WO2020252622A1 - Physical uplink control channel (pucch) demodulation reference signal (dmrs) bundling - Google Patents

Physical uplink control channel (pucch) demodulation reference signal (dmrs) bundling Download PDF

Info

Publication number
WO2020252622A1
WO2020252622A1 PCT/CN2019/091515 CN2019091515W WO2020252622A1 WO 2020252622 A1 WO2020252622 A1 WO 2020252622A1 CN 2019091515 W CN2019091515 W CN 2019091515W WO 2020252622 A1 WO2020252622 A1 WO 2020252622A1
Authority
WO
WIPO (PCT)
Prior art keywords
dmrs
control channel
frame
transmission
bundling
Prior art date
Application number
PCT/CN2019/091515
Other languages
French (fr)
Inventor
Yuwei REN
Chao Wei
Huilin Xu
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2019/091515 priority Critical patent/WO2020252622A1/en
Priority to PCT/CN2020/093927 priority patent/WO2020253517A1/en
Publication of WO2020252622A1 publication Critical patent/WO2020252622A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0012Hopping in multicarrier systems

Definitions

  • aspects of the present disclosure relate to wireless communications, and more particularly, to techniques for demodulation reference signal (DMRS) bundling.
  • DMRS demodulation reference signal
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, broadcasts, etc. These wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, etc. ) .
  • available system resources e.g., bandwidth, transmit power, etc.
  • multiple-access systems examples include 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) systems, LTE Advanced (LTE-A) systems, code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems, to name a few.
  • 3GPP 3rd Generation Partnership Project
  • LTE Long Term Evolution
  • LTE-A LTE Advanced
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single-carrier frequency division multiple access
  • TD-SCDMA time division synchronous code division multiple access
  • New radio e.g., 5G NR
  • 5G NR is an example of an emerging telecommunication standard.
  • NR is a set of enhancements to the LTE mobile standard promulgated by 3GPP.
  • NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using OFDMA with a cyclic prefix (CP) on the downlink (DL) and on the uplink (UL) .
  • CP cyclic prefix
  • NR supports beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • MIMO multiple-input multiple-output
  • Certain aspects of the present disclosure are directed to a method for wireless communication.
  • the method generally includes generating a message configuring transmission of a first demodulation reference signal (DMRS) and a second DMRS of a frame for DMRS bundling, the first DMRS being multiplexed with a control channel of the frame, transmitting the message to a user-equipment (UE) , receiving the frame from the UE in accordance with the configuration, and demodulating the control channel of the frame by performing the DMRS bundling of the first DMRS and the second DMRS.
  • DMRS demodulation reference signal
  • UE user-equipment
  • Certain aspects of the present disclosure are directed to a method for wireless communication.
  • the method generally includes receiving, from a network entity, a message configuring transmission of a first demodulation reference signal (DMRS) and a second DMRS of a frame for DMRS bundling of the first DMRS and the second DMRS, the first DMRS being multiplexed with a control channel of the frame, generating the frame in accordance with the configuration, and transmitting the frame to the network entity.
  • DMRS demodulation reference signal
  • the apparatus generally includes a processing system configured to generate a message configuring transmission of a first demodulation reference signal (DMRS) and a second DMRS of a frame for DMRS bundling, the first DMRS being multiplexed with a control channel of the frame, a transmitter configured to transmit the message to a user-equipment (UE) , a receiver configured to receive the frame from the UE in accordance with the configuration, wherein the processing system is further configured to demodulate the control channel of the frame by performing the DMRS bundling of the first DMRS and the second DMRS.
  • DMRS demodulation reference signal
  • UE user-equipment
  • the apparatus generally includes a receiver configured to receive, from a network entity, a message configuring transmission of a first demodulation reference signal (DMRS) and a second DMRS of a frame for DMRS bundling of the first DMRS and the second DMRS, the first DMRS being multiplexed with a control channel of the frame, a processing system configured to generate the frame in accordance with the configuration, and a transmitter configured to transmit the frame to the network entity.
  • DMRS demodulation reference signal
  • the apparatus generally includes means for generating a message configuring transmission of a first demodulation reference signal (DMRS) and a second DMRS of a frame for DMRS bundling, the first DMRS being multiplexed with a control channel of the frame, means for transmitting the message to a user-equipment (UE) , means for receiving the frame from the UE in accordance with the configuration, and means for demodulating the control channel of the frame by performing the DMRS bundling of the first DMRS and the second DMRS.
  • DMRS demodulation reference signal
  • UE user-equipment
  • the apparatus generally includes means for receiving, from a network entity, a message configuring transmission of a first demodulation reference signal (DMRS) and a second DMRS of a frame for DMRS bundling of the first DMRS and the second DMRS, the first DMRS being multiplexed with a control channel of the frame, means for generating the frame in accordance with the configuration, and means for transmitting the frame to the network entity.
  • DMRS demodulation reference signal
  • Certain aspects of the present disclosure are directed to a computer-readable medium having instructions stored thereon to cause an apparatus to generate a message configuring transmission of a first demodulation reference signal (DMRS) and a second DMRS of a frame for DMRS bundling, the first DMRS being multiplexed with a control channel of the frame, transmit the message to a user-equipment (UE) , receive the frame from the UE in accordance with the configuration, and demodulate the control channel of the frame by performing the DMRS bundling of the first DMRS and the second DMRS.
  • DMRS demodulation reference signal
  • UE user-equipment
  • Certain aspects of the present disclosure are directed to a computer-readable medium having instructions stored thereon to cause an apparatus to receive, from a network entity, a message configuring transmission of a first demodulation reference signal (DMRS) and a second DMRS of a frame for DMRS bundling of the first DMRS and the second DMRS, the first DMRS being multiplexed with a control channel of the frame, generate the frame in accordance with the configuration, and transmit the frame to the network entity.
  • DMRS demodulation reference signal
  • the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims.
  • the following description and the appended drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed.
  • FIG. 1 is a block diagram conceptually illustrating an example telecommunications system, in accordance with certain aspects of the present disclosure.
  • FIG. 2 illustrates various formats for a physical uplink control channel (PUCCH) .
  • PUCCH physical uplink control channel
  • FIG. 3 illustrates an example frame having a slot with two PUCCH symbols in accordance with format 2.
  • FIGs. 4 and 5 illustrate example frames having slots, each including a PUCCH, according to format 3 with ten symbols.
  • FIG. 6 illustrates a frame configured with PUCCH inter-slot frequency hopping with repetition.
  • FIG. 7 is a flow diagram illustrating example operations for wireless communication, in accordance with certain aspects of the present disclosure.
  • FIG. 8 illustrates an example frame having a PUCCH and a PUCCH configured for demodulation reference signal (DMRS) bundling, in accordance with certain aspects of the present disclosure.
  • DMRS demodulation reference signal
  • FIG. 9 illustrates a frame with PUCCH transmissions with frequency hopping disabled, in accordance with certain aspects of the present disclosure.
  • FIGs. 10A and 10B illustrate example frames with PUCCH transmissions having a frequency allocation different of less than an ⁇ value, in accordance with certain aspects of the present disclosure.
  • FIG. 11 illustrates example frames with DMRS repetition for DMRS bundling, in accordance with certain aspects of the present disclosure.
  • FIGs. 12A, 12B are frames configured with periodic DMRS bundling, in accordance with certain aspects of the present disclosure.
  • FIG. 13 illustrates an example frame for bundling of DMRS across long and short format PUCCH transmissions, in accordance with certain aspects of the present disclosure.
  • FIG. 14 is a flow diagram illustrating example operations for wireless communication, in accordance with certain aspects of the present disclosure.
  • FIG. 15 illustrates a communications device that may include various components configured to perform operations for the techniques disclosed herein, in accordance with aspects of the present disclosure.
  • FIG. 16 illustrates a communications device that may include various components configured to perform operations for the techniques disclosed herein, in accordance with aspects of the present disclosure.
  • FIG. 17 is a block diagram conceptually illustrating a design of an example BS and UE, in accordance with certain aspects of the present disclosure.
  • aspects of the present disclosure provide apparatus, methods, processing systems, and computer readable mediums for demodulation reference signal (DMRS) bundling.
  • DMRS demodulation reference signal
  • FIG. 1 illustrates an example wireless communication network 100 in which aspects of the present disclosure may be performed for DMRS bundling.
  • the wireless communication network 100 may be an NR system (e.g., a 5G NR network) .
  • the wireless communication network 100 may include a number of base stations (BSs) 110a-z (each also individually referred to herein as BS 110 or collectively as BSs 110) and other network entities.
  • BSs base stations
  • a BS 110 also referred to herein as an eNodeB
  • the BSs 110 may be interconnected to one another and/or to one or more other base stations or network nodes (not shown) in wireless communication network 100 through various types of backhaul interfaces (e.g., a direct physical connection, a wireless connection, a virtual network, or the like) using any suitable transport network.
  • backhaul interfaces e.g., a direct physical connection, a wireless connection, a virtual network, or the like
  • the BSs 110a, 110b and 110c may be macro BSs for the macro cells 102a, 102b and 102c, respectively.
  • the BS 110x may be a pico BS for a pico cell 102x.
  • the BSs 110y and 110z may be femto BSs for the femto cells 102y and 102z, respectively.
  • a BS may support one or multiple cells.
  • the BSs 110 communicate with user equipment (UEs) 120a-y (each also individually referred to herein as UE 120 or collectively as UEs 120) in the wireless communication network 100.
  • the UEs 120 (e.g., 120x, 120y, etc. ) may be dispersed throughout the wireless communication network 100, and each UE 120 may be stationary or mobile.
  • a UE 120a in the wireless communication network 100 may be configured for transmission of DMRS to be bundled.
  • the UE 120a may have a DMRS bundling module 112 and the BS 110a may include a DMRS bundling module 113.
  • the DMRS bundling module 113 may send a message 190 configuring a frame 192 for transmission, the frame 192 including PUCCH transmissions having DMRS configured for DMRS bundling, as described in more detail herein.
  • Wireless communication network 100 may also include relay stations (e.g., relay station 110r) , also referred to as relays or the like, that receives a transmission of data and/or other information from an upstream station (e.g., a BS 110a or a UE 120r) and sends a transmission of the data and/or other information to a downstream station (e.g., a UE 120 or a BS 110) , or that relays transmissions between UEs 120, to facilitate communication between devices.
  • relay stations e.g., relay station 110r
  • relays or the like that receives a transmission of data and/or other information from an upstream station (e.g., a BS 110a or a UE 120r) and sends a transmission of the data and/or other information to a downstream station (e.g., a UE 120 or a BS 110) , or that relays transmissions between UEs 120, to facilitate communication between devices.
  • a network controller 130 may couple to a set of BSs 110 and provide coordination and control for these BSs 110.
  • the network controller 130 may communicate with the BSs 110 via a backhaul.
  • the BSs 110 may also communicate with one another (e.g., directly or indirectly) via wireless or wireline backhaul.
  • a solid line with double arrows indicates desired transmissions between a UE and a serving BS, which is a BS designated to serve the UE on the downlink and/or uplink.
  • a finely dashed line with double arrows indicates interfering transmissions between a UE and a BS.
  • PUCCH physical uplink control channel
  • UCI uplink control information
  • FIG. 2 is a table 200 illustrating various formats for a PUCCH.
  • formats 0 and 2 are short PUCCH formats (e.g., having 1 or 2 symbols)
  • format 1, 3, and 4 are long PUCCH formats (e.g., having 4-14 symbols)
  • UCI may include channel state information (CSI) , only acknowledgment (ACK) /negative acknowledgement (NACK) , only a scheduling request (SR) , or both SR and ACK/NACK, or CSI and ACK/NACK, as illustrated.
  • CSI channel state information
  • ACK acknowledgment
  • NACK negative acknowledgement
  • SR scheduling request
  • SR scheduling request
  • inter-slot frequency hopping may be enabled by the BS 110 when PUCCH is repeated over multiple slots.
  • the BS 110 may indicate the quantity of slots that are to include the same PUCCH for PUCCH repetition.
  • the UE may apply a value n1 which may be selected from values 2, 4, and 8.
  • the value n1 may correspond to an L1 parameter, such as a “PUCCH-F1-number-of-slots” parameter, “PUCCH-F3-number-of-slots” parameter and “PUCCH-F4-number-of-slots” parameter.
  • the UCI and DMRS symbols may be time-divisional multiplexed.
  • frequency hopping When frequency hopping is enabled, two DMRS symbols may be configured per hop of a PUCCH for formats 3 and 4 if both hops are greater than four symbols.
  • frequency hopping When frequency hopping is disabled, four DMRS symbols for PUCCH formats 3 or 4 may be enabled.
  • a “PUCCH-F3-F4-additional-DMRS” parameter may be set to configure additional DMRSs.
  • FIG. 3 illustrates an example frame having a slot 300 with two PUCCH symbols in accordance with format 2.
  • symbols 0-9 are allocated for downlink (labeled “D” )
  • symbols 10-11 are gap symbols (labeled “G” )
  • symbols 12-13 are for PUCCH (labeled “U” ) .
  • the PUCCH for format 2 may be a short PUCCH, as described herein. Therefore, DMRS may be frequency multiplexed with the short PUCCH.
  • the UL DMRS may be frequency duplexed with the UL UCI with 1/2 overhead (e.g., half of the frequency resources are allocated for DMRS) or 1/3 overhead (e.g., a third of the frequency resources are allocated for DMRS) , as illustrated.
  • 1/2 overhead e.g., half of the frequency resources are allocated for DMRS
  • 1/3 overhead e.g., a third of the frequency resources are allocated for DMRS
  • FIGs. 4 and 5 illustrate example frames having slots 400, 402, each including a PUCCH 408, 410, according to format 3 with ten symbols.
  • slot 400 includes ten symbols allocated for PUCCH 408, two of the symbols (e.g., symbols 6 and 11) being allocated for DMRS 404, 406 and eight of the symbols (e.g., symbols 4-5, 7-10, and 12-13) being allocated for UCI.
  • Slot 402 includes ten symbols allocated for PUCCH 410, four of the symbols (e.g., symbols 5, 7, 10, 12) being allocated for DMRS and six of the symbols being allocated for UCI (e.g., symbols 4, 6, 8, 9, 11, and 13) .
  • FIG. 6 illustrates a frame configured with PUCCH inter-slot frequency hopping with repetition.
  • each of the slots 602, 604 may include a PUCCH.
  • the PUCCH 606 in slot 604 may be a repeated version of the PUCCH 408 in slot 602 and transmitted using different frequency resources than PUCCH in slot 602.
  • NR long PUCCH format may include single or multiple DMRS.
  • Certain aspects of the present disclosure are generally directed to techniques for inter-slot frequency hopping and PUCCH repetition to enhance the performance of NR uplink communications.
  • PUCCH DMRS bundling may be implemented to enhance DMRS performance, in accordance with certain aspects of the present disclosure. DMRS bundling allows for improved channel estimation for UCI demodulation.
  • Certain aspects of the present disclosure are directed to techniques for DMRS bundling for a long PUCCH format. For instance, certain aspects of the present disclosure are directed to techniques for indicating a DMRS bundling procedure, techniques for DMRS bundling with inter-slot frequency hopping, techniques for DMRS bundling with symbol pairing in different slots, and techniques for repetition and non-repetition PUCCH DMRS bundling, as described in more detail herein.
  • FIG. 7 is a flow diagram illustrating example operations 700 for wireless communication, in accordance with certain aspects of the present disclosure.
  • the operations 700 may be performed, for example, by a BS (e.g., such as the BS 110a in the wireless communication network 100) .
  • a BS e.g., such as the BS 110a in the wireless communication network 100.
  • Operations 700 may be implemented as software components that are executed and run on one or more processors (e.g., controller/processor 1740 of FIG. 17) . Further, the transmission and reception of signals by the BS may be enabled, for example, by one or more antennas (e.g., antennas 1734 of FIG. 17) . In certain aspects, the transmission and/or reception of signals by the BS may be implemented via a bus interface of one or more processors (e.g., controller/processor 1740) obtaining and/or outputting signals.
  • processors e.g., controller/processor 1740 of FIG. 17
  • the transmission and reception of signals by the BS may be implemented via a bus interface of one or more processors (e.g., controller/processor 1740) obtaining and/or outputting signals.
  • the operations 700 may begin, at block 702, by generating a message (e.g., message 190) configuring transmission of a first DMRS and a second DMRS of a frame for DMRS bundling, the first DMRS being multiplexed with a control channel (e.g., PUCCH 408) of the frame.
  • the BS transmits the message to a UE, and at block 706, receives the frame (e.g., frame 192) from the UE in accordance with the configuration.
  • the BS 110 demodulates the control channel of the frame by performing the DMRS bundling of the first DMRS and the second DMRS.
  • the message 190 may include downlink control information (DCI) for configuring the transmission or a radio resource control (RRC) message for configuring the transmission.
  • the BS 110 may indicate the current slot (s) to be configured with PUCCH DMRS bundling using DCI or RRC messaging.
  • the BS may indicate the UE PUCCH bundling mode, which may be by indicating a periodicity T during which DMRS bundling is configured, by indicating a quantity of UL bundling slots to configure with DMRS bundling, or by indicating a time duration during which DMRS bundling is configured, as described in more detail herein.
  • the configuration for DMRS bundling may be implicit. For example, if PUCCH repetition is configured, the UE may set the DMRS bundling configuration in accordance with the PUCCH repetition configuration.
  • the message 190 may configure another control channel (e.g., PUCCH 606) .
  • the second DMRS may be multiplexed with the other control channel, as described in more detail with respect to FIG. 8.
  • FIG. 8 illustrates an example frame 800 having a PUCCH 408 and a PUCCH 606 configured for DMRS bundling, in accordance with certain aspects of the present disclosure.
  • PUCCH 408 is time-multiplexed with DMRS 404 and DMRS 406 for DMRS bundling.
  • the message 190 may indicate that inter-slot frequency hopping is to be disabled for transmission of the control channel (e.g., PUCCH 408) and another control channel.
  • the other control channel may be a repeated version of the PUCCH 408.
  • the first DMRS (e.g., DMRS 406) and the second DMRS (e.g., DMRS 808) to be bundled, as described with respect to FIG. 7, may be configured for transmission using the same frequency resources.
  • a frequency difference (e.g., also referred to herein as an ⁇ value) between frequency resources configured for transmission of the first DMRS and frequency resources configured for transmission of the second DMRS allows for the DMRS bundling of the first DMRS and the second DMRS, as described in more detail herein.
  • the ⁇ value may be preconfigured in a standard or the BS 110 may determine, for the control channel, the ⁇ value that allows for the DMRS bundling of the first DMRS and the second DMRS.
  • FIG. 9 illustrates a frame 900 with PUCCH transmissions with frequency hopping disabled, in accordance with certain aspects of the present disclosure.
  • n1 is equal to 4 (indicating the quantity of repeated PUCCH transmission, where n1 may be 2, 4, or 8)
  • the eNodeB configures PUCCH in slots for DMRS bundling with the same frequency location or with a frequency allocation difference less than the ⁇ value, as described in more detail herein.
  • the BS 110 may configure a one-time duration t, or an UL slot set, during which PUCCH repetition is configured and inter-slot frequency hopping is disabled.
  • the inter-slot frequency hopping may be restored for PUCCH repetition.
  • the PUCCH 408 and PUCCH 606 are within the duration t. Therefore, frequency hopping is disabled for PUCCH 408 and PUCCH 606, allowing DMRS bundling of DMRS 404 and DMRS 908, as well as DMRS bundling of DMRS 406 and DMRS 912.
  • the PUCCH 914 and the PUCCH 916 are after the conclusion of the duration t. Therefore, frequency hopping is activated for PUCCH 914 and PUCCH 916, as illustrated.
  • FIGs. 10A and 10B illustrate example frames 1000, 1002 with PUCCH transmissions having a frequency allocation different (also referred to as a frequency hopping difference) of less than an ⁇ value, in accordance with certain aspects of the present disclosure.
  • the frame 1000 may include a PUCCH 408 and a PUCCH 606 that may be a repeated version of the PUCCH 408.
  • the frequency allocation difference of the PUCCH 408 and the PUCCH 606 may be configured to be less than the ⁇ value.
  • the ⁇ value represents a frequency allocation difference that still allows PUCCH DMRS bundling of the DMRS transmissions multiplexed with the PUCCH 408 and the PUCCH 606. As illustrated in FIG.
  • the frame 1002 may include different PUCCH formats.
  • DMRS transmissions of the PUCCH 408 may be bundled with a DMRS of PUCCH 1008, as illustrated, so long as the frequency allocation difference of the PUCCH 408 and the PUCCH 1008 is less than the ⁇ value.
  • the ⁇ value may be zero, such that the frequency allocation of the PUUCH transmissions is the same.
  • FIG. 11 illustrates example frames 1100, 1102 with DMRS repetition for DMRS bundling, in accordance with certain aspects of the present disclosure.
  • the frame 1100 includes a PUCCH 408 and a PUCCH 1108 implemented with frequency hopping.
  • the frequency allocation difference between the PUCCH 408 and the PUCCH 1108 may be greater than the ⁇ value. Therefore, it may not be possible to bundle the DMRS of the PUCCH 408 with the DMRS of the PUCCH 1108.
  • PUCCH DMRS repetition may be included in the frame 1100 using the same frequency allocation as the PUCCH 408, allowing the DMRS of the PUCCH 408 to be bundled with the PUCCH DMRS repetitions.
  • the DMRS 404 may be bundled with the DMRS repetition 1110, and the DMRS 406 may be bundled with the DMRS repetition 1112, as illustrated.
  • the DMRS repetition 1110 may be allocated the same time resources as the DMRS 1122 and the DMRS repetition 1112 may be allocated the same time resources as the DMRS 1124.
  • the PUCCH 1108 may be a repeated version of the PUCCH 408.
  • the PUCCH formats may be different.
  • frame 1102 may include a PUCCH 1120 having a different format than the PUCCH 408.
  • the frame 1102 may include a DMRS repetition 1126 transmitted simultaneously with the DMRS 1128 and using the same frequency allocation as the PUCCH 408.
  • the DMRS 404 and the DMRS 406 may be bundled with the DMRS repetition 1126.
  • Frame 1104 may be implemented with DMRS repetition only.
  • the DMRS 1130 is not simultaneous with a PUCCH in a respective slot, contrary to the examples described with respect to frames 1100, 1102.
  • the DMRS described herein may be generated using the same precoding, or have their phases continuous in the time domain.
  • the UE may be configured to have the PUCCH DMRS transmissions to be quasi colocated (QCLed) .
  • the DMRS transmissions to be bundled may use QCL-TypeA or QCL-Type D.
  • the UE may use the same precoding or phase continuity in time domain, as described herein.
  • FIGs. 12A, 12B are frames 1200, 1202 configured with periodic DMRS bundling, in accordance with certain aspects of the present disclosure.
  • DMRS bundling is triggered, as described herein, specific resources may be configured for PUCCH DMRS transmission with periodicity T, as illustrated.
  • Periodicity T may be indicated by indicating the quantity of the UL bundling slots, or a time domain duration.
  • the periodicity T is timed from the beginning of the bundling trigged slot, as illustrated.
  • the DMRS bundling is active and the DMRS is repeated for bundling, as illustrated for frame 1200.
  • PUCCH DMRS bundling configuration may be effective in periodicity T, as illustrated for frame 1202.
  • PUCCH DMRS may be generated with the same bundling configuration during the periodicity T to allow for DMRS bundling, as described herein.
  • the first DMRS may be time-multiplexed with the control channel (e.g., a long format PUCCH)
  • the second DMRS may be frequency-multiplexed with another control channel (e.g., a short format PUCCH)
  • the control channel may be demodulated (e.g., as described with respect to block 708 of FIG. 7) by performing the DMRS bundling of a respective portion of the first DMRS transmitted using frequency resources allocated to the second DMRS, as described in more detail with respect to FIG. 13.
  • FIG. 13 illustrates an example frame 1300 for bundling of DMRS across long and short format PUCCH transmissions, in accordance with certain aspects of the present disclosure.
  • the PUCCH 408 is a long format PUCCH having DMRS 404 and DMRS 406.
  • the PUCCH 1302 is a short format PUCCH that is frequency multiplexed with DMRS, as described with respect to FIG. 3.
  • the bundling of the DMRS associated with the long and short format PUCCH transmissions may involve bundling a portion 1304 of the DMRS 406 with a respective one of the DMRS 1306 of the PUCCH 1302, as illustrated.
  • FIG. 14 is a flow diagram illustrating example operations 1400 for wireless communication, in accordance with certain aspects of the present disclosure.
  • the operations 1400 may be performed, for example, by UE (e.g., such as a UE 120 in the wireless communication network 100) .
  • the operations X00 may be complimentary operations by the UE to the operations 1400 performed by the BS.
  • Operations 1400 may be implemented as software components that are executed and run on one or more processors (e.g., controller/processor 1780 of FIG. 17) . Further, the transmission and reception of signals by the UE in operations 1400 may be enabled, for example, by one or more antennas (e.g., antennas 1752 of FIG. 17) . In certain aspects, the transmission and/or reception of signals by the UE may be implemented via a bus interface of one or more processors (e.g., controller/processor 1780) obtaining and/or outputting signals.
  • processors e.g., controller/processor 1780
  • the operations 1400 may begin, at block 1402, by receiving, from a network entity (e.g., BS 110) , a message (e.g., DCI or RRC message) configuring transmission of a first demodulation reference signal (DMRS) and a second DMRS of a frame for DMRS bundling of the first DMRS and the second DMRS, the first DMRS being multiplexed with a control channel (e.g., PUCCH 408) of the frame.
  • a control channel e.g., PUCCH 408
  • the message indicates a quantity of one or more slots of the frame to be used for the transmission of the first DMRS and the second DMRS for the DMRS bundling. In certain aspects, the message indicates a time period during which the first DMRS and the second DMRS are to be transmitted for the DMRS bundling.
  • the message further configures another control channel (e.g., PUCCH 606) of the frame, the second DMRS being multiplexed with the other control channel.
  • the message indicates that inter-slot frequency hopping is to be disabled for transmission of the control channel and the other the control channel.
  • the other control channel may be a repeated version of the control channel.
  • the first DMRS is time-multiplexed with the control channel
  • the second DMRS is frequency-multiplexed with the other control channel.
  • the first DMRS and the second DMRS are configured for transmission using the same frequency resources.
  • a frequency difference (e.g., represented by the ⁇ value) between frequency resources configured for transmission of the first DMRS and frequency resources configured for transmission of the second DMRS allows for the DMRS bundling of the first DMRS and the second DMRS.
  • the UE may receive, for the control channel, an indication of the frequency different that allows for the DMRS bundling of the first DMRS and the second DMRS.
  • the second DMRS is configured to be transmitted simultaneously with another control channel (e.g., PUCCH 1108) of the frame, the control channel and the other control channel being allocated different frequency resources, and frequency resources for transmission of the second DMRS (e.g., repeated DMRS 1110) corresponds to frequency resources for transmission of the first DMRS.
  • the frequency resources for transmission of the second DMRS are the same as the frequency resources for transmission of the first DMRS.
  • the other control channel is a repeated version of the control channel.
  • the message configures the first DMRS and the second DMRS to be transmitted based on the same QCL, to be transmitted with phase continuity in time domain, and/or to be transmitted based on the same precoding, as described herein.
  • FIG. 15 illustrates a communications device 1500 that may include various components (e.g., corresponding to means-plus-function components) configured to perform operations for the techniques disclosed herein, such as the operations illustrated in FIG. 3.
  • the communications device 1500 includes a processing system 1502 coupled to a transceiver 1508.
  • the transceiver 1508 is configured to transmit and receive signals for the communications device 1500 via an antenna 1510, such as the various signals as described herein.
  • the processing system 1502 may be configured to perform processing functions for the communications device 1500, including processing signals received and/or to be transmitted by the communications device 1500.
  • the processing system 1502 includes a processor 1504 coupled to a computer-readable medium/memory 1512 via a bus 1506.
  • the computer-readable medium/memory 1512 is configured to store instructions (e.g., computer executable code) that when executed by the processor 1504, cause the processor 1504 to perform the operations described herein.
  • computer- readable medium/memory 1512 stores code 1514 for receiving a message, code 1516 for generating a frame, and code 1518 for transmitting the frame, in accordance with aspects of the present disclosure.
  • the processor 1504 includes circuitry 1520 for receiving, circuitry 1522 for generating a frame, and circuitry 1524 for transmitting the frame, in accordance with aspects of the present disclosure.
  • FIG. 16 illustrates a communications device 1600 that may include various components (e.g., corresponding to means-plus-function components) configured to perform operations for the techniques disclosed herein, such as the operations illustrated in FIG. 4.
  • the communications device 1600 includes a processing system 1602 coupled to a transceiver 1608.
  • the transceiver 1608 is configured to transmit and receive signals for the communications device 1600 via an antenna 1610, such as the various signals as described herein.
  • the processing system 1602 may be configured to perform processing functions for the communications device 1600, including processing signals received and/or to be transmitted by the communications device 1600.
  • the processing system 1602 includes a processor 1604 coupled to a computer-readable medium/memory 1612 via a bus 1606.
  • the computer-readable medium/memory 1612 is configured to store instructions (e.g., computer executable code) that when executed by the processor 1604, cause the processor 1604 to perform the operations described herein.
  • computer-readable medium/memory 1612 stores code 1614 for generating; and code 1616 for transmitting, code 1618 for receiving, and code 1620 for demodulating, in accordance with aspects of the present disclosure.
  • the processor 1604 includes circuitry 1624 for generating, circuitry 1626 for transmitting, circuitry 1628 for receiving, and circuitry 1630 for demodulating, in accordance with aspects of the present disclosure.
  • the methods disclosed herein comprise one or more steps or actions for achieving the methods.
  • the method steps and/or actions may be interchanged with one another without departing from the scope of the claims.
  • the order and/or use of specific steps and/or actions may be modified without departing from the scope of the claims.
  • a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
  • determining encompasses a wide variety of actions. For example, “determining” may include calculating, computing, processing, deriving, investigating, looking up (e.g., looking up in a table, a database or another data structure) , ascertaining and the like. Also, “determining” may include receiving (e.g., receiving information) , accessing (e.g., accessing data in a memory) and the like. Also, “determining” may include resolving, selecting, choosing, establishing and the like.
  • any number of wireless networks may be deployed in a given geographic area.
  • Each wireless network may support a particular radio access technology (RAT) and may operate on one or more frequencies.
  • a RAT may also be referred to as a radio technology, an air interface, etc.
  • a frequency may also be referred to as a carrier, a subcarrier, a frequency channel, a tone, a subband, etc.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • NR or 5G RAT networks may be deployed.
  • the term “cell” can refer to a coverage area of a Node B (NB) and/or a NB subsystem serving this coverage area, depending on the context in which the term is used.
  • NB Node B
  • BS next generation NodeB
  • AP access point
  • DU distributed unit
  • TRP transmission reception point
  • a BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or other types of cells.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having an association with the femto cell (e.g., UEs in a Closed Subscriber Group (CSG) , UEs for users in the home, etc. ) .
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a pico cell may be referred to as a pico BS.
  • a BS for a femto cell may be referred to as a femto BS or a home BS.
  • a UE may also be referred to as a mobile station, a terminal, an access terminal, a subscriber unit, a station, a Customer Premises Equipment (CPE) , a cellular phone, a smart phone, a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet computer, a camera, a gaming device, a netbook, a smartbook, an ultrabook, an appliance, a medical device or medical equipment, a biometric sensor/device, a wearable device such as a smart watch, smart clothing, smart glasses, a smart wrist band, smart jewelry (e.g., a smart ring, a smart bracelet, etc.
  • CPE Customer Premises Equipment
  • PDA personal digital assistant
  • WLL wireless local loop
  • MTC machine-type communication
  • eMTC evolved MTC
  • MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, etc., that may communicate with a BS, another device (e.g., remote device) , or some other entity.
  • a wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link.
  • a network e.g., a wide area network such as Internet or a cellular network
  • Some UEs may be considered Internet-of-Things (IoT) devices, which may be narrowband IoT (NB-IoT) devices.
  • IoT Internet-of-Things
  • NB-IoT narrowband IoT
  • NR may utilize OFDM with a CP on the uplink and downlink and include support for half-duplex operation using TDD. Beamforming may be supported and beam direction may be dynamically configured. MIMO transmissions with precoding may also be supported. In some examples, MIMO configurations in the DL may support up to 8 transmit antennas with multi-layer DL transmissions up to 8 streams and up to 2 streams per UE. In some examples, multi-layer transmissions with up to 2 streams per UE may be supported. Aggregation of multiple cells may be supported with up to 8 serving cells. In NR, a subframe is still 1 ms, but the basic TTI is referred to as a slot.
  • a subframe contains a variable number of slots (e.g., 1, 2, 4, 8, 16, ...slots) depending on the subcarrier spacing.
  • the NR RB is 12 consecutive frequency subcarriers.
  • NR may support a base subcarrier spacing of 15 KHz and other subcarrier spacing may be defined with respect to the base subcarrier spacing, for example, 30 kHz, 60 kHz, 120 kHz, 240 kHz, etc.
  • the symbol and slot lengths scale with the subcarrier spacing.
  • the CP length also depends on the subcarrier spacing.
  • a scheduling entity (e.g., a BS) allocates resources for communication among some or all devices and equipment within its service area or cell.
  • the scheduling entity may be responsible for scheduling, assigning, reconfiguring, and releasing resources for one or more subordinate entities. That is, for scheduled communication, subordinate entities utilize resources allocated by the scheduling entity.
  • Base stations are not the only entities that may function as a scheduling entity.
  • a UE may function as a scheduling entity and may schedule resources for one or more subordinate entities (e.g., one or more other UEs) , and the other UEs may utilize the resources scheduled by the UE for wireless communication.
  • a UE may function as a scheduling entity in a peer-to-peer (P2P) network, and/or in a mesh network.
  • P2P peer-to-peer
  • UEs may communicate directly with one another in addition to communicating with a scheduling entity.
  • two or more subordinate entities may communicate with each other using sidelink signals.
  • Real-world applications of such sidelink communications may include public safety, proximity services, UE-to-network relaying, vehicle-to-vehicle (V2V) communications, Internet of Everything (IoE) communications, IoT communications, mission-critical mesh, and/or various other suitable applications.
  • a sidelink signal may refer to a signal communicated from one subordinate entity (e.g., UE1) to another subordinate entity (e.g., UE2) without relaying that communication through the scheduling entity (e.g., UE or BS) , even though the scheduling entity may be utilized for scheduling and/or control purposes.
  • the sidelink signals may be communicated using a licensed spectrum (unlike wireless local area networks, which typically use an unlicensed spectrum) .
  • FIG. 17 illustrates example components 1700 of BS 110a and UE 120a (as depicted in FIG. 1) , which may be used to implement aspects of the present disclosure.
  • antennas 1752, processors 1766, 1758, 1764, and/or controller/processor 1780 of the UE 120a and/or antennas 1734, processors 1720, 1760, 1738, and/or controller/processor 1740 of the BS 110a may be used to perform the various techniques and methods described herein.
  • a transmit processor 1720 may receive data from a data source 1712 and control information from a controller/processor 1740.
  • the control information may be for the physical broadcast channel (PBCH) , physical control format indicator channel (PCFICH) , physical hybrid ARQ indicator channel (PHICH) , physical downlink control channel (PDCCH) , group common PDCCH (GC PDCCH) , etc.
  • the data may be for the physical downlink shared channel (PDSCH) , etc.
  • the processor 1720 may process (e.g., encode and symbol map) the data and control information to obtain data symbols and control symbols, respectively.
  • the processor 1720 may also generate reference symbols, e.g., for the primary synchronization signal (PSS) , secondary synchronization signal (SSS) , and cell-specific reference signal (CRS) .
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 1730 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, and/or the reference symbols, if applicable, and may provide output symbol streams to the modulators (MODs) 1732a through 1732t. Each modulator 1732 may process a respective output symbol stream (e.g., for OFDM, etc. ) to obtain an output sample stream.
  • Each modulator may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal.
  • Downlink signals from modulators 1732a through 1732t may be transmitted via the antennas 1734a through 1734t, respectively.
  • the antennas 1752a through 1752r may receive the downlink signals from the BS 110a and may provide received signals to the demodulators (DEMODs) in transceivers 1754a through 1754r, respectively.
  • Each demodulator 1754 may condition (e.g., filter, amplify, downconvert, and digitize) a respective received signal to obtain input samples.
  • Each demodulator may further process the input samples (e.g., for OFDM, etc. ) to obtain received symbols.
  • a MIMO detector 1756 may obtain received symbols from all the demodulators 1754a through 1754r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive processor 1758 may process (e.g., demodulate, deinterleave, and decode) the detected symbols, provide decoded data for the UE 120a to a data sink 1760, and provide decoded control information to a controller/processor 1780.
  • a transmit processor 1764 may receive and process data (e.g., for the physical uplink shared channel (PUSCH) ) from a data source 1762 and control information (e.g., for the physical uplink control channel (PUCCH) from the controller/processor 1780.
  • the transmit processor 1764 may also generate reference symbols for a reference signal (e.g., for the sounding reference signal (SRS) ) .
  • the symbols from the transmit processor 1764 may be precoded by a TX MIMO processor 1766 if applicable, further processed by the demodulators in transceivers 1754a through 1754r (e.g., for SC-FDM, etc. ) , and transmitted to the BS 110a.
  • the uplink signals from the UE 120a may be received by the antennas 1734, processed by the modulators 1732, detected by a MIMO detector 1736 if applicable, and further processed by a receive processor 1738 to obtain decoded data and control information sent by the UE 120a.
  • the receive processor 1738 may provide the decoded data to a data sink 1739 and the decoded control information to the controller/processor 1740.
  • the controllers/processors 1740 and 1780 may direct the operation at the BS 110a and the UE 120a, respectively.
  • the processor 1740 and/or other processors and modules at the BS 110 may perform or direct the execution of processes for the techniques described herein.
  • the memories 1742 and 1782 may store data and program codes for BS 110a and UE 120a, respectively.
  • a scheduler 1744 may schedule UEs for data transmission on the downlink and/or uplink.
  • a UE 120a in the wireless communication network 100 may be configured for multiple services, such as URLLC and eMBB service.
  • the Controller/Processor 1780 of the UE 120a may have a DMRS bundling module 1781 and the BS 110a may include a DMRS bundling module 1741, for performing the DMRS bundling operations described herein.
  • the various operations of methods described above may be performed by any suitable means capable of performing the corresponding functions.
  • the means may include various hardware and/or software component (s) and/or module (s) , including, but not limited to a circuit, an application specific integrated circuit (ASIC) , or processor.
  • ASIC application specific integrated circuit
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • PLD programmable logic device
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any commercially available processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • an example hardware configuration may comprise a processing system in a wireless node.
  • the processing system may be implemented with a bus architecture.
  • the bus may include any number of interconnecting buses and bridges depending on the specific application of the processing system and the overall design constraints.
  • the bus may link together various circuits including a processor, machine-readable media, and a bus interface.
  • the bus interface may be used to connect a network adapter, among other things, to the processing system via the bus.
  • the network adapter may be used to implement the signal processing functions of the PHY layer.
  • a user interface e.g., keypad, display, mouse, joystick, etc.
  • a user interface e.g., keypad, display, mouse, joystick, etc.
  • the bus may also link various other circuits such as timing sources, peripherals, voltage regulators, power management circuits, and the like, which are well known in the art, and therefore, will not be described any further.
  • the processor may be implemented with one or more general-purpose and/or special-purpose processors. Examples include microprocessors, microcontrollers, DSP processors, and other circuitry that can execute software. Those skilled in the art will recognize how best to implement the described functionality for the processing system depending on the particular application and the overall design constraints imposed on the overall system.
  • the functions may be stored or transmitted over as one or more instructions or code on a computer readable medium.
  • Software shall be construed broadly to mean instructions, data, or any combination thereof, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • Computer-readable media include both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • the processor may be responsible for managing the bus and general processing, including the execution of software modules stored on the machine-readable storage media.
  • a computer-readable storage medium may be coupled to a processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor.
  • the machine-readable media may include a transmission line, a carrier wave modulated by data, and/or a computer readable storage medium with instructions stored thereon separate from the wireless node, all of which may be accessed by the processor through the bus interface.
  • the machine-readable media, or any portion thereof may be integrated into the processor, such as the case may be with cache and/or general register files.
  • machine-readable storage media may include, by way of example, RAM (Random Access Memory) , flash memory, ROM (Read Only Memory) , PROM (Programmable Read-Only Memory) , EPROM (Erasable Programmable Read-Only Memory) , EEPROM (Electrically Erasable Programmable Read-Only Memory) , registers, magnetic disks, optical disks, hard drives, or any other suitable storage medium, or any combination thereof.
  • RAM Random Access Memory
  • ROM Read Only Memory
  • PROM Programmable Read-Only Memory
  • EPROM Erasable Programmable Read-Only Memory
  • EEPROM Electrical Erasable Programmable Read-Only Memory
  • registers magnetic disks, optical disks, hard drives, or any other suitable storage medium, or any combination thereof.
  • the machine-readable media may be embodied in a computer-program product.
  • a software module may comprise a single instruction, or many instructions, and may be distributed over several different code segments, among different programs, and across multiple storage media.
  • the computer-readable media may comprise a number of software modules.
  • the software modules include instructions that, when executed by an apparatus such as a processor, cause the processing system to perform various functions.
  • the software modules may include a transmission module and a receiving module. Each software module may reside in a single storage device or be distributed across multiple storage devices.
  • a software module may be loaded into RAM from a hard drive when a triggering event occurs.
  • the processor may load some of the instructions into cache to increase access speed.
  • One or more cache lines may then be loaded into a general register file for execution by the processor.
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared (IR) , radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium.
  • Disk and disc include compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers.
  • computer-readable media may comprise non-transitory computer-readable media (e.g., tangible media) .
  • computer-readable media may comprise transitory computer-readable media (e.g., a signal) . Combinations of the above should also be included within the scope of computer-readable media.
  • certain aspects may comprise a computer program product for performing the operations presented herein.
  • a computer program product may comprise a computer-readable medium having instructions stored (and/or encoded) thereon, the instructions being executable by one or more processors to perform the operations described herein.
  • instructions for performing the operations described herein may comprise a computer-readable medium having instructions stored (and/or encoded) thereon, the instructions being executable by one or more processors to perform the operations described herein.
  • modules and/or other appropriate means for performing the methods and techniques described herein can be downloaded and/or otherwise obtained by a user terminal and/or base station as applicable.
  • a user terminal and/or base station can be coupled to a server to facilitate the transfer of means for performing the methods described herein.
  • various methods described herein can be provided via storage means (e.g., RAM, ROM, a physical storage medium such as a compact disc (CD) or floppy disk, etc. ) , such that a user terminal and/or base station can obtain the various methods upon coupling or providing the storage means to the device.
  • storage means e.g., RAM, ROM, a physical storage medium such as a compact disc (CD) or floppy disk, etc.
  • CD compact disc
  • floppy disk etc.
  • any other suitable technique for providing the methods and techniques described herein to a device can be utilized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Certain aspects of the present disclosure provide techniques for demodulation reference signal (DMRS) bundling. Certain aspects are directed to a method for wireless communication. The method generally includes generating a message configuring transmission of a first demodulation reference signal (DMRS) and a second DMRS of a frame for DMRS bundling, the first DMRS being multiplexed with a control channel of the frame, transmitting the message to a user-equipment (UE), receiving the frame from the UE in accordance with the configuration, and demodulating the control channel of the frame by performing the DMRS bundling of the first DMRS and the second DMRS.

Description

PHYSICAL UPLINK CONTROL CHANNEL (PUCCH) DEMODULATION REFERENCE SIGNAL (DMRS) BUNDLING BACKGROUND
Field of the Disclosure
Aspects of the present disclosure relate to wireless communications, and more particularly, to techniques for demodulation reference signal (DMRS) bundling.
Description of Related Art
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, broadcasts, etc. These wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, etc. ) . Examples of such multiple-access systems include 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) systems, LTE Advanced (LTE-A) systems, code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems, to name a few.
These multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different wireless devices to communicate on a municipal, national, regional, and even global level. New radio (e.g., 5G NR) is an example of an emerging telecommunication standard. NR is a set of enhancements to the LTE mobile standard promulgated by 3GPP. NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using OFDMA with a cyclic prefix (CP) on the downlink (DL) and on the uplink (UL) . To these ends, NR supports beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
However, as the demand for mobile broadband access continues to increase, there exists a need for further improvements in NR and LTE technology. Preferably, these improvements should be applicable to other multi-access technologies and the telecommunication standards that employ these technologies.
BRIEF SUMMARY
The systems, methods, and devices of the disclosure each have several aspects, no single one of which is solely responsible for its desirable attributes. Without limiting the scope of this disclosure as expressed by the claims which follow, some features will now be discussed briefly. After considering this discussion, and particularly after reading the section entitled “Detailed Description” one will understand how the features of this disclosure provide advantages that include improved communications between access points and stations in a wireless network.
Certain aspects of the present disclosure are directed to a method for wireless communication. The method generally includes generating a message configuring transmission of a first demodulation reference signal (DMRS) and a second DMRS of a frame for DMRS bundling, the first DMRS being multiplexed with a control channel of the frame, transmitting the message to a user-equipment (UE) , receiving the frame from the UE in accordance with the configuration, and demodulating the control channel of the frame by performing the DMRS bundling of the first DMRS and the second DMRS.
Certain aspects of the present disclosure are directed to a method for wireless communication. The method generally includes receiving, from a network entity, a message configuring transmission of a first demodulation reference signal (DMRS) and a second DMRS of a frame for DMRS bundling of the first DMRS and the second DMRS, the first DMRS being multiplexed with a control channel of the frame, generating the frame in accordance with the configuration, and transmitting the frame to the network entity.
Certain aspects of the present disclosure are directed to an apparatus for wireless communication. The apparatus generally includes a processing system configured to generate a message configuring transmission of a first demodulation reference signal (DMRS) and a second DMRS of a frame for DMRS bundling, the first DMRS being multiplexed with a control channel of the frame, a transmitter configured to transmit the message to a user-equipment (UE) , a receiver configured to receive the  frame from the UE in accordance with the configuration, wherein the processing system is further configured to demodulate the control channel of the frame by performing the DMRS bundling of the first DMRS and the second DMRS.
Certain aspects of the present disclosure are directed to an apparatus for wireless communication. The apparatus generally includes a receiver configured to receive, from a network entity, a message configuring transmission of a first demodulation reference signal (DMRS) and a second DMRS of a frame for DMRS bundling of the first DMRS and the second DMRS, the first DMRS being multiplexed with a control channel of the frame, a processing system configured to generate the frame in accordance with the configuration, and a transmitter configured to transmit the frame to the network entity.
Certain aspects of the present disclosure are directed to an apparatus for wireless communication. The apparatus generally includes means for generating a message configuring transmission of a first demodulation reference signal (DMRS) and a second DMRS of a frame for DMRS bundling, the first DMRS being multiplexed with a control channel of the frame, means for transmitting the message to a user-equipment (UE) , means for receiving the frame from the UE in accordance with the configuration, and means for demodulating the control channel of the frame by performing the DMRS bundling of the first DMRS and the second DMRS.
Certain aspects of the present disclosure are directed to an apparatus for wireless communication. The apparatus generally includes means for receiving, from a network entity, a message configuring transmission of a first demodulation reference signal (DMRS) and a second DMRS of a frame for DMRS bundling of the first DMRS and the second DMRS, the first DMRS being multiplexed with a control channel of the frame, means for generating the frame in accordance with the configuration, and means for transmitting the frame to the network entity.
Certain aspects of the present disclosure are directed to a computer-readable medium having instructions stored thereon to cause an apparatus to generate a message configuring transmission of a first demodulation reference signal (DMRS) and a second DMRS of a frame for DMRS bundling, the first DMRS being multiplexed with a control channel of the frame, transmit the message to a user-equipment (UE) , receive the frame from the UE in accordance with the configuration, and demodulate the control  channel of the frame by performing the DMRS bundling of the first DMRS and the second DMRS.
Certain aspects of the present disclosure are directed to a computer-readable medium having instructions stored thereon to cause an apparatus to receive, from a network entity, a message configuring transmission of a first demodulation reference signal (DMRS) and a second DMRS of a frame for DMRS bundling of the first DMRS and the second DMRS, the first DMRS being multiplexed with a control channel of the frame, generate the frame in accordance with the configuration, and transmit the frame to the network entity.
To the accomplishment of the foregoing and related ends, the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims. The following description and the appended drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed.
BRIEF DESCRIPTION OF THE DRAWINGS
So that the manner in which the above-recited features of the present disclosure can be understood in detail, a more particular description, briefly summarized above, may be had by reference to aspects, some of which are illustrated in the drawings. It is to be noted, however, that the appended drawings illustrate only certain typical aspects of this disclosure and are therefore not to be considered limiting of its scope, for the description may admit to other equally effective aspects.
FIG. 1 is a block diagram conceptually illustrating an example telecommunications system, in accordance with certain aspects of the present disclosure.
FIG. 2 illustrates various formats for a physical uplink control channel (PUCCH) .
FIG. 3 illustrates an example frame having a slot with two PUCCH symbols in accordance with format 2.
FIGs. 4 and 5 illustrate example frames having slots, each including a PUCCH, according to format 3 with ten symbols.
FIG. 6 illustrates a frame configured with PUCCH inter-slot frequency hopping with repetition.
FIG. 7 is a flow diagram illustrating example operations for wireless communication, in accordance with certain aspects of the present disclosure.
FIG. 8 illustrates an example frame having a PUCCH and a PUCCH configured for demodulation reference signal (DMRS) bundling, in accordance with certain aspects of the present disclosure.
FIG. 9 illustrates a frame with PUCCH transmissions with frequency hopping disabled, in accordance with certain aspects of the present disclosure.
FIGs. 10A and 10B illustrate example frames with PUCCH transmissions having a frequency allocation different of less than an α value, in accordance with certain aspects of the present disclosure.
FIG. 11 illustrates example frames with DMRS repetition for DMRS bundling, in accordance with certain aspects of the present disclosure.
FIGs. 12A, 12B are frames configured with periodic DMRS bundling, in accordance with certain aspects of the present disclosure.
FIG. 13 illustrates an example frame for bundling of DMRS across long and short format PUCCH transmissions, in accordance with certain aspects of the present disclosure.
FIG. 14 is a flow diagram illustrating example operations for wireless communication, in accordance with certain aspects of the present disclosure.
FIG. 15 illustrates a communications device that may include various components configured to perform operations for the techniques disclosed herein, in accordance with aspects of the present disclosure.
FIG. 16 illustrates a communications device that may include various components configured to perform operations for the techniques disclosed herein, in accordance with aspects of the present disclosure.
FIG. 17 is a block diagram conceptually illustrating a design of an example BS and UE, in accordance with certain aspects of the present disclosure.
To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures. It is contemplated that elements disclosed in one aspect may be beneficially utilized on other aspects without specific recitation.
DETAILED DESCRIPTION
Aspects of the present disclosure provide apparatus, methods, processing systems, and computer readable mediums for demodulation reference signal (DMRS) bundling.
The following description provides examples, and is not limiting of the scope, applicability, or examples set forth in the claims. Changes may be made in the function and arrangement of elements discussed without departing from the scope of the disclosure. Various examples may omit, substitute, or add various procedures or components as appropriate. For instance, the methods described may be performed in an order different from that described, and various steps may be added, omitted, or combined. Also, features described with respect to some examples may be combined in some other examples. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to, or other than, the various aspects of the disclosure set forth herein. It should be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim. The word “exemplary” is used herein to mean “serving as an example, instance, or illustration. ” Any aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects.
FIG. 1 illustrates an example wireless communication network 100 in which aspects of the present disclosure may be performed for DMRS bundling. In some examples, the wireless communication network 100 may be an NR system (e.g., a 5G NR network) .
As illustrated in FIG. 1, the wireless communication network 100 may include a number of base stations (BSs) 110a-z (each also individually referred to herein as BS 110 or collectively as BSs 110) and other network entities. A BS 110 (also referred to herein as an eNodeB) may provide communication coverage for a particular  geographic area, sometimes referred to as a “cell” , may be stationary or may move according to the location of a mobile BS 110. In some examples, the BSs 110 may be interconnected to one another and/or to one or more other base stations or network nodes (not shown) in wireless communication network 100 through various types of backhaul interfaces (e.g., a direct physical connection, a wireless connection, a virtual network, or the like) using any suitable transport network.
In the example shown in FIG. 1, the  BSs  110a, 110b and 110c may be macro BSs for the  macro cells  102a, 102b and 102c, respectively. The BS 110x may be a pico BS for a pico cell 102x. The BSs 110y and 110z may be femto BSs for the  femto cells  102y and 102z, respectively. A BS may support one or multiple cells. The BSs 110 communicate with user equipment (UEs) 120a-y (each also individually referred to herein as UE 120 or collectively as UEs 120) in the wireless communication network 100. The UEs 120 (e.g., 120x, 120y, etc. ) may be dispersed throughout the wireless communication network 100, and each UE 120 may be stationary or mobile.
UE 120a in the wireless communication network 100 may be configured for transmission of DMRS to be bundled. As shown in FIG. 1, the UE 120a may have a DMRS bundling module 112 and the BS 110a may include a DMRS bundling module 113. The DMRS bundling module 113 may send a message 190 configuring a frame 192 for transmission, the frame 192 including PUCCH transmissions having DMRS configured for DMRS bundling, as described in more detail herein.
Wireless communication network 100 may also include relay stations (e.g., relay station 110r) , also referred to as relays or the like, that receives a transmission of data and/or other information from an upstream station (e.g., a BS 110a or a UE 120r) and sends a transmission of the data and/or other information to a downstream station (e.g., a UE 120 or a BS 110) , or that relays transmissions between UEs 120, to facilitate communication between devices.
network controller 130 may couple to a set of BSs 110 and provide coordination and control for these BSs 110. The network controller 130 may communicate with the BSs 110 via a backhaul. The BSs 110 may also communicate with one another (e.g., directly or indirectly) via wireless or wireline backhaul. In FIG. 1, a solid line with double arrows indicates desired transmissions between a UE and a serving BS, which is a BS designated to serve the UE on the downlink and/or  uplink. A finely dashed line with double arrows indicates interfering transmissions between a UE and a BS.
With diverse low-tier use cases or full duplex scenarios with strong interference, a NR physical uplink control channel (PUCCH) DMRS enhancement is important to improve uplink (UL) communication performance. PUCCH DMRS bundling techniques involve bundling different DMRS transmissions with the same precoding configuration to enhance the UL channel estimation. PUCCH is an uplink physical channel that carries uplink control information (UCI) , as described in more detail herein.
FIG. 2 is a table 200 illustrating various formats for a PUCCH. As illustrated, formats 0 and 2 are short PUCCH formats (e.g., having 1 or 2 symbols) , and  format  1, 3, and 4 are long PUCCH formats (e.g., having 4-14 symbols) . Depending on the scenario, UCI may include channel state information (CSI) , only acknowledgment (ACK) /negative acknowledgement (NACK) , only a scheduling request (SR) , or both SR and ACK/NACK, or CSI and ACK/NACK, as illustrated.
For long PUCCH formats, inter-slot frequency hopping may be enabled by the BS 110 when PUCCH is repeated over multiple slots. Moreover, the BS 110 may indicate the quantity of slots that are to include the same PUCCH for PUCCH repetition. When the quanitity of slots is not indicated, the UE may apply a value n1 which may be selected from  values  2, 4, and 8. The value n1 may correspond to an L1 parameter, such as a “PUCCH-F1-number-of-slots” parameter, “PUCCH-F3-number-of-slots” parameter and “PUCCH-F4-number-of-slots” parameter. For long PUCCH formats, the UCI and DMRS symbols may be time-divisional multiplexed. When frequency hopping is enabled, two DMRS symbols may be configured per hop of a PUCCH for  formats  3 and 4 if both hops are greater than four symbols. When frequency hopping is disabled, four DMRS symbols for  PUCCH formats  3 or 4 may be enabled. For instance, a “PUCCH-F3-F4-additional-DMRS” parameter may be set to configure additional DMRSs.
FIG. 3 illustrates an example frame having a slot 300 with two PUCCH symbols in accordance with format 2. As illustrated, symbols 0-9 are allocated for downlink (labeled “D” ) , symbols 10-11 are gap symbols (labeled “G” ) , and symbols 12-13 are for PUCCH (labeled “U” ) . The PUCCH for format 2 may be a short PUCCH, as  described herein. Therefore, DMRS may be frequency multiplexed with the short PUCCH. For instance, as illustrated for symbol 302, the UL DMRS may be frequency duplexed with the UL UCI with 1/2 overhead (e.g., half of the frequency resources are allocated for DMRS) or 1/3 overhead (e.g., a third of the frequency resources are allocated for DMRS) , as illustrated.
FIGs. 4 and 5 illustrate example  frames having slots  400, 402, each including a  PUCCH  408, 410, according to format 3 with ten symbols. For instance, slot 400 includes ten symbols allocated for PUCCH 408, two of the symbols (e.g., symbols 6 and 11) being allocated for  DMRS  404, 406 and eight of the symbols (e.g., symbols 4-5, 7-10, and 12-13) being allocated for UCI. Slot 402 includes ten symbols allocated for PUCCH 410, four of the symbols (e.g.,  symbols  5, 7, 10, 12) being allocated for DMRS and six of the symbols being allocated for UCI (e.g.,  symbols  4, 6, 8, 9, 11, and 13) .
FIG. 6 illustrates a frame configured with PUCCH inter-slot frequency hopping with repetition. As illustrated, each of the  slots  602, 604 may include a PUCCH. The PUCCH 606 in slot 604 may be a repeated version of the PUCCH 408 in slot 602 and transmitted using different frequency resources than PUCCH in slot 602.
Currently, NR long PUCCH format may include single or multiple DMRS. Certain aspects of the present disclosure are generally directed to techniques for inter-slot frequency hopping and PUCCH repetition to enhance the performance of NR uplink communications. For a specific UE, whether PUCCH repetition is configured or not, PUCCH DMRS bundling may be implemented to enhance DMRS performance, in accordance with certain aspects of the present disclosure. DMRS bundling allows for improved channel estimation for UCI demodulation.
Certain aspects of the present disclosure are directed to techniques for DMRS bundling for a long PUCCH format. For instance, certain aspects of the present disclosure are directed to techniques for indicating a DMRS bundling procedure, techniques for DMRS bundling with inter-slot frequency hopping, techniques for DMRS bundling with symbol pairing in different slots, and techniques for repetition and non-repetition PUCCH DMRS bundling, as described in more detail herein.
FIG. 7 is a flow diagram illustrating example operations 700 for wireless communication, in accordance with certain aspects of the present disclosure. The  operations 700 may be performed, for example, by a BS (e.g., such as the BS 110a in the wireless communication network 100) .
Operations 700 may be implemented as software components that are executed and run on one or more processors (e.g., controller/processor 1740 of FIG. 17) . Further, the transmission and reception of signals by the BS may be enabled, for example, by one or more antennas (e.g., antennas 1734 of FIG. 17) . In certain aspects, the transmission and/or reception of signals by the BS may be implemented via a bus interface of one or more processors (e.g., controller/processor 1740) obtaining and/or outputting signals.
The operations 700 may begin, at block 702, by generating a message (e.g., message 190) configuring transmission of a first DMRS and a second DMRS of a frame for DMRS bundling, the first DMRS being multiplexed with a control channel (e.g., PUCCH 408) of the frame. At block 704, the BS transmits the message to a UE, and at block 706, receives the frame (e.g., frame 192) from the UE in accordance with the configuration. At block 708, the BS 110 demodulates the control channel of the frame by performing the DMRS bundling of the first DMRS and the second DMRS.
In certain aspects, the message 190 may include downlink control information (DCI) for configuring the transmission or a radio resource control (RRC) message for configuring the transmission. For example, the BS 110 may indicate the current slot (s) to be configured with PUCCH DMRS bundling using DCI or RRC messaging. The BS may indicate the UE PUCCH bundling mode, which may be by indicating a periodicity T during which DMRS bundling is configured, by indicating a quantity of UL bundling slots to configure with DMRS bundling, or by indicating a time duration during which DMRS bundling is configured, as described in more detail herein. In certain aspects, the configuration for DMRS bundling may be implicit. For example, if PUCCH repetition is configured, the UE may set the DMRS bundling configuration in accordance with the PUCCH repetition configuration.
In certain aspects, the message 190 may configure another control channel (e.g., PUCCH 606) . The second DMRS may be multiplexed with the other control channel, as described in more detail with respect to FIG. 8.
FIG. 8 illustrates an example frame 800 having a PUCCH 408 and a PUCCH 606 configured for DMRS bundling, in accordance with certain aspects of the  present disclosure. As illustrated, PUCCH 408 is time-multiplexed with DMRS 404 and DMRS 406 for DMRS bundling.
In some cases, the message 190 may indicate that inter-slot frequency hopping is to be disabled for transmission of the control channel (e.g., PUCCH 408) and another control channel. For example, the other control channel may be a repeated version of the PUCCH 408. In some cases, the first DMRS (e.g., DMRS 406) and the second DMRS (e.g., DMRS 808) to be bundled, as described with respect to FIG. 7, may be configured for transmission using the same frequency resources. In other cases, a frequency difference (e.g., also referred to herein as an α value) between frequency resources configured for transmission of the first DMRS and frequency resources configured for transmission of the second DMRS allows for the DMRS bundling of the first DMRS and the second DMRS, as described in more detail herein. In some cases, the α value may be preconfigured in a standard or the BS 110 may determine, for the control channel, the α value that allows for the DMRS bundling of the first DMRS and the second DMRS.
FIG. 9 illustrates a frame 900 with PUCCH transmissions with frequency hopping disabled, in accordance with certain aspects of the present disclosure. When n1 is equal to 4 (indicating the quantity of repeated PUCCH transmission, where n1 may be 2, 4, or 8) , there are 4 PUCCH repetitions, as illustrated. For inter-slot frequency hopping, the eNodeB configures PUCCH in slots for DMRS bundling with the same frequency location or with a frequency allocation difference less than the α value, as described in more detail herein. The BS 110 may configure a one-time duration t, or an UL slot set, during which PUCCH repetition is configured and inter-slot frequency hopping is disabled. When the duration t has concluded, the inter-slot frequency hopping may be restored for PUCCH repetition. For instance, the PUCCH 408 and PUCCH 606 are within the duration t. Therefore, frequency hopping is disabled for PUCCH 408 and PUCCH 606, allowing DMRS bundling of DMRS 404 and DMRS 908, as well as DMRS bundling of DMRS 406 and DMRS 912. The PUCCH 914 and the PUCCH 916 are after the conclusion of the duration t. Therefore, frequency hopping is activated for PUCCH 914 and PUCCH 916, as illustrated.
FIGs. 10A and 10B illustrate example frames 1000, 1002 with PUCCH transmissions having a frequency allocation different (also referred to as a frequency hopping difference) of less than an α value, in accordance with certain aspects of the  present disclosure. As illustrated in FIG. 10A, the frame 1000 may include a PUCCH 408 and a PUCCH 606 that may be a repeated version of the PUCCH 408. The frequency allocation difference of the PUCCH 408 and the PUCCH 606 may be configured to be less than the α value. The α value represents a frequency allocation difference that still allows PUCCH DMRS bundling of the DMRS transmissions multiplexed with the PUCCH 408 and the PUCCH 606. As illustrated in FIG. 10B, the frame 1002 may include different PUCCH formats. For example, DMRS transmissions of the PUCCH 408 may be bundled with a DMRS of PUCCH 1008, as illustrated, so long as the frequency allocation difference of the PUCCH 408 and the PUCCH 1008 is less than the α value. In certain aspects, the α value may be zero, such that the frequency allocation of the PUUCH transmissions is the same.
FIG. 11 illustrates example frames 1100, 1102 with DMRS repetition for DMRS bundling, in accordance with certain aspects of the present disclosure. As illustrated, the frame 1100 includes a PUCCH 408 and a PUCCH 1108 implemented with frequency hopping. For example, the frequency allocation difference between the PUCCH 408 and the PUCCH 1108 may be greater than the α value. Therefore, it may not be possible to bundle the DMRS of the PUCCH 408 with the DMRS of the PUCCH 1108. In certain aspects, PUCCH DMRS repetition may be included in the frame 1100 using the same frequency allocation as the PUCCH 408, allowing the DMRS of the PUCCH 408 to be bundled with the PUCCH DMRS repetitions. For instance, the DMRS 404 may be bundled with the DMRS repetition 1110, and the DMRS 406 may be bundled with the DMRS repetition 1112, as illustrated. The DMRS repetition 1110 may be allocated the same time resources as the DMRS 1122 and the DMRS repetition 1112 may be allocated the same time resources as the DMRS 1124. As illustrated, the PUCCH 1108 may be a repeated version of the PUCCH 408.
In certain aspects, the PUCCH formats may be different. For example, frame 1102 may include a PUCCH 1120 having a different format than the PUCCH 408. The frame 1102 may include a DMRS repetition 1126 transmitted simultaneously with the DMRS 1128 and using the same frequency allocation as the PUCCH 408. Thus, the DMRS 404 and the DMRS 406 may be bundled with the DMRS repetition 1126. Frame 1104 may be implemented with DMRS repetition only. In other words, the DMRS 1130 is not simultaneous with a PUCCH in a respective slot, contrary to the examples described with respect to  frames  1100, 1102.
To allow for DMRS bundling, the DMRS described herein may be generated using the same precoding, or have their phases continuous in the time domain. For example, the UE may be configured to have the PUCCH DMRS transmissions to be quasi colocated (QCLed) . In some cases, the DMRS transmissions to be bundled may use QCL-TypeA or QCL-Type D. In other cases, the UE may use the same precoding or phase continuity in time domain, as described herein.
FIGs. 12A, 12B are  frames  1200, 1202 configured with periodic DMRS bundling, in accordance with certain aspects of the present disclosure. If DMRS bundling is triggered, as described herein, specific resources may be configured for PUCCH DMRS transmission with periodicity T, as illustrated. Periodicity T may be indicated by indicating the quantity of the UL bundling slots, or a time domain duration. In certain aspects, the periodicity T is timed from the beginning of the bundling trigged slot, as illustrated. In certain aspects, during the periodicity T, the DMRS bundling is active and the DMRS is repeated for bundling, as illustrated for frame 1200. In other aspects, PUCCH DMRS bundling configuration may be effective in periodicity T, as illustrated for frame 1202. In other words, PUCCH DMRS may be generated with the same bundling configuration during the periodicity T to allow for DMRS bundling, as described herein.
Returning to the operations 700 described with respect to FIG. 7, the first DMRS may be time-multiplexed with the control channel (e.g., a long format PUCCH) , and the second DMRS may be frequency-multiplexed with another control channel (e.g., a short format PUCCH) . In this case, the control channel may be demodulated (e.g., as described with respect to block 708 of FIG. 7) by performing the DMRS bundling of a respective portion of the first DMRS transmitted using frequency resources allocated to the second DMRS, as described in more detail with respect to FIG. 13.
FIG. 13 illustrates an example frame 1300 for bundling of DMRS across long and short format PUCCH transmissions, in accordance with certain aspects of the present disclosure. As illustrated, the PUCCH 408 is a long format PUCCH having DMRS 404 and DMRS 406. The PUCCH 1302 is a short format PUCCH that is frequency multiplexed with DMRS, as described with respect to FIG. 3. The bundling of the DMRS associated with the long and short format PUCCH transmissions may  involve bundling a portion 1304 of the DMRS 406 with a respective one of the DMRS 1306 of the PUCCH 1302, as illustrated.
FIG. 14 is a flow diagram illustrating example operations 1400 for wireless communication, in accordance with certain aspects of the present disclosure. The operations 1400 may be performed, for example, by UE (e.g., such as a UE 120 in the wireless communication network 100) . The operations X00 may be complimentary operations by the UE to the operations 1400 performed by the BS.
Operations 1400 may be implemented as software components that are executed and run on one or more processors (e.g., controller/processor 1780 of FIG. 17) . Further, the transmission and reception of signals by the UE in operations 1400 may be enabled, for example, by one or more antennas (e.g., antennas 1752 of FIG. 17) . In certain aspects, the transmission and/or reception of signals by the UE may be implemented via a bus interface of one or more processors (e.g., controller/processor 1780) obtaining and/or outputting signals.
The operations 1400 may begin, at block 1402, by receiving, from a network entity (e.g., BS 110) , a message (e.g., DCI or RRC message) configuring transmission of a first demodulation reference signal (DMRS) and a second DMRS of a frame for DMRS bundling of the first DMRS and the second DMRS, the first DMRS being multiplexed with a control channel (e.g., PUCCH 408) of the frame. At block 1404, the UE generates the frame in accordance with the configuration, and at block 1406, transmits the frame to the network entity. In certain aspects, the message indicates a quantity of one or more slots of the frame to be used for the transmission of the first DMRS and the second DMRS for the DMRS bundling. In certain aspects, the message indicates a time period during which the first DMRS and the second DMRS are to be transmitted for the DMRS bundling.
In certain aspects, the message further configures another control channel (e.g., PUCCH 606) of the frame, the second DMRS being multiplexed with the other control channel. In certain aspects, the message indicates that inter-slot frequency hopping is to be disabled for transmission of the control channel and the other the control channel. The other control channel may be a repeated version of the control channel. In certain aspects, the first DMRS is time-multiplexed with the control channel, and the second DMRS is frequency-multiplexed with the other control channel.
In some cases, the first DMRS and the second DMRS are configured for transmission using the same frequency resources. In certain aspects, a frequency difference (e.g., represented by the α value) between frequency resources configured for transmission of the first DMRS and frequency resources configured for transmission of the second DMRS allows for the DMRS bundling of the first DMRS and the second DMRS. In some cases, the UE may receive, for the control channel, an indication of the frequency different that allows for the DMRS bundling of the first DMRS and the second DMRS.
In certain aspects, the second DMRS is configured to be transmitted simultaneously with another control channel (e.g., PUCCH 1108) of the frame, the control channel and the other control channel being allocated different frequency resources, and frequency resources for transmission of the second DMRS (e.g., repeated DMRS 1110) corresponds to frequency resources for transmission of the first DMRS. In some cases, the frequency resources for transmission of the second DMRS are the same as the frequency resources for transmission of the first DMRS. In certain aspects, the other control channel is a repeated version of the control channel. In some cases, the message configures the first DMRS and the second DMRS to be transmitted based on the same QCL, to be transmitted with phase continuity in time domain, and/or to be transmitted based on the same precoding, as described herein.
FIG. 15 illustrates a communications device 1500 that may include various components (e.g., corresponding to means-plus-function components) configured to perform operations for the techniques disclosed herein, such as the operations illustrated in FIG. 3. The communications device 1500 includes a processing system 1502 coupled to a transceiver 1508. The transceiver 1508 is configured to transmit and receive signals for the communications device 1500 via an antenna 1510, such as the various signals as described herein. The processing system 1502 may be configured to perform processing functions for the communications device 1500, including processing signals received and/or to be transmitted by the communications device 1500.
The processing system 1502 includes a processor 1504 coupled to a computer-readable medium/memory 1512 via a bus 1506. In certain aspects, the computer-readable medium/memory 1512 is configured to store instructions (e.g., computer executable code) that when executed by the processor 1504, cause the processor 1504 to perform the operations described herein. In certain aspects, computer- readable medium/memory 1512 stores code 1514 for receiving a message, code 1516 for generating a frame, and code 1518 for transmitting the frame, in accordance with aspects of the present disclosure. The processor 1504 includes circuitry 1520 for receiving, circuitry 1522 for generating a frame, and circuitry 1524 for transmitting the frame, in accordance with aspects of the present disclosure.
FIG. 16 illustrates a communications device 1600 that may include various components (e.g., corresponding to means-plus-function components) configured to perform operations for the techniques disclosed herein, such as the operations illustrated in FIG. 4. The communications device 1600 includes a processing system 1602 coupled to a transceiver 1608. The transceiver 1608 is configured to transmit and receive signals for the communications device 1600 via an antenna 1610, such as the various signals as described herein. The processing system 1602 may be configured to perform processing functions for the communications device 1600, including processing signals received and/or to be transmitted by the communications device 1600.
The processing system 1602 includes a processor 1604 coupled to a computer-readable medium/memory 1612 via a bus 1606. In certain aspects, the computer-readable medium/memory 1612 is configured to store instructions (e.g., computer executable code) that when executed by the processor 1604, cause the processor 1604 to perform the operations described herein. In certain aspects, computer-readable medium/memory 1612 stores code 1614 for generating; and code 1616 for transmitting, code 1618 for receiving, and code 1620 for demodulating, in accordance with aspects of the present disclosure. The processor 1604 includes circuitry 1624 for generating, circuitry 1626 for transmitting, circuitry 1628 for receiving, and circuitry 1630 for demodulating, in accordance with aspects of the present disclosure.
The methods disclosed herein comprise one or more steps or actions for achieving the methods. The method steps and/or actions may be interchanged with one another without departing from the scope of the claims. In other words, unless a specific order of steps or actions is specified, the order and/or use of specific steps and/or actions may be modified without departing from the scope of the claims.
As used herein, a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any  combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
As used herein, the term “determining” encompasses a wide variety of actions. For example, “determining” may include calculating, computing, processing, deriving, investigating, looking up (e.g., looking up in a table, a database or another data structure) , ascertaining and the like. Also, “determining” may include receiving (e.g., receiving information) , accessing (e.g., accessing data in a memory) and the like. Also, “determining” may include resolving, selecting, choosing, establishing and the like.
The techniques described herein may be used for the wireless networks and radio technologies mentioned above as well as other wireless networks and radio technologies. For clarity, while aspects may be described herein using terminology commonly associated with 3G, 4G, and/or 5G wireless technologies, aspects of the present disclosure can be applied in other generation-based communication systems.
In general, any number of wireless networks may be deployed in a given geographic area. Each wireless network may support a particular radio access technology (RAT) and may operate on one or more frequencies. A RAT may also be referred to as a radio technology, an air interface, etc. A frequency may also be referred to as a carrier, a subcarrier, a frequency channel, a tone, a subband, etc. Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs. In some cases, NR or 5G RAT networks may be deployed.
In 3GPP, the term “cell” can refer to a coverage area of a Node B (NB) and/or a NB subsystem serving this coverage area, depending on the context in which the term is used. In NR systems, the term “cell” and BS, next generation NodeB (gNB or gNodeB) , access point (AP) , distributed unit (DU) , carrier, or transmission reception point (TRP) may be used interchangeably. A BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or other types of cells. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription. A femto cell may cover a relatively small geographic area (e.g., a home)  and may allow restricted access by UEs having an association with the femto cell (e.g., UEs in a Closed Subscriber Group (CSG) , UEs for users in the home, etc. ) . A BS for a macro cell may be referred to as a macro BS. A BS for a pico cell may be referred to as a pico BS. A BS for a femto cell may be referred to as a femto BS or a home BS.
A UE may also be referred to as a mobile station, a terminal, an access terminal, a subscriber unit, a station, a Customer Premises Equipment (CPE) , a cellular phone, a smart phone, a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet computer, a camera, a gaming device, a netbook, a smartbook, an ultrabook, an appliance, a medical device or medical equipment, a biometric sensor/device, a wearable device such as a smart watch, smart clothing, smart glasses, a smart wrist band, smart jewelry (e.g., a smart ring, a smart bracelet, etc. ) , an entertainment device (e.g., a music device, a video device, a satellite radio, etc. ) , a vehicular component or sensor, a smart meter/sensor, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium. Some UEs may be considered machine-type communication (MTC) devices or evolved MTC (eMTC) devices. MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, etc., that may communicate with a BS, another device (e.g., remote device) , or some other entity. A wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link. Some UEs may be considered Internet-of-Things (IoT) devices, which may be narrowband IoT (NB-IoT) devices.
NR may utilize OFDM with a CP on the uplink and downlink and include support for half-duplex operation using TDD. Beamforming may be supported and beam direction may be dynamically configured. MIMO transmissions with precoding may also be supported. In some examples, MIMO configurations in the DL may support up to 8 transmit antennas with multi-layer DL transmissions up to 8 streams and up to 2 streams per UE. In some examples, multi-layer transmissions with up to 2 streams per UE may be supported. Aggregation of multiple cells may be supported with up to 8 serving cells. In NR, a subframe is still 1 ms, but the basic TTI is referred to as a slot. A subframe contains a variable number of slots (e.g., 1, 2, 4, 8, 16, …slots) depending on  the subcarrier spacing. The NR RB is 12 consecutive frequency subcarriers. NR may support a base subcarrier spacing of 15 KHz and other subcarrier spacing may be defined with respect to the base subcarrier spacing, for example, 30 kHz, 60 kHz, 120 kHz, 240 kHz, etc. The symbol and slot lengths scale with the subcarrier spacing. The CP length also depends on the subcarrier spacing.
In some examples, access to the air interface may be scheduled. A scheduling entity (e.g., a BS) allocates resources for communication among some or all devices and equipment within its service area or cell. The scheduling entity may be responsible for scheduling, assigning, reconfiguring, and releasing resources for one or more subordinate entities. That is, for scheduled communication, subordinate entities utilize resources allocated by the scheduling entity. Base stations are not the only entities that may function as a scheduling entity. In some examples, a UE may function as a scheduling entity and may schedule resources for one or more subordinate entities (e.g., one or more other UEs) , and the other UEs may utilize the resources scheduled by the UE for wireless communication. In some examples, a UE may function as a scheduling entity in a peer-to-peer (P2P) network, and/or in a mesh network. In a mesh network example, UEs may communicate directly with one another in addition to communicating with a scheduling entity.
In some examples, two or more subordinate entities (e.g., UEs) may communicate with each other using sidelink signals. Real-world applications of such sidelink communications may include public safety, proximity services, UE-to-network relaying, vehicle-to-vehicle (V2V) communications, Internet of Everything (IoE) communications, IoT communications, mission-critical mesh, and/or various other suitable applications. Generally, a sidelink signal may refer to a signal communicated from one subordinate entity (e.g., UE1) to another subordinate entity (e.g., UE2) without relaying that communication through the scheduling entity (e.g., UE or BS) , even though the scheduling entity may be utilized for scheduling and/or control purposes. In some examples, the sidelink signals may be communicated using a licensed spectrum (unlike wireless local area networks, which typically use an unlicensed spectrum) .
FIG. 17 illustrates example components 1700 of BS 110a and UE 120a (as depicted in FIG. 1) , which may be used to implement aspects of the present disclosure. For example, antennas 1752,  processors  1766, 1758, 1764, and/or controller/processor  1780 of the UE 120a and/or antennas 1734,  processors  1720, 1760, 1738, and/or controller/processor 1740 of the BS 110a may be used to perform the various techniques and methods described herein.
At the BS 110a, a transmit processor 1720 may receive data from a data source 1712 and control information from a controller/processor 1740. The control information may be for the physical broadcast channel (PBCH) , physical control format indicator channel (PCFICH) , physical hybrid ARQ indicator channel (PHICH) , physical downlink control channel (PDCCH) , group common PDCCH (GC PDCCH) , etc. The data may be for the physical downlink shared channel (PDSCH) , etc. The processor 1720 may process (e.g., encode and symbol map) the data and control information to obtain data symbols and control symbols, respectively. The processor 1720 may also generate reference symbols, e.g., for the primary synchronization signal (PSS) , secondary synchronization signal (SSS) , and cell-specific reference signal (CRS) . A transmit (TX) multiple-input multiple-output (MIMO) processor 1730 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, and/or the reference symbols, if applicable, and may provide output symbol streams to the modulators (MODs) 1732a through 1732t. Each modulator 1732 may process a respective output symbol stream (e.g., for OFDM, etc. ) to obtain an output sample stream. Each modulator may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. Downlink signals from modulators 1732a through 1732t may be transmitted via the antennas 1734a through 1734t, respectively.
At the UE 120a, the antennas 1752a through 1752r may receive the downlink signals from the BS 110a and may provide received signals to the demodulators (DEMODs) in transceivers 1754a through 1754r, respectively. Each demodulator 1754 may condition (e.g., filter, amplify, downconvert, and digitize) a respective received signal to obtain input samples. Each demodulator may further process the input samples (e.g., for OFDM, etc. ) to obtain received symbols. A MIMO detector 1756 may obtain received symbols from all the demodulators 1754a through 1754r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. A receive processor 1758 may process (e.g., demodulate, deinterleave, and decode) the detected symbols, provide decoded data for the UE 120a  to a data sink 1760, and provide decoded control information to a controller/processor 1780.
On the uplink, at UE 120a, a transmit processor 1764 may receive and process data (e.g., for the physical uplink shared channel (PUSCH) ) from a data source 1762 and control information (e.g., for the physical uplink control channel (PUCCH) from the controller/processor 1780. The transmit processor 1764 may also generate reference symbols for a reference signal (e.g., for the sounding reference signal (SRS) ) . The symbols from the transmit processor 1764 may be precoded by a TX MIMO processor 1766 if applicable, further processed by the demodulators in transceivers 1754a through 1754r (e.g., for SC-FDM, etc. ) , and transmitted to the BS 110a. At the BS 110a, the uplink signals from the UE 120a may be received by the antennas 1734, processed by the modulators 1732, detected by a MIMO detector 1736 if applicable, and further processed by a receive processor 1738 to obtain decoded data and control information sent by the UE 120a. The receive processor 1738 may provide the decoded data to a data sink 1739 and the decoded control information to the controller/processor 1740.
The controllers/ processors  1740 and 1780 may direct the operation at the BS 110a and the UE 120a, respectively. The processor 1740 and/or other processors and modules at the BS 110 may perform or direct the execution of processes for the techniques described herein. The  memories  1742 and 1782 may store data and program codes for BS 110a and UE 120a, respectively. A scheduler 1744 may schedule UEs for data transmission on the downlink and/or uplink. A UE 120a in the wireless communication network 100 may be configured for multiple services, such as URLLC and eMBB service. As shown in FIG. 17, the Controller/Processor 1780 of the UE 120a may have a DMRS bundling module 1781 and the BS 110a may include a DMRS bundling module 1741, for performing the DMRS bundling operations described herein.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but is to be accorded the full scope consistent with the language of the claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more. ”  Unless specifically stated otherwise, the term “some” refers to one or more. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed under the provisions of 35 U.S.C. §112 (f) unless the element is expressly recited using the phrase “means for” or, in the case of a method claim, the element is recited using the phrase “step for. ”
The various operations of methods described above may be performed by any suitable means capable of performing the corresponding functions. The means may include various hardware and/or software component (s) and/or module (s) , including, but not limited to a circuit, an application specific integrated circuit (ASIC) , or processor. Generally, where there are operations illustrated in figures, those operations may have corresponding counterpart means-plus-function components with similar numbering.
The various illustrative logical blocks, modules and circuits described in connection with the present disclosure may be implemented or performed with a general purpose processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device (PLD) , discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any commercially available processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
If implemented in hardware, an example hardware configuration may comprise a processing system in a wireless node. The processing system may be implemented with a bus architecture. The bus may include any number of interconnecting buses and bridges depending on the specific application of the processing system and the overall design constraints. The bus may link together various circuits including a processor, machine-readable media, and a bus interface. The bus  interface may be used to connect a network adapter, among other things, to the processing system via the bus. The network adapter may be used to implement the signal processing functions of the PHY layer. In the case of a user terminal 120 (see FIG. 1) , a user interface (e.g., keypad, display, mouse, joystick, etc. ) may also be connected to the bus. The bus may also link various other circuits such as timing sources, peripherals, voltage regulators, power management circuits, and the like, which are well known in the art, and therefore, will not be described any further. The processor may be implemented with one or more general-purpose and/or special-purpose processors. Examples include microprocessors, microcontrollers, DSP processors, and other circuitry that can execute software. Those skilled in the art will recognize how best to implement the described functionality for the processing system depending on the particular application and the overall design constraints imposed on the overall system.
If implemented in software, the functions may be stored or transmitted over as one or more instructions or code on a computer readable medium. Software shall be construed broadly to mean instructions, data, or any combination thereof, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise. Computer-readable media include both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. The processor may be responsible for managing the bus and general processing, including the execution of software modules stored on the machine-readable storage media. A computer-readable storage medium may be coupled to a processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. By way of example, the machine-readable media may include a transmission line, a carrier wave modulated by data, and/or a computer readable storage medium with instructions stored thereon separate from the wireless node, all of which may be accessed by the processor through the bus interface. Alternatively, or in addition, the machine-readable media, or any portion thereof, may be integrated into the processor, such as the case may be with cache and/or general register files. Examples of machine-readable storage media may include, by way of example, RAM (Random Access Memory) , flash memory, ROM (Read Only Memory) , PROM (Programmable Read-Only Memory) , EPROM (Erasable Programmable Read-Only Memory) , EEPROM  (Electrically Erasable Programmable Read-Only Memory) , registers, magnetic disks, optical disks, hard drives, or any other suitable storage medium, or any combination thereof. The machine-readable media may be embodied in a computer-program product.
A software module may comprise a single instruction, or many instructions, and may be distributed over several different code segments, among different programs, and across multiple storage media. The computer-readable media may comprise a number of software modules. The software modules include instructions that, when executed by an apparatus such as a processor, cause the processing system to perform various functions. The software modules may include a transmission module and a receiving module. Each software module may reside in a single storage device or be distributed across multiple storage devices. By way of example, a software module may be loaded into RAM from a hard drive when a triggering event occurs. During execution of the software module, the processor may load some of the instructions into cache to increase access speed. One or more cache lines may then be loaded into a general register file for execution by the processor. When referring to the functionality of a software module below, it will be understood that such functionality is implemented by the processor when executing instructions from that software module.
Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared (IR) , radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium. Disk and disc, as used herein, include compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and
Figure PCTCN2019091515-appb-000001
disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Thus, in some aspects computer-readable media may comprise non-transitory computer-readable media (e.g., tangible media) . In addition, for other aspects computer-readable media may comprise transitory computer-readable media (e.g., a signal) . Combinations of the above should also be included within the scope of computer-readable media.
Thus, certain aspects may comprise a computer program product for performing the operations presented herein. For example, such a computer program product may comprise a computer-readable medium having instructions stored (and/or  encoded) thereon, the instructions being executable by one or more processors to perform the operations described herein. For example, instructions for performing the operations described herein.
Further, it should be appreciated that modules and/or other appropriate means for performing the methods and techniques described herein can be downloaded and/or otherwise obtained by a user terminal and/or base station as applicable. For example, such a device can be coupled to a server to facilitate the transfer of means for performing the methods described herein. Alternatively, various methods described herein can be provided via storage means (e.g., RAM, ROM, a physical storage medium such as a compact disc (CD) or floppy disk, etc. ) , such that a user terminal and/or base station can obtain the various methods upon coupling or providing the storage means to the device. Moreover, any other suitable technique for providing the methods and techniques described herein to a device can be utilized.
It is to be understood that the claims are not limited to the precise configuration and components illustrated above. Various modifications, changes and variations may be made in the arrangement, operation and details of the methods and apparatus described above without departing from the scope of the claims.

Claims (40)

  1. A method for wireless communication, comprising:
    generating a message configuring transmission of a first demodulation reference signal (DMRS) and a second DMRS of a frame for DMRS bundling, the first DMRS being multiplexed with a control channel of the frame;
    transmitting the message to a user-equipment (UE) ;
    receiving the frame from the UE in accordance with the configuration; and
    demodulating the control channel of the frame by performing the DMRS bundling of the first DMRS and the second DMRS.
  2. The method of claim 1, wherein the message comprises downlink control information (DCI) for configuring the transmission or a radio resource control (RRC) message for configuring the transmission.
  3. The method of one of claims 1 or 2, wherein the message indicates a quantity of one or more slots of the frame to be used for the transmission of the first DMRS and the second DMRS for the DMRS bundling.
  4. The method of claim 1, wherein the message indicates a time period during which the first DMRS and the second DMRS are to be transmitted for the DMRS bundling.
  5. The method of one of claims 1, 2, 3, and 4, wherein the message further configures another control channel of the frame, the second DMRS being multiplexed with the other control channel.
  6. The method of claim 5, wherein the message indicates that inter-slot frequency hopping is to be disabled for transmission of the control channel and the other the control channel.
  7. The method of one of claims 5 and 6, wherein the other control channel comprises a repeated version of the control channel.
  8. The method of claim 5, wherein:
    the first DMRS is time-multiplexed with the control channel;
    the second DMRS is frequency-multiplexed with the other control channel; and
    the control channel is demodulated by performing the DMRS bundling of a respective portion of the first DMRS transmitted using frequency resources allocated to the second DMRS.
  9. The method of one of claims 1, 2, 3, 4, 5, 6, 7, and 8, wherein the first DMRS and the second DMRS are configured for transmission using the same frequency resources.
  10. The method of one of claims 1, 2, 3, 4, 5, 6, 7, and 8, wherein a frequency difference between frequency resources configured for transmission of the first DMRS and frequency resources configured for transmission of the second DMRS allows for the DMRS bundling of the first DMRS and the second DMRS.
  11. The method of claim 10, further comprising determining, for the control channel, the frequency different that allows for the DMRS bundling of the first DMRS and the second DMRS.
  12. The method of one of claims 1, 2, 3, and 4, wherein:
    the second DMRS is configured to be transmitted simultaneously with another control channel of the frame, the control channel and the other control channel being allocated different frequency resources; and
    frequency resources for transmission of the second DMRS corresponds to frequency resources for transmission of the first DMRS.
  13. The method of claim 12, wherein the frequency resources for transmission of the second DMRS are the same as the frequency resources for transmission of the first DMRS.
  14. The method of one of claim 12 and 13, wherein the other control channel is a repeated version of the control channel.
  15. The method of one of the previous claims, wherein the message configures the first DMRS and the second DMRS to be transmitted based on the same quasi-co location (QCL) .
  16. The method of one of the previous claims, wherein the message configures the first DMRS and the second DMRS to be transmitted with phase continuity in time domain.
  17. The method of one of the previous claims, wherein the message configures the first DMRS and the second DMRS to be transmitted based on the same precoding.
  18. A method for wireless communication, comprising:
    receiving, from a network entity, a message configuring transmission of a first demodulation reference signal (DMRS) and a second DMRS of a frame for DMRS bundling of the first DMRS and the second DMRS, the first DMRS being multiplexed with a control channel of the frame;
    generating the frame in accordance with the configuration; and
    transmitting the frame to the network entity.
  19. The method of claim 18, wherein the message comprises downlink control information (DCI) for configuring the transmission or a radio resource control (RRC) message for configuring the transmission.
  20. The method of one of claims 18 or 19, wherein the message indicates a quantity of one or more slots of the frame to be used for the transmission of the first DMRS and the second DMRS for the DMRS bundling.
  21. The method of claim 18, wherein the message indicates a time period during which the first DMRS and the second DMRS are to be transmitted for the DMRS bundling.
  22. The method of one of claims 18, 19, 20, and 21, wherein the message further configures another control channel of the frame, the second DMRS being multiplexed with the other control channel.
  23. The method of claim 22, wherein the message indicates that inter-slot frequency hopping is to be disabled for transmission of the control channel and the other the control channel.
  24. The method of one of claims 22 and 23, wherein the other control channel comprises a repeated version of the control channel.
  25. The method of claim 22, wherein:
    the first DMRS is time-multiplexed with the control channel; and
    the second DMRS is frequency-multiplexed with the other control channel.
  26. The method of one of claims 18, 19, 20, 21, 22, 23, 24, and 25, wherein the first DMRS and the second DMRS are configured for transmission using the same frequency resources.
  27. The method of one of claims 18, 19, 20, 21, 22, 23, 24, and 25, wherein a frequency difference between frequency resources configured for transmission of the first DMRS and frequency resources configured for transmission of the second DMRS allows for the DMRS bundling of the first DMRS and the second DMRS.
  28. The method of claim 27, further comprising receiving, for the control channel, an indication of the frequency different that allows for the DMRS bundling of the first DMRS and the second DMRS.
  29. The method of one of claims 18, 19, 20, and 21, wherein:
    the second DMRS is configured to be transmitted simultaneously with another control channel of the frame, the control channel and the other control channel being allocated different frequency resources; and
    frequency resources for transmission of the second DMRS corresponds to frequency resources for transmission of the first DMRS.
  30. The method of claim 29, wherein the frequency resources for transmission of the second DMRS are the same as the frequency resources for transmission of the first DMRS.
  31. The method of one of claim 29 and 30, wherein the other control channel is a repeated version of the control channel.
  32. The method of one of the previous claims, wherein the message configures the first DMRS and the second DMRS to be transmitted based on the same quasi-co location (QCL) .
  33. The method of one of the previous claims, wherein the message configures the first DMRS and the second DMRS to be transmitted with phase continuity in time domain.
  34. The method of one of the previous claims, wherein the message configures the first DMRS and the second DMRS to be transmitted based on the same precoding.
  35. An apparatus for wireless communication, comprising:
    a processing system configured to generate a message configuring transmission of a first demodulation reference signal (DMRS) and a second DMRS of a frame for DMRS bundling, the first DMRS being multiplexed with a control channel of the frame;
    a transmitter configured to transmit the message to a user-equipment (UE) ; and
    a receiver configured to receive the frame from the UE in accordance with the configuration, wherein the processing system is further configured to demodulate the control channel of the frame by performing the DMRS bundling of the first DMRS and the second DMRS.
  36. An apparatus for wireless communication, comprising:
    a receiver configured to receive, from a network entity, a message configuring transmission of a first demodulation reference signal (DMRS) and a second DMRS of a frame for DMRS bundling of the first DMRS and the second DMRS, the first DMRS being multiplexed with a control channel of the frame;
    a processing system configured to generate the frame in accordance with the configuration; and
    a transmitter configured to transmit the frame to the network entity.
  37. An apparatus for wireless communication, comprising:
    means for generating a message configuring transmission of a first demodulation reference signal (DMRS) and a second DMRS of a frame for DMRS bundling, the first DMRS being multiplexed with a control channel of the frame;
    means for transmitting the message to a user-equipment (UE) ;
    means for receiving the frame from the UE in accordance with the configuration; and
    means for demodulating the control channel of the frame by performing the DMRS bundling of the first DMRS and the second DMRS.
  38. An apparatus for wireless communication, comprising:
    means for receiving, from a network entity, a message configuring transmission of a first demodulation reference signal (DMRS) and a second DMRS of a frame for DMRS bundling of the first DMRS and the second DMRS, the first DMRS being multiplexed with a control channel of the frame;
    means for generating the frame in accordance with the configuration; and
    means for transmitting the frame to the network entity.
  39. A computer-readable medium having instructions stored thereon to cause an apparatus to:
    generate a message configuring transmission of a first demodulation reference signal (DMRS) and a second DMRS of a frame for DMRS bundling, the first DMRS being multiplexed with a control channel of the frame;
    transmit the message to a user-equipment (UE) ;
    receive the frame from the UE in accordance with the configuration; and
    demodulate the control channel of the frame by performing the DMRS bundling of the first DMRS and the second DMRS.
  40. A computer-readable medium having instructions stored thereon to cause an apparatus to:
    receive, from a network entity, a message configuring transmission of a first demodulation reference signal (DMRS) and a second DMRS of a frame for DMRS bundling of the first DMRS and the second DMRS, the first DMRS being multiplexed with a control channel of the frame;
    generate the frame in accordance with the configuration; and
    transmit the frame to the network entity.
PCT/CN2019/091515 2019-06-17 2019-06-17 Physical uplink control channel (pucch) demodulation reference signal (dmrs) bundling WO2020252622A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/091515 WO2020252622A1 (en) 2019-06-17 2019-06-17 Physical uplink control channel (pucch) demodulation reference signal (dmrs) bundling
PCT/CN2020/093927 WO2020253517A1 (en) 2019-06-17 2020-06-02 Physical uplink control channel (pucch) demodulation reference signal (dmrs) bundling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/091515 WO2020252622A1 (en) 2019-06-17 2019-06-17 Physical uplink control channel (pucch) demodulation reference signal (dmrs) bundling

Publications (1)

Publication Number Publication Date
WO2020252622A1 true WO2020252622A1 (en) 2020-12-24

Family

ID=74036884

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2019/091515 WO2020252622A1 (en) 2019-06-17 2019-06-17 Physical uplink control channel (pucch) demodulation reference signal (dmrs) bundling
PCT/CN2020/093927 WO2020253517A1 (en) 2019-06-17 2020-06-02 Physical uplink control channel (pucch) demodulation reference signal (dmrs) bundling

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/093927 WO2020253517A1 (en) 2019-06-17 2020-06-02 Physical uplink control channel (pucch) demodulation reference signal (dmrs) bundling

Country Status (1)

Country Link
WO (2) WO2020252622A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022056885A1 (en) * 2020-09-19 2022-03-24 华为技术有限公司 Communication method and apparatus
US11723021B2 (en) 2021-07-22 2023-08-08 Qualcomm Incorporated Techniques for demodulation reference signal bundling for configured uplink channels
EP4378100A1 (en) * 2021-07-29 2024-06-05 Sony Group Corporation Method for facilitating joint channel estimation at a transmission disruption
US11844068B2 (en) 2021-08-05 2023-12-12 Qualcomm Incorporated Techniques for dynamic indication of frequency hopping for physical uplink control channel and demodulation reference signal bundling of physical uplink control channel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107078874A (en) * 2014-09-24 2017-08-18 Lg 电子株式会社 The method and its device of reference signal are sent and received in wireless communication system
CN109511162A (en) * 2017-09-15 2019-03-22 株式会社Kt Device and method for controlling the transimission power of DMRS in new radio

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102384877B1 (en) * 2017-09-29 2022-04-08 삼성전자주식회사 Method and apparatus for transmission and reception of data information in wirelss communication system
US11071098B2 (en) * 2017-11-17 2021-07-20 Qualcomm Incorporated Techniques to jointly configure demodulation reference signals

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107078874A (en) * 2014-09-24 2017-08-18 Lg 电子株式会社 The method and its device of reference signal are sent and received in wireless communication system
CN109511162A (en) * 2017-09-15 2019-03-22 株式会社Kt Device and method for controlling the transimission power of DMRS in new radio

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Design of DMRS for DL/UL data transmission", 3GPP TSG RAN WG1 MEETING AH NR#3,R1-1715472, 21 September 2017 (2017-09-21), XP051338940, DOI: 2020030333 *

Also Published As

Publication number Publication date
WO2020253517A1 (en) 2020-12-24

Similar Documents

Publication Publication Date Title
WO2020253517A1 (en) Physical uplink control channel (pucch) demodulation reference signal (dmrs) bundling
US11063692B2 (en) Zero power (ZP) channel state information reference signal (CSI-RS) rate matching with slot aggregation
US11917605B2 (en) Multi-path diversity for uplink transmissions through sidelinks
EP4014415B1 (en) Feedback communication on a sidelink
WO2021088583A1 (en) Transmission configuration indicator state updates for multiple component carriers
US11540171B2 (en) Assisting communications of small data payloads with relay nodes
EP3957020A1 (en) Carrier aggregation capability framework
EP4274355A2 (en) Service request prioritizaton for intra-ue service multiplexing
US11552768B2 (en) Techniques for hybrid automatic repeat request (HARQ) processes for multiple carriers in different frequency ranges for carrier aggregation (CA)
US11757587B2 (en) Switch between coherent and non-coherent PUCCH transmissions
US11743886B2 (en) Downlink (DL) hybrid automatic request (HARQ) timing and uplink shared channel scheduling timing
WO2021146826A1 (en) Signaling aspects of aperiodic csi reporting triggered by a downlink grant
US20210007116A1 (en) Dynamically activated channel measurement resources for cross-carrier scheduling
WO2020221338A1 (en) Control channel demodulation reference signal bundling
US11509506B2 (en) Frequency hopping enhancements for SRS transmission
US11805499B2 (en) Increase diversity of slot aggregation using slot-specific cyclic delay diversity
US11622335B2 (en) Priority-based transmit power control
WO2021062878A1 (en) Narrowband transmissions with finer granularity of reserved resources

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19933485

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19933485

Country of ref document: EP

Kind code of ref document: A1