WO2020250789A1 - Direct teaching device and direct teaching method - Google Patents

Direct teaching device and direct teaching method Download PDF

Info

Publication number
WO2020250789A1
WO2020250789A1 PCT/JP2020/022028 JP2020022028W WO2020250789A1 WO 2020250789 A1 WO2020250789 A1 WO 2020250789A1 JP 2020022028 W JP2020022028 W JP 2020022028W WO 2020250789 A1 WO2020250789 A1 WO 2020250789A1
Authority
WO
WIPO (PCT)
Prior art keywords
arm
unit
external force
speed
operation state
Prior art date
Application number
PCT/JP2020/022028
Other languages
French (fr)
Japanese (ja)
Inventor
清水 康司
広大 杉本
Original Assignee
アズビル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アズビル株式会社 filed Critical アズビル株式会社
Publication of WO2020250789A1 publication Critical patent/WO2020250789A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/42Recording and playback systems, i.e. in which the programme is recorded from a cycle of operations, e.g. the cycle of operations being manually controlled, after which this record is played back on the same machine

Definitions

  • the present invention relates to a direct teaching device and a direct teaching method for directly teaching a robot.
  • Patent Document 1 discloses a method for directly teaching a robot using a force sensor.
  • Patent Document 2 discloses a method for directly teaching a robot using a torque detecting means.
  • FIG. 8 shows a schematic configuration of the direct teaching device disclosed in these patent documents.
  • the external force detecting unit 1011 detects the external force applied by the operator to the arm 2 of the robot by using a force sensor, a torque sensor, or the like.
  • the driven control calculation unit 1012 calculates the movement of the arm 2 according to the external force detected by the external force detecting unit 1011 (driven control calculation).
  • the driven control calculation unit 1012 may use parameters related to the position and orientation of the arm 2 measured by the position / attitude measuring unit (not shown) in the driven control calculation.
  • the position / posture of the arm 2 means at least one of the position of the arm 2 and the posture of the arm 2. Further, examples of the above parameters include the position of the arm 2, the posture of the arm 2, the joint angle of the arm 2, and the like.
  • the driven control calculation unit 1012 notifies the drive control unit 1013 of the updated driven control command value based on the result of the driven control calculation.
  • the drive control unit 1013 drives the arm 2 according to the driven control command value notified by the driven control calculation unit 1012.
  • the direct teaching device 101 shown in FIG. 8 can be controlled so that the arm 2 moves according to the external force applied by the operator. Then, when the position and posture of the arm 2 are in the state intended by the operator by control, the direct teaching device 101 records the above parameters as teaching points. The teaching points recorded by the direct teaching device 101 are used when the robot works.
  • the torque detected by the torque detector is directly fed back to the torque command value of the arm. That is, in this direct teaching device, by amplifying the torque and applying it to the arm, it is possible to directly operate the arm with a small force. However, in a robot using such a direct teaching device, it is difficult to make the arm rest in a state where the operator does not apply an external force to the arm (no operation state).
  • this problem is the same when performing driven control by acceleration control or current control, and even if the acceleration command or current command by torque feedback is stopped, the arm does not easily stand still by itself. Further, the same problem can occur in a type of control that detects a force instead of a torque and outputs a torque command, an acceleration command, or a current command.
  • the present invention has been made to solve the above-mentioned problems, and when the arm is in a non-operated state even when the driven control based on the torque control, the current control or the acceleration control is performed with respect to the conventional configuration. It is an object of the present invention to provide a direct teaching device that enables the arm to be stationary in a short time.
  • the direct teaching device includes a speed detection unit that detects the speed or angular velocity of the arm of the robot, an external force detection unit that detects an external force applied to the arm, and an arm that follows the external force detected by the external force detection unit.
  • the driven control calculation unit that calculates the motion
  • the non-operation state determination unit that determines whether the arm is not operated
  • the non-operation state determination unit determines that the arm is not operated.
  • a deceleration control calculation unit that performs deceleration control based on the speed or angular velocity detected by the speed detection unit
  • a drive control unit that drives the arm based on the calculation result by the driven control calculation unit and the control result by the deceleration control calculation unit. It is characterized by having and.
  • the arm since it is configured as described above, even when the driven control based on the torque control, the current control or the acceleration control is performed as compared with the conventional configuration, the arm can be operated for a short time when the arm is in a non-operating state. It becomes possible to stand still.
  • FIG. 4A is a diagram showing an example of a change in the external force when shifting from the non-operated state to the operating state
  • FIG. 4B shows an example of changing the speed of the arm when shifting from the non-operating state to the operating state. It is a figure. It is a flowchart which shows the operation example of the deceleration control calculation part in Embodiment 1.
  • FIG. It is a figure which shows the structural example of the deceleration control calculation part in Embodiment 2. It is a figure explaining an example of the input / output relation by the comparison calculation unit in Embodiment 2.
  • FIG. It is a figure which shows the configuration example of the conventional direct teaching apparatus.
  • FIG. 1 is a diagram showing a configuration example of the direct teaching device 1 according to the first embodiment.
  • the direct teaching device 1 directly teaches the robot.
  • the direct teaching device 1 includes a speed detection unit 11, an external force detection unit 12, a driven control calculation unit 13, a non-operation state determination unit 14, a deceleration control initialization unit 15, a deceleration control calculation unit 16, and a drive.
  • the control unit 17 is provided.
  • the direct teaching device 1 is realized by a processing circuit such as a system LSI (Large-Scale Integration), a CPU (Central Processing Unit) that executes a program stored in a memory or the like, or the like.
  • LSI Large-Scale Integration
  • CPU Central Processing Unit
  • the speed detection unit 11 detects the speed or angular velocity of the arm 2 of the robot.
  • the external force detection unit 12 detects the external force applied to the arm 2 by the operator.
  • the external force detecting unit 12 may use a force sensor attached to the tip of the arm 2 and detect the force measured by the force sensor as an external force.
  • the external force detecting unit 12 may use a torque sensor attached to the motor drive shaft of the arm 2 and detect the torque measured by the torque sensor as an external force.
  • the external force detecting unit 12 does not directly measure the external force using the sensor as described above, but indirectly detects the external force from the measured value of the motor current of the arm 2 or the joint angle of the arm 2. An observer may be used.
  • the driven control calculation unit 13 calculates the movement (driven control command value) of the arm 2 according to the external force detected by the external force detecting unit 12.
  • the external force detection unit 12 and the driven control calculation unit 13 are the same as those in the prior art and are known techniques.
  • the non-operation state determination unit 14 determines whether the arm 2 is in an unoperated state (non-operation state).
  • the deceleration control initialization unit 15 initializes the integral control calculation when the deceleration control calculation unit 16 starts the integral control calculation.
  • FIG. 1 shows a case where the deceleration control initialization unit 15 is directly provided in the teaching device 1.
  • the deceleration control initialization unit 15 is not an essential configuration for the direct teaching device 1, and the deceleration control initialization unit 15 is directly used only when the deceleration control calculation unit 16 needs to be initialized (when the integral control calculation is performed). It may be provided in the teaching device 1.
  • the deceleration control calculation unit 16 performs deceleration control based on the speed or angular velocity detected by the speed detection unit 11 when the non-operation state determination unit 14 determines that there is no operation state.
  • the drive control unit 17 drives the arm 2 based on the calculation result by the driven control calculation unit 13 and the control result by the deceleration control calculation unit 16.
  • the deceleration control calculation unit 16 includes a speed command value setting unit 161, a subtraction unit 162, a PI control unit 163, and an output control unit 164.
  • the speed command value setting unit 161 sets the speed command value for PI control.
  • the subtraction unit 162 subtracts the current value of the speed detected by the speed detection unit 11 from the speed command value set by the speed command value setting unit 161 to obtain the speed deviation.
  • the PI control unit 163 performs a control calculation so that the speed deviation obtained by the subtraction unit 162 becomes zero.
  • the output control unit 164 enables the deceleration control calculation when the non-operation state determination unit 14 determines that there is no operation state, that is, outputs data indicating the control calculation by the PI control unit 163.
  • the direct teaching device 1 according to the first embodiment shown in FIGS. 1 and 2 shows a case where the speed detection unit 11 detects the speed.
  • the reason why the arm 2 does not stop easily is that the torque applied to the arm 2 becomes 0 even if the external force disappears in the torque feedback, and the torque in the opposite direction that decelerates the arm 2 works. Because there is no. Therefore, the direct teaching device 1 according to the first embodiment detects the speed of the arm 2 and controls to reduce the speed. As a result, in the direct teaching device 1 according to the first embodiment, the time until the arm 2 comes to rest can be shortened.
  • the control to decelerate the arm 2 is required only in the non-operation state. If deceleration control is performed while a person is operating the arm 2 (operating state), the operation of the arm 2 becomes heavy or the arm 2 does not move, and the operation feeling of direct teaching deteriorates. Therefore, in the direct teaching device 1 according to the first embodiment, it is detected whether or not there is no operation state, and the deceleration control is enabled only when there is no operation state.
  • a method for detecting the non-operation state for example, since there is a difference in the external force detected by the external force detection unit 12 between the operation state and the non-operation state, a method using this can be considered.
  • the speed detection unit 11 first detects the speed of the arm 2 of the robot (step ST301).
  • the speed detection unit 11 uses the amount of change in the measurement result by the position / posture measuring unit to measure the position / posture of the arm 2. The speed may be detected. Further, when the direct teaching device 1 has a speed measuring unit (not shown) for measuring the speed of the tip of the arm 2, the speed detecting unit 11 detects the speed of the arm 2 by using the measurement result by the speed measuring unit. You may.
  • the speed detection unit 11 may detect the speed of the arm 2 based on the angle or the angular velocity of each joint of the arm 2. Further, the speed detection unit 11 does not directly measure the position / posture and speed of the arm 2, the angle or angular velocity of each joint of the arm 2, or the physical quantity corresponding to these, but uses some calculation to obtain the physical quantity from another physical quantity. It may be estimated indirectly and the speed of the arm 2 may be detected based on the estimation result.
  • the external force detection unit 12 detects the external force applied to the arm 2 by the operator (step ST302).
  • the external force detected by the external force detecting unit 12 may be superposed with not only the external force applied to the arm 2 by the operator but also a component due to gravity. Therefore, in such a case, the external force detecting unit 12 may calculate only the external force component by estimating the component caused by gravity and subtracting the estimated component from the detected external force. This is a known technique called gravity compensation, and is disclosed in a plurality of documents such as Patent Document 3. Japanese Unexamined Patent Publication No. 01-066715
  • the driven control calculation unit 13 calculates the movement (driven control command value) of the arm 2 according to the external force detected by the external force detecting unit 12 (step ST303). At this time, the driven control calculation unit 13 first determines how the operator intends to move the arm 2 from the direction and magnitude of the external force detected by the external force detecting unit 12. Then, the driven control calculation unit 13 calculates the driven control command value for moving the arm 2 based on the determination result. This driven control command value drives the position of the arm 2, the amount of movement (difference in position), the speed, the acceleration, the angular velocity or the angular acceleration of each joint of the arm 2, the torque applied to each joint, or the motor of each joint. Any physical quantity such as current that can be used to move the arm 2 may be used.
  • the driven control calculation method by the driven control calculation unit 13 is disclosed in Patent Document 2 and the like, and since various methods have been developed, the detailed description thereof will be omitted.
  • the non-operation state determination unit 14 determines whether the arm 2 is in an unoperated state (non-operation state) (step ST304).
  • the non-operation state determination unit 14 may determine whether or not the non-operation state is in the non-operation state based on, for example, the external force detected by the external force detection unit 12. In the non-operated state, it is usually considered that the force or torque due to the external force is smaller than that in the operated state. Therefore, the non-operation state determination unit 14 determines that there is no operation state when the external force is equal to or less than a predetermined value, and determines that the operation state is not present.
  • the non-operation state determination unit 14 may determine that the non-operation state is in a non-operation state when the state in which the external force is equal to or less than a predetermined value continues for a certain period of time. This method is preferable because the accuracy of the determination is high. Similarly, when the non-operation state determination unit 14 determines whether or not the non-operation state has ended when the state in which the external force is equal to or higher than a predetermined value continues for a certain period of time, the accuracy of the determination is high. Further, the non-operation state determination unit 14 may learn the external force in the operation state by unsupervised machine learning, and may determine that the non-operation state is in the non-operation state when it deviates from the learned state.
  • the non-operation state determination unit 14 may determine whether or not there is no operation state based on the speed detected by the speed detection unit 11. For example, the non-operation state determination unit 14 determines that the non-operation state is in a state in which the speed is equal to or less than a predetermined value for a certain period of time. On the other hand, the non-operation state determination unit 14 determines that the operation state is obtained when the state in which the speed is equal to or higher than a predetermined value continues for a certain period of time.
  • the non-operation state determination by the non-operation state determination unit 14 may be performed for the entire arm 2, for each joint, or for both of them.
  • the deceleration control calculation unit 16 can perform deceleration control for each joint. Further, when the non-operation state determination unit 14 determines the non-operation state of the entire arm 2 based on the force or the moving speed of the arm 2, the deceleration control calculation unit 16 performs deceleration control in conjunction with all the joints. Is possible.
  • the non-operation state determination unit 14 determines whether or not the arm 2 is in the non-operation state by detecting, for example, whether a person is touching the arm 2 by a capacitance sensor (not shown) attached to the arm 2. You may. Further, the non-operation state determination unit 14 may determine whether or not the arm 2 is in the non-operation state by detecting, for example, whether a person is operating the arm 2 with a switch (not shown).
  • the non-operation state determination unit 14 may combine a plurality of the above means to determine whether or not the non-operation state is in the non-operation state, and the accuracy of the determination is increased.
  • the non-operation state determination unit 14 may use both the determination by the external force and the determination by the speed together, and may determine that the non-operation state is in the non-operation state only when the speed is sufficiently small and the external force is equal to or less than a predetermined value.
  • the deceleration control becomes invalid when the speed is small but the operator applies an external force.
  • deceleration control is required by performing the non-operation state determination by using both of them in combination with the non-operation state determination of only the external force or the speed. Can be judged more appropriately.
  • the determination means and the determination criteria for determining the transition from the operation state to the non-operation state, and the determination for the transition from the non-operation state to the operation state are performed.
  • the judgment means and judgment criteria do not have to be the same.
  • the non-operation state determination unit 14 may determine the transition to the non-operation state by an external force and the transition to the operation state by the speed.
  • the non-operation state determination unit 14 may determine the transition to the operation state (end of the non-operation state) based on the position and orientation of the arm 2. That is, the non-operation state determination unit 14 determines that the non-operation state is not in the non-operation state when the position and posture of the arm 2 changes by a predetermined distance from the non-operation state. As described above, since there is a determination means that can be used only when the no-operation state ends, it is necessary to make the determination means the same for the start and end of the no-operation state. There is no. Similarly, as shown in FIG. 4, the non-operation state determination unit 14 may determine the end of the non-operation state based on the change in the external force.
  • the data used in the non-operation state determination unit 14 may be appropriately subjected to necessary signal processing in order to suppress erroneous determination.
  • the non-operation state determination unit 14 may apply data processing by a low-pass filter or a moving average in order to suppress an erroneous determination due to noise.
  • deceleration control initialization unit 15 initializes the integral control calculation in the deceleration control calculation unit 16 (step ST305).
  • the deceleration control calculation unit 16 performs deceleration control based on the speed detected by the speed detection unit 11 when the non-operation state determination unit 14 determines that there is no operation state (step ST306).
  • the drive control unit 17 drives the arm 2 based on the driven control command value output by the driven control calculation unit 13 and the deceleration control command value output by the deceleration control calculation unit 16 (step ST307).
  • the driven control command value is a position command and the deceleration control command value is a position command correction amount
  • the drive control unit 17 first calculates a new position command by adding the position command correction amount to the position command. Then, a control calculation based on the new position command is performed to calculate a current value, and the current value is output to the motor to drive the arm 2.
  • the driven control command value is the current value of the motor and the deceleration control command value is also the current value of the motor
  • the drive control unit 17 outputs the total current value of the two current values to the motor to output the arm 2 To drive.
  • the driven control command value and the deceleration control command value are not limited to the same type of command value.
  • the drive control unit 17 first performs a control calculation based on the speed command to calculate the current value, and then the current value.
  • the current value obtained by adding the value and the current value which is the driven control command value is output to the motor to drive the arm 2.
  • the speed command value setting unit 161 first sets the speed command value for the PI control (step ST501).
  • the speed command value setting unit 161 sets the speed command value at a speed at which the arm 2 decelerates. Normally, the speed command value setting unit 161 sets the speed command value to 0, and finally makes the arm 2 stationary.
  • the subtraction unit 162 subtracts the current value of the speed detected by the speed detection unit 11 from the speed command value set by the speed command value setting unit 161 to calculate the speed deviation (step ST502).
  • the PI control unit 163 performs a control calculation so that the speed deviation calculated by the subtraction unit 162 becomes 0 (step ST503). Since the speed command value is usually 0, the PI control unit 163 controls so that the speed becomes 0.
  • the output control unit 164 outputs data indicating the control calculation result by the PI control unit 163 when it is determined by the non-operation state determination unit 14 that there is no operation state (step ST504). That is, when the non-operation state determination unit 14 determines that the non-operation state is not present, the output control unit 164 does not output the data indicating the control calculation result by the PI control unit 163.
  • the PI control unit 163 performs not only proportional control but also integral control.
  • the deceleration force obtained is proportional to the current value of the speed. Therefore, as the speed decreases, the deceleration force also decreases and the effect decreases.
  • the PI control unit 163 uses the proportional control and the integral control together, the integrated speed deviation also contributes to the deceleration force, so that the deceleration force becomes large and a larger effect can be obtained.
  • the deceleration control initialization unit 15 initializes the integrated value in the PI control unit 163 to 0 each time the transition from the operating state to the non-operating state occurs. As a result, the PI control unit 163 does not output the value integrated in the previous non-operation state, so that the value integrated in the past does not affect the deceleration control this time.
  • the deceleration control initialization unit 15 does not exist, the following things may occur and malfunction may occur.
  • the integrated value in the PI control unit 163 is a value that moves the joint in the negative direction, that is, the direction opposite to the direction in which the person moves it. After that, it is assumed that a person moves the joint of the arm 2 in the negative direction of the joint angle.
  • the integrated value in the PI control unit 163 when the integrated value in the PI control unit 163 is not initialized, the integrated value becomes a value that moves the joint in the negative direction when the operation is not performed, that is, the direction that the person moves. Therefore, the deceleration control does not function properly. Since such a state may occur, when the PI control unit 163 performs integral control, it is necessary to appropriately initialize the integral value.
  • the deceleration control calculation unit 16 may be added with a configuration for performing filter processing for removing noise, or a configuration for performing calculations such as dead zone processing.
  • the direct teaching device 1 has a speed detection unit 11 that detects the speed or angular velocity of the arm 2 possessed by the robot, and an external force detection that detects the external force applied to the arm 2.
  • a unit 12 a driven control calculation unit 13 that calculates the movement of the arm 2 according to the external force detected by the external force detection unit 12, a non-operation state determination unit 14 that determines whether the arm 2 is in an unoperated state, and a non-operation state determination unit 14.
  • the deceleration control calculation unit 16 that performs deceleration control based on the speed or angular velocity detected by the speed detection unit 11 and the driven A drive control unit 17 that drives the arm 2 based on a calculation result by the control calculation unit 13 and a control result by the deceleration control calculation unit 16 is provided.
  • the direct teaching device 1 according to the first embodiment is the arm 2 when the arm 2 is in a non-operating state even when the driven control based on the torque control, the current control or the acceleration control is performed with respect to the conventional configuration. Can be stopped in a short time.
  • Embodiment 2 In the second embodiment, another configuration example of the deceleration control calculation unit 16 will be described with reference to FIG.
  • the deceleration control calculation unit 16 shown in FIG. 6 includes a comparison calculation unit 165 and an output control unit 166.
  • the comparison calculation unit 165 outputs data indicating a negative constant value when the speed or angular velocity detected by the speed detection unit 11 is positive, and when the speed or angular velocity detected by the speed detection unit 11 is negative. Outputs data showing a positive constant value to.
  • the deceleration control calculation unit 16 decelerates the arm 2 by generating torque or acceleration in the direction opposite to the speed or angular velocity.
  • the comparison operation by the comparison operation unit 165 is represented by the following equation (1).
  • v indicates the current value of the speed detected by the speed detection unit 11
  • indicates the output by the comparison calculation unit 165
  • ⁇ B indicates a positive constant value.
  • the comparison calculation unit 165 may output in proportion to the speed when the speed is near 0. That is, in a simple comparison operation as in the equation (1), the output suddenly changes when the speed is near 0, but in the case of FIG. 7, such a sudden change can be avoided.
  • the output control unit 166 enables the deceleration control calculation when the non-operation state determination unit 14 determines that there is no operation state, that is, outputs data indicating the calculation result by the comparison calculation unit 165.
  • the deceleration control calculation unit 16 performs a calculation for decelerating the arm 2 based on the speed or the angular velocity detected by the speed detection unit 11, and the non-operation state determination unit 14 determines that the arm 2 is in a non-operation state. When it is determined, the calculation result is output as a deceleration control command value.
  • the calculation by the deceleration control calculation unit 16 may be performed for each joint in the joint control system, or may be performed in the Cartesian coordinate system (orthogonal coordinate system) for the entire arm 2.
  • the arm can be stopped in a short time when the arm is not operated. It is suitable for use in a direct teaching device or the like that directly teaches a robot.

Abstract

The present invention comprises: a velocity sensing unit (11) that senses the velocity or the angular velocity of an arm (2) of a robot; an external force sensing unit (12) that senses an external force which is applied to the arm (2); a tracking control computation unit (13) that calculates movements of the arm (2) according to the external force sensed by the external force sensing unit (12); a non-operating state determination unit (14) that determines whether the arm (2) is in a non-operating state; a deceleration control computation unit (16) that, when the non-operating state determination unit (14) determines that the arm (2) is in a non-operating state, performs deceleration control on the basis of the velocity or the angular velocity sensed by the velocity sensing unit (11); and a drive control unit (17) that drives the arm (2) on the basis of the calculation result by the tracking control computation unit (13) and the result of control by the deceleration control computation unit (16).

Description

直接教示装置及び直接教示方法Direct teaching device and direct teaching method
 この発明は、ロボットの直接教示を行う直接教示装置及び直接教示方法に関する。 The present invention relates to a direct teaching device and a direct teaching method for directly teaching a robot.
 産業用のロボットでは、ロボットに作業をさせるために、前もって教示(ティーチング)と呼ばれる作業が実施される。このロボットの教示を行う方法の1つとして、直接教示(ダイレクト教示)と呼ばれる方法がある。 In industrial robots, a work called teaching is carried out in advance in order to make the robot work. As one of the methods for teaching the robot, there is a method called direct teaching (direct teaching).
 例えば特許文献1では、力センサを用いたロボットの直接教示方法が開示されている。また、例えば特許文献2では、トルク検出手段を用いたロボットの直接教示方法が開示されている。これらの特許文献で開示されている直接教示装置の概略構成を図8に示す。 For example, Patent Document 1 discloses a method for directly teaching a robot using a force sensor. Further, for example, Patent Document 2 discloses a method for directly teaching a robot using a torque detecting means. FIG. 8 shows a schematic configuration of the direct teaching device disclosed in these patent documents.
 図8に示す直接教示装置101では、まず、外力検知部1011が、力センサ又はトルクセンサ等を用いて、ロボットが有するアーム2に対して操作者により加えられた外力を検知する。次いで、従動制御演算部1012が、外力検知部1011により検知された外力に従うアーム2の動きを算出(従動制御演算)する。なお、従動制御演算部1012は、従動制御演算において、位置姿勢計測部(不図示)により計測されたアーム2の位置姿勢に関するパラメータを用いる場合もある。なお、アーム2の位置姿勢とは、アーム2の位置及びアーム2の姿勢のうちの少なくとも一方を意味する。また、上記パラメータとしては、アーム2の位置、アーム2の姿勢、又は、アーム2の関節角等が挙げられる。そして、従動制御演算部1012は、従動制御演算の結果に基づいて更新した従動制御指令値を駆動制御部1013に通知する。次いで、駆動制御部1013は、従動制御演算部1012により通知された従動制御指令値に従ってアーム2を駆動する。 In the direct teaching device 101 shown in FIG. 8, first, the external force detecting unit 1011 detects the external force applied by the operator to the arm 2 of the robot by using a force sensor, a torque sensor, or the like. Next, the driven control calculation unit 1012 calculates the movement of the arm 2 according to the external force detected by the external force detecting unit 1011 (driven control calculation). The driven control calculation unit 1012 may use parameters related to the position and orientation of the arm 2 measured by the position / attitude measuring unit (not shown) in the driven control calculation. The position / posture of the arm 2 means at least one of the position of the arm 2 and the posture of the arm 2. Further, examples of the above parameters include the position of the arm 2, the posture of the arm 2, the joint angle of the arm 2, and the like. Then, the driven control calculation unit 1012 notifies the drive control unit 1013 of the updated driven control command value based on the result of the driven control calculation. Next, the drive control unit 1013 drives the arm 2 according to the driven control command value notified by the driven control calculation unit 1012.
 この一例の動作により、図8に示す直接教示装置101は、操作者により加えられた外力に従ってアーム2が動くように制御できる。そして、直接教示装置101は、制御によりアーム2の位置及び姿勢が操作者の意図する状態となった場合に、その際の上記パラメータを教示点として記録する。この直接教示装置101により記録された教示点はロボットが作業する際に使用される。 By the operation of this example, the direct teaching device 101 shown in FIG. 8 can be controlled so that the arm 2 moves according to the external force applied by the operator. Then, when the position and posture of the arm 2 are in the state intended by the operator by control, the direct teaching device 101 records the above parameters as teaching points. The teaching points recorded by the direct teaching device 101 are used when the robot works.
特開平05-204441号公報Japanese Unexamined Patent Publication No. 05-20441 特開平05-250029号公報Japanese Unexamined Patent Publication No. 05-250029
 特許文献2に開示された直接教示装置では、トルク検出器により検出されたトルクを、アームのトルク指令値に直接フィードバックする。すなわち、この直接教示装置では、上記トルクを増幅してアームに加えることで、小さな力でアームを直接操作することを可能としている。しかしながら、このような直接教示装置を用いたロボットは、操作者がアームに対して外力を加える操作をしていない状態(無操作状態)でアームを静止させることが難しい。 In the direct teaching device disclosed in Patent Document 2, the torque detected by the torque detector is directly fed back to the torque command value of the arm. That is, in this direct teaching device, by amplifying the torque and applying it to the arm, it is possible to directly operate the arm with a small force. However, in a robot using such a direct teaching device, it is difficult to make the arm rest in a state where the operator does not apply an external force to the arm (no operation state).
 これは、従動制御演算部がトルク制御であり、無操作状態となってもトルクフィードバックによるトルク指令値への寄与が0になるだけであり、減速の効果が無いからである。言い換えれば、アームを減速させるためには速度と逆方向のトルク又は加速度が必要であるが、特許文献2に開示された直接教示装置では、そのようなトルクが働きにくい。実際には、摩擦があるので多少は減速するが、摩擦が小さいアームではその影響も小さいので、なかなか静止しないということが起こる。また、外力検知部による検知結果に含まれる外乱、及びアームに加わる物理的な外乱も存在するため、これらの外乱によって更に静止が難しくなることもある。なお、この課題は、加速度制御又は電流制御によって従動制御を行う場合も同様であり、トルクのフィードバックによる加速度指令又は電流指令を停止しても、それだけではアームはなかなか静止しない。また、トルクではなく力を検知してトルク指令、加速度指令又は電流指令を出力するタイプの制御でも同じ課題は起こり得る。 This is because the driven control calculation unit is torque controlled, and even if there is no operation, the contribution of torque feedback to the torque command value is only 0, and there is no deceleration effect. In other words, torque or acceleration in the direction opposite to the speed is required to decelerate the arm, but such torque is difficult to work in the direct teaching device disclosed in Patent Document 2. In reality, there is friction, so it slows down a little, but with an arm with low friction, the effect is small, so it happens that it does not stand still easily. Further, since there are disturbances included in the detection result by the external force detection unit and physical disturbances applied to the arm, these disturbances may make it more difficult to stand still. It should be noted that this problem is the same when performing driven control by acceleration control or current control, and even if the acceleration command or current command by torque feedback is stopped, the arm does not easily stand still by itself. Further, the same problem can occur in a type of control that detects a force instead of a torque and outputs a torque command, an acceleration command, or a current command.
 この発明は、上記のような課題を解決するためになされたもので、従来構成に対し、トルク制御、電流制御又は加速度制御に基づいた従動制御を行う場合でも、アームが無操作状態である場合にアームを短時間に静止可能とする直接教示装置を提供することを目的としている。 The present invention has been made to solve the above-mentioned problems, and when the arm is in a non-operated state even when the driven control based on the torque control, the current control or the acceleration control is performed with respect to the conventional configuration. It is an object of the present invention to provide a direct teaching device that enables the arm to be stationary in a short time.
 この発明に係る直接教示装置は、ロボットが有するアームの速度又は角速度を検知する速度検知部と、アームに加えられた外力を検知する外力検知部と、外力検知部により検知された外力に従うアームの動きを算出する従動制御演算部と、アームが操作されていない状態であるかを判定する無操作状態判定部と、無操作状態判定部によりアームが操作されていない状態であると判定された場合に、速度検知部により検知された速度又は角速度に基づいて減速制御を行う減速制御演算部と、従動制御演算部による算出結果及び減速制御演算部による制御結果に基づいてアームを駆動する駆動制御部とを備えたことを特徴とする。 The direct teaching device according to the present invention includes a speed detection unit that detects the speed or angular velocity of the arm of the robot, an external force detection unit that detects an external force applied to the arm, and an arm that follows the external force detected by the external force detection unit. When the driven control calculation unit that calculates the motion, the non-operation state determination unit that determines whether the arm is not operated, and the non-operation state determination unit determines that the arm is not operated. In addition, a deceleration control calculation unit that performs deceleration control based on the speed or angular velocity detected by the speed detection unit, and a drive control unit that drives the arm based on the calculation result by the driven control calculation unit and the control result by the deceleration control calculation unit. It is characterized by having and.
 この発明によれば、上記のように構成したので、従来構成に対し、トルク制御、電流制御又は加速度制御に基づいた従動制御をする場合でも、アームが無操作状態である場合にアームを短時間に静止可能となる。 According to the present invention, since it is configured as described above, even when the driven control based on the torque control, the current control or the acceleration control is performed as compared with the conventional configuration, the arm can be operated for a short time when the arm is in a non-operating state. It becomes possible to stand still.
実施の形態1に係る直接教示装置の構成例を示す図である。It is a figure which shows the structural example of the direct teaching apparatus which concerns on Embodiment 1. FIG. 実施の形態1における減速制御演算部の構成例を示す図である。It is a figure which shows the structural example of the deceleration control calculation unit in Embodiment 1. 実施の形態1に係る直接教示装置の動作例を示すフローチャートである。It is a flowchart which shows the operation example of the direct teaching apparatus which concerns on Embodiment 1. FIG. 図4Aは、無操作状態から操作状態に移行する際での外力の変化例を示す図であり、図4Bは、無操作状態から操作状態に移行する際でのアームの速度の変化例を示す図である。FIG. 4A is a diagram showing an example of a change in the external force when shifting from the non-operated state to the operating state, and FIG. 4B shows an example of changing the speed of the arm when shifting from the non-operating state to the operating state. It is a figure. 実施の形態1における減速制御演算部の動作例を示すフローチャートである。It is a flowchart which shows the operation example of the deceleration control calculation part in Embodiment 1. 実施の形態2における減速制御演算部の構成例を示す図である。It is a figure which shows the structural example of the deceleration control calculation part in Embodiment 2. 実施の形態2における比較演算部による入出力関係の一例を説明する図である。It is a figure explaining an example of the input / output relation by the comparison calculation unit in Embodiment 2. FIG. 従来の直接教示装置の構成例を示す図である。It is a figure which shows the configuration example of the conventional direct teaching apparatus.
 以下、この発明の実施の形態について図面を参照しながら詳細に説明する。
実施の形態1.
 図1は実施の形態1に係る直接教示装置1の構成例を示す図である。
 直接教示装置1は、ロボットの直接教示を行う。直接教示装置1は、図1に示すように、速度検知部11、外力検知部12、従動制御演算部13、無操作状態判定部14、減速制御初期化部15、減速制御演算部16及び駆動制御部17を備えている。なお、直接教示装置1は、システムLSI(Large-Scale Integration)等の処理回路、又はメモリ等に記憶されたプログラムを実行するCPU(Central Processing Unit)等により実現される。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
Embodiment 1.
FIG. 1 is a diagram showing a configuration example of the direct teaching device 1 according to the first embodiment.
The direct teaching device 1 directly teaches the robot. As shown in FIG. 1, the direct teaching device 1 includes a speed detection unit 11, an external force detection unit 12, a driven control calculation unit 13, a non-operation state determination unit 14, a deceleration control initialization unit 15, a deceleration control calculation unit 16, and a drive. The control unit 17 is provided. The direct teaching device 1 is realized by a processing circuit such as a system LSI (Large-Scale Integration), a CPU (Central Processing Unit) that executes a program stored in a memory or the like, or the like.
 速度検知部11は、ロボットが有するアーム2の速度又は角速度を検知する。 The speed detection unit 11 detects the speed or angular velocity of the arm 2 of the robot.
 外力検知部12は、操作者によりアーム2に加えられた外力を検知する。例えば、外力検知部12は、アーム2の先端に取付けられた力センサを用い、力センサにより計測された力を外力として検知してもよい。また例えば、外力検知部12は、アーム2のモータ駆動軸に取付けられたトルクセンサを用い、トルクセンサにより計測されたトルクを外力として検知してもよい。また、外力検知部12は、上記のようにセンサを用いて外力を直接計測するのではなく、アーム2が有するモータの電流又はアーム2の関節角の計測値から間接的に外力を検知する外力オブザーバを用いてもよい。 The external force detection unit 12 detects the external force applied to the arm 2 by the operator. For example, the external force detecting unit 12 may use a force sensor attached to the tip of the arm 2 and detect the force measured by the force sensor as an external force. Further, for example, the external force detecting unit 12 may use a torque sensor attached to the motor drive shaft of the arm 2 and detect the torque measured by the torque sensor as an external force. Further, the external force detecting unit 12 does not directly measure the external force using the sensor as described above, but indirectly detects the external force from the measured value of the motor current of the arm 2 or the joint angle of the arm 2. An observer may be used.
 従動制御演算部13は、外力検知部12により検知された外力に従うアーム2の動き(従動制御指令値)を算出する。 The driven control calculation unit 13 calculates the movement (driven control command value) of the arm 2 according to the external force detected by the external force detecting unit 12.
 なお、外力検知部12及び従動制御演算部13は、従来技術と同様であり、公知技術である。 The external force detection unit 12 and the driven control calculation unit 13 are the same as those in the prior art and are known techniques.
 無操作状態判定部14は、アーム2が操作されていない状態(無操作状態)であるかを判定する。 The non-operation state determination unit 14 determines whether the arm 2 is in an unoperated state (non-operation state).
 減速制御初期化部15は、減速制御演算部16が積分制御演算を開始する場合に、当該積分制御演算を初期化する。
 なお図1では、減速制御初期化部15が直接教示装置1に設けられた場合を示している。しかしながら、減速制御初期化部15は直接教示装置1に必須の構成ではなく、減速制御初期化部15は、減速制御演算部16が初期化を要する場合(積分制御演算を行う場合)にのみ直接教示装置1に設けられていればよい。
The deceleration control initialization unit 15 initializes the integral control calculation when the deceleration control calculation unit 16 starts the integral control calculation.
Note that FIG. 1 shows a case where the deceleration control initialization unit 15 is directly provided in the teaching device 1. However, the deceleration control initialization unit 15 is not an essential configuration for the direct teaching device 1, and the deceleration control initialization unit 15 is directly used only when the deceleration control calculation unit 16 needs to be initialized (when the integral control calculation is performed). It may be provided in the teaching device 1.
 減速制御演算部16は、無操作状態判定部14により無操作状態であると判定された場合に、速度検知部11により検知された速度又は角速度に基づいて減速制御を行う。 The deceleration control calculation unit 16 performs deceleration control based on the speed or angular velocity detected by the speed detection unit 11 when the non-operation state determination unit 14 determines that there is no operation state.
 駆動制御部17は、従動制御演算部13による算出結果及び減速制御演算部16による制御結果に基づいてアーム2を駆動する。 The drive control unit 17 drives the arm 2 based on the calculation result by the driven control calculation unit 13 and the control result by the deceleration control calculation unit 16.
 次に、図1に示す実施の形態1における減速制御演算部16の構成例について、図2を参照しながら説明する。図2では、速度検知部11が速度を検知する場合を示すが、速度検知部11が角速度を検知する場合についても同様である。
 減速制御演算部16は、図2に示すように、速度指令値設定部161、減算部162、PI制御部163及び出力制御部164を有している。
Next, a configuration example of the deceleration control calculation unit 16 according to the first embodiment shown in FIG. 1 will be described with reference to FIG. FIG. 2 shows a case where the speed detection unit 11 detects the speed, but the same applies to the case where the speed detection unit 11 detects the angular velocity.
As shown in FIG. 2, the deceleration control calculation unit 16 includes a speed command value setting unit 161, a subtraction unit 162, a PI control unit 163, and an output control unit 164.
 速度指令値設定部161は、PI制御に対する速度指令値を設定する。 The speed command value setting unit 161 sets the speed command value for PI control.
 減算部162は、速度指令値設定部161により設定された速度指令値から、速度検知部11により検知された速度の現在値を減算して、速度偏差を得る。 The subtraction unit 162 subtracts the current value of the speed detected by the speed detection unit 11 from the speed command value set by the speed command value setting unit 161 to obtain the speed deviation.
 PI制御部163は、減算部162により得られた速度偏差が0になるように制御演算を行う。 The PI control unit 163 performs a control calculation so that the speed deviation obtained by the subtraction unit 162 becomes zero.
 出力制御部164は、無操作状態判定部14により無操作状態であると判定された場合に、減速制御演算を有効とし、すなわちPI制御部163による制御演算を示すデータを出力する。 The output control unit 164 enables the deceleration control calculation when the non-operation state determination unit 14 determines that there is no operation state, that is, outputs data indicating the control calculation by the PI control unit 163.
 次に、図1,2に示す実施の形態1に係る直接教示装置1の動作例について、図3を参照しながら説明する。以下では、速度検知部11が速度を検知する場合を示す。
 ここで、従来構成において、アーム2がなかなか停止しないのは、トルクフィードバックでは外力が無くなってもアーム2に加わるトルクが0になるだけであり、アーム2を減速させるような逆方向のトルクが働かないためである。そこで、実施の形態1に係る直接教示装置1では、アーム2の速度を検知し、その速度を減速させるような制御を行う。これにより、実施の形態1に係る直接教示装置1では、アーム2が静止するまでの時間を短縮化できる。
Next, an operation example of the direct teaching device 1 according to the first embodiment shown in FIGS. 1 and 2 will be described with reference to FIG. The following shows a case where the speed detection unit 11 detects the speed.
Here, in the conventional configuration, the reason why the arm 2 does not stop easily is that the torque applied to the arm 2 becomes 0 even if the external force disappears in the torque feedback, and the torque in the opposite direction that decelerates the arm 2 works. Because there is no. Therefore, the direct teaching device 1 according to the first embodiment detects the speed of the arm 2 and controls to reduce the speed. As a result, in the direct teaching device 1 according to the first embodiment, the time until the arm 2 comes to rest can be shortened.
 なお、アーム2を減速させる制御が必要なのは無操作状態の場合だけである。人がアーム2を操作している状態(操作状態)で減速制御を行えば、アーム2の操作が重くなったり、アーム2が動かなくなったりして、直接教示の操作感が悪くなる。そこで、実施の形態1に係る直接教示装置1では、無操作状態であるかを検知し、無操作状態である場合にのみ減速制御を有効とする。ここで、無操作状態を検知する方法としては、例えば、操作状態と無操作状態とでは外力検知部12により検知される外力に差異があるため、これを利用する方法が考えられる。 Note that the control to decelerate the arm 2 is required only in the non-operation state. If deceleration control is performed while a person is operating the arm 2 (operating state), the operation of the arm 2 becomes heavy or the arm 2 does not move, and the operation feeling of direct teaching deteriorates. Therefore, in the direct teaching device 1 according to the first embodiment, it is detected whether or not there is no operation state, and the deceleration control is enabled only when there is no operation state. Here, as a method for detecting the non-operation state, for example, since there is a difference in the external force detected by the external force detection unit 12 between the operation state and the non-operation state, a method using this can be considered.
 図1に示す実施の形態1に係る直接教示装置1の動作例では、図3に示すように、まず、速度検知部11は、ロボットが有するアーム2の速度を検知する(ステップST301)。 In the operation example of the direct teaching device 1 according to the first embodiment shown in FIG. 1, as shown in FIG. 3, the speed detection unit 11 first detects the speed of the arm 2 of the robot (step ST301).
 例えば、直接教示装置1がアーム2の位置姿勢を計測する位置姿勢計測部(不図示)を有する場合、速度検知部11は、位置姿勢計測部による計測結果の変化量を用いて、アーム2の速度を検知してもよい。
 また、直接教示装置1がアーム2の先端の速度を計測する速度計測部(不図示)を有する場合、速度検知部11は、速度計測部による計測結果を用いて、アーム2の速度を検知してもよい。
For example, when the direct teaching device 1 has a position / posture measuring unit (not shown) for measuring the position / posture of the arm 2, the speed detection unit 11 uses the amount of change in the measurement result by the position / posture measuring unit to measure the position / posture of the arm 2. The speed may be detected.
Further, when the direct teaching device 1 has a speed measuring unit (not shown) for measuring the speed of the tip of the arm 2, the speed detecting unit 11 detects the speed of the arm 2 by using the measurement result by the speed measuring unit. You may.
 また、速度検知部11は、アーム2の各関節の角度又は角速度に基づいて、アーム2の速度を検知してもよい。
 また、速度検知部11は、アーム2の位置姿勢、速度、アーム2の各関節の角度又は角速度、又は、これらに相当する物理量を直接計測するのではなく、何らかの演算を用いて他の物理量から間接的に推定し、その推定結果に基づいてアーム2の速度を検知してもよい。
Further, the speed detection unit 11 may detect the speed of the arm 2 based on the angle or the angular velocity of each joint of the arm 2.
Further, the speed detection unit 11 does not directly measure the position / posture and speed of the arm 2, the angle or angular velocity of each joint of the arm 2, or the physical quantity corresponding to these, but uses some calculation to obtain the physical quantity from another physical quantity. It may be estimated indirectly and the speed of the arm 2 may be detected based on the estimation result.
 また、外力検知部12は、操作者によりアーム2に加えられた外力を検知する(ステップST302)。なお、外力検知部12により検知される外力は、センサの構造等によっては、操作者によりアーム2に加えられた外力だけではなく、重力に起因する成分が重畳されている場合がある。そこで、このような場合には、外力検知部12は、重力に起因する成分を推定し、検知した外力から推定した成分を差引くことで、外力成分のみを算出するとよい。これは重力補償と呼ばれる公知技術であり、特許文献3等のように複数の文献で開示されている。
特開平01-066715号公報
Further, the external force detection unit 12 detects the external force applied to the arm 2 by the operator (step ST302). Depending on the structure of the sensor, the external force detected by the external force detecting unit 12 may be superposed with not only the external force applied to the arm 2 by the operator but also a component due to gravity. Therefore, in such a case, the external force detecting unit 12 may calculate only the external force component by estimating the component caused by gravity and subtracting the estimated component from the detected external force. This is a known technique called gravity compensation, and is disclosed in a plurality of documents such as Patent Document 3.
Japanese Unexamined Patent Publication No. 01-066715
 次いで、従動制御演算部13は、外力検知部12により検知された外力に従うアーム2の動き(従動制御指令値)を算出する(ステップST303)。この際、従動制御演算部13は、まず、外力検知部12により検知された外力の向き及び大きさから、操作者がどのようにアーム2を動かそうとしているかを判定する。そして、従動制御演算部13は、その判定結果に基づいて、アーム2を動かすための従動制御指令値を演算によって決定する。この従動制御指令値は、アーム2の位置、移動量(位置の差分)、速度、加速度、アーム2の各関節の角速度又は角加速度、各関節に与えるトルク、又は、各関節のモータを駆動する電流等、アーム2を動かすために利用可能な物理量であればよい。なお、従動制御演算部13による従動制御演算方法は、特許文献2等で開示されており、様々な方式が開発されているためその詳細な記述は省略する。 Next, the driven control calculation unit 13 calculates the movement (driven control command value) of the arm 2 according to the external force detected by the external force detecting unit 12 (step ST303). At this time, the driven control calculation unit 13 first determines how the operator intends to move the arm 2 from the direction and magnitude of the external force detected by the external force detecting unit 12. Then, the driven control calculation unit 13 calculates the driven control command value for moving the arm 2 based on the determination result. This driven control command value drives the position of the arm 2, the amount of movement (difference in position), the speed, the acceleration, the angular velocity or the angular acceleration of each joint of the arm 2, the torque applied to each joint, or the motor of each joint. Any physical quantity such as current that can be used to move the arm 2 may be used. The driven control calculation method by the driven control calculation unit 13 is disclosed in Patent Document 2 and the like, and since various methods have been developed, the detailed description thereof will be omitted.
 次いで、無操作状態判定部14は、アーム2が操作されていない状態(無操作状態)であるかを判定する(ステップST304)。 Next, the non-operation state determination unit 14 determines whether the arm 2 is in an unoperated state (non-operation state) (step ST304).
 この際、無操作状態判定部14は、例えば、外力検知部12により検知された外力に基づいて、無操作状態であるかを判定してもよい。無操作状態では、通常、操作状態に対し、外力による力又はトルクが小さくなると考えられる。よって、無操作状態判定部14は、外力が所定値以下である場合に無操作状態であると判定し、そうではない場合に操作状態であると判定する。 At this time, the non-operation state determination unit 14 may determine whether or not the non-operation state is in the non-operation state based on, for example, the external force detected by the external force detection unit 12. In the non-operated state, it is usually considered that the force or torque due to the external force is smaller than that in the operated state. Therefore, the non-operation state determination unit 14 determines that there is no operation state when the external force is equal to or less than a predetermined value, and determines that the operation state is not present.
 また、無操作状態判定部14は、外力が所定値以下である状態が一定時間継続した場合に、無操作状態であると判定してもよい。この方法は判定の確度が高くなるため好ましい。同様に、無操作状態判定部14は、無操作状態が終了したかの判定についても、外力が所定値以上である状態が一定時間継続したことをもって判定すると、判定の確度が高くなる。
 また、無操作状態判定部14は、教師無し機械学習で操作状態での外力を学習させ、学習した状態から逸脱した場合に無操作状態であると判定してもよい。
Further, the non-operation state determination unit 14 may determine that the non-operation state is in a non-operation state when the state in which the external force is equal to or less than a predetermined value continues for a certain period of time. This method is preferable because the accuracy of the determination is high. Similarly, when the non-operation state determination unit 14 determines whether or not the non-operation state has ended when the state in which the external force is equal to or higher than a predetermined value continues for a certain period of time, the accuracy of the determination is high.
Further, the non-operation state determination unit 14 may learn the external force in the operation state by unsupervised machine learning, and may determine that the non-operation state is in the non-operation state when it deviates from the learned state.
 また、無操作状態判定部14は、速度検知部11により検知された速度に基づいて、無操作状態であるかを判定してもよい。例えば、無操作状態判定部14は、速度が所定値以下である状態が一定時間継続した場合に無操作状態であると判定する。一方、無操作状態判定部14は、速度が所定値以上である状態が一定時間継続した場合に操作状態であると判定する。 Further, the non-operation state determination unit 14 may determine whether or not there is no operation state based on the speed detected by the speed detection unit 11. For example, the non-operation state determination unit 14 determines that the non-operation state is in a state in which the speed is equal to or less than a predetermined value for a certain period of time. On the other hand, the non-operation state determination unit 14 determines that the operation state is obtained when the state in which the speed is equal to or higher than a predetermined value continues for a certain period of time.
 なお、無操作状態判定部14による無操作状態判定は、アーム2全体に対して行ってもよいし、関節毎に行ってもよいし、その両方に対して行ってもよい。無操作状態判定部14が関節毎に無操作状態判定を行った場合、減速制御演算部16は関節毎に減速制御を行うことが可能となる。また、無操作状態判定部14がアーム2の力又は移動速度に基づいてアーム2全体で無操作状態判定を行った場合、減速制御演算部16は全ての関節で減速制御を連動して行うことが可能となる。 The non-operation state determination by the non-operation state determination unit 14 may be performed for the entire arm 2, for each joint, or for both of them. When the non-operation state determination unit 14 determines the non-operation state for each joint, the deceleration control calculation unit 16 can perform deceleration control for each joint. Further, when the non-operation state determination unit 14 determines the non-operation state of the entire arm 2 based on the force or the moving speed of the arm 2, the deceleration control calculation unit 16 performs deceleration control in conjunction with all the joints. Is possible.
 また、無操作状態判定部14は、例えば、アーム2に取付けられた静電容量センサ(不図示)により人がアーム2に触れているかを検知することで、無操作状態であるかを判定してもよい。
 また、無操作状態判定部14は、例えば、スイッチ(不図示)により人がアーム2を操作中であるかを検知することで、無操作状態であるかを判定してもよい。
Further, the non-operation state determination unit 14 determines whether or not the arm 2 is in the non-operation state by detecting, for example, whether a person is touching the arm 2 by a capacitance sensor (not shown) attached to the arm 2. You may.
Further, the non-operation state determination unit 14 may determine whether or not the arm 2 is in the non-operation state by detecting, for example, whether a person is operating the arm 2 with a switch (not shown).
 また、無操作状態判定部14は、上記手段のうちの複数の手段を組合わせて、無操作状態であるかを判定してもよく、判定の確度が高まる。
 例えば、無操作状態判定部14は、外力による判定と速度による判定とを併用し、速度が十分小さくなり且つ外力が所定値以下である場合にのみ無操作状態であると判定してもよい。これにより、実施の形態1に係る直接教示装置1では、速度は小さいが操作者が外力を加えている場合には、減速制御が無効となる。このように、実施の形態1に係る直接教示装置1では、外力のみ又は速度のみの無操作状態判定と比較し、双方を併用して無操作状態判定を行うことで、減速制御が必要な状態をより適切に判定できる。
Further, the non-operation state determination unit 14 may combine a plurality of the above means to determine whether or not the non-operation state is in the non-operation state, and the accuracy of the determination is increased.
For example, the non-operation state determination unit 14 may use both the determination by the external force and the determination by the speed together, and may determine that the non-operation state is in the non-operation state only when the speed is sufficiently small and the external force is equal to or less than a predetermined value. As a result, in the direct teaching device 1 according to the first embodiment, the deceleration control becomes invalid when the speed is small but the operator applies an external force. As described above, in the direct teaching device 1 according to the first embodiment, deceleration control is required by performing the non-operation state determination by using both of them in combination with the non-operation state determination of only the external force or the speed. Can be judged more appropriately.
 なお、無操作状態判定部14による無操作状態判定において、操作状態から無操作状態に遷移したと判定する際の判定手段及び判定基準と、無操作状態から操作状態に遷移したと判定する際の判定手段及び判定基準は、同一である必要はない。
 例えば、無操作状態判定部14は、無操作状態への遷移は外力で判定し、操作状態への遷移は速度で判定してもよい。
In the non-operation state determination by the non-operation state determination unit 14, the determination means and the determination criteria for determining the transition from the operation state to the non-operation state, and the determination for the transition from the non-operation state to the operation state are performed. The judgment means and judgment criteria do not have to be the same.
For example, the non-operation state determination unit 14 may determine the transition to the non-operation state by an external force and the transition to the operation state by the speed.
 また、無操作状態判定部14は、アーム2の位置姿勢に基づいて、操作状態への遷移(無操作状態の終了)を判定してもよい。すなわち、無操作状態判定部14は、無操作状態になった際のアーム2の位置姿勢から所定距離だけ変化した場合に、無操作状態ではないと判定する。このように、無操作状態判定部14による無操作判定は、無操作状態が終了する場合にだけ利用可能な判定手段もあるため、無操作状態の開始と終了とで判定手段を同一にする必要はない。
 同様に、図4に示すように、無操作状態判定部14は、外力の変化に基づいて無操作状態の終了を判定してもよい。これは、静止状態にあるアーム2に外力を加えている場合に、アーム2が静止している間は力が増大する(図4に示す符号401)が、アーム2が動き出すと力が一旦減少する(図4に示す符号402)ことを利用するものである。
Further, the non-operation state determination unit 14 may determine the transition to the operation state (end of the non-operation state) based on the position and orientation of the arm 2. That is, the non-operation state determination unit 14 determines that the non-operation state is not in the non-operation state when the position and posture of the arm 2 changes by a predetermined distance from the non-operation state. As described above, since there is a determination means that can be used only when the no-operation state ends, it is necessary to make the determination means the same for the start and end of the no-operation state. There is no.
Similarly, as shown in FIG. 4, the non-operation state determination unit 14 may determine the end of the non-operation state based on the change in the external force. This is because when an external force is applied to the arm 2 in the stationary state, the force increases while the arm 2 is stationary (reference numeral 401 shown in FIG. 4), but the force decreases once the arm 2 starts to move. (Reference numeral 402 shown in FIG. 4) is used.
 なお、無操作状態判定部14で用いられるデータは、誤判定を抑制するため、適宜必要な信号処理が行われてもよい。例えば、無操作状態判定部14は、ノイズによる誤判定を抑制するため、ローパスフィルタ又は移動平均によるデータ処理を適用してもよい。 Note that the data used in the non-operation state determination unit 14 may be appropriately subjected to necessary signal processing in order to suppress erroneous determination. For example, the non-operation state determination unit 14 may apply data processing by a low-pass filter or a moving average in order to suppress an erroneous determination due to noise.
 また、減速制御初期化部15は、減速制御演算部16における積分制御演算を初期化する(ステップST305)。 Further, the deceleration control initialization unit 15 initializes the integral control calculation in the deceleration control calculation unit 16 (step ST305).
 次いで、減速制御演算部16は、無操作状態判定部14により無操作状態であると判定された場合に、速度検知部11により検知された速度に基づいて減速制御を行う(ステップST306)。 Next, the deceleration control calculation unit 16 performs deceleration control based on the speed detected by the speed detection unit 11 when the non-operation state determination unit 14 determines that there is no operation state (step ST306).
 次いで、駆動制御部17は、従動制御演算部13により出力された従動制御指令値及び減速制御演算部16により出力された減速制御指令値に基づいて、アーム2を駆動する(ステップST307)。
 例えば、従動制御指令値が位置指令であり、減速制御指令値が位置指令修正量である場合、駆動制御部17は、まず、位置指令に位置指令修正量を加算して新たな位置指令を算出し、その新たな位置指令に基づく制御演算を行って電流値を算出し、そして、その電流値をモータに出力してアーム2を駆動する。
 また、従動制御指令値がモータの電流値であり、減速制御指令値もモータの電流値である場合、駆動制御部17は当該2つの電流値を合算した電流値をモータに出力してアーム2を駆動する。
Next, the drive control unit 17 drives the arm 2 based on the driven control command value output by the driven control calculation unit 13 and the deceleration control command value output by the deceleration control calculation unit 16 (step ST307).
For example, when the driven control command value is a position command and the deceleration control command value is a position command correction amount, the drive control unit 17 first calculates a new position command by adding the position command correction amount to the position command. Then, a control calculation based on the new position command is performed to calculate a current value, and the current value is output to the motor to drive the arm 2.
When the driven control command value is the current value of the motor and the deceleration control command value is also the current value of the motor, the drive control unit 17 outputs the total current value of the two current values to the motor to output the arm 2 To drive.
 なお、従動制御指令値と減速制御指令値は、同じ種類の指令値に限らない。例えば、従動制御指令値が電流値であり、減速制御指令値が速度指令である場合、駆動制御部17は、まず、速度指令に基づく制御演算を行って電流値を算出し、そして、その電流値と従動制御指令値である電流値とを合算した電流値をモータに出力してアーム2を駆動する。 The driven control command value and the deceleration control command value are not limited to the same type of command value. For example, when the driven control command value is a current value and the deceleration control command value is a speed command, the drive control unit 17 first performs a control calculation based on the speed command to calculate the current value, and then the current value. The current value obtained by adding the value and the current value which is the driven control command value is output to the motor to drive the arm 2.
 次に、図2に示す実施の形態1における減速制御演算部16の動作例について、図5を参照しながら説明する。
 図2に示す実施の形態1における減速制御演算部16の動作例では、図5に示すように、まず、速度指令値設定部161は、PI制御に対する速度指令値を設定する(ステップST501)。速度指令値設定部161は、速度指令値として、アーム2が減速するような速度に設定する。通常は、速度指令値設定部161は、速度指令値を0に設定し、最終的にアーム2を静止させるようにする。
Next, an operation example of the deceleration control calculation unit 16 according to the first embodiment shown in FIG. 2 will be described with reference to FIG.
In the operation example of the deceleration control calculation unit 16 in the first embodiment shown in FIG. 2, as shown in FIG. 5, the speed command value setting unit 161 first sets the speed command value for the PI control (step ST501). The speed command value setting unit 161 sets the speed command value at a speed at which the arm 2 decelerates. Normally, the speed command value setting unit 161 sets the speed command value to 0, and finally makes the arm 2 stationary.
 次いで、減算部162は、速度指令値設定部161により設定された速度指令値から、速度検知部11により検知された速度の現在値を減算し、速度偏差を算出する(ステップST502)。 Next, the subtraction unit 162 subtracts the current value of the speed detected by the speed detection unit 11 from the speed command value set by the speed command value setting unit 161 to calculate the speed deviation (step ST502).
 次いで、PI制御部163は、減算部162により算出された速度偏差が0になるように制御演算を行う(ステップST503)。速度指令値は通常は0であるため、PI制御部163は速度が0になるように制御を行う。 Next, the PI control unit 163 performs a control calculation so that the speed deviation calculated by the subtraction unit 162 becomes 0 (step ST503). Since the speed command value is usually 0, the PI control unit 163 controls so that the speed becomes 0.
 次いで、出力制御部164は、無操作状態判定部14により無操作状態であると判定された場合に、PI制御部163による制御演算結果を示すデータを出力する(ステップST504)。すなわち、出力制御部164は、無操作状態判定部14により無操作状態ではないと判定された場合には、PI制御部163による制御演算結果を示すデータの出力は行わない。 Next, the output control unit 164 outputs data indicating the control calculation result by the PI control unit 163 when it is determined by the non-operation state determination unit 14 that there is no operation state (step ST504). That is, when the non-operation state determination unit 14 determines that the non-operation state is not present, the output control unit 164 does not output the data indicating the control calculation result by the PI control unit 163.
 なお、十分な減速力を得るためには、PI制御部163は、比例制御だけではなく、積分制御も行うことが好ましい。PI制御部163が比例制御のみを行う場合、得られる減速力は速度の現在値に比例したものになるため、速度が小さくなると減速力も小さくなり、効果が小さくなる。一方、PI制御部163が比例制御と積分制御を併用する場合、速度偏差を積分したものも減速力に寄与するため、減速力が大きくなり、より大きな効果が得られる。 In order to obtain a sufficient deceleration force, it is preferable that the PI control unit 163 performs not only proportional control but also integral control. When the PI control unit 163 performs only proportional control, the deceleration force obtained is proportional to the current value of the speed. Therefore, as the speed decreases, the deceleration force also decreases and the effect decreases. On the other hand, when the PI control unit 163 uses the proportional control and the integral control together, the integrated speed deviation also contributes to the deceleration force, so that the deceleration force becomes large and a larger effect can be obtained.
 なお、PI制御部163が積分制御を行う場合、適切なタイミングで積分値を0に初期化する必要がある。そのため、減速制御初期化部15が必要となる。
 減速制御初期化部15は、例えば、操作状態から無操作状態に遷移する度にPI制御部163における積分値を0に初期化させる。これにより、PI制御部163は、前回の無操作状態で積分した値を出力しなくなるため、過去に積分した値が今回の減速制御に影響しなくなる。
When the PI control unit 163 performs integral control, it is necessary to initialize the integral value to 0 at an appropriate timing. Therefore, the deceleration control initialization unit 15 is required.
The deceleration control initialization unit 15 initializes the integrated value in the PI control unit 163 to 0 each time the transition from the operating state to the non-operating state occurs. As a result, the PI control unit 163 does not output the value integrated in the previous non-operation state, so that the value integrated in the past does not affect the deceleration control this time.
 一方、減速制御初期化部15が存在しない場合、以下のようなことが起こり、誤動作する可能性がある。
 例えば、人がアーム2のある関節を関節角の正方向に動かし、その後、無操作状態とし、直接教示装置1が減速制御を行ったとする。この場合、PI制御部163における積分値は関節を負方向に動かすような値となる、すなわち人が動かした方向とは逆となる。
 その後、人がアーム2の上記関節を関節角の負方向に動かしたとする。ここで、PI制御部163における積分値を初期化しない場合、無操作状態になった際に、積分値は関節を負方向に動かすような値となる、すなわち人が動かした方向となる。よって、減速制御が正しく機能しなくなる。
 このような状態が生じる可能性があるため、PI制御部163が積分制御を行う場合には、積分値を適宜初期化する必要がある。
On the other hand, if the deceleration control initialization unit 15 does not exist, the following things may occur and malfunction may occur.
For example, suppose that a person moves a joint having an arm 2 in the positive direction of the joint angle, then puts it in a non-operated state, and the teaching device 1 directly performs deceleration control. In this case, the integrated value in the PI control unit 163 is a value that moves the joint in the negative direction, that is, the direction opposite to the direction in which the person moves it.
After that, it is assumed that a person moves the joint of the arm 2 in the negative direction of the joint angle. Here, when the integrated value in the PI control unit 163 is not initialized, the integrated value becomes a value that moves the joint in the negative direction when the operation is not performed, that is, the direction that the person moves. Therefore, the deceleration control does not function properly.
Since such a state may occur, when the PI control unit 163 performs integral control, it is necessary to appropriately initialize the integral value.
 なお、減速制御演算部16は、ノイズを除去するためのフィルタ処理を行う構成、又は不感帯処理等の演算を行う構成が追加されてもよい。 Note that the deceleration control calculation unit 16 may be added with a configuration for performing filter processing for removing noise, or a configuration for performing calculations such as dead zone processing.
 以上のように、この実施の形態1によれば、直接教示装置1は、ロボットが有するアーム2の速度又は角速度を検知する速度検知部11と、アーム2に加えられた外力を検知する外力検知部12と、外力検知部12により検知された外力に従うアーム2の動きを算出する従動制御演算部13と、アーム2が操作されていない状態であるかを判定する無操作状態判定部14と、無操作状態判定部14によりアーム2が操作されていない状態であると判定された場合に、速度検知部11により検知された速度又は角速度に基づいて減速制御を行う減速制御演算部16と、従動制御演算部13による算出結果及び減速制御演算部16による制御結果に基づいてアーム2を駆動する駆動制御部17とを備えた。これにより、実施の形態1に係る直接教示装置1は、従来構成に対し、トルク制御、電流制御又は加速度制御に基づいた従動制御をする場合でも、アーム2が無操作状態である場合にアーム2を短時間に静止可能となる。 As described above, according to the first embodiment, the direct teaching device 1 has a speed detection unit 11 that detects the speed or angular velocity of the arm 2 possessed by the robot, and an external force detection that detects the external force applied to the arm 2. A unit 12, a driven control calculation unit 13 that calculates the movement of the arm 2 according to the external force detected by the external force detection unit 12, a non-operation state determination unit 14 that determines whether the arm 2 is in an unoperated state, and a non-operation state determination unit 14. When the non-operation state determination unit 14 determines that the arm 2 is not being operated, the deceleration control calculation unit 16 that performs deceleration control based on the speed or angular velocity detected by the speed detection unit 11 and the driven A drive control unit 17 that drives the arm 2 based on a calculation result by the control calculation unit 13 and a control result by the deceleration control calculation unit 16 is provided. As a result, the direct teaching device 1 according to the first embodiment is the arm 2 when the arm 2 is in a non-operating state even when the driven control based on the torque control, the current control or the acceleration control is performed with respect to the conventional configuration. Can be stopped in a short time.
実施の形態2.
 実施の形態2では、減速制御演算部16の別の構成例について、図6を参照しながら説明する。
 図6に示す減速制御演算部16は、比較演算部165及び出力制御部166を有している。
Embodiment 2.
In the second embodiment, another configuration example of the deceleration control calculation unit 16 will be described with reference to FIG.
The deceleration control calculation unit 16 shown in FIG. 6 includes a comparison calculation unit 165 and an output control unit 166.
 比較演算部165は、速度検知部11により検知された速度又は角速度が正である場合に負の定数値を示すデータを出力し、速度検知部11により検知された速度又は角速度が負である場合に正の定数値を示すデータを出力する。これにより、減速制御演算部16は、速度又は角速度と反対方向のトルク又は加速度を生じさせてアーム2を減速させる。例えば、比較演算部165による比較演算は、下式(1)で表される。式(1)において、vは速度検知部11により検知された速度の現在値を示し、τは比較演算部165による出力を示し、τは正の定数値を示している。

Figure JPOXMLDOC01-appb-I000001
The comparison calculation unit 165 outputs data indicating a negative constant value when the speed or angular velocity detected by the speed detection unit 11 is positive, and when the speed or angular velocity detected by the speed detection unit 11 is negative. Outputs data showing a positive constant value to. As a result, the deceleration control calculation unit 16 decelerates the arm 2 by generating torque or acceleration in the direction opposite to the speed or angular velocity. For example, the comparison operation by the comparison operation unit 165 is represented by the following equation (1). In the equation (1), v indicates the current value of the speed detected by the speed detection unit 11, τ indicates the output by the comparison calculation unit 165, and τ B indicates a positive constant value.

Figure JPOXMLDOC01-appb-I000001
 また図7に示すように、比較演算部165は、速度が0付近である場合には速度に比例するような出力を行ってもよい。すなわち、式(1)のような単純な比較演算では、速度が0付近の場合に出力が急変するが、図7の場合にはそのような急変を回避できる。 Further, as shown in FIG. 7, the comparison calculation unit 165 may output in proportion to the speed when the speed is near 0. That is, in a simple comparison operation as in the equation (1), the output suddenly changes when the speed is near 0, but in the case of FIG. 7, such a sudden change can be avoided.
 出力制御部166は、無操作状態判定部14により無操作状態であると判定された場合に、減速制御演算を有効とし、すなわち比較演算部165による演算結果を示すデータを出力する。 The output control unit 166 enables the deceleration control calculation when the non-operation state determination unit 14 determines that there is no operation state, that is, outputs data indicating the calculation result by the comparison calculation unit 165.
 このように、減速制御演算部16は、速度検知部11により検知された速度又は角速度に基づいて、アーム2を減速させるような演算を行い、無操作状態判定部14により無操作状態であると判定された場合にその演算結果を減速制御指令値として出力する。なお、減速制御演算部16による演算は、関節制御系で関節毎に行ってもよいし、アーム2全体を対象としてデカルト座標系(直交座標系)で行ってもよい。 In this way, the deceleration control calculation unit 16 performs a calculation for decelerating the arm 2 based on the speed or the angular velocity detected by the speed detection unit 11, and the non-operation state determination unit 14 determines that the arm 2 is in a non-operation state. When it is determined, the calculation result is output as a deceleration control command value. The calculation by the deceleration control calculation unit 16 may be performed for each joint in the joint control system, or may be performed in the Cartesian coordinate system (orthogonal coordinate system) for the entire arm 2.
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組合わせ、或いは各実施の形態の任意の構成要素の変形、若しくは各実施の形態において任意の構成要素の省略が可能である。 In the present invention, within the scope of the invention, it is possible to freely combine each embodiment, modify any component of each embodiment, or omit any component in each embodiment. is there.
 この発明に係る直接教示装置は、従来構成に対し、トルク制御、電流制御又は加速度制御に基づいた従動制御をする場合でも、アームが無操作状態である場合にアームを短時間に静止可能となり、ロボットの直接教示を行う直接教示装置等に用いるのに適している。 In the direct teaching device according to the present invention, even when the driven control based on torque control, current control or acceleration control is performed with respect to the conventional configuration, the arm can be stopped in a short time when the arm is not operated. It is suitable for use in a direct teaching device or the like that directly teaches a robot.
1 直接教示装置
2 アーム
11 速度検知部
12 外力検知部
13 従動制御演算部
14 無操作状態判定部
15 減速制御初期化部
16 減速制御演算部
17 駆動制御部
161 速度指令値設定部
162 減算部
163 PI制御部
164 出力制御部
165 比較演算部
166 出力制御部
1 Direct teaching device 2 Arm 11 Speed detection unit 12 External force detection unit 13 Driven control calculation unit 14 No operation state determination unit 15 Deceleration control initialization unit 16 Deceleration control calculation unit 17 Drive control unit 161 Speed command value setting unit 162 Subtraction unit 163 PI control unit 164 Output control unit 165 Comparison calculation unit 166 Output control unit

Claims (4)

  1.  ロボットが有するアームの速度又は角速度を検知する速度検知部と、
     前記アームに加えられた外力を検知する外力検知部と、
     前記外力検知部により検知された外力に従う前記アームの動きを算出する従動制御演算部と、
     前記アームが操作されていない状態であるかを判定する無操作状態判定部と、
     前記無操作状態判定部により前記アームが操作されていない状態であると判定された場合に、前記速度検知部により検知された速度又は角速度に基づいて減速制御を行う減速制御演算部と、
     前記従動制御演算部による算出結果及び前記減速制御演算部による制御結果に基づいて前記アームを駆動する駆動制御部と
     を備えた直接教示装置。
    A speed detector that detects the speed or angular velocity of the arm of the robot,
    An external force detection unit that detects the external force applied to the arm,
    A driven control calculation unit that calculates the movement of the arm according to the external force detected by the external force detecting unit, and
    A non-operation state determination unit that determines whether the arm is in an unoperated state,
    A deceleration control calculation unit that performs deceleration control based on the speed or angular velocity detected by the speed detection unit when the non-operation state determination unit determines that the arm is not operated.
    A direct teaching device including a drive control unit that drives the arm based on a calculation result by the driven control calculation unit and a control result by the deceleration control calculation unit.
  2.  前記減速制御演算部は、減速制御として積分制御演算を行い、
     前記減速制御演算部が積分制御演算を開始する場合に、当該積分制御演算を初期化する減速制御初期化部を備えた
     ことを特徴とする請求項1記載の直接教示装置。
    The deceleration control calculation unit performs an integral control calculation as deceleration control.
    The direct teaching device according to claim 1, further comprising a deceleration control initialization unit that initializes the integral control operation when the deceleration control calculation unit starts the integral control operation.
  3.  前記無操作状態判定部は、前記速度検知部により検知された速度又は角速度並びに前記外力検知部により検知された外力のうちの少なくとも一方に基づいて、前記アームが操作されていない状態であるかを判定する
     ことを特徴とする請求項1又は請求項2記載の直接教示装置。
    The non-operation state determination unit determines whether the arm is in a non-operated state based on at least one of the speed or angular velocity detected by the speed detection unit and the external force detected by the external force detection unit. The direct teaching device according to claim 1 or 2, wherein the determination is made.
  4.  ロボットが有するアームの速度又は角速度を検知する速度検知ステップと、
     前記アームに加えられた外力を検知する外力検知ステップと、
     前記外力検知ステップにおいて検知した外力に従う前記アームの動きを算出する従動制御演算ステップと、
     前記アームが操作されていない状態であるかを判定する無操作状態判定ステップと、
     前記無操作状態判定ステップにおいて前記アームが操作されていない状態であると判定した場合に、前記速度検知ステップにおいて検知した速度又は角速度に基づいて減速制御を行う減速制御演算ステップと、
     前記従動制御演算ステップにおける算出結果及び前記減速制御演算ステップにおける制御結果に基づいて前記アームを駆動する駆動制御ステップと
     を有する直接教示方法。
    A speed detection step that detects the speed or angular velocity of the arm of the robot,
    An external force detection step that detects the external force applied to the arm, and
    A driven control calculation step that calculates the movement of the arm according to the external force detected in the external force detection step, and
    A non-operation state determination step for determining whether the arm is in an unoperated state, and
    A deceleration control calculation step that performs deceleration control based on the speed or angular velocity detected in the speed detection step when it is determined in the non-operation state determination step that the arm is not operated.
    A direct teaching method including a drive control step for driving the arm based on a calculation result in the driven control calculation step and a control result in the deceleration control calculation step.
PCT/JP2020/022028 2019-06-14 2020-06-03 Direct teaching device and direct teaching method WO2020250789A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019111413A JP2020203330A (en) 2019-06-14 2019-06-14 Direct teaching device and direct teaching method
JP2019-111413 2019-06-14

Publications (1)

Publication Number Publication Date
WO2020250789A1 true WO2020250789A1 (en) 2020-12-17

Family

ID=73781402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/022028 WO2020250789A1 (en) 2019-06-14 2020-06-03 Direct teaching device and direct teaching method

Country Status (2)

Country Link
JP (1) JP2020203330A (en)
WO (1) WO2020250789A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6466715A (en) * 1987-09-08 1989-03-13 Sumitomo Electric Industries Manipulator control system
JPH11254361A (en) * 1998-03-13 1999-09-21 Sumitomo Heavy Ind Ltd Direct teaching mode switching system for robot
JP2008110406A (en) * 2006-10-27 2008-05-15 Yaskawa Electric Corp Direct instructing device of robot
JP2014128843A (en) * 2012-12-28 2014-07-10 Toyota Motor Corp Robot arm teaching system and robot arm teaching method
JP2017164833A (en) * 2016-03-14 2017-09-21 株式会社リコー Control device of manipulator device, control method of manipulator device, and control program of manipulator device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6466715A (en) * 1987-09-08 1989-03-13 Sumitomo Electric Industries Manipulator control system
JPH11254361A (en) * 1998-03-13 1999-09-21 Sumitomo Heavy Ind Ltd Direct teaching mode switching system for robot
JP2008110406A (en) * 2006-10-27 2008-05-15 Yaskawa Electric Corp Direct instructing device of robot
JP2014128843A (en) * 2012-12-28 2014-07-10 Toyota Motor Corp Robot arm teaching system and robot arm teaching method
JP2017164833A (en) * 2016-03-14 2017-09-21 株式会社リコー Control device of manipulator device, control method of manipulator device, and control program of manipulator device

Also Published As

Publication number Publication date
JP2020203330A (en) 2020-12-24

Similar Documents

Publication Publication Date Title
JP6238021B2 (en) ROBOT, ROBOT CONTROL DEVICE AND CONTROL METHOD, AND ROBOT CONTROL PROGRAM
KR101185144B1 (en) Method and apparatus for estimating 2-dimension trajectory of a gesture
US8442685B2 (en) Robot control apparatus
JP6895242B2 (en) Robot control device, robot control method and picking device
US11040449B2 (en) Robot control system and method of controlling a robot
KR20110080322A (en) Apparatus and method for detecting slip of a robot
US9952249B2 (en) Inertia estimating method and inertia estimation apparatus of position control apparatus
US8949044B2 (en) Control device, control method and program
KR20090124560A (en) Device and method for controlling a manipulator
JP2019181654A (en) Installation form determination device, computer program for determination of installation form and recording medium
WO2014091840A1 (en) Servo control device
JP6731583B2 (en) Motor controller
JPWO2020194393A1 (en) Robot hand, robot hand control method and program
KR101262277B1 (en) Detection methode for collision of robot
JP2013169609A (en) Method for detecting collision of robot
JP7136729B2 (en) Apparatus, method, program, controller and robot system for estimating load weight and center-of-gravity position using a robot
WO2020250789A1 (en) Direct teaching device and direct teaching method
JP7325656B2 (en) Collision detection device for robots
JP2003245881A (en) Apparatus and method for controlling robot
JP6767436B2 (en) Automatic machines and controls
CN107894749A (en) Servo motor control unit and its method, computer-readable recording medium
JP2906256B2 (en) Servo control device
KR20200133337A (en) Control device, control method, and program
WO2020250788A1 (en) Direct teaching device and direct teaching method
JP2005212054A (en) Force detecting method, force detector, and control device equipped with force detecting function

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20823484

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20823484

Country of ref document: EP

Kind code of ref document: A1