance with various aspects of the present disclosure.
  • UE user equipment
  • Fig. 3A is a block diagram conceptually illustrating an example of a frame structure in a wireless communication network, in accordance with various aspects of the present disclosure.
  • Fig. 3B is a block diagram conceptually illustrating an example synchronization communication hierarchy in a wireless communication network, in accordance with various aspects of the present disclosure.
  • Fig. 4 is a block diagram conceptually illustrating an example slot format with a normal cyclic prefix, in accordance with various aspects of the present disclosure.
  • Figs. 5A and 5B are diagrams illustrating one or more examples of a configurable minimization of drive test (MDT) reporting capability, in accordance with various aspects of the present disclosure.
  • MDT drive test
  • Fig. 6 is a diagram illustrating an example process performed, for example, by a UE, in accordance with various aspects of the present disclosure.
  • Fig. 1 is a diagram illustrating a wireless network 100 in which aspects of the present disclosure may be practiced.
  • the wireless network 100 may be an LTE network or some other wireless network, such as a 5G or NR network.
  • the wireless network 100 may include a number of BSs 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities.
  • a BS is an entity that communicates with user equipment (UEs) and may also be referred to as a base station, a NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , and/or the like.
  • Each BS may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
  • a BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) .
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a pico cell may be referred to as a pico BS.
  • a BS for a femto cell may be referred to as a femto BS or a home BS.
  • a BS 110a may be a macro BS for a macro cell 102a
  • a BS 110b may be a pico BS for a pico cell 102b
  • a BS 110c may be a femto BS for a femto cell 102c.
  • a BS may support one or multiple (e.g., three) cells.
  • eNB base station
  • NR BS NR BS
  • gNB gNode B
  • AP AP
  • node B node B
  • 5G NB 5G NB
  • cell may be used interchangeably herein.
  • a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS.
  • the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
  • Wireless network 100 may also include relay stations.
  • a relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) .
  • a relay station may also be a UE that can relay transmissions for other UEs.
  • a relay station 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d.
  • a relay station may also be referred to as a relay BS, a relay base station, a relay, and/or the like.
  • Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100.
  • macro BSs may have a high transmit power level (e.g., 5 to 40 Watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 Watts) .
  • a network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs.
  • Network controller 130 may communicate with the BSs via a backhaul.
  • the BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
  • UEs 120 may be dispersed throughout wireless network 100, and each UE may be stationary or mobile.
  • a UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like.
  • a UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet)) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
  • PDA personal digital assistant
  • WLL wireless local loop
  • MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device) , or some other entity.
  • a wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link.
  • Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices.
  • Some UEs may be considered a Customer Premises Equipment (CPE) .
  • UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like.
  • any number of wireless networks may be deployed in a given geographic area.
  • Each wireless network may support a particular RAT and may operate on one or more frequencies.
  • a RAT may also be referred to as a radio technology, an air interface, and/or the like.
  • a frequency may also be referred to as a carrier, a frequency channel, and/or the like.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • NR or 5G RAT networks may be deployed.
  • two or more UEs 120 may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) .
  • the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, and/or the like) , a mesh network, and/or the like.
  • V2X vehicle-to-everything
  • the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
  • Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
  • Fig. 2 shows a block diagram of a design 200 of base station 110 and UE 120, which may be one of the base stations and one of the UEs in Fig. 1.
  • Base station 110 may be equipped with T antennas 234a through 234t
  • UE 120 may be equipped with R antennas 252a through 252r, where in general T ⁇ 1 and R ⁇ 1.
  • a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols.
  • MCS modulation and coding schemes
  • Transmit processor 220 may also generate reference symbols for reference signals (e.g., the cell-specific reference signal (CRS) ) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) .
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream.
  • TX transmit
  • MIMO multiple-input multiple-output
  • Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream.
  • Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal.
  • T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively.
  • the synchronization signals can be generated with location encoding to convey additional information.
  • antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively.
  • Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples.
  • Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280.
  • a channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , and/or the like.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • RSRQ reference signal received quality
  • CQI channel quality indicator
  • one or more components of UE 120 may be included in a housing.
  • a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports comprising RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110.
  • modulators 254a through 254r e.g., for DFT-s-OFDM, CP-OFDM, and/or the like
  • the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120.
  • Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240.
  • Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244.
  • Network controller 130 may include communication unit 294, controller/processor 290, and memory 292.
  • Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with configurable minimization of drive test (MDT) reporting, as described in more detail elsewhere herein.
  • controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 600 of Fig. 6 and/or other processes as described herein.
  • Memories 242 and 282 may store data and program codes for base station 110 and UE 120, respectively.
  • memory 242 and/or memory 282 may comprise a non-transitory computer-readable medium storing one or more instructions for wireless communication.
  • the one or more instructions when executed by one or more processors of the base station 110 and/or the UE 120, may perform or direct operations of, for example, process 600 of Fig. 6, and/or other processes as described herein.
  • a scheduler 246 may schedule UEs for data transmission on the downlink and/or uplink.
  • UE 120 may include means for determining whether MDT reporting for the UE 120 is enabled, means for selectively transmitting, to a BS 110 and based at least in part on whether MDT reporting for the UE 120 is enabled, an indication of an MDT reporting capability associated with the UE 120, and/or the like.
  • such means may include one or more components of UE 120 described in connection with Fig. 2, such as controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, and/or the like.
  • Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
  • Fig. 3A shows an example frame structure 300 for frequency division duplexing (FDD) in a telecommunications system (e.g., NR) .
  • the transmission timeline for each of the downlink and uplink may be partitioned into units of radio frames (sometimes referred to as frames) .
  • Each radio frame may have a predetermined duration (e.g., 10 milliseconds (ms) ) and may be partitioned into a set of Z (Z ⁇ 1) subframes (e.g., with indices of 0 through Z-1) .
  • Each subframe may have a predetermined duration (e.g., 1 ms) and may include a set of slots (e.g., 2 m slots per subframe are shown in Fig.
  • Each slot may include a set of L symbol periods.
  • each slot may include fourteen symbol periods (e.g., as shown in Fig. 3A) , seven symbol periods, or another number of symbol periods.
  • the subframe may include 2L symbol periods, where the 2L symbol periods in each subframe may be assigned indices of 0 through 2L–1.
  • a scheduling unit for the FDD may be frame-based, subframe-based, slot-based, symbol-based, and/or the like.
  • a wireless communication structure may refer to a periodic time-bounded communication unit defined by a wireless communication standard and/or protocol. Additionally, or alternatively, different configurations of wireless communication structures than those shown in Fig. 3A may be used.
  • a base station may transmit synchronization signals.
  • a base station may transmit a primary synchronization signal (PSS) , a secondary synchronization signal (SSS) , and/or the like, on the downlink for each cell supported by the base station.
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • the PSS and SSS may be used by UEs for cell search and acquisition.
  • the PSS may be used by UEs to determine symbol timing
  • the SSS may be used by UEs to determine a physical cell identifier, associated with the base station, and frame timing.
  • the base station may also transmit a physical broadcast channel (PBCH) .
  • the PBCH may carry some system information, such as system information that supports initial access by UEs.
  • the base station may transmit the PSS, the SSS, and/or the PBCH in accordance with a synchronization communication hierarchy (e.g., a synchronization signal (SS) hierarchy) including multiple synchronization communications (e.g., SS blocks) , as described below in connection with Fig. 3B.
  • a synchronization communication hierarchy e.g., a synchronization signal (SS) hierarchy
  • multiple synchronization communications e.g., SS blocks
  • Fig. 3B is a block diagram conceptually illustrating an example SS hierarchy, which is an example of a synchronization communication hierarchy.
  • the SS hierarchy may include an SS burst set, which may include a plurality of SS bursts (identified as SS burst 0 through SS burst B-1, where B is a maximum number of repetitions of the SS burst that may be transmitted by the base station) .
  • each SS burst may include one or more SS blocks (identified as SS block 0 through SS block (b max_SS -1) , where b max_SS -1 is a maximum number of SS blocks that can be carried by an SS burst) .
  • An SS burst set may be periodically transmitted by a wireless node, such as every X milliseconds, as shown in Fig. 3B.
  • an SS burst set may have a fixed or dynamic length, shown as Y milliseconds in Fig. 3B.
  • the SS burst set shown in Fig. 3B is an example of a synchronization communication set, and other synchronization communication sets may be used in connection with the techniques described herein.
  • the SS block shown in Fig. 3B is an example of a synchronization communication, and other synchronization communications may be used in connection with the techniques described herein.
  • an SS block includes resources that carry the PSS, the SSS, the PBCH, and/or other synchronization signals (e.g., a tertiary synchronization signal (TSS) ) and/or synchronization channels.
  • synchronization signals e.g., a tertiary synchronization signal (TSS)
  • multiple SS blocks are included in an SS burst, and the PSS, the SSS, and/or the PBCH may be the same across each SS block of the SS burst.
  • a single SS block may be included in an SS burst.
  • the SS block may be at least four symbol periods in length, where each symbol carries one or more of the PSS (e.g., occupying one symbol) , the SSS (e.g., occupying one symbol) , and/or the PBCH (e.g., occupying two symbols) .
  • the symbols of an SS block are consecutive, as shown in Fig. 3B. In some aspects, the symbols of an SS block are non-consecutive. Similarly, in some aspects, one or more SS blocks of the SS burst may be transmitted in consecutive radio resources (e.g., consecutive symbol periods) during one or more slots. Additionally, or alternatively, one or more SS blocks of the SS burst may be transmitted in non-consecutive radio resources.
  • the SS bursts may have a burst period, whereby the SS blocks of the SS burst are transmitted by the base station according to the burst period. In other words, the SS blocks may be repeated during each SS burst.
  • the SS burst set may have a burst set periodicity, whereby the SS bursts of the SS burst set are transmitted by the base station according to the fixed burst set periodicity. In other words, the SS bursts may be repeated during each SS burst set.
  • the base station may transmit system information, such as system information blocks (SIBs) on a physical downlink shared channel (PDSCH) in certain slots.
  • SIBs system information blocks
  • the base station may transmit control information/data on a physical downlink control channel (PDCCH) in C symbol periods of a slot, where B may be configurable for each slot.
  • the base station may transmit traffic data and/or other data on the PDSCH in the remaining symbol periods of each slot.
  • Figs. 3A and 3B are provided as examples. Other examples may differ from what is described with regard to Figs. 3A and 3B.
  • Fig. 4 shows an example slot format 410 with a normal cyclic prefix.
  • the available time frequency resources may be partitioned into resource blocks.
  • Each resource block may cover a set of subcarriers (e.g., 12 subcarriers) in one slot and may include a number of resource elements.
  • Each resource element may cover one subcarrier in one symbol period (e.g., in time) and may be used to send one modulation symbol, which may be a real or complex value.
  • An interlace structure may be used for each of the downlink and uplink for FDD in certain telecommunications systems (e.g., NR) .
  • Q interlaces with indices of 0 through Q-1 may be defined, where Q may be equal to 4, 6, 8, 10, or some other value.
  • Each interlace may include slots that are spaced apart by Q frames.
  • interlace q may include slots q, q + Q, q + 2Q, etc., where q ⁇ ⁇ 0, ..., Q-1 ⁇ .
  • a UE may be located within the coverage of multiple BSs. One of these BSs may be selected to serve the UE. The serving BS may be selected based at least in part on various criteria such as received signal strength, received signal quality, path loss, and/or the like. Received signal quality may be quantified by a signal-to-noise-and-interference ratio (SNIR) , or a reference signal received quality (RSRQ) , or some other metric.
  • SNIR signal-to-noise-and-interference ratio
  • RSRQ reference signal received quality
  • the UE may operate in a dominant interference scenario in which the UE may observe high interference from one or more interfering BSs.
  • New Radio may refer to radios configured to operate according to a new air interface (e.g., other than Orthogonal Frequency Divisional Multiple Access (OFDMA) -based air interfaces) or fixed transport layer (e.g., other than Internet Protocol (IP) ) .
  • OFDM Orthogonal Frequency Divisional Multiple Access
  • IP Internet Protocol
  • NR may utilize OFDM with a CP (herein referred to as cyclic prefix OFDM or CP-OFDM) and/or SC-FDM on the uplink, may utilize CP-OFDM on the downlink and include support for half-duplex operation using time division duplexing (TDD) .
  • TDD time division duplexing
  • NR may, for example, utilize OFDM with a CP (herein referred to as CP-OFDM) and/or discrete Fourier transform spread orthogonal frequency-division multiplexing (DFT-s-OFDM) on the uplink, may utilize CP-OFDM on the downlink and include support for half-duplex operation using TDD.
  • CP-OFDM OFDM with a CP
  • DFT-s-OFDM discrete Fourier transform spread orthogonal frequency-division multiplexing
  • NR may include Enhanced Mobile Broadband (eMBB) service targeting wide bandwidth (e.g., 80 megahertz (MHz) and beyond) , millimeter wave (mmW) targeting high carrier frequency (e.g., 60 gigahertz (GHz) ) , massive MTC (mMTC) targeting non-backward compatible MTC techniques, and/or mission critical targeting ultra reliable low latency communications (URLLC) service.
  • eMBB Enhanced Mobile Broadband
  • mmW millimeter wave
  • mMTC massive MTC
  • URLLC ultra reliable low latency communications
  • NR resource blocks may span 12 sub-carriers with a sub-carrier bandwidth of 60 or 120 kilohertz (kHz) over a 0.1 millisecond (ms) duration.
  • Each radio frame may include 40 slots and may have a length of 10 ms. Consequently, each slot may have a length of 0.25 ms.
  • Each slot may indicate a link direction (e.g., DL or UL) for data transmission and the link direction for each slot may be dynamically switched.
  • Each slot may include DL/UL data as well as DL/UL control data.
  • NR may support a different air interface, other than an OFDM-based interface.
  • NR networks may include entities such as central units or distributed units.
  • Fig. 4 is provided as an example. Other examples may differ from what is described with regard to Fig. 4.
  • a drive test may include directing a vehicle that is equipped with measurement equipment along one or more roads for the purpose of collecting wireless communication coverage and performance information associated with a wireless network.
  • a drive test may be performed in one or more wireless networks associated with a particular network operator or a plurality of network operators.
  • a network operator may deploy a drive test vehicle to a particular location in a wireless network for various purposes, such as to obtain wireless communication coverage and performance information if there is no wireless communication coverage and performance information for the particular location, if the wireless communication coverage and performance information for the particular location is out of date, if the network operator has received reports of degraded wireless communication coverage and/or performance in the particular location, if new structures such as buildings have been recently constructed in the particular location, if new base stations have been deployed in the particular location, and/or the like.
  • a drive test may provide valuable information regarding wireless communication coverage and performance in a wireless network
  • drive tests tend to require large operational expenses and human efforts to perform.
  • a drive test may only encompass a relatively small portion of a wireless network.
  • a network operator may introduce MDT functionality into the wireless network to supplement drive testing efforts, to reduce reliance on drive testing, and/or the like.
  • UEs that are deployed in the wireless network may be configured to perform MDT reporting, which may include performing measurements similar to a drive test in order to provide wireless communication coverage and performance information.
  • MDT reporting may reduce operational expenses and effort needed for performing drive tests in the wireless network while providing greater coverage of wireless communication coverage and performance information collection in the wireless network.
  • MDT reporting may cause high power consumption at a UE, which in turn may cause accelerated drain of UE battery life, premature shut-down of the UE, degraded user experience of the UE, and/or the like.
  • MDT reporting may be enabled and/or disabled for a UE, particular MDT reporting parameters may be selectively enabled and/or disabled for the UE, and/or the like, via a user interface provided by the UE and/or by an original equipment manufacturer (OEM) of the UE.
  • OEMs may partially or fully disable MDT reporting for a UE, which may conserve UE battery life, decrease the likelihood of premature shut-down of the UE, improve user experience of the UE, and/or the like.
  • Figs. 5A and 5B are diagrams illustrating one or more examples 500 of configurable MDT reporting, in accordance with various aspects of the present disclosure.
  • examples 500 may include communication between a UE (e.g., UE 120) and a BS (e.g., BS 110) .
  • the UE and the BS may be included in a wireless network, such as wireless network 100 and/or another wireless network.
  • the UE may be capable of performing MDT reporting in the wireless network.
  • the UE may support MDT reporting for various MDT reporting types, for various types of measurements, for various types of radio access technologies (RATs) , and/or the like.
  • the UE may support MDT reporting types such as immediate MDT reporting (e.g., performing one or more measurements and reporting the measurement results to the BS based at least in part on performing the one or more measurements) , logged MDT reporting (e.g., performing one or more measurements and logging or storing the measurement results for reporting at a later time, which may be periodic or specified by the BS) , logged and/or immediate multicast-broadcast single-frequency network (MBSFN) MDT reporting (e.g., performing one or more measurements and logging or reporting the measurement results for a multicast broadcast multimedia service (MBMS) ) , a global navigation satellite system (GNSS) location based MDT reporting (e.g., obtaining a new or recent GNSS based location of the
  • the UE may support various types of measurements, such as RSRQ, RSRP measurements, CQI measurements, RSSI measurements, signal-to-interference-plus-noise ratio (SINR) measurements, throughput measurements, latency measurements, and/or the like for each RAT to which the UE is communicatively connected.
  • the UE may support MDT reporting for RATs such as LTE, 5G/NR, Wi-Fi, Bluetooth, universal mobile telecommunications system (UMTS) , multi-RAT dual connectivity (MR-DC) , and/or the like.
  • RATs such as LTE, 5G/NR, Wi-Fi, Bluetooth, universal mobile telecommunications system (UMTS) , multi-RAT dual connectivity (MR-DC) , and/or the like.
  • the UE may support fully enabling and/or disabling MDT reporting for the UE, may support selectively enabling and/or disabling particular MDT reporting parameters, and/or the like.
  • the MDT reporting parameters may correspond to the MDT reporting types described above, the types of measurements described above, the different RATs described above, and/or the like.
  • the UE may configure an MDT configuration for the UE.
  • the UE may provide a user interface for configuring the MDT configuration.
  • the UE may configure the MDT configuration based at least in part on signaling received from the BS.
  • the UE may be hard coded or configured with an MDT configuration prior to being deployed in the wireless network.
  • the user interface may include a graphical user interface (GUI) and/or another type of user interface that permits a user of the UE to provide input for configuring the MDT configuration.
  • GUI graphical user interface
  • the user interface may be a part of an operating system of the UE, may be part of an application that communicates with the operating system of the UE, and/or the like.
  • the user may use the user interface to provide input as to whether MDT reporting is to be enabled and/or disabled for the UE, whether particular MDT reporting parameters are to be enabled and/or disabled for the UE, and/or the like, and the UE may configure the MDT configuration based at least in part on the input (e.g., may generate a new MDT configuration, may modify an existing MDT configuration, and/or the like) .
  • the UE may display, via the user interface and/or another user interface of the UE, various visual prompts, notifications, and/or the like for the user to provide input regarding the MDT configuration. For example, the UE may display a request for user input regarding whether the UE is to enable or disable MDT reporting, whether the UE is to enable or disable one or more MDT reporting parameters, and/or the like. In some aspects, the UE may display the request based at least in part on determining that no MDT reporting configuration has been configured for the UE, based at least in part on receiving an MDT reporting configuration from the BS (in which case, the request may include a request to confirm or reject the MDT reporting parameters in the MDT reporting configuration) , and/or the like.
  • the UE may transmit, to the BS, a communication that includes an indication that the MDT reporting configuration is rejected, an indication of a reason for rejection, and/or the like.
  • the communication may include an MDT reporting log, a radio resource control (RRC) communication, and/or the like.
  • the UE may store the MDT configuration in a data store (e.g., a database, an electronic file, an electronic file system of the UE, a storage device, a memory, and/or the like) .
  • a data store e.g., a database, an electronic file, an electronic file system of the UE, a storage device, a memory, and/or the like
  • the MDT configuration may indicate and/or specify whether MDT reporting for the UE is fully enabled or disabled, whether MDT reporting for the UE is partially enabled and/or disabled (e.g., whether a subset of MDT reporting parameters are enabled, whether a subset of MDT reporting parameters are disabled, and/or the like) , and/or the like.
  • the MDT configuration may further indicate that MDT reporting is to be selectively enabled (e.g., fully enabled or partially enabled) in particular situations and selectively disabled (e.g., fully disabled or partially disabled) in other situations.
  • the MDT configuration may indicate and/or specify that MDT reporting is to be fully or partially enabled or disabled based at least in part on a location of the UE, based at least in part on a remaining battery life of the UE, based at least in part on a charging status of the UE, based at least in part on a RAT to which the UE is communicatively connected, based at least in part on a day or time of day, and/or the like.
  • the MDT configuration may indicate and/or specify whether MDT reporting for the UE is fully enabled or disabled in a particular geographic area or a plurality of geographic areas (e.g., cities, towns, states, countries, boundaries determined by GNSS coordinates, and/or the like) .
  • the MDT configuration may indicate and/or specify whether MDT reporting for the UE is fully enabled or disabled based at least in part on a remaining battery life of the UE.
  • the MDT configuration may indicate and/or specify that MDT reporting or particular MDT reporting parameters are to be disabled if the remaining battery life satisfies a battery life threshold.
  • the MDT configuration may configure a plurality of decreasing battery life thresholds (e.g., 80%battery life, 50%battery life, 25%battery life, and so on) , where each threshold corresponds to an increasing quantity of MDT reporting parameters being disabled.
  • a plurality of decreasing battery life thresholds e.g., 80%battery life, 50%battery life, 25%battery life, and so on
  • the MDT configuration may indicate and/or specify whether MDT reporting for the UE is fully enabled or disabled based at least in part on whether the charging status indicates that the UE is connected to a charging source for the battery of the UE.
  • the MDT configuration may indicate and/or specify whether MDT reporting for the UE is fully enabled or disabled based at least in part on a type of RAT associated with a BS to which the UE is communicatively connected.
  • the MDT configuration may indicate and/or specify whether MDT reporting for the UE is fully enabled or disabled for particular times of a day, particular days of a week, and/or the like.
  • the UE may configure the MDT configuration based at least in part on a UE capability index associated with the UE.
  • the UE may determine the UE capability index of the UE based at least in part on a combination of capabilities of the UE.
  • the capabilities may include, for example, one or more RATs supported by the UE, a battery capacity of the UE, a throughput capability of the UE, and/or other capabilities.
  • the UE may determine whether to fully enable or disable MDT reporting based at least in part on the UE capability index of the UE.
  • the UE may determine whether to enable or disable particular MDT reporting parameters based at least in part on the UE capability index of the UE.
  • an MDT reporting profile that includes a particular combination of disabled and/or enabled MDT reporting parameters may be configured for respective UE capability indexes.
  • the UE may select an MDT reporting profile, from a plurality of MDT reporting profiles, based at least in part on the UE capability index of the UE.
  • the UE may determine whether MDT reporting for the UE is enabled. In some aspects, the UE may determine whether MDT reporting is enabled based at least in part on the MDT configuration for the UE. For example, the UE may access the MDT configuration and determine, based at least in part on the MDT configuration, whether MDT reporting is fully enabled or disabled, whether one or more MDT reporting parameters are enabled or disabled, and/or the like. In some aspects, the UE may determine whether the MDT configuration specifies that MDT reporting or one or more MDT reporting parameters are enabled or disabled.
  • the UE may determine whether MDT reporting or one or more MDT reporting parameters are to be enabled or disabled based at least in part on the location of the UE, the battery status of the UE, the charging status of the UE, and/or the like.
  • a modem and/or another component of the UE may determine whether MDT reporting is enabled by accessing the MDT configuration via an application programming interface (API) , a mobile station modem (MSM) interface, and/or the like.
  • API application programming interface
  • MSM mobile station modem
  • the operating system of the UE may provide access to the MDT configuration via the API, MSM interface, and/or the like.
  • the modem may receive (e.g., from the operating system, a GNSS component, an application, and/or the like via the API, the MSM interface, and/or the like) an indication of the location of the UE, an indication of the remaining battery life of the UE, an indication of the charging status of the UE, and/or the like.
  • the UE may determine, based at least in part on the location of the UE, whether the UE is located in one or more of the geographic areas specified in the MDT configuration and may enable or disable MDT reporting or one or more MDT reporting parameters based at least in part on determining whether the UE is located in the one or more geographic areas.
  • the UE may determine, based at least in part on the remaining battery life of the UE, whether the remaining battery life satisfies one or more battery life thresholds specified in the MDT configuration and may enable or disable MDT reporting or one or more MDT reporting parameters based at least in part on determining whether the remaining battery life satisfies the one or more battery life thresholds.
  • the UE may determine, based at least in part on the charging status of the UE, whether to enable or disable MDT reporting or one or more MDT reporting parameters.
  • the UE may determine whether to enable or disable MDT reporting or one or more MDT reporting parameters based at least in part on the UE being communicatively connected to a BS of a particular type of RAT specified in the MDT configuration.
  • the UE may determine whether to enable or disable MDT reporting or one or more MDT reporting parameters based at least in part on a combination of the location of the UE, the battery status of the UE, the charging status of the UE, the RAT to which the UE is communicatively connected, and/or other parameters associated with the UE.
  • the UE may selectively transmit, to the BS and based at least in part on whether MDT reporting for the UE is enabled, an indication of an MDT reporting capability associated with the UE.
  • the MDT reporting capability may indicate, to the BS, whether the UE supports MDT reporting, which MDT reporting features are supported by the UE, and/or the like.
  • the UE may refrain from transmitting the MDT reporting capability to the BS. In this way, the BS may determine that, since the BS did not receive an MDT reporting capability from the UE, the UE does not support MDT reporting and accordingly may not transmit an MDT reporting configuration to the UE. As a result, the UE may not perform MDT reporting.
  • the UE may transmit the MDT reporting capability to the BS.
  • the BS may receive the indication of the MDT reporting capability from the UE and may accordingly transmit an MDT reporting configuration to the UE such that the UE performs MDT reporting.
  • the UE may transmit an MDT reporting capability that does not include an indication of the one or more disabled MDT reporting parameters.
  • the BS may determine that, since the BS did not receive an indication of the one or more disabled MDT reporting parameters from the UE, the UE does not support the one or more disabled MDT reporting parameters. Accordingly, the BS may transmit an MDT reporting configuration to the UE that schedules or requests MDT reporting for one or more MDT reporting parameters indicated in the MDT reporting capability, and does not schedule or request MDT reporting for the one or more disabled MDT reporting parameters.
  • the UE may refrain from transmitting an MDT reporting capability based at least in part on detecting one or more of the particular situations, may transmit an MDT report that does not indicate one or more MDT reporting capabilities corresponding to the one or more disabled MDT reporting parameters, and/or the like.
  • the UE may perform MDT reporting based at least in part on whether the BS transmits an MDT reporting configuration to the UE, based at least in part on the MDT reporting configuration, and/or the like.
  • the UE may perform one or more measurements for MDT reporting, may transmit an indication of the measurement results associated with the one or more measurements in one or more MDT reports, and/or the like.
  • the UE may further include a GNSS location of the UE when the UE performed the one or more measurements. For example, if the UE determines that the MDT configuration indicates that GNSS location based MDT reporting is enabled, the UE may determine a new or updated GNSS location of the UE for each MDT report.
  • the UE may include, in an MDT report, one or more historical location measurements, associated with the UE, that were previously determined by the UE.
  • the UE may attempt to extrapolate a new GNSS location of the UE based at least in part on the one or more historical location measurements, based at least in part on sensor data associated with one or more sensors of the UE (e.g., an accelerometer, a gyroscope, and/or the like) , and/or the like.
  • sensor data associated with one or more sensors of the UE (e.g., an accelerometer, a gyroscope, and/or the like) , and/or the like.
  • the UE may detect a change to MDT reporting for the UE, which may cause the UE to transmit an indication of an updated MDT reporting capability to the BS.
  • a user, OEM, and/or the like may modify the MDT configuration of the UE (e.g., by enabling or disabling MDT reporting, by enabling and/or disabling one or more MDT reporting parameters, and/or the like) .
  • the UE may determine to transmit an updated MDT reporting capability based at least in part on determining that the UE moved into or out of a geographic location specified in the MDT configuration, based at least in part on determining that the remaining battery life of the UE satisfies or does not satisfy one or more battery life thresholds specified in the MDT configuration, based at least in part on determining that the UE is communicatively connected to a different RAT, based at least in part on a time of day or a particular day, and/or the like.
  • the UE may reestablish a connection with the BS based at least in part on detecting the change to MDT reporting for the UE in the MDT configuration, and may transmit (or refrain from transmitting, such as when MDT reporting is disabled for the UE) the indication of the updated MDT reporting capability to the BS.
  • the BS may transmit (or refrain from transmitting, such as when the UE refrains from transmitting the updated MDT reporting capability) an updated MDT reporting configuration to the UE.
  • MDT reporting may be enabled and/or disabled for a UE and/or particular MDT reporting parameters may be selectively enabled and/or disabled for the UE via a user interface provided by the UE and/or by an OEM of the UE.
  • users and/or OEMs may partially or fully disable MDT reporting for a UE, which may conserve UE battery life, decrease the likelihood of premature shut-down of the UE, improve user experience of the UE, and/or the like.
  • Figs. 5A and 5B are provided as one or more examples. Other examples may differ from what is described with respect to Figs. 5A and 5B.
  • Fig. 6 is a diagram illustrating an example process 600 performed, for example, by a UE, in accordance with various aspects of the present disclosure.
  • Example process 600 is an example where a UE (e.g., UE 120) performs operations associated with configurable MDT reporting.
  • a UE e.g., UE 120
  • process 600 may include determining whether MDT reporting for the UE is enabled (block 610) .
  • the UE e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like
  • process 600 may include selectively transmitting, to a BS and based at least in part on whether MDT reporting for the UE is enabled, an indication of an MDT reporting capability associated with the UE (block 620) .
  • the UE e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like
  • Process 600 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • determining whether MDT reporting for the UE is enabled comprises determining that MDT reporting for the UE is disabled in an MDT configuration, and selectively transmitting the indication of the MDT reporting capability associated with the UE comprises refraining from transmitting the indication of the MDT reporting capability based at least in part on determining that MDT reporting for the UE is disabled in the MDT configuration.
  • MDT reporting is disabled in the MDT configuration, associated with the UE, based at least in part on user input received at the UE via a user interface associated with the UE.
  • process 600 further comprises displaying a request for the user input and disabling MDT reporting in the MDT configuration based at least in part on receiving the user input.
  • displaying the request for the user input comprises displaying the request for the user input based at least in part on receiving, from the BS, an MDT reporting configuration.
  • process 600 further comprises transmitting, to the BS, an indication that the MDT reporting configuration is rejected by the UE, and the indication that the MDT reporting configuration is rejected by the UE is included in at least one of a radio resource control communication or an MDT reporting log.
  • determining whether MDT reporting for the UE is enabled comprises determining that a subset of parameters for MDT reporting are disabled in an MDT configuration associated with the UE, and selectively transmitting the indication of the MDT reporting capability associated with the UE comprises refraining from transmitting an indication that the UE supports a subset of MDT reporting capabilities corresponding to the subset of parameters for MDT reporting.
  • a combination of parameters, included in the subset of parameters for MDT reporting is based at least in part on a UE capability index of the UE.
  • a combination of parameters, included in the subset of parameters for MDT reporting is associated with an MDT reporting profile of a plurality of MDT reporting profiles associated with a UE capability index of the UE.
  • the subset of parameters for MDT reporting are disabled in the MDT configuration based at least in part on a user input received at the UE via a user interface associated with the UE.
  • the subset of parameters comprise at least one of a logged MDT reporting parameter, an immediate MDT reporting parameter, a GNSS location based MDT reporting parameter, a logged MBSFN MDT reporting parameter, an immediate MBSFN MDT reporting parameter, a parameter for logged MDT reporting for one or more RAT types, or a parameter for immediate MDT reporting for one or more RAT types.
  • the GNSS location based MDT reporting parameter indicates whether the UE is to determine a GNSS based location of the UE for MDT reporting.
  • the GNSS location based MDT reporting parameter indicates that the UE is to determine the GNSS based location of the UE based at least in part on at least one of: the UE is connected to a particular type of RAT, a remaining battery life of the UE satisfies a battery life threshold, or the UE is in a charging mode.
  • determining whether the MDT reporting for the UE is enabled comprises accessing, using a modem of the UE, an MDT configuration via an API and determining, based at least in part on accessing the MDT configuration via the API, whether the MDT reporting for the UE is enabled.
  • determining whether MDT reporting for the UE is enabled comprises: determining that an MDT configuration indicates that MDT reporting for the UE is disabled when a remaining battery life of the UE satisfies a battery life threshold, and selectively transmitting the indication of the MDT reporting capability associated with the UE comprises determining whether the remaining battery life of the UE satisfies the battery life threshold and transmitting the indication of the MDT reporting capability based at least in part on determining that the remaining battery life of the UE does not satisfy the battery life threshold or refraining from transmitting the indication of the MDT reporting capability based at least in part on determining that the remaining battery life of the UE satisfies the battery life threshold.
  • process 600 further comprises receiving, using a modem of the UE, an indication of the remaining battery life of the UE via an API.
  • process 600 further comprises transmitting, based at least in part on determining that the remaining battery life of the UE satisfies the battery life threshold, an MDT report, and the MDT report includes an indication of one or more historical location measurements, associated with the UE, that were previously determined by the UE.
  • determining whether MDT reporting for the UE is enabled comprises determining that an MDT configuration indicates that a subset of parameters for MDT reporting for the UE are disabled when a remaining battery life of the UE satisfies a battery life threshold, and selectively transmitting the indication of the MDT reporting capability associated with the UE comprises determining whether the remaining battery life of the UE satisfies the battery life threshold and transmitting, based at least in part on determining that the remaining battery life of the UE does not satisfy the battery life threshold, an indication that the UE supports a subset of MDT reporting capabilities corresponding to the subset of parameters for MDT reporting, or refraining from transmitting, based at least in part on determining that the remaining battery life of the UE satisfies the battery life threshold, the indication that the UE supports the subset of MDT reporting capabilities corresponding to the subset of parameters for MDT reporting.
  • determining whether MDT reporting for the UE is enabled comprises: determining that an MDT configuration indicates that MDT reporting for the UE is disabled when the UE is located in a particular geographic area, and selectively transmitting the indication of the MDT reporting capability associated with the UE comprises determining whether the UE is located in the particular geographic area and transmitting the indication of the MDT reporting capability based at least in part on determining that the UE is not located in the particular geographic area, or refraining from transmitting the indication of the MDT reporting capability based at least in part on determining that the UE is located in the particular geographic area.
  • process 600 further comprises determining whether the UE is located in the particular geographic area based at least in part on an indication of a location of the UE received via an API.
  • determining whether MDT reporting for the UE is enabled comprises determining that an MDT configuration indicates that a subset of parameters for MDT reporting for the UE are disabled when the UE is located in a particular geographic area
  • selectively transmitting the indication of the MDT reporting capability associated with the UE comprises determining whether the UE is located in the particular geographic area and transmitting, based at least in part on determining that the UE is not located in the particular geographic area, an indication that the UE supports a subset of MDT reporting capabilities corresponding to the subset of parameters for MDT reporting, or refraining from transmitting, based at least in part on determining that the UE is located in the particular geographic area, the indication that the UE supports the subset of MDT reporting capabilities corresponding to the subset of parameters for MDT reporting.
  • process 600 further comprises detecting a change to MDT reporting for the UE in an MDT configuration and reestablishing a connection with the BS based at least in part on detecting the change to MDT reporting for the UE in the MDT configuration, and selectively transmitting the indication of the MDT reporting capability associated with the UE comprises selectively transmitting the indication of the MDT reporting capability associated with the UE based at least in part on reestablishing the connection with the BS.
  • reestablishing the connection with the BS comprises reestablishing the connection with the BS based at least in part on at least one of determining that a display screen of the UE is deactivated, determining that network traffic, associated with the UE, satisfies a network traffic threshold, or determining that user activity, associated with the UE, satisfies a user activity threshold.
  • process 600 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 6. Additionally, or alternatively, two or more of the blocks of process 600 may be performed in parallel.
  • ком ⁇ онент is intended to be broadly construed as hardware, firmware, and/or a combination of hardware and software.
  • a processor is implemented in hardware, firmware, and/or a combination of hardware and software.
  • satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
  • a user interface may include a graphical user interface, a non-graphical user interface, a text-based user interface, and/or the like.
  • a user interface may provide information for display.
  • a user may interact with the information, such as by providing input via an input component of a device that provides the user interface for display.
  • a user interface may be configurable by a device and/or a user (e.g., a user may change the size of the user interface, information provided via the user interface, a position of information provided via the user interface, etc. ) .
  • a user interface may be pre-configured to a standard configuration, a specific configuration based on a type of device on which the user interface is displayed, and/or a set of configurations based on capabilities and/or specifications associated with a device on which the user interface is displayed.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
  • the terms “has, ” “have, ” “having, ” and/or the like are intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.

Abstract

Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may determine whether minimization of drive test (MDT) reporting for the UE is enabled. The UE may selectively transmit, to a base station (BS) and based at least in part on whether MDT reporting for the UE is enabled, an indication of an MDT reporting capability associated with the UE. Numerous other aspects are provided.

Description

CONFIGURABLE MINIMIZATION OF DRIVE TEST REPORTING
FIELD OF THE DISCLOSURE
Aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for configurable minimization of drive test (MDT) reporting.
BACKGROUND
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) . Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) . LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
A wireless communication network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) . A user equipment (UE) may communicate with a base station (BS) via the downlink and uplink. The downlink (or forward link) refers to the communication link from the BS to the UE, and the uplink (or reverse link) refers to the communication link from the UE to the BS. As will be described in more detail herein, a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a 5G Node B, and/or the like.
The above multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different user equipment to communicate on a municipal, national, regional, and even global level. New Radio (NR) , which may also be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) .  NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation. However, as the demand for mobile broadband access continues to increase, there exists a need for further improvements in LTE and NR technologies. Preferably, these improvements should be applicable to other multiple access technologies and the telecommunication standards that employ these technologies.
SUMMARY
In some aspects, a method of wireless communication, performed by a user equipment (UE) , may include determining whether minimization of drive test (MDT) reporting for the UE is enabled; and selectively transmitting, to a base station (BS) and based at least in part on whether MDT reporting for the UE is enabled, an indication of an MDT reporting capability associated with the UE.
In some aspects, a UE for wireless communication may include memory and one or more processors operatively coupled to the memory. The memory and the one or more processors may be configured to determine whether MDT reporting for the UE is enabled; and selectively transmit, to a BS and based at least in part on whether MDT reporting for the UE is enabled, an indication of an MDT reporting capability associated with the UE.
In some aspects, a non-transitory computer-readable medium may store one or more instructions for wireless communication. The one or more instructions, when executed by one or more processors of a UE, may cause the one or more processors to: determine whether MDT reporting for the UE is enabled; and selectively transmit, to a BS and based at least in part on whether MDT reporting for the UE is enabled, an indication of an MDT reporting capability associated with the UE.
In some aspects, an apparatus for wireless communication may include means for determining whether MDT reporting for the apparatus is enabled; and means for selectively transmitting, to a BS and based at least in part on whether MDT reporting  for the apparatus is enabled, an indication of an MDT reporting capability associated with the apparatus.
Aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and processing system as substantially described herein with reference to and as illustrated by the accompanying drawings and specification.
The foregoing has outlined rather broadly the features and technical advantages of examples according to the disclosure in order that the detailed description that follows may be better understood. Additional features and advantages will be described hereinafter. The conception and specific examples disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. Such equivalent constructions do not depart from the scope of the appended claims. Characteristics of the concepts disclosed herein, both their organization and method of operation, together with associated advantages will be better understood from the following description when considered in connection with the accompanying figures. Each of the figures is provided for the purposes of illustration and description, and not as a definition of the limits of the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
So that the above-recited features of the present disclosure can be understood in detail, a more particular description, briefly summarized above, may be had by reference to aspects, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only certain typical aspects of this disclosure and are therefore not to be considered limiting of its scope, for the description may admit to other equally effective aspects. The same reference numbers in different drawings may identify the same or similar elements.
Fig. 1 is a block diagram conceptually illustrating an example of a wireless communication network, in accordance with various aspects of the present disclosure.
Fig. 2 is a block diagram conceptually illustrating an example of a base station in communication with a user equipment (UE) in a wireless communication network, in accordance with various aspects of the present disclosure.
Fig. 3A is a block diagram conceptually illustrating an example of a frame structure in a wireless communication network, in accordance with various aspects of the present disclosure.
Fig. 3B is a block diagram conceptually illustrating an example synchronization communication hierarchy in a wireless communication network, in accordance with various aspects of the present disclosure.
Fig. 4 is a block diagram conceptually illustrating an example slot format with a normal cyclic prefix, in accordance with various aspects of the present disclosure.
Figs. 5A and 5B are diagrams illustrating one or more examples of a configurable minimization of drive test (MDT) reporting capability, in accordance with various aspects of the present disclosure.
Fig. 6 is a diagram illustrating an example process performed, for example, by a UE, in accordance with various aspects of the present disclosure.
DETAILED DESCRIPTION
Various aspects of the disclosure are described more fully hereinafter with reference to the accompanying drawings. This disclosure may, however, be embodied in many different forms and should not be construed as limited to any specific structure or function presented throughout this disclosure. Rather, these aspects are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. Based on the teachings herein one skilled in the art should appreciate that the scope of the disclosure is intended to cover any aspect of the disclosure disclosed herein, whether implemented independently of or combined with any other aspect of the disclosure. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to or other than the various aspects of the disclosure set forth herein. It should be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim.
Several aspects of telecommunication systems will now be presented with reference to various apparatuses and techniques. These apparatuses and techniques will be described in the following detailed description and illustrated in the accompanying  drawings by various blocks, modules, components, circuits, steps, processes, algorithms, and/or the like (collectively referred to as “elements” ) . These elements may be implemented using hardware, software, or combinations thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
It should be noted that while aspects may be described herein using terminology commonly associated with 3G and/or 4G wireless technologies, aspects of the present disclosure can be applied in other generation-based communication systems, such as 5G and later, including NR technologies.
Fig. 1 is a diagram illustrating a wireless network 100 in which aspects of the present disclosure may be practiced. The wireless network 100 may be an LTE network or some other wireless network, such as a 5G or NR network. The wireless network 100 may include a number of BSs 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities. A BS is an entity that communicates with user equipment (UEs) and may also be referred to as a base station, a NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , and/or the like. Each BS may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
A BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription. A femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) . A BS for a macro cell may be referred to as a macro BS. A BS for a pico cell may be referred to as a pico BS. A BS for a femto cell may be referred to as a femto BS or a home BS. In the example shown in Fig. 1, a BS 110a may be a macro BS for a macro cell 102a, a BS 110b may be a pico BS for a pico cell 102b, and a BS 110c may be a femto BS for a femto cell 102c. A BS may support one or multiple (e.g., three) cells. The terms “eNB” , “base station” , “NR BS” , “gNB” , “TRP” , “AP” , “node B” , “5G NB” , and “cell” may be used interchangeably herein.
In some aspects, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS. In some aspects, the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
Wireless network 100 may also include relay stations. A relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) . A relay station may also be a UE that can relay transmissions for other UEs. In the example shown in Fig. 1, a relay station 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d. A relay station may also be referred to as a relay BS, a relay base station, a relay, and/or the like.
Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100. For example, macro BSs may have a high transmit power level (e.g., 5 to 40 Watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 Watts) .
network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs. Network controller 130 may communicate with the BSs via a backhaul. The BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
UEs 120 (e.g., 120a, 120b, 120c) may be dispersed throughout wireless network 100, and each UE may be stationary or mobile. A UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like. A UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet)) , an  entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs. MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device) , or some other entity. A wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link. Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices. Some UEs may be considered a Customer Premises Equipment (CPE) . UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like.
In general, any number of wireless networks may be deployed in a given geographic area. Each wireless network may support a particular RAT and may operate on one or more frequencies. A RAT may also be referred to as a radio technology, an air interface, and/or the like. A frequency may also be referred to as a carrier, a frequency channel, and/or the like. Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs. In some cases, NR or 5G RAT networks may be deployed.
In some aspects, two or more UEs 120 (e.g., shown as UE 120a and UE 120e) may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) . For example, the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, and/or the like) , a mesh network, and/or the like. In this case, the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
As indicated above, Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
Fig. 2 shows a block diagram of a design 200 of base station 110 and UE 120, which may be one of the base stations and one of the UEs in Fig. 1. Base station 110 may be equipped with T antennas 234a through 234t, and UE 120 may be equipped with R antennas 252a through 252r, where in general T ≥ 1 and R ≥ 1.
At base station 110, a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols. Transmit processor 220 may also generate reference symbols for reference signals (e.g., the cell-specific reference signal (CRS) ) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) . A transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream. Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively. According to various aspects described in more detail below, the synchronization signals can be generated with location encoding to convey additional information.
At UE 120, antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively. Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples. Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols. A MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. A receive  processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280. A channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , and/or the like. In some aspects, one or more components of UE 120 may be included in a housing.
On the uplink, at UE 120, a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports comprising RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110. At base station 110, the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120. Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240. Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244. Network controller 130 may include communication unit 294, controller/processor 290, and memory 292.
Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with configurable minimization of drive test (MDT) reporting, as described in more detail elsewhere herein. For example, controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 600 of Fig. 6 and/or other processes as described herein.  Memories  242 and 282 may store data and program codes for base station 110 and UE 120, respectively. In some aspects, memory 242 and/or memory 282 may comprise a non-transitory computer-readable medium storing one or more instructions for wireless communication. For example, the one or more instructions, when executed by one or more processors of the base station 110 and/or the UE 120, may perform or direct operations of, for example, process 600 of Fig. 6,  and/or other processes as described herein. A scheduler 246 may schedule UEs for data transmission on the downlink and/or uplink.
In some aspects, UE 120 may include means for determining whether MDT reporting for the UE 120 is enabled, means for selectively transmitting, to a BS 110 and based at least in part on whether MDT reporting for the UE 120 is enabled, an indication of an MDT reporting capability associated with the UE 120, and/or the like. In some aspects, such means may include one or more components of UE 120 described in connection with Fig. 2, such as controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, and/or the like.
As indicated above, Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
Fig. 3A shows an example frame structure 300 for frequency division duplexing (FDD) in a telecommunications system (e.g., NR) . The transmission timeline for each of the downlink and uplink may be partitioned into units of radio frames (sometimes referred to as frames) . Each radio frame may have a predetermined duration (e.g., 10 milliseconds (ms) ) and may be partitioned into a set of Z (Z ≥ 1) subframes (e.g., with indices of 0 through Z-1) . Each subframe may have a predetermined duration (e.g., 1 ms) and may include a set of slots (e.g., 2 m slots per subframe are shown in Fig. 3A, where m is a numerology used for a transmission, such as 0, 1, 2, 3, 4, and/or the like) . Each slot may include a set of L symbol periods. For example, each slot may include fourteen symbol periods (e.g., as shown in Fig. 3A) , seven symbol periods, or another number of symbol periods. In a case where the subframe includes two slots (e.g., when m = 1) , the subframe may include 2L symbol periods, where the 2L symbol periods in each subframe may be assigned indices of 0 through 2L–1. In some aspects, a scheduling unit for the FDD may be frame-based, subframe-based, slot-based, symbol-based, and/or the like.
While some techniques are described herein in connection with frames, subframes, slots, and/or the like, these techniques may equally apply to other types of wireless communication structures, which may be referred to using terms other than “frame, ” “subframe, ” “slot, ” and/or the like in 5G NR. In some aspects, a wireless communication structure may refer to a periodic time-bounded communication unit defined by a wireless communication standard and/or protocol. Additionally, or  alternatively, different configurations of wireless communication structures than those shown in Fig. 3A may be used.
In certain telecommunications (e.g., NR) , a base station may transmit synchronization signals. For example, a base station may transmit a primary synchronization signal (PSS) , a secondary synchronization signal (SSS) , and/or the like, on the downlink for each cell supported by the base station. The PSS and SSS may be used by UEs for cell search and acquisition. For example, the PSS may be used by UEs to determine symbol timing, and the SSS may be used by UEs to determine a physical cell identifier, associated with the base station, and frame timing. The base station may also transmit a physical broadcast channel (PBCH) . The PBCH may carry some system information, such as system information that supports initial access by UEs.
In some aspects, the base station may transmit the PSS, the SSS, and/or the PBCH in accordance with a synchronization communication hierarchy (e.g., a synchronization signal (SS) hierarchy) including multiple synchronization communications (e.g., SS blocks) , as described below in connection with Fig. 3B.
Fig. 3B is a block diagram conceptually illustrating an example SS hierarchy, which is an example of a synchronization communication hierarchy. As shown in Fig. 3B, the SS hierarchy may include an SS burst set, which may include a plurality of SS bursts (identified as SS burst 0 through SS burst B-1, where B is a maximum number of repetitions of the SS burst that may be transmitted by the base station) . As further shown, each SS burst may include one or more SS blocks (identified as SS block 0 through SS block (b max_SS-1) , where b max_SS-1 is a maximum number of SS blocks that can be carried by an SS burst) . In some aspects, different SS blocks may be beam-formed differently. An SS burst set may be periodically transmitted by a wireless node, such as every X milliseconds, as shown in Fig. 3B. In some aspects, an SS burst set may have a fixed or dynamic length, shown as Y milliseconds in Fig. 3B.
The SS burst set shown in Fig. 3B is an example of a synchronization communication set, and other synchronization communication sets may be used in connection with the techniques described herein. Furthermore, the SS block shown in Fig. 3B is an example of a synchronization communication, and other synchronization communications may be used in connection with the techniques described herein.
In some aspects, an SS block includes resources that carry the PSS, the SSS, the PBCH, and/or other synchronization signals (e.g., a tertiary synchronization signal  (TSS) ) and/or synchronization channels. In some aspects, multiple SS blocks are included in an SS burst, and the PSS, the SSS, and/or the PBCH may be the same across each SS block of the SS burst. In some aspects, a single SS block may be included in an SS burst. In some aspects, the SS block may be at least four symbol periods in length, where each symbol carries one or more of the PSS (e.g., occupying one symbol) , the SSS (e.g., occupying one symbol) , and/or the PBCH (e.g., occupying two symbols) .
In some aspects, the symbols of an SS block are consecutive, as shown in Fig. 3B. In some aspects, the symbols of an SS block are non-consecutive. Similarly, in some aspects, one or more SS blocks of the SS burst may be transmitted in consecutive radio resources (e.g., consecutive symbol periods) during one or more slots. Additionally, or alternatively, one or more SS blocks of the SS burst may be transmitted in non-consecutive radio resources.
In some aspects, the SS bursts may have a burst period, whereby the SS blocks of the SS burst are transmitted by the base station according to the burst period. In other words, the SS blocks may be repeated during each SS burst. In some aspects, the SS burst set may have a burst set periodicity, whereby the SS bursts of the SS burst set are transmitted by the base station according to the fixed burst set periodicity. In other words, the SS bursts may be repeated during each SS burst set.
The base station may transmit system information, such as system information blocks (SIBs) on a physical downlink shared channel (PDSCH) in certain slots. The base station may transmit control information/data on a physical downlink control channel (PDCCH) in C symbol periods of a slot, where B may be configurable for each slot. The base station may transmit traffic data and/or other data on the PDSCH in the remaining symbol periods of each slot.
As indicated above, Figs. 3A and 3B are provided as examples. Other examples may differ from what is described with regard to Figs. 3A and 3B.
Fig. 4 shows an example slot format 410 with a normal cyclic prefix. The available time frequency resources may be partitioned into resource blocks. Each resource block may cover a set of subcarriers (e.g., 12 subcarriers) in one slot and may include a number of resource elements. Each resource element may cover one subcarrier in one symbol period (e.g., in time) and may be used to send one modulation symbol, which may be a real or complex value.
An interlace structure may be used for each of the downlink and uplink for FDD in certain telecommunications systems (e.g., NR) . For example, Q interlaces with  indices of 0 through Q-1 may be defined, where Q may be equal to 4, 6, 8, 10, or some other value. Each interlace may include slots that are spaced apart by Q frames. In particular, interlace q may include slots q, q + Q, q + 2Q, etc., where q ∈ {0, …, Q-1} .
A UE may be located within the coverage of multiple BSs. One of these BSs may be selected to serve the UE. The serving BS may be selected based at least in part on various criteria such as received signal strength, received signal quality, path loss, and/or the like. Received signal quality may be quantified by a signal-to-noise-and-interference ratio (SNIR) , or a reference signal received quality (RSRQ) , or some other metric. The UE may operate in a dominant interference scenario in which the UE may observe high interference from one or more interfering BSs.
While aspects of the examples described herein may be associated with NR or 5G technologies, aspects of the present disclosure may be applicable with other wireless communication systems. New Radio (NR) may refer to radios configured to operate according to a new air interface (e.g., other than Orthogonal Frequency Divisional Multiple Access (OFDMA) -based air interfaces) or fixed transport layer (e.g., other than Internet Protocol (IP) ) . In aspects, NR may utilize OFDM with a CP (herein referred to as cyclic prefix OFDM or CP-OFDM) and/or SC-FDM on the uplink, may utilize CP-OFDM on the downlink and include support for half-duplex operation using time division duplexing (TDD) . In aspects, NR may, for example, utilize OFDM with a CP (herein referred to as CP-OFDM) and/or discrete Fourier transform spread orthogonal frequency-division multiplexing (DFT-s-OFDM) on the uplink, may utilize CP-OFDM on the downlink and include support for half-duplex operation using TDD. NR may include Enhanced Mobile Broadband (eMBB) service targeting wide bandwidth (e.g., 80 megahertz (MHz) and beyond) , millimeter wave (mmW) targeting high carrier frequency (e.g., 60 gigahertz (GHz) ) , massive MTC (mMTC) targeting non-backward compatible MTC techniques, and/or mission critical targeting ultra reliable low latency communications (URLLC) service.
In some aspects, a single component carrier bandwidth of 100 MHz may be supported. NR resource blocks may span 12 sub-carriers with a sub-carrier bandwidth of 60 or 120 kilohertz (kHz) over a 0.1 millisecond (ms) duration. Each radio frame may include 40 slots and may have a length of 10 ms. Consequently, each slot may have a length of 0.25 ms. Each slot may indicate a link direction (e.g., DL or UL) for data transmission and the link direction for each slot may be dynamically switched. Each slot may include DL/UL data as well as DL/UL control data.
Beamforming may be supported and beam direction may be dynamically configured. MIMO transmissions with precoding may also be supported. MIMO configurations in the DL may support up to 8 transmit antennas with multi-layer DL transmissions up to 8 streams and up to 2 streams per UE. Multi-layer transmissions with up to 2 streams per UE may be supported. Aggregation of multiple cells may be supported with up to 8 serving cells. Alternatively, NR may support a different air interface, other than an OFDM-based interface. NR networks may include entities such as central units or distributed units.
As indicated above, Fig. 4 is provided as an example. Other examples may differ from what is described with regard to Fig. 4.
A drive test may include directing a vehicle that is equipped with measurement equipment along one or more roads for the purpose of collecting wireless communication coverage and performance information associated with a wireless network. In some cases, a drive test may be performed in one or more wireless networks associated with a particular network operator or a plurality of network operators. A network operator may deploy a drive test vehicle to a particular location in a wireless network for various purposes, such as to obtain wireless communication coverage and performance information if there is no wireless communication coverage and performance information for the particular location, if the wireless communication coverage and performance information for the particular location is out of date, if the network operator has received reports of degraded wireless communication coverage and/or performance in the particular location, if new structures such as buildings have been recently constructed in the particular location, if new base stations have been deployed in the particular location, and/or the like.
While a drive test may provide valuable information regarding wireless communication coverage and performance in a wireless network, drive tests tend to require large operational expenses and human efforts to perform. Moreover, a drive test may only encompass a relatively small portion of a wireless network. Accordingly, a network operator may introduce MDT functionality into the wireless network to supplement drive testing efforts, to reduce reliance on drive testing, and/or the like. In this case, UEs that are deployed in the wireless network may be configured to perform MDT reporting, which may include performing measurements similar to a drive test in order to provide wireless communication coverage and performance information. In this way, MDT reporting may reduce operational expenses and effort needed for  performing drive tests in the wireless network while providing greater coverage of wireless communication coverage and performance information collection in the wireless network. However, MDT reporting may cause high power consumption at a UE, which in turn may cause accelerated drain of UE battery life, premature shut-down of the UE, degraded user experience of the UE, and/or the like.
Some aspects described herein provide techniques and apparatuses for configurable MDT reporting. In some aspects, MDT reporting may be enabled and/or disabled for a UE, particular MDT reporting parameters may be selectively enabled and/or disabled for the UE, and/or the like, via a user interface provided by the UE and/or by an original equipment manufacturer (OEM) of the UE. In this way, users and/or OEMs may partially or fully disable MDT reporting for a UE, which may conserve UE battery life, decrease the likelihood of premature shut-down of the UE, improve user experience of the UE, and/or the like.
Figs. 5A and 5B are diagrams illustrating one or more examples 500 of configurable MDT reporting, in accordance with various aspects of the present disclosure. As shown in Figs. 5A and 5B, examples 500 may include communication between a UE (e.g., UE 120) and a BS (e.g., BS 110) . The UE and the BS may be included in a wireless network, such as wireless network 100 and/or another wireless network.
The UE may be capable of performing MDT reporting in the wireless network. The UE may support MDT reporting for various MDT reporting types, for various types of measurements, for various types of radio access technologies (RATs) , and/or the like. For example, the UE may support MDT reporting types such as immediate MDT reporting (e.g., performing one or more measurements and reporting the measurement results to the BS based at least in part on performing the one or more measurements) , logged MDT reporting (e.g., performing one or more measurements and logging or storing the measurement results for reporting at a later time, which may be periodic or specified by the BS) , logged and/or immediate multicast-broadcast single-frequency network (MBSFN) MDT reporting (e.g., performing one or more measurements and logging or reporting the measurement results for a multicast broadcast multimedia service (MBMS) ) , a global navigation satellite system (GNSS) location based MDT reporting (e.g., obtaining a new or recent GNSS based location of the UE when performing one or more measurements for purposes of MDT reporting) ,  and/or the like. In some aspects, the UE may support combinations of the above MDT reporting types and/or other MDT reporting types.
As another example, the UE may support various types of measurements, such as RSRQ, RSRP measurements, CQI measurements, RSSI measurements, signal-to-interference-plus-noise ratio (SINR) measurements, throughput measurements, latency measurements, and/or the like for each RAT to which the UE is communicatively connected. As a further example, the UE may support MDT reporting for RATs such as LTE, 5G/NR, Wi-Fi, Bluetooth, universal mobile telecommunications system (UMTS) , multi-RAT dual connectivity (MR-DC) , and/or the like.
To conserve UE battery life, decrease the likelihood of premature shut-down of the UE, improve user experience of the UE, and/or the like, the UE may support fully enabling and/or disabling MDT reporting for the UE, may support selectively enabling and/or disabling particular MDT reporting parameters, and/or the like. The MDT reporting parameters may correspond to the MDT reporting types described above, the types of measurements described above, the different RATs described above, and/or the like.
As shown in Fig. 5A, and by reference number 502, to permit enabling and/or disabling of MDT reporting and/or MDT reporting parameters, the UE may configure an MDT configuration for the UE. In some aspects, the UE may provide a user interface for configuring the MDT configuration. In some aspects, the UE may configure the MDT configuration based at least in part on signaling received from the BS. In some aspects, the UE may be hard coded or configured with an MDT configuration prior to being deployed in the wireless network.
In some aspects, the user interface may include a graphical user interface (GUI) and/or another type of user interface that permits a user of the UE to provide input for configuring the MDT configuration. The user interface may be a part of an operating system of the UE, may be part of an application that communicates with the operating system of the UE, and/or the like. In this way, the user may use the user interface to provide input as to whether MDT reporting is to be enabled and/or disabled for the UE, whether particular MDT reporting parameters are to be enabled and/or disabled for the UE, and/or the like, and the UE may configure the MDT configuration based at least in part on the input (e.g., may generate a new MDT configuration, may modify an existing MDT configuration, and/or the like) .
In some aspects, the UE may display, via the user interface and/or another user interface of the UE, various visual prompts, notifications, and/or the like for the user to provide input regarding the MDT configuration. For example, the UE may display a request for user input regarding whether the UE is to enable or disable MDT reporting, whether the UE is to enable or disable one or more MDT reporting parameters, and/or the like. In some aspects, the UE may display the request based at least in part on determining that no MDT reporting configuration has been configured for the UE, based at least in part on receiving an MDT reporting configuration from the BS (in which case, the request may include a request to confirm or reject the MDT reporting parameters in the MDT reporting configuration) , and/or the like. In some aspects, if the user input rejects the MDT reporting configuration, the UE may transmit, to the BS, a communication that includes an indication that the MDT reporting configuration is rejected, an indication of a reason for rejection, and/or the like. The communication may include an MDT reporting log, a radio resource control (RRC) communication, and/or the like.
Once the UE has configured the MDT configuration, the UE may store the MDT configuration in a data store (e.g., a database, an electronic file, an electronic file system of the UE, a storage device, a memory, and/or the like) . In some aspects, the MDT configuration may indicate and/or specify whether MDT reporting for the UE is fully enabled or disabled, whether MDT reporting for the UE is partially enabled and/or disabled (e.g., whether a subset of MDT reporting parameters are enabled, whether a subset of MDT reporting parameters are disabled, and/or the like) , and/or the like. In some aspects, the MDT configuration may further indicate that MDT reporting is to be selectively enabled (e.g., fully enabled or partially enabled) in particular situations and selectively disabled (e.g., fully disabled or partially disabled) in other situations. For example, the MDT configuration may indicate and/or specify that MDT reporting is to be fully or partially enabled or disabled based at least in part on a location of the UE, based at least in part on a remaining battery life of the UE, based at least in part on a charging status of the UE, based at least in part on a RAT to which the UE is communicatively connected, based at least in part on a day or time of day, and/or the like.
As an example, the MDT configuration may indicate and/or specify whether MDT reporting for the UE is fully enabled or disabled in a particular geographic area or a plurality of geographic areas (e.g., cities, towns, states, countries, boundaries  determined by GNSS coordinates, and/or the like) . As an example, the MDT configuration may indicate and/or specify whether MDT reporting for the UE is fully enabled or disabled based at least in part on a remaining battery life of the UE. In this case, the MDT configuration may indicate and/or specify that MDT reporting or particular MDT reporting parameters are to be disabled if the remaining battery life satisfies a battery life threshold. In some aspects, the MDT configuration may configure a plurality of decreasing battery life thresholds (e.g., 80%battery life, 50%battery life, 25%battery life, and so on) , where each threshold corresponds to an increasing quantity of MDT reporting parameters being disabled.
As an example, the MDT configuration may indicate and/or specify whether MDT reporting for the UE is fully enabled or disabled based at least in part on whether the charging status indicates that the UE is connected to a charging source for the battery of the UE. As an example, the MDT configuration may indicate and/or specify whether MDT reporting for the UE is fully enabled or disabled based at least in part on a type of RAT associated with a BS to which the UE is communicatively connected. As an example, the MDT configuration may indicate and/or specify whether MDT reporting for the UE is fully enabled or disabled for particular times of a day, particular days of a week, and/or the like.
In some aspects, the UE may configure the MDT configuration based at least in part on a UE capability index associated with the UE. The UE may determine the UE capability index of the UE based at least in part on a combination of capabilities of the UE. The capabilities may include, for example, one or more RATs supported by the UE, a battery capacity of the UE, a throughput capability of the UE, and/or other capabilities. As an example, the UE may determine whether to fully enable or disable MDT reporting based at least in part on the UE capability index of the UE. As another example, the UE may determine whether to enable or disable particular MDT reporting parameters based at least in part on the UE capability index of the UE. In some aspects, an MDT reporting profile that includes a particular combination of disabled and/or enabled MDT reporting parameters may be configured for respective UE capability indexes. In this case, the UE may select an MDT reporting profile, from a plurality of MDT reporting profiles, based at least in part on the UE capability index of the UE.
As shown in Fig. 5B, and by reference number 504, the UE may determine whether MDT reporting for the UE is enabled. In some aspects, the UE may determine whether MDT reporting is enabled based at least in part on the MDT configuration for  the UE. For example, the UE may access the MDT configuration and determine, based at least in part on the MDT configuration, whether MDT reporting is fully enabled or disabled, whether one or more MDT reporting parameters are enabled or disabled, and/or the like. In some aspects, the UE may determine whether the MDT configuration specifies that MDT reporting or one or more MDT reporting parameters are enabled or disabled. In some aspects, if the MDT configuration specifies that MDT reporting or one or more MDT reporting parameters are to be enabled or disabled based at least in part on a location of the UE, a battery status of the UE, a charging status of the UE and/or the like, the UE may determine whether MDT reporting or one or more MDT reporting parameters are to be enabled or disabled based at least in part on the location of the UE, the battery status of the UE, the charging status of the UE, and/or the like.
In some aspects, a modem and/or another component of the UE may determine whether MDT reporting is enabled by accessing the MDT configuration via an application programming interface (API) , a mobile station modem (MSM) interface, and/or the like. For example, the operating system of the UE may provide access to the MDT configuration via the API, MSM interface, and/or the like.
Moreover, if MDT reporting or one or more MDT reporting parameters are to be enabled or disabled based at least in part on a location of the UE, a battery status of the UE, a charging status of the UE, and/or the like, the modem may receive (e.g., from the operating system, a GNSS component, an application, and/or the like via the API, the MSM interface, and/or the like) an indication of the location of the UE, an indication of the remaining battery life of the UE, an indication of the charging status of the UE, and/or the like. The UE may determine, based at least in part on the location of the UE, whether the UE is located in one or more of the geographic areas specified in the MDT configuration and may enable or disable MDT reporting or one or more MDT reporting parameters based at least in part on determining whether the UE is located in the one or more geographic areas. The UE may determine, based at least in part on the remaining battery life of the UE, whether the remaining battery life satisfies one or more battery life thresholds specified in the MDT configuration and may enable or disable MDT reporting or one or more MDT reporting parameters based at least in part on determining whether the remaining battery life satisfies the one or more battery life thresholds. The UE may determine, based at least in part on the charging status of the UE, whether to enable or disable MDT reporting or one or more MDT reporting parameters. The UE may determine whether to enable or disable MDT reporting or one  or more MDT reporting parameters based at least in part on the UE being communicatively connected to a BS of a particular type of RAT specified in the MDT configuration. In some aspects, the UE may determine whether to enable or disable MDT reporting or one or more MDT reporting parameters based at least in part on a combination of the location of the UE, the battery status of the UE, the charging status of the UE, the RAT to which the UE is communicatively connected, and/or other parameters associated with the UE.
As further shown in Fig. 5B, and by reference number 506, the UE may selectively transmit, to the BS and based at least in part on whether MDT reporting for the UE is enabled, an indication of an MDT reporting capability associated with the UE. The MDT reporting capability may indicate, to the BS, whether the UE supports MDT reporting, which MDT reporting features are supported by the UE, and/or the like.
In some aspects, if the UE determines that the MDT configuration indicates that MDT reporting is disabled for the UE, the UE may refrain from transmitting the MDT reporting capability to the BS. In this way, the BS may determine that, since the BS did not receive an MDT reporting capability from the UE, the UE does not support MDT reporting and accordingly may not transmit an MDT reporting configuration to the UE. As a result, the UE may not perform MDT reporting.
In some aspects, if the UE determines that the MDT configuration indicates that MDT reporting is enabled for the UE, the UE may transmit the MDT reporting capability to the BS. In this way, the BS may receive the indication of the MDT reporting capability from the UE and may accordingly transmit an MDT reporting configuration to the UE such that the UE performs MDT reporting.
In some aspects, if the UE determines that the MDT configuration indicates that one or more MDT reporting parameters are disabled for the UE, the UE may transmit an MDT reporting capability that does not include an indication of the one or more disabled MDT reporting parameters. In this way, the BS may determine that, since the BS did not receive an indication of the one or more disabled MDT reporting parameters from the UE, the UE does not support the one or more disabled MDT reporting parameters. Accordingly, the BS may transmit an MDT reporting configuration to the UE that schedules or requests MDT reporting for one or more MDT reporting parameters indicated in the MDT reporting capability, and does not schedule or request MDT reporting for the one or more disabled MDT reporting parameters.
In some aspects, if the UE determines that the MDT configuration indicates that MDT reporting or that one or more MDT reporting parameters are disabled for the UE in particular situations (e.g., in particular geographic areas, when the remaining battery life of the UE satisfies one or more battery life thresholds, when the UE is not connected to a charging source, during particular times of a day and/or for particular days, and/or the like) , the UE may refrain from transmitting an MDT reporting capability based at least in part on detecting one or more of the particular situations, may transmit an MDT report that does not indicate one or more MDT reporting capabilities corresponding to the one or more disabled MDT reporting parameters, and/or the like.
Accordingly, the UE may perform MDT reporting based at least in part on whether the BS transmits an MDT reporting configuration to the UE, based at least in part on the MDT reporting configuration, and/or the like. For example, the UE may perform one or more measurements for MDT reporting, may transmit an indication of the measurement results associated with the one or more measurements in one or more MDT reports, and/or the like.
In some aspects, the UE may further include a GNSS location of the UE when the UE performed the one or more measurements. For example, if the UE determines that the MDT configuration indicates that GNSS location based MDT reporting is enabled, the UE may determine a new or updated GNSS location of the UE for each MDT report. In some aspects, if the UE determines that the MDT configuration indicates that GNSS location based MDT reporting is disabled (e.g., fully disabled, disabled when the UE is connected to a particular type of RAT, disabled when the remaining battery life of the UE satisfies a battery life threshold, disabled when the UE is in a charging mode, disabled when the UE is in a particular geographic location, and/or the like) , the UE may include, in an MDT report, one or more historical location measurements, associated with the UE, that were previously determined by the UE. Additionally or alternatively, the UE may attempt to extrapolate a new GNSS location of the UE based at least in part on the one or more historical location measurements, based at least in part on sensor data associated with one or more sensors of the UE (e.g., an accelerometer, a gyroscope, and/or the like) , and/or the like.
In some aspects, the UE may detect a change to MDT reporting for the UE, which may cause the UE to transmit an indication of an updated MDT reporting capability to the BS. For example, a user, OEM, and/or the like may modify the MDT  configuration of the UE (e.g., by enabling or disabling MDT reporting, by enabling and/or disabling one or more MDT reporting parameters, and/or the like) . As another example, the UE may determine to transmit an updated MDT reporting capability based at least in part on determining that the UE moved into or out of a geographic location specified in the MDT configuration, based at least in part on determining that the remaining battery life of the UE satisfies or does not satisfy one or more battery life thresholds specified in the MDT configuration, based at least in part on determining that the UE is communicatively connected to a different RAT, based at least in part on a time of day or a particular day, and/or the like.
In some aspects, to transmit an indication of an updated MDT reporting capability to the BS, the UE may reestablish a connection with the BS based at least in part on detecting the change to MDT reporting for the UE in the MDT configuration, and may transmit (or refrain from transmitting, such as when MDT reporting is disabled for the UE) the indication of the updated MDT reporting capability to the BS. In this way, the BS may transmit (or refrain from transmitting, such as when the UE refrains from transmitting the updated MDT reporting capability) an updated MDT reporting configuration to the UE.
In this way, MDT reporting may be enabled and/or disabled for a UE and/or particular MDT reporting parameters may be selectively enabled and/or disabled for the UE via a user interface provided by the UE and/or by an OEM of the UE. In this way, users and/or OEMs may partially or fully disable MDT reporting for a UE, which may conserve UE battery life, decrease the likelihood of premature shut-down of the UE, improve user experience of the UE, and/or the like.
As indicated above, Figs. 5A and 5B are provided as one or more examples. Other examples may differ from what is described with respect to Figs. 5A and 5B.
Fig. 6 is a diagram illustrating an example process 600 performed, for example, by a UE, in accordance with various aspects of the present disclosure. Example process 600 is an example where a UE (e.g., UE 120) performs operations associated with configurable MDT reporting.
As shown in Fig. 6, in some aspects, process 600 may include determining whether MDT reporting for the UE is enabled (block 610) . For example, the UE (e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like) may determine whether MDT reporting for the UE is enabled, as described above.
As further shown in Fig. 6, in some aspects, process 600 may include selectively transmitting, to a BS and based at least in part on whether MDT reporting for the UE is enabled, an indication of an MDT reporting capability associated with the UE (block 620) . For example, the UE (e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like) may selectively transmit, to a BS and based at least in part on whether MDT reporting for the UE is enabled, an indication of an MDT reporting capability associated with the UE, as described above.
Process 600 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, determining whether MDT reporting for the UE is enabled comprises determining that MDT reporting for the UE is disabled in an MDT configuration, and selectively transmitting the indication of the MDT reporting capability associated with the UE comprises refraining from transmitting the indication of the MDT reporting capability based at least in part on determining that MDT reporting for the UE is disabled in the MDT configuration. In a second aspect, alone or in combination with the first aspect, MDT reporting is disabled in the MDT configuration, associated with the UE, based at least in part on user input received at the UE via a user interface associated with the UE. In a third aspect, alone or in combination with one or more of the first and second aspects, process 600 further comprises displaying a request for the user input and disabling MDT reporting in the MDT configuration based at least in part on receiving the user input.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, displaying the request for the user input comprises displaying the request for the user input based at least in part on receiving, from the BS, an MDT reporting configuration. In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, process 600 further comprises transmitting, to the BS, an indication that the MDT reporting configuration is rejected by the UE, and the indication that the MDT reporting configuration is rejected by the UE is included in at least one of a radio resource control communication or an MDT reporting log.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, determining whether MDT reporting for the UE is enabled comprises determining that a subset of parameters for MDT reporting are disabled in an MDT configuration associated with the UE, and selectively transmitting the indication  of the MDT reporting capability associated with the UE comprises refraining from transmitting an indication that the UE supports a subset of MDT reporting capabilities corresponding to the subset of parameters for MDT reporting. In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, a combination of parameters, included in the subset of parameters for MDT reporting, is based at least in part on a UE capability index of the UE. In an eighth aspect, alone or in combination with one or more of the first through seventh aspects, a combination of parameters, included in the subset of parameters for MDT reporting, is associated with an MDT reporting profile of a plurality of MDT reporting profiles associated with a UE capability index of the UE.
In a ninth aspect, alone or in combination with one or more of the first through eighth aspects, the subset of parameters for MDT reporting are disabled in the MDT configuration based at least in part on a user input received at the UE via a user interface associated with the UE. In a tenth aspect, alone or in combination with one or more of the first through ninth aspects, the subset of parameters comprise at least one of a logged MDT reporting parameter, an immediate MDT reporting parameter, a GNSS location based MDT reporting parameter, a logged MBSFN MDT reporting parameter, an immediate MBSFN MDT reporting parameter, a parameter for logged MDT reporting for one or more RAT types, or a parameter for immediate MDT reporting for one or more RAT types.
In an eleventh aspect, alone or in combination with one or more of the first through tenth aspects, the GNSS location based MDT reporting parameter indicates whether the UE is to determine a GNSS based location of the UE for MDT reporting. In a twelfth aspect, alone or in combination with one or more of the first through eleventh aspects, the GNSS location based MDT reporting parameter indicates that the UE is to determine the GNSS based location of the UE based at least in part on at least one of: the UE is connected to a particular type of RAT, a remaining battery life of the UE satisfies a battery life threshold, or the UE is in a charging mode. In a thirteenth aspect, alone or in combination with one or more of the first through twelfth aspects, determining whether the MDT reporting for the UE is enabled comprises accessing, using a modem of the UE, an MDT configuration via an API and determining, based at least in part on accessing the MDT configuration via the API, whether the MDT reporting for the UE is enabled.
In a fourteenth aspect, alone or in combination with one or more of the first through thirteenth aspects, determining whether MDT reporting for the UE is enabled comprises: determining that an MDT configuration indicates that MDT reporting for the UE is disabled when a remaining battery life of the UE satisfies a battery life threshold, and selectively transmitting the indication of the MDT reporting capability associated with the UE comprises determining whether the remaining battery life of the UE satisfies the battery life threshold and transmitting the indication of the MDT reporting capability based at least in part on determining that the remaining battery life of the UE does not satisfy the battery life threshold or refraining from transmitting the indication of the MDT reporting capability based at least in part on determining that the remaining battery life of the UE satisfies the battery life threshold.
In a fifteenth aspect, alone or in combination with one or more of the first through fourteenth aspects, process 600 further comprises receiving, using a modem of the UE, an indication of the remaining battery life of the UE via an API. In a sixteenth aspect, alone or in combination with one or more of the first through fifteenth aspects, process 600 further comprises transmitting, based at least in part on determining that the remaining battery life of the UE satisfies the battery life threshold, an MDT report, and the MDT report includes an indication of one or more historical location measurements, associated with the UE, that were previously determined by the UE.
In a seventeenth aspect, alone or in combination with one or more of the first through sixteenth aspects, determining whether MDT reporting for the UE is enabled comprises determining that an MDT configuration indicates that a subset of parameters for MDT reporting for the UE are disabled when a remaining battery life of the UE satisfies a battery life threshold, and selectively transmitting the indication of the MDT reporting capability associated with the UE comprises determining whether the remaining battery life of the UE satisfies the battery life threshold and transmitting, based at least in part on determining that the remaining battery life of the UE does not satisfy the battery life threshold, an indication that the UE supports a subset of MDT reporting capabilities corresponding to the subset of parameters for MDT reporting, or refraining from transmitting, based at least in part on determining that the remaining battery life of the UE satisfies the battery life threshold, the indication that the UE supports the subset of MDT reporting capabilities corresponding to the subset of parameters for MDT reporting.
In an eighteenth aspect, alone or in combination with one or more of the first through seventeenth aspects, determining whether MDT reporting for the UE is enabled comprises: determining that an MDT configuration indicates that MDT reporting for the UE is disabled when the UE is located in a particular geographic area, and selectively transmitting the indication of the MDT reporting capability associated with the UE comprises determining whether the UE is located in the particular geographic area and transmitting the indication of the MDT reporting capability based at least in part on determining that the UE is not located in the particular geographic area, or refraining from transmitting the indication of the MDT reporting capability based at least in part on determining that the UE is located in the particular geographic area. In a nineteenth aspect, alone or in combination with one or more of the first through eighteenth aspects, process 600 further comprises determining whether the UE is located in the particular geographic area based at least in part on an indication of a location of the UE received via an API.
In a twentieth aspect, alone or in combination with one or more of the first through nineteenth aspects, determining whether MDT reporting for the UE is enabled comprises determining that an MDT configuration indicates that a subset of parameters for MDT reporting for the UE are disabled when the UE is located in a particular geographic area, and selectively transmitting the indication of the MDT reporting capability associated with the UE comprises determining whether the UE is located in the particular geographic area and transmitting, based at least in part on determining that the UE is not located in the particular geographic area, an indication that the UE supports a subset of MDT reporting capabilities corresponding to the subset of parameters for MDT reporting, or refraining from transmitting, based at least in part on determining that the UE is located in the particular geographic area, the indication that the UE supports the subset of MDT reporting capabilities corresponding to the subset of parameters for MDT reporting.
In a twenty-first aspect, alone or in combination with one or more of the first through twentieth aspects, process 600 further comprises detecting a change to MDT reporting for the UE in an MDT configuration and reestablishing a connection with the BS based at least in part on detecting the change to MDT reporting for the UE in the MDT configuration, and selectively transmitting the indication of the MDT reporting capability associated with the UE comprises selectively transmitting the indication of the MDT reporting capability associated with the UE based at least in part on  reestablishing the connection with the BS. In a twenty-second aspect, alone or in combination with one or more of the first through twenty-first aspects, reestablishing the connection with the BS comprises reestablishing the connection with the BS based at least in part on at least one of determining that a display screen of the UE is deactivated, determining that network traffic, associated with the UE, satisfies a network traffic threshold, or determining that user activity, associated with the UE, satisfies a user activity threshold.
Although Fig. 6 shows example blocks of process 600, in some aspects, process 600 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 6. Additionally, or alternatively, two or more of the blocks of process 600 may be performed in parallel.
The foregoing disclosure provides illustration and description, but is not intended to be exhaustive or to limit the aspects to the precise form disclosed. Modifications and variations may be made in light of the above disclosure or may be acquired from practice of the aspects.
As used herein, the term “component” is intended to be broadly construed as hardware, firmware, and/or a combination of hardware and software. As used herein, a processor is implemented in hardware, firmware, and/or a combination of hardware and software.
As used herein, satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
Certain user interfaces have been described herein and/or shown in the figures. A user interface may include a graphical user interface, a non-graphical user interface, a text-based user interface, and/or the like. A user interface may provide information for display. In some implementations, a user may interact with the information, such as by providing input via an input component of a device that provides the user interface for display. In some implementations, a user interface may be configurable by a device and/or a user (e.g., a user may change the size of the user interface, information provided via the user interface, a position of information provided via the user interface, etc. ) . Additionally, or alternatively, a user interface may be pre-configured to a standard configuration, a specific configuration based on a type of device on which the user interface is displayed, and/or a set of configurations based on  capabilities and/or specifications associated with a device on which the user interface is displayed.
It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware, firmware, and/or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the aspects. Thus, the operation and behavior of the systems and/or methods were described herein without reference to specific software code-it being understood that software and hardware can be designed to implement the systems and/or methods based, at least in part, on the description herein.
Even though particular combinations of features are recited in the claims and/or disclosed in the specification, these combinations are not intended to limit the disclosure of various aspects. In fact, many of these features may be combined in ways not specifically recited in the claims and/or disclosed in the specification. Although each dependent claim listed below may directly depend on only one claim, the disclosure of various aspects includes each dependent claim in combination with every other claim in the claim set. A phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
No element, act, or instruction used herein should be construed as critical or essential unless explicitly described as such. Also, as used herein, the articles “a” and “an” are intended to include one or more items, and may be used interchangeably with “one or more. ” Furthermore, as used herein, the terms “set” and “group” are intended to include one or more items (e.g., related items, unrelated items, a combination of related and unrelated items, and/or the like) , and may be used interchangeably with “one or more. ” Where only one item is intended, the phrase “only one” or similar language is used. Also, as used herein, the terms “has, ” “have, ” “having, ” and/or the like are intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.

Claims (26)

  1. A method of wireless communication performed by a user equipment (UE) , comprising:
    determining whether minimization of drive test (MDT) reporting for the UE is enabled; and
    selectively transmitting, to a base station (BS) and based at least in part on whether MDT reporting for the UE is enabled, an indication of an MDT reporting capability associated with the UE.
  2. The method of claim 1, wherein determining whether MDT reporting for the UE is enabled comprises:
    determining that MDT reporting for the UE is disabled in an MDT configuration; and
    wherein selectively transmitting the indication of the MDT reporting capability associated with the UE comprises:
    refraining from transmitting the indication of the MDT reporting capability based at least in part on determining that MDT reporting for the UE is disabled in the MDT configuration.
  3. The method of claim 2, wherein MDT reporting is disabled in the MDT configuration, associated with the UE, based at least in part on user input received at the UE via a user interface associated with the UE.
  4. The method of claim 3, further comprising:
    displaying a request for the user input; and
    disabling MDT reporting in the MDT configuration based at least in part on receiving the user input.
  5. The method of claim 4, wherein displaying the request for the user input comprises:
    displaying the request for the user input based at least in part on receiving, from the BS, an MDT reporting configuration.
  6. The method of claim 5, further comprising:
    transmitting, to the BS, an indication that the MDT reporting configuration is rejected by the UE,
    wherein the indication that the MDT reporting configuration is rejected by the UE is included in at least one of:
    a radio resource control communication, or
    an MDT reporting log.
  7. The method of claim 1, wherein determining whether MDT reporting for the UE is enabled comprises:
    determining that a subset of parameters for MDT reporting are disabled in an MDT configuration associated with the UE; and
    wherein selectively transmitting the indication of the MDT reporting capability associated with the UE comprises:
    refraining from transmitting an indication that the UE supports a subset of MDT reporting capabilities corresponding to the subset of parameters for MDT reporting.
  8. The method of claim 7, wherein a combination of parameters, included in the subset of parameters for MDT reporting, is based at least in part on a UE capability index of the UE.
  9. The method of claim 7, wherein a combination of parameters, included in the subset of parameters for MDT reporting, is associated with an MDT reporting profile of a plurality of MDT reporting profiles associated with a UE capability index of the UE.
  10. The method of claim 7, wherein the subset of parameters for MDT reporting are disabled in the MDT configuration based at least in part on a user input received at the UE via a user interface associated with the UE.
  11. The method of claim 7, wherein the subset of parameters comprise at least one of:
    a logged MDT reporting parameter,
    an immediate MDT reporting parameter,
    a global navigation satellite system (GNSS) location based MDT reporting parameter,
    a logged multicast-broadcast single-frequency network (MBSFN) MDT reporting parameter,
    an immediate MBSFN MDT reporting parameter,
    a parameter for logged MDT reporting for one or more radio access technology (RAT) types, or
    a parameter for immediate MDT reporting for one or more RAT types.
  12. The method of claim 11, wherein the GNSS location based MDT reporting parameter indicates whether the UE is to determine a GNSS based location of the UE for MDT reporting.
  13. The method of claim 12, wherein the GNSS location based MDT reporting parameter indicates that the UE is to determine the GNSS based location of the UE based at least in part on at least one of:
    the UE is connected to a particular type of RAT,
    a remaining battery life of the UE satisfies a battery life threshold, or
    the UE is in a charging mode.
  14. The method of claim 1, wherein determining whether the MDT reporting for the UE is enabled comprises:
    accessing, using a modem of the UE, an MDT configuration via an application programming interface (API) ; and
    determining, based at least in part on accessing the MDT configuration via the API, whether the MDT reporting for the UE is enabled.
  15. The method of claim 1, wherein determining whether MDT reporting for the UE is enabled comprises:
    determining that an MDT configuration indicates that MDT reporting for the UE is disabled when a remaining battery life of the UE satisfies a battery life threshold; and
    wherein selectively transmitting the indication of the MDT reporting capability associated with the UE comprises:
    determining whether the remaining battery life of the UE satisfies the battery life threshold; and
    transmitting the indication of the MDT reporting capability based at least in part on determining that the remaining battery life of the UE does not satisfy the battery life threshold, or
    refraining from transmitting the indication of the MDT reporting capability based at least in part on determining that the remaining battery life of the UE satisfies the battery life threshold.
  16. The method of claim 15, further comprising:
    receiving, using a modem of the UE, an indication of the remaining battery life of the UE via an application programming interface (API) .
  17. The method of claim 15, further comprising:
    transmitting, based at least in part on determining that the remaining battery life of the UE satisfies the battery life threshold, an MDT report,
    wherein the MDT report includes an indication of one or more historical location measurements, associated with the UE, that were previously determined by the UE.
  18. The method of claim 1, wherein determining whether MDT reporting for the UE is enabled comprises:
    determining that an MDT configuration indicates that a subset of parameters for MDT reporting for the UE are disabled when a remaining battery life of the UE satisfies a battery life threshold; and
    wherein selectively transmitting the indication of the MDT reporting capability associated with the UE comprises:
    determining whether the remaining battery life of the UE satisfies the battery life threshold; and
    transmitting, based at least in part on determining that the remaining battery life of the UE does not satisfy the battery life threshold, an indication that the UE supports a subset of MDT reporting capabilities corresponding to the subset of parameters for MDT reporting, or
    refraining from transmitting, based at least in part on determining that the remaining battery life of the UE satisfies the battery life threshold, the indication that the UE supports the subset of MDT reporting capabilities corresponding to the subset of parameters for MDT reporting.
  19. The method of claim 1, wherein determining whether MDT reporting for the UE is enabled comprises:
    determining that an MDT configuration indicates that MDT reporting for the UE is disabled when the UE is located in a particular geographic area; and
    wherein selectively transmitting the indication of the MDT reporting capability associated with the UE comprises:
    determining whether the UE is located in the particular geographic area; and
    transmitting the indication of the MDT reporting capability based at least in part on determining that the UE is not located in the particular geographic area, or
    refraining from transmitting the indication of the MDT reporting capability based at least in part on determining that the UE is located in the particular geographic area.
  20. The method of claim 19, further comprising:
    determining whether the UE is located in the particular geographic area based at least in part on an indication of a location of the UE received via an application programming interface (API) .
  21. The method of claim 1, wherein determining whether MDT reporting for the UE is enabled comprises:
    determining that an MDT configuration indicates that a subset of parameters for MDT reporting for the UE are disabled when the UE is located in a particular geographic area; and
    wherein selectively transmitting the indication of the MDT reporting capability associated with the UE comprises:
    determining whether the UE is located in the particular geographic area; and
    transmitting, based at least in part on determining that the UE is not located in the particular geographic area, an indication that the UE supports a subset of MDT reporting capabilities corresponding to the subset of parameters for MDT reporting, or
    refraining from transmitting, based at least in part on determining that the UE is located in the particular geographic area, the indication that the UE supports the subset of MDT reporting capabilities corresponding to the subset of parameters for MDT reporting.
  22. The method of claim 1, further comprising:
    detecting a change to MDT reporting for the UE in an MDT configuration; and
    reestablishing a connection with the BS based at least in part on detecting the change to MDT reporting for the UE in the MDT configuration; and
    wherein selectively transmitting the indication of the MDT reporting capability associated with the UE comprises:
    selectively transmitting the indication of the MDT reporting capability associated with the UE based at least in part on reestablishing the connection with the BS.
  23. The method of claim 22, wherein reestablishing the connection with the BS comprises:
    reestablishing the connection with the BS based at least in part on at least one of:
    determining that a display screen of the UE is deactivated,
    determining that network traffic, associated with the UE, satisfies a network traffic threshold, or
    determining that user activity, associated with the UE, satisfies a user activity threshold.
  24. A user equipment (UE) for wireless communication, comprising:
    a memory; and
    one or more processors operatively coupled to the memory, the memory and the one or more processors configured to:
    determine whether minimization of drive test (MDT) reporting for the UE is enabled; and
    selectively transmit, to a base station (BS) and based at least in part on whether MDT reporting for the UE is enabled, an indication of an MDT reporting capability associated with the UE.
  25. A non-transitory computer-readable medium storing one or more instructions for wireless communication, the one or more instructions comprising:
    one or more instructions that, when executed by one or more processors of a user equipment (UE) , cause the one or more processors to:
    determine whether minimization of drive test (MDT) reporting for the UE is enabled; and
    selectively transmit, to a base station (BS) and based at least in part on whether MDT reporting for the UE is enabled, an indication of an MDT reporting capability associated with the UE.
  26. An apparatus for wireless communication, comprising:
    means for determining whether minimization of drive test (MDT) reporting for the apparatus is enabled; and
    means for selectively transmitting, to a base station (BS) and based at least in part on whether MDT reporting for the apparatus is enabled, an indication of an MDT reporting capability associated with the apparatus.
PCT/CN2019/091804 2019-06-19 2019-06-19 Configurable minimization of drive test reporting WO2020252674A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/091804 WO2020252674A1 (en) 2019-06-19 2019-06-19 Configurable minimization of drive test reporting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/091804 WO2020252674A1 (en) 2019-06-19 2019-06-19 Configurable minimization of drive test reporting

Publications (1)

Publication Number Publication Date
WO2020252674A1 true WO2020252674A1 (en) 2020-12-24

Family

ID=74037624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/091804 WO2020252674A1 (en) 2019-06-19 2019-06-19 Configurable minimization of drive test reporting

Country Status (1)

Country Link
WO (1) WO2020252674A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102448100A (en) * 2012-01-31 2012-05-09 电信科学技术研究院 Processing method and device for MDT (Minimization Drive Test) measurement
EP2541983A1 (en) * 2010-08-13 2013-01-02 Kyocera Corporation Wireless measurement collection method and wireless terminal
EP2713646A2 (en) * 2012-09-28 2014-04-02 Nokia Corporation Measurement configuration and reporting with diverse traffic
US20150208264A1 (en) * 2012-07-03 2015-07-23 Nokia Corporation Method and apparatus for adapting minimisation of drive testing reports to operational mode of user equipment using assistance information

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2541983A1 (en) * 2010-08-13 2013-01-02 Kyocera Corporation Wireless measurement collection method and wireless terminal
CN102448100A (en) * 2012-01-31 2012-05-09 电信科学技术研究院 Processing method and device for MDT (Minimization Drive Test) measurement
US20150208264A1 (en) * 2012-07-03 2015-07-23 Nokia Corporation Method and apparatus for adapting minimisation of drive testing reports to operational mode of user equipment using assistance information
EP2713646A2 (en) * 2012-09-28 2014-04-02 Nokia Corporation Measurement configuration and reporting with diverse traffic

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM EUROPE: "Reporting capability for MDT", 3GPP DRAFT; R2-096721, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, no. Jeju; 20091109, 9 November 2009 (2009-11-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP050391202 *

Similar Documents

Publication Publication Date Title
EP4022951A1 (en) Indicating a user equipment capability for cross-link interference measurement
EP3673684A1 (en) Techniques and apparatuses for mobile network searching in multiple radio access technologies
WO2019032303A1 (en) Techniques and apparatuses for 5th generation icon display for a shared base station
EP4038746B1 (en) Beam selection for communication in a multi-transmit-receive point deployment
CN112005517B (en) Determining quality of non-anchor carrier using Narrowband Reference Signal (NRS) bins in non-anchor carrier
EP3931990B1 (en) Methods and apparatuses for cross link interference measurement and reporting
EP3777401A1 (en) Radio link management under bandwidth part switching
WO2021087505A1 (en) Beam selection for communication in a multi-transmit-receive point deployment
EP3881476A1 (en) Quasi co-location relation configuration for periodic channel state information reference signals
EP3900251A1 (en) Multi-transmit receive point mode mixing
KR20200111186A (en) Techniques and apparatuses for measuring beam reference signals based at least in part on location information
EP3815451A1 (en) System information scheduling
WO2021026551A1 (en) Transmission configuration indicator determination for mixed mode operation
EP3984157A1 (en) Techniques for subband based resource allocation for nr-u
WO2020091907A1 (en) Reception of csi-rs based on qcl assumption in user equipments with mimimum capability on active tci states
EP4085663A1 (en) Continuous connection for a single frequency network
WO2020103010A1 (en) Configuring channel state information reference signal subband precoding resource block groups
WO2020033191A1 (en) Repetition configuration determination
WO2021077277A1 (en) Secondary cell dormancy using dormancy profile
WO2020258132A1 (en) Csi reporting for partial reciprocity
WO2020252674A1 (en) Configurable minimization of drive test reporting
WO2020061938A1 (en) Channel state information reporting
WO2021147118A1 (en) Complexity reduction for slot format determination
WO2020207289A1 (en) Sounding reference signal resource determination for physical uplink shared channel with configured grant
WO2021147061A1 (en) Switching carriers for multiple sounding reference signals per carrier

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19933960

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19933960

Country of ref document: EP

Kind code of ref document: A1