WO2020251051A1 - Prediction method, prediction device and prediction program - Google Patents

Prediction method, prediction device and prediction program Download PDF

Info

Publication number
WO2020251051A1
WO2020251051A1 PCT/JP2020/023317 JP2020023317W WO2020251051A1 WO 2020251051 A1 WO2020251051 A1 WO 2020251051A1 JP 2020023317 W JP2020023317 W JP 2020023317W WO 2020251051 A1 WO2020251051 A1 WO 2020251051A1
Authority
WO
WIPO (PCT)
Prior art keywords
prediction
genus
bacteria belonging
stool
bacteria
Prior art date
Application number
PCT/JP2020/023317
Other languages
French (fr)
Japanese (ja)
Inventor
拓司 山田
祐哉 中村
真也 鈴木
悠一郎 西本
真嗣 福田
Original Assignee
株式会社メタジェン
森下仁丹株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社メタジェン, 森下仁丹株式会社 filed Critical 株式会社メタジェン
Priority to JP2021526176A priority Critical patent/JP7411191B2/en
Publication of WO2020251051A1 publication Critical patent/WO2020251051A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/135Bacteria or derivatives thereof, e.g. probiotics
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • C12Q1/06Quantitative determination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids

Definitions

  • the present invention relates to a prediction method, a prediction device and a prediction program.
  • Non-Patent Document 1 The effects of diet on the digestive tract via these indigenous bacteria are both negative and positive.
  • Non-Patent Document 2 Examples of negative effects include the occurrence of impaired glucose tolerance due to changes in intestinal bacteria caused by excessive intake of artificial sweeteners (Non-Patent Document 2) and inflammatory effects due to excessive intake of emulsifiers (Non-Patent Document 2). Reference 3) and the like can be mentioned.
  • Non-Patent Document 4 Bifidobacterium is a typical probiotic that is frequently used because of its effective intestinal regulation and harmlessness to the human body (Non-Patent Document 5).
  • Bifidobacterium is used for both treatment and prevention of diseases, and in recent years, the molecular mechanism has been elucidated (Non-Patent Documents 6 to 8).
  • Non-Patent Document 9 Bacterial analysis of the stool of constipated patients based on the culture method has also confirmed that bifidobacteria increase and decrease, which is a microorganism of particular interest. However, a comprehensive analysis of the mechanism of action of Bifidobacterium on constipation has not been advanced so far.
  • Non-Patent Document 12 The relationship between changes in blood glucose levels with respect to the barley diet and the genus Prevotella in the intestinal flora has been suggested in clinical trials through metagenomic analysis, and the effect of improving glucose tolerance using mice has been experimentally verified.
  • Non-Patent Document 13 The relationship between changes in blood glucose levels with respect to the barley diet and the genus Prevotella in the intestinal flora has been suggested in clinical trials through metagenomic analysis, and the effect of improving glucose tolerance using mice has been experimentally verified.
  • Non-Patent Document 13 Furthermore, a metabolome analysis of blood was also performed, and it was reported that the insulin response to the diet was changed by the intestinal flora (Non-Patent Document 14).
  • Non-Patent Documents 15 and 16 Analysis of individual differences targeting intestinal bacteria was also performed for anticancer agents, and the effects of immune checkpoint inhibitors targeting PD-1 / PD-L1 were shown in Bifidobacterium longum, Collincella aerofaciens, and Enterococcus faecium. Alternatively, Akkermansia mucinifila was associated, and it was suggested that Bacteroides was associated with the inhibitory effect on CTLA-4 (Non-Patent Documents 17 to 19).
  • Non-Patent Document 20 By clarifying the pattern of intestinal environmental dynamics for external intervention using omics data, the elucidation of the mechanism of action can be advanced with higher accuracy and speed. In fact, in the case of the HIV therapeutic drug, it was experimentally clarified that the effect of the drug was reduced by focusing on some anaerobic bacteria existing in the bacterial flora in the vagina (Non-Patent Document 20).
  • Bifidobacterium bifidum MIMBb75 significantly alleviates irritable bowel syndrome and improves quality of life - a double-blind, placebo-controlled study, Alimentary Pharmacology & Therapeutics, 2011,33,10, p1123-1132 Fukuda S et al.
  • Bifidobacterium can project from enteropathogenic indication throughh production of acetate, Nature, 2011, 469, 7331, p543-547 Xiao JZ et al.
  • the present invention has been made in view of the above, and provides a prediction method, a prediction device, and a prediction program capable of predicting the effect of improving the intestinal environment or the effect of improving stool condition by ingesting Bifidobacterium longum.
  • the purpose is.
  • the prediction method according to the present invention belongs to the genus Serimonas, a bacterium belonging to the genus Cristensenera, a bacterium belonging to the genus Cristensenella, in a stool sample collected from a prediction target.
  • the prediction target based on at least one of the contents in the stool sample of a predetermined amount of at least one metabolite of N, N-dimethylglycine, butyric acid, asparagine and 3-hydroxybutyric acid in the sample. It is characterized by including a predictive step of making a prediction about the effect of improving the intestinal environment or the effect of improving the stool condition by ingesting Bifidobacterium longum.
  • the prediction step based on the relative abundance ratio and the content, for the prediction target, the effect of improving the intestinal environment by ingesting the bifidobacteria longum or the stool. It is characterized by making predictions about the effect of improving the condition.
  • the prediction method according to the present invention is characterized in that, in the prediction step, it is predicted whether or not there is the improvement effect.
  • the prediction method according to the present invention is characterized in that the improvement of the stool condition is the improvement of bowel movement.
  • the prediction method according to the present invention is characterized in that the improvement of the bowel movement is an increase in the frequency of bowel movements.
  • the prediction method according to the present invention is characterized in that the prediction step is executed in the control unit of the information processing device including the control unit.
  • the prediction device is a prediction device including a control unit, and the control unit is a bacterium belonging to the genus Cristensenera, a bacterium belonging to the genus Celimonas, in a stool sample collected from a prediction target.
  • Bacteria belonging to the genus Bacteria belonging to the genus, bacteria belonging to the genus Parabacteroides, bacteria belonging to the genus Elyspirotrics, bacteria belonging to the genus Clostridium XIII AD3011, bacteria belonging to the genus Lacnospira UCG-001, bacteria belonging to the genus Lacnospira UCG-003, genus Faecalitalea Relative abundance of at least one of the bacteria belonging to the genus Aristipes, the bacterium belonging to the genus Anaerostipes, the bacterium belonging to the genus Luminococcus 1 and the bacterium belonging to the genus Luminococcus 2 in the stool sample And based on at least one of the contents in the stool sample of a predetermined amount of at least one of the metabolites of N, N-dimethylglycine, butyric acid, asparagine and 3-hydroxybutyric acid in the stool sample. It is characterized in that the prediction target is provided
  • the prediction program according to the present invention is a prediction program to be executed in an information processing apparatus provided with a control unit, and is a bacterium in a stool sample collected from a prediction target to be executed by the control unit.
  • bacteria belonging to the genus Kristensenera bacteria belonging to the genus Serimonas, bacteria belonging to the genus Parabacteroides, bacteria belonging to the genus Elyspirotrics, bacteria belonging to the genus Clostridium XIII AD3011, bacteria belonging to the genus Lakunospyra UCG-001, lacnospira
  • the bacterium belonging to the genus Faecalitalea the bacterium belonging to the genus Aristipes
  • the bacterium belonging to the genus Anaerotipes the bacterium belonging to the genus Luminococcus 1 and the bacterium belonging to the genus Luminococcus Relative
  • the present invention it is possible to predict the effect of improving the intestinal environment or the effect of improving the stool condition by ingesting Bifidobacterium longum.
  • FIG. 1 is a principle configuration diagram showing the basic principle of the present embodiment.
  • FIG. 2 is a diagram showing an example of the configuration of the prediction device 100.
  • FIG. 3 is a diagram showing a cohort design of the first embodiment.
  • FIG. 4 is a diagram showing details of the breakdown of 20 persons selected for analysis in Example 1.
  • FIG. 5 is a diagram showing a test design of Example 1.
  • FIG. 6 is a bar graph showing the number of defecations per day of 20 subjects (MO01 to MO06, MO08 to MO13, MO15 to MO19, and MO22 to MO24) in Example 1.
  • FIG. 7 is a table showing the results of model comparison based on the information criterion (WAIC) in Example 1.
  • FIG. 1 is a principle configuration diagram showing the basic principle of the present embodiment.
  • FIG. 2 is a diagram showing an example of the configuration of the prediction device 100.
  • FIG. 3 is a diagram showing a cohort design of the first embodiment.
  • FIG. 4 is a diagram showing details of
  • FIG. 8 is a table showing the results of calculating the posterior mean value and the Bayesian confidence interval from the posterior distribution of the intake effect using the model No. 5 in which the best WAIC was obtained in Example 1.
  • FIG. 9 is a graph showing the results of confirming the effect of ingesting the test meal in Example 1 from the probability density function of the Weibull distribution using the posterior mean value and the histogram of the actual defecation time.
  • FIG. 10 is a diagram showing a heat map of the relative abundance ratio of intestinal bacteria of each subject, top 50 genus, at each time point of stool sample collection in Example 1.
  • FIG. 11 is a diagram showing the relative abundance ratio of intestinal bacteria for each subject and for each time point in Example 1.
  • FIG. 12 is a diagram showing the relative abundance ratio of intestinal bacteria for each subject and for each time point in Example 1.
  • FIG. 13 is a diagram showing a plot (using the same color for each subject) by multidimensional scaling using the calculated beta diversity for intestinal flora composition in Example 1.
  • FIG. 14 is a diagram showing a plot (using the same color for each time point) by multidimensional scaling using the calculated beta diversity for intestinal flora composition in Example 1.
  • FIG. 15 is a table showing the results of comparing changes in the intestinal flora between the test diet intake group, the control diet intake group, and the normal group in Example 1 using the Wilcoxon-Mann-Whitney Test. .. FIG.
  • FIG. 16 shows a boxplot showing the relative abundance ratio of Bifidobacterium longum in the whole subject at each time point in Example 1, and the relative abundance ratio of Bifidobacterium longum for each subject. It is a line graph which shows.
  • FIG. 17 is a diagram showing a heat map of the stool content top 50 genus of metabolites of each subject at each time point of stool sample collection in Example 1.
  • FIG. 18 is a diagram showing a plot (using the same color for each subject) by multidimensional scaling using the calculated beta diversity for metabolite composition in Example 1.
  • FIG. 19 is a diagram showing a plot (using the same color for each time point) by multidimensional scaling using the calculated beta diversity for metabolite composition in Example 1.
  • FIG. 17 is a diagram showing a heat map of the stool content top 50 genus of metabolites of each subject at each time point of stool sample collection in Example 1.
  • FIG. 18 is a diagram showing a plot (using the same color for each subject) by multidimensional scaling using the
  • FIG. 20 is a scatter plot of the responder's Fold Change to the non-responder for enterobacteria and metabolites in Example 1.
  • FIG. 21 is a graph showing the relative abundance ratio of each group for Ruminococcus 2 genus, Erysipelotrichaceae_UCG-003 and Eubacterium rectal in Example 1.
  • FIG. 22 is a graph showing the stool content of each group for 3-hydroxybutyric acid, asparagine and N, N-dimethylglycine in Example 1.
  • FIG. 23 is a flowchart showing the flow of responder prediction by the machine learning method in the second embodiment.
  • FIG. 24 is a ROC curve showing the result when the responder is predicted by the machine learning method in the second embodiment.
  • FIG. 25 is a table showing the results of the responder prediction by the machine learning method in Example 2.
  • FIG. 26 is a graph showing the results of extracting the features that contribute to the responder prediction in Example 2.
  • FIG. 1 is a principle configuration diagram showing the basic principle of the present embodiment.
  • the relative abundance ratio of bacteria in the stool sample collected from the prediction target for example, an individual such as an animal or a human
  • the content of a predetermined amount of metabolites in the stool sample in the stool sample is acquired (step SA1: acquisition step in FIG. 1).
  • step SA1 when the prediction target is a person, for example, a person having a bad or bad intestinal environment is preferable.
  • the person having a bad or bad intestinal environment is, for example, a person with constipation.
  • the constipated person is, for example, a person who defecates about 3 to 5 times a week.
  • the prediction target is not limited to the examples in this paragraph, and may be, for example, a person whose intestinal environment is not bad or a person who is good.
  • the bacterium is, for example, a bacterium belonging to the genus Cellimonas, a bacterium belonging to the genus Tyzserella 3, a bacterium belonging to the genus Luminococcus 2, a bacterium belonging to the genus Peptoniphilus, a bacterium belonging to the genus uncultarect.
  • Bacteria belonging to the genus Crostridium XIII AD3011 (Family_XIII_AD3011_group), Bacteria belonging to the genus Erycipelotrichaceae_UCG-003, Bacteria belonging to the genus Lacnospira UCG-001 (Lachnospiraceae_UCG- Bacteria, Bacteria belonging to the genus Parasuterella, Bacteria belonging to the genus Alitipes, Bacteria belonging to the genus Parabacteroides, Bacteria belonging to the genus Luminococcus 1, Bacteria belonging to the genus Anaerostipes Bacteria belonging to and at least one bacterium in the Christensenella seae-T7_group (Christensenellaceae-T7_group).
  • the relative abundance ratio is calculated by, for example, amplifying the 16S rRNA gene region of DNA (Deoxyribo Nucleic acid) extracted from the stool sample by PCR (Polymerase Chain Reaction) and performing sequencing by a next-generation sequencer. can do.
  • the sequencing when the total amount of DNA is 4, the amount of DNA of the genus Kristensenera is 3, and the amount of DNA of the genus Anaerostipes is 1, the relative abundance ratio of the genus Kristensenera is It is 0.75, and the relative abundance ratio of the genus Anaerostipes is 0.25.
  • the content can be calculated, for example, by performing a metabolome analysis on the stool sample using CE-TOFMS (capillary electrophoresis-time-of-flight mass spectrometer).
  • CE-TOFMS capillary electrophoresis-time-of-flight mass spectrometer
  • the metabolite is, for example, at least one metabolite of N, N-dimethylglycine (N, N-Dimethylglycine), butyric acid (Butyric_acid), asparagine (Asn) and 3-hydroxybutyric acid (3-Hydroxybutyric_acid). ..
  • step SA1 based on at least one of the relative abundance ratio and the content obtained in step SA1, the effect of improving the intestinal environment or the effect of improving the stool condition by ingesting Bifidobacterium longum for the predicted target.
  • step SA2 in FIG. 1 prediction step
  • the improvement means that, for example, when the prediction target ingests Bifidobacterium longum, the intestinal environment or stool condition of the prediction target changes to a better one. That is, the improvement may mean that the intestinal environment or stool condition of a person who has poor or poor intestinal environment or stool condition is improved, or the intestinal environment or stool condition is not bad or is not bad. It may be that the intestinal environment or stool condition of a good person is further improved.
  • the improvement effect may be quantified and predicted, or whether or not the improvement effect is present may be predicted.
  • the latter prediction may be a multi-step prediction according to the degree of the improvement effect, or may be an alternative prediction of whether or not the improvement effect is present.
  • the intestinal environment is, for example, the relative abundance ratio of bacteria existing in the intestine and the content of the compound. It is known that certain bacteria and certain metabolites have harmful effects on the human body. Therefore, in step SA2, the prediction of the effect of improving the intestinal environment is the prediction of the behavior of a specific bacterium and a specific metabolite in the intestine to be predicted by ingesting Bifidobacterium longum. It may be.
  • the improvement of the stool condition is, for example, improvement of bowel movement, improvement of the condition of the stool itself, and the like.
  • the improvement of bowel movement may be an increase in the frequency of bowel movements or an increase in the number of bowel movements.
  • the prediction of the increase in stool frequency when the increase in stool frequency is predicted by the multi-step prediction, the stool frequency increases remarkably when the prediction target ingests Bifidobacterium longum. There is a method of predicting whether the stool frequency will increase but not significantly, or whether the stool frequency will not increase.
  • the increase in stool frequency is predicted by the alternative prediction, the stool is predicted by ingesting Bifidobacterium longum.
  • One method is to predict whether the frequency will increase, whether it is significant or not, or whether the frequency of stools will not increase.
  • step SA2 the prediction is preferably made based on the relative abundance ratio and the content. Thereby, for example, more accurate prediction can be performed.
  • the prediction step of step SA2 may be executed in the control unit of the information processing device including the control unit.
  • threshold value cutoff value used in the prediction will be described by taking the case of predicting the increase in the frequency of flights as an example.
  • the cutoff value may be, for example, the relative abundance ratio or the stool content for discriminating between a group in which the stool frequency increases and a group in which the stool frequency does not increase due to ingestion of Bifidobacterium longum.
  • the cutoff value can be obtained, for example, by performing ROC analysis on the relationship between sensitivity and false positive rate (1-specificity).
  • the sensitivity is, for example, the ratio at which the prediction target, which is the group in which the true state is increased, is correctly predicted to be the group in which the true state is increased.
  • the specificity is a rate at which the prediction target, which is a group whose true state does not increase, is correctly predicted to be a group which does not increase.
  • the values of the sensitivity and the false positive rate when the cutoff value is continuously changed are obtained.
  • the values of the obtained sensitivity and false positive rate are plotted on a graph in which the vertical axis (Y axis) is the sensitivity and the horizontal axis (X axis) is the false positive rate, and among the plotted points. Therefore, the combination of the sensitivity and the specificity is determined so that (1-sensitivity) 2 + false positive rate 2 is minimized.
  • the cutoff value corresponding to the combination of the sensitivity and the specificity determined in this way can be set as the final cutoff value.
  • the method of determining the combination of the sensitivity and the specificity is not limited to the above-mentioned method of determining the combination of (1-sensitivity) 2 + false positive rate 2 to the minimum, and for example, the sensitivity. It may be a method of determining a combination that maximizes the product of and the specificity, or a method of determining a combination that maximizes (sensitivity + specificity) ⁇ 2. May be good.
  • the cutoff value is, for example, the relative abundance ratio for discriminating between a group in which the stool frequency is significantly increased, a group in which the stool frequency is not significantly increased, and a group in which the stool frequency is not increased due to ingestion of Bifidobacterium longum. It may be stool content. That is, there may be two cutoff values. In this case, as a method of setting the two cutoff values, for example, a group in which the cutoff value obtained by the method described in the previous paragraph is made stricter is compared with the group in which the cutoff value is remarkably increased and the group in which the cutoff value is not remarkably increased.
  • the cut-off value for distinguishing between the groups and the group in which the cut-off value is relaxed which is obtained by the method described in the previous paragraph, is defined as the group in which the cut-off value is not remarkable but increases and the group in which the cut-off value is not increased. It may be a method of setting the cutoff value to be discriminated.
  • an increase in stool frequency can be predicted as follows, for example. It is assumed that the cut-off value for the relative abundance ratio that separates the group in which the stool frequency increases and the group in which the stool frequency does not increase is X%. In this case, if the prediction target satisfies X%, the prediction target is predicted to belong to the group in which the flight frequency increases, and conversely, if the prediction target does not satisfy X%, the prediction target is It can be predicted that it belongs to the group in which the stool frequency does not increase.
  • an increase in stool frequency can be predicted as follows, for example.
  • the cut-off value for the relative abundance ratio that separates the group in which the stool frequency increases significantly and the group in which the stool frequency does not increase but increases is X1%, and the stool frequency increases with the group in which the stool frequency does not increase significantly. It is assumed that the cutoff value for the relative abundance ratio that separates the non-group is X2%.
  • the prediction target satisfies X1%
  • the prediction target is predicted to belong to the group in which the stool frequency increases remarkably, and if the prediction target does not satisfy X1% but satisfies X2%.
  • the prediction target is predicted to belong to the group in which the stool frequency is not remarkable but increases, and when the prediction target does not satisfy X2%, the prediction target is predicted to belong to the group in which the stool frequency does not increase. Can be done.
  • an increase in stool frequency can be predicted as follows, for example. It is assumed that the cut-off value for the stool content that separates the group in which the stool frequency increases and the group in which the stool frequency does not increase is Ynmol / g. In this case, if the prediction target satisfies Ynmol / g, the prediction target is predicted to belong to the group in which the stool frequency increases, and conversely, if the prediction target does not satisfy Ynmol / g, the prediction is made. The subject can be predicted to belong to the group in which the stool frequency does not increase.
  • an increase in stool frequency can be predicted as follows, for example.
  • the cut-off value for stool content that separates the group with a marked increase in stool frequency from the group with a less pronounced stool frequency but an increase is Y1 nmol / g. It is assumed that the cut-off value for the stool content that separates the non-group is Y2 nmol / g. In this case, when the prediction target satisfies Y1 nmol / g, the prediction target is predicted to belong to the group in which the stool frequency is significantly increased, and the prediction target does not satisfy Y1 nmol / g but satisfies Y2 nmol / g.
  • the prediction target is predicted to belong to the group in which the stool frequency is not remarkable but increases, and when the prediction target does not satisfy Y2 nmol / g, the prediction target belongs to the group in which the stool frequency does not increase. Can be predicted.
  • an increase in stool frequency can be predicted as follows, for example.
  • the prediction target satisfies X% and also satisfies Ynmol / g
  • the prediction target is predicted to belong to the group in which the stool frequency increases, and the prediction target does not satisfy X% and does not satisfy Ynmol / g. In that case, it can be predicted that the prediction target belongs to the group in which the stool frequency does not increase.
  • an increase in stool frequency can be predicted as follows, for example.
  • the prediction target satisfies X1% and also satisfies Y1 nmol / g
  • Y1 nmol / g is not satisfied but Y2 nmol / g is satisfied
  • the prediction target is predicted to belong to the group in which the stool frequency is not remarkable but increases, and the prediction target does not satisfy X2% and Y2 nmol / g. If the above conditions are not satisfied, it can be predicted that the prediction target belongs to the group in which the stool frequency does not increase.
  • FIG. 2 is a block diagram showing an example of the configuration of the prediction device 100.
  • the prediction device 100 is a commercially available desktop personal computer.
  • the prediction device 100 is not limited to a stationary information processing device such as a desktop personal computer, but is portable information such as a commercially available notebook personal computer, a PDA (Personal Digital Assistants), a smartphone, and a tablet personal computer. It may be a processing device.
  • the prediction device 100 includes a control unit 102, a communication interface unit 104, a storage unit 106, and an input / output interface unit 108. Each part of the prediction device 100 is communicably connected via an arbitrary communication path.
  • the communication interface unit 104 connects the prediction device 100 to the network 300 so as to be communicable via a communication device such as a router and a wired or wireless communication line such as a dedicated line.
  • the communication interface unit 104 has a function of communicating data with another device via a communication line.
  • the network 300 has a function of connecting the prediction device 100 and the server device 200 so as to be able to communicate with each other, and is, for example, the Internet or a LAN (Local Area Network).
  • An input device 112 and an output device 114 are connected to the input / output interface unit 108.
  • the output device 114 a speaker or a printer can be used in addition to a monitor (including a home television).
  • a monitor including a home television
  • the input device 112 in addition to a keyboard, a mouse, and a microphone, a monitor that cooperates with the mouse to realize a pointing device function can be used.
  • the output device 114 may be referred to as a monitor 114
  • the input device 112 may be referred to as a keyboard 112 or a mouse 112.
  • Various databases, tables, files, etc. are stored in the storage unit 106.
  • a computer program for giving a command to a CPU (Central Processing Unit) in cooperation with an OS (Operating System) to perform various processes is recorded.
  • a memory device such as a RAM (Random Access Memory) or a ROM (Read Only Memory), a fixed disk device such as a hard disk, a flexible disk, an optical disk, or the like can be used.
  • the storage unit 106 includes, for example, relative abundance ratio data 106a and content data 106b.
  • the relative abundance data 106a and the content data 106b may be stored in the server device 200.
  • the relative abundance data 106a stores the relative abundance acquired in step SA1.
  • the content data 106b stores the content obtained in step SA1.
  • the control unit 102 is a CPU or the like that comprehensively controls the prediction device 100.
  • the control unit 102 has an internal memory for storing a control program such as an OS, a program that defines various processing procedures, required data, and the like, and performs various information processing based on these stored programs. Execute.
  • the control unit 102 functionally conceptually, for example, eubacterium rectal, a bacterium belonging to the genus Kristensenera, a bacterium belonging to the genus Serimonas, a bacterium belonging to the genus Parabacteroides, and Ellis in a stool sample collected from a prediction target.
  • all or part of the processes described as being automatically performed may be performed manually, or all of the processes described as being performed manually.
  • a part thereof can be automatically performed by a known method.
  • processing procedure, control procedure, specific name, information including parameters such as registration data and search conditions of each processing, screen examples, and database configuration shown in this specification and drawings are not specified unless otherwise specified. Can be changed arbitrarily.
  • each component shown in the figure is a functional concept and does not necessarily have to be physically configured as shown in the figure.
  • each processing function performed by the control unit all or any part thereof may be realized by the CPU and a program interpreted and executed by the CPU. Also, it may be realized as hardware by wired logic.
  • the program is recorded on a non-temporary computer-readable recording medium including a programmed instruction for causing the information processing apparatus to execute the processing described in the present embodiment, and the prediction apparatus 100 is required. Is read mechanically. That is, in a storage unit such as a ROM or an HDD (Hard Disk Drive), a computer program for giving instructions to the CPU in cooperation with the OS and performing various processes is recorded. This computer program is executed by being loaded into RAM, and constitutes a control unit in cooperation with a CPU.
  • this computer program may be stored in an application program server connected to the prediction device 100 via an arbitrary network, and all or a part thereof can be downloaded as needed. ..
  • the program for executing the process described in the present embodiment may be stored in a non-temporary computer-readable recording medium, or may be configured as a program product.
  • the "recording medium” includes a memory card, a USB (Universal Serial Bus) memory, an SD (Secure Digital) card, a flexible disk, a magneto-optical disk, a ROM, an EPROM (Erasable Program Read Only Memory), and an EPROM (registered).
  • Trademarks) (Electrically Erasable and Programmable Read Only Memory), CD-ROM (Compact Disk Read Only Memory), MO (Magnet-Optical Red, Digital, Digital, Digital, Digital, Digital, Disk) It shall include any "portable physical medium”.
  • a “program” is a data processing method described in any language or description method, regardless of the format such as source code or binary code.
  • the "program” is not necessarily limited to a single program, but is distributed as a plurality of modules or libraries, or cooperates with a separate program represented by the OS to achieve its function. Including things.
  • a well-known configuration and procedure can be used for a specific configuration and reading procedure for reading the recording medium in each device shown in the embodiment, an installation procedure after reading, and the like.
  • RAM and ROM memory devices
  • fixed disk devices such as hard disks, flexible disks
  • storage means such as optical disks
  • the prediction device 100 may be configured as an information processing device such as a known personal computer or workstation, or may be configured as the information processing device to which an arbitrary peripheral device is connected. Further, the prediction device 100 may be realized by mounting software (including a program or data) that realizes the processing described in the present embodiment on the device.
  • the specific form of distribution / integration of the device is not limited to that shown in the figure, and all or part of the device is functionally or physically in any unit according to various additions or functional loads. It can be distributed and integrated. That is, the above-described embodiments may be arbitrarily combined and implemented, or the embodiments may be selectively implemented.
  • Genus level phylogenetic composition data were used for other statistical analyzes. Species level phylogenetic composition data was used only for responder prediction. In the metabolite analysis, data from Reactive area and Content were used. The Reactive area data was used only for the calculation of alpha diversity. Content data was used for other statistical analyzes.
  • Example 1 Confirmation of relative abundance ratio and stool content
  • lumino was used in subjects who had a large effect of improving the intestinal environment by ingesting Bifidobacterium longum. It was confirmed that the relative abundance ratios of the genus Coccus 2 and the genus Serimonas were large, and conversely, the relative abundance ratios of Eubacterium and Rectal and the stool content of N, N-dimethylglycine and the like were small.
  • the processing performed in the first embodiment will be described in detail.
  • Example 1 Subject Information
  • the test diet information test meal with Bifidobacterium longum (Bifidobacterium longum) BB536 strain per meal approximately 5.0 ⁇ 10 9 cells encapsulated capsules.
  • the weight per serving was 0.53 g.
  • the capsule is spherical with a diameter of about 2.4 mm, and has two coatings: a coating (outer coating) that imparts acid-resistant pH-dependent disintegration ability and a protective layer (inner coating) that improves the barrier function against the passage of gastric acid and the like. It is composed of.
  • Control food information As the control food, the same capsule containing only starch powder was used. The energy, protein, lipid, carbohydrate amount and sodium amount of the test meal and the control meal were adjusted to be equivalent.
  • Example 1 Subject characteristics and exclusion criteria Implementation of Example 1 was requested to CPCC Co., Ltd. after obtaining the approval of the Ethics Committee. After fully explaining the contents of the test, the subjects consented in writing to participate in the test voluntarily.
  • the details of the selection criteria, the selection exclusion criteria, and the analysis exclusion criteria are as follows.
  • Study design and sample collection (3-1) Test design This study was conducted according to the schedule shown in FIG. 5 based on a randomized, double-blind crossover study. Specifically, first, 24 subjects who passed the selection criteria and the selection exclusion criteria were randomly divided into two groups (12 each). Then, the subjects in one group first orally ingested the test food (Test food in FIG. 5), sandwiched a washout period (Washout in FIG. 5), and subsequently the control food (in FIG. 5). , Placebo food) was orally ingested. Subjects in the other group ingested in the reverse order. As shown in FIG. 5, the intake period of the subject was 2 weeks for both the test meal and the control meal, and the washing period was 4 weeks.
  • test meal or the control meal was stored at room temperature by each subject.
  • the subjects' activities during the study period were described in a daily questionnaire for each individual.
  • the questionnaire included living conditions, diet and defecation status. The subjects were notified of the following 1 to 6. 1. 1. Prohibit the intake of beverages or foods high in lactic acid bacteria and bifidobacteria. 2. Prohibit the intake of beverages or foods high in dietary fiber and oligosaccharides. Prohibit the intake of supplements 4. Prohibit the intake of functional yogurt 5. Avoid ingestion of natto, and if ingested, describe in the above questionnaire. Avoid ingestion of health foods, and if ingested, describe in the above questionnaire
  • T1, T2, T3, P1, P2 and P3 are in order from the left.
  • a stool sample was collected at.
  • the collected stool sample was collected at home by an individual subject using a stool collection sheet "Nagasale” (manufactured by Ozax) in the toilet bowl and a stool collection tube "Faces container 54 x 28 mm” (manufactured by Zalstat). Was done. Immediately after collection, it was stored in a domestic freezer, and the collected stool was collected by freezing transportation.
  • the hazard function is a function that expresses the probability that an event will occur after a minute time ⁇ t has elapsed from a certain time t as a starting point. That is, in this test, it was assumed that the effect of covariates associated with defecation time, such as the effect of ingestion of the test meal, occurs as a product of the hazard function in the normal state, and the probability of occurrence of defecation activity changes. This assumption is equivalent to the fact that the hazard function does not change except for eating during the observation period. This is supported by the rule of thumb that the intestinal condition is stable in conditions where food intake is strictly restricted, such as in this cohort. In reality, the parameters and the effect of eating on the Weibull distribution in the model are unknown.
  • WAIC Widely applicable information criteria
  • WAIC and AIC approximate the prediction error (generalization error) for unknown data of the model, and WAIC in particular can be used for singular models in which the posterior distribution of parameters cannot be approximated by a normal distribution.
  • the estimation of the parameters for the data was achieved by the Markov chain Monte Carlo method (MCMC method) by the NUTS algorithm using Python and Stan (Carpenter B et al., Stan: A Public Programming Language, Journal of Statistical Software17, Statistical Software 17 1, https: //doi.org/10.18637/jss.v076.i01).
  • the rule-based method and the probability model-based method were used.
  • the rule-based method assumed that responders and non-responders could be estimated based on the average number of bowel movements.
  • the definition of responder was to meet both of the following two criteria:
  • the first criterion is the average number of defecations during the test meal or control meal intake period: 1) 7 days immediately before the test meal intake period, 2) the last week of the pre-intake pre-observation period, and 3) pre-observation. Compared with the average number of defecations during the period and the rest period, the average number of defecations during the test meal intake period was higher than any of the periods.
  • the second criterion was that the increase in the average number of defecations of the test meal was larger than that of the control meal in the comparison in any of the periods 1 to 3.
  • the Poisson distribution is a distribution used when modeling data for the number of times, and has only one ratio parameter. The effect of eating was estimated assuming that the ratio parameter changed with intake.
  • the number of questionnaire-based defecations obtained from each subject was used for estimation.
  • defecation probability only the probability model-based method was used. In this method, it was assumed that the occurrence of daily defecation for each individual could be modeled by the Bernoulli distribution.
  • the Bernoulli distribution is a distribution used to express the probability of occurrence of alternative options such as the front and back of a coin, and has only one probability parameter.
  • the effect of eating was estimated by assuming that the stochastic parameter changes with intake through the logistic function.
  • the data on the number of defecations was converted into data on the presence or absence of defecation on a daily basis, such as 1 if there was defecation and 0 if there was no defecation.
  • FIG. 6 is a bar graph showing the number of defecations per day of 20 subjects (MO01 to MO06, MO08 to MO13, MO15 to MO19, and MO22 to MO24).
  • the vertical axis shows the number of defecations per day
  • the horizontal axis shows 20 subjects (MO01 to MO06, MO08 to MO13, MO15 to MO19 and MO22 to MO24) and the overall average (all). .. Further, in FIG.
  • the purple bar graph indicates the test food intake period (Test)
  • the green bar graph indicates the control food intake period (Placebo)
  • the red bar graph indicates the test food intake period and the control food.
  • the normal period (None) which is a period other than the intake period, is shown, and the blue bar graph shows the normal period (None) and the control diet intake period (Placebo).
  • the test meal non-ingestion period (None; normal period, Placebo; control food intake period, None ⁇ Placebo; normal period or control food intake period) vs. the test meal intake period (Test), Wilcoxon- A Mann-Whitney Test (one-sided test) was performed.
  • the number of defecations was significantly increased in Test with respect to None and None ⁇ Placebo (pvalue None: 0.0153, None & Placebo: 0.0259).
  • the number of defecations in MO04, MO10, and MO11 increased significantly in Test compared to None.
  • the number of defecations was significantly increased in Test for None & Placebo, but for MO11, the number of defecations was also significantly increased in Placebo for None. Was increasing.
  • the result shown in FIG. 6 was that the number of defecations was significantly increased when the test meal was ingested as a whole, but there was a difference in the intensity among individuals.
  • the cause of this is that there are individual differences in the effect of taking the test meal, and that there are subjects (responders) who have a particularly strong effect.
  • constipation which is the main effect of the test meal
  • the mathematical model was formulated by interweaving the placebo effect and the effect of the test meal itself in order to estimate the intensity of the precise effect. By confirming these values, it is possible to confirm the effect statistically.
  • the parameters were estimated by applying Bayesian statistically the defecation time interval calculated based on the number of defecations to the constructed model.
  • WAIC Widely Acceptable Information Criteria
  • the posterior mean value and Bayesian confidence interval were calculated from the posterior distribution of the intake effect using model No. 5 in which the best WAIC was obtained.
  • the results are shown in the table of FIG. FIG. 8 shows the ex post facto average and the 95% confidence interval. Further, in FIG. 8, the parameter of the Weibull distribution is on both sides, and the intake effect is on one side.
  • the effect of ingesting the test meal was confirmed from the probability density function of the Weibull distribution using the posterior mean value and the histogram of the actual defecation time.
  • the result is shown in FIG.
  • the left vertical axis shows the value of the probability density function
  • the right vertical axis shows the number of histograms.
  • the blue bar graph corresponds to the normal time
  • the green bar graph corresponds to the intake of the control meal
  • the orange bar graph corresponds to the intake of the test meal.
  • Illumina MiSeq was used for sequencing the amplicon DNA, and the sequence was performed under the conditions of paired-end mode and 600 cycles.
  • the obtained 16S rRNA gene sequence can be used in DRA of DDBJ (DRA accessory number: DRA006874).
  • the obtained DNA sequence is vsearch version 1.9.3 (Option: --fastq_maxee 9.0 --- fastq_truncqual 7 --- fastq_maxdiffs 300 --- fastq_maxmergelen 330 --fastelgenergen (Fastq_maxmergelen.
  • the F and R side leads were merged using open source tool for metagenomics, PeerJ, 2016, e2584). Subsequently, fragments with an average quality of ⁇ 25 were removed.
  • FIG. 10 shows a heat map of the relative abundance ratio of intestinal bacteria of each subject, top50 genus, at each time point (P1, P2, P3, T1, T2 and T3) of stool sample collection.
  • 11 and 12 show the relative abundance of gut flora for each subject and for each time point.
  • the length of the horizontal bar indicates the relative abundance ratio (ratio) of the intestinal bacteria, and the same color is used for the same type (genus) of the intestinal bacteria.
  • FIG. 13 and 14 show plots by Multi Dimensional Scaling (MDS) using calculated beta diversity (Spearman Coloration Cofficient) for intestinal flora composition, and FIG. 13 shows subjects. The same color was used for each time point, and in FIG. 14, the same color was used for each time point.
  • MDS Multi Dimensional Scaling
  • both the boxplot and the line graph are between the values at the time points T1 to T3 at the time of ingesting the test meal and the values at the time points P1 to 3 at the time of ingesting the control meal. No significant difference was observed. That is, no significant change in the relative abundance ratio of Bifidobacterium longum was observed by ingestion of the test meal.
  • the stool sample was first freeze-dried using a freeze-dryer VD-800R (manufactured by TIETECH Co., Ltd.) for at least 24 hours.
  • the freeze-dried stool sample was crushed with 3.0 mm zirconia beads using a multi-sample cell crusher Shakemaster Neo Ver1.0 (manufactured by Biomedical Science) at 1,500 rpm for 10 minutes. .. 500 ⁇ l of methanol containing internal standards (20 ⁇ M each of methyl sulfone and D-camphor-10-sulfonic acid (CSA)) was added to 10 mg of the crushed stool sample.
  • VD-800R manufactured by TIETECH Co., Ltd.
  • the stool sample was crushed with 0.1 mm zirconia / silica beads using the Shakemaster Neo at 1,500 rpm for 5 minutes. Subsequently, 200 ⁇ l of ultrapure water and 500 ⁇ l of chloroform were added, and the additive was centrifuged at 4,600 g for 15 minutes at 20 ° C. Further, in order to remove protein and lipid molecules, a 150 ⁇ l aqueous layer was transferred to a centrifugal filtration filter unit Ultrafree MC-PLHCC 250 / pk for Metabolome Analysis (manufactured by Human Metabolome Technologies). Then, the filtrate was centrifugally concentrated and dissolved in 50 ⁇ l of ultrapure water immediately before the CE-TOFMS analysis.
  • FIGS. 17 to 19 show a heat map of the stool content top50 genus of metabolites of each subject at each time point (P1, P2, P3, T1, T2 and T3) of stool sample collection.
  • 18 and 19 show plots by multidimensional scaling using calculated beta diversity for metabolite composition, FIG. 18 uses the same color for each subject, and FIG. 19 shows the stool. The same color was used for each sample collection time point.
  • Average abundance f, strong responder is SR MO04, MO05, and MO 10 3 people each time point of the relative abundance of Enterobacteriaceae in (P1, P2, P3, T1 , T2 and T3) Alternatively, it is a numerical value obtained by averaging the stool content of the biotransformer, and the Average abundance f, weak responder is the WR at each of the nine time points of MO01, MO02, MO08, M009, MO11, MO13, MO17, MO22 and MO24.
  • FIG. 20 is a scatter plot of the responder's Fold Change against the non-responder in gut flora and metabolites.
  • the vertical axis shows the value obtained by taking the log 2 of SR's Folder (FC S ) with respect to NR
  • the horizontal axis shows the value of WR's Folder (FC W ) taken with respect to NR.
  • the warm-colored plot corresponds to the intestinal flora, the size of which represents the relative abundance.
  • FIG. 20 is a scatter plot of the responder's Fold Change against the non-responder in gut flora and metabolites.
  • the vertical axis shows the value obtained by taking the log 2 of SR's Folder (FC S ) with respect to NR
  • the horizontal axis shows the value of WR's Folder (FC W ) taken with respect to NR.
  • the warm-colored plot corresponds to the intestinal flora, the size of which represents the relative abundance.
  • the genus Bacteria shown in red plots eg, the genus Sellimonas, the genus Tyzzerella 3, the genus Luminococcus 2, the genus Peptoniphilus, the genus Uncultured_Acticateca , coprocessor Bacillus (Coprobacillus) genus, uncultured_Lachnospiraceae spp., Eubacterium, Rekutaru ([Eubacterium] rectale group), Family_XIII_UCG-001 genera, Clostridium XIII AD3011 (Family_XIII_AD3011_group) genus, Ellis Pirot Rikusu (Erysipelotrichaceae_UCG-003) belonging to the genus, Rakunosupira UCG- 001 (Lachnospiraceae_UCG-001), Lacnospira UCG-003 (Lachnospiraceae_UCG-003, etc.) and Parasuterella (genus Parasuter
  • cool-colored plots correspond to metabolites, the size of which represents the concentration.
  • the metabolites shown in the blue plot eg, 3-hydroxybutyric_acid, asparagine (Asn) and N, N-dimethylglycine (N, N-Dimethylglycine), etc.
  • the light orange part of the background indicates FC W ⁇ FC S , that is, NR ⁇ WR ⁇ SR
  • the light blue part of the background is FC W > FC S , that is, NR> WR. > Indicates SR.
  • the genus Sellimonas, the genus Tyzzerella, the genus Ruminococcus 2 and the genus Peptoniphilus belonged to the light orange part of the background, so the relative abundance ratio was NR ⁇ . It was found that WR ⁇ SR, that is, the relative abundance ratio was large in the responder.
  • 3-hydroxybutyric acid (3-Hydroxybutyric_acid) also belonged to the light orange part of the background, so that the relative abundance ratio was NR ⁇ WR ⁇ SR, that is, relative in the responder. It was found that the abundance ratio was large.
  • 3-hydroxybutyric acid 3-hydroxybutyric acid
  • Crostridium XIII AD3011 (Family_XIII_AD3011_group) genus, Erycipelotrichaceae_UCG-003 genus, Lacnospira UCG-001 (Lachnospiraceae_UCG-001) genus Lachnospiraceae_UCG-001 Since it belonged to the light blue part, it was found that the relative abundance ratio was NR> WR> SR, that is, the relative abundance ratio was small in the responder. Similarly, as shown in FIG.
  • the average value (Reactive Abunance) of the relative abundance ratios at each of the time points was calculated for each SR, WR, and NR. did.
  • the result is shown in FIG. In FIG. 21, the horizontal axis represents Reactive abundance, the white graph corresponds to NR, the orange graph corresponds to WR, and the red graph corresponds to SR.
  • the relative abundance ratio of the two genus Ruminococcus was NR ⁇ WR ⁇ SR, that is, the relative abundance ratio was large in the responder.
  • the stool content of 3-hydroxybutyric acid was NR ⁇ WR ⁇ SR, that is, the stool content was high in the responder.
  • the relative abundance ratio is NR> WR> SR, that is, in the responder. It was found that the relative abundance ratio was small.
  • the stool content of asparagine and N, N-dimethylglycine was NR> WR> SR, that is, the stool content was low in the responder.
  • Example 2 Extraction of feature amount by machine learning
  • lasso regression and logistic regression are performed to determine whether the defecation responder increases the number of defecations by ingesting the test meal. Predicted by a combined machine learning method.
  • the relative abundance ratio of the genus Ruminococcus 1, the genus Anaerotipes, the genus Ruminococcus 2 and the Kristensenella R-7 group and the stool content of butyric acid are large.
  • the range of possible values may differ between the relative abundance ratio of gut flora and the stool content of metabolites, the feature amount with a large range of possible values may have a large effect on prediction, and the intestine.
  • each feature was standardized using z score (step SB2 in FIG. 23).
  • step SB3 in FIG. 23 19 subjects were divided into two groups of responders and non-responders (that is, SR vs WR, NR or SR, WR vs NR) (step SB3 in FIG. 23), and one person from each group. It was divided into test data including each and training data of the remaining 18 persons (steps SB4 and SB5 in FIG. 23). Subsequently, using the training data, Lasso regression was performed on the average value of the effect of the test meal for each individual estimated by the statistical model, and only the features that greatly contributed to the effect of the test meal were extracted (). Step SB6 in FIG. 23). The parameters of the Lasso regression were grid-searched to find the one with the maximum prediction accuracy.
  • the training data was learned by the logistic regression algorithm using the extracted features (step SB7 in FIG. 23), and the test data was predicted (step SB8 in FIG. 23).
  • Initial values were used for the parameters of logistic regression. This was executed for all combinations of all responders and all non-responders (60-78 ways), and was used as Cross Validation.
  • FIGS. 24 and 25 The prediction results of the test data are shown in FIGS. 24 and 25.
  • FIG. 24 is a receiver operating characteristic (ROC) curve when the prediction of “SR and WR” is performed for each of the five parameters of the substance (Metabolite), and the table is FIG. 25.
  • AUROC AUROC
  • Accuracy and F-mere are evaluation indexes of prediction accuracy.
  • FIG. 26 shows the regression coefficient of Lasso regression for the responder score in the parameter with the highest accuracy in Cross validation using the data of the bacterial genus and metabolites immediately before ingestion of the test meal.
  • the size of the yellow circle adjacent to the bacterial genus name indicates the average value of the relative abundance.
  • the size of light blue adjacent to the name of the metabolite indicates the average value of stool content.
  • the present invention can be widely implemented in many industrial fields (food, pharmaceuticals, medical treatment, etc.), and is extremely in the bioinformatics field, which predicts the effect of improving the intestinal environment. It is useful.
  • Prediction device 100
  • Control unit 102a Prediction unit 104
  • Communication interface unit 106
  • Storage unit 106a Relative presence ratio data
  • 106b Content data
  • Input / output interface unit 112
  • Input device 114
  • Output device 200 Server 300

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Mycology (AREA)
  • Sustainable Development (AREA)
  • Nutrition Science (AREA)
  • Toxicology (AREA)
  • Polymers & Plastics (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

[Problem] To provide a prediction method whereby an intestinal environment-improving effect or a feces condition-improving effect by the intake of Bifidobacterium longum can be predicted, and a prediction device and a prediction program. [Solution] According to the present embodiment, an intestinal environment-improving effect or a feces condition-improving effect on a prediction subject by the intake of Bifidobacterium longum is predicted on the basis of the relative abundance ratio in a feces specimen, which is collected from the subject, of a bacterium present in the feces specimen and/or the content of a metabolite in the feces specimen in a preset amount of the feces specimen.

Description

予測方法、予測装置および予測プログラムPrediction method, prediction device and prediction program
 本発明は、予測方法、予測装置および予測プログラムに関する。 The present invention relates to a prediction method, a prediction device and a prediction program.
 オミクス解析をベースとした、腸内細菌叢の研究が近年盛んに行われている。特に消化管常在細菌は食事と密接に結びつき、その組成が再現性を持って変動することが明らかになっている(非特許文献1)。このような常在細菌を介した消化管に対する食事の影響は、負にも正にも現れる。 Research on the intestinal flora based on omics analysis has been actively conducted in recent years. In particular, it has been clarified that indigenous bacteria in the gastrointestinal tract are closely linked to the diet and their composition fluctuates with reproducibility (Non-Patent Document 1). The effects of diet on the digestive tract via these indigenous bacteria are both negative and positive.
 負の影響の例としては、人工甘味料の過剰摂取により引き起こされる腸内細菌の変動を原因とした耐糖能代謝異常の発生(非特許文献2)や、乳化剤の過剰摂取による炎症作用(非特許文献3)等が挙げられる。 Examples of negative effects include the occurrence of impaired glucose tolerance due to changes in intestinal bacteria caused by excessive intake of artificial sweeteners (Non-Patent Document 2) and inflammatory effects due to excessive intake of emulsifiers (Non-Patent Document 2). Reference 3) and the like can be mentioned.
 正の影響の例としては、一部の微生物の服用を通して腸内細菌叢を改善させることが可能であり、古くからプロバイオティクスとして利用されている(非特許文献4)。例えば、ビフィドバクテリウム(Bifidobacterium)は、有効な整腸作用と人体への無害性から、頻繁に利用される代表的なプロバイオティクスである(非特許文献5)。また、ビフィドバクテリウム(Bifidobacterium)は、疾病の治療および予防の双方へ用いられ、近年では分子メカニズムの解明も進んでいる(非特許文献6~8)。 As an example of the positive effect, it is possible to improve the intestinal bacterial flora by taking some microorganisms, and it has been used as a probiotic for a long time (Non-Patent Document 4). For example, Bifidobacterium is a typical probiotic that is frequently used because of its effective intestinal regulation and harmlessness to the human body (Non-Patent Document 5). In addition, Bifidobacterium is used for both treatment and prevention of diseases, and in recent years, the molecular mechanism has been elucidated (Non-Patent Documents 6 to 8).
 ここで、従来のビフィドバクテリウム(Bifidobacterium)の有効試験としては、特に整腸効果による便秘状態の改善が評価されてきた(非特許文献9)。培養法に基づいた便秘患者の便の細菌解析でも、ビフィドバクテリウム(Bifidobacterium)は増減することが確認されており、特に注目される微生物である(非特許文献10および11)。しかしながら、便秘に対するビフィドバクテリウム(Bifidobacterium)の作用機序の網羅的な解析は、これまで進められてこなかった。 Here, as an effective test of the conventional bifidobacteria, improvement of constipation state due to intestinal regulation effect has been evaluated particularly (Non-Patent Document 9). Bacterial analysis of the stool of constipated patients based on the culture method has also confirmed that bifidobacteria increase and decrease, which is a microorganism of particular interest (Non-Patent Documents 10 and 11). However, a comprehensive analysis of the mechanism of action of Bifidobacterium on constipation has not been advanced so far.
 また、投与物の効用が一部の被検者で強く現れる現象が報告されており、様々な薬でメカニズムの解明が進んでいる。消化管系に作用する物質に対しては、この原因を腸内細菌叢へ求める動きがあり、とりわけセカンドミール効果(初めに食べた食事が、次の食事に対して影響を及ぼすという考え方)の機構は盛んに研究されている(非特許文献12)。そして、大麦食に対する血糖値の変化と腸内細菌叢中のPrevotella属の関係性がメタゲノム解析を通した臨床試験において示唆されており、マウスを使った耐糖能改善効果が実験的に検証されている(非特許文献13)。更に、血液のメタボローム解析も併せて実施され、腸内細菌叢により食事に対するインスリン反応が変化することが報告された(非特許文献14)。 In addition, it has been reported that the efficacy of the administered drug appears strongly in some subjects, and the mechanism is being elucidated with various drugs. For substances that act on the digestive tract, there is a movement to seek this cause from the intestinal flora, especially the second meal effect (the idea that the first meal affects the next). The mechanism has been actively studied (Non-Patent Document 12). The relationship between changes in blood glucose levels with respect to the barley diet and the genus Prevotella in the intestinal flora has been suggested in clinical trials through metagenomic analysis, and the effect of improving glucose tolerance using mice has been experimentally verified. (Non-Patent Document 13). Furthermore, a metabolome analysis of blood was also performed, and it was reported that the insulin response to the diet was changed by the intestinal flora (Non-Patent Document 14).
 このようなメカニズムの解析は、ヒトの腸内細菌に対しても進められ、大麦食と小麦食に対する血糖値上昇に個人差が存在し、その傾向が腸内細菌のオミクス情報から一定の精度で予測できることが示唆された(非特許文献15および16)。腸内細菌を標的にした個人差の解析は抗がん剤に対しても行われ、PD−1/PD−L1を標的とした免疫チェックポイント阻害剤の効果にBifidobacterium longum、Collinsella aerofaciens、Enterococcus faeciumまたはAkkermansia muciniphilaが関連し、CTLA−4に対する阻害効果にBacteroidesが関連することが示唆された(非特許文献17~19)。 The analysis of such a mechanism is also advanced for human intestinal bacteria, and there are individual differences in the increase in blood glucose level between barley diet and wheat diet, and the tendency is accurate from the omics information of intestinal bacteria. It was suggested that it could be predicted (Non-Patent Documents 15 and 16). Analysis of individual differences targeting intestinal bacteria was also performed for anticancer agents, and the effects of immune checkpoint inhibitors targeting PD-1 / PD-L1 were shown in Bifidobacterium longum, Collincella aerofaciens, and Enterococcus faecium. Alternatively, Akkermansia mucinifila was associated, and it was suggested that Bacteroides was associated with the inhibitory effect on CTLA-4 (Non-Patent Documents 17 to 19).
 以上を例とした、外部からの介入に対する腸内環境ダイナミクスのパターンをオミクスデータを用いて明らかにすることでは、作用メカニズムの解明をより高精度かつ高速に進展させ得る。実際にHIV治療薬の例では、膣内の細菌叢に存在する一部の嫌気性細菌へ着目して、薬剤の効果が低下することを実験的に明らかにした(非特許文献20)。 By clarifying the pattern of intestinal environmental dynamics for external intervention using omics data, the elucidation of the mechanism of action can be advanced with higher accuracy and speed. In fact, in the case of the HIV therapeutic drug, it was experimentally clarified that the effect of the drug was reduced by focusing on some anaerobic bacteria existing in the bacterial flora in the vagina (Non-Patent Document 20).
 このように、薬および機能性食品により生じる影響を、腸内環境の状態より予測することが可能であれば、その都度に応じた精密な処方が可能となる。すなわち、腸内環境に基づくコンパニオン診断の実現を通して、医療コストを削減し個別化ヘルスケアを達成することが出来る。例えば、前述したように、整腸作用があることが知られているBifidobacterium(例えば、ビフィドバクテリウム・ロンガム)摂取による腸内環境の改善効果または便状態の改善効果を予測することができれば、前記精密な処方や前記個別化ヘルスケア等を行うことができるものの、このような予測をすることは、従来できなかった。 In this way, if the effects caused by drugs and functional foods can be predicted from the state of the intestinal environment, precise prescriptions can be made in each case. That is, through the realization of companion diagnostics based on the intestinal environment, medical costs can be reduced and personalized healthcare can be achieved. For example, as described above, if it is possible to predict the effect of improving the intestinal environment or the effect of improving stool condition by ingesting Bifidobacterium (for example, Bifidobacterium longum), which is known to have an intestinal regulating effect, Although the precise prescription and the personalized healthcare can be performed, such a prediction has not been possible in the past.
 本発明は、上記に鑑みてなされたもので、ビフィドバクテリウム・ロンガム摂取による腸内環境の改善効果または便状態の改善効果を予測することができる予測方法、予測装置および予測プログラムを提供することを目的とする。 The present invention has been made in view of the above, and provides a prediction method, a prediction device, and a prediction program capable of predicting the effect of improving the intestinal environment or the effect of improving stool condition by ingesting Bifidobacterium longum. The purpose is.
 上述した課題を解決し、目的を達成するために、本発明に係る予測方法は、予測対象から採取された便検体中のユーバクテリウム・レクタル、クリステンセネラ属に属する細菌、セリモナス属に属する細菌、パラバクテロイデス属に属する細菌、エリスピロトリクス属に属する細菌、クロストリジウムXIII AD3011 属に属する細菌、ラクノスピラ UCG−001属に属する細菌、ラクノスピラ UCG−003属に属する細菌、ファエカリタレア属に属する細菌、アリスティペス属に属する細菌、アナエロスティペス属に属する細菌、ルミノコッカス1属に属する細菌およびルミノコッカス2属に属する細菌のうちの少なくとも一つの細菌の前記便検体中における相対存在比ならびに前記便検体中のN,N−ジメチルグリシン、酪酸、アスパラギンおよび3−ヒドロキシ酪酸のうちの少なくとも一つの代謝物質の所定量の前記便検体中における含量のうちの少なくとも一つに基づいて、前記予測対象について、ビフィドバクテリウム・ロンガム摂取による腸内環境の改善効果または便状態の改善効果についての予測を行う予測ステップを含むこと、を特徴とする。 In order to solve the above-mentioned problems and achieve the object, the prediction method according to the present invention belongs to the genus Serimonas, a bacterium belonging to the genus Cristensenera, a bacterium belonging to the genus Cristensenella, in a stool sample collected from a prediction target. Bacteria, bacteria belonging to the genus Parabacteroides, bacteria belonging to the genus Elyspyrotricus, bacteria belonging to the genus Clostridium XIII AD3011, bacteria belonging to the genus Lacnospira UCG-001, bacteria belonging to the genus Lacnospira UCG-003, bacteria belonging to the genus Faecalitalea , Bacteria belonging to the genus Aristipes, bacteria belonging to the genus Anaerostipes, bacteria belonging to the genus Luminococcus 1 and bacteria belonging to the genus Luminococcus 2 relative abundance ratios of at least one bacterium in the stool sample and the stool. About the prediction target based on at least one of the contents in the stool sample of a predetermined amount of at least one metabolite of N, N-dimethylglycine, butyric acid, asparagine and 3-hydroxybutyric acid in the sample. It is characterized by including a predictive step of making a prediction about the effect of improving the intestinal environment or the effect of improving the stool condition by ingesting Bifidobacterium longum.
 また、本発明に係る予測方法は、前記予測ステップでは、前記相対存在比および前記含量に基づいて、前記予測対象について、前記ビフィドバクテリウム・ロンガム摂取による前記腸内環境の改善効果または前記便状態の改善効果についての予測を行うこと、を特徴とする。 Further, in the prediction method according to the present invention, in the prediction step, based on the relative abundance ratio and the content, for the prediction target, the effect of improving the intestinal environment by ingesting the bifidobacteria longum or the stool. It is characterized by making predictions about the effect of improving the condition.
 また、本発明に係る予測方法は、前記予測ステップでは、前記改善効果があるか否かを予測すること、を特徴とする。 Further, the prediction method according to the present invention is characterized in that, in the prediction step, it is predicted whether or not there is the improvement effect.
 また、本発明に係る予測方法は、前記便状態の改善が、便通の改善であること、を特徴とする。 Further, the prediction method according to the present invention is characterized in that the improvement of the stool condition is the improvement of bowel movement.
 また、本発明に係る予測方法は、前記便通の改善が、便頻度の増加であること、を特徴とする。 Further, the prediction method according to the present invention is characterized in that the improvement of the bowel movement is an increase in the frequency of bowel movements.
 また、本発明に係る予測方法は、前記予測ステップは、制御部を備える情報処理装置の前記制御部において実行されること、を特徴とする。 Further, the prediction method according to the present invention is characterized in that the prediction step is executed in the control unit of the information processing device including the control unit.
 また、本発明に係る予測装置は、制御部を備える予測装置であって、前記制御部は、予測対象から採取された便検体中のユーバクテリウム・レクタル、クリステンセネラ属に属する細菌、セリモナス属に属する細菌、パラバクテロイデス属に属する細菌、エリスピロトリクス属に属する細菌、クロストリジウムXIII AD3011 属に属する細菌、ラクノスピラ UCG−001属に属する細菌、ラクノスピラ UCG−003属に属する細菌、ファエカリタレア属に属する細菌、アリスティペス属に属する細菌、アナエロスティペス属に属する細菌、ルミノコッカス1属に属する細菌およびルミノコッカス2属に属する細菌のうちの少なくとも一つの細菌の前記便検体中における相対存在比ならびに前記便検体中のN,N−ジメチルグリシン、酪酸、アスパラギンおよび3−ヒドロキシ酪酸のうちの少なくとも一つの代謝物質の所定量の前記便検体中における含量のうちの少なくとも一つに基づいて、前記予測対象について、ビフィドバクテリウム・ロンガム摂取による腸内環境の改善効果または便状態の改善効果についての予測を行う予測手段を備えること、を特徴とする。 Further, the prediction device according to the present invention is a prediction device including a control unit, and the control unit is a bacterium belonging to the genus Cristensenera, a bacterium belonging to the genus Celimonas, in a stool sample collected from a prediction target. Bacteria belonging to the genus, bacteria belonging to the genus Parabacteroides, bacteria belonging to the genus Elyspirotrics, bacteria belonging to the genus Clostridium XIII AD3011, bacteria belonging to the genus Lacnospira UCG-001, bacteria belonging to the genus Lacnospira UCG-003, genus Faecalitalea Relative abundance of at least one of the bacteria belonging to the genus Aristipes, the bacterium belonging to the genus Anaerostipes, the bacterium belonging to the genus Luminococcus 1 and the bacterium belonging to the genus Luminococcus 2 in the stool sample And based on at least one of the contents in the stool sample of a predetermined amount of at least one of the metabolites of N, N-dimethylglycine, butyric acid, asparagine and 3-hydroxybutyric acid in the stool sample. It is characterized in that the prediction target is provided with a prediction means for predicting the effect of improving the intestinal environment or the effect of improving the stool condition by ingestion of Bifidobacterium longum.
 また、本発明に係る予測プログラムは、制御部を備える情報処理装置において実行させるための予測プログラムであって、前記制御部に実行させるための、予測対象から採取された便検体中のユーバクテリウム・レクタル、クリステンセネラ属に属する細菌、セリモナス属に属する細菌、パラバクテロイデス属に属する細菌、エリスピロトリクス属に属する細菌、クロストリジウムXIII AD3011 属に属する細菌、ラクノスピラ UCG−001属に属する細菌、ラクノスピラ UCG−003属に属する細菌、ファエカリタレア属に属する細菌、アリスティペス属に属する細菌、アナエロスティペス属に属する細菌、ルミノコッカス1属に属する細菌およびルミノコッカス2属に属する細菌のうちの少なくとも一つの細菌の前記便検体中における相対存在比ならびに前記便検体中のN,N−ジメチルグリシン、酪酸、アスパラギンおよび3−ヒドロキシ酪酸のうちの少なくとも一つの代謝物質の所定量の前記便検体中における含量のうちの少なくとも一つに基づいて、前記予測対象について、ビフィドバクテリウム・ロンガム摂取による腸内環境の改善効果または便状態の改善効果についての予測を行う予測ステップを含むこと、を特徴とする。 Further, the prediction program according to the present invention is a prediction program to be executed in an information processing apparatus provided with a control unit, and is a bacterium in a stool sample collected from a prediction target to be executed by the control unit. -Rectal, bacteria belonging to the genus Kristensenera, bacteria belonging to the genus Serimonas, bacteria belonging to the genus Parabacteroides, bacteria belonging to the genus Elyspirotrics, bacteria belonging to the genus Clostridium XIII AD3011, bacteria belonging to the genus Lakunospyra UCG-001, lacnospira At least one of the bacteria belonging to the genus UCG-003, the bacterium belonging to the genus Faecalitalea, the bacterium belonging to the genus Aristipes, the bacterium belonging to the genus Anaerotipes, the bacterium belonging to the genus Luminococcus 1 and the bacterium belonging to the genus Luminococcus Relative abundance ratio of one bacterium in the stool sample and a predetermined amount of at least one metabolite of N, N-dimethylglycine, butyric acid, asparagine and 3-hydroxybutyric acid in the stool sample in the stool sample. Based on at least one of the contents, the prediction target is characterized by including a prediction step for predicting the effect of improving the intestinal environment or the effect of improving the stool condition by ingestion of Bifidobacterium longum. To do.
 本発明によれば、ビフィドバクテリウム・ロンガム摂取による腸内環境の改善効果または便状態の改善効果を予測することができるという効果を奏する。 According to the present invention, it is possible to predict the effect of improving the intestinal environment or the effect of improving the stool condition by ingesting Bifidobacterium longum.
図1は、本実施形態の基本原理を示す原理構成図である。FIG. 1 is a principle configuration diagram showing the basic principle of the present embodiment. 図2は、予測装置100の構成の一例を示す図である。FIG. 2 is a diagram showing an example of the configuration of the prediction device 100. 図3は、実施例1のコホートデザインを示す図である。FIG. 3 is a diagram showing a cohort design of the first embodiment. 図4は、実施例1において、解析対象へ選抜された20人の内訳の詳細を示す図である。FIG. 4 is a diagram showing details of the breakdown of 20 persons selected for analysis in Example 1. 図5は、実施例1の試験デザインを示す図である。FIG. 5 is a diagram showing a test design of Example 1. 図6は、実施例1における被験者20人(MO01~MO06、MO08~MO13、MO15~MO19およびMO22~MO24)の1日あたりの排便回数を示す棒グラフである。FIG. 6 is a bar graph showing the number of defecations per day of 20 subjects (MO01 to MO06, MO08 to MO13, MO15 to MO19, and MO22 to MO24) in Example 1. 図7は、実施例1において、情報量基準(WAIC)によるモデル比較をした結果を示す表である。FIG. 7 is a table showing the results of model comparison based on the information criterion (WAIC) in Example 1. 図8は、実施例1において、最良のWAICが得られた5番のモデルを用いて、摂取効果の事後分布から事後平均値とベイズ信用区間を計算した結果を示す表である。FIG. 8 is a table showing the results of calculating the posterior mean value and the Bayesian confidence interval from the posterior distribution of the intake effect using the model No. 5 in which the best WAIC was obtained in Example 1. 図9は、実施例1において、試験食摂取による効果を、事後平均値を用いたワイブル分布の確率密度関数と、実際の排便時間のヒストグラムから確認した結果を示すグラフである。FIG. 9 is a graph showing the results of confirming the effect of ingesting the test meal in Example 1 from the probability density function of the Weibull distribution using the posterior mean value and the histogram of the actual defecation time. 図10は、実施例1において、便検体採取のタイムポイントごとにおける各被験者の腸内細菌の相対存在比top50属のヒートマップを示す図である。FIG. 10 is a diagram showing a heat map of the relative abundance ratio of intestinal bacteria of each subject, top 50 genus, at each time point of stool sample collection in Example 1. 図11は、実施例1において、被験者ごとかつ前記タイムポイントごとの腸内細菌の相対存在比を示す図である。FIG. 11 is a diagram showing the relative abundance ratio of intestinal bacteria for each subject and for each time point in Example 1. 図12は、実施例1において、被験者ごとかつ前記タイムポイントごとの腸内細菌の相対存在比を示す図である。FIG. 12 is a diagram showing the relative abundance ratio of intestinal bacteria for each subject and for each time point in Example 1. 図13は、実施例1において、腸内細菌叢組成に対して計算されたbeta多様性を用いた多次元尺度構成法によるプロット(被験者ごとに同一の色を使用)を示す図である。FIG. 13 is a diagram showing a plot (using the same color for each subject) by multidimensional scaling using the calculated beta diversity for intestinal flora composition in Example 1. 図14は、実施例1において、腸内細菌叢組成に対して計算されたbeta多様性を用いた多次元尺度構成法によるプロット(タイムポイントごとに同一の色を使用)を示す図である。FIG. 14 is a diagram showing a plot (using the same color for each time point) by multidimensional scaling using the calculated beta diversity for intestinal flora composition in Example 1. 図15は、実施例1において、試験食摂取群、対照食摂取群および平常群の群間における腸内細菌叢の変化を、Wilcoxon−Mann−Whitney Testを用いて比較した結果を示す表である。FIG. 15 is a table showing the results of comparing changes in the intestinal flora between the test diet intake group, the control diet intake group, and the normal group in Example 1 using the Wilcoxon-Mann-Whitney Test. .. 図16は、実施例1において、前記タイムポイントごとにおける被験者全体でのビフィドバクテリウム・ロンガムの相対存在比を示す箱ひげ図、および、被験者ごとのビフィドバクテリウム・ロンガムの相対存在比を示す折れ線グラフである。FIG. 16 shows a boxplot showing the relative abundance ratio of Bifidobacterium longum in the whole subject at each time point in Example 1, and the relative abundance ratio of Bifidobacterium longum for each subject. It is a line graph which shows. 図17は、実施例1において、便検体採取のタイムポイントごとにおける各被験者の代謝物質の便含量top50属のヒートマップを示す図である。FIG. 17 is a diagram showing a heat map of the stool content top 50 genus of metabolites of each subject at each time point of stool sample collection in Example 1. 図18は、実施例1において、代謝物質組成に対して計算されたbeta多様性を用いた多次元尺度構成法によるプロット(被験者ごとに同一の色を使用)を示す図である。FIG. 18 is a diagram showing a plot (using the same color for each subject) by multidimensional scaling using the calculated beta diversity for metabolite composition in Example 1. 図19は、実施例1において、代謝物質組成に対して計算されたbeta多様性を用いた多次元尺度構成法によるプロット(タイムポイントごとに同一の色を使用)を示す図である。FIG. 19 is a diagram showing a plot (using the same color for each time point) by multidimensional scaling using the calculated beta diversity for metabolite composition in Example 1. 図20は、実施例1における、腸内細菌および代謝物質についてのノンレスポンダーに対するレスポンダーのFold Changeの散布図である。FIG. 20 is a scatter plot of the responder's Fold Change to the non-responder for enterobacteria and metabolites in Example 1. 図21は、実施例1において、ルミノコッカス2属、Erysipelotrichaceae_UCG−003およびユーバクテリウム・レクタルについての各群ごとの相対存在比を示すグラフである。FIG. 21 is a graph showing the relative abundance ratio of each group for Ruminococcus 2 genus, Erysipelotrichaceae_UCG-003 and Eubacterium rectal in Example 1. 図22は、実施例1において、3−ヒドロキシ酪酸、アスパラギンおよびN,N−ジメチルグリシンについての各群ごとの便含量を示すグラフである。FIG. 22 is a graph showing the stool content of each group for 3-hydroxybutyric acid, asparagine and N, N-dimethylglycine in Example 1. 図23は、実施例2における機械学習法によるレスポンダー予測の流れを示すフローチャートである。FIG. 23 is a flowchart showing the flow of responder prediction by the machine learning method in the second embodiment. 図24は、実施例2において、機械学習法によりレスポンダー予測をした際の結果を示すROC curveである。FIG. 24 is a ROC curve showing the result when the responder is predicted by the machine learning method in the second embodiment. 図25は、実施例2において、機械学習法によりレスポンダー予測をした際の結果を示す表である。FIG. 25 is a table showing the results of the responder prediction by the machine learning method in Example 2. 図26は、実施例2において、レスポンダー予測に寄与している特徴量を抽出した結果を示すグラフである。FIG. 26 is a graph showing the results of extracting the features that contribute to the responder prediction in Example 2.
 以下に、予測方法、予測装置および予測プログラムの実施形態を、図面に基づいて詳細に説明する。なお、本実施形態により本発明が限定されるものではない。 The prediction method, the prediction device, and the embodiment of the prediction program will be described in detail below based on the drawings. The present invention is not limited to the present embodiment.
実施形態の概要
 ここでは、本実施形態の概要について図1を参照して説明する。図1は、本実施形態の基本原理を示す原理構成図である。
Outline of the Embodiment Here, the outline of the present embodiment will be described with reference to FIG. FIG. 1 is a principle configuration diagram showing the basic principle of the present embodiment.
 まず、予測対象(例えば、動物や人等の個体)から採取された便検体中の細菌の前記便検体中における相対存在比および前記便検体中の代謝物質の所定量の前記便検体中における含量(=便含量)のうちの少なくとも一つを取得する(図1のステップSA1:取得ステップ)。 First, the relative abundance ratio of bacteria in the stool sample collected from the prediction target (for example, an individual such as an animal or a human) in the stool sample and the content of a predetermined amount of metabolites in the stool sample in the stool sample. At least one of (= stool content) is acquired (step SA1: acquisition step in FIG. 1).
 ステップSA1において、前記予測対象は、人である場合、例えば、腸内環境が悪いまたは良くない人が好ましい。前記腸内環境が悪いまたは良くない人とは、例えば、便秘気味の人である。前記便秘気味の人とは、例えば、排便回数が週あたり3~5回程度の人である。ただし、前記予測対象は、本段落の例示には限定されず、例えば、腸内環境が悪くない人または良い人であってもよい。 In step SA1, when the prediction target is a person, for example, a person having a bad or bad intestinal environment is preferable. The person having a bad or bad intestinal environment is, for example, a person with constipation. The constipated person is, for example, a person who defecates about 3 to 5 times a week. However, the prediction target is not limited to the examples in this paragraph, and may be, for example, a person whose intestinal environment is not bad or a person who is good.
 ステップSA1において、前記細菌は、例えば、セリモナス(Sellimonas)属に属する細菌、Tyzzerella 3属に属する細菌、ルミノコッカス2(Ruminococcus 2)属に属する細菌、ペプトニフィラス(Peptoniphilus)属に属する細菌、uncultured_Actinomycetaceae属に属する細菌、ファエカリタレア(Faecalitalea)属に属する細菌、コプロバチルス(Coprobacillus)属に属する細菌、uncultured_Lachnospiraceae属に属する細菌、ユーバクテリウム・レクタル([Eubacterium] rectale group)、Family_XIII_UCG−001属に属する細菌、クロストリジウムXIII AD3011(Family_XIII_AD3011_group)属に属する細菌、エリスピロトリクス(Erysipelotrichaceae_UCG−003)属に属する細菌、ラクノスピラUCG−001(Lachnospiraceae_UCG−001)属に属する細菌、ラクノスピラUCG−003(Lachnospiraceae_UCG−003属に属する細菌、パラサテレラ(Parasutterella)属に属する細菌、アリスティペス(Alistipes)属に属する細菌、パラバクテロイデス(Parabacteroides)属に属する細菌、ルミノコッカス1(Ruminococcus 1)属に属する細菌、アナエロスティペス(Anaerostipes)属に属する細菌およびクリステンセネラ R−7 グループ(Christensenellaceae−T7_group)のうちの少なくとも一つの細菌である。 In step SA1, the bacterium is, for example, a bacterium belonging to the genus Cellimonas, a bacterium belonging to the genus Tyzserella 3, a bacterium belonging to the genus Luminococcus 2, a bacterium belonging to the genus Peptoniphilus, a bacterium belonging to the genus uncultarect. Bacteria belonging to, Bacteria belonging to the genus Faecalitalea, Bacteria belonging to the genus Coprobacillus, Bacteria belonging to the genus uncurted_Lachnospiraceae, Bacteria belonging to the genus Eubacterium ([Eubacterium] lectaleGuup. , Bacteria belonging to the genus Crostridium XIII AD3011 (Family_XIII_AD3011_group), Bacteria belonging to the genus Erycipelotrichaceae_UCG-003, Bacteria belonging to the genus Lacnospira UCG-001 (Lachnospiraceae_UCG- Bacteria, Bacteria belonging to the genus Parasuterella, Bacteria belonging to the genus Alitipes, Bacteria belonging to the genus Parabacteroides, Bacteria belonging to the genus Luminococcus 1, Bacteria belonging to the genus Anaerostipes Bacteria belonging to and at least one bacterium in the Christensenella seae-T7_group (Christensenellaceae-T7_group).
 ステップSA1において、前記相対存在比は、例えば、前記便検体から抽出したDNA(Deoxyribo Nucleic acid)の16SrRNA遺伝子領域をPCR(Polymerase Chain Reaction)増幅し、次世代シーケンサーによって配列解読を実施することにより算出することができる。例えば、前記配列解読の結果、全DNA量が4であり、クリステンセネラ属のDNA量が3であり、アナエロスティペス属のDNA量が1である場合、クリステンセネラ属の相対存在比は0.75となり、アナエロスティペス属の相対存在比は0.25となる。 In step SA1, the relative abundance ratio is calculated by, for example, amplifying the 16S rRNA gene region of DNA (Deoxyribo Nucleic acid) extracted from the stool sample by PCR (Polymerase Chain Reaction) and performing sequencing by a next-generation sequencer. can do. For example, as a result of the sequencing, when the total amount of DNA is 4, the amount of DNA of the genus Kristensenera is 3, and the amount of DNA of the genus Anaerostipes is 1, the relative abundance ratio of the genus Kristensenera is It is 0.75, and the relative abundance ratio of the genus Anaerostipes is 0.25.
 ステップSA1において、前記含量は、例えば、前記便検体から、CE−TOFMS(キャピラリー電気泳動−飛行時間型質量分析計)を用いてメタボローム解析を実施することにより算出することができる。例えば、前記メタボローム解析の結果、前記便検体300g中に3000nmolのN,N−ジメチルグリシンが含まれる場合、N,N−ジメチルグリシンの便含量は、10nmol/gとなる。 In step SA1, the content can be calculated, for example, by performing a metabolome analysis on the stool sample using CE-TOFMS (capillary electrophoresis-time-of-flight mass spectrometer). For example, as a result of the metabolome analysis, when 3000 nmol of N, N-dimethylglycine is contained in 300 g of the stool sample, the stool content of N, N-dimethylglycine is 10 nmol / g.
 前記代謝物質は、例えば、N,N−ジメチルグリシン(N,N−Dimetylglycine)、酪酸(Butyric_acid)、アスパラギン(Asn)および3−ヒドロキシ酪酸(3−Hydroxybutyric_acid)のうちの少なくとも一つの代謝物質である。 The metabolite is, for example, at least one metabolite of N, N-dimethylglycine (N, N-Dimethylglycine), butyric acid (Butyric_acid), asparagine (Asn) and 3-hydroxybutyric acid (3-Hydroxybutyric_acid). ..
 次に、ステップSA1で取得した前記相対存在比および前記含量のうちの少なくとも一つに基づいて、前記予測対象について、ビフィドバクテリウム・ロンガム摂取による腸内環境の改善効果または便状態の改善効果についての予測を行うことにより(図1のステップSA2:予測ステップ)、予測結果を得ることができる。 Next, based on at least one of the relative abundance ratio and the content obtained in step SA1, the effect of improving the intestinal environment or the effect of improving the stool condition by ingesting Bifidobacterium longum for the predicted target. By making a prediction about (step SA2 in FIG. 1: prediction step), a prediction result can be obtained.
 ステップSA2において、前記改善とは、例えば、前記予測対象がビフィドバクテリウム・ロンガムを摂取することにより、前記予測対象の腸内環境または便状態が良い方に変化することである。つまり、前記改善とは、腸内環境または便状態が悪いまたは良くない人の腸内環境または便状態が良くなることであってもよいし、あるいは、腸内環境または便状態が悪くない人または良い人の腸内環境または便状態が更に良くなることであってもよい。 In step SA2, the improvement means that, for example, when the prediction target ingests Bifidobacterium longum, the intestinal environment or stool condition of the prediction target changes to a better one. That is, the improvement may mean that the intestinal environment or stool condition of a person who has poor or poor intestinal environment or stool condition is improved, or the intestinal environment or stool condition is not bad or is not bad. It may be that the intestinal environment or stool condition of a good person is further improved.
 ステップSA2における予測ステップでは、前記改善効果を数値化して予測してもよいし、あるいは、前記改善効果があるか否かを予測してもよい。後者の予測としては、前記改善効果の程度に応じた多段階的な予測であってもよいし、前記改善効果があるかないかの二者択一の予測であってもよい。 In the prediction step in step SA2, the improvement effect may be quantified and predicted, or whether or not the improvement effect is present may be predicted. The latter prediction may be a multi-step prediction according to the degree of the improvement effect, or may be an alternative prediction of whether or not the improvement effect is present.
 ステップSA2において、前記腸内環境とは、例えば、腸内に存在する細菌の相対存在比および化合物の含有量のことである。特定の細菌や特定の代謝物質が人体に有害な影響を及ぼすことが知られている。このため、ステップSA2において、前記腸内環境の改善効果についての予測とは、ビフィドバクテリウム・ロンガムを摂取することによる前記予測対象の腸内における特定の細菌および特定の代謝物質の挙動の予測であってもよい。 In step SA2, the intestinal environment is, for example, the relative abundance ratio of bacteria existing in the intestine and the content of the compound. It is known that certain bacteria and certain metabolites have harmful effects on the human body. Therefore, in step SA2, the prediction of the effect of improving the intestinal environment is the prediction of the behavior of a specific bacterium and a specific metabolite in the intestine to be predicted by ingesting Bifidobacterium longum. It may be.
 ステップSA2において、前記便状態の改善は、例えば、便通の改善や便そのものの状態の改善等である。前記便通の改善は、便頻度の増加であってもよいし、便の回数の増加であってもよい。便頻度の増加の予測の具体例として、前記多段階的な予測により便頻度の増加を予測する場合は、前記予測対象がビフィドバクテリウム・ロンガムを摂取することにより、便頻度が顕著に増加するのか、便頻度が増加するが顕著ではないのか、あるいは、便頻度が増加しないのか、を予測するという方法が挙げられる。また、便頻度の増加の予測の別の具体例として、前記二者択一の予測により便頻度の増加を予測する場合は、前記予測対象がビフィドバクテリウム・ロンガムを摂取することにより、便頻度が顕著であろうがなかろうが増加するのか、あるいは、便頻度が増加しないのか、を予測するという方法が挙げられる。 In step SA2, the improvement of the stool condition is, for example, improvement of bowel movement, improvement of the condition of the stool itself, and the like. The improvement of bowel movement may be an increase in the frequency of bowel movements or an increase in the number of bowel movements. As a specific example of the prediction of the increase in stool frequency, when the increase in stool frequency is predicted by the multi-step prediction, the stool frequency increases remarkably when the prediction target ingests Bifidobacterium longum. There is a method of predicting whether the stool frequency will increase but not significantly, or whether the stool frequency will not increase. In addition, as another specific example of the prediction of the increase in stool frequency, when the increase in stool frequency is predicted by the alternative prediction, the stool is predicted by ingesting Bifidobacterium longum. One method is to predict whether the frequency will increase, whether it is significant or not, or whether the frequency of stools will not increase.
 ここで、腸内細菌叢の研究を行う分野においては、便秘患者について、便状態の改善(例えば、便頻度の増加)が起こっているならば、腸内環境が改善していることが知られている(Cummings JH et al,PASSCLAIM−−gut health and immunity,European Journal of Nutrition,2004,43,p118−173)。このため、例えば、ある便秘患者について便頻度の増加が観察された場合、当該便秘患者の腸内環境が改善したと予測してもよい。 Here, in the field of studying the intestinal flora, it is known that the intestinal environment of constipated patients is improved if the stool condition is improved (for example, the frequency of stools is increased). (Cummings JH et al, PASSCLAIM --- gut health and immunity, European Journal of Constipation, 2004, 43, p118-173). Therefore, for example, when an increase in stool frequency is observed for a constipated patient, it may be predicted that the intestinal environment of the constipated patient has improved.
 ステップSA2において、前記予測は、前記相対存在比および前記含量に基づいて行うことが好ましい。これにより、例えば、より精度の高い予測を行うことができる。 In step SA2, the prediction is preferably made based on the relative abundance ratio and the content. Thereby, for example, more accurate prediction can be performed.
 ステップSA2の前記予測ステップは、制御部を備える情報処理装置の前記制御部において実行されてもよい。 The prediction step of step SA2 may be executed in the control unit of the information processing device including the control unit.
 以下、便頻度の増加を予測する場合を例にとって、予測の際に用いる閾値(カットオフ値)について説明する。 Hereinafter, the threshold value (cutoff value) used in the prediction will be described by taking the case of predicting the increase in the frequency of flights as an example.
 前記カットオフ値は、例えば、ビフィドバクテリウム・ロンガムの摂取により、便頻度が増加する群と増加しない群とを判別するための前記相対存在比または前記便含量であってもよい。前記カットオフ値は、例えば、感度と偽陽性率(1−特異度)の関係を、ROC分析することにより求めることができる。前記感度とは、例えば、真の状態が前記増加する群である前記予測対象を正しく前記増加する群であると予測している割合である。前記特異度とは、真の状態が前記増加しない群である前記予測対象を正しく前記増加しない群であると予測している割合である。前記ROC分析においては、まず、前記カットオフ値を連続的に変化させたときの、前記感度と前記偽陽性率の値を求める。そして、縦軸(Y軸)を前記感度とし、横軸(X軸)を前記偽陽性率とするグラフ上に、前記求めた感度および偽陽性率の値をプロットし、当該プロットした点の中から、(1−感度)+偽陽性率が最小になるような前記感度および前記特異度の組合せを決定する。このように決定した前記感度および前記特異度の組合せに対応するカットオフ値を、最終的なカットオフ値として設定することができる。なお、前記感度および前記特異度の組合せの決定の仕方は、前述した(1−感度)+偽陽性率が最小になるような組合せに決定するという方法に限定されず、例えば、前記感度と前記特異度の積が最大になるような組合せに決定するという方法であってもよいし、(前記感度+前記特異度)÷2が最大になるような組合せに決定するという方法であってもよい。 The cutoff value may be, for example, the relative abundance ratio or the stool content for discriminating between a group in which the stool frequency increases and a group in which the stool frequency does not increase due to ingestion of Bifidobacterium longum. The cutoff value can be obtained, for example, by performing ROC analysis on the relationship between sensitivity and false positive rate (1-specificity). The sensitivity is, for example, the ratio at which the prediction target, which is the group in which the true state is increased, is correctly predicted to be the group in which the true state is increased. The specificity is a rate at which the prediction target, which is a group whose true state does not increase, is correctly predicted to be a group which does not increase. In the ROC analysis, first, the values of the sensitivity and the false positive rate when the cutoff value is continuously changed are obtained. Then, the values of the obtained sensitivity and false positive rate are plotted on a graph in which the vertical axis (Y axis) is the sensitivity and the horizontal axis (X axis) is the false positive rate, and among the plotted points. Therefore, the combination of the sensitivity and the specificity is determined so that (1-sensitivity) 2 + false positive rate 2 is minimized. The cutoff value corresponding to the combination of the sensitivity and the specificity determined in this way can be set as the final cutoff value. The method of determining the combination of the sensitivity and the specificity is not limited to the above-mentioned method of determining the combination of (1-sensitivity) 2 + false positive rate 2 to the minimum, and for example, the sensitivity. It may be a method of determining a combination that maximizes the product of and the specificity, or a method of determining a combination that maximizes (sensitivity + specificity) ÷ 2. May be good.
 前記カットオフ値は、例えば、ビフィドバクテリウム・ロンガムの摂取により、便頻度が顕著に増加する群と顕著ではないが増加する群と増加しない群とを判別するための前記相対存在比または前記便含量であってもよい。すなわち、前記カットオフ値が2つ存在していてもよい。この場合、当該2つのカットオフ値の設定の仕方としては、例えば、前段落で述べた方法により求めたカットオフ値をより厳しくしたものを、前記顕著に増加する群と前記顕著ではないが増加する群とを判別するためのカットオフ値とし、一方で、前段落で述べた方法により求めたカットオフ値をより緩くしたものを、前記顕著ではないが増加する群と前記増加しない群とを判別するカットオフ値とするという方法であってもよい。 The cutoff value is, for example, the relative abundance ratio for discriminating between a group in which the stool frequency is significantly increased, a group in which the stool frequency is not significantly increased, and a group in which the stool frequency is not increased due to ingestion of Bifidobacterium longum. It may be stool content. That is, there may be two cutoff values. In this case, as a method of setting the two cutoff values, for example, a group in which the cutoff value obtained by the method described in the previous paragraph is made stricter is compared with the group in which the cutoff value is remarkably increased and the group in which the cutoff value is not remarkably increased. The cut-off value for distinguishing between the groups and the group in which the cut-off value is relaxed, which is obtained by the method described in the previous paragraph, is defined as the group in which the cut-off value is not remarkable but increases and the group in which the cut-off value is not increased. It may be a method of setting the cutoff value to be discriminated.
 腸内細菌の相対存在比のみを用いて前記二者択一の予測をする場合、例えば以下のようにして便頻度の増加を予測することができる。便頻度が増加する群と便頻度が増加しない群とを分ける相対存在比に関するカットオフ値がX%であるとする。この場合、前記予測対象がX%を満たす場合には前記予測対象は前記便頻度が増加する群に属すると予測し、逆に、前記予測対象がX%を満たさない場合には前記予測対象は前記便頻度が増加しない群に属すると予測することができる。 When predicting the alternatives using only the relative abundance ratio of intestinal bacteria, an increase in stool frequency can be predicted as follows, for example. It is assumed that the cut-off value for the relative abundance ratio that separates the group in which the stool frequency increases and the group in which the stool frequency does not increase is X%. In this case, if the prediction target satisfies X%, the prediction target is predicted to belong to the group in which the flight frequency increases, and conversely, if the prediction target does not satisfy X%, the prediction target is It can be predicted that it belongs to the group in which the stool frequency does not increase.
 腸内細菌の相対存在比のみを用いて前記多段階的な予測をする場合、例えば以下のようにして便頻度の増加を予測することができる。便頻度が顕著に増加する群と便頻度が顕著ではないが増加する群とを分ける相対存在比に関するカットオフ値がX1%であり、便頻度が顕著ではないが増加する群と便頻度が増加しない群とを分ける相対存在比に関するカットオフ値がX2%であるとする。この場合、前記予測対象がX1%を満たす場合には前記予測対象は前記便頻度が顕著に増加する群に属すると予測し、前記予測対象がX1%を満たさないがX2%を満たす場合には前記予測対象は前記便頻度が顕著ではないが増加する群に属すると予測し、前記予測対象がX2%を満たさない場合には前記予測対象は前記便頻度が増加しない群に属すると予測することができる。 When the multi-step prediction is made using only the relative abundance ratio of intestinal bacteria, an increase in stool frequency can be predicted as follows, for example. The cut-off value for the relative abundance ratio that separates the group in which the stool frequency increases significantly and the group in which the stool frequency does not increase but increases is X1%, and the stool frequency increases with the group in which the stool frequency does not increase significantly. It is assumed that the cutoff value for the relative abundance ratio that separates the non-group is X2%. In this case, if the prediction target satisfies X1%, the prediction target is predicted to belong to the group in which the stool frequency increases remarkably, and if the prediction target does not satisfy X1% but satisfies X2%. The prediction target is predicted to belong to the group in which the stool frequency is not remarkable but increases, and when the prediction target does not satisfy X2%, the prediction target is predicted to belong to the group in which the stool frequency does not increase. Can be done.
 前記代謝物質の便含量のみを用いて前記二者択一の予測をする場合、例えば以下のようにして便頻度の増加を予測することができる。便頻度が増加する群と便頻度が増加しない群とを分ける便含量に関するカットオフ値がYnmol/gであるとする。この場合、前記予測対象がYnmol/gを満たす場合には前記予測対象は前記便頻度が増加する群に属すると予測し、逆に、前記予測対象がYnmol/gを満たさない場合には前記予測対象は前記便頻度が増加しない群に属すると予測することができる。 When predicting the alternatives using only the stool content of the metabolite, an increase in stool frequency can be predicted as follows, for example. It is assumed that the cut-off value for the stool content that separates the group in which the stool frequency increases and the group in which the stool frequency does not increase is Ynmol / g. In this case, if the prediction target satisfies Ynmol / g, the prediction target is predicted to belong to the group in which the stool frequency increases, and conversely, if the prediction target does not satisfy Ynmol / g, the prediction is made. The subject can be predicted to belong to the group in which the stool frequency does not increase.
 前記代謝物質の便含量のみを用いて前記多段階的な予測をする場合、例えば以下のようにして便頻度の増加を予測することができる。便頻度が顕著に増加する群と便頻度が顕著ではないが増加する群とを分ける便含量に関するカットオフ値がY1nmol/gであり、便頻度が顕著ではないが増加する群と便頻度が増加しない群とを分ける便含量に関するカットオフ値がY2nmol/gであるとする。この場合、前記予測対象がY1nmol/gを満たす場合には前記予測対象は前記便頻度が顕著に増加する群に属すると予測し、前記予測対象がY1nmol/gを満たさないがY2nmol/gを満たす場合には前記予測対象は前記便頻度が顕著ではないが増加する群に属すると予測し、前記予測対象がY2nmol/gを満たさない場合には前記予測対象は前記便頻度が増加しない群に属すると予測することができる。 When the multi-step prediction is made using only the stool content of the metabolite, an increase in stool frequency can be predicted as follows, for example. The cut-off value for stool content that separates the group with a marked increase in stool frequency from the group with a less pronounced stool frequency but an increase is Y1 nmol / g. It is assumed that the cut-off value for the stool content that separates the non-group is Y2 nmol / g. In this case, when the prediction target satisfies Y1 nmol / g, the prediction target is predicted to belong to the group in which the stool frequency is significantly increased, and the prediction target does not satisfy Y1 nmol / g but satisfies Y2 nmol / g. In the case, the prediction target is predicted to belong to the group in which the stool frequency is not remarkable but increases, and when the prediction target does not satisfy Y2 nmol / g, the prediction target belongs to the group in which the stool frequency does not increase. Can be predicted.
 腸内細菌の相対存在比と前記代謝物質の便含量の両方を用いて前記二者択一の予測をする場合、例えば以下のようにして便頻度の増加を予測することができる。前記予測対象がX%を満たし且つYnmol/gも満たす場合には前記予測対象は前記便頻度が増加する群に属すると予測し、前記予測対象がX%を満たさず且つYnmol/gも満たさない場合には前記予測対象は前記便頻度が増加しない群に属すると予測することができる。 When predicting the alternative using both the relative abundance ratio of intestinal bacteria and the stool content of the metabolite, an increase in stool frequency can be predicted as follows, for example. When the prediction target satisfies X% and also satisfies Ynmol / g, the prediction target is predicted to belong to the group in which the stool frequency increases, and the prediction target does not satisfy X% and does not satisfy Ynmol / g. In that case, it can be predicted that the prediction target belongs to the group in which the stool frequency does not increase.
 腸内細菌の相対存在比と前記代謝物質の便含量の両方を用いて前記多段階的な予測をする場合、例えば以下のようにして便頻度の増加を予測することができる。前記予測対象がX1%を満たし且つY1nmol/gも満たす場合には前記予測対象は前記便頻度が顕著に増加する群に属すると予測し、前記予測対象がX1%を満たさないがX2%を満たし且つY1nmol/gを満たさないがY2nmol/gを満たす場合には前記予測対象は前記便頻度が顕著ではないが増加する群に属すると予測し、前記予測対象がX2%を満たさず且つY2nmol/gも満たさない場合には前記予測対象は前記便頻度が増加しない群に属すると予測することができる。 When the multi-step prediction is made using both the relative abundance ratio of intestinal bacteria and the stool content of the metabolite, an increase in stool frequency can be predicted as follows, for example. When the prediction target satisfies X1% and also satisfies Y1 nmol / g, it is predicted that the prediction target belongs to the group in which the stool frequency increases remarkably, and the prediction target does not satisfy X1% but satisfies X2%. If Y1 nmol / g is not satisfied but Y2 nmol / g is satisfied, the prediction target is predicted to belong to the group in which the stool frequency is not remarkable but increases, and the prediction target does not satisfy X2% and Y2 nmol / g. If the above conditions are not satisfied, it can be predicted that the prediction target belongs to the group in which the stool frequency does not increase.
[実施形態の構成]
 次に、本実施形態に係る予測装置100の構成の一例について、図2を参照して説明する。図2は、予測装置100の構成の一例を示すブロック図である。
[Structure of Embodiment]
Next, an example of the configuration of the prediction device 100 according to the present embodiment will be described with reference to FIG. FIG. 2 is a block diagram showing an example of the configuration of the prediction device 100.
 予測装置100は、市販のデスクトップ型パーソナルコンピュータである。なお、予測装置100は、デスクトップ型パーソナルコンピュータのような据置型情報処理装置に限らず、市販されているノート型パーソナルコンピュータ、PDA(Personal Digital Assistants)、スマートフォン、タブレット型パーソナルコンピュータなどの携帯型情報処理装置であってもよい。 The prediction device 100 is a commercially available desktop personal computer. The prediction device 100 is not limited to a stationary information processing device such as a desktop personal computer, but is portable information such as a commercially available notebook personal computer, a PDA (Personal Digital Assistants), a smartphone, and a tablet personal computer. It may be a processing device.
 予測装置100は、制御部102と通信インターフェース部104と記憶部106と入出力インターフェース部108と、を備えている。予測装置100が備えている各部は、任意の通信路を介して通信可能に接続されている。 The prediction device 100 includes a control unit 102, a communication interface unit 104, a storage unit 106, and an input / output interface unit 108. Each part of the prediction device 100 is communicably connected via an arbitrary communication path.
 通信インターフェース部104は、ルータ等の通信装置および専用線等の有線または無線の通信回線を介して、予測装置100をネットワーク300に通信可能に接続する。通信インターフェース部104は、他の装置と通信回線を介してデータを通信する機能を有する。ここで、ネットワーク300は、予測装置100とサーバ装置200とを相互に通信可能に接続する機能を有し、例えばインターネットやLAN(Local Area Network)等である。 The communication interface unit 104 connects the prediction device 100 to the network 300 so as to be communicable via a communication device such as a router and a wired or wireless communication line such as a dedicated line. The communication interface unit 104 has a function of communicating data with another device via a communication line. Here, the network 300 has a function of connecting the prediction device 100 and the server device 200 so as to be able to communicate with each other, and is, for example, the Internet or a LAN (Local Area Network).
 入出力インターフェース部108には、入力装置112および出力装置114が接続されている。出力装置114には、モニタ(家庭用テレビを含む)の他、スピーカやプリンタを用いることができる。入力装置112には、キーボード、マウス、及びマイクの他、マウスと協働してポインティングデバイス機能を実現するモニタを用いることができる。なお、以下では、出力装置114をモニタ114とし、入力装置112をキーボード112またはマウス112として記載する場合がある。 An input device 112 and an output device 114 are connected to the input / output interface unit 108. As the output device 114, a speaker or a printer can be used in addition to a monitor (including a home television). As the input device 112, in addition to a keyboard, a mouse, and a microphone, a monitor that cooperates with the mouse to realize a pointing device function can be used. In the following, the output device 114 may be referred to as a monitor 114, and the input device 112 may be referred to as a keyboard 112 or a mouse 112.
 記憶部106には、各種のデータベース、テーブルおよびファイルなどが格納される。記憶部106には、OS(Operating System)と協働してCPU(Central Processing Unit)に命令を与えて各種処理を行うためのコンピュータプログラムが記録される。記憶部106として、例えば、RAM(Random Access Memory)・ROM(Read Only Memory)等のメモリ装置、ハードディスクのような固定ディスク装置、フレキシブルディスク、および光ディスク等を用いることができる。 Various databases, tables, files, etc. are stored in the storage unit 106. In the storage unit 106, a computer program for giving a command to a CPU (Central Processing Unit) in cooperation with an OS (Operating System) to perform various processes is recorded. As the storage unit 106, for example, a memory device such as a RAM (Random Access Memory) or a ROM (Read Only Memory), a fixed disk device such as a hard disk, a flexible disk, an optical disk, or the like can be used.
 記憶部106は、例えば、相対存在比データ106aと、含量データ106bと、を備えている。なお、相対存在比データ106aと含量データ106bは、サーバ装置200に格納されてもよい。 The storage unit 106 includes, for example, relative abundance ratio data 106a and content data 106b. The relative abundance data 106a and the content data 106b may be stored in the server device 200.
 相対存在比データ106aは、ステップSA1で取得された前記相対存在比を格納する。含量データ106bは、ステップSA1で取得された前記含量を格納する。 The relative abundance data 106a stores the relative abundance acquired in step SA1. The content data 106b stores the content obtained in step SA1.
 制御部102は、予測装置100を統括的に制御するCPU等である。制御部102は、OS等の制御プログラム・各種の処理手順等を規定したプログラム・所要データなどを格納するための内部メモリを有し、格納されているこれらのプログラムに基づいて種々の情報処理を実行する。 The control unit 102 is a CPU or the like that comprehensively controls the prediction device 100. The control unit 102 has an internal memory for storing a control program such as an OS, a program that defines various processing procedures, required data, and the like, and performs various information processing based on these stored programs. Execute.
 制御部102は、機能概念的に、例えば、予測対象から採取された便検体中のユーバクテリウム・レクタル、クリステンセネラ属に属する細菌、セリモナス属に属する細菌、パラバクテロイデス属に属する細菌、エリスピロトリクス属に属する細菌、クロストリジウムXIII AD3011 属に属する細菌、ラクノスピラ UCG−001属に属する細菌、ラクノスピラ UCG−003属に属する細菌、ファエカリタレア属に属する細菌、アリスティペス属に属する細菌、アナエロスティペス属に属する細菌、ルミノコッカス1属に属する細菌およびルミノコッカス2属に属する細菌のうちの少なくとも一つの細菌の前記便検体中における相対存在比ならびに前記便検体中のN,N−ジメチルグリシン、酪酸、アスパラギンおよび3−ヒドロキシ酪酸のうちの少なくとも一つの代謝物質の所定量の前記便検体中における含量のうちの少なくとも一つに基づいて、前記予測対象について、ビフィドバクテリウム・ロンガム摂取による腸内環境の改善効果または便状態の改善効果についての予測を行う予測手段としての予測部102aを備えている。 The control unit 102 functionally conceptually, for example, eubacterium rectal, a bacterium belonging to the genus Kristensenera, a bacterium belonging to the genus Serimonas, a bacterium belonging to the genus Parabacteroides, and Ellis in a stool sample collected from a prediction target. Bacteria belonging to the genus Pyrotricus, bacteria belonging to the genus Clostridium XIII AD3011, bacteria belonging to the genus Lacnospira UCG-001, bacteria belonging to the genus Lacnospira UCG-003, bacteria belonging to the genus Faecalitalea, bacteria belonging to the genus Aristipes, Anaerosty The relative abundance ratio of at least one bacterium belonging to the genus Pess, the bacterium belonging to the genus Luminococcus 1 and the bacterium belonging to the genus Luminococcus 2 in the stool sample, and N, N-dimethylglycine in the stool sample, Based on at least one of the contents of at least one metabolite of butyric acid, asparagine and 3-hydroxybutyric acid in the stool sample in a predetermined amount, for the predicted subject, the intestine by ingestion of Bifidobacterium longum It is provided with a prediction unit 102a as a prediction means for predicting the effect of improving the internal environment or the effect of improving the stool condition.
他の実施形態
 本発明は、上述した実施形態以外にも、特許請求の範囲に記載した技術的思想の範囲内において種々の異なる実施形態にて実施されてよいものである。
Other Embodiments In addition to the above-described embodiments, the present invention may be implemented in various different embodiments within the scope of the technical idea described in the claims.
 例えば、実施形態において説明した各処理のうち、自動的に行われるものとして説明した処理の全部または一部を手動的に行うこともでき、あるいは、手動的に行われるものとして説明した処理の全部または一部を公知の方法で自動的に行うこともできる。 For example, of each of the processes described in the embodiments, all or part of the processes described as being automatically performed may be performed manually, or all of the processes described as being performed manually. Alternatively, a part thereof can be automatically performed by a known method.
 また、本明細書中や図面中で示した処理手順、制御手順、具体的名称、各処理の登録データや検索条件等のパラメータを含む情報、画面例、データベース構成については、特記する場合を除いて任意に変更することができる。 In addition, the processing procedure, control procedure, specific name, information including parameters such as registration data and search conditions of each processing, screen examples, and database configuration shown in this specification and drawings are not specified unless otherwise specified. Can be changed arbitrarily.
 また、予測装置100に関して、図示の各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。 Further, with respect to the prediction device 100, each component shown in the figure is a functional concept and does not necessarily have to be physically configured as shown in the figure.
 例えば、予測装置100が備える処理機能、特に制御部にて行われる各処理機能については、その全部または任意の一部を、CPUおよび当該CPUにて解釈実行されるプログラムにて実現してもよく、また、ワイヤードロジックによるハードウェアとして実現してもよい。尚、プログラムは、本実施形態で説明した処理を情報処理装置に実行させるためのプログラム化された命令を含む一時的でないコンピュータ読み取り可能な記録媒体に記録されており、必要に応じて予測装置100に機械的に読み取られる。すなわち、ROMまたはHDD(Hard Disk Drive)などの記憶部などには、OSと協働してCPUに命令を与え、各種処理を行うためのコンピュータプログラムが記録されている。このコンピュータプログラムは、RAMにロードされることによって実行され、CPUと協働して制御部を構成する。 For example, with respect to the processing functions included in the prediction device 100, particularly each processing function performed by the control unit, all or any part thereof may be realized by the CPU and a program interpreted and executed by the CPU. Also, it may be realized as hardware by wired logic. The program is recorded on a non-temporary computer-readable recording medium including a programmed instruction for causing the information processing apparatus to execute the processing described in the present embodiment, and the prediction apparatus 100 is required. Is read mechanically. That is, in a storage unit such as a ROM or an HDD (Hard Disk Drive), a computer program for giving instructions to the CPU in cooperation with the OS and performing various processes is recorded. This computer program is executed by being loaded into RAM, and constitutes a control unit in cooperation with a CPU.
 また、このコンピュータプログラムは、予測装置100に対して任意のネットワークを介して接続されたアプリケーションプログラムサーバに記憶されていてもよく、必要に応じてその全部または一部をダウンロードすることも可能である。 Further, this computer program may be stored in an application program server connected to the prediction device 100 via an arbitrary network, and all or a part thereof can be downloaded as needed. ..
 また、本実施形態で説明した処理を実行するためのプログラムを、一時的でないコンピュータ読み取り可能な記録媒体に格納してもよく、また、プログラム製品として構成することもできる。ここで、この「記録媒体」とは、メモリーカード、USB(Universal Serial Bus)メモリ、SD(Secure Digital)カード、フレキシブルディスク、光磁気ディスク、ROM、EPROM(Erasable Programmable Read Only Memory)、EEPROM(登録商標)(Electrically Erasable and Programmable Read Only Memory)、CD−ROM(Compact Disk Read Only Memory)、MO(Magneto−Optical disk)、DVD(Digital Versatile Disk)、および、Blu−ray(登録商標) Disc等の任意の「可搬用の物理媒体」を含むものとする。 Further, the program for executing the process described in the present embodiment may be stored in a non-temporary computer-readable recording medium, or may be configured as a program product. Here, the "recording medium" includes a memory card, a USB (Universal Serial Bus) memory, an SD (Secure Digital) card, a flexible disk, a magneto-optical disk, a ROM, an EPROM (Erasable Program Read Only Memory), and an EPROM (registered). Trademarks) (Electrically Erasable and Programmable Read Only Memory), CD-ROM (Compact Disk Read Only Memory), MO (Magnet-Optical Red, Digital, Digital, Digital, Digital, Digital, Digital, Disk) It shall include any "portable physical medium".
 また、「プログラム」とは、任意の言語または記述方法にて記述されたデータ処理方法であり、ソースコードまたはバイナリコード等の形式を問わない。なお、「プログラム」は必ずしも単一的に構成されるものに限られず、複数のモジュールやライブラリとして分散構成されるものや、OSに代表される別個のプログラムと協働してその機能を達成するものをも含む。なお、実施形態に示した各装置において記録媒体を読み取るための具体的な構成および読み取り手順ならびに読み取り後のインストール手順等については、周知の構成や手順を用いることができる。 A "program" is a data processing method described in any language or description method, regardless of the format such as source code or binary code. The "program" is not necessarily limited to a single program, but is distributed as a plurality of modules or libraries, or cooperates with a separate program represented by the OS to achieve its function. Including things. A well-known configuration and procedure can be used for a specific configuration and reading procedure for reading the recording medium in each device shown in the embodiment, an installation procedure after reading, and the like.
 記憶部に格納される各種のデータベース等は、RAM、ROM等のメモリ装置、ハードディスク等の固定ディスク装置、フレキシブルディスク、および、光ディスク等のストレージ手段であり、各種処理やウェブサイト提供に用いる各種のプログラム、テーブル、データベース、および、ウェブページ用ファイル等を格納する。 Various databases and the like stored in the storage unit are memory devices such as RAM and ROM, fixed disk devices such as hard disks, flexible disks, and storage means such as optical disks, and are used for various processes and website provision. Stores programs, tables, databases, files for web pages, etc.
 また、予測装置100は、既知のパーソナルコンピュータまたはワークステーション等の情報処理装置として構成してもよく、また、任意の周辺装置が接続された当該情報処理装置として構成してもよい。また、予測装置100は、当該装置に本実施形態で説明した処理を実現させるソフトウェア(プログラムまたはデータ等を含む)を実装することにより実現してもよい。 Further, the prediction device 100 may be configured as an information processing device such as a known personal computer or workstation, or may be configured as the information processing device to which an arbitrary peripheral device is connected. Further, the prediction device 100 may be realized by mounting software (including a program or data) that realizes the processing described in the present embodiment on the device.
 更に、装置の分散・統合の具体的形態は図示するものに限られず、その全部または一部を、各種の付加等に応じてまたは機能負荷に応じて、任意の単位で機能的または物理的に分散・統合して構成することができる。すなわち、上述した実施形態を任意に組み合わせて実施してもよく、実施形態を選択的に実施してもよい。 Furthermore, the specific form of distribution / integration of the device is not limited to that shown in the figure, and all or part of the device is functionally or physically in any unit according to various additions or functional loads. It can be distributed and integrated. That is, the above-described embodiments may be arbitrarily combined and implemented, or the embodiments may be selectively implemented.
 以下、本発明の実施例について説明するが、本発明は、以下の実施例1および2に限定されない。なお、以下の実施例1および2においては、統計解析は、次段落で説明する方法で行った。 Hereinafter, examples of the present invention will be described, but the present invention is not limited to the following Examples 1 and 2. In Examples 1 and 2 below, the statistical analysis was performed by the method described in the next paragraph.
 全ての統計解析は、Pythonを用いて実行した。alpha多様性には、Shanonn Diversity Indexを使用し、beta多様性には、Spearman Correlation Coefficientを用いた。多次元尺度構成法(MDS)計算には、beta多様性を用いた。2群間比較検定にはWilcoxon−Mann−Whitney Testを用い、グループ間のトレンド検定にはJonckheere−Terpstra検定を用いた。多重検定補正にはFalse Discovery Rate(FDR)、およびBonferoni法を用い、FDRにはBH法を使用した。腸内細菌叢解析においては、Genus、Species、OTUレベルの系統組成データを使用した。この内、OTUレベル系統組成データは、alpha多様性の計算にのみ使用した。その他の統計解析には、Genusレベル系統組成データを使用した。Speciesレベル系統組成データは、レスポンダー予測にのみ使用した。代謝物質解析においては、Relative areaおよびContentのデータを使用した。Relative areaのデータは、alpha多様性の計算のみに使用した。Contentのデータは、その他の統計解析に使用した。 All statistical analyzes were performed using Python. Shannon Diversity Index was used for alpha diversity, and Spearman Correlation Cooperative was used for beta diversity. Beta diversity was used for multidimensional scaling (MDS) calculations. The Wilcoxon-Mann-Whitney Test was used for the two-group comparison test, and the Jonckheere-Terpstra test was used for the trend test between the groups. The False Discovery Rate (FDR) and Bonferoni methods were used for the multiple test correction, and the BH method was used for the FDR. In the gut flora analysis, lineage composition data at Genus, Species, and OTU levels were used. Of these, OTU level lineage composition data was used only for the calculation of alpha diversity. Genus level phylogenetic composition data were used for other statistical analyzes. Species level phylogenetic composition data was used only for responder prediction. In the metabolite analysis, data from Reactive area and Content were used. The Reactive area data was used only for the calculation of alpha diversity. Content data was used for other statistical analyzes.
[実施例1]相対存在比と便含量の確認
 実施例1では、以下の(7)で説明するように、ビフィドバクテリウム・ロンガム摂取による腸内環境の改善効果が大きい被験者においては、ルミノコッカス2属およびセリモナス属等の相対存在比が大きいことを確認し、逆に、ユーバクテリウム・レクタル等の相対存在比およびN,N−ジメチルグリシン等の便含量が小さいことを確認した。以下、実施例1で行った処理について詳細に説明する。
[Example 1] Confirmation of relative abundance ratio and stool content In Example 1, as described in (7) below, lumino was used in subjects who had a large effect of improving the intestinal environment by ingesting Bifidobacterium longum. It was confirmed that the relative abundance ratios of the genus Coccus 2 and the genus Serimonas were large, and conversely, the relative abundance ratios of Eubacterium and Rectal and the stool content of N, N-dimethylglycine and the like were small. Hereinafter, the processing performed in the first embodiment will be described in detail.
(1)被験者および食事情報
(1−1)被験者情報
 実施例1のコホートデザインを、図3に沿って説明する。まず、実施例1のコホートは50人の日本人から構成された。コホートに参加した50人の参加者から、試験直前の排便状況、年齢および男女比を考慮した選抜基準および選抜除外基準を満たす24人(MO01~MO24)が本試験へ選抜された(当該24人は、図3において、Assessed for eligibility(n=50)からExcluded(n=26)を差し引いた値であるRandomized(N=24)に対応する)。特に試験食が便秘に対して与える影響を調べるために、便秘の傾向がある参加者が優先的に選抜された。本試験の完了後、解析除外基準へ違反しなかった被験者20人(MO01~MO06、MO08~MO13、MO15~MO19およびMO22~MO24)が解析対象へ選抜された(当該20人は、図3において、Analyzed(n=11)とAnalyzed(n=9)とを足した値に対応する)。なお、解析対象へ選抜された当該20人の内訳の詳細については、図4に示す。また、前記選抜基準、前記選抜除外基準および前記解析除外基準の詳細については、それぞれ、以下の(2−1)、(2−2)および(2−3)に示す。
(1) Subject and Meal Information (1-1) Subject Information The cohort design of Example 1 will be described with reference to FIG. First, the cohort of Example 1 consisted of 50 Japanese. From the 50 participants who participated in the cohort, 24 (MO01 to MO24) who met the selection criteria and selection exclusion criteria considering the defecation status, age and gender ratio immediately before the study were selected for this study (the 24 concerned). Corresponds to Randomized (N = 24), which is the value obtained by subtracting Excluded (n = 26) from Assessed for elegance (n = 50) in FIG. 3). Participants who were prone to constipation were preferentially selected, especially to investigate the effect of the test diet on constipation. After the completion of this study, 20 subjects (MO01 to MO06, MO08 to MO13, MO15 to MO19, and MO22 to MO24) who did not violate the analysis exclusion criteria were selected for analysis (the 20 subjects are shown in FIG. 3). , Corresponds to the sum of Analyzed (n = 11) and Analyzed (n = 9)). The details of the breakdown of the 20 persons selected for analysis are shown in FIG. The details of the selection criteria, the selection exclusion criteria, and the analysis exclusion criteria are shown in (2-1), (2-2), and (2-3) below, respectively.
(1−2)試験食情報
 試験食としては、ビフィドバクテリウム・ロンガム(Bifidobacterium longum) BB536株が1食あたりおよそ5.0×10個封入されたカプセルを用いた。1食あたりの重量は0.53gであった。前記カプセルは直径が約2.4mmの球状であり、耐酸性pH依存崩壊能を付与した皮膜(外皮膜)と、胃酸などの通過に対するバリアー機能を向上する保護層(内皮膜)の二つの皮膜により構成されている。前記カプセルに封入されたB.longum BB536株の、pH 1.2へ調整された人工的な胃液中における2時間生存率は約90%程度となることが報告されている(Kohno M,et al.,Application of enteric seamless capsules containing Bifidobacterium longum to functional foods.Nihon Yakurigaku Zasshi Folia Pharmacol Jpn 2016;148:310−4.)。胃を通過したカプセルは、小腸においてpHが中性となることで最外層である耐酸性pH依存崩壊膜が崩壊する。続けて胆汁酸の界面活性作用とリパーゼによる消化作用、腸管運動による物理刺激などにより、中間層である硬化油脂層が溶解あるいは崩壊し、内部の菌粉末が放出される。放出された菌粉末は腸内の水分により復水することで、増殖し活発に作用することが報告されている(Asada M et al.,Seamless Capsule Entrapped Living Microorganisms,Seibutu−kougaku kaishi,2009,87,3,p123−128)。
(1-2) The test diet information test meal, with Bifidobacterium longum (Bifidobacterium longum) BB536 strain per meal approximately 5.0 × 10 9 cells encapsulated capsules. The weight per serving was 0.53 g. The capsule is spherical with a diameter of about 2.4 mm, and has two coatings: a coating (outer coating) that imparts acid-resistant pH-dependent disintegration ability and a protective layer (inner coating) that improves the barrier function against the passage of gastric acid and the like. It is composed of. B. Encapsulated in the capsule. It has been reported that the 2-hour survival rate of the longum BB536 strain in artificial gastric juice adjusted to pH 1.2 is about 90% (Kohno M, et al., Application of entry-based capsules coating). Bifidobacterium longum to functional foods. Nihon Yakurigaku Zassi Pharmacology Jpn 2016; 148: 310-4.). When the pH of the capsule that has passed through the stomach becomes neutral in the small intestine, the outermost layer, the acid-resistant pH-dependent disintegrating membrane, collapses. Subsequently, the surface-active action of bile acids, the digestive action of lipase, and the physical stimulation of intestinal motility dissolve or disintegrate the hardened fat layer, which is the intermediate layer, and release the bacterial powder inside. It has been reported that the released bacterial powder proliferates and acts actively by being rehydrated by the water in the intestine (Asada M et al., Seamless Capsule Organisms, Seibutu-kougaku kaishi, 2009). , 3, p123-128).
(1−3)対照食情報
 対照食としては、澱粉粉末のみが封入された同一のカプセルを用いた。なお、前記試験食と前記対照食のエネルギー、タンパク質、脂質、炭水化物量およびナトリウム量は、等価となるように調整された。
(1-3) Control food information As the control food, the same capsule containing only starch powder was used. The energy, protein, lipid, carbohydrate amount and sodium amount of the test meal and the control meal were adjusted to be equivalent.
(2)補足情報:被験者の特徴および除外基準
 実施例1の実施は、倫理委員会の承認を得た後に、株式会社CPCCへ依頼した。試験の内容を十分に説明した上で、被験者からは書面にて自由意志による試験への参加の同意を得た。前記選抜基準、前記選抜除外基準および前記解析除外基準の詳細は、以下のとおりである。
(2) Supplementary information: Subject characteristics and exclusion criteria Implementation of Example 1 was requested to CPCC Co., Ltd. after obtaining the approval of the Ethics Committee. After fully explaining the contents of the test, the subjects consented in writing to participate in the test voluntarily. The details of the selection criteria, the selection exclusion criteria, and the analysis exclusion criteria are as follows.
(2−1)選抜基準
 以下の選抜基準1~2のいずれも満たす者が、被験者として選抜された。
1.前記同意取得時に40歳以上60歳未満の成人である者
2.排便回数が週辺り3~5回、あるいは、週7回以上である者
(2-1) Selection Criteria Those who meet all of the following selection criteria 1 and 2 were selected as subjects.
1. 1. Those who are adults between the ages of 40 and 60 at the time of obtaining the consent. Those who defecate 3 to 5 times a week or 7 times or more a week
(2−2)選抜除外基準
 また、(2−1)で選抜された者のうち、以下の選抜除外基準1~10のいずれかに該当する者は、被験者から除外された。
1.試験開始半年以内に開腹手術をした者
2.試験開始半年以内に抗生物質を一週間以上服用した者
3.試験食品へアレルギーを有する者
4.試験期間中に大幅に生活スタイルが変わる予定のある者
5.慢性的に下痢をし易い体質の者
6.顕著な肝機能障害、胃機能障害および心血管系疾患等の既往歴を有する者
7.慢性あるいは急性の感染症の疑いのある者
8.妊娠中、授乳中、または妊娠している可能性のある者
9.過去一ヶ月以内のその他の治験へ参加した者
10.その他の試験責任医師が不適当と判断した者
(2-2) Selection Exclusion Criteria In addition, among those selected in (2-1), those who meet any of the following selection exclusion criteria 1 to 10 were excluded from the subjects.
1. 1. Those who underwent laparotomy within 6 months after the start of the test 2. Those who took antibiotics for more than a week within 6 months after the start of the test. Those who are allergic to test foods 4. Those who plan to change their lifestyle significantly during the test period 5. Persons with a constitution that is prone to chronic diarrhea 6. Persons with a history of significant liver dysfunction, gastric dysfunction, cardiovascular disease, etc. 7. Persons suspected of having a chronic or acute infection 8. 9. Those who are pregnant, breastfeeding, or may be pregnant. Those who participated in other clinical trials within the past month 10. Those who are deemed inappropriate by other investigators
 このように選抜された被験者24人(MO01~MO24)は、試験開始直前の2週間にわたって排便動態の観察を受け、排便回数が週辺り3~5回、あるいは週7回以上であることを確認された。 Twenty-four subjects (MO01 to MO24) selected in this way were observed for defecation dynamics for two weeks immediately before the start of the test, and confirmed that the number of defecations was 3 to 5 times per week or 7 times or more per week. Was done.
(2−3)解析除外基準
 本試験を終了した被験者24人(MO01~MO24)のうち、以下の解析除外基準1~6のいずれかに該当する者は、解析対象から除外された。
1.前記選抜除外基準に抵触すると判断された者
2.試験食品の接種率が80%未満の者
3.食事記録の内容変動が大きい者、または、記録から変動がないことが確認できない者
4.生活日誌の内容変動が大きい者、または、記録から変動がないことが確認できない者
5.本試験に影響を及ぼす可能性があるとして禁止した医薬品、特定保健用食品、機能性表示食品、サプリメントまたはダイエット食品等を継続または繰り返し摂取した者
6.その他の理由により、試験責任医師が解析対象者として不適当と判断した者
 そして、除外後の被験者20人(MO01~MO06、MO08~MO13、MO15~MO19およびMO22~MO24)が解析対象へ選抜された。
(2-3) Analysis Exclusion Criteria Among the 24 subjects (MO01 to MO24) who completed this study, those who met any of the following analysis exclusion criteria 1 to 6 were excluded from the analysis target.
1. 1. Those who are judged to be in conflict with the above selection exclusion criteria 2. Those with a test food inoculation rate of less than 80% 3. Those who have large fluctuations in the contents of meal records, or those who cannot confirm that there are no fluctuations from the records. Those who have large fluctuations in the contents of their life diary, or those who cannot confirm that there is no fluctuation from the records. 6. Those who have continuously or repeatedly ingested medicines, foods for specified health use, foods with functional claims, supplements or diet foods, etc. that may affect this study. Those who were judged by the investigator to be unsuitable for analysis for other reasons, and 20 excluded subjects (MO01 to MO06, MO08 to MO13, MO15 to MO19, and MO22 to MO24) were selected for analysis. It was.
(3)試験デザインおよびサンプル回収
(3−1)試験デザイン
 本試験は、ランダム化二重盲検クロスオーバー試験に基づいて、図5に示すスケジュールで実施された。具体的には、まず、前記選抜基準および前記選抜除外基準を通過した24人の被験者が、無作為に2群(12人ずつ)に分けられた。そして、一方の群の被験者は、初めに前記試験食(図5では、Test food)を経口摂取し、ウォッシュアウト期間(図5では、Washout)を挟んで、続いて前記対照食(図5では、Placebo food)を経口摂取した。もう一方の群の被験者は、その逆の順番で摂取した。被験者の摂取期間は、図5に示すように、前記試験食と前記対照食ともに2週間であり、洗浄期間は4週間であった。
(3) Study design and sample collection (3-1) Test design This study was conducted according to the schedule shown in FIG. 5 based on a randomized, double-blind crossover study. Specifically, first, 24 subjects who passed the selection criteria and the selection exclusion criteria were randomly divided into two groups (12 each). Then, the subjects in one group first orally ingested the test food (Test food in FIG. 5), sandwiched a washout period (Washout in FIG. 5), and subsequently the control food (in FIG. 5). , Placebo food) was orally ingested. Subjects in the other group ingested in the reverse order. As shown in FIG. 5, the intake period of the subject was 2 weeks for both the test meal and the control meal, and the washing period was 4 weeks.
 各被験者は1日1食の前記試験食または前記対照食を、水とともに自由なタイミングで摂取した。摂取されるまでに、前記試験食または前記対照食は各被験者により常温で保存された。被検者の試験期間中の活動は、個人毎に1日1回のアンケートへ記載された。アンケートには、生活状態、食事および排便状態が記載された。なお、被検者には、以下の1~6を通達した。
1.乳酸菌やビフィズス菌を多く含む飲料または食品の摂取を禁止すること
2.食物繊維やオリゴ糖を多く含む飲料または食品の摂取を禁止すること
3.サプリメントの摂取を禁止すること
4.機能性ヨーグルトの摂取を禁止すること
5.納豆の摂取を避けること、摂取した場合には前記アンケートに記載すること
6.健康食品の摂取を避けること、摂取した場合には前記アンケートに記載すること
Each subject ingested the test meal or the control meal once a day with water at any time. By the time they were ingested, the test meal or control meal was stored at room temperature by each subject. The subjects' activities during the study period were described in a daily questionnaire for each individual. The questionnaire included living conditions, diet and defecation status. The subjects were notified of the following 1 to 6.
1. 1. Prohibit the intake of beverages or foods high in lactic acid bacteria and bifidobacteria. 2. Prohibit the intake of beverages or foods high in dietary fiber and oligosaccharides. Prohibit the intake of supplements 4. Prohibit the intake of functional yogurt 5. Avoid ingestion of natto, and if ingested, describe in the above questionnaire. Avoid ingestion of health foods, and if ingested, describe in the above questionnaire
(3−2)サンプル回収
 各被検者からは、前記試験食または前記対照食の摂取前1日から6日の間、摂取開始後7日から13日の間および摂取終了後1日から7日の間に、便検体が採集された。つまり、図5においてPlacebofood→Testfoodの順番の群(上の群)の場合、図5にP→Tで示すように、左から順に、P1、P2、P3、T1、T2およびT3の6点で便検体を採取した。一方で、図5においてTestfood→Placebofoodの順番の群(下の群)の場合、図5にT→Pで示すように、左から順に、T1、T2、T3、P1、P2およびP3の6点で便検体を採取した。前記採取した便検体は、被験者個人により、採便シート「ナガセール」(オザックス社製)を便器内に敷き、採便チューブ「Faeces container 54 x 28 mm」(ザルスタット社製)を用いて自宅で採集された。採取後は速やかに家庭用冷凍庫に保管され、採取された便は冷凍輸送により回収された。
(3-2) Sample collection From each subject, 1 to 6 days before ingestion of the test meal or the control meal, 7 to 13 days after the start of ingestion, and 1 to 7 days after the end of ingestion. During the day, stool samples were collected. That is, in the case of the group in the order of Placebood → Testhood (upper group) in FIG. 5, as shown by P → T in FIG. 5, the six points P1, P2, P3, T1, T2 and T3 are arranged in order from the left. A stool sample was collected. On the other hand, in the case of the group in the order of Testhood → Placebood (lower group) in FIG. 5, as shown by T → P in FIG. 5, 6 points of T1, T2, T3, P1, P2 and P3 are in order from the left. A stool sample was collected at. The collected stool sample was collected at home by an individual subject using a stool collection sheet "Nagasale" (manufactured by Ozax) in the toilet bowl and a stool collection tube "Faces container 54 x 28 mm" (manufactured by Zalstat). Was done. Immediately after collection, it was stored in a domestic freezer, and the collected stool was collected by freezing transportation.
(4)排便レスポンダーの決定
 被験者ごとに記録された経時的なアンケート情報に基づいて、前記試験食により排便活動の向上が確認された被験者(レスポンダー)を推定した。前記試験食の効果は、主に排便時間隔が短縮したことを基準に判断したが、その他(排便回数および排便確率等)についても統計モデルを用いて評価した。排便時間隔の短縮に基づく判断の仕方の詳細は、以下の(4−1)で説明し、排便回数および排便確率に基づく判断の仕方の詳細は、以下の(4−2)で説明し、排便レスポンダーの決定は、以下の(4−3)で説明する。
(4) Determination of defecation responder Based on the questionnaire information recorded for each subject over time, the subjects (responders) whose defecation activity was confirmed to be improved by the test meal were estimated. The effect of the test meal was judged mainly based on the shortening of the defecation time interval, but other factors (number of defecations, defecation probability, etc.) were also evaluated using a statistical model. The details of the judgment method based on the shortening of the defecation time interval will be explained in (4-1) below, and the details of the judgment method based on the number of defecations and the defecation probability will be explained in (4-2) below. The determination of the defecation responder will be described in (4-3) below.
(4−1)排便時間隔の短縮に基づく判断の仕方の詳細
 排便時間の短縮を確認するために、統計モデルを構築した。このモデルでは、排便活動が時間の経過と共に発生しやすくなることに着目し、個人毎の排便時間隔をワイブル分布でモデル化した。ワイブル分布は、生存時間に対する薬の影響を調べるために広く使われている分布で、形状パラメータと尺度パラメータを持つ。服食の効果は、比例ハザードモデルを基に推定した(Mudholkar GS et al.,A Generalization of the Weibull Distribution with Application to the Analysis of Survival Data,Journal of the American Statistical Association,1996,91,436,p1575−1583)。このモデルでは、時間tにおける共変量の影響が基準状態におけるハザード関数へ積として発生することを仮定する。以下に数式1を示す。
(4-1) Details of judgment method based on shortening of defecation time interval A statistical model was constructed to confirm the shortening of defecation time. In this model, we focused on the fact that defecation activity tends to occur over time, and modeled the defecation time interval for each individual with a Weibull distribution. The Weibull distribution is a widely used distribution for investigating the effect of drugs on survival time and has shape and scale parameters. The effect of eating and drinking was estimated based on a proportional hazard model (Mudholkar GS et al., A Generalization of the Weibull Distribution with Application to the American StatisAvi. -1583). In this model, it is assumed that the effect of the covariate at time t occurs as a product to the hazard function in the reference state. Formula 1 is shown below.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、ハザード関数とは、ある時刻tを起点に微小時間Δtだけ経過した後に事象が発生する確率を表す関数である。すなわち、本試験においては、前記試験食の摂取の影響といった排便時間に付随する共変量の効果が、通常状態におけるハザード関数に対する積として発生し、排便活動の発生確率が変化すると仮定した。この仮定は、観測期間を通してハザード関数が服食以外から変化しないことと等価である。今回のコホートのような食品摂取が厳密に制限されている状態では、腸内の状態が安定であるという経験則により裏付けられる。実際にはモデル中のワイブル分布におけるパラメータや服食の効果は未知である。このような数値は、観測されたデータから推定した。今回得られた排便の記録は時間データではなく、一日あたりの排便回数のデータであった。そのため24時間をその排便回数で割ることにより、各排便活動の推定時間隔を計算した。この不正確性をモデルに組み込むことで、より正確な推定が可能となるが、今回は、説明を簡便にするために省略した。特記すべき事項として、1人の被験者は全観測期間85日間を通して排便が常に1日1回発生したため、値が常に24時間/回となってしまった。この値はモデルの推定に不適当であり、明らかに排便レスポンダーでは無かったため解析対象から除外した。更に観測されたデータからは、モデル中のパラメータへ個人差があるのか全体で共通なのか明らかでは無かったため、Widely applicable information criterion(WAIC)を用いてモデルを比較した(Watanabe S.,Asymptotic Equivalence of Bayes Cross Validation and Widely Applicable Information Criterion in Singular Learning Theory,Journal of Machine Learning Research,2010,11,p3571−3594)。WAICはAIC等の先行指標と比較が可能となるように、汎化損失の2n倍を使って計算された(Gelman A et al.,Understanding predictive information criteria for Bayesian models,Statistics and Computing,2013,24,6,p997−1016)。WAICやAICはモデルの未知データに対する予測の誤差(汎化誤差)を近似するものであり、特にWAICはパラメータの事後分布が正規分布で近似できないような特異モデルに対しても利用することが可能である。データに対するパラメータの推定は、PythonとStanを用いたNUTSアルゴリズムによるマルコフ連鎖モンテカルロ法(MCMC法)により達成した(Carpenter B et al.,Stan:A Probabilistic Programming Language,Journal of Statistical Software,2017,76,1,https://doi.org/10.18637/jss.v076.i01)。MCMC法によるワイブル分布の一般化線形モデルには先行研究による報告がある(Dellaportas P et al.,Bayesian Inference for Generalized Linear and Proportional Hazards Models via Gibbs Sampling,Applied Statistics,1993,42,3,p443−459)。Pythonの実装にはminicondaを用いて、バージョンは4.3.1(Pythonのバージョンは3.6.1)であった。StanのインターフェイスであるPyStanのバージョンは2.16.0を利用した。MCMCの繰り返しステップ数は3000回で、chain数は8とし、繰り返しの最初1000回はwarmupとして計算から除外した。MCMCの収束は、先行研究に従い、潜在的尺度縮小因子(potential scale reduction factor;PSRF or Rhat)が全ての推定値で1.1以下であることから確認した(Brooks SP et al.,General Methods for Monitoring Convergence of Iterative Simulations,Journal of Computational and Graphical Statistics:A Joint Publication of American Statistical Association,Institute of Mathematical Statistics,Interface Foundation of North America,1998,7,4,p434−455)。Rhatは複数のMCMC鎖の分散を元にして計算され、推定の収束判定へ使われる。その他のパラメータには初期値を用いた。 Here, the hazard function is a function that expresses the probability that an event will occur after a minute time Δt has elapsed from a certain time t as a starting point. That is, in this test, it was assumed that the effect of covariates associated with defecation time, such as the effect of ingestion of the test meal, occurs as a product of the hazard function in the normal state, and the probability of occurrence of defecation activity changes. This assumption is equivalent to the fact that the hazard function does not change except for eating during the observation period. This is supported by the rule of thumb that the intestinal condition is stable in conditions where food intake is strictly restricted, such as in this cohort. In reality, the parameters and the effect of eating on the Weibull distribution in the model are unknown. Such numbers were estimated from the observed data. The defecation record obtained this time was not time data but data on the number of defecations per day. Therefore, the estimated time interval of each defecation activity was calculated by dividing 24 hours by the number of defecations. By incorporating this inaccuracy into the model, more accurate estimation is possible, but this time it is omitted for the sake of simplicity. It should be noted that one subject always had defecation once a day for the entire observation period of 85 days, so the value was always 24 hours / time. This value was inappropriate for model estimation and was clearly not a defecation responder, so it was excluded from the analysis. Furthermore, from the observed data, it was not clear whether there were individual differences in the parameters in the model or whether they were common to the whole, so the models were compared using the Widely applicable information criteria (WAIC) (Watanabe S., Cross-validation). Bayes Cross Validation and Widay Applicable Information Creation in Singular Learning Theory, Journal of Machine Learning Research, 2010, 11, p3571. WAIC was calculated using 2n times the generalization loss so that it can be compared with leading indicators such as AIC (Gelman A et al., Understanding predative information criterion criteria for Bayesian models, Station2 , 6, p997-1016). WAIC and AIC approximate the prediction error (generalization error) for unknown data of the model, and WAIC in particular can be used for singular models in which the posterior distribution of parameters cannot be approximated by a normal distribution. Is. The estimation of the parameters for the data was achieved by the Markov chain Monte Carlo method (MCMC method) by the NUTS algorithm using Python and Stan (Carpenter B et al., Stan: A Public Programming Language, Journal of Statistical Software17, Statistical Software 17 1, https: //doi.org/10.18637/jss.v076.i01). There is a report from a previous study on a generalized linear model of the Weibull distribution by the MCMC method (Dellaportas P et al., Bayesian Information for Generalized Liner and Proportional Hazards Models, Gibbs Via Gibbs3, Gibbs sampling, ). Miniconda was used to implement Python, and the version was 4.3.1 (Python version was 3.6.1). The version of PyStan, which is the interface of Stan, used 2.1.6. The number of repetition steps of MCMC was 3000, the number of chains was 8, and the first 1000 repetitions were excluded from the calculation as warmup. Convergence of MCMC was confirmed by the fact that the potential statistic reduction factor (PSRF or Rhat) was 1.1 or less in all the estimated values according to the previous study (Blocks SP et al., General Methods for). Monitoring Convergence of Iterative Simulations, Journal of Computational and Graphical Statistics: A Joint Publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America, 1998,7,4, p434-455). Rhat is calculated based on the variance of a plurality of MCMC chains and is used for the estimation convergence test. Initial values were used for other parameters.
(4−2)排便回数および排便確率に基づく判断の仕方の詳細
 排便動態を、排便回数および排便確率の基準について、以下のモデルで解析した。
(4-2) Details of the judgment method based on the number of defecations and the probability of defecation The dynamics of defecation were analyzed using the following model for the criteria of the number of defecations and the probability of defecation.
 排便回数については、ルールベースの方法と確率モデルベースの方法を用いた。ルールベースの方法では、平均排便回数に基づいてレスポンダーと非レスポンダーが推定出来ると仮定した。レスポンダーの定義は、次の2つの基準を両方満たすことであった。1つ目の基準は、前記試験食または前記対照食摂取期間中の平均排便回数を、1)試験食摂取期間直前の7日間、2)摂取前事前観察期間最後の1週間、3)前観察期間中および休止期間の平均排便回数とそれぞれ比較し、試験食摂取期間中の平均排便回数が何れの期間と比較しても増加していることであった。2つ目の基準は、1から3の何れの期間における比較でも、対照食の摂取時より試験食の平均排便回数の増加量が大きいことであった。確率モデルベースの方法では、個人毎の一日あたりの排便回数がポアソン分布でモデル化出来ると仮定した。ポアソン分布は回数のデータのモデル化をする時に利用される分布で、比率パラメータをただ一つだけ持つ。服食の効果は、摂取に応じて比率パラメータが変化すると仮定して推定した。以上の2つの手法に対しては、各被検者から得られたアンケートベースの排便回数を利用して、推定を行った。 For the number of defecations, the rule-based method and the probability model-based method were used. The rule-based method assumed that responders and non-responders could be estimated based on the average number of bowel movements. The definition of responder was to meet both of the following two criteria: The first criterion is the average number of defecations during the test meal or control meal intake period: 1) 7 days immediately before the test meal intake period, 2) the last week of the pre-intake pre-observation period, and 3) pre-observation. Compared with the average number of defecations during the period and the rest period, the average number of defecations during the test meal intake period was higher than any of the periods. The second criterion was that the increase in the average number of defecations of the test meal was larger than that of the control meal in the comparison in any of the periods 1 to 3. In the probabilistic model-based method, it was assumed that the number of defecations per day for each individual could be modeled by the Poisson distribution. The Poisson distribution is a distribution used when modeling data for the number of times, and has only one ratio parameter. The effect of eating was estimated assuming that the ratio parameter changed with intake. For the above two methods, the number of questionnaire-based defecations obtained from each subject was used for estimation.
 排便確率については、確率モデルベースの方法のみを用いた。この方法では、個人毎の一日毎の排便の発生がベルヌーイ分布でモデル化出来ると仮定した。ベルヌーイ分布はコインの裏表のような二者択一の選択肢の発生確率を表現する際に利用される分布で、確率パラメータをただ一つだけ持つ。服食の効果は、ロジスティック関数を通して摂取に応じて確率パラメータが変化すると仮定して推定した。この手法に対しては、排便回数のデータから、排便があれば1、無ければ0と一日毎の排便の有無のデータへ変換した。 For defecation probability, only the probability model-based method was used. In this method, it was assumed that the occurrence of daily defecation for each individual could be modeled by the Bernoulli distribution. The Bernoulli distribution is a distribution used to express the probability of occurrence of alternative options such as the front and back of a coin, and has only one probability parameter. The effect of eating was estimated by assuming that the stochastic parameter changes with intake through the logistic function. For this method, the data on the number of defecations was converted into data on the presence or absence of defecation on a daily basis, such as 1 if there was defecation and 0 if there was no defecation.
(4−3)排便レスポンダーの決定
 そして、摂取状況と対応した排便回数の変動傾向を調べた。この結果を図6に示す。図6は、被験者20人(MO01~MO06、MO08~MO13、MO15~MO19およびMO22~MO24)の1日あたりの排便回数を示す棒グラフである。図6において、縦軸は、1日あたりの排便回数を示し、横軸は、20人の被験者(MO01~MO06、MO08~MO13、MO15~MO19およびMO22~MO24)および全体平均(all)を示す。また、図6において、紫色の棒グラフは、試験食摂取期間(Test)を示し、緑色の棒グラフは、対照食摂取期間(Placebo)を示し、赤色の棒グラフは、前記試験食摂取期間および前記対照食摂取期間以外の期間である平常期間(None)を示し、青色の棒グラフは、前記平常期間(None)および前記対照食摂取期間(Placebo)を示す。また、図6においては、試験食非摂取期間(None;平常期間、Placebo;対照食摂取期間、None ∪ Placebo;平常期間または対照食摂取期間)対、試験食摂取期開(Test)でWilcoxon−Mann−Whitney Test(片側検定)を行った。
(4-3) Defecation responder determination Then, the fluctuation tendency of the number of defecations corresponding to the intake situation was investigated. The result is shown in FIG. FIG. 6 is a bar graph showing the number of defecations per day of 20 subjects (MO01 to MO06, MO08 to MO13, MO15 to MO19, and MO22 to MO24). In FIG. 6, the vertical axis shows the number of defecations per day, and the horizontal axis shows 20 subjects (MO01 to MO06, MO08 to MO13, MO15 to MO19 and MO22 to MO24) and the overall average (all). .. Further, in FIG. 6, the purple bar graph indicates the test food intake period (Test), the green bar graph indicates the control food intake period (Placebo), and the red bar graph indicates the test food intake period and the control food. The normal period (None), which is a period other than the intake period, is shown, and the blue bar graph shows the normal period (None) and the control diet intake period (Placebo). Further, in FIG. 6, the test meal non-ingestion period (None; normal period, Placebo; control food intake period, None ∪ Placebo; normal period or control food intake period) vs. the test meal intake period (Test), Wilcoxon- A Mann-Whitney Test (one-sided test) was performed.
 図6に示すように、被験者全体としては、None、および None ∪ Placebo に対してTest において有意に排便回数が増加した(pvalue None:0.0153,None & Placebo:0.0259)。また、図6に示すように、個人ごとには、MO04、MO10およびMO11において Noneに対して Test において有意に排便回数が増加した。そして、図6に示すように、MO04およびMO10については、None & Placebo に対しても Test において有意に排便回数が増加していたが、MO11については、None に対してPlacebo においても有意に排便回数が増加していた。 As shown in FIG. 6, as a whole subject, the number of defecations was significantly increased in Test with respect to None and None ∪ Placebo (pvalue None: 0.0153, None & Placebo: 0.0259). In addition, as shown in FIG. 6, for each individual, the number of defecations in MO04, MO10, and MO11 increased significantly in Test compared to None. As shown in FIG. 6, for MO04 and MO10, the number of defecations was significantly increased in Test for None & Placebo, but for MO11, the number of defecations was also significantly increased in Placebo for None. Was increasing.
 つまり、図6に示す結果を一言でいうならば、全体としては前記試験食の摂取時に有意に排便回数が増加していたが、個人ではその強度に差が存在した。我々はこの原因として、前記試験食の服用効果自体に個人差があり、特に効果が強く現れる被験者(レスポンダー)が存在することを仮説立てた。効果を定量化して仮説を検証するために、我々は前記試験食の主効果である便秘状態の改善に着目して、計測された排便頻度から個人毎の摂取効果を推定した。数理モデルは精密な効果の強度を推定するため、プラシーボ効果と前記試験食そのものの効果を織り交ぜて立式された。これらの値を確認することで、統計的に効果を確認することが可能である。続けて、構築されたモデルに、排便回数を元に計算した排便時間隔をベイズ統計的に当てはめ、パラメータを推定した。 That is, in a word, the result shown in FIG. 6 was that the number of defecations was significantly increased when the test meal was ingested as a whole, but there was a difference in the intensity among individuals. We hypothesized that the cause of this is that there are individual differences in the effect of taking the test meal, and that there are subjects (responders) who have a particularly strong effect. In order to quantify the effect and test the hypothesis, we focused on the improvement of constipation, which is the main effect of the test meal, and estimated the intake effect for each individual from the measured defecation frequency. The mathematical model was formulated by interweaving the placebo effect and the effect of the test meal itself in order to estimate the intensity of the precise effect. By confirming these values, it is possible to confirm the effect statistically. Subsequently, the parameters were estimated by applying Bayesian statistically the defecation time interval calculated based on the number of defecations to the constructed model.
 まず、個人差が存在することの妥当性を、情報量基準によるモデル比較で評価した。この結果を図7の表に示す。なお、情報量基準にはWidely Acceptable Information Criteria(WAIC)を用いた(Watanabe S.,Asymptotic Equivalence of Bayes Cross Validation and Widely Applicable Information Criterion in Singular Learning Theory,Journal of Machine Learning Research,2010,11,p3571−3594)。WAICは未知データに対する予測力の良さ(汎化誤差)の程度を示す指数であり、低い値が得られるほど予測力が高いモデルであると考えられる。 First, the validity of the existence of individual differences was evaluated by comparing models based on the information criterion. The results are shown in the table of FIG. Note that the information criterion using Widely Acceptable Information Criteria (WAIC) (Watanabe S., Asymptotic Equivalence of Bayes Cross Validation and Widely Applicable Information Criterion in Singular Learning Theory, Journal of Machine Learning Research, 2010,11, p3571- 3594). WAIC is an index showing the degree of good predictive power (generalization error) for unknown data, and it is considered that the lower the value, the higher the predictive power.
 図7の表にハッチングで示すように、最も小さいWAICを示したのは、個人毎に服食の効果、試験食の効果が異なる事を仮定した5番のモデルであった。これにより、服食により生じる効果や前記試験食により生じる効果が、個人毎に異なるという仮説が支持された。 As shown by hatching in the table of FIG. 7, the smallest WAIC was shown in the No. 5 model assuming that the effect of eating and the effect of the test meal differed from person to person. This supported the hypothesis that the effects produced by eating and the effects produced by the test diet differed from person to person.
 続いて、最良のWAICが得られた5番のモデルを用いて、摂取効果の事後分布から事後平均値とベイズ信用区間を計算した。この結果を図8の表に示す。図8には、事後平均値と95%信用区間を記した。また、図8において、ワイブル分布のパラメータについては両側、摂取効果については片側区間である。 Subsequently, the posterior mean value and Bayesian confidence interval were calculated from the posterior distribution of the intake effect using model No. 5 in which the best WAIC was obtained. The results are shown in the table of FIG. FIG. 8 shows the ex post facto average and the 95% confidence interval. Further, in FIG. 8, the parameter of the Weibull distribution is on both sides, and the intake effect is on one side.
 図8の表に線状のハッチングで示すように、MO04、MO05、およびMO10の被検者では、前記試験食の効果の予測分布において、95%ベイズ信用区間内に無効果を意味する0が含まれておらず、特に強く作用していることが示唆された。このため、MO04、MO05、およびMO10の3人の被検者を、試験食の効果が特に強く現れた(前記試験食摂取による排便時間の短縮が強く起こった)排便レスポンダー(Strong Responder;SR)と定義した。一方で、図8の表にドット状のハッチングで示すように、その他の被験者において推定された事後平均値を確認した場合でも、値が0を上回る者がそれ以外に9人(MO01、MO02、MO08、M009、MO11、MO13、MO17、MO22およびMO24)存在したため、当該9人を、試験食の効果が現れた(前記試験食摂取による排便時間の短縮が起こった)排便レスポンダー(Weak Responder;WR)と定義した。そして、これら以外の被験者7人(MO06、MO12、MO15、M016、MO18、MO19およびMO23)を、ノンレスポンダー(Non Responder;NR)と定義した。 As shown by linear hatching in the table of FIG. 8, in the subjects of MO04, MO05, and MO10, 0, which means no effect within the 95% Bayesian confidence interval, is found in the predicted distribution of the effect of the test meal. It was not contained, suggesting that it acts particularly strongly. For this reason, the three subjects, MO04, MO05, and MO10, had a particularly strong effect of the test meal (the defecation time was strongly shortened by ingesting the test meal), and the defecation responder (SR). Was defined as. On the other hand, as shown by the dot-shaped hatching in the table of FIG. 8, even when the ex post facto average value estimated in other subjects was confirmed, 9 other subjects (MO01, MO02, etc.) had a value exceeding 0. Since MO08, M009, MO11, MO13, MO17, MO22, and MO24) were present, the effect of the test meal was exhibited (the defecation time was shortened by ingesting the test meal), and the defecation responder (WR) was present. ). Then, seven subjects other than these (MO06, MO12, MO15, M016, MO18, MO19 and MO23) were defined as non-responders (NR).
 最後に、前記試験食摂取による効果を、事後平均値を用いたワイブル分布の確率密度関数と、実際の排便時間のヒストグラムから確認した。この結果を図9に示す。図9において、左の縦軸が確率密度関数の値を示し、右の縦軸がヒストグラムの回数を示す。また、図9において、青色の棒グラフは通常時、緑色の棒グラフは対照食の摂取時、橙色の棒グラフは試験食の摂取時に対応する。そして、図9において、事後分布を確認して、Strong Responder;SRと定義した被験者は橙色の文字、Weak Responder;WRと定義した被験者は黄色の文字、Non−Responder;NRと定義した被験者は黒色の文字で示した。なお、MO03は常に排便時間が24時間となり解析へ不適当だったため、また、MO07、MO014、MO020およびMO021は解析対象の基準から外れたため、解析対象から除外された。 Finally, the effect of ingesting the test meal was confirmed from the probability density function of the Weibull distribution using the posterior mean value and the histogram of the actual defecation time. The result is shown in FIG. In FIG. 9, the left vertical axis shows the value of the probability density function, and the right vertical axis shows the number of histograms. Further, in FIG. 9, the blue bar graph corresponds to the normal time, the green bar graph corresponds to the intake of the control meal, and the orange bar graph corresponds to the intake of the test meal. Then, in FIG. 9, the posterior distribution was confirmed, and the subject defined as Strong Responder; SR was in orange letters, the subject defined as Week Responder; WR was in yellow letters, and the subject defined as Non-Responder; NR was in black. Indicated by the letters. Since MO03 always had a defecation time of 24 hours and was unsuitable for analysis, and MO07, MO014, MO020 and MO021 did not meet the criteria for analysis, they were excluded from analysis.
(5)腸内細菌の相対存在比の組成における傾向
 次に、解析対象者であるMO01~MO06、MO08~MO13、MO15~MO19およびMO22~MO24について、(3−2)で採取した便検体からDNAを抽出し、当該抽出したDNAの16sRNA遺伝子領域をPCR増幅した。これにより、腸内細菌の存在比の組成における傾向に影響を与えるのは、各被験者の個人差であることがわかった。
(5) Trends in the composition of the relative abundance ratio of intestinal bacteria Next, regarding the analysis subjects MO01 to MO06, MO08 to MO13, MO15 to MO19, and MO22 to MO24, from the stool samples collected in (3-2). DNA was extracted and the 16sRNA gene region of the extracted DNA was PCR amplified. From this, it was found that it is the individual difference of each subject that influences the tendency in the composition of the abundance ratio of intestinal bacteria.
 具体的には、便からのDNA抽出は、論文(Murakami S et al.,The Consumption of Bicarbonate−Rich Mineral Water Improves Glycemic Control,Evidence−Based Complementary and Alternative Medicine:eCAM,2015,Article ID:824395)の手法を用いて行われた。抽出されたDNAに対し、バクテリア16SrRNA遺伝子のV1−V2領域に対するユニバーサルプライマーである27Fmodおよび338R(Kim SW et al.,Robustness of Gut Microbiota of Healthy Adults in Response to Probiotic Intervention Revealed by High−Throughput Pyrosequencing,DNA Research:An International Journal for Rapid Publication of Reports on Genes and Genomes,2013,20,3,p241−253)を用いて増幅した。アンプリコンDNAの配列解読にはIllumina MiSeqを用い、paired−end モード、600 cycleの条件で実施した。得られた16S rRNA遺伝子配列はDDBJのDRAで利用可能である(DRA accesison number:DRA006874)。得られたDNA配列は、vsearch version 1.9.3(Option:−−fastq_maxee 9.0 −−fastq_truncqual 7−−fastq_maxdiffs 300−−fastq_maxmergelen 330——fastq_minmergelen 280)(Rognes T al.,VSEARCH:a versatile open source tool for metagenomics,PeerJ,2016,e2584)を用いて、F、R側リードをマージした。続いて、平均クオリティ <25 のフラグメントを除去した。全フラグメントをBowtie2 version 2.2.9(Option:−−no−hd−−no−sq−−no−unal−I 280−X 400−−fr−−no−discordant−−phred33−D15−R 10−N 0−L 22−i S,1,1.15−q)(Langmead B et al.,Fast gapped−read alignment with Bowtie 2,Nature Methods,2012,9,4,p357−359)を用いて、SILVA SSU NR データベース version128(Quast C et al.,The SILVA ribosomal RNA gene database project:improved data processing and web−based tools,Nucleic Acids Research,2013,41,10,D590−596)にマッピングし、編集距離3%以内でマップされたフラグメントのみを採用した。残ったフラグメント(29138±4257)から、20,000フラグメントをサブサンプリングし解析に使用した。 Specifically, DNA extraction from stool is described in a paper (Murakami S et al., The Consumption of Bicarbonate-Rich Mineral Water Industries Glycemic Control, Alternative Medicine83 It was done using the technique. For the extracted DNA, 27Fmod and 338R (Kim SW et al., Robustness of Gut Microbiota of Health Adults pyrosequencing Probiotic Technology), which are universal primers for the V1-V2 region of the bacterial 16S rRNA gene, are received. Research: An International Journal for Rapid Publication of Reports on Genes and Genomes, 2013, 20, 3, p241-253) was used for amplification. Illumina MiSeq was used for sequencing the amplicon DNA, and the sequence was performed under the conditions of paired-end mode and 600 cycles. The obtained 16S rRNA gene sequence can be used in DRA of DDBJ (DRA accessory number: DRA006874). The obtained DNA sequence is vsearch version 1.9.3 (Option: --fastq_maxee 9.0 --- fastq_truncqual 7 --- fastq_maxdiffs 300 --- fastq_maxmergelen 330 --fastelgenergen (Fastq_maxmergelen. The F and R side leads were merged using open source tool for metagenomics, PeerJ, 2016, e2584). Subsequently, fragments with an average quality of <25 were removed. All fragments are Bowtie2 version 2.2.9 (Option: --no-hd-no-sq-no-unal-I 280-X 400 --fr --- no-discordant --- phred33-D15-R 10 -N 0-L 22-i S, 1,1.15-q) (Langmead B et al., Fast gapped-read alignment with Bowtie 2, Nature Methods, 2012, 9, 4, p357-359) , SILVA SSU NR database version128 (Quast C et al., The SILVA ribosomal RNA gene data process project: improbated data processing andb-base, edited and web-base10, Nucleic acid Only fragments mapped within 3% were adopted. From the remaining fragments (29138 ± 4257), 20,000 fragments were subsampled and used for analysis.
 そして、得られたPCR産物について、次世代シーケンサーによって配列解読を実施した。この配列データから、腸内細菌叢の属および種レベルの相対存在比、alpha多様性およびbeta多様性を計算した。この結果を図10~図13に示す。図10は、便検体採取のタイムポイント(P1、P2、P3、T1、T2およびT3)ごとにおける、各被験者の腸内細菌の相対存在比top50属のヒートマップを示す。図11および図12は、被験者ごとかつ前記タイムポイントごとの腸内細菌の相対存在比を示す。図11および図12において、横棒の長さは腸内細菌の相対存在比(割合)を示し、また、同一の腸内細菌の種類(属)ごとに同一の色を使用している。図13および図14は、腸内細菌叢組成に対して計算されたbeta多様性(Spearman Corelation Coefficient)を用いた多次元尺度構成法(Multi Dementional Scaling;MDS)によるプロットを示し、図13では被験者ごとに同一の色を使用し、図14では前記タイムポイントごとに同一の色を使用した。 Then, the obtained PCR product was sequenced by a next-generation sequencer. From this sequence data, the relative abundance, alpha diversity and beta diversity at the genus and species level of the gut flora were calculated. The results are shown in FIGS. 10 to 13. FIG. 10 shows a heat map of the relative abundance ratio of intestinal bacteria of each subject, top50 genus, at each time point (P1, P2, P3, T1, T2 and T3) of stool sample collection. 11 and 12 show the relative abundance of gut flora for each subject and for each time point. In FIGS. 11 and 12, the length of the horizontal bar indicates the relative abundance ratio (ratio) of the intestinal bacteria, and the same color is used for the same type (genus) of the intestinal bacteria. 13 and 14 show plots by Multi Dimensional Scaling (MDS) using calculated beta diversity (Spearman Coloration Cofficient) for intestinal flora composition, and FIG. 13 shows subjects. The same color was used for each time point, and in FIG. 14, the same color was used for each time point.
 図10、図11、図12および図14に示すように、被験者の摂取物または前記タイムポイントにおける、群間の全体的な傾向は観察されなかった。これに対して、図13に示すように、同一の色の点(同一の被験者を示す)は近くに集まってプロットされ、同一個人の細菌群集が類似することが観察された。以上より、腸内細菌の存在比の組成における傾向に影響を与えるのは、前記試験食の摂取よりも、むしろ、各被験者の個人差であることが示唆された。 As shown in FIGS. 10, 11, 12 and 14, no overall tendency between groups was observed in the subject's intake or said time points. In contrast, as shown in FIG. 13, dots of the same color (indicating the same subject) were grouped together and plotted, observing similar bacterial communities of the same individual. From the above, it was suggested that it is the individual difference of each subject that influences the tendency of the composition of the abundance ratio of the intestinal bacteria, rather than the intake of the test meal.
 続いて、試験食摂取群(T2およびT3)、対照食摂取群(P2およびP3)ならびに平常群(T1およびP1)の群間における腸内細菌叢の変化を詳細に比較するために、Wilcoxon−Mann−Whitney Testを用いた。この結果を図15の表に示す。 Next, to compare in detail the changes in the gut flora between the test diet intake group (T2 and T3), the control diet intake group (P2 and P3) and the normal group (T1 and P1), Wilcoxon- Mann-Whitney Test was used. The results are shown in the table of FIG.
 図15の表に示すように、一部の細菌属が試験食摂取群で他の群と比べて変化していたが(p−value< 0.05 not corrected)、False Discovery Rate(FDR)補正を行うとすべて有意差なしと判定された。alpha多様性についても有意な変動は検出されなかった(pvalue None vs Test:0.246,Placebo vs Test:0.258)。 As shown in the table of FIG. 15, some bacterial genera were changed in the test diet intake group as compared with the other groups (p-value <0.05 not collected), but False Discovery Rate (FDR) correction. It was judged that there was no significant difference. No significant variation was also detected for alpha diversity (pvalue None vs Test: 0.246, Placebo vs Test: 0.258).
 また、前記タイムポイントごとにおける被験者全体でのビフィドバクテリウム・ロンガムの相対存在比を、図16の箱ひげ図として示す。そして、被験者ごとのビフィドバクテリウム・ロンガムの相対存在比を、図16の折れ線グラフとして示す。 In addition, the relative abundance ratio of Bifidobacterium longum in the entire subject at each time point is shown as a boxplot in FIG. Then, the relative abundance ratio of Bifidobacterium longum for each subject is shown as a line graph of FIG.
 図16に示すように、箱ひげ図と折れ線グラフともに、前記試験食を摂取した時点のタイムポイントT1~T3における値と前記対照食を摂取した時点のタイムポイントP1~3における値との間に、有意差は観察されなかった。すなわち、前記試験食の摂取によるビフィドバクテリウム・ロンガムの相対存在比の有意な変化は観察されなかった。 As shown in FIG. 16, both the boxplot and the line graph are between the values at the time points T1 to T3 at the time of ingesting the test meal and the values at the time points P1 to 3 at the time of ingesting the control meal. No significant difference was observed. That is, no significant change in the relative abundance ratio of Bifidobacterium longum was observed by ingestion of the test meal.
(6)代謝物質の便含量の組成における傾向
 次に、解析対象者であるMO01~MO06、MO08~MO13、MO15~MO19およびMO22~MO24について、(3−2)で採取した便検体から代謝物を抽出し、当該抽出した代謝物について、CE−TOSMSによりメタボローム解析を行った。これにより、代謝物質の便含量の組成における傾向に影響を与えるのは、各被験者の個人差であることがわかった。
(6) Trends in the composition of stool content of metabolites Next, regarding the subjects to be analyzed, MO01 to MO06, MO08 to MO13, MO15 to MO19 and MO22 to MO24, metabolites from the stool samples collected in (3-2). Was extracted, and the extracted metabolite was metabolome-analyzed by CE-TOSMS. From this, it was found that it is the individual difference of each subject that influences the tendency of the composition of the stool content of the metabolite.
 具体的には、便検体から代謝物を抽出するために、便検体サンプルはまず、凍結乾燥機 VD−800R(タイテック社製)を用いて、少なくとも24時間凍結乾燥された。凍結乾燥された便検体は、多検体細胞破砕装置 シェイクマスターネオ Ver1.0(バイオメディカルサイエンス社製)を用いて、3.0mmのジルコニアビーズにより、1,500rpm、10分間の条件で破砕された。内部標準(メチルスルホンとD−カンファー−10−スルホン酸(CSA)が各20μM)を含む500μlのメタノールが、前記破砕された便検体10mgに添加された。更に、当該便検体は、前記シェイクマスターネオを用いて、0.1mmのジルコニア/シリカビーズにより、1,500rpm、5分間の条件で破砕された。続けて、超純水200μlとクロロホルム500μlが添加され、当該添加物を4,600g、15分間、20℃の条件で遠心分離に供した。更に続けて、タンパク質と脂質分子を取り除くために、150μlの水層が、遠心式ろ過フィルターユニット UltrafreeMC−PLHCC 250/pk for Metabolome Analysis(ヒューマン・メタボローム・テクノロジーズ社製)に移された。そして、ろ過液は、CE−TOFMS分析を行う直前に、遠心濃縮されて超純水50μlに溶解された。 Specifically, in order to extract metabolites from the stool sample, the stool sample was first freeze-dried using a freeze-dryer VD-800R (manufactured by TIETECH Co., Ltd.) for at least 24 hours. The freeze-dried stool sample was crushed with 3.0 mm zirconia beads using a multi-sample cell crusher Shakemaster Neo Ver1.0 (manufactured by Biomedical Science) at 1,500 rpm for 10 minutes. .. 500 μl of methanol containing internal standards (20 μM each of methyl sulfone and D-camphor-10-sulfonic acid (CSA)) was added to 10 mg of the crushed stool sample. Further, the stool sample was crushed with 0.1 mm zirconia / silica beads using the Shakemaster Neo at 1,500 rpm for 5 minutes. Subsequently, 200 μl of ultrapure water and 500 μl of chloroform were added, and the additive was centrifuged at 4,600 g for 15 minutes at 20 ° C. Further, in order to remove protein and lipid molecules, a 150 μl aqueous layer was transferred to a centrifugal filtration filter unit Ultrafree MC-PLHCC 250 / pk for Metabolome Analysis (manufactured by Human Metabolome Technologies). Then, the filtrate was centrifugally concentrated and dissolved in 50 μl of ultrapure water immediately before the CE-TOFMS analysis.
 CE−TOFMS分析を行って、各代謝物質のalpha多様性およびbeta多様性を計算した。この結果を図17~図19に示す。図17は、便検体採取のタイムポイント(P1、P2、P3、T1、T2およびT3)ごとにおける、各被験者の代謝物質の便含量top50属のヒートマップを示す。図18および図19は、代謝物質組成に対して計算されたbeta多様性を用いた多次元尺度構成法によるプロットを示し、図18では被験者ごとに同一の色を使用し、図19では前記便検体採取のタイムポイントごとに同一の色を使用した。 CE-TOFMS analysis was performed to calculate the alpha and beta diversity of each metabolite. The results are shown in FIGS. 17 to 19. FIG. 17 shows a heat map of the stool content top50 genus of metabolites of each subject at each time point (P1, P2, P3, T1, T2 and T3) of stool sample collection. 18 and 19 show plots by multidimensional scaling using calculated beta diversity for metabolite composition, FIG. 18 uses the same color for each subject, and FIG. 19 shows the stool. The same color was used for each sample collection time point.
 図17および図19に示すように、被験者の摂取物または前記タイムポイントにおける、群間の全体的な傾向は観察されなかった。これに対して、図18に示すように、同一の色の点(同一の被験者を示す)は近くに集まってプロットされ、同一個人の代謝物質組成が類似することが観察された。以上より、代謝物質の便含量の組成における傾向に影響を与えるのは、前記試験食の摂取よりも、むしろ、各被験者の個人差であることが示唆された。 As shown in FIGS. 17 and 19, no overall trend between groups was observed in the subject's intake or said time points. In contrast, as shown in FIG. 18, dots of the same color (indicating the same subject) were grouped close together and plotted, observing similar metabolite compositions of the same individual. From the above, it was suggested that it is the individual differences of each subject that influence the tendency of the composition of the stool content of the metabolites, rather than the intake of the test meal.
 続いて、試験食摂取群(T2およびT3)、対照食摂取群(P2およびP3)ならびに平常群(T1およびP1)の群間における代謝物質の変化を詳細に比較するために、Wilcoxon−Mann−Whitney Testを用いた。その結果、試験食摂取群において他の群と比べて有意に差があった代謝物質は存在しなかった(pvalue < 0.05 not corrected)。alpha多様性についても有意な変動は検出されなかった(pvalue None vs Test:0.973,Placebo vs Test:0.456)。 Next, to compare in detail the changes in metabolites between the test diet intake group (T2 and T3), the control diet intake group (P2 and P3), and the normal group (T1 and P1), Wilcoxon-Mann- Whiteney Test was used. As a result, there was no metabolite in the test diet intake group that was significantly different from the other groups (pvalue <0.05 not collected). No significant variation was also detected for alpha diversity (pvalue None vs Test: 0.973, Placebo vs Test: 0.456).
(7)レスポンダーとノンレスポンダー間での相違
 排便レスポンダー(SRおよびWR)と排便ノンレスポンダー(NR)とを比較し、相対存在比が有意に変化した腸内細菌および便含量が有意に変化した代謝物質を測定するために、以下の数式2を用いて、腸内細菌または代謝物質ごとに、SRのNRに対するFold Change(FC)およびWRのNRに対するFold Change(FC)を計算した。
(7) Differences between responders and non-responders Comparing defecation responders (SR and WR) and defecation non-responders (NR), the relative abundance ratio changed significantly and the gut flora and stool content changed significantly. In order to measure the metabolites, the Fold Change (FC S ) for SR NR and the Fold Change (FC W ) for WR NR were calculated for each gut flora or metabolite using the following formula 2. ..
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 前記数式2において、Average abundance f,strong responderは、SRであるMO04、MO05、およびMO10の3人の各タイムポイント(P1、P2、P3、T1、T2およびT3)における腸内細菌の相対存在比または代謝物の便含量を平均した数値であり、Average abundance f,weak responderは、WRであるMO01、MO02、MO08、M009、MO11、MO13、MO17、MO22およびMO24の9人の前記各タイムポイントにおける腸内細菌の相対存在比または代謝物の便含量を平均した数値であり、Average abundance f,non responder rは、NRであるMO06、MO12、MO15、M016、MO18、MO19およびMO23の7人の前記各タイムポイントにおける腸内細菌の相対存在比または代謝物の便含量を平均した数値である。 In Equation 2, Average abundance f, strong responder is SR MO04, MO05, and MO 10 3 people each time point of the relative abundance of Enterobacteriaceae in (P1, P2, P3, T1 , T2 and T3) Alternatively, it is a numerical value obtained by averaging the stool content of the biotransformer, and the Average abundance f, weak responder is the WR at each of the nine time points of MO01, MO02, MO08, M009, MO11, MO13, MO17, MO22 and MO24. It is a numerical value obtained by averaging the relative abundance ratio of intestinal bacteria or the stool content of biotransforms, and the Average abundance f, non responder r is the above-mentioned 7 persons having NRs MO06, MO12, MO15, M016, MO18, MO19 and MO23. It is a value obtained by averaging the relative abundance ratio of intestinal bacteria or the stool content of biotransformers at each time point.
 前記試験食の効果が強いほど腸内細菌の相対存在比または代謝物の便含量が大きい特徴量を探索するために、FC>FC>0となる腸内細菌および代謝物を探索し、また、前記試験食の効果が強いほど腸内細菌の相対存在比または代謝物の便含量が小さい特徴量を探索するために、FC<FC<0となる腸内細菌および代謝物を探索した。この結果を、図20に示す。 In order to search for a feature amount in which the relative abundance ratio of intestinal bacteria or the stool content of biotransforms is larger as the effect of the test diet is stronger, intestinal bacteria and biotransforms in which FC S > FC W > 0 are searched. In addition, in order to search for a feature amount in which the relative abundance ratio of intestinal bacteria or the stool content of biotransforms is smaller as the effect of the test diet is stronger, intestinal bacteria and biotransforms in which FC S <FC W <0 are searched. did. The result is shown in FIG.
 図20は、腸内細菌および代謝物質における、ノンレスポンダーに対するレスポンダーのFold Changeの散布図である。図20において、縦軸は、NRに対するSRのFold Change(FC)のlog2を取った値を示し、横軸は、NRに対するWRのFold Change(FC)のlog2を取った値を示す。図20において、暖色系のプロットが腸内細菌叢に対応し、その大きさが相対存在比を表す。図20において、赤色のプロットで示される細菌属(例えば、セリモナス(Sellimonas)属、Tyzzerella 3属、ルミノコッカス2(Ruminococcus 2)属、ペプトニフィラス(Peptoniphilus)属、uncultured_Actinomycetaceae属、ファエカリタレア(Faecalitalea)属、コプロバチルス(Coprobacillus)属、uncultured_Lachnospiraceae属、ユーバクテリウム・レクタル([Eubacterium] rectale group)、Family_XIII_UCG−001属、クロストリジウムXIII AD3011(Family_XIII_AD3011_group)属、エリスピロトリクス(Erysipelotrichaceae_UCG−003)属、ラクノスピラ UCG−001(Lachnospiraceae_UCG−001)属、ラクノスピラ UCG−003(Lachnospiraceae_UCG−003)属およびパラサテレラ(Parasutterella)属等)は、NR、WRおよびSR間におけるグループ間比較検定(Jonckheere−Tarpstra)でpvalue<0.05であった細菌属である。図20において、寒色系のプロットが代謝物質に対応し、その大きさが濃度を表す。図20において、青色のプロットで示される代謝物質(例えば、3−ヒドロキシ酪酸(3−Hydroxybutyric_acid)、アスパラギン(Asn)およびN,N−ジメチルグリシン(N,N−Dimetylglycine)等)は、NR、WRおよびSR間におけるグループ間比較検定(Jonckheere−Tarpstra)でpvalue<0.05であった代謝物質を表す。図20において、背景の薄い橙色の部分が、FC<FC、つまり、NR<WR<SRであることを示し、背景の薄い青色の部分が、FC>FC、つまり、NR>WR>SRであることを表す。 FIG. 20 is a scatter plot of the responder's Fold Change against the non-responder in gut flora and metabolites. In FIG. 20, the vertical axis shows the value obtained by taking the log 2 of SR's Folder (FC S ) with respect to NR, and the horizontal axis shows the value of WR's Folder (FC W ) taken with respect to NR. In FIG. 20, the warm-colored plot corresponds to the intestinal flora, the size of which represents the relative abundance. In FIG. 20, the genus Bacteria shown in red plots (eg, the genus Sellimonas, the genus Tyzzerella 3, the genus Luminococcus 2, the genus Peptoniphilus, the genus Uncultured_Acticateca , coprocessor Bacillus (Coprobacillus) genus, uncultured_Lachnospiraceae spp., Eubacterium, Rekutaru ([Eubacterium] rectale group), Family_XIII_UCG-001 genera, Clostridium XIII AD3011 (Family_XIII_AD3011_group) genus, Ellis Pirot Rikusu (Erysipelotrichaceae_UCG-003) belonging to the genus, Rakunosupira UCG- 001 (Lachnospiraceae_UCG-001), Lacnospira UCG-003 (Lachnospiraceae_UCG-003, etc.) and Parasuterella (genus Parasuterella, etc.) are NR, WR, and SR. Was a bacterial genus. In FIG. 20, cool-colored plots correspond to metabolites, the size of which represents the concentration. In FIG. 20, the metabolites shown in the blue plot (eg, 3-hydroxybutyric_acid, asparagine (Asn) and N, N-dimethylglycine (N, N-Dimethylglycine), etc.) are NR, WR. And the metabolites with pvalue <0.05 in the intergroup comparison test (Jonckheere-Tarpstra) between SRs. In FIG. 20, the light orange part of the background indicates FC W <FC S , that is, NR <WR <SR, and the light blue part of the background is FC W > FC S , that is, NR> WR. > Indicates SR.
 図20に示すように、セリモナス(Sellimonas)属、Tyzzerella 3属、ルミノコッカス2(Ruminococcus 2)属およびペプトニフィラス(Peptoniphilus)属は、背景の薄い橙色の部分に属していたため、相対存在比がNR<WR<SRであること、つまり、レスポンダーにおいて相対存在比が大きいことがわかった。同様に、図20に示すように、3−ヒドロキシ酪酸(3−Hydroxybutyric_acid)も、背景の薄い橙色の部分に属していたため、相対存在比がNR<WR<SRであること、つまり、レスポンダーにおいて相対存在比が大きいことがわかった。これに対して、図20に示すように、uncultured_Actinomycetaceae属、ファエカリタレア(Faecalitalea)属、コプロバチルス(Coprobacillus)属、uncultured_Lachnospiraceae属、ユーバクテリウム・レクタル([Eubacterium] rectale group)、Family_XIII_UCG−001属、クロストリジウムXIII AD3011(Family_XIII_AD3011_group)属、エリスピロトリクス(Erysipelotrichaceae_UCG−003)属、ラクノスピラ UCG−001(Lachnospiraceae_UCG−001)属、ラクノスピラ UCG−003(Lachnospiraceae_UCG−003)属およびパラサテレラ(Parasutterella)属は、背景の薄い青色の部分に属していたため、相対存在比がNR>WR>SRであること、つまり、レスポンダーにおいて相対存在比が小さいことがわかった。同様に、図20に示すように、アスパラギン(Asn)およびN,N−ジメチルグリシン(N,N−Dimetylglycine)は、背景の薄い青色の部分に属していたため、相対存在比がNR>WR>SRであること、つまり、レスポンダーにおいて相対存在比が小さいことがわかった。 As shown in FIG. 20, the genus Sellimonas, the genus Tyzzerella, the genus Ruminococcus 2 and the genus Peptoniphilus belonged to the light orange part of the background, so the relative abundance ratio was NR <. It was found that WR <SR, that is, the relative abundance ratio was large in the responder. Similarly, as shown in FIG. 20, 3-hydroxybutyric acid (3-Hydroxybutyric_acid) also belonged to the light orange part of the background, so that the relative abundance ratio was NR <WR <SR, that is, relative in the responder. It was found that the abundance ratio was large. On the other hand, as shown in FIG. 20, the genus incultured_Actinomycetheae, the genus Faecalitalea, the genus Coprobacillus, the genus uncurtured_Lachnospiraceae, the genus Uncultured_Lachnospiraceae, the genus Eubacteriumriacure (Eubacterium. , Crostridium XIII AD3011 (Family_XIII_AD3011_group) genus, Erycipelotrichaceae_UCG-003 genus, Lacnospira UCG-001 (Lachnospiraceae_UCG-001) genus Lachnospiraceae_UCG-001 Since it belonged to the light blue part, it was found that the relative abundance ratio was NR> WR> SR, that is, the relative abundance ratio was small in the responder. Similarly, as shown in FIG. 20, asparagine (Asn) and N, N-dimethylglycine (N, N-Dimethylglycine) belonged to the light blue part of the background, so that the relative abundance ratio was NR> WR> SR. That is, it was found that the relative abundance ratio was small in the responder.
 続けて、ルミノコッカス2属、エリスピロトリクスUCG−003属およびユーバクテリウム・レクタルについて、SR、WRおよびNRごとに、前記各タイムポイントでの相対存在比を平均した値(Relative Abundance)を算出した。この結果を図21に示す。図21において、横軸は、Relative abundanceを示し、白色のグラフはNRに対応し、橙色のグラフはWRに対応し、赤色のグラフはSRに対応する。また、3−ヒドロキシ酪酸、アスパラギンおよびN,N−ジメチルグリシンについて、SR、WRおよびNRごとに、前記各タイムポイントでの便含量を平均した値(Content Abundance[nmol/g])を算出した。この結果を図22に示す。図22において、横軸は、Content Abundanceを示し、白色のグラフはNRに対応し、橙色のグラフはWRに対応し、赤色のグラフはSRに対応する。なお、図21および図22において、*は、Willcoxon−Mann−Whitney testによるp−value < 0.05を表し、**は、Bonferroni corrected qvalue < 0.05を表す。 Subsequently, for each of the genus Ruminococcus 2, the genus Elyspyrotricus UCG-003, and Eubacterium rectal, the average value (Reactive Abunance) of the relative abundance ratios at each of the time points was calculated for each SR, WR, and NR. did. The result is shown in FIG. In FIG. 21, the horizontal axis represents Reactive abundance, the white graph corresponds to NR, the orange graph corresponds to WR, and the red graph corresponds to SR. In addition, for 3-hydroxybutyric acid, asparagine and N, N-dimethylglycine, the average value (Conent Avenance [nmol / g]) of the stool content at each of the time points was calculated for each of SR, WR and NR. The result is shown in FIG. In FIG. 22, the horizontal axis represents Content Avenance, the white graph corresponds to NR, the orange graph corresponds to WR, and the red graph corresponds to SR. In FIGS. 21 and 22, * represents p-value <0.05 by the Willcoxon-Mann-Whitney test, and ** represents Bonferroni corrected qvalue <0.05.
 図21に示すように、ルミノコッカス2属については、相対存在比がNR<WR<SRであること、つまり、レスポンダーにおいて相対存在比が大きいことがわかった。同様に、図22に示すように、3−ヒドロキシ酪酸についても、便含量がNR<WR<SRであること、つまり、レスポンダーにおいて便含量が多いことがわかった。これに対して、これに対して、図21に示すように、エリスピロトリクスUCG−003属およびユーバクテリウム・レクタルについては、相対存在比がNR>WR>SRであること、つまり、レスポンダーにおいて相対存在比が小さいことがわかった。同様に、図22に示すように、アスパラギンおよびN,N−ジメチルグリシンについても、便含量がNR>WR>SRであること、つまり、レスポンダーにおいて便含量が少ないことがわかった。 As shown in FIG. 21, it was found that the relative abundance ratio of the two genus Ruminococcus was NR <WR <SR, that is, the relative abundance ratio was large in the responder. Similarly, as shown in FIG. 22, it was found that the stool content of 3-hydroxybutyric acid was NR <WR <SR, that is, the stool content was high in the responder. On the other hand, as shown in FIG. 21, for the genus Elyspyrotricus UCG-003 and Eubacterium rectal, the relative abundance ratio is NR> WR> SR, that is, in the responder. It was found that the relative abundance ratio was small. Similarly, as shown in FIG. 22, it was found that the stool content of asparagine and N, N-dimethylglycine was NR> WR> SR, that is, the stool content was low in the responder.
[実施例2]機械学習による特徴量の抽出
 実施例2では、試験食摂取直前の腸内マルチオミクスデータから、試験食摂取によって排便回数が増加する排便レスポンダーであるかをLasso回帰及びLogistic回帰を組み合わせた機械学習法により予測した。また、当該予測に寄与している特徴量を抽出することにより、ルミノコッカス1属、アナエロスティペス属、ルミノコッカス2属およびクリステンセネラR−7 グループの相対存在比ならびに酪酸の便含量が大きいほど、レスポンダーの予測に寄与していることを確認し、逆に、ユーバクテリウム・レクタルアリスティペス属、uncultured_Lachnospiraceae属およびパラサテレラ属の相対存在比が小さいほどレスポンダーの予測に寄与していることを確認した。以下、実施例2で行った処理について詳細に説明する。
[Example 2] Extraction of feature amount by machine learning In Example 2, from the intestinal multiomics data immediately before ingestion of the test meal, lasso regression and logistic regression are performed to determine whether the defecation responder increases the number of defecations by ingesting the test meal. Predicted by a combined machine learning method. In addition, by extracting the feature amounts that contribute to the prediction, the relative abundance ratio of the genus Ruminococcus 1, the genus Anaerotipes, the genus Ruminococcus 2 and the Kristensenella R-7 group and the stool content of butyric acid are large. It was confirmed that it contributed to the prediction of the responder, and conversely, the smaller the relative abundance ratio of the genus Eubacterium, Ruminococcus, and the genus Ruminococcus and the genus Parasatella, the more it contributed to the prediction of the responder. confirmed. Hereinafter, the processing performed in the second embodiment will be described in detail.
(1)機械学習法によるレスポンダーの予測
 具体的には、MO03を除く19名の被験者(MO01~MO02、MO04~MO06、MO08~MO13、MO15~MO19およびMO22~MO24)の試験食摂取直前(T1)の細菌種または細菌属の相対存在比、代謝物質の便含量を用い、これらの内、相対存在比および便含量がそれぞれある閾値以上のもののみを特徴量として使用した。閾値についてはグリッドサーチを行い、予測精度が最大となるものを探索した(図23のステップSB1)。続いて、腸内細菌の相対存在比と代謝物質の便含量とでは取りうる値の範囲が異なる可能性や、取りうる値の範囲が大きい特徴量が予測に大きな影響を与える可能性や、腸内細菌叢と代謝物質の寄与の大きさを直接的に比較できない問題を考慮し、z scoreを用いて各特徴量の標準化を行った(図23のステップSB2)。
(1) Prediction of responders by machine learning method Specifically, 19 subjects (MO01 to MO02, MO04 to MO06, MO08 to MO13, MO15 to MO19, and MO22 to MO24) excluding MO03 immediately before ingesting a test meal (T1). ), The relative abundance ratio of the bacterial species or the genus of bacteria and the stool content of metabolites were used, and only those having the relative abundance ratio and the stool content of each of these above a certain threshold were used as feature amounts. A grid search was performed on the threshold value to search for the one with the maximum prediction accuracy (step SB1 in FIG. 23). Next, the range of possible values may differ between the relative abundance ratio of gut flora and the stool content of metabolites, the feature amount with a large range of possible values may have a large effect on prediction, and the intestine. Considering the problem that the magnitudes of contributions of the gut flora and metabolites cannot be directly compared, each feature was standardized using z score (step SB2 in FIG. 23).
 続いて、19名の被験者を2通りのレスポンダーおよびノンレスポンダーの2グループ(すなわち、SR vs WR、NR または SR、WR vs NR)に分け(図23のステップSB3)、それぞれのグループから1人ずつ含むテストデータと残りの18人のトレーニングデータに分割した(図23のステップSB4およびSB5)。続いて、前記トレーニングデータを用いて統計モデルにより推定された個人ごとの試験食の効果の平均値に対してLasso回帰を行い、試験食の効果に対して寄与の大きい特徴量のみを抽出した(図23のステップSB6)。Lasso回帰のパラメータはグリッドサーチを行い、予測精度が最大となるものを探索した。続いて、抽出された特徴量を用いてロジスティック回帰アルゴリズムによるトレーニングデータの学習を行い(図23のステップSB7)、テストデータの予測を行った(図23のステップSB8)。ロジスティック回帰のパラメータには初期値を使用した。これを、全レスポンダーと全ノンレスポンダーの組み合わせ(60−78通り)に対して実行し、Cross Validationとした。 Subsequently, 19 subjects were divided into two groups of responders and non-responders (that is, SR vs WR, NR or SR, WR vs NR) (step SB3 in FIG. 23), and one person from each group. It was divided into test data including each and training data of the remaining 18 persons (steps SB4 and SB5 in FIG. 23). Subsequently, using the training data, Lasso regression was performed on the average value of the effect of the test meal for each individual estimated by the statistical model, and only the features that greatly contributed to the effect of the test meal were extracted (). Step SB6 in FIG. 23). The parameters of the Lasso regression were grid-searched to find the one with the maximum prediction accuracy. Subsequently, the training data was learned by the logistic regression algorithm using the extracted features (step SB7 in FIG. 23), and the test data was predicted (step SB8 in FIG. 23). Initial values were used for the parameters of logistic regression. This was executed for all combinations of all responders and all non-responders (60-78 ways), and was used as Cross Validation.
 テストデータの予測結果を、図24および図25に示す。前記抽出した寄与の大きい特徴量のうち、細菌属(Genus)、細菌種(Species)、代謝物質(Metabolite)、細菌属(Genus)&代謝物質(Metabolite)、および、細菌種(Species)&代謝物質(Metabolite)の5通りのパラメータごとに、「SRとWR」の予測を行った際におけるReceiver operating characteristic (ROC) curveが図24であり、表が図25である。なお、図24および図25において、AUROC(AUC)、AccuracyおよびF−measureは、予測精度の評価指数である。 The prediction results of the test data are shown in FIGS. 24 and 25. Among the extracted feature quantities of large contributions, bacterial species (Genus), bacterial species (Species), metabolites (Metabolite), bacterial genera (Genus) & metabolites (Metabolite), and bacterial species (Species) & metabolism. FIG. 24 is a receiver operating characteristic (ROC) curve when the prediction of “SR and WR” is performed for each of the five parameters of the substance (Metabolite), and the table is FIG. 25. In addition, in FIGS. 24 and 25, AUROC (AUC), Accuracy and F-mere are evaluation indexes of prediction accuracy.
 図示はしないが、SRに関しては、細菌種(Species)と代謝物質(Metabolite)の両者を組み合わせて使用した場合に、最も高い精度(AUC=0.875)で予測可能であった。また、図24および図25に示すように、SRとWR(すなわち排便レスポンダー全体)に関しては、細菌属(Genus)と代謝物質(Metabolite)の両者を組み合わせて使用した場合に、最も高い精度(AUC=0.857)で予測可能であった。 Although not shown, SR was predictable with the highest accuracy (AUC = 0.875) when both bacterial species (Species) and metabolites (Metabolite) were used in combination. Further, as shown in FIGS. 24 and 25, the SR and WR (that is, the entire defecation responder) have the highest accuracy (AUC) when both the bacterial genus (Genus) and the metabolite (Metabolite) are used in combination. = 0.857) was predictable.
(2)レスポンダーの予測に寄与している特徴量の抽出
 続いて、Cross Validationにおいて、最も予測精度の高かった条件である試験食摂取直前の細菌属の相対存在比が0.01以上、代謝物質の便含量が1000以上のz scoreによる標準化された特徴量を用い、レスポンダースコアに対してLasso回帰(alpha=0.1)を行った。これにより各細菌属、代謝物質の回帰係数を計算し、レスポンダー判定(予測)に寄与している特徴量を抽出した。この結果を、図26に示す。
(2) Extraction of features that contribute to the prediction of responders Next, in Cross Validation, the relative abundance ratio of the genus Bacteria immediately before ingestion of the test meal, which is the condition with the highest prediction accuracy, is 0.01 or more, and metabolites. Lasso regression (alpha = 0.1) was performed on the responder score using the standardized features of z score with a stool content of 1000 or more. As a result, the regression coefficients of each bacterial genus and metabolite were calculated, and the features contributing to the responder judgment (prediction) were extracted. The result is shown in FIG.
 図26は、試験食摂取直前の細菌属および代謝物質のデータを用い、Cross validationにおいて最高精度であったパラメータにおけるレスポンダースコアに対するLasso回帰の回帰係数を示す。細菌属名に隣接している黄色の円の大きさが、相対存在比の平均値を示す。また、代謝物質名に隣接している水色の大きさが、便含量の平均値を示す。 FIG. 26 shows the regression coefficient of Lasso regression for the responder score in the parameter with the highest accuracy in Cross validation using the data of the bacterial genus and metabolites immediately before ingestion of the test meal. The size of the yellow circle adjacent to the bacterial genus name indicates the average value of the relative abundance. The size of light blue adjacent to the name of the metabolite indicates the average value of stool content.
 図26に示すように、酪酸については、その便含量が多いほど、また、ルミノコッカス1属、アナエロスティペス属、クリステンセネラ R−7 グループおよびルミノコッカス2属については、その相対存在比が大きいほど、レスポンダーの予測に寄与していた。これに対して、ユーバクテリウム・レクタル、アリスティペス属、uncultured_Lachnospiraceae属およびパラバクテロイデス属については、その相対存在比が小さいほど、レスポンダーの予測に寄与していた。 As shown in FIG. 26, the higher the stool content of butyric acid, the higher the relative abundance ratio of Ruminococcus 1 genus, Anaerotipes genus, Kristensenella R-7 group and Ruminococcus 2 genus. The larger it was, the more it contributed to the responder's prediction. On the other hand, for Eubacterium rectal, Aristipes, uncurtured_Lachnospiraceae and Parabacteroides, the smaller the relative abundance ratio, the more contributed to the prediction of the responder.
 以上のように、本発明は、産業上の多くの分野(食品、医薬品および医療等)で広く実施することができ、特に、腸内環境の改善効果についての予測等を行うバイオインフォマティクス分野において極めて有用である。 As described above, the present invention can be widely implemented in many industrial fields (food, pharmaceuticals, medical treatment, etc.), and is extremely in the bioinformatics field, which predicts the effect of improving the intestinal environment. It is useful.
100 予測装置
102 制御部
102a 予測部
104 通信インターフェース部
106 記憶部
106a 相対存在比データ
106b 含量データ
108 入出力インターフェース部
112 入力装置
114 出力装置
200 サーバ
300 ネットワーク
100 Prediction device 102 Control unit 102a Prediction unit 104 Communication interface unit 106 Storage unit 106a Relative presence ratio data 106b Content data 108 Input / output interface unit 112 Input device 114 Output device 200 Server 300 Network

Claims (9)

  1.  予測対象から採取された便検体中のユーバクテリウム・レクタル、クリステンセネラ属に属する細菌、セリモナス属に属する細菌、パラバクテロイデス属に属する細菌、エリスピロトリクス属に属する細菌、クロストリジウムXIII AD3011 属に属する細菌、ラクノスピラ UCG−001属に属する細菌、ラクノスピラ UCG−003属に属する細菌、ファエカリタレア属に属する細菌、アリスティペス属に属する細菌、アナエロスティペス属に属する細菌、ルミノコッカス1属に属する細菌およびルミノコッカス2属に属する細菌のうちの少なくとも一つの細菌の前記便検体中における相対存在比ならびに前記便検体中のN,N−ジメチルグリシン、酪酸、アスパラギンおよび3−ヒドロキシ酪酸のうちの少なくとも一つの代謝物質の所定量の前記便検体中における含量のうちの少なくとも一つに基づいて、前記予測対象について、ビフィドバクテリウム・ロンガム摂取による腸内環境の改善効果または便状態の改善効果についての予測を行う予測ステップを含むこと、
     を特徴とする予測方法。
    In stool samples collected from the prediction target, eubacterium rectal, bacteria belonging to the genus Kristensenera, bacteria belonging to the genus Serimonas, bacteria belonging to the genus Parabacteroides, bacteria belonging to the genus Elyspyrotricus, to the genus Clostridium XIII AD3011 Bacteria belonging to, Bacteria belonging to Lacnospira UCG-001, Bacteria belonging to Lacnospira UCG-003, Bacteria belonging to Faecalitalea, Bacteria belonging to Aristipes, Bacteria belonging to Anaerostipes, Bacteria belonging to Luminococcus 1 Relative abundance of at least one of the bacteria and bacteria belonging to the genus Luminococcus 2 in the stool sample and at least of N, N-dimethylglycine, butyric acid, asparagine and 3-hydroxybutyric acid in the stool sample. Based on at least one of the contents of a predetermined amount of one metabolite in the stool sample, regarding the prediction target, the effect of improving the intestinal environment or the effect of improving the stool condition by ingesting Bifidobacterium longum. Include a prediction step to make a prediction of
    A prediction method characterized by.
  2.  前記予測ステップでは、前記相対存在比および前記含量に基づいて、前記予測対象について、前記ビフィドバクテリウム・ロンガム摂取による前記腸内環境の改善効果または前記便状態の改善効果についての予測を行うこと、
     を特徴とする請求項1に記載の予測方法。
    In the prediction step, based on the relative abundance ratio and the content, the prediction target is predicted for the effect of improving the intestinal environment or the effect of improving the stool condition by ingesting the bifidobacteria longum. ,
    The prediction method according to claim 1.
  3.  前記予測ステップでは、前記改善効果があるか否かを予測すること、
     を特徴とする請求項1または2に記載の予測方法。
    In the prediction step, predicting whether or not there is the improvement effect,
    The prediction method according to claim 1 or 2.
  4.  前記便状態の改善が、便通の改善であること、
     を特徴とする請求項1から3のいずれか1つに記載の予測方法。
    The improvement of the bowel movement is the improvement of bowel movement.
    The prediction method according to any one of claims 1 to 3, characterized in that.
  5.  前記便通の改善が、便頻度の増加であること、
     を特徴とする請求項4に記載の予測方法。
    The improvement in bowel movement is an increase in bowel movement frequency.
    4. The prediction method according to claim 4.
  6.  前記予測ステップは、制御部を備える情報処理装置の前記制御部において実行されること、
     を特徴とする請求項1から5のいずれか1つに記載の予測方法。
    The prediction step is executed in the control unit of the information processing device including the control unit.
    The prediction method according to any one of claims 1 to 5, characterized in that.
  7.  制御部を備える予測装置であって、
     前記制御部は、
     予測対象から採取された便検体中のユーバクテリウム・レクタル、クリステンセネラ属に属する細菌、セリモナス属に属する細菌、パラバクテロイデス属に属する細菌、エリスピロトリクス属に属する細菌、クロストリジウムXIII AD3011 属に属する細菌、ラクノスピラ UCG−001属に属する細菌、ラクノスピラ UCG−003属に属する細菌、ファエカリタレア属に属する細菌、アリスティペス属に属する細菌、アナエロスティペス属に属する細菌、ルミノコッカス1属に属する細菌およびルミノコッカス2属に属する細菌のうちの少なくとも一つの細菌の前記便検体中における相対存在比ならびに前記便検体中のN,N−ジメチルグリシン、酪酸、アスパラギンおよび3−ヒドロキシ酪酸のうちの少なくとも一つの代謝物質の所定量の前記便検体中における含量のうちの少なくとも一つに基づいて、前記予測対象について、ビフィドバクテリウム・ロンガム摂取による腸内環境の改善効果または便状態の改善効果についての予測を行う予測手段
     を備えること、
     を特徴とする予測装置。
    It is a prediction device equipped with a control unit.
    The control unit
    In stool samples collected from the prediction target, eubacterium rectal, bacteria belonging to the genus Kristensenera, bacteria belonging to the genus Serimonas, bacteria belonging to the genus Parabacteroides, bacteria belonging to the genus Elyspyrotricus, to the genus Clostridium XIII AD3011 Bacteria belonging to, Bacteria belonging to Lacnospira UCG-001, Bacteria belonging to Lacnospira UCG-003, Bacteria belonging to Faecalitalea, Bacteria belonging to Aristipes, Bacteria belonging to Anaerotipes, Belonging to Luminococcus Relative abundance of at least one of the bacteria and bacteria belonging to the genus Luminococcus 2 in the stool sample and at least of N, N-dimethylglycine, butyric acid, asparagine and 3-hydroxybutyric acid in the stool sample. Based on at least one of the contents of a predetermined amount of one metabolite in the stool sample, regarding the prediction target, the effect of improving the intestinal environment or the effect of improving the stool condition by ingesting Bifidobacterium longum. To have a predictive means to make predictions
    A prediction device characterized by.
  8.  制御部を備える情報処理装置において実行させるための予測プログラムであって、
     前記制御部に実行させるための、
     予測対象から採取された便検体中のユーバクテリウム・レクタル、クリステンセネラ属に属する細菌、セリモナス属に属する細菌、パラバクテロイデス属に属する細菌、エリスピロトリクス属に属する細菌、クロストリジウムXIII AD3011 属に属する細菌、ラクノスピラ UCG−001属に属する細菌、ラクノスピラ UCG−003属に属する細菌、ファエカリタレア属に属する細菌、アリスティペス属に属する細菌、アナエロスティペス属に属する細菌、ルミノコッカス1属に属する細菌およびルミノコッカス2属に属する細菌のうちの少なくとも一つの細菌の前記便検体中における相対存在比ならびに前記便検体中のN,N−ジメチルグリシン、酪酸、アスパラギンおよび3−ヒドロキシ酪酸のうちの少なくとも一つの代謝物質の所定量の前記便検体中における含量のうちの少なくとも一つに基づいて、前記予測対象について、ビフィドバクテリウム・ロンガム摂取による腸内環境の改善効果または便状態の改善効果についての予測を行う予測ステップ
     を含むこと、
     を特徴とする予測プログラム。
    It is a prediction program to be executed in an information processing device equipped with a control unit.
    To make the control unit execute
    In stool samples collected from the prediction target, eubacterium rectal, bacteria belonging to the genus Kristensenera, bacteria belonging to the genus Serimonas, bacteria belonging to the genus Parabacteroides, bacteria belonging to the genus Elyspyrotricus, to the genus Clostridium XIII AD3011 Bacteria belonging to, Bacteria belonging to Lacnospira UCG-001, Bacteria belonging to Lacnospira UCG-003, Bacteria belonging to Faecalitalea, Bacteria belonging to Aristipes, Bacteria belonging to Anaerostipes, Bacteria belonging to Luminococcus 1 Relative abundance of at least one of the bacteria and bacteria belonging to the genus Luminococcus 2 in the stool sample and at least of N, N-dimethylglycine, butyric acid, asparagine and 3-hydroxybutyric acid in the stool sample. Based on at least one of the contents of a predetermined amount of one metabolite in the stool sample, regarding the prediction target, the effect of improving the intestinal environment or the effect of improving the stool condition by ingesting Bifidobacterium longum. Include a prediction step to make a prediction of
    A forecasting program featuring.
  9.  請求項8に記載の予測プログラムが格納されていること、
     を特徴とする記録媒体。
    The prediction program according to claim 8 is stored.
    A recording medium characterized by.
PCT/JP2020/023317 2019-06-11 2020-06-08 Prediction method, prediction device and prediction program WO2020251051A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021526176A JP7411191B2 (en) 2019-06-11 2020-06-08 Prediction method, prediction device and prediction program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019109060 2019-06-11
JP2019-109060 2019-06-11

Publications (1)

Publication Number Publication Date
WO2020251051A1 true WO2020251051A1 (en) 2020-12-17

Family

ID=73781251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/023317 WO2020251051A1 (en) 2019-06-11 2020-06-08 Prediction method, prediction device and prediction program

Country Status (2)

Country Link
JP (1) JP7411191B2 (en)
WO (1) WO2020251051A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019500905A (en) * 2016-01-05 2019-01-17 ウェルミクロ ソチエタ レスポンサビリタ リミタータWellmicro S.R.L. Evaluation method of individual health
WO2019154823A1 (en) * 2018-02-06 2019-08-15 European Molecular Biology Laboratory In-vitro model of the human gut microbiome and uses thereof in the analysis of the impact of xenobiotics
WO2020012467A2 (en) * 2018-07-08 2020-01-16 Yeda Research And Development Co. Ltd. Person-specific assessment of probiotics responsiveness
WO2020087046A1 (en) * 2018-10-26 2020-04-30 Sun Genomics Inc. Universal method for extracting nucleic acid molecules from a diverse population of microbes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019500905A (en) * 2016-01-05 2019-01-17 ウェルミクロ ソチエタ レスポンサビリタ リミタータWellmicro S.R.L. Evaluation method of individual health
WO2019154823A1 (en) * 2018-02-06 2019-08-15 European Molecular Biology Laboratory In-vitro model of the human gut microbiome and uses thereof in the analysis of the impact of xenobiotics
WO2020012467A2 (en) * 2018-07-08 2020-01-16 Yeda Research And Development Co. Ltd. Person-specific assessment of probiotics responsiveness
WO2020087046A1 (en) * 2018-10-26 2020-04-30 Sun Genomics Inc. Universal method for extracting nucleic acid molecules from a diverse population of microbes

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BENNO YOSHIMI, MITSUOKA TOMOTARI: "Impact of bifidobacterium longum on human fecal microflora", MICROBIOLOGY AND IMMUNOLOGY, vol. 36, no. 7, July 1992 (1992-07-01), pages 683 - 694, XP055770955, DOI: 10.1111/j.1348-0421.1992.tb02071.x *
MURAKAMI, SHINNOSUKE ET AL.: "The future of stratified healthcare based on the intestinal environment", SEIBUTU-KOUGAKU KAISHI, vol. 96, no. 9, 2018, pages 524 - 528 *
MURAKAMI, SHINNOSUKE ET AL.: "Zero disease society pioneered by 'intestinal design", KAGAKU TO SEIBUTSU, vol. 56, no. 10, 2018, pages 692 - 696, DOI: 10.1271/kagakutoseibutsu.56.692 *
TAKIGUCHI RYUICHI, MIYAMOTO MARI, MOCHIZUKI ELSUKE, SUZUKI YUTAKA, KAGEYAMA RYOUJI, IINO HISAKAZU: "Effects of Fermented-Milk Administration on Defecation and Fecal Microflora of Healthy Volunteers", JOURNAL OF INTESTINAL MICROBIOLOGY, vol. 11, no. 2, 1998, pages 117 - 122, XP055770957, DOI: 10.11209/jiml997.11.117 *
YAMADA, TAKUJI: "Metabolic pathway database for human gut microbiome", JAPANESE JOURNAL OF LACTIC ACID BACTERIA, vol. 27, no. 2, 2016, pages 87 - 92, XP055770961 *

Also Published As

Publication number Publication date
JP7411191B2 (en) 2024-01-11
JPWO2020251051A1 (en) 2020-12-17

Similar Documents

Publication Publication Date Title
US11931387B2 (en) Methods and compositions relating to microbial treatment and diagnosis of disorders
Differding et al. Timing of complementary feeding is associated with gut microbiota diversity and composition and short chain fatty acid concentrations over the first year of life
Dan et al. Differential analysis of hypertension-associated intestinal microbiota
Bressa et al. Differences in gut microbiota profile between women with active lifestyle and sedentary women
Venkataraman et al. Variable responses of human microbiomes to dietary supplementation with resistant starch
Prakash et al. Gut microbiota: next frontier in understanding human health and development of biotherapeutics
Angelakis et al. The relationship between gut microbiota and weight gain in humans
Agans et al. Distal gut microbiota of adolescent children is different from that of adults
Martínez et al. Resistant starches types 2 and 4 have differential effects on the composition of the fecal microbiota in human subjects
Arima et al. Western-style diet, pks island-carrying Escherichia coli, and colorectal cancer: analyses from two large prospective cohort studies
Sarangi et al. Faecal bacterial microbiota in patients with cirrhosis and the effect of lactulose administration
CN108350510A (en) For diagnosis of the gastrointestinal health associated disease from microbial population and therapy and system
WO2017044902A1 (en) Method and system for microbiome-derived diagnostics and therapeutics for oral health
Tang et al. Prospective study reveals a microbiome signature that predicts the occurrence of post-operative enterocolitis in Hirschsprung disease (HSCR) patients
Swann et al. Considerations for the design and conduct of human gut microbiota intervention studies relating to foods
VanEvery et al. Microbiome epidemiology and association studies in human health
Lin et al. Characteristic dysbiosis in gout and the impact of a uric acid-lowering treatment, febuxostat on the gut microbiota
Ma et al. Distinguishing feature of gut microbiota in Tibetan highland coronary artery disease patients and its link with diet
AU2016321328A1 (en) Method and system for microbiome-derived diagnostics and therapeutics infectious disease and other health conditions associated with antibiotic usage
Vincent et al. Excretion of host DNA in feces is associated with risk of Clostridium difficile infection
Ruigrok et al. The composition and metabolic potential of the human small intestinal microbiota within the context of inflammatory bowel disease
CN107710205A (en) For the sign in the microorganism group source of cardiovascular disease condition, diagnosis and the method and system for the treatment of
Bakir-Gungor et al. Discovering potential taxonomic biomarkers of type 2 diabetes from human gut microbiota via different feature selection methods
Meydan et al. Improved gastrointestinal health for irritable bowel syndrome with metagenome-guided interventions
Rajilic-Stojanovic Diversity of the human gastrointestinal microbiota: novel perspectives from high throughput analyses

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20822025

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2021526176

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20822025

Country of ref document: EP

Kind code of ref document: A1