WO2020250844A1 - Method for separating cells - Google Patents

Method for separating cells Download PDF

Info

Publication number
WO2020250844A1
WO2020250844A1 PCT/JP2020/022433 JP2020022433W WO2020250844A1 WO 2020250844 A1 WO2020250844 A1 WO 2020250844A1 JP 2020022433 W JP2020022433 W JP 2020022433W WO 2020250844 A1 WO2020250844 A1 WO 2020250844A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
blood sample
cell
cells
blood
Prior art date
Application number
PCT/JP2020/022433
Other languages
French (fr)
Japanese (ja)
Inventor
憲彰 新井
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Publication of WO2020250844A1 publication Critical patent/WO2020250844A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor

Definitions

  • the present invention relates to a method for separating target cells.
  • the present application claims priority with respect to Japanese Patent Application No. 2019-11504 filed in Japan on June 14, 2019, the contents of which are incorporated herein by reference.
  • Separating specific cells from a humoral mixed sample is a technique required for basic research, diagnosis and treatment.
  • a method for separating cells a method for separating cells by a microchannel is known.
  • a method for separating cells by a microchannel a method having a plurality of different channel widths and separating cells according to the channel width (for example, Patent Document 1) and an antibody fixed to the microchannel are used.
  • a method for capturing cells for example, Patent Document 2 is known.
  • Patent Documents 3 and 4 and Non-Patent Document 1 there is also a method of separating cells according to their size using a fluid device using a principle called a deterministic lateral displacement (DLD). Are known.
  • DLD deterministic lateral displacement
  • the sample containing the target cells to be separated is a blood sample
  • the blood is usually refrigerated at a temperature of about 4 ° C. before the cell separation treatment.
  • JP-A-2018-158328 Japanese Unexamined Patent Publication No. 2013-29391 International Publication No. 2016/136273 International Publication No. 2011/11174 JP-A-2017-184685
  • the present invention is a method for separating target cells by a microchannel, in which when the blood sample is introduced into the microchannel, the target cells in the blood sample are separated without coagulation of blood in the channel. The purpose is to provide a way to do this.
  • the present invention has the following configurations. [1] Without placing the blood sample containing the target cells in an environment of 4 ° C. or lower, the blood sample is added from the sample introduction port to a cell separation device having a separation area having a microchannel, a sample introduction port and a discharge port. And to introduce the blood sample into the cell separation device. Separation of the target cells from the blood sample in a continuous stream of liquid containing the blood sample. Collecting the separated target cells from the outlet and A method for separating cells including. [2] The method for separating cells according to [1], wherein not placing in an environment of 4 ° C. or lower is placing in an environment of 10 ° C. or higher and 40 ° C. or lower.
  • [3] The method for separating cells according to [1] or [2], further comprising adding and flowing a buffer solution from the buffer inlet of the cell separation device.
  • [4] The method for separating cells according to [3], wherein the temperature of the buffer solution is 10 ° C. or higher and 40 ° C. or lower.
  • [5] The method for separating cells according to any one of [1] to [4], wherein the blood sample is blood diluted with a diluent.
  • [6] The method for separating cells according to any one of [1] to [5], wherein the separation area having the microchannel is a separation area having a deterministic transverse substitution method microchannel structure.
  • the blood sample further contains non-target cells and contains Prior to introduction into the cell separation device, a target capture substance that recognizes a characteristic structure existing on the surface of the target cell is added to the blood sample, and a complex of the target cell and the target capture substance is added. Including generating When the target cells are separated, cells having a size smaller than the threshold move with the flow of the blood sample, and the complex having a size equal to or larger than the threshold is displaced obliquely with respect to the flow. It is to separate by moving, The method for separating cells according to any one of [1] to [6], wherein the target cells are collected as the complex in the collection.
  • the blood sample further contains non-target cells and contains Prior to introduction into the cell separation device, a target capture substance that recognizes a characteristic structure existing on the surface of the target cell is added to the blood sample, and a composite of the target cell and the target capture substance is added. Including producing the body When the target cells are separated, cells having a size smaller than the threshold move with the flow of the blood sample, and the complex having a size equal to or larger than the threshold moves obliquely with respect to the flow.
  • the method for separating cells according to any one of [1] to [6], wherein the cells are separated by the above-mentioned method.
  • the target capture substance comprises a conjugate of a target capture molecule having a characteristic structure existing on the surface of the target cell or a non-target cell and a substance carrying the target capture molecule [7]. ] Or the method for separating cells according to [8]. [10] The method for separating cells according to [9], wherein the target capture molecule is an antibody, a peptide aptamer, a lectin, an intercellular adhesion molecule, a sugar chain, or a cell-recognizable polymer. [11] The method for separating cells according to [9] or [10], wherein the substance supporting the target capture molecule is polystyrene or latex.
  • the target cells in the method of separating target cells by a microchannel, when a blood sample is introduced into the microchannel, the target cells can be separated without coagulation of blood in the channel.
  • FIG. 5 is a schematic vertical cross-sectional view of a separation device provided with a basic structure of a DLD microchannel according to an embodiment of the present invention. It is a schematic diagram explaining the separation apparatus provided with the liquid feeding part and the collecting part which concerns on embodiment of this invention. It is a schematic diagram explaining the cell suspension containing the cell and the target capture substance which concerns on embodiment of this invention. It is a schematic diagram explaining the separation method which captures the target cell which concerns on embodiment of this invention.
  • One aspect of the present invention is a separation area and sample having a microchannel (hereinafter, also referred to as a microchannel) without placing a blood sample containing a target cell in an environment of 4 ° C or lower.
  • the blood sample is added to a cell separation device provided with an inlet and an outlet from the sample inlet and flowed, the blood sample is introduced into the cell separation device, and a liquid containing the blood sample is continuously flowing.
  • the present invention relates to a method for separating cells, which comprises separating the target cells from the blood sample and collecting the separated target cells from the outlet.
  • the blood sample By introducing the blood sample into a cell separation device having a separation area having a microchannel without placing it in an environment of 4 ° C. or lower, the blood sample is not aggregated in the microchannel and the purpose in the blood sample.
  • Cells can be isolated. After collecting a blood sample from a living body and before introducing it into a cell separation device, the blood sample is usually stored refrigerated at about 4 ° C. However, it is surprising that agglutination in the microchannel was suppressed by not placing the blood sample in an environment below 4 ° C.
  • the anticoagulant reagent is not mixed.
  • the target cells can be separated using the cell separation device without adding an anticoagulation reagent to the blood sample. Therefore, the isolated target cells can be used for various tests.
  • Do not place the blood sample in an environment of 4 ° C or lower means that the blood sample is not placed in an environment of 4 ° C or lower for a certain period of time. That is, "do not place the blood sample in an environment of 4 ° C or lower” means that the blood sample is not stored in an environment of 4 ° C or lower. Specifically, it is preferable not to leave the blood sample at 4 ° C. or lower for 1 hour or longer, more preferably not to leave it at 4 ° C. or lower for 3 hours or longer, and particularly preferably not to leave it at 4 ° C. or lower for 8 hours or longer. For example, after collecting blood, the blood sample is preferably 10 ° C. or higher and 40 ° C. or lower, more preferably 15 ° C.
  • the cell separation device is preferably introduced into the cell separation device within 3 days (ie, within 72 hours), more preferably within 2 days (ie, within 48 hours), and particularly preferably within 1 day (ie, within 24 hours).
  • the lower limit of the time from blood collection to introduction into the cell separation device is not particularly limited.
  • the blood sample may be introduced into the cell separation device immediately after the blood collection. If the blood sample is a mixture of blood and a diluent described below, the blood sample may be immediately introduced into the cell separation device after mixing the blood with the diluent.
  • the blood sample may be introduced into the cell separation device within 1 hour or more and 3 days, 3 hours or more and 2 days, or 6 hours or more and 1 day after blood collection.
  • the temperature at which the blood sample is placed and the range of the period can be arbitrarily combined.
  • the blood sample may be introduced into a cell separation device after blood collection, storage at 10 ° C. or higher and 40 ° C. or lower for a period of 1 hour or more and 3 days or less.
  • the blood sample may be stored in a cell separation device at 15 ° C. or higher and 40 ° C. or lower for 3 hours or more and 2 days or less after blood collection.
  • the blood sample may be stored at 20 ° C. or higher and 40 ° C. or lower for a period of 6 hours or more and 1 day or less, and then introduced into a cell separation device.
  • the blood sample may be introduced into a cell separation device after being stored at 25 ° C. or higher and 37 ° C. or lower for a period of 6 hours or more and 1 day or less after blood collection.
  • Introducing into a cell separation device may include adding a buffer solution from the buffer introduction port of the cell separation device and flowing it.
  • the buffer solution to be used can be appropriately selected and used according to at least one of the target blood sample, the target cells to be separated, and the contained microaggregates.
  • As the buffer solution one or a combination of a plurality of isotonic solutions can be used in order to avoid the influence on the cells.
  • physiological saline or PBS may be used as the buffer solution.
  • the temperature of the buffer solution introduced from the buffer introduction port is a temperature exceeding 4 ° C., preferably 10 ° C. or higher and 40 ° C. or lower, preferably 15 ° C. or higher and 40 ° C. or lower, and more preferably 20 ° C. or higher and 40 ° C. or lower. Particularly preferably, it is 25 ° C. or higher and 37 ° C. or lower.
  • the blood may be used as it is, or the blood may be diluted with an arbitrary diluent and used.
  • the diluent include the above-mentioned buffer solution and the like.
  • the temperature of the diluent is a temperature exceeding 4 ° C, preferably 10 ° C or higher and 40 ° C or lower, more preferably 15 ° C or higher and 40 ° C or lower, and further preferably 20 ° C or higher and 40 ° C or lower. Particularly preferably, it is 25 ° C. or higher and 37 ° C. or lower.
  • the cell separation device having a separation area having a microchannel structure is not particularly limited, but a cell separation device having a separation area having a deterministic Lateral Displacement (DLD) microchannel structure is preferable.
  • FIG. 1 is a schematic diagram illustrating the basic principle of the deterministic transverse substitution method in the embodiment of the present invention. Hereinafter, DLD will be described.
  • DLD Deterministic transverse substitution
  • this DLD principle is also applied to the separation of cells, for example, the separation of components in blood, specifically erythrocytes, leukocytes, and circulating tumor cells (hereinafter sometimes referred to as CTC).
  • CTC circulating tumor cells
  • a target capturing substance that recognizes a characteristic structure existing on the surface of a target cell or a non-target cell may be used. Specifically, by adding the target capture substance to the cell suspension to generate a complex of the target cell or the non-target cell and the target capture substance, the size is increased between the target cell and the non-target cell. Make a difference. Then, the target cells can be separated by using a cell separation device having a basic structure of the DLD microchannel.
  • Diagonally displaced cell diameter threshold in the DLD principle cell separation device Based on the DLD principle described in Non-Patent Document 1, the threshold of the obliquely displaced cell diameter depending on the diameter of the target cell to be separated. (Dc) can be set. More specifically, the setting of the threshold value Dc can be obtained from the following equation (1).
  • Dc 2 ⁇ G ⁇ ⁇ ⁇ ⁇ (1)
  • Dc Threshold for the diameter of cells displaced in the oblique direction
  • Variable G: Gap between pillars
  • Pillar shift angle (tan ⁇ )
  • the inter-pillar gap G is calculated based on the threshold Dc of the diameter of the cells displaced in the oblique direction. Then, from the above formula (3), the inter-pillar gap G is calculated based on the threshold Dc of the diameter of the cells displaced in the oblique direction. Then, a cell separation device having a basic structural portion in which a pillar group having a gap G between pillars (hereinafter, may be referred to as an obstacle structure) is installed can be produced. In this way, a cell separation device having a DLD microchannel having a target threshold Dc can be prepared.
  • the diameter of a cell is the diameter of the sphere when the cell is a sphere.
  • a cell size When a cell is not a sphere, a sphere having the same volume as the cell is assumed, and the diameter of the sphere is defined as the diameter of the cell.
  • the diameter of a cell may be referred to as a cell size or a cell size.
  • the diameter of the complex is used as the diameter of the target cell.
  • the diameter of the complex is defined as the sum of the diameter of the target capture substance and the diameter of the target cell.
  • the diameter of the target capture substance is the diameter of the sphere when the target capture substance is a sphere.
  • the target trapping substance is not a sphere, a sphere having the same volume as the target capturing substance is assumed, and the diameter of the sphere is defined as the diameter of the target capturing substance.
  • FIG. 1 shows the basic structure 20 of the DLD microchannel (hereinafter, may be referred to as a separation area).
  • Obstacle structures 21 arranged diagonally according to a certain rule with respect to the flow direction of the fluid in the direction of the arrow are provided.
  • the flow velocity changes around the obstacle structure 21.
  • the diameter of the cell referred to as a particle in the description of FIG. 1
  • the particle of the particle is used. The direction of travel can be changed.
  • the particles 22 having a diameter equal to or larger than the threshold value are displaced in the oblique direction according to the arrangement of the obstacle structures 21 arranged continuously.
  • the particles 23 having a diameter less than the threshold value do not follow the behavior of the particles 22 described above, and go straight along the flow direction while bypassing the obstacle structure 21.
  • the arrangement pattern of the obstacle structure 21 in which the threshold value is set so that the particles of the target size can be separated according to a known method (for example, the method described in Non-Patent Document 1).
  • the particles can be separated in a direction orthogonal to the flow direction.
  • the shape of the obstacle structure 21 is not limited to the cylindrical structure as shown in FIG.
  • the obstacle structure 21 can have a polygonal prism structure such as a triangular prism as long as it has a shape capable of causing a desired change in flow velocity.
  • FIG. 2 is a schematic diagram illustrating a cell separation device 30 having a basic structure of a DLD microchannel according to an embodiment of the present invention.
  • the basic structure of the cell separation device 30 will be described with reference to a top view.
  • a sample introduction port 31 and a buffer introduction port 32 are provided as a fluid inlet structure.
  • the fluid outlet structure includes a first discharge port 33 and a second discharge port 34.
  • the first discharge port 33 is a fraction containing particles having a size equal to or larger than a threshold value (that is, a certain size or more), which is displaced in a direction according to the arrangement of diagonally arranged obstacle structures. Displace.
  • the second discharge port 34 discharges a fraction containing particles having a size smaller than the threshold value (that is, less than a certain size) traveling straight along the flow direction.
  • the number of the first discharge port 33 and the second discharge port 34 is not limited to one as shown in FIG. 2, and may have a plurality of outlets depending on the purpose.
  • the basic structure 20 of the DLD microchannel having a micropillar structure is continuous between the sample introduction port 31 and the buffer introduction port 32 of the cell separation device and the first discharge port 33 and the second discharge port 34. Is located in. Due to the region of the continuously arranged basic structure 20, cells contained in the blood sample can be separated in a direction orthogonal to the flow direction of the blood sample depending on the size thereof. Regarding the portion where the basic structure 20 is continuously arranged, the basic structure of the same design may be continuous in all the areas, and the area where the design is gradually changed may be set according to the purpose. It is possible.
  • the design of the basic structure 20 is an arrangement pattern of the basic structure 20 when the cell separation device 30 is viewed from above.
  • Examples of the buffer solution introduced from the buffer introduction port 32 include the above-mentioned buffer solution.
  • the inlet portion from the sample introduction port 31 to the inside of the fluid device 30 it is preferable to provide a partition structure 45 having a constant width as shown in FIG. 2 because it is necessary to flow a blood sample as described later.
  • the mixed solution sent from the sample introduction port 31 flows while maintaining a laminar flow (that is, a flow forming a layer parallel to the flow direction) with the buffer solution sent from the buffer introduction port 32.
  • Cells having a size equal to or larger than the threshold value are separated from the layer of the mixed solution by being displaced diagonally with respect to the flow direction according to the above-mentioned separation principle.
  • cells having a size less than a certain threshold flow straight along the flow of the blood sample layer.
  • the position of the sample introduction port 31 needs to be set closer to the second discharge port 34 side of the fluid device 30. That is, the position of the sample introduction port 31 needs to be installed closer to the second discharge port 34 than to the first discharge port 33.
  • first discharge port 33 and the second discharge port 34 can be appropriately changed in design according to the purpose in order to adjust the amount of the discharged liquid.
  • a partition wall 38 near the discharge port is provided so that the ratio of the dimension of the upper portion y and the dimension of the lower portion x when the cell separation device 30 is viewed from the upper surface of FIG. 2 is 1: 1.
  • the ratio of the amount of liquid obtained from each outlet is approximately 1: 1.
  • the partition wall 38 near the discharge port is provided so that the ratio of the dimension of the upper portion y to the dimension of the lower portion x is 49: 1, the amount of liquid obtained from the first discharge port 33 is. It will be 1/50.
  • the cell separation device 30 can be used not only for separating cells in a blood sample but also for concentrating target cells depending on the application. As an example, it can be realized by setting the ratio of y and x to 1: 1 or 49: 1, which is shown in the partition wall 38 of FIG. 2 and the branch portion of FIG. 12 described later.
  • FIG. 3 is a schematic view of a vertical cross section of the cell separation device according to the embodiment of the present invention.
  • the cell separation device 30 constitutes the basic structure 20 of the DLD microchannel.
  • the flow path structure portion 36 has shapes such as a sample introduction port 31, a buffer introduction port 32, a first discharge port 33, and a second discharge port 34.
  • the space between the flow path structure portion 36 and the planar structure portion 37 is the flow path space 35.
  • the sample introduction port 31, the buffer introduction port 32, the first discharge port 33, and the second discharge port 34 are changed by appropriately joining tubes and providing joints with a syringe or the like. Can also be used in addition to.
  • the height of the flow path space 35 is not limited as long as it is set to a height at which cells or complexes having a size equal to or larger than the threshold value can pass through.
  • the height of the flow path space 35 is such that two or more cells or complexes having a size equal to or larger than the threshold value cannot exist at the same time in the height direction of the flow path space 35 in order to perform accurate cell separation. It is desirable to set it to.
  • the member of the flow path structure portion 36 and the method for manufacturing the flow path structure portion 36 can be manufactured by appropriately selecting any known method.
  • the material of the member for example, glass, silicone, dimethylpolysiloxane, plastic or the like can be used.
  • the planar structure portion 37 is not particularly limited as long as it is a flat material that can be bonded to the flow path structure portion 36, but it is preferable to use glass, plastic, or the like having strength.
  • the cell separation device 30 has a basic structure, a sample introduction port, a buffer introduction port, a first discharge port, and a second discharge port, respectively, and there is no problem as long as the flow path space is formed.
  • the member on the side of the planar structure portion 37 shown in FIG. 3 may have at least one of the shapes of a basic structure, a sample introduction port, a buffer introduction port, a first discharge port, and a second discharge port. it can.
  • the planar structure portion 37 may have a basic structure
  • the flow path structure portion 36 may include a sample introduction port, a buffer introduction port, a first discharge port, and a second discharge port.
  • the flow path structure portion 36 may include a basic structure, a sample introduction port, a buffer introduction port, a first discharge port, and a second discharge port.
  • FIG. 4 is a schematic view illustrating a separation device including a liquid feeding unit and a collecting unit according to an embodiment of the present invention.
  • the separation device 40 has a cell separation device 30 having a basic structure of a DLD microchannel.
  • the cell separation device 30 includes a sample liquid supply unit 41 in the sample introduction port 31 and a buffer liquid supply unit 42 in the buffer introduction port 32, respectively. Further, the first discharge port 33 is provided with the first collection unit 43, and the second discharge port 34 is provided with the second collection unit 44.
  • the sample liquid feeding unit 41 and the buffer liquid feeding unit 42 each have a mechanism provided with a liquid feeding system, and can independently feed the liquid at a constant speed. These are not particularly limited as long as they are mechanisms capable of delivering liquid at a constant speed, but for example, liquid feeding by a syringe pump or the like is preferable. Further, if necessary, the sample liquid feeding unit 41 may be provided with a stirring mechanism for preventing precipitation and aggregation of the complex 5 and an automation mechanism for adjusting the mixed liquid (also referred to as blood sample) 4.
  • the first recovery unit 43 and the second collection unit 44 are not particularly limited as long as they have a mechanism that can collect the discharged liquid, but even if they are provided with a mechanism that can fractionate the discharged liquid immediately before or after the start of separation. good.
  • a blood sample may be introduced from the sample introduction port 31 after the buffer solution is sent from the sample introduction port 31.
  • the first recovery unit 43 and the second collection unit 44 may be provided with a mechanism capable of fractionating the discharged liquid over time. As a result, the fraction containing only the buffer solution before the blood sample is sent and the fraction containing the blood sample can be collected separately.
  • the present invention is, as described above, a method of separating target cells from a blood sample in a continuous stream of liquid.
  • the "blood sample” is not particularly limited as long as it is a blood sample containing target cells. Examples of blood samples include whole blood, serum, plasma, and the like. Further, the blood sample may be whole blood, serum, plasma or the like diluted with a diluent.
  • the blood sample may contain non-target cells in addition to the target cells.
  • the cell separation method is to add a target capture substance that recognizes the characteristic structure existing on the surface of the target cell to the target cell and the target cell before introducing the blood sample into the cell separation device.
  • the complex of the target cell and the target capture substance is preferably produced at a temperature of more than 4 ° C, more preferably 10 ° C or higher and 40 ° C or lower, for example, 15 ° C or higher and 40 ° C or lower, 20 ° C or higher and 40 ° C. ° C or lower, or 25 ° C or higher and 37 ° C or lower.
  • the cell separation method according to the embodiment of the present invention may include forming a complex of target cell or non-target cell and target capture substance.
  • FIG. 5 is a schematic diagram illustrating a blood sample containing cells and a target capture substance in the method for separating cells according to the embodiment of the present invention.
  • the target capture substance 12 which is a conjugate of the target capture molecule 10 that recognizes the characteristic structure existing on the surface of the target cell and the substance 11 that supports the target capture molecule 10 is used.
  • the target capture substance 12 is mixed in the cell suspension 1 with respect to the blood sample 1 containing the target cells 2 and the non-target cells 3.
  • a complex 5 of the target cell 2 and the target capturing substance 12 is formed.
  • the non-target cells 3 contained in the blood sample 1 are not limited to one type.
  • the type and number of the non-target cells 3 are not limited as long as they do not have the characteristic structure existing on the surface of the target cells recognized by the target capture molecule 10.
  • the target capture molecule 10 is a molecule that recognizes the characteristic structure existing on the surface of the target cell 2 and does not recognize the characteristic structure existing on the surface of cells other than the target cell 2. It is not limited to one type, and a plurality of necessary types and numbers can be selected and used as appropriate.
  • the target capture substance 12 may be prepared by supporting a plurality of target capture molecules 10 of the same or different types on the substance 11 that supports the target capture molecule 10. Further, the same type or different types of target trapping molecules 10 may be supported on the substance 11 that supports a plurality of target capturing molecules 10, and the target capturing substance 12 may be appropriately selected according to the intended use. Can be created. In order to obtain the target cell with high accuracy, it is preferable to use a plurality of target capture molecules 10 satisfying the above conditions in combination. Further, the size of the substance 11 that supports the target trapping molecule can also be used by using a plurality of different sizes depending on the intended use.
  • the substance 11a having the target capture molecule 10a, the substance 11b having the target capture molecule 10b, ... can be used respectively.
  • a plurality of separation threshold areas are passed through in the subsequent separation step, respectively.
  • B, ... It is also possible to separate the target cells having the characteristic structures into the respective outlets and collect them.
  • the target capture substance 12 is added.
  • the target capture molecule 10 is a molecule that recognizes the characteristic structure existing on the surface of the non-target cell 3 and does not recognize the characteristic structure existing on the surface of the target cell 2. If it is a molecule, it is not limited to one type, and a plurality of necessary types and numbers can be selected and used as appropriate.
  • the target capture molecule 10 is a molecule that recognizes the characteristic structure existing on the surface of the cell forming the complex 5, and is a molecule that does not recognize the characteristic structure existing on the surface of other cells. , There is no particular limitation.
  • the target capture molecule 10 for example, any one of an antibody, a peptide aptamer, a lectin, an intercellular adhesion molecule, a sugar chain, and other cell-recognizable macromolecules, or a plurality of these may be appropriately used. it can.
  • a member formed of a polymer such as a metal, an inorganic material, or a resin can be used as the substance 11 that supports the target capture molecule.
  • This member may be formed from a single material, or may be used in combination of a plurality of types. When a plurality of types of materials are used, it is preferable to use a member formed so that each component is uniformly kneaded. Further, a high molecular polymer may be selected as the material of the substance 11 that supports the target trapping molecule, and specifically, polystyrene, latex, or the like can be used.
  • the member of the substance 11 that supports the target trapping molecule is not particularly limited as long as it is made of the above-mentioned material. Since it will be an important factor in the subsequent separation stage, it is preferable to use a substance 11 supporting the target capture molecule having a uniform specific gravity. Furthermore, when the specific gravity of the substance 11 supporting the target capture molecule is small during the reaction in the blood sample 1, the dispersion in the blood sample may not be uniform, so that the specific gravity is close to or higher than that of water. It is preferable to select a member having a slightly larger size.
  • the specific gravity of the material 11 which carries the target capture molecules may be 1.00g / cm 3 ⁇ 1.20g / cm 3, may be 1.02g / cm 3 ⁇ 1.12g / cm 3, 1. It may be 04 g / cm 3 to 1.09 g / cm 3 . For example, resin beads having a specific gravity of 1.05 g / cm 3 can be used.
  • the target capture substance 12 is a conjugate of the target capture molecule 10 and the substance 11 that supports the target capture molecule 10 as described above.
  • the target capture molecule 10 and the substance 11 that supports it can be bound by a known method.
  • a method by physical adsorption, a method by chemical bonding, or the like can be used in order to immobilize the antibody as the target capture molecule 10 on the substance 11.
  • chemical bonding for example, when the surface is made of a material containing a hydroxyl group, the carboxyl group in the antibody is activated esterified, and then the hydroxyl group is reacted with this ester group to immobilize the antibody on the surface. Can be done. It is also possible to use a binding method via Protein A or Protein G.
  • commercially available substances for example, beads carrying an antibody can be purchased and used.
  • the size of the target capture substance 12 When the target capture substance 12 is used, the size of the target capture substance 12 must be selected so that the size of the complex 5 is larger and distinguishable than the size of other cells to be distinguished. is there. That is, it is necessary to select the size of the target trapping substance 12 so that the size of the complex 5 is equal to or larger than the above threshold value. For example, when a complex 5 of the target cell 2 and the target capture substance 12 is formed and the non-target cell 3 is separated, the size of the complex 5 is larger than that of the non-target cell 3 and the above-mentioned threshold value. Must be above.
  • the diameter of the target capture substance when the diameter of the target cell 2 is 10 to 14 ⁇ m and the diameter of the non-target cell 3 is 8 to 12 ⁇ m, the diameter of the target capture substance must be at least 2 ⁇ m or more. ..
  • the diameter of the target trapping substance is preferably 5 ⁇ m or more. As long as it does not interfere with the subsequent experiment, it is preferable to use a target trapping substance having a larger diameter.
  • the diameter of the target capture substance 12 is 7 ⁇ m to 60 ⁇ m, preferably 10 ⁇ m to 55 ⁇ m, and more.
  • circulating tumor cells in blood are similar in size to white blood cells, which generally have a diameter of 10 to 20 ⁇ m. Therefore, when separating circulating tumor cells from blood, it is preferable to use a target capture substance having a diameter of 20 ⁇ m to 40 ⁇ m.
  • the “complex” refers to the above-mentioned complex, but the target cell and the non-target cell are separated without forming the complex. In this case, the invention can be understood by reading “complex” as "target cell”.
  • the cell separation method according to the embodiment of the present invention is a separation having a microchannel without placing the blood sample containing the complex in an environment of 4 ° C. or lower.
  • a blood sample is added from the sample inlet to a cell separation device provided with an area, a sample inlet and an outlet, and the blood sample is introduced into the cell separation device, and in a continuous flow of liquid containing the blood sample.
  • the composite having the above size may include separating by displacing and moving in an oblique direction with respect to the flow.
  • Step of Creating and Separating a Complex with a Target Cell As a method for separating cells according to the embodiment of the present invention, after creating a complex with a target cell, a cell having a separation area having a DLD microchannel structure. A method of using a separation device to pass a blood sample through multiple separation areas of the cell separation device to separate a complex having a size greater than or equal to a determined threshold can be mentioned.
  • FIG. 6 is a schematic diagram illustrating a separation method for capturing target cells according to the embodiment of the present invention.
  • the target cell 2 and the target cell 2 and the target cell 2 are mixed with the target capture substance 12 that recognizes the characteristic structure existing on the surface of the target cell with the blood sample containing the target cell 2 and the non-target cell 3.
  • the complex 5 with the trapping substance 12 is formed.
  • the cell separation device 30 is prepared in a state where the flow path space is filled with a buffer solution in advance to remove air bubbles.
  • the mixed solution 4 having the non-target cells 3 and the complex 5 is introduced into the cell separation device 30 from the sample introduction port 31, and at the same time, the buffer solution is continuously introduced from the buffer introduction port 32. ..
  • the non-target cell 3 goes straight by the basic structure 20 (that is, the separation area) having the DLD microchannel structure continuously provided in the cell separation device 30.
  • the complex 5 is displaced obliquely with the flow and moves to be separated from the non-target cell 3.
  • the complex 5 having the target cells 2 is obtained from the first discharge port 33, and the non-target cells 3 are obtained from the second discharge port 34.
  • the complex 5 and the non-target cell 3 can be separated.
  • a blood sample is passed through a plurality of separation areas of the cell separation device, and the complex has a size equal to or larger than a determined threshold value. It separates the body.
  • the threshold value depends on the size of the complex, but is suitable from the relationship with the size of the complex, the size of the target capture substance, the target cell, the size of the non-target cell to be distinguished, and the like. Range can be selected.
  • the target cell in the blood sample of the present embodiment is a circulating tumor cell
  • the erythrocyte is 6 to 8 ⁇ m
  • the leukocyte is relatively large
  • the circulating tumor cell is about 10 to 20 ⁇ m. is there. Therefore, in order to separate from leukocytes which are non-target cells, the threshold value of the size of the complex is preferably 15 ⁇ m or more, more preferably 20 ⁇ m or more, further preferably 25 ⁇ m or more, and more preferably 30 ⁇ m or more. It is more preferable to have. For accurate separation, it is preferable to use a relatively large size target capture material.
  • the size of the target trapping substance is preferably 7 ⁇ m to 60 ⁇ m, more preferably 10 ⁇ m to 55 ⁇ m, further preferably 15 ⁇ m to 50 ⁇ m, and particularly preferably 20 ⁇ m to 40 ⁇ m. is there. Therefore, for example, when a target capture substance having a size of 30 ⁇ m is used, it can be assumed that the complex with the target cell, the circulating tumor cell, has a size of about 40 to 50 ⁇ m. Further, when a target catching substance having a size in a preferable range of 20 ⁇ m to 40 ⁇ m is used, the size of the complex can be assumed to be 30 ⁇ m to 60 ⁇ m.
  • the threshold value to be determined by summing up the above is not less than or equal to the size of the non-target cell to be distinguished and less than or equal to the upper limit of the size of the complex assumed from the size of the target cell and the target capture substance. preferable. As a result, the target cells can be separated easily and accurately.
  • the threshold value Dc of the size of the complex to be determined is preferably set to 20 to 60 ⁇ m, and more preferably set to 30 to 50 ⁇ m.
  • this threshold Dc varies depending on the size of the target cell, target cell, non-target cell, and complex, it is determined by appropriately selecting the target cell, non-target cell, and target capture substance. Can be done.
  • Step of creating and separating a complex with non-target cells when the blood sample contains non-target cells in addition to the target cells, blood is added to the cell separation device. Prior to introducing the sample, a target capture substance that recognizes a characteristic structure existing on the surface of the target cell is added to the blood sample to generate a complex of the target cell and the target capture substance. And that the complex may be separated using a cell separation device.
  • the complex of the non-target cell and the target capture substance is preferably produced at a temperature of more than 4 ° C, more preferably 10 ° C or more and 40 ° C or less, for example, 15 ° C or more and 40 ° C or less, 20. The temperature is 40 ° C or higher and 25 ° C or higher and 37 ° C or lower.
  • FIG. 7 is a schematic diagram illustrating a separation method for capturing non-target cells according to the embodiment of the present invention.
  • a target capturing substance 12 that recognizes a characteristic structure existing on the surface of the non-target cell 3 is mixed with a blood sample containing the target cell 2 and the non-target cell 3.
  • a complex 5 of the non-target cell 3 and the target capture substance 12 is formed.
  • the cell separation device 30 is prepared in a state where the flow path space is filled with a buffer solution in advance to remove air bubbles.
  • the mixed solution 4 containing the target cells 2 and the complex 5 is introduced into the cell separation device 30 from the sample introduction port 31, and at the same time, the buffer solution is continuously introduced from the buffer introduction port 32. ..
  • the target cells 2 and the complex 5 are separated in the flow direction and the vertical direction by the basic structural portion 20 continuously provided in the cell separation device 30.
  • the complex 5 having the non-target cells 3 is obtained from the first discharge port 33, and the target cells 2 are obtained from the second discharge port 34.
  • cells can be separated.
  • each method can be appropriately used according to the type and number of non-target cells 3.
  • the above two methods can be used properly according to the purpose after separation.
  • the target cell 2 when it is to be recovered as it is without forming the complex 5, it can be carried out by the method described with reference to FIG. 7.
  • the complex 5 is dissociated using any known method, the target cell 2 and the target capture substance 12 are separated, and further, any known method is used.
  • the method for separating cells includes collecting the complex containing the separated target cells from the outlet, or collecting the separated target cells from the outlet.
  • the complex is collected from the outlet, and when a complex of the non-target cell and the target capture substance is generated, the target cell is discharged from the outlet. to recover.
  • a known method as appropriate, such as attaching a tube to the discharge port and sucking with a pump.
  • Step of Removing Microaggregates In the method for separating cells according to one aspect of the present invention, when separating target cells from a blood sample containing microaggregates, the microaggregates described later are removed before the separation step. It is preferable to add that. Removal of microaggregates can be performed as a pretreatment of blood samples, but when combined with the above method for cell separation, after complex formation and the basic structure of the DLD microchannel of the cell separation device. By adding the removal of these microaggregates before introducing the blood sample into the blood sample, the separation of target cells can be effectively performed.
  • the cell separation device may have a microaggregate removing device between the sample inlet and the basic structure of the DLD microchannel.
  • FIG. 8 is a schematic diagram illustrating a basic structure 110 of a micro-aggregate removing device used for removing micro-aggregates in one aspect of the present invention.
  • the structure 111 is installed in a straight line in the vertical direction with respect to the flow direction of the fluid in the direction of the arrow, and the sample, that is, the microaggregate 112 in the blood sample is captured by the structure 111 by the flow.
  • the microaggregates are sequentially captured by the structure, and the microaggregates in the blood sample are removed as they go downstream in the flow direction. Will be done.
  • FIG. 9 is an explanatory diagram showing that the microaggregate removing device is composed of pillar structures 121 at regular intervals.
  • a flow bypassing the portion where the microaggregates are sequentially captured is generated, and the microaggregates can be efficiently removed sequentially.
  • the loss of the target cells and the like can be avoided, and the treatment can be performed without a decrease in the flow velocity.
  • the shape of this pillar may be, for example, a cylindrical structure, but the shape is not particularly limited as long as it is a structure capable of capturing the target microaggregates.
  • the shape is not particularly limited as long as it is a structure capable of capturing the target microaggregates.
  • it is possible to have a polygonal prism structure in which the horizontal cross-sectional shape is a rhombus.
  • the diameter of each pillar can be, for example, about 5 to 30 ⁇ m.
  • the basic structure of the shape may be continuously arranged at regular intervals, and the shape and arrangement can be gradually changed and installed according to the purpose.
  • the pillar structures are not limited to being arranged at regular intervals throughout the microaggregate removing device, and may be installed randomly.
  • the installation interval may be wide in the upstream portion in the flow direction, and the installation interval may be gradually narrowed toward the downstream portion.
  • the pillar structure may be installed only in a part of the micro-aggregate removing device, or a pillar structure having a different basic structure may be installed in a specific part of the micro-aggregate removing device.
  • the width of the entire flow path does not have to be uniform, and the flow path width may be narrowed in the middle if necessary.
  • the installation interval of these pillars is too narrow, microaggregates will be sequentially captured from the upstream part in the flow direction, so clogging is likely to occur preferentially from the upstream part. For this reason, when large micro-aggregates are present in the sample or a large amount of micro-aggregates are contained, it is preferable to widen the pillar installation interval in the upstream portion in the flow direction, and the downstream in the flow direction. It is preferable that the installation interval is gradually narrowed as compared with the upstream portion so as to capture the small agglomerates that could not be captured in the upstream portion in the flow direction. If the pillar installation interval in the upstream part is narrow from the beginning, the captured microaggregates may clog the microaggregate removing device, making processing impossible, or trapping target cells, etc. This can result in loss.
  • the pillar structure is not arranged linearly with respect to the flow direction.
  • the pillars can be arranged so as to be offset by one row each time 5 to 30 pillars are installed in the flow direction with respect to the flow direction, and 10 to 20 pillars are installed in the flow direction. It is preferable that the arrangement is shifted by one row for each row in order to maintain the flow and efficiently separate the microaggregates.
  • the pillar installation interval is preferably larger than or equal to the size of the target cells (including the complex of the target cells and the target capture substance) contained in the blood sample. If the installation interval is smaller than the size of the target cell, the target cell (complex of the target cell and the target capture substance) is captured between the pillars, resulting in loss of the target cell.
  • the size of cells contained in blood is about 30 ⁇ m at the largest, so if the purpose is to separate all cells in blood, the size should be larger than this.
  • the size can be set to 8 ⁇ m or more, which is the size for dividing these cells.
  • the carrier substance include beads and the like capable of labeling an antibody and the like, but the carrier substance is not limited to this, and any substance may be considered as the carrier substance.
  • the pillar installation interval is preferably 50 ⁇ m or more.
  • the pillar installation interval has a portion of 200 ⁇ m or less. Some of the microaggregates are relatively small in size. Therefore, if the pillar installation intervals of the micro-aggregate removing device are all set to 200 ⁇ m or more, the micro-aggregates may not be completely removed. However, it is not necessary that all the pillar installation intervals are 200 ⁇ m or less, and a pillar structure having a larger installation interval can be provided depending on the purpose.
  • the micro-channel structure serving as the micro-aggregate removing mechanism (sometimes referred to as “second micro-channel structure” in the present specification) has an interval larger than 30 ⁇ m. It is preferable that the pillars are installed in the above, and it is preferable that the pillars are installed at intervals of 200 ⁇ m or less. The pillar installation interval of this microchannel structure depends on the target cell (complex of the target cell and the carrier substance) and the size of the microaggregate to be removed, but when removing the microaggregate in blood.
  • the pillar installation interval may be set, for example, 50 ⁇ m to 200 ⁇ m, preferably 70 ⁇ m to 170 ⁇ m, and more preferably 90 ⁇ m to 150 ⁇ m.
  • the pillar installation interval means an average interval when two or more pillars are installed at different intervals in the microchannel structure.
  • the complex in which the target cell and the carrier substance are bound is larger by the size of the carrier substance as compared with the target cell. Therefore, when this complex is formed in blood, in order to remove microaggregates in blood and recover this complex (prevent clogging), the pillar installation interval is a carrier. It is preferable to increase the size of the substance. For example, when a carrier substance having a diameter of 30 to 50 ⁇ m is used, the pillar installation interval may be set to, for example, 80 ⁇ m to 250 ⁇ m, preferably 100 ⁇ m to 230 ⁇ m, and more preferably 120 ⁇ m to 220 ⁇ m. preferable.
  • the microaggregate removing device may be provided with a plurality of second microchannel structure portions as described above.
  • the efficiency of removing microaggregates is increased, but the efficiency of recovery of target cells (complex of the target cells and carrier substance) is improved, and the structure of the device is simplified. From the viewpoint of conversion, it is preferable to provide two microchannel structure portions.
  • FIG. 10 is a schematic diagram illustrating a microagglutination removing device according to an embodiment of the present invention.
  • the microaggregate removing device 130 includes two second microchannel structural portions, it is preferable to provide a portion 46 for converging the flow width in the middle (FIG. 10).
  • This portion 46 is narrower than the second microchannel structure portion and has no pillars installed.
  • microaggregates that have passed through the first second microchannel structural portion (structural portion ⁇ ) are accumulated and flow to the next second microchannel structural portion (structural portion ⁇ ). Go (Fig. 10, Fig. 11A).
  • Fig. 10, Fig. 11A By providing the portion 46 for converging such a flow width, microaggregates can be efficiently removed.
  • the pillar installation interval of the flow path structural portion may be set to 80 ⁇ m to 250 ⁇ m, preferably 100 ⁇ m to 230 ⁇ m, and more preferably 120 ⁇ m to 220 ⁇ m. Then, the pillar installation interval of the second microchannel structural portion (structural portion ⁇ ) on the upstream side into which the blood sample containing the target cell is introduced is set to that of the microchannel structural portion (structural portion ⁇ ) on the downstream side.
  • Removal of microaggregates is performed by a method of removing microaggregates from a blood sample in a continuous flow of liquid as described above.
  • Microaggregates in blood are derived from agglutinated fibrin, other denatured proteins, fat and the like. Since the microaggregates are particularly viscous, they are easily trapped by the pillar structure of the microaggregate removing device, and once trapped by the pillar structure, they are less likely to be detached and flow out downstream in the flow direction. ..
  • a blood sample or a mixed solution of a blood sample and a buffer solution is flowed through a microaggregate removing device including a second microchannel structure, and the second microchannel structure is used. It may include removing microaggregates from the blood sample in a continuous stream of liquid by passing through the structure and capturing the microaggregates contained in the blood sample.
  • a blood sample and a buffer solution are added to the micro-aggregate removing device.
  • the buffer solution may be poured in advance, and then the blood sample may be added, or the blood sample may be mixed with the buffer solution, diluted, and then added.
  • the microaggregates in the blood sample are removed, and the blood sample containing the target cells is collected from the outlet of the microaggregate removing device. If a liquid feeding tube or the like is provided at the discharge port of the micro-aggregate removing device, the liquid is collected through the tube or the like.
  • the system when the system is connected to the cell separation device to form a continuous system, that is, when the cell separation device contains a microaggregate removing device, the blood sample collected by removing the microaggregates After that, cell separation is performed.
  • the amount of blood sample relative to the buffer solution is not particularly limited.
  • the speed at which the cell suspension flows is not particularly limited. Regarding this flow velocity, the speed can be appropriately adjusted by installing a pump or the like at either one or both of the introduction port and the discharge port of the cell separation device.
  • the method for separating cells according to the embodiment of the present invention may include a method used for pretreatment when accurately collecting the target cells contained in the blood sample, without loss of the target cells in the blood sample. Moreover, by accurately removing the microaggregates in the blood sample, the target cells can be recovered more accurately in the subsequent cell separation.
  • the method for separating cells according to the embodiment of the present invention includes removing microaggregates from a blood sample, it may include an embodiment in which an anticoagulant reagent is added.
  • an anticoagulant reagent is added to the composition of the dilution buffer.
  • the blood from which the microaggregates have been removed by adding an anticoagulant reagent to remove the microaggregates is used for a subsequent blood test or various treatments (including separation of blood components, etc.). Can be done.
  • anticoagulant reagents examples include sodium citrate, EDTA, heparin, thrombin inhibitors such as PPACK, and the like. Among these, it is preferable to use a thrombin inhibitor, and it is more preferable to use a reagent such as PPACK.
  • thrombin inhibitors heparin
  • PPACK C 21 H 31 ClN 6 O 3 .2HCl
  • PPACK C 21 H 31 ClN 6 O 3 .2HCl
  • the removal of microaggregates is the removal of microaggregates that already exist in blood, and by using a thrombin inhibitor such as PPACK in combination, the formation of new microaggregates in blood is suppressed and the microaggregates are removed into the blood. It is possible to remove the microaggregates that already exist.
  • the microaggregate removing device having a second microchannel structure and a diluted buffer solution containing thrombin inbiter are used in combination. And in the DLD microchannel, clogging of microaggregates can be suitably cleared. As a result, the removal method using the micro-aggregate removing device enables efficient and continuous removal of micro-aggregates and separation of cell components.
  • the present invention is not limited to the above embodiments and is included in the present invention even if there are changes to the extent that the gist of the present invention is not deviated.
  • the present invention includes the following aspects as another aspect.
  • the blood sample containing the target cells is placed in an environment of 10 ° C. or higher and 40 ° C. or lower for a period of 1 hour or more and 3 days or less.
  • Deterministic transverse substitution method The blood sample is added from the sample introduction port to a cell separation device provided with a separation area having a microchannel structure, a sample inlet and an outlet, and the blood sample is introduced into the cell separation device. That and Separation of the target cells from the blood sample in a continuous stream of liquid containing the blood sample. Collecting the separated target cells from the outlet and A method for separating cells including.
  • [14] The method for separating cells according to [12], wherein the period is 6 hours or more and 1 day or less.
  • [17] The method for separating cells according to any one of [12] to [14], wherein the temperature of the blood sample is 25 ° C. or higher and 37 ° C. or lower.
  • the blood sample further contains non-target cells. Prior to introduction into the cell separation device, a target capture substance that recognizes a characteristic structure existing on the surface of the target cell is added to the blood sample, and a complex of the target cell and the target capture substance is added.
  • Including generating Separation of the target cells is to separate the complex having a size equal to or greater than a determined threshold, and cells having a size smaller than the threshold move with the flow of the blood sample and The complex having a size equal to or larger than the threshold value is separated by being displaced and moved in an oblique direction with respect to the flow.
  • the method for separating cells according to any one of [12] to [20], wherein the target cells are collected as the complex in the collection. [22]
  • the blood sample contains target cells and non-target cells. Prior to introduction into the cell separation device, a target capture substance that recognizes a characteristic structure existing on the surface of the target cell is added to the blood sample, and a composite of the target cell and the target capture substance is added.
  • Including producing the body Separation of the target cells is a step of separating the complex having a size equal to or larger than the determined threshold value, and the cells having a size smaller than the threshold value move together with the flow of the blood sample and The complex having a size equal to or larger than the threshold value is separated by being displaced and moved in an oblique direction with respect to the flow.
  • the target capture substance is characterized by comprising a conjugate of a target capture molecule having a characteristic structure existing on the surface of the target cell or the non-target cell and a substance carrying the target capture molecule.
  • Example 1 Manufacture of an integrated separation device A microaggregate removing device in which two second microchannel structural parts (structural part ⁇ : pillar spacing of 200 ⁇ m, structural part ⁇ : pillar spacing of 150 ⁇ m) are connected in series. 130 was designed (Fig. 10). The outer side surfaces of the structural portion ⁇ and the structural portion ⁇ are not provided with pillars within 80 ⁇ m from the wall surface of the flow path in order to prevent clogging at the end of the flow path. Further, a portion for converging the flow width is provided between the structural portion ⁇ and the structural portion ⁇ . An integrated cell separation device was produced as a design in which the microaggregate removing device 130 having these two structural parts was integrated with the separation device having the basic structure 20 of the DLD microchannel having a separation threshold of 30 ⁇ m ( 11A and 11B).
  • the integrated cell separation device was previously filled with a PBS buffer containing 1% BSA and 5 mM EDTA at room temperature (25 ° C.). Then, the sample solution was sent to the sample introduction port 31 at a rate of 50 ⁇ l / min using a syringe pump. At the same time, a PBS buffer containing 1% BSA and 5 mM EDTA was sent to the buffer inlet 32 at a rate of 500 ⁇ l / min, and recovery was performed from the respective recovery ports (reference numerals 33 and 34). The entire process from the introduction of the blood sample to the collection was carried out in a room whose temperature was adjusted to room temperature (25 ° C.).
  • the blood sample prepared in (2) is introduced into the integrated cell separation device, and the flow of the blood sample on the structural part ⁇ , the structural part ⁇ , the introduction port side, the intermediate part, and the discharge port side of the cell separation mechanism is changed. Observation was performed with a transmission type optical microscope.
  • Example 2 The structure part ⁇ , the structure part ⁇ , and the cells are the same as in Example 1 except that the blood sample is introduced into the integrated cell separation device after collecting the blood and storing the whole blood at room temperature (25 ° C.) for 24 hours.
  • the blood flow on the introduction port side (top), middle part (middle), and discharge port side (tail) of the separation mechanism was observed with a transmission optical microscope.
  • it was confirmed that cells having a size of less than 30 ⁇ m in the blood sample were collected from the second outlet (reference numeral 34) without causing clogging in the device (FIG. 13 [1 day later]).
  • the target trapped substance was recovered from the first outlet (reference numeral 33).
  • Example 1 After collecting blood, the whole blood is stored at 4 ° C. for 4 hours, and then an integrated cell separation device is also introduced. In the same manner as in Example 1, the structural part ⁇ , the structural part ⁇ , and the cell separation mechanism The blood flow on the inlet side, the middle portion, and the outlet side was observed with a transmission type optical microscope. As a result, it was confirmed that the blood aggregated immediately after the introduction of the blood sample (Fig. 14A). In addition, it was confirmed that blood agglutination further increased 40 minutes after the introduction of the blood sample (FIG. 14B).
  • the cell separation method of the present invention can be used for research use, diagnostic use, and cell separation and purification in the manufacture of pharmaceutical products and the like.
  • Target capture substance 11
  • Substance that carries the target capture molecule 12
  • Target capture substance 20
  • Basic structure of DLD microchannel 21
  • Obstacle structure 22
  • Constant size Particles larger than or equal to 23
  • Particles smaller than a certain size 30
  • Cell separation device with DLD microchannel 31
  • Sample inlet 32
  • Buffer inlet 33
  • First outlet 34
  • Second outlet 35
  • Channel space 36
  • Channel Structure part 37
  • Plane structure part 38 Partition 39
  • Branch part 40
  • Sample liquid feeding part and collecting part 41
  • Sample liquid feeding part 42
  • Buffer liquid feeding part 43
  • First collecting part 44
  • Second collecting part 110
  • Basic structure 111
  • Micro-aggregate 121 Pillar structure 131

Abstract

A method for separating cells, said method comprising: without putting a blood sample containing target cells in an environment at 4°C, feeding the blood sample to a cell separation device, which comprises a separation area provided with a microchannel, a sample introduction port and a discharge port, from the sample introduction port to thereby introduce the blood sample into the cell separation device; separating the target cells from the blood sample in a continuous flow of a liquid which contains the blood sample; and then collecting the thus separated target cells from the discharge port.

Description

細胞を分離する方法How to isolate cells
 本発明は、目的細胞を分離する方法に関する。
 本願は、2019年6月14日に日本に出願された特願2019-111504号について優先権を主張し、その内容をここに援用する。
The present invention relates to a method for separating target cells.
The present application claims priority with respect to Japanese Patent Application No. 2019-11504 filed in Japan on June 14, 2019, the contents of which are incorporated herein by reference.
 特定の細胞を液性の混合試料(例えば血液や培養液)から分離することは、基礎研究、診断及び治療を行うために必要とされる手法である。細胞の分離方法としては、微小流路によって、分離する方法が知られている。微小流路によって細胞を分離する方法としては、複数の異なる流路幅を有し、流路幅に応じて細胞を分離する方法(例えば、特許文献1)、及び微小流路に固定した抗体で細胞を捕捉する方法(例えば、特許文献2)が知られている。更に、特許文献3、4及び非特許文献1にあるように細胞をその大きさによって決定論的横置換法(Deterministic Lateral Displacement:DLD)と呼ばれる原理を用いた流体デバイスを用いて分離する方法も知られている。 Separating specific cells from a humoral mixed sample (eg blood or culture medium) is a technique required for basic research, diagnosis and treatment. As a method for separating cells, a method for separating cells by a microchannel is known. As a method for separating cells by a microchannel, a method having a plurality of different channel widths and separating cells according to the channel width (for example, Patent Document 1) and an antibody fixed to the microchannel are used. A method for capturing cells (for example, Patent Document 2) is known. Further, as described in Patent Documents 3 and 4 and Non-Patent Document 1, there is also a method of separating cells according to their size using a fluid device using a principle called a deterministic lateral displacement (DLD). Are known.
 分離する目的細胞が含まれる試料が血液サンプルである場合、血液は、通常、細胞分離処理の前に、4℃程度の温度において冷蔵保存される。 When the sample containing the target cells to be separated is a blood sample, the blood is usually refrigerated at a temperature of about 4 ° C. before the cell separation treatment.
特開2018-158328号公報JP-A-2018-158328 特開2013-29391号公報Japanese Unexamined Patent Publication No. 2013-29391 国際公開第2016/136273号International Publication No. 2016/136273 国際公開第2011/111740号International Publication No. 2011/11174 特開2017-184685号公報JP-A-2017-184685
 しかしながら、本発明者らは、微小流路によって目的細胞を分離する方法において、試料が血液サンプルである場合、生体から採取した血液サンプルを微小流路に導入した際に、流路中で血液凝固が起こり、流路内で詰まりを生じてしまうことを見出した。
 そこで、本発明は、微小流路によって目的細胞を分離する方法において、前記血液サンプルを微小流路に導入した際に、流路中で血液が凝固することなく、血液サンプル中の目的細胞を分離する方法を提供することを目的とする。
However, in the method of separating target cells by a microchannel, the present inventors, when the sample is a blood sample, coagulates blood in the channel when a blood sample collected from a living body is introduced into the microchannel. It was found that this occurred and the flow path was clogged.
Therefore, the present invention is a method for separating target cells by a microchannel, in which when the blood sample is introduced into the microchannel, the target cells in the blood sample are separated without coagulation of blood in the channel. The purpose is to provide a way to do this.
 上記の目的を達成するために、本発明は以下の構成を有する。
[1] 目的細胞を含む血液サンプルを4℃以下の環境に置かずに、微小流路を有する分離エリア、サンプル導入口及び排出口を備える細胞分離デバイスに前記血液サンプルを前記サンプル導入口から加えて流し、前記血液サンプルを前記細胞分離デバイスに導入することと、
 連続的な前記血液サンプルを含む液体の流れ中で、前記血液サンプルから、前記目的細胞を分離することと、
 分離された前記目的細胞を前記排出口から回収することと、
を含む細胞の分離方法。
[2] 4℃以下の環境に置かないことが、10℃以上40℃以下の環境に置くことである、[1]に記載の細胞の分離方法。
[3] さらに、前記細胞分離デバイスのバッファー導入口からバッファー液を加えて流すことを含む、[1]又は[2]に記載の細胞の分離方法。
[4] 前記バッファー液の温度が、10℃以上40℃以下である、[3]に記載の細胞の分離方法。
[5] 前記血液サンプルが、希釈液で希釈されている血液である、[1]~[4]の何れか一項に記載の細胞の分離方法。
[6] 前記微小流路を有する分離エリアが、決定論的横置換法マイクロ流路構造を有する分離エリアである、[1]~[5]の何れか一項に記載の細胞の分離方法。
[7] 前記血液サンプルが、さらに目的外細胞を含み、
 前記細胞分離デバイスに導入する前に、前記目的細胞の表面に存在する特徴的な構造を認識する対象捕捉物質を、前記血液サンプルに加えて、前記目的細胞と前記対象捕捉物質との複合体を生成することを含み、
 前記目的細胞を分離することが、前記閾値より小さいサイズを有する細胞は、前記血液サンプルの流れと一緒に移動し、且つ閾値以上のサイズを有する前記複合体は流れに対し斜め方向に変位して移動することで分離することであり、
 前記回収することにおいて、前記目的細胞を前記複合体として回収する、[1]~[6]の何れか一項に記載の細胞の分離方法。
[8] 前記血液サンプルが、さらに目的外細胞を含み、
 前記細胞分離デバイスに導入する前に、前記目的外細胞の表面に存在する特徴的な構造を認識する対象捕捉物質を、前記血液サンプルに加えて、前記目的外細胞と前記対象捕捉物質との複合体を生成することを含み、
 前記目的細胞を分離することが、閾値より小さいサイズを有する細胞は、前記血液サンプルの流れと一緒に移動し、且つ閾値以上のサイズを有する前記複合体は流れに対し斜め方向に変位して移動することで分離することである、[1]~[6]の何れか一項に記載の細胞の分離方法。
[9] 前記対象捕捉物質が、前記目的細胞又は前記目的外細胞の表面に存在する特徴的な構造を有する対象捕捉分子と、前記対象捕捉分子を担持する物質との結合体からなる、[7]又は[8]に記載の細胞の分離方法。
[10] 前記対象捕捉分子が、抗体、ペプチドアプタマー、レクチン、細胞間接着分子、糖鎖、又は細胞認識性の高分子である、[9]に記載の細胞の分離方法。
[11] 前記対象捕捉分子を担持する物質が、ポリスチレン又はラテックスである、[9]又は[10]に記載の細胞の分離方法。
In order to achieve the above object, the present invention has the following configurations.
[1] Without placing the blood sample containing the target cells in an environment of 4 ° C. or lower, the blood sample is added from the sample introduction port to a cell separation device having a separation area having a microchannel, a sample introduction port and a discharge port. And to introduce the blood sample into the cell separation device.
Separation of the target cells from the blood sample in a continuous stream of liquid containing the blood sample.
Collecting the separated target cells from the outlet and
A method for separating cells including.
[2] The method for separating cells according to [1], wherein not placing in an environment of 4 ° C. or lower is placing in an environment of 10 ° C. or higher and 40 ° C. or lower.
[3] The method for separating cells according to [1] or [2], further comprising adding and flowing a buffer solution from the buffer inlet of the cell separation device.
[4] The method for separating cells according to [3], wherein the temperature of the buffer solution is 10 ° C. or higher and 40 ° C. or lower.
[5] The method for separating cells according to any one of [1] to [4], wherein the blood sample is blood diluted with a diluent.
[6] The method for separating cells according to any one of [1] to [5], wherein the separation area having the microchannel is a separation area having a deterministic transverse substitution method microchannel structure.
[7] The blood sample further contains non-target cells and contains
Prior to introduction into the cell separation device, a target capture substance that recognizes a characteristic structure existing on the surface of the target cell is added to the blood sample, and a complex of the target cell and the target capture substance is added. Including generating
When the target cells are separated, cells having a size smaller than the threshold move with the flow of the blood sample, and the complex having a size equal to or larger than the threshold is displaced obliquely with respect to the flow. It is to separate by moving,
The method for separating cells according to any one of [1] to [6], wherein the target cells are collected as the complex in the collection.
[8] The blood sample further contains non-target cells and contains
Prior to introduction into the cell separation device, a target capture substance that recognizes a characteristic structure existing on the surface of the target cell is added to the blood sample, and a composite of the target cell and the target capture substance is added. Including producing the body
When the target cells are separated, cells having a size smaller than the threshold move with the flow of the blood sample, and the complex having a size equal to or larger than the threshold moves obliquely with respect to the flow. The method for separating cells according to any one of [1] to [6], wherein the cells are separated by the above-mentioned method.
[9] The target capture substance comprises a conjugate of a target capture molecule having a characteristic structure existing on the surface of the target cell or a non-target cell and a substance carrying the target capture molecule [7]. ] Or the method for separating cells according to [8].
[10] The method for separating cells according to [9], wherein the target capture molecule is an antibody, a peptide aptamer, a lectin, an intercellular adhesion molecule, a sugar chain, or a cell-recognizable polymer.
[11] The method for separating cells according to [9] or [10], wherein the substance supporting the target capture molecule is polystyrene or latex.
 本発明によれば、微小流路によって目的細胞を分離する方法において、血液サンプルを微小流路に導入した際に、流路中で血液が凝固することなく、目的細胞を分離することができる。 According to the present invention, in the method of separating target cells by a microchannel, when a blood sample is introduced into the microchannel, the target cells can be separated without coagulation of blood in the channel.
本発明の実施形態に係る分離方法の基本原理を説明する模式図である。It is a schematic diagram explaining the basic principle of the separation method which concerns on embodiment of this invention. 本発明の実施形態に係るDLDマイクロ流路の基本構造(分離エリア)を備えた分離デバイスを説明する模式図である。It is a schematic diagram explaining the separation device provided with the basic structure (separation area) of the DLD microchannel which concerns on embodiment of this invention. 本発明の実施形態に係るDLDマイクロ流路の基本構造を備えた分離デバイスの鉛直方向断面模式図である。FIG. 5 is a schematic vertical cross-sectional view of a separation device provided with a basic structure of a DLD microchannel according to an embodiment of the present invention. 本発明の実施形態に係る送液部及び回収部を備えた分離装置を説明する模式図である。It is a schematic diagram explaining the separation apparatus provided with the liquid feeding part and the collecting part which concerns on embodiment of this invention. 本発明の実施形態に係る細胞を含む細胞懸濁液及び対象捕捉物質を説明する模式図である。It is a schematic diagram explaining the cell suspension containing the cell and the target capture substance which concerns on embodiment of this invention. 本発明の実施形態に係る目的細胞を捕捉する分離方法を説明する模式図である。It is a schematic diagram explaining the separation method which captures the target cell which concerns on embodiment of this invention. 本発明の実施形態に係る目的外細胞を捕捉する分離方法を説明する模式図である。It is a schematic diagram explaining the separation method which captures the non-objective cell which concerns on embodiment of this invention. 本発明の実施形態に係る微小凝集物を除去する方法を説明する模式図である。It is a schematic diagram explaining the method of removing the microaggregate which concerns on embodiment of this invention. 本発明の実施形態に係る微小凝集物除去デバイスのピラー構造を説明する模式図である。It is a schematic diagram explaining the pillar structure of the microaggregate removing device which concerns on embodiment of this invention. 本発明の実施形態に係る微小凝集物除去デバイス(2つのマイクロ流路構造を有する態様)を説明する模式図である。It is a schematic diagram explaining the microaggregate removing device (a mode having two microchannel structures) which concerns on embodiment of this invention. 一体型の細胞分離デバイスの一例を示す平面図である。It is a top view which shows an example of an integrated cell separation device. 一体型の細胞分離デバイスの一例を示す側面図である。It is a side view which shows an example of an integrated cell separation device. 一体型の細胞分離デバイスの平面図、流れ幅を収束させる部分の拡大図及び、細胞分離部分の拡大図である。It is a plan view of an integrated cell separation device, an enlarged view of a portion where the flow width is converged, and an enlarged view of a cell separation portion. 採血後、25℃で4時間又は24時間保存した血液サンプルを用いた場合の、血液分離デバイスの血液の流れを示す図である。It is a figure which shows the blood flow of the blood separation device when the blood sample stored at 25 degreeC for 4 hours or 24 hours after blood collection was used. 採血後、4℃で4時間保存した血液サンプルを用いた場合の、血液サンプル導入直後の血液分離デバイスの血液の流れを示す図である。It is a figure which shows the blood flow of the blood separation device immediately after the introduction of a blood sample when the blood sample stored at 4 degreeC for 4 hours after blood collection is used. 採血後、4℃で4時間保存した血液サンプルを用いた場合の、血液サンプル導入後40分経過後の血液分離デバイスの血液の流れを示す図である。It is a figure which shows the blood flow of the blood separation device 40 minutes after the introduction of a blood sample when the blood sample stored at 4 degreeC for 4 hours after blood collection is used.
1.細胞を分離する原理
 本発明の一態様は、目的細胞を含む血液サンプルを4℃以下の環境に置かずに、微小流路(以下、マイクロ流路と称する場合もある)を有する分離エリア、サンプル導入口及び排出口を備える細胞分離デバイスに前記血液サンプルを前記サンプル導入口から加えて流し、前記血液サンプルを前記細胞分離デバイスに導入することと、連続的な前記血液サンプルを含む液体の流れ中で、前記血液サンプルから、前記目的細胞を分離することと、分離された前記目的細胞を前記排出口から回収することと、を含む細胞の分離方法に関する。
1. 1. Principle of separating cells One aspect of the present invention is a separation area and sample having a microchannel (hereinafter, also referred to as a microchannel) without placing a blood sample containing a target cell in an environment of 4 ° C or lower. The blood sample is added to a cell separation device provided with an inlet and an outlet from the sample inlet and flowed, the blood sample is introduced into the cell separation device, and a liquid containing the blood sample is continuously flowing. The present invention relates to a method for separating cells, which comprises separating the target cells from the blood sample and collecting the separated target cells from the outlet.
 血液サンプルを4℃以下の環境に置かずに、微小流路を有する分離エリアを備える細胞分離デバイスに導入することにより、血液サンプルが、微小流路内で凝集することなく、血液サンプル中の目的細胞を分離することができる。生体から血液サンプルを採取した後、細胞分離デバイスに導入するよりも前までの間、血液サンプルは、通常であれば4℃程度で冷蔵保存される。しかしながら、血液サンプルを、4℃以下の環境に置かないことによって、微小流路内で凝集することが抑制されたことは、驚くべきことである。血液サンプルから目的細胞を分離後、目的細胞の検査を行う際、抗血液凝固試薬が混在していないことが望まれる場合がある。本発明の一態様によれば、抗血液凝固試薬を血液サンプルに添加しなくても細胞分離デバイスを用いて目的細胞を分離することができる。そのため、分離された目的細胞を様々な検査に用いることができる。 By introducing the blood sample into a cell separation device having a separation area having a microchannel without placing it in an environment of 4 ° C. or lower, the blood sample is not aggregated in the microchannel and the purpose in the blood sample. Cells can be isolated. After collecting a blood sample from a living body and before introducing it into a cell separation device, the blood sample is usually stored refrigerated at about 4 ° C. However, it is surprising that agglutination in the microchannel was suppressed by not placing the blood sample in an environment below 4 ° C. When examining the target cells after separating the target cells from the blood sample, it may be desired that the anticoagulant reagent is not mixed. According to one aspect of the present invention, the target cells can be separated using the cell separation device without adding an anticoagulation reagent to the blood sample. Therefore, the isolated target cells can be used for various tests.
 「血液サンプルを4℃以下の環境に置かない」とは、血液サンプルを4℃以下の環境に一定時間置かないことを意味する。つまり、「血液サンプルを4℃以下の環境に置かない」とは、血液サンプルを4℃以下の環境で保存しないことを意味する。具体的には、血液サンプルを4℃以下で1時間以上置かないことが好ましく、4℃以下で3時間以上置かないことがより好ましく、4℃以下で8時間以上置かないことが特に好ましい。例えば、血液サンプルを、血液採取後、好ましくは10℃以上40℃以下、より好ましくは15℃以上40℃以下、さらに好ましくは20℃以上40℃以下、特に好ましくは25℃以上37℃以下で、好ましくは3日以内(つまり、72時間以内)、より好ましくは2日以内(つまり48時間以内)、特に好ましくは1日以内(つまり、24時間以内)に細胞分離デバイスに導入することが好ましい。 "Do not place the blood sample in an environment of 4 ° C or lower" means that the blood sample is not placed in an environment of 4 ° C or lower for a certain period of time. That is, "do not place the blood sample in an environment of 4 ° C or lower" means that the blood sample is not stored in an environment of 4 ° C or lower. Specifically, it is preferable not to leave the blood sample at 4 ° C. or lower for 1 hour or longer, more preferably not to leave it at 4 ° C. or lower for 3 hours or longer, and particularly preferably not to leave it at 4 ° C. or lower for 8 hours or longer. For example, after collecting blood, the blood sample is preferably 10 ° C. or higher and 40 ° C. or lower, more preferably 15 ° C. or higher and 40 ° C. or lower, further preferably 20 ° C. or higher and 40 ° C. or lower, and particularly preferably 25 ° C. or higher and 37 ° C. or lower. It is preferably introduced into the cell separation device within 3 days (ie, within 72 hours), more preferably within 2 days (ie, within 48 hours), and particularly preferably within 1 day (ie, within 24 hours).
 血液採取後、細胞分離デバイスに導入されるまでの時間の下限は、特に限定されない。採取された血液をそのまま血液サンプルとして用いる場合は、血液採取後、直ちに血液サンプルを細胞分離デバイスに導入してもよい。血液サンプルが血液と後述の希釈液との混合物である場合、血液と希釈液とを混合後、血液サンプルを直ちに細胞分離デバイスに導入してもよい。 The lower limit of the time from blood collection to introduction into the cell separation device is not particularly limited. When the collected blood is used as it is as a blood sample, the blood sample may be introduced into the cell separation device immediately after the blood collection. If the blood sample is a mixture of blood and a diluent described below, the blood sample may be immediately introduced into the cell separation device after mixing the blood with the diluent.
 血液サンプルは、血液採取後、1時間以上3日以内に、或いは3時間以上2日以内に、或いは6時間以上1日以内に、血液サンプルを細胞分離デバイスに導入してもよい。 As the blood sample, the blood sample may be introduced into the cell separation device within 1 hour or more and 3 days, 3 hours or more and 2 days, or 6 hours or more and 1 day after blood collection.
 上述の血液サンプルが置かれる温度とその期間の範囲は、任意に組み合わせることができる。例えば、血液サンプルは、血液採取後、10℃以上40℃以下で1時間以上3日間以下の期間保存された後、細胞分離デバイスに導入されてもよい。血液サンプルは、血液採取後、15℃以上40℃以下で3時間以上2日以内保存された後、細胞分離デバイスに導入されてもよい。血液サンプルは、血液採取後、20℃以上40℃以下で6時間以上1日間以下の期間保存された後、細胞分離デバイスに導入されてもよい。血液サンプルは、血液採取後、25℃以上37℃以下で6時間以上1日間以下の期間保存された後、細胞分離デバイスに導入されてもよい。 The temperature at which the blood sample is placed and the range of the period can be arbitrarily combined. For example, the blood sample may be introduced into a cell separation device after blood collection, storage at 10 ° C. or higher and 40 ° C. or lower for a period of 1 hour or more and 3 days or less. The blood sample may be stored in a cell separation device at 15 ° C. or higher and 40 ° C. or lower for 3 hours or more and 2 days or less after blood collection. After collecting blood, the blood sample may be stored at 20 ° C. or higher and 40 ° C. or lower for a period of 6 hours or more and 1 day or less, and then introduced into a cell separation device. The blood sample may be introduced into a cell separation device after being stored at 25 ° C. or higher and 37 ° C. or lower for a period of 6 hours or more and 1 day or less after blood collection.
 細胞分離デバイスに導入することは、細胞分離デバイスのバッファー導入口からバッファー液を加えて流すことを含んでいてもよい。使用するバッファー液に関しては、対象とする血液サンプル、分離する目的細胞、及び含まれる微小凝集物の少なくとも一つに応じて適宜選択して使用することができる。バッファー液としては、細胞への影響を避けるために、等張液を一種又は複数組合せて使用することが出来る。例えば、バッファー液として、生理食塩水又はPBS等を使用すれば良い。この場合、バッファー導入口から導入するバッファー液の温度は、4℃を超える温度であり、10℃以上40℃以下が好ましく、好ましくは15℃以上40℃以下、さらに好ましくは20℃以上40℃以下、特に好ましくは25℃以上37℃以下である。 Introducing into a cell separation device may include adding a buffer solution from the buffer introduction port of the cell separation device and flowing it. The buffer solution to be used can be appropriately selected and used according to at least one of the target blood sample, the target cells to be separated, and the contained microaggregates. As the buffer solution, one or a combination of a plurality of isotonic solutions can be used in order to avoid the influence on the cells. For example, physiological saline or PBS may be used as the buffer solution. In this case, the temperature of the buffer solution introduced from the buffer introduction port is a temperature exceeding 4 ° C., preferably 10 ° C. or higher and 40 ° C. or lower, preferably 15 ° C. or higher and 40 ° C. or lower, and more preferably 20 ° C. or higher and 40 ° C. or lower. Particularly preferably, it is 25 ° C. or higher and 37 ° C. or lower.
 また、血液サンプルは、血液をそのまま使用しても良く、血液を任意の希釈液で希釈して用いても良い。希釈液としては、前記のバッファー液等が挙げられる。希釈液で希釈する場合、希釈液の温度は、4℃を超える温度であり、10℃以上40℃以下が好ましく、より好ましくは15℃以上40℃以下、さらに好ましくは20℃以上40℃以下、特に好ましくは25℃以上37℃以下である。 Further, as the blood sample, the blood may be used as it is, or the blood may be diluted with an arbitrary diluent and used. Examples of the diluent include the above-mentioned buffer solution and the like. When diluting with a diluent, the temperature of the diluent is a temperature exceeding 4 ° C, preferably 10 ° C or higher and 40 ° C or lower, more preferably 15 ° C or higher and 40 ° C or lower, and further preferably 20 ° C or higher and 40 ° C or lower. Particularly preferably, it is 25 ° C. or higher and 37 ° C. or lower.
 微小流路を有する分離エリアを備える細胞分離デバイスとしては、特に制限はないが、決定論的横置換法(Deterministic Lateral Displacement:DLD)マイクロ流路構造を有する分離エリアを備える細胞分離デバイスが好ましい。
 図1は、本発明の実施形態における決定論的横置換法の基本原理を説明する模式図である。以下、DLDについて説明する。
The cell separation device having a separation area having a microchannel structure is not particularly limited, but a cell separation device having a separation area having a deterministic Lateral Displacement (DLD) microchannel structure is preferable.
FIG. 1 is a schematic diagram illustrating the basic principle of the deterministic transverse substitution method in the embodiment of the present invention. Hereinafter, DLD will be described.
1-1.決定論的横置換法(DLD)
 決定論的横置換法とは、わずかにずれたピラー構造に粒子の分散液を流した際、大きい粒子はピラー周囲に生じる流れの変化より斜めに流れるのに対し、小さい粒子は層流に乗って大域的には直線的に進む性質を利用して、寸法によるソーティングを実現する方法である(非特許文献1、図1を参照)。決定論的横置換法は、規則的な障害物(以降、マイクロピラー又はマイクロポストと称することがある)をずらしながら配置した流路を用いる方法である。決定論的横置換法では、小さい粒子は流れに乗って直進する一方、大きな粒子は障害物周囲に生じる流れの変化に従い、障害物のずれに沿って斜めに進むことになる。
1-1. Deterministic transverse substitution (DLD)
In the deterministic transverse displacement method, when a dispersion of particles is flowed through a slightly displaced pillar structure, large particles flow diagonally from the change in flow that occurs around the pillars, whereas small particles ride on laminar flow. This is a method of realizing sorting by size by utilizing the property of linearly advancing globally (see Non-Patent Document 1 and FIG. 1). The deterministic transverse substitution method is a method using a flow path in which regular obstacles (hereinafter sometimes referred to as micropillars or microposts) are arranged while being displaced. In the deterministic transverse substitution method, small particles travel straight along the flow, while large particles travel diagonally along the displacement of the obstacle as the flow changes around the obstacle.
 一般的に、このDLD原理は、細胞の分離、例えば、血液中の成分、具体的には赤血球、白血球、及び循環性腫瘍細胞(以降、CTCと称することがある)の分離にも応用されている。寸法選別マイクロポスト構造上に血液細胞を流し、DLDを用いたマイクロ流体デバイス中を通過させることで、細胞の大きさにより、DLDマイクロ流路により比較的大きな細胞を選び出すことが出来る。しかしながら、血液中に存在する目的細胞と目的外細胞の大きさが近似している場合には、両者を分離することは困難であることがある。困難な場合の細胞の組み合わせとしては、例えば、目的細胞が腫瘍細胞であり、目的外細胞が白血球を含む場合が挙げられる。 In general, this DLD principle is also applied to the separation of cells, for example, the separation of components in blood, specifically erythrocytes, leukocytes, and circulating tumor cells (hereinafter sometimes referred to as CTC). There is. By flowing blood cells on the dimensional selection micropost structure and passing them through a microfluidic device using DLD, relatively large cells can be selected by the DLD microchannel depending on the size of the cells. However, when the size of target cells and non-target cells present in blood are similar, it may be difficult to separate them. Examples of cell combinations in difficult cases include cases where the target cell is a tumor cell and the non-target cell contains leukocytes.
 本実施形態の細胞を分離する方法においては、後述するように、目的細胞又は目的外細胞の表面に存在する特徴的な構造を認識する対象捕捉物質を用いてもよい。具体的には、対象捕捉物質を細胞懸濁液に加えて、目的細胞又は目的外細胞と対象捕捉物質との複合体を生成させることにより、目的細胞と目的外細胞との間で大きさに差異を設ける。その後、DLDマイクロ流路の基本構造を有する細胞分離デバイスを利用して、目的細胞を分離することができる。 In the method for separating cells of the present embodiment, as described later, a target capturing substance that recognizes a characteristic structure existing on the surface of a target cell or a non-target cell may be used. Specifically, by adding the target capture substance to the cell suspension to generate a complex of the target cell or the non-target cell and the target capture substance, the size is increased between the target cell and the non-target cell. Make a difference. Then, the target cells can be separated by using a cell separation device having a basic structure of the DLD microchannel.
1-2.DLD原理における斜方向に変位する細胞の直径の閾値、細胞分離デバイス
 非特許文献1に記載のDLD原理に基づいて、分離しようとする目的細胞の直径により、斜方向に変位する細胞の直径の閾値(Dc)を設定することが出来る。より具体的には、閾値Dcの設定は、以下の式(1)から求めることが出来る。
Dc=2ηGε ・・・(1)
 Dc:斜方向に変位する細胞の直径の閾値
 η:変数
 G:ピラー間ギャップ 
 ε:ピラーのずれ角度(tanθ)
1-2. Diagonally displaced cell diameter threshold in the DLD principle, cell separation device Based on the DLD principle described in Non-Patent Document 1, the threshold of the obliquely displaced cell diameter depending on the diameter of the target cell to be separated. (Dc) can be set. More specifically, the setting of the threshold value Dc can be obtained from the following equation (1).
Dc = 2ηGε ・ ・ ・ (1)
Dc: Threshold for the diameter of cells displaced in the oblique direction η: Variable G: Gap between pillars
ε: Pillar shift angle (tanθ)
 そして、上記式(1)を解くと、下記の近似式(2)が得られる。
Dc=1.4Gε0.48 ・・・(2)
Then, by solving the above equation (1), the following approximate equation (2) is obtained.
Dc = 1.4Gε 0.48 ... (2)
 そして、経験則から、0.06<ε<0.1程度の場合に目的細胞の分離が良好であることから、ε=tanθ=1/15=0.067を用いて、以下の関係式(3)を導くことが出来る。
G≒2.62057Dc ・・・(3)
Then, from the rule of thumb, since the separation of the target cells is good when 0.06 <ε <0.1, the following relational expression (ε = tanθ = 1/15 = 0.067) is used. 3) can be derived.
G≈2.62057Dc ... (3)
 そして、上記の式(3)から、斜方向に変位する細胞の直径の閾値Dcに基づいて、ピラー間ギャップGを算出する。そしてピラー間ギャップGのピラー群(以降、障害物構造と称することがある)が設置された基本構造部分を有する細胞分離デバイスを作製することが出来る。このようにして、目的の閾値Dcを有するDLDマイクロ流路を有する細胞分離デバイスを作製することが出来る。 Then, from the above formula (3), the inter-pillar gap G is calculated based on the threshold Dc of the diameter of the cells displaced in the oblique direction. Then, a cell separation device having a basic structural portion in which a pillar group having a gap G between pillars (hereinafter, may be referred to as an obstacle structure) is installed can be produced. In this way, a cell separation device having a DLD microchannel having a target threshold Dc can be prepared.
 本明細書において、細胞の直径とは、細胞が球体である場合には、当該球体の直径である。細胞が球体でない場合には、当該細胞と同じ体積の球体を想定し、当該球体の直径を細胞の直径と定義する。また、本明細書中において、細胞の直径を、細胞の大きさ、又は細胞のサイズと記載することがある。 In the present specification, the diameter of a cell is the diameter of the sphere when the cell is a sphere. When a cell is not a sphere, a sphere having the same volume as the cell is assumed, and the diameter of the sphere is defined as the diameter of the cell. Further, in the present specification, the diameter of a cell may be referred to as a cell size or a cell size.
 また、目的細胞と対象捕捉物質との複合体を分離する場合は、目的細胞の直径として、複合体の直径を用いる。複合体の直径は、対象捕捉物質の直径と目的細胞の直径の和と定義する。対象捕捉物質の直径は、対象捕捉物質が球体である場合には、当該球体の直径である。対象捕捉物質が球体でない場合には、当該対象捕捉物質と同じ体積の球体を想定し、当該球体の直径を対象捕捉物質の直径と定義する。 When separating the complex of the target cell and the target capture substance, the diameter of the complex is used as the diameter of the target cell. The diameter of the complex is defined as the sum of the diameter of the target capture substance and the diameter of the target cell. The diameter of the target capture substance is the diameter of the sphere when the target capture substance is a sphere. When the target trapping substance is not a sphere, a sphere having the same volume as the target capturing substance is assumed, and the diameter of the sphere is defined as the diameter of the target capturing substance.
 まず、図1では、DLDマイクロ流路の基本構造20(以降、分離エリアと称することがある)が示されている。矢印方向に向かう流体の流れ方向に対し、一定の規則に従い斜めに配列した障害物構造21が設けられている。矢印方向に向かう流体中において、障害物構造21周辺部においては流れ速度の変化が生じる。この連続して配列された障害物構造21による流れ速度の変化を利用し、流体中に含まれる細胞(図1の説明においては、粒子と称する)の直径が閾値以上である場合、その粒子の進行方向を変化させることができる。 First, FIG. 1 shows the basic structure 20 of the DLD microchannel (hereinafter, may be referred to as a separation area). Obstacle structures 21 arranged diagonally according to a certain rule with respect to the flow direction of the fluid in the direction of the arrow are provided. In the fluid directed in the direction of the arrow, the flow velocity changes around the obstacle structure 21. Utilizing the change in flow velocity due to the continuously arranged obstacle structure 21, when the diameter of the cell (referred to as a particle in the description of FIG. 1) contained in the fluid is equal to or larger than the threshold value, the particle of the particle is used. The direction of travel can be changed.
 進行方向の変化について、閾値以上の直径の粒子22は、連続して配列された障害物構造21の配置に従い斜め方向に変位していく。一方、閾値未満の直径の粒子23は、前述の粒子22の振る舞いに従わず、流れ方向に沿って障害物構造21を迂回しながら直進する。 Regarding the change in the traveling direction, the particles 22 having a diameter equal to or larger than the threshold value are displaced in the oblique direction according to the arrangement of the obstacle structures 21 arranged continuously. On the other hand, the particles 23 having a diameter less than the threshold value do not follow the behavior of the particles 22 described above, and go straight along the flow direction while bypassing the obstacle structure 21.
 このように、公知の方法(例えば、非特許文献1に記載の方法)に従い、目的とする大きさの粒子を分離可能な閾値設定を行った障害物構造21の配列パターンを設計することにより、流体中に含まれる粒子の大きさに依存して、流れ方向に対して直交する方向に粒子を分離することができる。更には流れ方向下流部にそれぞれ異なる回収流路を設けることにより、分離した粒子をそれぞれ回収することが可能である。 In this way, by designing the arrangement pattern of the obstacle structure 21 in which the threshold value is set so that the particles of the target size can be separated according to a known method (for example, the method described in Non-Patent Document 1). Depending on the size of the particles contained in the fluid, the particles can be separated in a direction orthogonal to the flow direction. Furthermore, by providing different recovery channels in the downstream portion in the flow direction, it is possible to recover the separated particles.
 なお、障害物構造21の形状は、図1に示すような円柱構造のみに限定されない。障害物構造21は、目的とする流れ速度変化を生じさせることのできる形状であれば、例えば三角柱のような、多角柱構造とすることも可能である。 The shape of the obstacle structure 21 is not limited to the cylindrical structure as shown in FIG. The obstacle structure 21 can have a polygonal prism structure such as a triangular prism as long as it has a shape capable of causing a desired change in flow velocity.
 図2は、本発明の実施形態に係るDLDマイクロ流路の基本構造を備えた細胞分離デバイス30を説明する模式図である。以下、細胞分離デバイス30の基本構造について上面から見た図によって説明を行う。まず、流体の入口構造としては、サンプル導入口31及び、バッファー導入口32とを備えている。 FIG. 2 is a schematic diagram illustrating a cell separation device 30 having a basic structure of a DLD microchannel according to an embodiment of the present invention. Hereinafter, the basic structure of the cell separation device 30 will be described with reference to a top view. First, as a fluid inlet structure, a sample introduction port 31 and a buffer introduction port 32 are provided.
 また、流体の出口構造は、第一の排出口33と、第二の排出口34とを含む。第一の排出口33は、斜めに配列された障害物構造部の配置に従った方向に変位して進んだ、閾値以上のサイズ(つまり、ある一定の大きさ以上)の粒子を含む画分を排出する。第二の排出口34は、流れ方向に沿って直進した、閾値より小さいサイズ(つまり、ある一定の大きさ未満)の粒子を含む画分を排出する。なお、第一の排出口33及び第二の排出口34の数は、図2のようにそれぞれ一つのみには限定されず、目的に応じて複数の出口を有していても良い。 Further, the fluid outlet structure includes a first discharge port 33 and a second discharge port 34. The first discharge port 33 is a fraction containing particles having a size equal to or larger than a threshold value (that is, a certain size or more), which is displaced in a direction according to the arrangement of diagonally arranged obstacle structures. Displace. The second discharge port 34 discharges a fraction containing particles having a size smaller than the threshold value (that is, less than a certain size) traveling straight along the flow direction. The number of the first discharge port 33 and the second discharge port 34 is not limited to one as shown in FIG. 2, and may have a plurality of outlets depending on the purpose.
 細胞分離デバイスのサンプル導入口31及びバッファー導入口32と、第一の排出口33及び第二の排出口34との間には、マイクロピラー構造を有するDLDマイクロ流路の基本構造20が連続的に配置されている。この連続的に配置された基本構造20の領域により、血液サンプルに含まれる細胞をその大きさに依存して血液サンプルの流れ方向に対して直交する方向に分離することができる。基本構造20が連続的に配置されている部分に関しては、全ての領域において同じ設計の基本構造が連続していても良く、目的に応じて、徐々に設計を変化させた領域を設定することも可能である。基本構造20の設計とは、細胞分離デバイス30を上面から見たときの基本構造20の配置パターンのことである。 The basic structure 20 of the DLD microchannel having a micropillar structure is continuous between the sample introduction port 31 and the buffer introduction port 32 of the cell separation device and the first discharge port 33 and the second discharge port 34. Is located in. Due to the region of the continuously arranged basic structure 20, cells contained in the blood sample can be separated in a direction orthogonal to the flow direction of the blood sample depending on the size thereof. Regarding the portion where the basic structure 20 is continuously arranged, the basic structure of the same design may be continuous in all the areas, and the area where the design is gradually changed may be set according to the purpose. It is possible. The design of the basic structure 20 is an arrangement pattern of the basic structure 20 when the cell separation device 30 is viewed from above.
 バッファー導入口32から導入されるバッファー液としては、前述のバッファー液が挙げられる。 Examples of the buffer solution introduced from the buffer introduction port 32 include the above-mentioned buffer solution.
 サンプル導入口31から流体デバイス30内への入口部分の構造については、血液サンプルを後述のように流す必要がある為、図2に示すような一定幅の隔壁構造45を設けることが好ましい。サンプル導入口31から送液した混合液は、バッファー導入口32から送液したバッファー溶液と層流(つまり、流れ方向に平行して層を成す流れ)を保持しながら流れる。閾値以上の大きさの細胞は、前述の分離原理に従い、流れ方向に対して斜め方向へ変位する事で、混合液の層から分離される。一方、一定の閾値未満の大きさの細胞は、血液サンプルの層の流れに従い直進して流れる。このように、細胞の分離を行う目的から、サンプル導入口31の位置は、流体デバイス30における第二の排出口34側に寄せて設置をする必要がある。つまり、サンプル導入口31の位置は、第一の排出口33よりも第二の排出口34に近い位置に設置する必要がある。 Regarding the structure of the inlet portion from the sample introduction port 31 to the inside of the fluid device 30, it is preferable to provide a partition structure 45 having a constant width as shown in FIG. 2 because it is necessary to flow a blood sample as described later. The mixed solution sent from the sample introduction port 31 flows while maintaining a laminar flow (that is, a flow forming a layer parallel to the flow direction) with the buffer solution sent from the buffer introduction port 32. Cells having a size equal to or larger than the threshold value are separated from the layer of the mixed solution by being displaced diagonally with respect to the flow direction according to the above-mentioned separation principle. On the other hand, cells having a size less than a certain threshold flow straight along the flow of the blood sample layer. As described above, for the purpose of separating cells, the position of the sample introduction port 31 needs to be set closer to the second discharge port 34 side of the fluid device 30. That is, the position of the sample introduction port 31 needs to be installed closer to the second discharge port 34 than to the first discharge port 33.
 また、第一の排出口33及び第二の排出口34の構造は、排出される液量を調整するために、目的に応じて設計を適宜変更することが可能である。例えば、図2の上部、即ち細胞分離デバイス30を上面から見たときの上部yの寸法と下部xの寸法との比が1:1の間隔となるように排出口付近の隔壁38を設けた場合、それぞれの排出口から得られる液量の比は、概ね1:1となる。これに対して、上部yの寸法と下部xの寸法の比が49:1の間隔となるように排出口付近の隔壁38を設けた場合、第一の排出口33から得られる液量は、50分の1となる。その結果、第一の排出口33から得られる液の閾値以上の大きさの細胞の濃度を概ね50倍に濃縮する事が可能である。このように、細胞分離デバイス30は、用途に応じて血液サンプル中の細胞の分離だけでなく、目的細胞の濃縮にも用いることが可能である。例として、図2の隔壁38や後述する図12の分岐部に示す、yとxの比率を1:1や49:1などに設定することで実現することが可能である。 Further, the structure of the first discharge port 33 and the second discharge port 34 can be appropriately changed in design according to the purpose in order to adjust the amount of the discharged liquid. For example, a partition wall 38 near the discharge port is provided so that the ratio of the dimension of the upper portion y and the dimension of the lower portion x when the cell separation device 30 is viewed from the upper surface of FIG. 2 is 1: 1. In this case, the ratio of the amount of liquid obtained from each outlet is approximately 1: 1. On the other hand, when the partition wall 38 near the discharge port is provided so that the ratio of the dimension of the upper portion y to the dimension of the lower portion x is 49: 1, the amount of liquid obtained from the first discharge port 33 is. It will be 1/50. As a result, it is possible to concentrate the concentration of cells having a size equal to or larger than the threshold value of the liquid obtained from the first outlet 33 approximately 50 times. As described above, the cell separation device 30 can be used not only for separating cells in a blood sample but also for concentrating target cells depending on the application. As an example, it can be realized by setting the ratio of y and x to 1: 1 or 49: 1, which is shown in the partition wall 38 of FIG. 2 and the branch portion of FIG. 12 described later.
 図3は、本発明の実施形態に係る細胞分離デバイスの鉛直方向断面の模式図である。細胞分離デバイス30は、流路構造部36と、平面構造部37とが接合されている。細胞分離デバイス30は、DLDマイクロ流路の基本構造20を構成している。流路構造部36は、サンプル導入口31、バッファー導入口32、第一の排出口33及び第二の排出口34等の形状を備えている。流路構造部36と平面構造部37との間の空間は、流路空間35である。また、それぞれサンプル導入口31、バッファー導入口32、第一の排出口33、及び第二の排出口34部分には、適宜チューブを接合させ、またシリンジ等との接合部を設けることにより、変更を加えて使用することもできる。 FIG. 3 is a schematic view of a vertical cross section of the cell separation device according to the embodiment of the present invention. In the cell separation device 30, the flow path structure portion 36 and the planar structure portion 37 are joined to each other. The cell separation device 30 constitutes the basic structure 20 of the DLD microchannel. The flow path structure portion 36 has shapes such as a sample introduction port 31, a buffer introduction port 32, a first discharge port 33, and a second discharge port 34. The space between the flow path structure portion 36 and the planar structure portion 37 is the flow path space 35. Further, the sample introduction port 31, the buffer introduction port 32, the first discharge port 33, and the second discharge port 34 are changed by appropriately joining tubes and providing joints with a syringe or the like. Can also be used in addition to.
 流路空間35の高さは、閾値以上のサイズの細胞又は複合体が通過可能な高さに設定されていれば何ら限定は無い。流路空間35の高さは、精度の良い細胞分離を行う為に、好ましくは閾値以上のサイズの細胞又は複合体が流路空間35の高さ方向に同時に2つ以上存在し得ない高さに設定する事が望ましい。 The height of the flow path space 35 is not limited as long as it is set to a height at which cells or complexes having a size equal to or larger than the threshold value can pass through. The height of the flow path space 35 is such that two or more cells or complexes having a size equal to or larger than the threshold value cannot exist at the same time in the height direction of the flow path space 35 in order to perform accurate cell separation. It is desirable to set it to.
 流路構造部36の部材、及び流路構造部36の作製方法は、公知のいずれかの方法を適宜選択して作製することができる。部材の材料としては、例えば、ガラス、シリコーン、ジメチルポリシロキサン、又はプラスチック等を用いることができる。また、平面構造部37については、平坦かつ流路構造部36と接合可能な材料であれば特に限定されないが、強度を有している、ガラス又はプラスチック等を使用することが好ましい。 The member of the flow path structure portion 36 and the method for manufacturing the flow path structure portion 36 can be manufactured by appropriately selecting any known method. As the material of the member, for example, glass, silicone, dimethylpolysiloxane, plastic or the like can be used. The planar structure portion 37 is not particularly limited as long as it is a flat material that can be bonded to the flow path structure portion 36, but it is preferable to use glass, plastic, or the like having strength.
 なお、本細胞分離デバイス30は、それぞれ基本構造、サンプル導入口、バッファー導入口、第一の排出口及び第二の排出口の形状を備え、流路空間が形成されていれば何ら問題無い。例えば図3に示す平面構造部37側の部材に基本構造、サンプル導入口、バッファー導入口、第一の排出口及び第二の排出口の形状の少なくとも一つを備えている構造とする事もできる。例えば、平面構造部37が基本構造を備え、流路構造部36がサンプル導入口、バッファー導入口、第一の排出口及び第二の排出口を備えていてもよい。また、例えば、流路構造部36が基本構造、サンプル導入口、バッファー導入口、第一の排出口及び第二の排出口を備えていてもよい。 The cell separation device 30 has a basic structure, a sample introduction port, a buffer introduction port, a first discharge port, and a second discharge port, respectively, and there is no problem as long as the flow path space is formed. For example, the member on the side of the planar structure portion 37 shown in FIG. 3 may have at least one of the shapes of a basic structure, a sample introduction port, a buffer introduction port, a first discharge port, and a second discharge port. it can. For example, the planar structure portion 37 may have a basic structure, and the flow path structure portion 36 may include a sample introduction port, a buffer introduction port, a first discharge port, and a second discharge port. Further, for example, the flow path structure portion 36 may include a basic structure, a sample introduction port, a buffer introduction port, a first discharge port, and a second discharge port.
 図4は、本発明の実施形態に係る送液部及び回収部を備えた分離装置を説明する模式図である。分離装置40は、DLDマイクロ流路の基本構造を有する細胞分離デバイス30を有している。細胞分離デバイス30は、それぞれサンプル導入口31にサンプル送液部41、バッファー導入口32にバッファー送液部42を含む。また、第一の排出口33に第一の回収部43、第二の排出口34に第二の回収部44がそれぞれ設けられている。 FIG. 4 is a schematic view illustrating a separation device including a liquid feeding unit and a collecting unit according to an embodiment of the present invention. The separation device 40 has a cell separation device 30 having a basic structure of a DLD microchannel. The cell separation device 30 includes a sample liquid supply unit 41 in the sample introduction port 31 and a buffer liquid supply unit 42 in the buffer introduction port 32, respectively. Further, the first discharge port 33 is provided with the first collection unit 43, and the second discharge port 34 is provided with the second collection unit 44.
 サンプル送液部41とバッファー送液部42は、それぞれ送液系を備えた機構を有しており、一定の速度でそれぞれ独立した送液が可能である。これらは一定の速度で送液可能な機構であれば特に限定はされないが、例えば、シリンジポンプ等による送液が好適である。また、必要に応じてサンプル送液部41には複合体5の沈殿、及び凝集を防ぐための攪拌機構や、混合液(血液サンプルともいう)4を調整する自動化機構を備えていても良い。 The sample liquid feeding unit 41 and the buffer liquid feeding unit 42 each have a mechanism provided with a liquid feeding system, and can independently feed the liquid at a constant speed. These are not particularly limited as long as they are mechanisms capable of delivering liquid at a constant speed, but for example, liquid feeding by a syringe pump or the like is preferable. Further, if necessary, the sample liquid feeding unit 41 may be provided with a stirring mechanism for preventing precipitation and aggregation of the complex 5 and an automation mechanism for adjusting the mixed liquid (also referred to as blood sample) 4.
 第一の回収部43及び第二の回収部44に関しては、排出液を回収できる機構であれば特に限定されないが、分離開始直前、直後で排出液の分画ができる機構等を備えていても良い。例えば、サンプル導入口31からバッファー液を送液後、サンプル導入口31から血液サンプルを導入することがある。このような場合、第一の回収部43及び第二の回収部44に排出液を経時的に分画ができる機構を備えていてもよい。これにより、血液サンプル送液前のバッファー液のみのフラクションと血液サンプルを含むフラクションとを分けて回収することができる。 The first recovery unit 43 and the second collection unit 44 are not particularly limited as long as they have a mechanism that can collect the discharged liquid, but even if they are provided with a mechanism that can fractionate the discharged liquid immediately before or after the start of separation. good. For example, a blood sample may be introduced from the sample introduction port 31 after the buffer solution is sent from the sample introduction port 31. In such a case, the first recovery unit 43 and the second collection unit 44 may be provided with a mechanism capable of fractionating the discharged liquid over time. As a result, the fraction containing only the buffer solution before the blood sample is sent and the fraction containing the blood sample can be collected separately.
2.細胞分離方法
 以下、本発明の一態様における分離方法について、図を参照しながら説明する。
2. 2. Cell Separation Method Hereinafter, the separation method according to one aspect of the present invention will be described with reference to the drawings.
 本発明は、上記のように、連続的な液体の流れ中で、血液サンプルから目的細胞を分離する方法である。なお、「血液サンプル」としては、目的細胞を含む血液サンプルであれば、特に限定されない。血液サンプルとしては、例えば、全血、血清、及び血漿等を例示できる。また、血液サンプルは、全血、血清、又は血漿等を希釈液で希釈したものであってもよい。
 本発明の実施形態に係る細胞の分離方法において、血液サンプルは、目的細胞の他に目的外細胞を含んでいてもよい。その場合、細胞の分離方法は、細胞分離デバイスに血液サンプルを導入する前に、目的細胞の表面に存在する特徴的な構造を認識する対象捕捉物質を、血液サンプルに加えて、目的細胞と対象捕捉物質との複合体を生成すること、及び前記複合体を、細胞分離デバイスを用いて分離することを含んでいてもよい。
 目的細胞と対象捕捉物質との複合体を生成することは、4℃を超える温度で行うことが好ましく、10℃以上40℃以下がより好ましく、例えば、15℃以上40℃以下、20℃以上40℃以下、又は25℃以上37℃以下である。
The present invention is, as described above, a method of separating target cells from a blood sample in a continuous stream of liquid. The "blood sample" is not particularly limited as long as it is a blood sample containing target cells. Examples of blood samples include whole blood, serum, plasma, and the like. Further, the blood sample may be whole blood, serum, plasma or the like diluted with a diluent.
In the method for separating cells according to the embodiment of the present invention, the blood sample may contain non-target cells in addition to the target cells. In that case, the cell separation method is to add a target capture substance that recognizes the characteristic structure existing on the surface of the target cell to the target cell and the target cell before introducing the blood sample into the cell separation device. It may include producing a complex with a trapping agent and separating the complex using a cell separation device.
The complex of the target cell and the target capture substance is preferably produced at a temperature of more than 4 ° C, more preferably 10 ° C or higher and 40 ° C or lower, for example, 15 ° C or higher and 40 ° C or lower, 20 ° C or higher and 40 ° C. ° C or lower, or 25 ° C or higher and 37 ° C or lower.
2-1.目的細胞と対象捕捉物質との複合体を生成する工程
 本発明の実施形態に係る細胞の分離方法は、目的細胞又は目的外細胞と対象捕捉物質との複合体を生成することを含んでもよい。図5は、本発明の実施形態に係る細胞の分離方法において、細胞を含む血液サンプル及び対象捕捉物質を説明する模式図である。まず、目的細胞の表面に存在する特徴的な構造を認識する対象捕捉分子10と、対象捕捉分子10を担持する物質11との結合体である対象捕捉物質12を用いる。目的細胞2及び目的外細胞3を含む血液サンプル1に対して、対象捕捉物質12を、細胞懸濁液1中に混合させる。これにより、得られた混合液4中では、目的細胞2と対象捕捉物質12との複合体5が形成される。
2-1. Step of Creating a Complex of Target Cell and Target Captured Substance The cell separation method according to the embodiment of the present invention may include forming a complex of target cell or non-target cell and target capture substance. FIG. 5 is a schematic diagram illustrating a blood sample containing cells and a target capture substance in the method for separating cells according to the embodiment of the present invention. First, the target capture substance 12 which is a conjugate of the target capture molecule 10 that recognizes the characteristic structure existing on the surface of the target cell and the substance 11 that supports the target capture molecule 10 is used. The target capture substance 12 is mixed in the cell suspension 1 with respect to the blood sample 1 containing the target cells 2 and the non-target cells 3. As a result, in the obtained mixed solution 4, a complex 5 of the target cell 2 and the target capturing substance 12 is formed.
 なお、血液サンプル1中に含まれる目的外細胞3は、1種類に限定されない。目的外細胞3は、対象捕捉分子10が認識する目的細胞の表面に存在する特徴的な構造を有していない細胞であれば、種類や数は限定されない。また、対象捕捉分子10は、目的細胞2の表面に存在する特徴的な構造を認識する分子であり、かつ目的細胞2以外の細胞の表面に存在する特徴的な構造を認識しない分子であれば1種類に限定されず、適宜必要な種類や数を、複数選択して使用することもできる。 The non-target cells 3 contained in the blood sample 1 are not limited to one type. The type and number of the non-target cells 3 are not limited as long as they do not have the characteristic structure existing on the surface of the target cells recognized by the target capture molecule 10. Further, the target capture molecule 10 is a molecule that recognizes the characteristic structure existing on the surface of the target cell 2 and does not recognize the characteristic structure existing on the surface of cells other than the target cell 2. It is not limited to one type, and a plurality of necessary types and numbers can be selected and used as appropriate.
 より詳しくは、対象捕捉分子10を担持する物質11に、同一又は異なる種類の複数の対象捕捉分子10を担持させて対象捕捉物質12を作成しても良い。また、複数の対象捕捉分子10を担持させる物質11に、同一種類又は、異なる種類の対象捕捉分子10を担持しても良く、目的の用途に応じて、適宜選択して、対象捕捉物質12を作成できる。なお、精度良く目的細胞を得るためには、前述の条件を充足する対象捕捉分子10を複数組み合わせて使用することが好ましい。更に、対象捕捉分子を担持する物質11の大きさも目的用途に応じて複数種類の大きさを使い分けて使用することができる。 More specifically, the target capture substance 12 may be prepared by supporting a plurality of target capture molecules 10 of the same or different types on the substance 11 that supports the target capture molecule 10. Further, the same type or different types of target trapping molecules 10 may be supported on the substance 11 that supports a plurality of target capturing molecules 10, and the target capturing substance 12 may be appropriately selected according to the intended use. Can be created. In order to obtain the target cell with high accuracy, it is preferable to use a plurality of target capture molecules 10 satisfying the above conditions in combination. Further, the size of the substance 11 that supports the target trapping molecule can also be used by using a plurality of different sizes depending on the intended use.
 例えば、目的細胞2が更にa、b、…、とそれぞれ細胞表面に特徴的な構造を有している場合、対象捕捉分子10aを備える物質11a、対象捕捉分子10bを備える物質11b、…、とをそれぞれ用いることができる。対象捕捉分子を担持する物質11a及び、対象捕捉分子を担持する物質11b、…、との大きさが違うことを利用し、後の分離工程において複数の分離閾値エリアを通過させることにより、それぞれa、b、…、の特徴的構造を有する目的細胞をそれぞれの排出口へと分離して、回収することも可能である。 For example, when the target cell 2 further has a, b, ..., And a characteristic structure on the cell surface, the substance 11a having the target capture molecule 10a, the substance 11b having the target capture molecule 10b, ... Can be used respectively. Taking advantage of the fact that the size of the substance 11a carrying the target trapping molecule and the substance 11b supporting the target trapping molecule are different, a plurality of separation threshold areas are passed through in the subsequent separation step, respectively. , B, ..., It is also possible to separate the target cells having the characteristic structures into the respective outlets and collect them.
 また、目的の用途に応じては、目的外細胞3と対象捕捉分子との複合体粒子を形成させて分離して、目的外細胞を除去することもできる。 Further, depending on the intended use, it is also possible to form and separate complex particles of the non-target cell 3 and the target capture molecule to remove the non-target cell.
 より詳しくは、目的細胞2及び目的外細胞3を含む血液サンプル1に、目的外細胞表面に特徴的な構造を認識する対象捕捉分子10と、対象捕捉分子10を担持する物質11との結合体である対象捕捉物質12を加える。これにより、混合液4中にて、目的外細胞3と対象捕捉物質12との複合体5を形成させることが可能である(図示せず)。 More specifically, in a blood sample 1 containing the target cell 2 and the non-target cell 3, a conjugate of a target capture molecule 10 that recognizes a structure characteristic of the surface of the target cell and a substance 11 that carries the target capture molecule 10. The target capture substance 12 is added. As a result, it is possible to form a complex 5 of the non-target cell 3 and the target capture substance 12 in the mixed solution 4 (not shown).
 なお、この場合でも同様に対象捕捉分子10に関しては、目的外細胞3の表面に存在する特徴的な構造を認識する分子であり、かつ目的細胞2の表面に存在する特徴的な構造を認識しない分子であれば1種類に限定されず、適宜必要な種類や数を、複数選択して使用することもできる。 Similarly, in this case as well, the target capture molecule 10 is a molecule that recognizes the characteristic structure existing on the surface of the non-target cell 3 and does not recognize the characteristic structure existing on the surface of the target cell 2. If it is a molecule, it is not limited to one type, and a plurality of necessary types and numbers can be selected and used as appropriate.
 対象捕捉分子10は、複合体5を形成させる細胞の表面に存在する特徴的な構造を認識する分子であり、かつそれ以外の細胞の表面に存在する特徴的な構造を認識しない分子であれば、特に限定はされない。対象捕捉分子10としては、例えば、抗体、ペプチドアプタマー、レクチン、細胞間接着分子、糖鎖、及びその他細胞認識性の高分子等のいずれか、又は、これらから複数を組み合わせて適宜使用することができる。 The target capture molecule 10 is a molecule that recognizes the characteristic structure existing on the surface of the cell forming the complex 5, and is a molecule that does not recognize the characteristic structure existing on the surface of other cells. , There is no particular limitation. As the target capture molecule 10, for example, any one of an antibody, a peptide aptamer, a lectin, an intercellular adhesion molecule, a sugar chain, and other cell-recognizable macromolecules, or a plurality of these may be appropriately used. it can.
 対象捕捉分子を担持する物質11は、金属、無機材料又は樹脂などの高分子から形成された部材を使用することが出来る。この部材は、単一材料から形成しても良いし、複数の種類を組合せて使用しても良い。複数の種類の材料を使用する場合、各成分が、均一に混練されるようにして形成された部材を使用することが好ましい。また、対象捕捉分子を担持する物質11の材質として、高分子ポリマーが選択されてよく、具体的には、ポリスチレン又はラテックス等を使用することができる。 As the substance 11 that supports the target capture molecule, a member formed of a polymer such as a metal, an inorganic material, or a resin can be used. This member may be formed from a single material, or may be used in combination of a plurality of types. When a plurality of types of materials are used, it is preferable to use a member formed so that each component is uniformly kneaded. Further, a high molecular polymer may be selected as the material of the substance 11 that supports the target trapping molecule, and specifically, polystyrene, latex, or the like can be used.
 この対象捕捉分子を担持する物質11は、上記の材料からなるものであれば特に部材は限定されない。この後の分離の段階において重要な要素となるため、対象捕捉分子を担持する物質11は、比重が均一であるものを使用することが好ましい。更には血液サンプル1中での反応の際に、対象捕捉分子を担持する物質11の比重が小さい場合、血液サンプル中への分散が均一にならない場合があるため、水に近い又は水よりも比重がやや大きい部材を選択することが好ましい。対象捕捉分子を担持する物質11の比重は、1.00g/cm~1.20g/cmであってよく、1.02g/cm~1.12g/cmであってよく、1.04g/cm~1.09g/cmであってよい。例えば、比重が1.05g/cmの樹脂性のビーズを用いることができる。 The member of the substance 11 that supports the target trapping molecule is not particularly limited as long as it is made of the above-mentioned material. Since it will be an important factor in the subsequent separation stage, it is preferable to use a substance 11 supporting the target capture molecule having a uniform specific gravity. Furthermore, when the specific gravity of the substance 11 supporting the target capture molecule is small during the reaction in the blood sample 1, the dispersion in the blood sample may not be uniform, so that the specific gravity is close to or higher than that of water. It is preferable to select a member having a slightly larger size. The specific gravity of the material 11 which carries the target capture molecules may be 1.00g / cm 3 ~ 1.20g / cm 3, may be 1.02g / cm 3 ~ 1.12g / cm 3, 1. It may be 04 g / cm 3 to 1.09 g / cm 3 . For example, resin beads having a specific gravity of 1.05 g / cm 3 can be used.
 対象捕捉物質12は、上記のように対象捕捉分子10と、対象捕捉分子10を担持する物質11との結合体である。対象捕捉分子10と、それを担持する物質11とは、公知の方法により結合させることが出来る。例えば、対象捕捉分子10としての抗体を物質11に固定化するには、物理的吸着による方法又は化学結合による方法等を使用することが出来る。化学結合による場合、例えば、表面に水酸基を含む材質から出来ている場合、抗体中のカルボキシル基を活性エステル化した後、水酸基とこのエステル基とを反応させることで、抗体を表面に固定化させることが出来る。また、ProteinAやProteinGを介した結合方法も使用することが可能である。なお、対象捕捉物質12は、市販されているもの、例えば、抗体を担持させたビーズを購入して使用することも出来る。 The target capture substance 12 is a conjugate of the target capture molecule 10 and the substance 11 that supports the target capture molecule 10 as described above. The target capture molecule 10 and the substance 11 that supports it can be bound by a known method. For example, in order to immobilize the antibody as the target capture molecule 10 on the substance 11, a method by physical adsorption, a method by chemical bonding, or the like can be used. In the case of chemical bonding, for example, when the surface is made of a material containing a hydroxyl group, the carboxyl group in the antibody is activated esterified, and then the hydroxyl group is reacted with this ester group to immobilize the antibody on the surface. Can be done. It is also possible to use a binding method via Protein A or Protein G. As the target capture substance 12, commercially available substances, for example, beads carrying an antibody can be purchased and used.
 対象捕捉物質12を用いる場合は、対象捕捉物質12の大きさは、複合体5の大きさが、区別するその他の細胞の大きさよりも、大きくなり且つ区別できるサイズとなるように選択する必要がある。つまり、複合体5のサイズが上述の閾値以上となるように、対象捕捉物質12の大きさを選択する必要がある。例えば、目的細胞2と対象捕捉物質12の複合体5を形成し、目的外細胞3との分離を行う場合には、複合体5の大きさが目的外細胞3よりも大きく、かつ上述の閾値以上でなければならない。 When the target capture substance 12 is used, the size of the target capture substance 12 must be selected so that the size of the complex 5 is larger and distinguishable than the size of other cells to be distinguished. is there. That is, it is necessary to select the size of the target trapping substance 12 so that the size of the complex 5 is equal to or larger than the above threshold value. For example, when a complex 5 of the target cell 2 and the target capture substance 12 is formed and the non-target cell 3 is separated, the size of the complex 5 is larger than that of the non-target cell 3 and the above-mentioned threshold value. Must be above.
 より詳しくは、目的細胞2の直径が10~14μmであり、かつ目的外細胞3の直径が8~12μmである場合には、少なくとも対象捕捉物質の直径は、2μm以上であることが必要である。より精度良く分離するためには、対象捕捉物質の直径は、5μm以上が好ましい。後の実験に支障をきたさない範囲であれば、対象捕捉物質の直径は、更に直径の大きいものを用いることが好ましい。DLD原理に基づく細胞分離装置及び一般的な細胞の大きさ等を考慮すると、より具体的には、対象捕捉物質12の直径は、7μm~60μmであり、好ましくは、10μm~55μmであり、より好ましくは、15μm~50μmであり、更に好ましくは、20μm~40μmである。特に、血液中の循環性腫瘍細胞は、一般的な直径が10~20μmである白血球細胞と大きさが近似している。そのため、血液中からの循環性腫瘍細胞を分離する際には、20μm~40μmの直径の対象捕捉物質を使用することが好ましい。 More specifically, when the diameter of the target cell 2 is 10 to 14 μm and the diameter of the non-target cell 3 is 8 to 12 μm, the diameter of the target capture substance must be at least 2 μm or more. .. For more accurate separation, the diameter of the target trapping substance is preferably 5 μm or more. As long as it does not interfere with the subsequent experiment, it is preferable to use a target trapping substance having a larger diameter. Considering a cell separator based on the DLD principle, a general cell size, and the like, more specifically, the diameter of the target capture substance 12 is 7 μm to 60 μm, preferably 10 μm to 55 μm, and more. It is preferably 15 μm to 50 μm, and more preferably 20 μm to 40 μm. In particular, circulating tumor cells in blood are similar in size to white blood cells, which generally have a diameter of 10 to 20 μm. Therefore, when separating circulating tumor cells from blood, it is preferable to use a target capture substance having a diameter of 20 μm to 40 μm.
 以下の本発明の実施形態に係る細胞の分離方法の説明において、「複合体」は、上述した複合体を指すものであるが、複合体を形成させずに目的細胞と目的外細胞とを分離する場合には、「複合体」を「目的細胞」と読み替えて発明を理解することができる。 In the following description of the cell separation method according to the embodiment of the present invention, the "complex" refers to the above-mentioned complex, but the target cell and the non-target cell are separated without forming the complex. In this case, the invention can be understood by reading "complex" as "target cell".
2-2.複合体を、細胞分離デバイスを使用して分離する工程
 本発明の実施形態に係る細胞の分離方法は、複合体を含む血液サンプルを4℃以下の環境に置かずに、微小流路を有する分離エリア、サンプル導入口及び排出口を備える細胞分離デバイスに血液サンプルをサンプル導入口から加えて流し、血液サンプルを細胞分離デバイスに導入することと、連続的な前記血液サンプルを含む液体の流れ中で、血液サンプルから、目的細胞を分離することを含む。血液サンプルから、目的細胞を分離することとは、決定された閾値以上のサイズを有する複合体を分離することである。血液サンプルから、目的細胞を分離することは、血液サンプルを細胞分離デバイスの複数の分離エリア中を通過させ、閾値よりも小さいサイズを有する細胞は、血液サンプルの流れと一緒に移動し、且つ閾値以上のサイズを有する複合体は、流れに対し斜め方向に変位して移動することで分離することを含んでいてもよい。
2-2. Step of separating the complex using a cell separation device The cell separation method according to the embodiment of the present invention is a separation having a microchannel without placing the blood sample containing the complex in an environment of 4 ° C. or lower. A blood sample is added from the sample inlet to a cell separation device provided with an area, a sample inlet and an outlet, and the blood sample is introduced into the cell separation device, and in a continuous flow of liquid containing the blood sample. Includes separating target cells from blood samples. Separating target cells from a blood sample means separating a complex having a size above a determined threshold. Separating the cells of interest from the blood sample allows the blood sample to pass through multiple isolation areas of the cell separation device, and cells with a size smaller than the threshold move with the flow of the blood sample and the threshold. The composite having the above size may include separating by displacing and moving in an oblique direction with respect to the flow.
2-2-1.目的細胞との複合体を作成して分離する工程
 本発明の実施形態に係る細胞の分離方法としては、目的細胞との複合体を作成したのち、DLDマイクロ流路構造を有する分離エリアを備える細胞分離デバイスを使用して、血液サンプルを細胞分離デバイスの複数の分離エリア中を通過させ、決定された閾値以上のサイズを有する複合体を分離する方法が挙げられる。
2-2-1. Step of Creating and Separating a Complex with a Target Cell As a method for separating cells according to the embodiment of the present invention, after creating a complex with a target cell, a cell having a separation area having a DLD microchannel structure. A method of using a separation device to pass a blood sample through multiple separation areas of the cell separation device to separate a complex having a size greater than or equal to a determined threshold can be mentioned.
 図6は、本発明の実施形態に係る目的細胞を捕捉する分離方法を説明する模式図である。この方法ではまず、目的細胞2及び目的外細胞3を含む血液サンプルに対して、目的細胞の表面に存在する特徴的な構造を認識する対象捕捉物質12を混合させることにより、目的細胞2と対象捕捉物質12との複合体5を形成させる。 FIG. 6 is a schematic diagram illustrating a separation method for capturing target cells according to the embodiment of the present invention. In this method, first, the target cell 2 and the target cell 2 and the target cell 2 are mixed with the target capture substance 12 that recognizes the characteristic structure existing on the surface of the target cell with the blood sample containing the target cell 2 and the non-target cell 3. The complex 5 with the trapping substance 12 is formed.
 細胞分離デバイス30を、流路空間部を予めバッファー液で満たして気泡を除去した状態に準備しておく。細胞分離デバイス30に対し、目的外細胞3及び複合体5を有する混合液4をサンプル導入口31から細胞分離デバイス30中に導入し、かつ同時にバッファー導入口32からバッファー液を連続して導入する。その後、細胞分離デバイス30中では、細胞分離デバイス30中に連続して設けられたDLDマイクロ流路構造を有する基本構造20(つまり分離エリア)により、目的外細胞3は直進する。一方、複合体5は、流れと斜め方向に変位して移動し目的外細胞3との分離がなされる。この結果、第一の排出口33から目的細胞2を有する複合体5が得られ、第二の排出口34からは目的外細胞3が得られる。以上のように、複合体5と目的外細胞3の分離を行うことができる。 The cell separation device 30 is prepared in a state where the flow path space is filled with a buffer solution in advance to remove air bubbles. To the cell separation device 30, the mixed solution 4 having the non-target cells 3 and the complex 5 is introduced into the cell separation device 30 from the sample introduction port 31, and at the same time, the buffer solution is continuously introduced from the buffer introduction port 32. .. After that, in the cell separation device 30, the non-target cell 3 goes straight by the basic structure 20 (that is, the separation area) having the DLD microchannel structure continuously provided in the cell separation device 30. On the other hand, the complex 5 is displaced obliquely with the flow and moves to be separated from the non-target cell 3. As a result, the complex 5 having the target cells 2 is obtained from the first discharge port 33, and the non-target cells 3 are obtained from the second discharge port 34. As described above, the complex 5 and the non-target cell 3 can be separated.
 上記の細胞の分離方法では、第一工程で目的細胞との複合体を形成させた後、血液サンプルを細胞分離デバイスの複数の分離エリア中を通過させ、決定された閾値以上のサイズを有する複合体を分離するものである。この際、閾値は、複合体の大きさにより依存するが、複合体の大きさ、対象捕捉物質の大きさ、目的細胞、及び、区別すべき目的外細胞の大きさ等との関係から、好適な範囲を選択することが出来る。 In the above cell separation method, after forming a complex with a target cell in the first step, a blood sample is passed through a plurality of separation areas of the cell separation device, and the complex has a size equal to or larger than a determined threshold value. It separates the body. At this time, the threshold value depends on the size of the complex, but is suitable from the relationship with the size of the complex, the size of the target capture substance, the target cell, the size of the non-target cell to be distinguished, and the like. Range can be selected.
 本実施形態の血液サンプル中の目的細胞が循環性腫瘍細胞である場合、赤血球は、6~8μmであるが、白血球は9~15μmと比較的大きく、循環性腫瘍細胞は、10~20μm程度である。そのため、目的外細胞となる白血球と分離するため、複合体のサイズの閾値は、15μm以上であることが好ましく、20μm以上であることが更に好ましく、25μm以上であることが更に好ましく、30μm以上であることが更に好ましい。精度良く分離するためには、比較的大きいサイズの対象捕捉物質を使用することが好ましい。対象捕捉物質の大きさは、上記のように、好ましくは、7μm~60μmであり、より好ましくは、10μm~55μmであり、更に好ましくは、15μm~50μmであり、特に好ましくは、20μm~40μmである。このため、例えば、大きさが30μmの対象捕捉物質を使用した場合には、目的細胞である循環性腫瘍細胞との複合体は、40~50μm程度の大きさになると想定できる。また、好ましい範囲である大きさが20μm~40μmの対象捕捉物質を使用した場合には、複合体の大きさは、30μm~60μmになると想定できる。以上を総合すると決定すべき閾値は、区別すべき目的外細胞の大きさ以上であり、かつ、目的細胞と対象捕捉物質の大きさから想定される複合体の大きさの上限以下であることが好ましい。これにより、簡易かつ精度良く、目的細胞を分離することができる。具体的には、決定する複合体の大きさの閾値Dcは、20~60μmに設定することが好ましく、30~50μmに設定することがより好ましい。 When the target cell in the blood sample of the present embodiment is a circulating tumor cell, the erythrocyte is 6 to 8 μm, the leukocyte is relatively large, 9 to 15 μm, and the circulating tumor cell is about 10 to 20 μm. is there. Therefore, in order to separate from leukocytes which are non-target cells, the threshold value of the size of the complex is preferably 15 μm or more, more preferably 20 μm or more, further preferably 25 μm or more, and more preferably 30 μm or more. It is more preferable to have. For accurate separation, it is preferable to use a relatively large size target capture material. As described above, the size of the target trapping substance is preferably 7 μm to 60 μm, more preferably 10 μm to 55 μm, further preferably 15 μm to 50 μm, and particularly preferably 20 μm to 40 μm. is there. Therefore, for example, when a target capture substance having a size of 30 μm is used, it can be assumed that the complex with the target cell, the circulating tumor cell, has a size of about 40 to 50 μm. Further, when a target catching substance having a size in a preferable range of 20 μm to 40 μm is used, the size of the complex can be assumed to be 30 μm to 60 μm. The threshold value to be determined by summing up the above is not less than or equal to the size of the non-target cell to be distinguished and less than or equal to the upper limit of the size of the complex assumed from the size of the target cell and the target capture substance. preferable. As a result, the target cells can be separated easily and accurately. Specifically, the threshold value Dc of the size of the complex to be determined is preferably set to 20 to 60 μm, and more preferably set to 30 to 50 μm.
 なお、この閾値Dcの範囲は、対象捕捉物質、目的細胞、目的外細胞、及び複合体の大きさにより変わることから、目的細胞、目的外細胞、及び対象捕捉物質を適宜選択することにより、決定することが出来る。 Since the range of this threshold Dc varies depending on the size of the target cell, target cell, non-target cell, and complex, it is determined by appropriately selecting the target cell, non-target cell, and target capture substance. Can be done.
2-2-2.目的外細胞との複合体を作成して分離する工程
 本発明の実施形態に係る細胞の分離方法において、血液サンプルが、目的細胞の他に目的外細胞を含んでいる場合、細胞分離デバイスに血液サンプルを導入する前に、目的外細胞の表面に存在する特徴的な構造を認識する対象捕捉物質を、前記血液サンプルに加えて、前記目的外細胞と前記対象捕捉物質との複合体を生成すること、及び前記複合体を、細胞分離デバイスを用いて分離することを含んでいてもよい。
 前記目的外細胞と前記対象捕捉物質との複合体を生成することは、4℃を超える温度で行うことが好ましく、10℃以上40℃以下がより好ましく、例えば、15℃以上40℃以下、20℃以上40℃以下、25℃以上37℃以下である。
2-2-2. Step of creating and separating a complex with non-target cells In the cell separation method according to the embodiment of the present invention, when the blood sample contains non-target cells in addition to the target cells, blood is added to the cell separation device. Prior to introducing the sample, a target capture substance that recognizes a characteristic structure existing on the surface of the target cell is added to the blood sample to generate a complex of the target cell and the target capture substance. And that the complex may be separated using a cell separation device.
The complex of the non-target cell and the target capture substance is preferably produced at a temperature of more than 4 ° C, more preferably 10 ° C or more and 40 ° C or less, for example, 15 ° C or more and 40 ° C or less, 20. The temperature is 40 ° C or higher and 25 ° C or higher and 37 ° C or lower.
 図7は、本発明の実施形態に係る目的外細胞を捕捉する分離方法を説明する模式図である。前述の方法に対し、この方法ではまず、目的細胞2及び目的外細胞3を含む血液サンプルに対して、目的外細胞3の表面に存在する特徴的な構造を認識する対象捕捉物質12を混合させることにより、目的外細胞3と対象捕捉物質12との複合体5を形成させる。 FIG. 7 is a schematic diagram illustrating a separation method for capturing non-target cells according to the embodiment of the present invention. In contrast to the above-mentioned method, in this method, first, a target capturing substance 12 that recognizes a characteristic structure existing on the surface of the non-target cell 3 is mixed with a blood sample containing the target cell 2 and the non-target cell 3. As a result, a complex 5 of the non-target cell 3 and the target capture substance 12 is formed.
 次に、前述の方法と同様に、細胞分離デバイス30を、流路空間部を予めバッファー液で満たして気泡を除去した状態に準備しておく。細胞分離デバイス30に対し、前記目的細胞2及び複合体5を含む混合液4をサンプル導入口31から細胞分離デバイス30中に導入し、かつ同時にバッファー導入口32からバッファー液を連続して導入する。その後、細胞分離デバイス30中では、細胞分離デバイス30中に連続して設けられた基本構造部20により目的細胞2及び複合体5は流れ方向と鉛直方向に分離がなされる。その結果、第一の排出口33から目的外細胞3を有する複合体5が得られ、第二の排出口34からは目的細胞2が得られる。以上のように、細胞の分離を行うことが出来る。 Next, as in the above method, the cell separation device 30 is prepared in a state where the flow path space is filled with a buffer solution in advance to remove air bubbles. To the cell separation device 30, the mixed solution 4 containing the target cells 2 and the complex 5 is introduced into the cell separation device 30 from the sample introduction port 31, and at the same time, the buffer solution is continuously introduced from the buffer introduction port 32. .. After that, in the cell separation device 30, the target cells 2 and the complex 5 are separated in the flow direction and the vertical direction by the basic structural portion 20 continuously provided in the cell separation device 30. As a result, the complex 5 having the non-target cells 3 is obtained from the first discharge port 33, and the target cells 2 are obtained from the second discharge port 34. As described above, cells can be separated.
 上記の2つの方法は、目的に応じて適宜使い分けることができる。例えば、目的細胞2に対する対象捕捉分子10が明確かつ特異性が高い場合には、図6で説明の方法を好適に用いることができる。一方、目的細胞2に対する対象捕捉分子10が明確でない場合には、図7で説明の方法を用いて目的細胞2を分離することが可能である。また、目的外細胞3の種類や数に応じて、適宜それぞれの手法を使い分けることができる。 The above two methods can be used properly according to the purpose. For example, when the target capture molecule 10 with respect to the target cell 2 is clear and highly specific, the method described in FIG. 6 can be preferably used. On the other hand, when the target capture molecule 10 for the target cell 2 is not clear, the target cell 2 can be separated by using the method described in FIG. 7. In addition, each method can be appropriately used according to the type and number of non-target cells 3.
 更に、分離後の目的に応じて、前記2つの方法を使い分けることができる。例えば、目的細胞2について、複合体5を形成させずそのままの状態で回収したい目的の場合には、図7で説明の方法で実施することができる。また、図6で説明の方法で実施した場合も、公知のいずれかの方法を用いて複合体5を解離させて、目的細胞2と対象捕捉物質12とに分け、更に公知のいずれかの方法を用いて目的細胞2のみを分離する手法をとることも可能であるが、手順が煩雑であることから、この場合は、図7で説明の方法で実施することが好ましい。 Furthermore, the above two methods can be used properly according to the purpose after separation. For example, when the target cell 2 is to be recovered as it is without forming the complex 5, it can be carried out by the method described with reference to FIG. 7. Also, when the method described in FIG. 6 is carried out, the complex 5 is dissociated using any known method, the target cell 2 and the target capture substance 12 are separated, and further, any known method is used. Although it is possible to take a method of separating only the target cells 2 using the above, in this case, it is preferable to carry out by the method described with reference to FIG. 7 because the procedure is complicated.
2-3.回収する工程
 本発明の一態様における細胞の分離方法では、分離された目的細胞を含む複合体を排出口から回収すること、又は、分離された目的細胞を排出口から回収すること、を含む。目的細胞と対象捕捉物質との複合体を生成させた場合は、複合体を排出口から回収し、目的外細胞と対象捕捉物質との複合体を生成させた場合は、目的細胞を排出口から回収する。これらの回収は、例えば、排出口にチューブを取付けてポンプで吸引する等、適宜公知の方法を使用して行うことが出来る。
2-3. Step of Recovery The method for separating cells according to one aspect of the present invention includes collecting the complex containing the separated target cells from the outlet, or collecting the separated target cells from the outlet. When a complex of the target cell and the target capture substance is generated, the complex is collected from the outlet, and when a complex of the non-target cell and the target capture substance is generated, the target cell is discharged from the outlet. to recover. These can be recovered by using a known method as appropriate, such as attaching a tube to the discharge port and sucking with a pump.
2-4.微小凝集物を除去する工程
 本発明の一態様における細胞を分離する方法において、微小凝集物を含む血液サンプルから、目的細胞を分離する場合、分離工程の前に、後述する微小凝集物を除去することを追加することが好ましい。微小凝集物を除去は、血液サンプルの前処理として行うことも出来るが、上記細胞を分離する方法と組合せる場合、複合体の生成後で、且つ、細胞分離デバイスのDLDマイクロ流路の基本構造に血液サンプルを導入する前に、この微小凝集物を除去することを追加すると、目的細胞の分離を有効に行うことが出来る。
2-4. Step of Removing Microaggregates In the method for separating cells according to one aspect of the present invention, when separating target cells from a blood sample containing microaggregates, the microaggregates described later are removed before the separation step. It is preferable to add that. Removal of microaggregates can be performed as a pretreatment of blood samples, but when combined with the above method for cell separation, after complex formation and the basic structure of the DLD microchannel of the cell separation device. By adding the removal of these microaggregates before introducing the blood sample into the blood sample, the separation of target cells can be effectively performed.
 つまり、細胞分離デバイスは、サンプル導入口とDLDマイクロ流路の基本構造との間に、微小凝集物除去デバイスを有していてもよい。 That is, the cell separation device may have a microaggregate removing device between the sample inlet and the basic structure of the DLD microchannel.
3.細胞の分離方法における微小凝集物の除去原理
3-1.微小凝集物除去デバイス
 図8は、本発明の一態様における微小凝集物の除去で使用する、微小凝集物除去デバイスの基本構造110を説明する模式図である。矢印方向に向かう流体の流れ方向に対して、鉛直方向に一直線上に構造物111が設置されており、流れによって試料、即ち血液サンプル中の微小凝集物112が構造物111に捕捉されていく。この構造物111を、流れ方向に対して水平方向に、一定間隔で複数設けることにより、順次微小凝集物が構造物により捕捉され、流れ方向の下流に行くに従って血液サンプル中の微小凝集物が除去される。
3. 3. Principle of removing microaggregates in cell separation method 3-1. Micro-aggregate removing device FIG. 8 is a schematic diagram illustrating a basic structure 110 of a micro-aggregate removing device used for removing micro-aggregates in one aspect of the present invention. The structure 111 is installed in a straight line in the vertical direction with respect to the flow direction of the fluid in the direction of the arrow, and the sample, that is, the microaggregate 112 in the blood sample is captured by the structure 111 by the flow. By providing a plurality of these structures 111 in the horizontal direction with respect to the flow direction at regular intervals, the microaggregates are sequentially captured by the structure, and the microaggregates in the blood sample are removed as they go downstream in the flow direction. Will be done.
 図9は、微小凝集物除去デバイスが一定間隔のピラー構造121により構成されていることを示す説明図である。一定の規則に従ったピラー構造121を配置することにより、順次微小凝集物を捕捉した部分を迂回する流れが生じ、効率的に順次微小凝集物を除去することができる。このように、流れが迂回することで、目的とする細胞等の損失が回避でき、かつ流速の減少を伴わずに処理することが可能である。 FIG. 9 is an explanatory diagram showing that the microaggregate removing device is composed of pillar structures 121 at regular intervals. By arranging the pillar structure 121 according to a certain rule, a flow bypassing the portion where the microaggregates are sequentially captured is generated, and the microaggregates can be efficiently removed sequentially. By diverting the flow in this way, the loss of the target cells and the like can be avoided, and the treatment can be performed without a decrease in the flow velocity.
 このピラーの形状は、例えば、円柱構造としても良いが、目的とする微小凝集物を捕捉できる構造であれば、特に形状は限定されない。例えば、その水平方向断面形状がひし形となるような、多角柱構造とすることも可能である。各ピラーの直径は、例えば、5~30μm程度の大きさとすることができる。 The shape of this pillar may be, for example, a cylindrical structure, but the shape is not particularly limited as long as it is a structure capable of capturing the target microaggregates. For example, it is possible to have a polygonal prism structure in which the horizontal cross-sectional shape is a rhombus. The diameter of each pillar can be, for example, about 5 to 30 μm.
 さらに、このピラー構造は、形状の基本構造を一定間隔で連続して配置しても良く、目的に応じて、徐々に形状及び配置を変化させて設置することも可能である。このように、ピラー構造は、微小凝集物除去デバイス全体に規則的な間隔で配置される場合に限定されず、ランダムに設置されてもよい。例えば、流れ方向の上流部では、設置間隔が広く、下流部に行くに従い徐々に設置間隔が狭くするような配置としても良い。更に、微小凝集物除去デバイスの一部のみにピラー構造を設置したり、微小凝集物除去デバイスの特定の部分に異なる基本構造のピラー構造を設置したりしても良い。また流路全体の幅も一様でなくても良く、必要に応じて途中で流路幅を狭めた形状としても良い。 Further, in this pillar structure, the basic structure of the shape may be continuously arranged at regular intervals, and the shape and arrangement can be gradually changed and installed according to the purpose. As described above, the pillar structures are not limited to being arranged at regular intervals throughout the microaggregate removing device, and may be installed randomly. For example, the installation interval may be wide in the upstream portion in the flow direction, and the installation interval may be gradually narrowed toward the downstream portion. Further, the pillar structure may be installed only in a part of the micro-aggregate removing device, or a pillar structure having a different basic structure may be installed in a specific part of the micro-aggregate removing device. Further, the width of the entire flow path does not have to be uniform, and the flow path width may be narrowed in the middle if necessary.
 このピラーの設置間隔は、狭くし過ぎると流れ方向の上流部から順次微小凝集物が捕捉されていくため、上流部から優先的に詰まりが生じやすい。このため、試料中に大きい微小凝集物が存在したり、微小凝集物が多く含まれたりする場合には、流れ方向の上流部ではピラーの設置間隔を広めにとることが好ましく、流れ方向の下流部では、流れ方向の上流部で捕捉しきれなかった小さめの微小凝集物を捕捉するように、上流部に比較し、設置間隔を徐々に狭くする配置が好ましい。上流部のピラー設置間隔が初めから狭い場合には、捕捉された微小凝集物により、微小凝集物除去デバイスに詰まりが生じ、処理が不可能になる可能性や、目的の細胞等が捕捉されてしまい、損失が生じる可能性がある。 If the installation interval of these pillars is too narrow, microaggregates will be sequentially captured from the upstream part in the flow direction, so clogging is likely to occur preferentially from the upstream part. For this reason, when large micro-aggregates are present in the sample or a large amount of micro-aggregates are contained, it is preferable to widen the pillar installation interval in the upstream portion in the flow direction, and the downstream in the flow direction. It is preferable that the installation interval is gradually narrowed as compared with the upstream portion so as to capture the small agglomerates that could not be captured in the upstream portion in the flow direction. If the pillar installation interval in the upstream part is narrow from the beginning, the captured microaggregates may clog the microaggregate removing device, making processing impossible, or trapping target cells, etc. This can result in loss.
 ピラー構造が流れ方向に対して直線状に配置されると、微小凝集物が捕捉されることなく下流までそのまま到達する可能性がある。このため、本実施形態の微小凝集物を捕捉して除去する目的からは、流れ方向に対して、ピラー構造が直線状に配置されないようにすることが好ましい。例えば、ピラーは流れ方向に対して、概ね、5~30個のピラーが流れ方向に設置される毎に1列ずれた配置することができ、10~20個のピラーが流れ方向に設置される毎に1列ずれた配置とすることが、流れを維持して、効率良く微小凝集物を分離するためには好ましい。 If the pillar structure is arranged linearly with respect to the flow direction, there is a possibility that microaggregates will reach the downstream as they are without being trapped. Therefore, for the purpose of capturing and removing the microaggregates of the present embodiment, it is preferable that the pillar structure is not arranged linearly with respect to the flow direction. For example, the pillars can be arranged so as to be offset by one row each time 5 to 30 pillars are installed in the flow direction with respect to the flow direction, and 10 to 20 pillars are installed in the flow direction. It is preferable that the arrangement is shifted by one row for each row in order to maintain the flow and efficiently separate the microaggregates.
 ピラーの設置間隔は、血液サンプル中に含まれる目的細胞(その目的細胞と対象捕捉物質との複合体を含む)の大きさ以上であることが好ましい。設置間隔が、目的細胞の大きさより小さい場合、目的細胞(その目的細胞と対象捕捉物質との複合体)がピラー間に捕捉されてしまうため、目的細胞の損失が生じてしまう。 The pillar installation interval is preferably larger than or equal to the size of the target cells (including the complex of the target cells and the target capture substance) contained in the blood sample. If the installation interval is smaller than the size of the target cell, the target cell (complex of the target cell and the target capture substance) is captured between the pillars, resulting in loss of the target cell.
 一般的に血液中に含まれる細胞の大きさは、大きいもので30μm程度となることから、血液中の全ての細胞を対象とした分離をする目的であれば、これ以上の大きさにすることが好ましく、例えば、赤血球又は血小板の分離が目的であり、白血球を除去する必要がある場合などは、これら細胞を区分する大きさである、8μm以上の大きさと設定することができる。 Generally, the size of cells contained in blood is about 30 μm at the largest, so if the purpose is to separate all cells in blood, the size should be larger than this. For example, when the purpose is to separate red blood cells or platelets and it is necessary to remove the white blood cells, the size can be set to 8 μm or more, which is the size for dividing these cells.
 また、予め血液サンプル中の目的の細胞に対し、担体物質を結合させ複合体とした後に、微小凝集物の除去を行うこともできる。この場合については、目的細胞と担体物質との複合体がピラー間に捕捉されて目的細胞の損失が生じることから、ピラーの設置間隔はこの複合体の大きさ以上であることが好ましい。具体的には、担体物質としては抗体等を標識することができるビーズ等が挙げられるが、これに限定されず、任意の物質を担体物質として考えて良い。 It is also possible to remove the microaggregates after binding the carrier substance to the target cells in the blood sample in advance to form a complex. In this case, since the complex of the target cell and the carrier substance is trapped between the pillars and the target cell is lost, it is preferable that the pillar installation interval is equal to or larger than the size of this complex. Specifically, examples of the carrier substance include beads and the like capable of labeling an antibody and the like, but the carrier substance is not limited to this, and any substance may be considered as the carrier substance.
 例えば、30μmの大きさの担体物質を用いて概ね20μmの大きさの細胞との複合体とした場合には、ピラーの設置間隔は、50μm以上とすることが好ましい。 For example, when a carrier substance having a size of 30 μm is used to form a complex with cells having a size of about 20 μm, the pillar installation interval is preferably 50 μm or more.
 また、ピラーの設置間隔は、200μm以下の部分を有することが好ましい。微小凝集物の中には、比較的小さい大きさのものも存在する。そのため、微小凝集物除去デバイスのピラー設置間隔をすべて200μm以上とした場合には、微小凝集物を完全に除けない可能性がある。ただし、すべてのピラー設置間隔が200μm以下である必要は無く、目的に応じてそれ以上の設置間隔のピラー構造を設けることができる。 Further, it is preferable that the pillar installation interval has a portion of 200 μm or less. Some of the microaggregates are relatively small in size. Therefore, if the pillar installation intervals of the micro-aggregate removing device are all set to 200 μm or more, the micro-aggregates may not be completely removed. However, it is not necessary that all the pillar installation intervals are 200 μm or less, and a pillar structure having a larger installation interval can be provided depending on the purpose.
 上記のように、微小凝集物除去デバイスにおいて、微小凝集物除去機構となるマイクロ流路構造(本明細書中において、「第2のマイクロ流路構造」という場合がある)は、30μmより大きい間隔で設置されたピラーにより構成されることが好ましく、また、200μm以下の間隔で設置されたピラーにより構成されることが好ましい。このマイクロ流路構造のピラー設置間隔は、目的細胞(その目的細胞と担体物質との複合体)と、除去する微小凝集物の大きさに依存するが、血液中の微小凝集物を除去する場合、ピラー設置間隔は、例えば、50μm~200μmと設定すればよく、70μm~170μmと設定することが好ましく、90μm~150μmと設定することがより好ましい。なお、このピラー設置間隔は、マイクロ流路構造中に、2つ以上の異なる間隔でピラーが設置される場合、平均の間隔を意味する。 As described above, in the micro-aggregate removing device, the micro-channel structure serving as the micro-aggregate removing mechanism (sometimes referred to as “second micro-channel structure” in the present specification) has an interval larger than 30 μm. It is preferable that the pillars are installed in the above, and it is preferable that the pillars are installed at intervals of 200 μm or less. The pillar installation interval of this microchannel structure depends on the target cell (complex of the target cell and the carrier substance) and the size of the microaggregate to be removed, but when removing the microaggregate in blood. The pillar installation interval may be set, for example, 50 μm to 200 μm, preferably 70 μm to 170 μm, and more preferably 90 μm to 150 μm. The pillar installation interval means an average interval when two or more pillars are installed at different intervals in the microchannel structure.
 一方、目的細胞と担体物質とを結合させた複合体は、目的細胞と比較して、担体物質の大きさだけ大きくなる。このため、血液中で、この複合体を形成させた場合、血液中の微小凝集物を除去し、且つ、この複合体を回収する(詰まりを防止する)ためには、ピラー設置間隔は、担体物質の大きさだけ広くすることが好ましい。例えば、直径30~50μmの担体物質を使用した場合、ピラー設置間隔は、例えば、80μm~250μmと設定すればよく、100μm~230μmと設定することが好ましく、120μm~220μmと設定することが、より好ましい。 On the other hand, the complex in which the target cell and the carrier substance are bound is larger by the size of the carrier substance as compared with the target cell. Therefore, when this complex is formed in blood, in order to remove microaggregates in blood and recover this complex (prevent clogging), the pillar installation interval is a carrier. It is preferable to increase the size of the substance. For example, when a carrier substance having a diameter of 30 to 50 μm is used, the pillar installation interval may be set to, for example, 80 μm to 250 μm, preferably 100 μm to 230 μm, and more preferably 120 μm to 220 μm. preferable.
 微小凝集物除去デバイスでは、上記のように、複数の第2のマイクロ流路構造部分を設けても良い。複数の第2のマイクロ流路構造部分を設けることにより微小凝集物の除去効率は上がるが、目的細胞(その目的細胞と担体物質との複合体)の回収効率の向上や、デバイスの構造を単純化するという点からは、2つのマイクロ流路構造部分を設けることが好ましい。 The microaggregate removing device may be provided with a plurality of second microchannel structure portions as described above. By providing a plurality of second microchannel structural parts, the efficiency of removing microaggregates is increased, but the efficiency of recovery of target cells (complex of the target cells and carrier substance) is improved, and the structure of the device is simplified. From the viewpoint of conversion, it is preferable to provide two microchannel structure portions.
 図10は、本発明の実施形態に係る微小凝集物除去デバイスを説明する模式図である。微小凝集物除去デバイス130が2つの第2のマイクロ流路構造部分を含む場合、その中間に流れ幅を収束させる部分46を設けることが好ましい(図10)。この部分46は、第2のマイクロ流路構造部分よりも狭く、ピラーは設置されていない。この部分46には、最初の第2のマイクロ流路構造部分(構造部α)を通過した微小凝集物が集積され、次の第2のマイクロ流路構造部分(構造部β)へと流れていく(図10、図11A)。このような流れ幅を収束させる部分46を設けることにより、微小凝集物を効率良く除去することが出来る。 FIG. 10 is a schematic diagram illustrating a microagglutination removing device according to an embodiment of the present invention. When the microaggregate removing device 130 includes two second microchannel structural portions, it is preferable to provide a portion 46 for converging the flow width in the middle (FIG. 10). This portion 46 is narrower than the second microchannel structure portion and has no pillars installed. In this portion 46, microaggregates that have passed through the first second microchannel structural portion (structural portion α) are accumulated and flow to the next second microchannel structural portion (structural portion β). Go (Fig. 10, Fig. 11A). By providing the portion 46 for converging such a flow width, microaggregates can be efficiently removed.
 上記のように、微小凝集物除去デバイス130が2つ以上の第2のマイクロ流路構造部分を含む場合、微小凝集物除去デバイス130では、目的細胞が排出される下流部側の第2のマイクロ流路構造部分(構造部β)のピラー設置間隔を、上記のように、80μm~250μmと設定すればよく、100μm~230μmと設定することが好ましく、120μm~220μmと設定することがより好ましい。そして、目的細胞を含む血液サンプルが導入される上流部側の第2のマイクロ流路構造部分(構造部α)のピラー設置間隔は、下流部側のマイクロ流路構造部分(構造部β)と同等に設定するか、それよりも広くすることにより、微小凝集物の除去効率を上げ、微小凝集物による詰まりを防止しつつ、比較的多くの血液サンプルの処理が可能となる。 As described above, when the micro-aggregate removing device 130 includes two or more second microchannel structural portions, in the micro-aggregate removing device 130, the second micro on the downstream side where the target cells are discharged. As described above, the pillar installation interval of the flow path structural portion (structural portion β) may be set to 80 μm to 250 μm, preferably 100 μm to 230 μm, and more preferably 120 μm to 220 μm. Then, the pillar installation interval of the second microchannel structural portion (structural portion α) on the upstream side into which the blood sample containing the target cell is introduced is set to that of the microchannel structural portion (structural portion β) on the downstream side. By setting the same level or making it wider than that, it is possible to process a relatively large number of blood samples while increasing the efficiency of removing microaggregates and preventing clogging due to microaggregates.
4.微小凝集物の除去
 微小凝集物の除去は、上記のように、連続的な液体の流れ中で、血液サンプルから微小凝集物を除去する方法により行われる。
4. Removal of microaggregates Removal of microaggregates is performed by a method of removing microaggregates from a blood sample in a continuous flow of liquid as described above.
 血液中の微小凝集物は、フィブリン、その他の変性タンパク質、及び脂肪等が凝集したものに由来している。微小凝集物は、特に粘性を有していることから、微小凝集物除去デバイスのピラー構造に捕捉されやすく、一度ピラー構造に捕捉された後に、脱離して流れ方向の下流に流出することが少ない。 Microaggregates in blood are derived from agglutinated fibrin, other denatured proteins, fat and the like. Since the microaggregates are particularly viscous, they are easily trapped by the pillar structure of the microaggregate removing device, and once trapped by the pillar structure, they are less likely to be detached and flow out downstream in the flow direction. ..
 本発明の実施態様に係る細胞の分離方法は、第2のマイクロ流路構造を含む微小凝集物除去デバイスに、血液サンプル又は血液サンプルとバッファー液との混合液を流し、第2のマイクロ流路構造中を通過させて、血液サンプルに含まれる微小凝集物を捕捉することによって、連続的な液体の流れ中で血液サンプルから微小凝集物を除去することを含んでいてもよい。 In the cell separation method according to the embodiment of the present invention, a blood sample or a mixed solution of a blood sample and a buffer solution is flowed through a microaggregate removing device including a second microchannel structure, and the second microchannel structure is used. It may include removing microaggregates from the blood sample in a continuous stream of liquid by passing through the structure and capturing the microaggregates contained in the blood sample.
 本発明の実施態様に係る細胞の分離方法において、微小凝集物除去デバイスを用いる場合、上記微小凝集物除去デバイスに、血液サンプル及びバッファー液を加える。この際、予めバッファー液を流しておき、その後血液サンプルを加えても良いし、血液サンプルをバッファー液に混合し希釈した後に、加えても良い。そして、上記のように、微小凝集物を捕捉することにより、血液サンプル中の微小凝集物が除去され、目的細胞を含む血液サンプルは、微小凝集物除去デバイスの排出口から回収される。また微小凝集物除去デバイスの排出口に送液用のチューブ等を備えた場合には、チューブ等を通して回収される。また、上記のように、細胞分離デバイスに接続させて連続したシステムとした場合、つまり細胞分離デバイスが微小凝集物除去デバイスを含む場合には、微小凝集物が除去されて回収された血液サンプルは、その後、細胞の分離が行われる。なお、バッファー液に対する血液サンプルの量は、特に限定されない。また、細胞懸濁液を流す速度についても、特に限定されない。この流速については、細胞分離デバイスの導入口又は排出口の何れか一方、又は両方にポンプ等を設置することで、適宜速度を調整できる。 When a micro-aggregate removing device is used in the cell separation method according to the embodiment of the present invention, a blood sample and a buffer solution are added to the micro-aggregate removing device. At this time, the buffer solution may be poured in advance, and then the blood sample may be added, or the blood sample may be mixed with the buffer solution, diluted, and then added. Then, as described above, by capturing the microaggregates, the microaggregates in the blood sample are removed, and the blood sample containing the target cells is collected from the outlet of the microaggregate removing device. If a liquid feeding tube or the like is provided at the discharge port of the micro-aggregate removing device, the liquid is collected through the tube or the like. Further, as described above, when the system is connected to the cell separation device to form a continuous system, that is, when the cell separation device contains a microaggregate removing device, the blood sample collected by removing the microaggregates After that, cell separation is performed. The amount of blood sample relative to the buffer solution is not particularly limited. Further, the speed at which the cell suspension flows is not particularly limited. Regarding this flow velocity, the speed can be appropriately adjusted by installing a pump or the like at either one or both of the introduction port and the discharge port of the cell separation device.
 本発明の実施形態に係る細胞の分離方法は、血液サンプルから、含まれる目的細胞を精度良く回収する際の前処理に用いる方法を含んでいてもよく、血液サンプル中の目的細胞を損失なく、かつ血液サンプル中の微小凝集物を精度良く除去することで、その後の細胞分離において、より精度良く目的の細胞を回収することができる。 The method for separating cells according to the embodiment of the present invention may include a method used for pretreatment when accurately collecting the target cells contained in the blood sample, without loss of the target cells in the blood sample. Moreover, by accurately removing the microaggregates in the blood sample, the target cells can be recovered more accurately in the subsequent cell separation.
 本発明の実施形態に係る細胞の分離方法が、血液サンプルから微小凝集物を除去することを含む場合、抗血液凝固試薬を添加する態様を含んでいてもよい。血液サンプル中には、既に微小凝集物が存在している他、血液を処理する過程で、新たに微小凝集物が生成してしまう可能性がある。このため、上記の本発明の一態様における方法により、既に存在する微小凝集物の除去はできるが、血液を処理中に新たに微小凝集物が生じること防止するために、その血液サンプルに含まれる希釈バッファー液の組成中に抗血液凝固試薬を加えてもよい。抗血液凝固試薬を加えて、前記微小凝集物を除去することにより、微小凝集物を除去した血液を、その後の血液検査又は各種の処理(例えば、血液成分の分離等を含む)に使用することができる。 When the method for separating cells according to the embodiment of the present invention includes removing microaggregates from a blood sample, it may include an embodiment in which an anticoagulant reagent is added. In addition to the presence of microaggregates already in the blood sample, there is a possibility that new microaggregates may be generated in the process of processing blood. Therefore, although the existing microaggregates can be removed by the method according to the above aspect of the present invention, they are included in the blood sample in order to prevent new microaggregates from being generated during the treatment of blood. Anti-blood coagulation reagents may be added to the composition of the dilution buffer. The blood from which the microaggregates have been removed by adding an anticoagulant reagent to remove the microaggregates is used for a subsequent blood test or various treatments (including separation of blood components, etc.). Can be done.
 抗血液凝固試薬としては、クエン酸ナトリウム、EDTA及びヘパリン及びPPACK等のトロンビンインヒビター等が例示される。これらの中では、トロンビンインヒビターを使用することが好ましく、PPACK等の試薬を使用することがより好ましい。 Examples of anticoagulant reagents include sodium citrate, EDTA, heparin, thrombin inhibitors such as PPACK, and the like. Among these, it is preferable to use a thrombin inhibitor, and it is more preferable to use a reagent such as PPACK.
 クエン酸ナトリウム及びEDTA等は、カルシウムイオンを阻害して間接的に血液凝固作用を阻害するが、直接的に凝固因子であるトロンビンを阻害する方が効果的である。また、トロンビンインヒビターとしては、ヘパリンは、遊離トロンビンのみを阻害するが、PPACK(C2131ClN63.2HCl)[1-(2-Amino-3-phenylpropanoyl)-N-[1-chloro-6-(diaminomethylideneamino)-2-oxohexan-3-yl]pyrrolidine-2-carboxamide]は、遊離トロンビン及び結合トロンビンの双方に作用するためより効果的である。 Sodium citrate, EDTA, etc. inhibit calcium ions and indirectly inhibit the blood coagulation action, but it is more effective to directly inhibit thrombin, which is a coagulation factor. As the thrombin inhibitors, heparin, inhibits only free thrombin, PPACK (C 21 H 31 ClN 6 O 3 .2HCl) [1- (2-Amino-3-phenylpropanoyl) -N- [1-chloro -6- (diaminomethylideneamino) -2-oxohexan-3-yl] pyrrolidine-2-carboxamide] is more effective because it acts on both free and bound thrombin.
 微小凝集物の除去は、血液中に既に存在する微小凝集物を除去であり、PPACK等のトロンビンインヒビターを併用することにより、血液中の微小凝集物の新たな生成を抑制しつつ、血液中に既に存在する微小凝集物を除去することが出来る。 The removal of microaggregates is the removal of microaggregates that already exist in blood, and by using a thrombin inhibitor such as PPACK in combination, the formation of new microaggregates in blood is suppressed and the microaggregates are removed into the blood. It is possible to remove the microaggregates that already exist.
 本発明の実施形態に係る細胞の分離方法では、第2のマイクロ流路構造を有する微小凝集物除去デバイスと、トロンビンインビターを含む希釈バッファー液とを併用することで、前記微小凝集物除去デバイス及びDLDマイクロ流路において、微小凝集物の目詰まりを好適に解消することが出来る。その結果、前記微小凝集物除去デバイスを使用した除去方法により、効率的且つ継続的な、微小凝集物の除去、及び、細胞成分の分離を行うことができる。 In the cell separation method according to the embodiment of the present invention, the microaggregate removing device having a second microchannel structure and a diluted buffer solution containing thrombin inbiter are used in combination. And in the DLD microchannel, clogging of microaggregates can be suitably cleared. As a result, the removal method using the micro-aggregate removing device enables efficient and continuous removal of micro-aggregates and separation of cell components.
 以上、本発明の実施形態を詳述してきたが、実際には、上記の実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の変更があっても本発明に含まれる。 Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above embodiments and is included in the present invention even if there are changes to the extent that the gist of the present invention is not deviated.
 本発明は、別の側面として以下の態様を含む。
[12]目的細胞を含む血液サンプルを10℃以上40℃以下の環境に1時間以上3日以下の期間置くことと、
 決定論的横置換法マイクロ流路構造を有する分離エリア、サンプル導入口及び排出口を備える細胞分離デバイスに前記血液サンプルをサンプル導入口から加えて流し、前記血液サンプルを前記細胞分離デバイスに導入することと、
 連続的な前記血液サンプルを含む液体の流れ中で、前記血液サンプルから、前記目的細胞を分離することと、
 分離された前記目的細胞を排出口から回収することと、
を含む細胞の分離方法。
[13]前記期間が3時間以上2日以下である、[12]に記載の細胞の分離方法。
[14]前記期間が6時間以上1日以下である、[12]に記載の細胞の分離方法。
[15]前記血液サンプルの温度が、15℃以上40℃以下である、[12]~[14]の何れか一つに記載の細胞の分離方法。
[16]前記血液サンプルの温度が、20℃以上40℃以下である、[12]~[14]の何れか一つに記載の細胞の分離方法。
[17]前記血液サンプルの温度が、25℃以上37℃以下である、[12]~[14]の何れか一つに記載の細胞の分離方法。
[18]さらに前記細胞分離デバイスのバッファー導入口からバッファー液を加えて流すことを含む、[12]~[17]の何れか一つに記載の細胞の分離方法。
[19]前記バッファー液の温度が、10℃以上40℃以下である、[18]に記載の細胞の分離方法。
[20]さらに、前記血液サンプルの導入の前に、前記血液サンプルに含まれる微小凝集物を除去することを含む、[12]~[19]の何れか一つに記載の細胞の分離方法。
[21]前記血液サンプルが、さらに目的外細胞を含み、
 前記細胞分離デバイスに導入する前に、前記目的細胞の表面に存在する特徴的な構造を認識する対象捕捉物質を、前記血液サンプルに加えて、前記目的細胞と前記対象捕捉物質との複合体を生成することを含み、
 前記目的細胞を分離することが、決定された閾値以上のサイズを有する前記複合体を分離することであって、前記閾値より小さいサイズを有する細胞は前記血液サンプルの流れと一緒に移動し、且つ閾値以上のサイズを有する前記複合体は流れに対し斜め方向に変位して移動することで分離することであり、
 前記回収することにおいて、前記目的細胞を前記複合体として回収する、[12]~[20]の何れか一つに記載の細胞の分離方法。
[22]前記血液サンプルが、目的細胞及び目的外細胞を含み、
 前記細胞分離デバイスに導入する前に、前記目的外細胞の表面に存在する特徴的な構造を認識する対象捕捉物質を、前記血液サンプルに加えて、前記目的外細胞と前記対象捕捉物質との複合体を生成することを含み、
 前記目的細胞を分離することが、決定された閾値以上のサイズを有する前記複合体を分離する工程であって、閾値より小さいサイズを有する細胞は、前記血液サンプルの流れと一緒に移動し、且つ閾値以上のサイズを有する前記複合体は、流れに対し斜め方向に変位して移動することで分離することであり、
 前記目的細胞を回収する、[12]~[20]の何れか一つに記載の細胞の分離方法。
[23]前記対象捕捉物質が、前記目的細胞又は前記目的外細胞の表面に存在する特徴的な構造を有する対象捕捉分子と、前記対象捕捉分子を担持する物質との結合体からなることを特徴とする請求項[21]又は[22]に記載の細胞の分離方法。
[24]前記対象捕捉分子が、抗体、ペプチドアプタマー、レクチン、細胞間接着分子、糖鎖、又は細胞認識性の高分子である、[23]に記載の細胞の分離方法。
[25]前記対象捕捉分子を担持する物質が、ポリスチレン又はラテックスである、[23]又は[24]に記載の細胞の分離方法。
The present invention includes the following aspects as another aspect.
[12] The blood sample containing the target cells is placed in an environment of 10 ° C. or higher and 40 ° C. or lower for a period of 1 hour or more and 3 days or less.
Deterministic transverse substitution method The blood sample is added from the sample introduction port to a cell separation device provided with a separation area having a microchannel structure, a sample inlet and an outlet, and the blood sample is introduced into the cell separation device. That and
Separation of the target cells from the blood sample in a continuous stream of liquid containing the blood sample.
Collecting the separated target cells from the outlet and
A method for separating cells including.
[13] The method for separating cells according to [12], wherein the period is 3 hours or more and 2 days or less.
[14] The method for separating cells according to [12], wherein the period is 6 hours or more and 1 day or less.
[15] The method for separating cells according to any one of [12] to [14], wherein the temperature of the blood sample is 15 ° C. or higher and 40 ° C. or lower.
[16] The method for separating cells according to any one of [12] to [14], wherein the temperature of the blood sample is 20 ° C. or higher and 40 ° C. or lower.
[17] The method for separating cells according to any one of [12] to [14], wherein the temperature of the blood sample is 25 ° C. or higher and 37 ° C. or lower.
[18] The method for separating cells according to any one of [12] to [17], further comprising adding and flowing a buffer solution from the buffer inlet of the cell separation device.
[19] The method for separating cells according to [18], wherein the temperature of the buffer solution is 10 ° C. or higher and 40 ° C. or lower.
[20] The method for separating cells according to any one of [12] to [19], further comprising removing microaggregates contained in the blood sample before the introduction of the blood sample.
[21] The blood sample further contains non-target cells.
Prior to introduction into the cell separation device, a target capture substance that recognizes a characteristic structure existing on the surface of the target cell is added to the blood sample, and a complex of the target cell and the target capture substance is added. Including generating
Separation of the target cells is to separate the complex having a size equal to or greater than a determined threshold, and cells having a size smaller than the threshold move with the flow of the blood sample and The complex having a size equal to or larger than the threshold value is separated by being displaced and moved in an oblique direction with respect to the flow.
The method for separating cells according to any one of [12] to [20], wherein the target cells are collected as the complex in the collection.
[22] The blood sample contains target cells and non-target cells.
Prior to introduction into the cell separation device, a target capture substance that recognizes a characteristic structure existing on the surface of the target cell is added to the blood sample, and a composite of the target cell and the target capture substance is added. Including producing the body
Separation of the target cells is a step of separating the complex having a size equal to or larger than the determined threshold value, and the cells having a size smaller than the threshold value move together with the flow of the blood sample and The complex having a size equal to or larger than the threshold value is separated by being displaced and moved in an oblique direction with respect to the flow.
The method for separating cells according to any one of [12] to [20], which collects the target cells.
[23] The target capture substance is characterized by comprising a conjugate of a target capture molecule having a characteristic structure existing on the surface of the target cell or the non-target cell and a substance carrying the target capture molecule. The method for separating cells according to claim [21] or [22].
[24] The method for separating cells according to [23], wherein the target capture molecule is an antibody, a peptide aptamer, a lectin, an intercellular adhesion molecule, a sugar chain, or a cell-recognizable polymer.
[25] The method for separating cells according to [23] or [24], wherein the substance supporting the target capture molecule is polystyrene or latex.
 以下、本実施形態について、実施例を示して詳細に説明する。但し、実際には、本実施形態は、下記の実施例に限定されるものではない。 Hereinafter, this embodiment will be described in detail with reference to examples. However, in reality, the present embodiment is not limited to the following examples.
(実施例1)
(1)一体型分離デバイスの作製
 2つの第2のマイクロ流路構造部分(構造部α:ピラーの間隔は200μm、構造部β:ピラーの間隔は150μm)を直列に接続した微小凝集物除去デバイス130を設計した(図10)。なお、構造部α及び構造部βの外側の側面は、流路端部での詰まりを防止するため、流路壁面から80μm以内の部分にはピラーを設けていない。また、構造部α及び構造部βの間には、流れ幅を収束させる部分が設けられている。この2つの構造部分を有する微小凝集物除去デバイス130に、分離閾値30μmとしたDLDマイクロ流路の基本構造20を有する分離デバイスとを一体化した設計として、一体型の細胞分離デバイスを作製した(図11A及び11B)。
(Example 1)
(1) Manufacture of an integrated separation device A microaggregate removing device in which two second microchannel structural parts (structural part α: pillar spacing of 200 μm, structural part β: pillar spacing of 150 μm) are connected in series. 130 was designed (Fig. 10). The outer side surfaces of the structural portion α and the structural portion β are not provided with pillars within 80 μm from the wall surface of the flow path in order to prevent clogging at the end of the flow path. Further, a portion for converging the flow width is provided between the structural portion α and the structural portion β. An integrated cell separation device was produced as a design in which the microaggregate removing device 130 having these two structural parts was integrated with the separation device having the basic structure 20 of the DLD microchannel having a separation threshold of 30 μm ( 11A and 11B).
(2)血液サンプルの調製
 血液サンプルは、採血後、全血を室温(25℃)で4時間保存した後、室温(25℃)の1%BSA、5mM EDTA含有PBSバッファーで2倍希釈し、最終濃度が80μMとなるように、トロンビンインヒビター(PPACK、abcam社製)を添加したものをサンプル溶液とした。サンプル溶液には、対象捕捉物質として直径が32μmであり、抗ヒトCD326抗体を担持したポリスチレン製のビーズ(CD326 S-pluriBead(登録商標) anti-hu,pluriSelect Life Science社製)を全血1mLあたり1×10個となるよう添加した。
(2) Preparation of blood sample After blood collection, whole blood is stored at room temperature (25 ° C.) for 4 hours, and then diluted 2-fold with 1% BSA at room temperature (25 ° C.) and PBS buffer containing 5 mM EDTA. A sample solution was prepared by adding a thrombin inhibitor (PPACK, manufactured by abcam) so that the final concentration was 80 μM. In the sample solution, polystyrene beads (CD326 S-puliBade® anti-hu, manufactured by purriSelect Life Science) having a diameter of 32 μm as a target capture substance and carrying an anti-human CD326 antibody were added per 1 mL of whole blood. It was added so as to be 1 × 10 5 pieces.
 上記一体型細胞分離デバイスを、予め室温(25℃)の1%BSA、5mM EDTA含有PBSバッファーで満たしておいた。そして、上記サンプル溶液をサンプル導入口31へ50μl/minの速度でシリンジポンプを用いて送液を行った。また同時に1%BSA、5mMEDTA含有PBSバッファーをバッファー導入口32へ500μl/minの速度で送液し、それぞれの回収口(符号33、34)から回収を行った。なお、血液サンプルの導入から回収に至るまでの全工程は、室温(25℃)に温度調整された室内で実施した。 The integrated cell separation device was previously filled with a PBS buffer containing 1% BSA and 5 mM EDTA at room temperature (25 ° C.). Then, the sample solution was sent to the sample introduction port 31 at a rate of 50 μl / min using a syringe pump. At the same time, a PBS buffer containing 1% BSA and 5 mM EDTA was sent to the buffer inlet 32 at a rate of 500 μl / min, and recovery was performed from the respective recovery ports (reference numerals 33 and 34). The entire process from the introduction of the blood sample to the collection was carried out in a room whose temperature was adjusted to room temperature (25 ° C.).
 上記一体型細胞分離デバイスに、(2)で調製した血液サンプルを導入し、構造部α、構造部β、細胞分離機構の導入口側、中間部、及び排出口側の血液サンプルの流れを、透過型の光学顕微鏡にて観察を行った。 The blood sample prepared in (2) is introduced into the integrated cell separation device, and the flow of the blood sample on the structural part α, the structural part β, the introduction port side, the intermediate part, and the discharge port side of the cell separation mechanism is changed. Observation was performed with a transmission type optical microscope.
 その結果、デバイス内に詰まりを生じさせること無く、血液サンプル中の大きさが30μm未満の細胞が第二の排出口(符号34)から回収されたことを確認した(図13[当日])。また、対象捕捉物質は、第一の排出口(符号33)から回収された。 As a result, it was confirmed that cells having a size of less than 30 μm in the blood sample were collected from the second outlet (reference numeral 34) without causing clogging in the device (FIG. 13 [the day]). In addition, the target trapped substance was recovered from the first outlet (reference numeral 33).
(実施例2)
 血液サンプルを、採血後、全血を室温(25℃)で24時間保存した後に、一体型細胞分離デバイスに導入する以外は、実施例1と同様にして、構造部α、構造部β、細胞分離機構の導入口側(先頭)、中間部(中間)、及び排出口側(尾部)の血液の流れを、透過型の光学顕微鏡にて観察を行った。
 その結果、デバイス内に詰まりを生じさせること無く、血液サンプル中の大きさが30μm未満の細胞が第二の排出口(符号34)から回収されたことを確認した(図13[1日後])。また、対象捕捉物質は、第一の排出口(符号33)から回収された。
(Example 2)
The structure part α, the structure part β, and the cells are the same as in Example 1 except that the blood sample is introduced into the integrated cell separation device after collecting the blood and storing the whole blood at room temperature (25 ° C.) for 24 hours. The blood flow on the introduction port side (top), middle part (middle), and discharge port side (tail) of the separation mechanism was observed with a transmission optical microscope.
As a result, it was confirmed that cells having a size of less than 30 μm in the blood sample were collected from the second outlet (reference numeral 34) without causing clogging in the device (FIG. 13 [1 day later]). .. In addition, the target trapped substance was recovered from the first outlet (reference numeral 33).
(比較例1)
 血液サンプルを、採血後、全血を4℃で4時間保存した後に、一体型細胞分離デバイスも導入する以外は、実施例1と同様にして、構造部α、構造部β、細胞分離機構の導入口側、中間部、及び排出口側の血液の流れを、透過型の光学顕微鏡にて観察を行った。
 その結果、血液サンプルを導入直後において、血液が凝集することが確認された(図14A)。また、血液サンプルを導入後、40分経過後においては、血液の凝集がさらに増加することが確認された(図14B)。
(Comparative Example 1)
After collecting blood, the whole blood is stored at 4 ° C. for 4 hours, and then an integrated cell separation device is also introduced. In the same manner as in Example 1, the structural part α, the structural part β, and the cell separation mechanism The blood flow on the inlet side, the middle portion, and the outlet side was observed with a transmission type optical microscope.
As a result, it was confirmed that the blood aggregated immediately after the introduction of the blood sample (Fig. 14A). In addition, it was confirmed that blood agglutination further increased 40 minutes after the introduction of the blood sample (FIG. 14B).
 本発明の細胞の分離方法は、研究用途、診断用途、及び医薬品の製造等における細胞の分離及び精製に利用することが可能である。 The cell separation method of the present invention can be used for research use, diagnostic use, and cell separation and purification in the manufacture of pharmaceutical products and the like.
1 細胞懸濁液
2 目的細胞
3 目的外細胞
4 混合液
5 複合体
10 対象捕捉分子
11 対象捕捉分子を担持する物質
12 対象捕捉物質
20 DLDマイクロ流路の基本構造
21 障害物構造
22 一定の大きさ以上の粒子
23 一定の大きさ未満の粒子
30 DLDマイクロ流路を備えた細胞分離デバイス
31 サンプル導入口
32 バッファー導入口
33 第一の排出口
34 第二の排出口
35 流路空間
36 流路構造部
37 平面構造部
38 隔壁
39 分岐部
40 送液部及び回収部を備えた細胞分離装置
41 サンプル送液部
42 バッファー液送液部
43 第一の回収部
44 第二の回収部
110 基本構造
111 構造物
112 微小凝集物
121 ピラー構造部
131 導入口
132 排出口
1 Cell suspension 2 Target cell 3 Non-target cell 4 Mixed solution 5 Complex 10 Target capture molecule 11 Substance that carries the target capture molecule 12 Target capture substance 20 Basic structure of DLD microchannel 21 Obstacle structure 22 Constant size Particles larger than or equal to 23 Particles smaller than a certain size 30 Cell separation device with DLD microchannel 31 Sample inlet 32 Buffer inlet 33 First outlet 34 Second outlet 35 Channel space 36 Channel Structure part 37 Plane structure part 38 Partition 39 Branch part 40 Cell separation device with liquid feeding part and collecting part 41 Sample liquid feeding part 42 Buffer liquid feeding part 43 First collecting part 44 Second collecting part 110 Basic structure 111 Structure 112 Micro-aggregate 121 Pillar structure 131 Inlet 132 Outlet

Claims (11)

  1.  目的細胞を含む血液サンプルを4℃以下の環境に置かずに、微小流路を有する分離エリア、サンプル導入口及び排出口を備える細胞分離デバイスに前記血液サンプルを前記サンプル導入口から加えて流し、前記血液サンプルを前記細胞分離デバイスに導入することと、
     連続的な前記血液サンプルを含む液体の流れ中で、前記血液サンプルから、前記目的細胞を分離することと、
     分離された前記目的細胞を排出口から回収することと、
    を含む細胞の分離方法。
    The blood sample containing the target cells is not placed in an environment of 4 ° C. or lower, and the blood sample is added from the sample introduction port to a cell separation device having a separation area having a microchannel, a sample introduction port and a discharge port, and the blood sample is poured. Introducing the blood sample into the cell separation device and
    Separation of the target cells from the blood sample in a continuous stream of liquid containing the blood sample.
    Collecting the separated target cells from the outlet and
    A method for separating cells including.
  2.  4℃以下の環境に置かないことが、10℃以上40℃以下の環境に置くことである、請求項1に記載の細胞の分離方法。 The cell separation method according to claim 1, wherein not placing in an environment of 4 ° C or lower means placing in an environment of 10 ° C or higher and 40 ° C or lower.
  3.  さらに、前記細胞分離デバイスのバッファー導入口からバッファー液を加えて流すことを含む、請求項1又は2に記載の細胞の分離方法。 The cell separation method according to claim 1 or 2, further comprising adding and flowing a buffer solution from the buffer inlet of the cell separation device.
  4.  前記バッファー液の温度が、10℃以上40℃以下である、請求項3に記載の細胞の分離方法。 The method for separating cells according to claim 3, wherein the temperature of the buffer solution is 10 ° C. or higher and 40 ° C. or lower.
  5.  前記血液サンプルが、希釈液で希釈されている血液である、請求項1~4の何れか一項に記載の細胞の分離方法。 The method for separating cells according to any one of claims 1 to 4, wherein the blood sample is blood diluted with a diluent.
  6.  前記微小流路を有する分離エリアが、決定論的横置換法マイクロ流路構造を有する分離エリアある、請求項1~5の何れか一項に記載の細胞の分離方法。 The method for separating cells according to any one of claims 1 to 5, wherein the separation area having the microchannel is a separation area having a deterministic transverse substitution method microchannel structure.
  7.  前記血液サンプルが、さらに目的外細胞を含み、
     前記細胞分離デバイスに導入する前に、前記目的細胞の表面に存在する特徴的な構造を認識する対象捕捉物質を、前記血液サンプルに加えて、前記目的細胞と前記対象捕捉物質との複合体を生成することを含み、
     前記目的細胞を分離することが、前記閾値より小さいサイズを有する細胞は前記血液サンプルの流れと一緒に移動し、且つ閾値以上のサイズを有する前記複合体は流れに対し斜め方向に変位して移動することで分離することであり、
     前記回収することにおいて、前記目的細胞を前記複合体として回収する、請求項1~6の何れか一項に記載の細胞の分離方法。
    The blood sample further contains unintended cells
    Prior to introduction into the cell separation device, a target capture substance that recognizes a characteristic structure existing on the surface of the target cell is added to the blood sample, and a complex of the target cell and the target capture substance is added. Including generating
    Separation of the target cells allows cells having a size smaller than the threshold to move with the flow of the blood sample, and the complex having a size greater than or equal to the threshold to move obliquely with respect to the flow. Is to separate by doing
    The method for separating cells according to any one of claims 1 to 6, wherein the target cells are recovered as the complex in the recovery.
  8.  前記血液サンプルが、さらに目的外細胞を含み、
     前記細胞分離デバイスに導入する前に、前記目的外細胞の表面に存在する特徴的な構造を認識する対象捕捉物質を、前記血液サンプルに加えて、前記目的外細胞と前記対象捕捉物質との複合体を生成することを含み、
     前記目的細胞を分離することが、閾値より小さいサイズを有する細胞は、前記血液サンプルの流れと一緒に移動し、且つ閾値以上のサイズを有する前記複合体は、流れに対し斜め方向に変位して移動することで分離することである、請求項1~6の何れか一項に記載の細胞の分離方法。
    The blood sample further contains unintended cells
    Prior to introduction into the cell separation device, a target capture substance that recognizes a characteristic structure existing on the surface of the target cell is added to the blood sample, and a composite of the target cell and the target capture substance is added. Including producing the body
    The cells having a size smaller than the threshold for separating the target cells move with the flow of the blood sample, and the complex having a size equal to or larger than the threshold is displaced obliquely with respect to the flow. The method for separating cells according to any one of claims 1 to 6, wherein the cells are separated by moving.
  9.  前記対象捕捉物質が、前記目的細胞又は前記目的外細胞の表面に存在する特徴的な構造を有する対象捕捉分子と、前記対象捕捉分子を担持する物質との結合体からなることを特徴とする請求項7又は8に記載の細胞の分離方法。 A claim characterized in that the target capture substance comprises a conjugate of a target capture molecule having a characteristic structure existing on the surface of the target cell or a non-target cell and a substance carrying the target capture molecule. Item 7. The method for separating cells according to Item 7.
  10.  前記対象捕捉分子が、抗体、ペプチドアプタマー、レクチン、細胞間接着分子、糖鎖、又は細胞認識性の高分子である、請求項9に記載の細胞の分離方法。 The method for separating cells according to claim 9, wherein the target capture molecule is an antibody, a peptide aptamer, a lectin, an intercellular adhesion molecule, a sugar chain, or a cell-recognizable polymer.
  11.  前記対象捕捉分子を担持する物質が、ポリスチレン又はラテックスである、請求項9又は10に記載の細胞の分離方法。 The method for separating cells according to claim 9 or 10, wherein the substance supporting the target capture molecule is polystyrene or latex.
PCT/JP2020/022433 2019-06-14 2020-06-05 Method for separating cells WO2020250844A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019111504 2019-06-14
JP2019-111504 2019-06-14

Publications (1)

Publication Number Publication Date
WO2020250844A1 true WO2020250844A1 (en) 2020-12-17

Family

ID=73781207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/022433 WO2020250844A1 (en) 2019-06-14 2020-06-05 Method for separating cells

Country Status (1)

Country Link
WO (1) WO2020250844A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014145152A2 (en) * 2013-03-15 2014-09-18 Gpb Scientific, Llc On-chip microfluidic processing of particles
WO2016136273A1 (en) * 2015-02-27 2016-09-01 凸版印刷株式会社 Method for separating cells, and device therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014145152A2 (en) * 2013-03-15 2014-09-18 Gpb Scientific, Llc On-chip microfluidic processing of particles
WO2016136273A1 (en) * 2015-02-27 2016-09-01 凸版印刷株式会社 Method for separating cells, and device therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIM HYUN-JUNG; NAM JEONG-HUN; LEE YONG-JIN; SHIN SEHYUN: "Measurement of the temperature-dependent threshold shear-stress of red blood cell aggregation", REVIEW OF SCIENTIFIC INSTRUMENTS, vol. 80, no. 9, 2009, pages 1 - 3, XP012128523 *

Similar Documents

Publication Publication Date Title
JP2021007402A (en) Method of separating cells
US20200122146A1 (en) Platelet-Targeted Microfluidic Isolation of Cells
ES2908736T3 (en) Acoustic separation for bioprocessing
Yu et al. Microfluidic blood cell sorting: now and beyond
Warkiani et al. Large-volume microfluidic cell sorting for biomedical applications
TWI588262B (en) Methods and compositions for separating or enriching cells
JP3863373B2 (en) Method of using an apparatus for separation of biological fluids
CN100453182C (en) Microstructured separation device, and method for separating liquid components from a liquid containing particles
US20210395682A1 (en) High efficiency microfluidic purification of stem cells to improve transplants
CN103382434B (en) Utilize the microchannel isolated cell that contains the column that is arranged in pattern
US6821790B2 (en) Methods and apparatus for separation of biological fluids
WO2009140326A2 (en) Microfluidic isolation of tumor cells or other rare cells from whole blood or other liquids
WO2017221898A1 (en) Method for replacing liquid medium and flow path device for said method
CN101057141A (en) Device and method for isolating cells, bioparticles and/or molecules used for animal biotechnology (including biological research) from liquids
JP7154276B2 (en) Flow cells for selective enrichment of target particles or cells
CN106893694A (en) Erythrocyte aggregation and leucocyte are separated
CN115209996A (en) Microfluidic cartridge for processing particles and cells
WO2020250844A1 (en) Method for separating cells
KR102298910B1 (en) CTC Separation Method Using Counterflow Centrifugation
JP2020199456A (en) Separation device
US20220161260A1 (en) Particle concentrator device and methods of use
US20220074932A1 (en) Size-based particle separation and concentration using particle size amplification
Aw Yong et al. Microfluidic Blood Cell Sorting: Now and Beyond
Bose Affinity Flow Fractionation for label-free cell sorting
JP2012228197A (en) Separation apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20821876

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20821876

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP