WO2020250598A1 - Parachute device and flying device - Google Patents

Parachute device and flying device Download PDF

Info

Publication number
WO2020250598A1
WO2020250598A1 PCT/JP2020/018420 JP2020018420W WO2020250598A1 WO 2020250598 A1 WO2020250598 A1 WO 2020250598A1 JP 2020018420 W JP2020018420 W JP 2020018420W WO 2020250598 A1 WO2020250598 A1 WO 2020250598A1
Authority
WO
WIPO (PCT)
Prior art keywords
parachute
injection
unit
flying object
side wall
Prior art date
Application number
PCT/JP2020/018420
Other languages
French (fr)
Japanese (ja)
Inventor
譲 酒本
昌司 下久
佳広 持田
Original Assignee
ミネベアミツミ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ミネベアミツミ株式会社 filed Critical ミネベアミツミ株式会社
Publication of WO2020250598A1 publication Critical patent/WO2020250598A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D17/00Parachutes
    • B64D17/40Packs
    • B64D17/52Opening, e.g. manual
    • B64D17/54Opening, e.g. manual automatic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D17/00Parachutes
    • B64D17/62Deployment
    • B64D17/72Deployment by explosive or inflatable means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U70/00Launching, take-off or landing arrangements
    • B64U70/80Vertical take-off or landing, e.g. using rockets
    • B64U70/83Vertical take-off or landing, e.g. using rockets using parachutes, balloons or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/26Ducted or shrouded rotors

Definitions

  • the present invention relates to a parachute device and a flight device, for example, a parachute device attached to a multi-rotor rotorcraft type flight device capable of remote operation and autonomous flight.
  • the rotary wing aircraft for transportation has an autonomous flight function that flies while specifying its own position by a GPS (Global Positioning System) signal or the like.
  • GPS Global Positioning System
  • the inventors of the present application have considered attaching a parachute device for a flying object, for example, as disclosed in the following patent document, to the rotorcraft.
  • the conventional parachute for a flying object is designed so that the parachute can be easily opened by the airflow generated during the flight of the rotary wing aircraft, so when the rotary wing aircraft falls from a stationary state in the sky. It was clarified by the examination of the inventors that the effect of the airflow could not be obtained immediately and the parachute might not open immediately.
  • the present invention has been made in view of the above-mentioned problems, and an object of the present invention is to reliably parachute even when the effect of airflow during flight or fall of a flight device cannot be obtained immediately.
  • the purpose is to provide a parachute device that can be opened.
  • a parachute apparatus includes a parachute, a parachute accommodating portion accommodating the parachute, a flying object main body portion connected to the parachute, and a gas generator for generating gas.
  • a parachute and an injection unit for holding the parachute and ejecting the held parachute are provided, the parachute body is engaged with the parachute, and the gas generator is the gas generator.
  • the injection portion is arranged in a space defined by the injection portion and the flying object main body portion, and the end portion of the injection portion in the ejection direction of the flying object is the end portion of the parachute accommodating portion with respect to the central axis. It is characterized in that it is inclined in a direction away from the central axis of the parachute accommodating portion.
  • FIG. It is a figure which shows typically the appearance of the flight apparatus equipped with the parachute apparatus which concerns on Embodiment 1.
  • FIG. It is a functional block diagram of the flight apparatus equipped with the parachute apparatus which concerns on Embodiment 1.
  • FIG. It is a figure which shows typically the structure of the parachute apparatus which concerns on Embodiment 1.
  • FIG. It is a figure which shows typically the state which the parachute is open.
  • FIG. It is a top view of the parachute accommodating part which concerns on Embodiment 1.
  • FIG. It is a side sectional view of the parachute accommodating part which concerns on Embodiment 1.
  • FIG. It is a figure which shows the structure of the flying object injection mechanism which concerns on Embodiment 1.
  • FIG. It is a figure which shows typically the state in which the parachute of the flight apparatus equipped with the parachute apparatus which concerns on Embodiment 1 is open. It is a figure which shows typically the appearance of the flight apparatus equipped with the parachute apparatus which concerns on Embodiment 2.
  • FIG. It is a figure which shows typically the structure of the parachute apparatus which concerns on Embodiment 2.
  • FIG. It is a side sectional view of the parachute accommodating part which concerns on Embodiment 2.
  • the parachute device (4,4A) is connected to the parachute (400), the parachute accommodating portion (40, 40A) accommodating the parachute, and the parachute.
  • a parachute (43) having a parachute main body (44) and a gas generator (45) for generating gas, and an injection unit (41) for holding the parachute and ejecting the held parachute.
  • the parachute body is engaged with the parachute, and the gas generator is arranged in a space (440) defined by the parachute and the parachute body.
  • the injection portion is such that the end portion (413) of the injection portion in the injection direction of the flying object is separated from the central axis (P) of the parachute housing portion with respect to the central axis (P) of the parachute housing portion. It is characterized by being inclined.
  • one end of the parachute accommodating portion is open and the other end is formed in a bottomed tubular shape, and the injection portion is arranged inside the parachute accommodating portion. May be good.
  • the parachute accommodating portion has a tubular side wall portion (401) and a bottom portion (402) formed so as to close one end side of the side wall portion.
  • the side wall portion has a protrusion (405) formed so as to project in a direction away from the central axis (P) of the parachute housing portion, and at least a part of the injection portion is the protrusion inside the parachute housing portion. It may be arranged in the space (415) defined by the unit.
  • the parachute accommodating portion (40A) has a tubular side wall portion (401A) and a bottom portion (402A) formed so as to close one end side of the side wall portion.
  • the injection portion may be arranged on the outer peripheral surface (4010) of the side wall portion.
  • the parachute device (4, 4A) may further include a cover member (49) that covers the opening of the side wall portion.
  • the parachute device has a plurality of the projectiles, the injection unit is provided for each of the projectiles, and each injection unit is in a rotation direction about the central axis of the parachute accommodating unit. It may be arranged at equal intervals.
  • the flight device (1,1A) is connected to the airframe unit (2) and the thrust generation unit (3,3_1 to 3_n) that generates thrust. ),
  • the flight control unit (14) that controls the thrust generation unit, the abnormality detection unit (15) that detects an abnormality during flight of the aircraft unit, the parachute device (4, 4A), and the abnormality detection.
  • a drop control unit (16) for ejecting the flying object from the injection unit may be provided according to the detection of the abnormality by the unit.
  • FIG. 1 is a diagram schematically showing the appearance of a flight device equipped with the parachute device according to the first embodiment.
  • the flight device 1 shown in FIG. 1 is, for example, a multi-rotor rotary-wing aircraft type flight device equipped with three or more rotors, and is a so-called drone.
  • the flight device 1 includes an airframe unit 2, thrust generating units 3_1 to 3_n (n is an integer of 3 or more), a parachute device 4, a notification device 5, and an arm unit 6.
  • the airframe unit 2 is the main body of the flight device 1. As will be described later, the airframe unit 2 houses various functional units for controlling the flight of the flight device 1. Although the columnar airframe unit 2 is shown as an example in FIG. 1, the shape of the airframe unit 2 is not particularly limited.
  • Thrust generating units 3_1 to 3_n are rotors that generate thrust. In the following description, when each thrust generating unit 3_1 to 3_n is not particularly distinguished, it is simply referred to as "thrust generating unit 3".
  • the thrust generating unit 3 has, for example, a structure in which a propeller 30 and a motor 31 for rotating the propeller 30 are housed in a tubular housing 32.
  • a net for example, a resin material, a metal material (stainless steel, etc.), etc.) for preventing contact with the propeller 30 may be provided in the opening of the tubular housing 32.
  • the number n of the thrust generating units 3 included in the flight device 1 is not particularly limited, but is preferably three or more.
  • the flight device 1 includes a tricopter with three thrust generators 3, a quadcopter with four thrust generators 3, a hexacopter with six thrust generators, and eight thrust generators 3. It may be any of the provided octocopters.
  • the arm portion 6 is a structure for connecting the airframe unit 2 and each thrust generating portion 3.
  • the arm portion 6 is formed so as to radiate from the airframe unit 2, for example, from the central portion O of the airframe unit 2.
  • a thrust generating portion 3 is attached to the tip of each arm portion 6.
  • the notification device 5 is a device for notifying the outside of the flight device 1 of danger.
  • the notification device 5 includes, for example, a light source including an LED (Light Emitting Diode) and a sound generator (amplifier, speaker, etc.).
  • the notification device 5 notifies the outside by light or voice that the flight device 1 is in a dangerous state in response to the detection of the abnormality by the abnormality detection unit 15 described later.
  • the notification device 5 may be exposed to the outside of the airframe unit 2, or is housed inside the airframe unit 2 in a form capable of outputting light generated from a light source, voice generated from a speaker, or the like to the outside. You may.
  • the parachute device 4 is a device for safely dropping the flight device 1 by slowing the fall speed of the flight device 1 when an abnormality occurs in the flight device 1 and there is a risk of falling.
  • the parachute device 4 is installed on the airframe unit 2, for example, as shown in FIG. The specific configuration of the parachute device 4 will be described later.
  • FIG. 2 is a functional block diagram of the flight device 1 equipped with the parachute device 4 according to the first embodiment.
  • the airframe unit 2 includes a power supply unit 11, a sensor unit 12, a motor drive unit 13_1 to 13_n (n is an integer of 3 or more), a flight control unit 14, an abnormality detection unit 15, and a drop control unit 16.
  • the communication unit 17 and the storage unit 18 are included.
  • the flight control unit 14, the abnormality detection unit 15, and the drop control unit 16 are, for example, a program by a program processing device (for example, a microcontroller) including a processor (for example, CPU: Central Processing Unit) and a memory. It is realized by processing.
  • a program processing device for example, a microcontroller
  • a processor for example, CPU: Central Processing Unit
  • the power supply unit 11 includes a battery 22 and a power supply circuit 23.
  • the battery 22 is, for example, a secondary battery (for example, a lithium ion secondary battery).
  • the power supply circuit 23 is a circuit that generates a power supply voltage based on the output voltage of the battery 22 and supplies it to each hardware constituting the functional unit.
  • the power supply circuit 23 includes, for example, a plurality of regulator circuits, and supplies a power supply voltage of an appropriate magnitude for each of the hardware.
  • the sensor unit 12 is a functional unit that detects the state of the flight device 1.
  • the sensor unit 12 detects the inclination of the airframe of the flight device 1.
  • the sensor unit 12 includes, for example, an angular velocity sensor 24, an acceleration sensor 25, a magnetic sensor 26, and an angle calculation unit 27.
  • the angular velocity sensor 24 is a sensor that detects the angular velocity (rotational velocity).
  • the angular velocity sensor 24 is a 3-axis gyro sensor that detects an angular velocity based on three reference axes of x-axis, y-axis, and z-axis.
  • the acceleration sensor 25 is a sensor that detects acceleration.
  • the acceleration sensor 25 is a three-axis acceleration sensor that detects acceleration based on three reference axes of x-axis, y-axis, and z-axis.
  • the magnetic sensor 26 is a sensor that detects the geomagnetism.
  • the magnetic sensor 26 is a 3-axis geomagnetic sensor (electronic compass) that detects an orientation (absolute direction) based on three reference axes of x-axis, y-axis, and z-axis.
  • the angle calculation unit 27 calculates the inclination of the airframe of the flight device 1 based on the detection results of at least one of the angular velocity sensor 24 and the acceleration sensor 25.
  • the inclination of the airframe of the flight device 1 is the angle of the airframe (airframe unit 2) with respect to the ground (horizontal direction).
  • the angle calculation unit 27 may calculate the angle of the aircraft with respect to the ground based on the detection result of the angular velocity sensor 24, or the angle of the aircraft with respect to the ground based on the detection results of the angular velocity sensor 24 and the acceleration sensor 25. May be calculated.
  • a known calculation formula may be used as a method of calculating the angle using the detection results of the angular velocity sensor 24 and the acceleration sensor 25 .
  • the angle calculation unit 27 may correct the angle calculated based on the detection result of at least one of the angular velocity sensor 24 and the acceleration sensor 25 based on the detection result of the magnetic sensor 26.
  • the angle calculation unit 27 is realized by program processing by a microcontroller, for example, like the flight control unit 14 and the like.
  • the sensor unit 12 may include, for example, a pressure sensor, an air volume (wind direction) sensor, an ultrasonic sensor, a GPS receiver, a camera, and the like. Good.
  • the communication unit 17 is a functional unit for communicating with the external device 9.
  • the external device 9 is a transmitter, a server, or the like that controls the operation of the flight device 1 and monitors the state of the flight device 1.
  • the communication unit 17 is composed of, for example, an antenna, an RF (Radio Frequency) circuit, and the like. Communication between the communication unit 17 and the external device 9 is realized, for example, by wireless communication in the ISM band (2.4 GHz band).
  • the communication unit 17 receives the operation information of the flight device 1 transmitted from the external device 9 and outputs it to the flight control unit 14, and also transmits various measurement data and the like measured by the sensor unit 12 to the external device 9. Further, when the abnormality detection unit 15 detects an abnormality in the flight device 1, the communication unit 17 transmits information indicating that the abnormality has occurred in the flight device 1 to the external device 9. Further, when the flight device 1 falls to the ground, the communication unit 17 transmits information indicating that the flight device 1 has fallen to the external device 9.
  • the motor drive units 13_1 to 13_n are provided for each thrust generation unit 3_n, and are functional units that drive the motor 31 to be driven in response to an instruction from the flight control unit 14.
  • motor drive unit 13 when each motor drive unit 13_1 to 13_n is not particularly distinguished, it is simply referred to as "motor drive unit 13".
  • the motor drive unit 13 drives the motor 31 so that the motor 31 rotates at the rotation speed instructed by the flight control unit 14.
  • the motor drive unit 13 is an ESC (Electronic Speed Controller).
  • the flight control unit 14 is a functional unit that comprehensively controls each functional unit of the flight device 1.
  • the flight control unit 14 controls the thrust generation unit 3 so that the flight device 1 flies stably.
  • the flight control unit 14 is based on the operation information (instructions for ascending / descending, forward / backward, etc.) from the external device 9 received by the communication unit 17 and the detection result of the sensor unit 12.
  • the appropriate rotation speed of the motor 31 of each thrust generating unit 3 is calculated, and the calculated rotation speed is instructed to each motor driving unit 13 so that the aircraft flies in a desired direction in a stable state.
  • the flight control unit 14 is a motor 31 of each thrust generating unit 3 so that the aircraft becomes horizontal based on the detection result of the angular velocity sensor 24 when the posture of the aircraft is disturbed by an external influence such as wind. Appropriate rotation speeds are calculated, and the calculated rotation speeds are instructed to each motor drive unit 13.
  • the flight control unit 14 determines the appropriate rotation speed of the motor 31 of each thrust generating unit 3 based on the detection result of the acceleration sensor 25 in order to prevent the flight device 1 from drifting when the flight device 1 is hovering. It is calculated, and the calculated rotation speed is instructed to each motor drive unit 13.
  • flight control unit 14 controls the communication unit 17 to realize the transmission and reception of various data described above with the external device 9.
  • the storage unit 18 is a functional unit for storing various programs, parameters, etc. for controlling the operation of the flight device 1.
  • the storage unit 18 is composed of a flash memory, a non-volatile memory such as a ROM, a RAM, and the like.
  • the parameters stored in the storage unit 18 are, for example, the remaining capacity threshold value 28 and the inclination threshold value 29, which will be described later.
  • the abnormality detection unit 15 is a functional unit that detects an abnormality during flight. Specifically, the abnormality detecting unit 15 monitors the detection result of the sensor unit 12, the state of the battery 22, and the operating state of the thrust generating unit 3, and determines whether or not the flight device 1 is in an abnormal state. To do.
  • the abnormal state means a state in which autonomous flight of the flight device 1 may become impossible.
  • an abnormal state is a state in which at least one of a state in which the thrust generating unit 3 has failed, the remaining capacity of the battery 22 has dropped below a predetermined threshold value, and the airframe (airframe unit 2) is abnormally tilted is generated.
  • the abnormality detecting unit 15 detects a failure of the thrust generating unit 3, it determines that the flight device 1 is in an abnormal state.
  • the failure of the thrust generating unit 3 means, for example, that the motor 31 does not rotate at the rotation speed specified by the flight control unit 14, the propeller 30 does not rotate, the propeller 30 is damaged, and the like.
  • the abnormality detection unit 15 detects that the remaining capacity of the battery 22 is lower than a predetermined threshold value (hereinafter, also referred to as “remaining capacity threshold value”) 28, the flight device 1 is in an abnormal state. judge.
  • a predetermined threshold value hereinafter, also referred to as “remaining capacity threshold value”.
  • the remaining capacity threshold value 28 may be, for example, a capacity value such that the motor cannot rotate at the rotation speed instructed by the flight control unit 14.
  • the remaining capacity threshold value 28 is stored in the storage unit 18 in advance, for example.
  • the abnormality detection unit 15 detects an abnormal inclination of the flight device 1 (airframe)
  • the abnormality detection unit 15 determines that the flight device 1 is abnormal. For example, in the abnormality detection unit 15, the flight device 1 is abnormal when the angle calculated by the angle calculation unit 27 exceeds a predetermined threshold value (hereinafter, also referred to as “tilt threshold value”) 29 for a predetermined period of time. Determined to be in a state.
  • a predetermined threshold value hereinafter, also referred to as “tilt threshold value”
  • the angle (pitch angle) when the flight device 1 moves in the front-rear direction and the angle (roll angle) when the flight device 1 moves in the left-right direction are acquired in advance by an experiment.
  • the inclination threshold value 29 may be set to a value larger than the angle obtained by the experiment.
  • the inclination threshold value 29 is stored in the storage unit 18 in advance, for example.
  • the fall control unit 16 is a functional unit for controlling the fall of the flight device 1. Specifically, the drop control unit 16 executes a fall preparation process for safely dropping the flight device 1 when the abnormality detection unit 15 detects that the flight device 1 is in an abnormal state.
  • the fall control unit 16 executes the following process as the fall preparation process. That is, the drop control unit 16 controls the notification device 5 in response to the detection of the abnormality by the abnormality detection unit 15 to notify the outside that it is in a dangerous state. Further, the drop control unit 16 controls each motor drive unit 13 in response to the detection of the abnormality by the abnormality detection unit 15, and stops the rotation of each motor 31. Further, the drop control unit 16 outputs a control signal instructing the parachute to open the umbrella to the parachute device 4 in response to the detection of the abnormality by the abnormality detection unit 15, and causes the parachute 400 to open the umbrella.
  • FIG. 3 is a diagram schematically showing the configuration of the parachute device 4 according to the first embodiment.
  • FIG. 3 shows a side cross section (partial cross section) of the parachute device 4.
  • the parachute device 4 includes a parachute 400, a parachute accommodating unit 40, an injection unit 41, an injection control unit 42, a flying object 43, a lead wire 47, and a cover member 49.
  • FIG. 4 is a diagram schematically showing a state in which the parachute 400 is open.
  • the parachute 400 includes an umbrella body (canopy) 406 and a suspension rope 407.
  • the suspension rope 407 connects the umbrella body 406 and the parachute accommodating portion 40 (parachute attachment portion 404).
  • the umbrella body 406 is connected to the flying body 43 by the connecting rope 46.
  • the connecting rope 46 is connected to the umbrella body 406 on the edge (peripheral) side of the apex of the umbrella body 406. More specifically, the connecting ropes 46 are separated from each other and connected to the peripheral edge of the parachute 400.
  • each connecting rope 46 is the circumference of the peripheral portion of the parachute 400. It is connected to the parachute 400 (umbrella body 406) at equal intervals along the direction.
  • the connecting rope 46 may be connected to somewhere on the peripheral edge of the parachute 400.
  • the position on the peripheral edge of the parachute 400 to which the connecting rope 46 is connected is not particularly limited.
  • the connecting rope 46 is made of, for example, a metal material (for example, stainless steel) or a fiber material (for example, a nylon string).
  • the diameter D of the umbrella body 406 required to drop the flight device 1 at a low speed can be calculated based on, for example, the following equation (1).
  • m is the total weight of the flight device 1
  • v is the falling speed of the flight device 1
  • is the air density
  • Cd is the drag coefficient.
  • the falling speed v of the flight device 1 is 5 [m / s].
  • the diameter D of the umbrella body 406 required for this is calculated as 14.6 [m] from the equation (1).
  • the parachute 400 is housed in the parachute housing unit 40 in a folded state of the umbrella body 406 before its use.
  • FIGS. 5A to 5C are views showing the configuration of the parachute accommodating portion 40.
  • FIG. 5A shows a perspective view of the parachute accommodating portion 40
  • FIG. 5B shows a top view of the parachute accommodating portion 40
  • FIG. 5C shows a cross section of the parachute accommodating portion 40 in FIG. A side sectional view showing is shown.
  • FIGS. 5A to 5C all or part of the parachute 400, the flying object 43, the injection unit 41, the injection control unit 42, and the lead wire 47 are not shown.
  • the parachute accommodating portion 40 is a container for accommodating the parachute 400. As shown in FIGS. 5A to 5C, the parachute accommodating portion 40 has, for example, a cylindrical shape with one end open and the other end bottomed. As shown in FIG. 1, the parachute accommodating portion 40 is set on the upper surface of the airframe unit 2, that is, the surface facing the opposite side to the ground during flight of the flight device 1. For example, the parachute accommodating portion 40 is preferably installed on the upper surface of the airframe unit so that the central portion O of the airframe unit 2 and the central axis P of the parachute accommodating portion 40 overlap.
  • the parachute accommodating portion 40 has a tubular side wall portion 401 and a bottom portion 402 formed so as to close an opening on one end side of the side wall portion 401.
  • the parachute accommodating portion 40 is made of, for example, a resin.
  • the side wall portion 401 and the bottom portion 402 may be integrally molded, for example, as a resin molded product, or may be formed as separate parts and joined to each other. In the present embodiment, the side wall portion 401 and the bottom portion 402 will be described as integrally molded parts.
  • the side wall portion 401 has, for example, a tapered tubular shape. More specifically, the side wall portion 401 has a truncated cone-like outer shape in which the area of the upper surface and the area of the lower surface are different. In the side wall portion 401, the radius r1 on the opening side is larger than the radius r2 on the bottom portion 402 side.
  • an accommodating space 403 for accommodating the parachute 400 is defined by a side wall portion 401 and a bottom portion 402.
  • the bottom portion 402 is provided with a parachute mounting portion 404 for connecting the parachute accommodating portion 40 and the parachute 400.
  • a parachute mounting portion 404 for connecting the parachute accommodating portion 40 and the parachute 400.
  • one end of the suspension rope 407 of the parachute 400 is connected to the parachute attachment portion 404, whereby the parachute 400 and the parachute accommodating portion 40 are connected.
  • the side wall portion 401 has a protruding portion 405 formed so as to project in a direction away from the central axis P of the parachute accommodating portion 40.
  • the projecting portion 405 is formed by projecting a part of the side wall portion 401 outward from the other portion.
  • a space 415 is defined by a protruding portion 405 of the side wall portion 401. As shown in FIGS. 5A to 5C, at least a part of the injection portion 41 is arranged in the space 415 inside the parachute accommodating portion 40.
  • the parachute accommodating portion 40 may be provided with a cover member 49 that covers the opening of the side wall portion 401.
  • the cover member 49 may be, for example, a lid made of a resin material or a thin film member. As shown in FIG. 3, the cover member 49 is preferably arranged so as to cover the opening of the parachute accommodating portion 40 as a whole so as to cover the opening formed by the protruding portion 405.
  • the cover member 49 is fixed to the parachute accommodating portion 40 after accommodating the parachute 400 and the projectile injection mechanism 50 in the accommodating space 403.
  • the cover member 49 is fixed to the parachute accommodating portion 40 by a fastening force such that the cover member 49 can be easily disengaged from the parachute accommodating portion 40 when the flying object 43 is ejected.
  • the flying object 43 is a device for discharging the parachute 400 to the outside of the parachute accommodating portion 40 and assisting in opening (deploying) the parachute 400.
  • the projectile 43 has a gas generator 45 that generates gas.
  • the lead wire 47 is an electric wiring for igniting the gas generator 45.
  • the lead wire 47 is composed of, for example, a vinyl wire, a tin-plated wire, an enamel wire, or the like. One end of the lead wire 47 is connected to the gas generator 45, and the other end of the lead wire 47 is connected to the injection control unit 42.
  • the injection control unit 42 ignites the gas generator 45 via the lead wire 47, gas is generated from the gas generator 45.
  • the projectile 43 obtains thrust by injecting the gas generated from the gas generator 45, and is ejected from the injection unit 41.
  • the parachute device 4 includes at least one flying object 43.
  • the parachute device 4 preferably includes three or more projectiles 43.
  • the parachute device 4 includes three flying objects.
  • the specific configuration of the flying object 43 will be described later.
  • the injection control unit 42 is a functional unit that controls the flying object 43 to be ejected from the injection unit 41.
  • the injection control unit 42 is, for example, an electronic circuit that outputs an ignition signal when a control signal instructing the opening of the parachute 400 is received from the drop control unit 16 in the airframe unit 2.
  • the ignition signal is input to the gas generator 45 provided in each flying object 43 via the lead wire 47, the igniter 453 described later is ignited, and gas is generated from the gas generator 45.
  • the injection unit 41 is a device for holding the flying object 43 and injecting the holding flying object 43.
  • the injection unit 41 is provided for each flying object 43.
  • the parachute device 4 according to the first embodiment includes three injection portions 41 for separately accommodating the three projectiles 43.
  • the injection portion 41 is formed in a tubular shape with one end open and the other end bottomed.
  • the injection portion 41 has a tubular (for example, cylindrical) side wall portion 411 and a bottom portion 412 that covers one opening of the side wall portion 411.
  • the side wall portion 411 and the bottom portion 412 define a storage space for accommodating the flying object 43.
  • the side wall portion 411 is formed with a through hole 4110 for passing the lead wire 47.
  • the side wall portion 411 and the bottom portion 412 are made of, for example, resin.
  • the side wall portion 411 and the bottom portion 412 may be integrally molded, for example, as a resin molded product, or may be formed as separate parts and joined to each other.
  • the injection portion 41 will be described as a component in which the side wall portion 411 and the bottom portion 412 are integrally molded.
  • the injection unit 41 is provided in the parachute accommodating unit 40. Specifically, as described above, each injection portion 41 is arranged one by one in each space 415 defined by a plurality of protrusions 405 formed on the side wall portion 401 of the parachute accommodating portion 40. ..
  • each injection unit 41 is parallel to the central axis P of the parachute accommodating unit 40 in the injection direction of the flying object 43 of the injection unit 41 (parallel to the central axis Q of the injection unit 41).
  • each injection portion 41 has a central axis P of the parachute accommodating portion 40 when viewed from a direction perpendicular to the central axis P of the parachute accommodating portion 40 (side wall portion 401). It is arranged so that the angle (angle ⁇ ) formed by the center axis Q of each injection portion 41 is an acute angle (0 ° ⁇ ⁇ 90 °).
  • FIG. 6 is a diagram showing a configuration of a flying object injection mechanism according to the first embodiment. The figure shows the cross-sectional shape of the flying object injection mechanism 50 including the flying object 43, the injection portion 41, and the lead wire 47.
  • the flying object 43 has a gas generator 45 and a flying object main body 44. As shown in FIG. 6, one end side of the flying object main body 44 is inserted inside the injection section 41, and the gas generator 45 faces the bottom 412 (bottom surface 412a) of the injection section 41 inside the injection section 41. As described above, the flying object 43 is arranged.
  • the gas generator 45 is a device that generates gas that is the basis of thrust for injecting the flying object 43 from the injection port 413 of the injection unit 41.
  • the gas generator 45 has, for example, a housing 451, a sealing member 452, an igniter 453, and a gas generator 454, as shown in FIG.
  • the housing 451 is a housing having a gas discharge chamber 455 that houses the gas generator 45 and discharges the gas generated from the gas generator 45.
  • the housing 451 has a dome shape.
  • the housing 451 is made of, for example, a resin.
  • the housing 451 is made of fiber reinforced plastic (FRP: Fiber-Reinforced Plastics) or the like.
  • FRP Fiber-Reinforced Plastics
  • the housing 451 is not limited to resin and may be made of metal.
  • the gas discharge chamber 455 is filled with the gas generating agent 454.
  • Ignition agent 453 is an agent for igniting a gas generating agent.
  • the igniter 453 is formed at one end of the lead wire 47.
  • the igniter 453 can be fixed to one end of the lead wire 47 by applying a liquid igniter mixed with resin or the like to the tip of the lead wire 47.
  • FIG. 6 illustrates a case where the ignition charge 453 is spherical, the shape of the ignition charge 453 is not particularly limited.
  • the ignition charge 453 is fixed in a state where at least a part thereof is covered with the gas generating agent 454.
  • the ignition charge 453 is fixed in the housing 451 in a state of being embedded in the gas generating agent 454.
  • the method of fixing the ignition charge 453 is as follows, for example.
  • a powdery gas generator 454 mixed with a resin or the like is poured into the gas discharge chamber 455 of the housing 451. Then, the gas generating agent 454 is filled with the igniter 453 formed at the tip of the lead wire 47 in the powdery gas generating agent 454. As a result, the ignition charge 453 is fixed inside the gas generator 454, and one end of the lead wire 47 is connected to the gas generator 45.
  • the ignition charge 453 is electrically connected to the injection control unit 42 via a lead wire (lead wire) 47.
  • the igniting agent 453 ignites in response to the ignition signal output from the injection control unit 42, and chemically reacts the gas generating agent 454 to generate gas.
  • the gas discharge chamber 455 is formed with a gas discharge hole 456 that discharges the gas generated from the gas generator 454. Further, the gas discharge chamber 455 is provided with a sealing member 452 that covers the gas discharge hole 456 and seals the gas generating agent 454 in the gas discharge chamber 455.
  • the sealing member 452 is made of a material that is easily destroyed by the pressure of the generated gas when gas is generated from the gas generating agent 454.
  • the sealing member 452 is a thin film such as polyester.
  • the gas generator 45 is arranged in the space 440 defined by the injection unit 41 and the projectile body unit 44.
  • the flying object main body 44 is a part connected to the parachute.
  • the flying object main body 44 holds the gas generator 45 and is connected to the connecting rope 46.
  • the flying object main body 44 is formed in a rod shape, for example. More specifically, the flying object main body 44 is formed in a hollow columnar shape, for example.
  • the projectile body portion 44 is engaged with the injection portion 41.
  • the flying object main body 44 holds the gas generator 45 at one end and is connected to the connecting rope 46 at the other end.
  • the flying object main body 44 is divided into two functional parts in the axial direction Q: a holding part 441 that holds the gas generator 45 and a connecting part 442 for connecting to the connecting rope 46.
  • the holding portion 441 and the connecting portion 442 each have a bottomed tubular shape.
  • the holding portion 441 and the connecting portion 442 are joined so that their bottom surfaces face each other and are coaxial with each other.
  • the flying object main body 44 is made of, for example, resin.
  • the holding portion 441 and the connecting portion 442 may be integrally molded, for example, as a resin molded product, or may be formed as separate parts and joined to each other.
  • the flying object main body portion 44 will be described as a component in which the holding portion 441 and the connecting portion 442 are integrally molded.
  • the holding unit 441 accommodates and holds the gas generator 45 inside. Specifically, in the holding portion 441, inside the injection portion 41, the side on which the gas of the gas generator 45 is discharged, that is, the gas discharge hole 456 (sealing member 452) side of the housing 451 is the bottom portion 412 of the injection portion 41.
  • the gas generator 45 is held so as to face (bottom surface 412a).
  • the holding portion 441 has a hole 441a formed so as to correspond to the shape of the gas generator 45.
  • the gas generator 45 (housing 451) is press-fitted or adhered to the hole 441a to hold the gas generator 45 in the holding portion 441.
  • the connecting portion 442 is formed so as to project on the opposite side of the holding portion 441 in a direction parallel to the axial direction Q. As described above, the connecting portion 442 is formed in a bottomed tubular shape (for example, a cylindrical shape).
  • the connecting portion 442 has a locking portion 4420 for locking the connecting rope 46 at an end opposite to the holding portion 441.
  • the locking portion 4420 is, for example, a through hole.
  • the connecting rope 46 is locked to the locking portion 4420 in a state of being inserted into the through hole as the locking portion 4420.
  • the lead wire 47 is pulled out from the space 440 in a direction different from the injection direction (axis direction Q) of the projectile 43 with one end connected to the gas generator 45. It has been.
  • the lead wire 47 is pulled out in a direction intersecting the injection direction of the flying object 43.
  • the lead wire 47 is drawn out in the R direction orthogonal to the axial direction Q in FIG. More specifically, as shown in FIG. 6, the lead wire 47 has a through hole 4510 formed in the housing 451 of the gas generator 45 and a through hole 4410 formed in the holding portion 441 of the flying object main body 44. And through the through hole 4110 formed in the side wall portion 411 of the injection portion 41, the injection portion 41 is pulled out to the outside.
  • the lead wire 47 is configured to be cuttable when the projectile 43 is ejected from the injection port 413 of the injection unit 41. For example, when the projectile 43 is ejected from the injection port 413, the lead wire 47 is pulled by the projectile 43, and the lead wire 47 is pressed against the edge of the through hole 4110 by the tensile force of the lead wire 47. It is possible to break.
  • the fall control unit 16 on the flight device 1 side transmits a control signal instructing the opening of the parachute 400 to the injection control unit 42 of the parachute device 4.
  • the injection control unit 42 When the injection control unit 42 receives the control signal instructing the opening of the parachute 400, the injection control unit 42 outputs an ignition signal to the gas generator 45 via the lead wire 47. Specifically, the injection control unit 42 causes a predetermined current to flow through the lead wire 47 to ignite the igniter 453 formed at one end of the lead wire 47.
  • the gas generating agent 454 covering the igniter 453 chemically reacts to generate gas.
  • the sealing member 452 covering the gas discharge hole 456 breaks.
  • the gas in the gas discharge chamber 455 is discharged from the gas discharge hole 456 into the space 418 in the injection section 41, and the space 418 is filled with the gas.
  • the projectile 43 moves to the injection port 413 side by the pressure of the gas and is ejected from the injection port 413 of the injection unit 41.
  • the lead wire 47 fixed to the gas generating agent 454 together with the ignition charge 453 becomes separable from the projectile 43 by the chemical reaction of the gas generating agent 454. Therefore, when the projectile 43 is ejected from the injection section 41, for example, the lead wire 47 is separated from the projectile 43 and remains on the injection section 41 side. Alternatively, the lead wire 47 is cut by the edge of the through hole 4110 of the injection portion 41, a part of the lead wire 47 is ejected together with the projectile 43, and the remaining portion of the lead wire 47 remains on the injection portion 41 side.
  • each projectile 43 When the projectile 43 is ejected from each injection unit 41, each projectile 43 pulls the parachute 400 (umbrella body 406) via the connecting rope 46. As a result, the parachute 400 is released from the parachute accommodating portion 40. After that, the parachute 400 further pulled by each projectile 43 is opened by air entering the inside of the folded umbrella body 406.
  • FIG. 7 is a diagram schematically showing a state in which the parachute 400 of the flight device 1 according to the first embodiment is opened.
  • each projectile 43 projects in the axial direction of the central axis Q of the injection unit 41. That is, each projectile 43 flies in a direction away from the central axis P of the parachute accommodating portion 40.
  • each projectile 43 has an edge (a direction) from the apex of the released parachute 400 umbrella body 406 as compared with the case where each projectile ejects directly above (in a direction parallel to the central axis P of the parachute accommodating portion 40). It can be effectively pulled to the peripheral) side.
  • the umbrella body 406 can be quickly expanded to facilitate the inclusion of air.
  • the parachute device 4 includes a parachute accommodating portion 40 for accommodating the parachute 400, a flying object main body 44 connected to the parachute 400, and a flying object 43 having a gas generating device 45 for generating gas.
  • the projectile 43 is provided with an injection unit 41 for holding the projectile 43 and ejecting the held projectile 43.
  • the end portion (injection port 413) in the injection direction is inclined in a direction away from the central axis P of the parachute accommodating portion 40.
  • the injection portion 41 has the end portion (injection port 413) of the projectile 43 of the injection portion 41 in the injection direction with respect to the central axis P of the parachute accommodating portion 40. Since it is inclined in the direction away from the central axis P of the parachute, the flying object main body 44 ejected by the pressure of the gas generated from the gas generator 45 flies in the direction away from the central axis P of the parachute accommodating portion 40. .. As a result, the umbrella body 406 of the parachute 400 is pulled from the apex portion of the umbrella body 406 to the edge (peripheral) side by each flying body 43. As a result, the umbrella body 406 can be quickly expanded to facilitate the inclusion of air, so that the parachute 400 can be opened quickly and reliably.
  • the parachute 400 can be reliably opened. ..
  • the injection unit 41 is arranged inside the parachute accommodating unit 40. According to this, it is possible to prevent an impact or the like from being directly applied to the injection unit 41 or the flying object 43 from the outside, so that the reliability of the flying object injection mechanism 50 can be improved.
  • the side wall portion 401 of the parachute accommodating portion 40 has a protruding portion 405 formed so as to project in a direction away from the central axis P of the parachute accommodating portion 40, and at least a part of the injection portion 41 is formed. It is arranged in the space 415 defined by the protrusion 405 inside the parachute accommodating portion 40.
  • the parachute device 4 further includes a cover member 49 that covers the opening of the side wall portion 401 of the parachute accommodating portion 40.
  • the injection portions 41 are arranged at equal intervals in the rotation direction about the central axis P of the parachute accommodating portion 40. According to this, the ejected projectile 43 makes it possible to evenly pull the umbrella body 406 of the parachute 400 from a plurality of directions. This makes it possible to open the parachute 400 more reliably.
  • FIG. 8 is a diagram schematically showing the appearance of a flight device equipped with the parachute device according to the second embodiment.
  • the parachute device 4A according to the second embodiment shown in FIG. 8 is different from the parachute device 4 according to the first embodiment in that the projectile injection mechanism 50A is arranged outside the parachute accommodating portion 40A. In this respect, it is the same as the parachute device 4 according to the first embodiment.
  • FIG. 9 is a diagram schematically showing the configuration of the parachute device 4A according to the second embodiment.
  • FIG. 9 shows a side cross section (partial cross section) of the parachute device 4A.
  • the projectile injection mechanism 50A including the projectile 43, the injection section 41A, and the lead wire 47 is installed outside the side wall portion 401A of the parachute accommodating section 40A.
  • FIG. 10A and 10B are diagrams showing the configuration of the parachute accommodating portion 40A according to the second embodiment.
  • FIG. 10A shows a top view of the parachute accommodating portion 40A
  • FIG. 10B shows a side sectional view showing a cross section of the parachute accommodating portion 40 in FIG. 10A.
  • the parachute accommodating portion 40A has a tubular side wall portion 401A and a bottom portion 402A formed so as to close an opening on one end side of the side wall portion 401A.
  • the parachute accommodating portion 40A is, for example, a resin molded product in which the side wall portion 401A and the bottom portion 402A are integrally formed, similarly to the parachute accommodating portion 40 according to the first embodiment.
  • the side wall portion 401A has, for example, a truncated cone-like (tapered) outer shape in which the area of the upper surface and the area of the lower surface are different.
  • the radius r1A on the opening side is larger than the radius r2 on the bottom portion 402A side.
  • the accommodating space 403 for accommodating the parachute 400 is defined by the side wall portion 401A and the bottom portion 402A.
  • a parachute mounting portion 404 for connecting the parachute accommodating portion 40A and the parachute 400 is provided on the surface of the bottom portion 402A on the opening side of the side wall portion 401A.
  • An injection control unit 42 is provided on the surface of the bottom portion 402A opposite to the opening of the side wall portion 401A (the surface on the airframe unit 2 side in FIG. 1).
  • the injection unit 41A is provided in the parachute accommodating unit 40A. Specifically, as shown in FIG. 10A and the like, each injection portion 41A is arranged on the outer peripheral surface 4010 of the side wall portion 401A.
  • the end portion of the injection unit 41A in the injection direction (axis direction Q of the injection unit 41A) with respect to the central axis P of the parachute accommodation unit 40A is the central axis of the parachute accommodation unit 40. It is inclined in the direction away from P.
  • each injection portion 41A (side wall portion 411A) has an injection port 413, which is an opening formed at an end of each side wall portion 411A opposite to the bottom portion 412A, of the parachute accommodating portion 40A. It is inclined in a direction away from the central axis P.
  • each injection portion 41A has a central axis P of the parachute accommodating portion 40A and each injection portion 41A when viewed from a direction perpendicular to the central axis P of the parachute accommodating portion 40A. It is arranged so that the angle (angle ⁇ ) formed by the central axis Q of the above is an acute angle (0 ° ⁇ ⁇ 90 °).
  • the parachute accommodating portion 40A may be provided with a cover member 49 that covers the opening of the side wall portion 401A.
  • the cover member 49 is preferably arranged so as to cover not only the side wall portion 401A but also at least a part of the projectile injection mechanism 50A.
  • the injection unit 41A has the projectile body 43 of the injection unit 41A with respect to the central axis P of the parachute accommodating unit 40A, similarly to the parachute device 4 according to the first embodiment.
  • the end portion in the injection direction (axis direction Q) of the parachute accommodating portion 40A is inclined in a direction away from the central axis P of the parachute accommodating portion 40A.
  • the flying object main body 44 ejected by the pressure of the gas generated from the gas generator 45 is in the direction away from the central axis P of the parachute accommodating portion 40A. Fly to.
  • the umbrella body 406 can be quickly expanded to facilitate the inclusion of air, so that the parachute 400 can be opened quickly and reliably.
  • the injection portion 41A is arranged on the outer peripheral surface 4010 of the side wall portion 411A of the parachute accommodating portion 40A. According to this, since it is possible to secure a wider accommodation space 403 for accommodating the parachute 400 in the parachute accommodating portion 40A, it is possible to adopt a larger parachute 400.
  • the injection control unit 42 is provided in the parachute devices 4 and 4A has been illustrated, but the present invention is not limited to this.
  • the injection control unit 42 may be provided in the airframe unit 2.
  • the parachute accommodating portions 40 and 40A may have a space for accommodating the parachute 400 inside, and may be, for example, a hollow polygonal column (for example, a square column).
  • the parachute accommodating portions 40 and 40A are tapered, but the present invention is not limited to this. If the outer shapes of the parachute accommodating portions 40 and 40A are not tapered, the parachute so that the angle of the central axis Q of the injection portions 41 and 41A (the angle ⁇ of the central axis Q with respect to the central axis P) becomes appropriate. It is necessary to devise a joining structure of the injection portion 41 to the accommodating portions 40 and 40A.
  • the injection portions 41 and 41A may have a structure in which the flying object 43 is housed and the flying body 43 can be injected.
  • the outer shape is a polygonal column (for example, a square column) and the flying object 43 is housed.
  • the space to be used may be cylindrical.
  • the injection control unit 42 is arranged inside the parachute accommodating unit 40 has been illustrated, but the present invention is not limited to this, and the injection control unit is similar to the parachute device 4A according to the second embodiment.
  • 42 may be arranged outside the parachute accommodating portion 40 (for example, the surface of the bottom portion 402 on the aircraft unit 2 side).
  • the injection control unit 42 is arranged outside the parachute accommodating unit 40A has been illustrated, but the present invention is not limited to this, and the injection control unit is similar to the parachute device 4 according to the first embodiment.
  • 42 may be arranged inside the parachute accommodating portion 40A (for example, the surface of the bottom portion 402A on the opening side of the side wall portion 401A).
  • housing 40, 40A ... Parachute accommodating unit, 41, 41A ... injection unit, 42 ... injection control unit, 43 ... flying object, 44 ... flying object main body, 45 ... gas generator, 46 ... connecting rope, 47 ... lead wire (lead wire), 49 ... Cover member, 50, 50A ... Flying object injection mechanism, 400 ... Parachute, 401, 401A ... Side wall, 402, 402A ... Bottom, 403 ... Storage space, 404 ... Parachute mounting part, 405 ... Projection, 406 ... Umbrella ( Canopy), 407 ... Suspension rope, 411, 411A ... Side wall, 421, 412A ... Bottom, 412a ... Bottom, 413 ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Remote Sensing (AREA)
  • Toys (AREA)

Abstract

Provided is a parachute device that can reliably deploy a parachute even when an airflow effect during flight or fall of a flying device cannot be obtained immediately. A parachute device (4) includes: a parachute accommodation part (40) for accommodating a parachute (400); a flying object (43) having a flying object body (44) connected to the parachute and a gas generating device (45); and an ejection part (41) for holding the flying object and ejecting the held flying object, and is characterized as follows: The flying object body is engaged with the ejection part. The gas generating device is disposed in a space (440) defined by the ejection part and the flying object body. The ejection part is inclined, with respect to a central axis of the parachute accommodation part, in a direction in which an end (413) of the ejection part in an ejection direction of the flying object is away from a central axis P of the parachute accommodation part.

Description

パラシュート装置および飛行装置Parachute and flight equipment
 本発明は、パラシュート装置および飛行装置に関し、例えば、遠隔操作および自律飛行が可能な、マルチロータの回転翼機型の飛行装置に取り付けられるパラシュート装置に関する。 The present invention relates to a parachute device and a flight device, for example, a parachute device attached to a multi-rotor rotorcraft type flight device capable of remote operation and autonomous flight.
 近年、遠隔操作および自律飛行が可能な、マルチロータの回転翼機型の飛行装置(以下、単に「回転翼機」とも称する。)の産業分野への実用化が検討されている。例えば、運送業において、回転翼機(所謂ドローン)による荷物の輸送や旅客の輸送等が検討されている。 In recent years, practical application of a multi-rotor rotorcraft type flight device (hereinafter, also simply referred to as "rotorcraft") capable of remote control and autonomous flight to the industrial field has been studied. For example, in the transportation industry, transportation of luggage and passengers by rotary-wing aircraft (so-called drones) are being considered.
 輸送用の回転翼機は、GPS(Global Positioning System)信号等によって自己の位置を特定しながら飛行する自律飛行機能を備えている。しかしながら、何らかの原因で回転翼機に異常が発生した場合、自律飛行ができなくなり、回転翼機の落下等の事故が発生するおそれがある。そのため、回転翼機の安全性の向上が望まれている。 The rotary wing aircraft for transportation has an autonomous flight function that flies while specifying its own position by a GPS (Global Positioning System) signal or the like. However, if an abnormality occurs in the rotorcraft for some reason, autonomous flight may not be possible, and an accident such as a fall of the rotorcraft may occur. Therefore, it is desired to improve the safety of the rotary wing aircraft.
 特に、輸送用の回転翼機は、今後、より大きな荷物や、旅客を輸送できるように機体の大型化が進むと予想される。このような大型の回転翼機が何らかの原因で制御不能に陥って落下した場合、これまでの回転翼機に比べて、人や構造物に甚大な被害を与えるおそれがある。そのため、回転翼機の大型化を図る場合には、これまで以上に安全性を重視する必要がある。 In particular, it is expected that the size of rotary wing aircraft for transportation will increase in the future so that larger luggage and passengers can be transported. If such a large rotorcraft falls out of control for some reason, it may cause more damage to people and structures than conventional rotorcraft aircraft. Therefore, when increasing the size of a rotary wing aircraft, it is necessary to place more importance on safety than ever before.
 そこで、本願発明者らは、回転翼機の安全性を向上させるために、例えば下記特許文献に開示されているような飛翔体用のパラシュート装置を回転翼機に取り付けることを検討した。 Therefore, in order to improve the safety of the rotorcraft, the inventors of the present application have considered attaching a parachute device for a flying object, for example, as disclosed in the following patent document, to the rotorcraft.
特許第4785084号公報Japanese Patent No. 4785084
 しかしながら、従来の飛翔体用のパラシュートは、回転翼機の飛翔時に発生する気流によりパラシュートが開傘しやすいように設計されているため、回転翼機が上空において静止している状態から落下した場合、すぐに気流の効果が得られず、パラシュートが直ちに開傘しないおそれがあることが発明者らの検討により明らかとなった。 However, the conventional parachute for a flying object is designed so that the parachute can be easily opened by the airflow generated during the flight of the rotary wing aircraft, so when the rotary wing aircraft falls from a stationary state in the sky. It was clarified by the examination of the inventors that the effect of the airflow could not be obtained immediately and the parachute might not open immediately.
 本発明は、上述した課題に鑑みてなされたものであり、本発明の目的は、飛行装置の飛行時または落下時における気流の効果がすぐに得られない場合であっても、確実にパラシュートを開傘可能なパラシュート装置を提供することにある。 The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to reliably parachute even when the effect of airflow during flight or fall of a flight device cannot be obtained immediately. The purpose is to provide a parachute device that can be opened.
 本発明の代表的な実施の形態に係るパラシュート装置は、パラシュートと、前記パラシュートを収容するパラシュート収容部と、前記パラシュートに連結された飛翔体本体部と、ガスを発生するガス発生装置とを有する飛翔体と、前記飛翔体を保持し、保持した前記飛翔体を射出するための射出部と、を備え、前記飛翔体本体部は、前記射出部と係合され、前記ガス発生装置は、前記射出部と前記飛翔体本体部とによって画成される空間に配置され、前記射出部は、前記パラシュート収容部の中心軸に対して、前記射出部の前記飛翔体の射出方向における端部が前記パラシュート収容部の中心軸から離れる方向に、傾斜していることを特徴とする。 A parachute apparatus according to a typical embodiment of the present invention includes a parachute, a parachute accommodating portion accommodating the parachute, a flying object main body portion connected to the parachute, and a gas generator for generating gas. A parachute and an injection unit for holding the parachute and ejecting the held parachute are provided, the parachute body is engaged with the parachute, and the gas generator is the gas generator. The injection portion is arranged in a space defined by the injection portion and the flying object main body portion, and the end portion of the injection portion in the ejection direction of the flying object is the end portion of the parachute accommodating portion with respect to the central axis. It is characterized in that it is inclined in a direction away from the central axis of the parachute accommodating portion.
 本発明の一態様によれば、飛行装置の飛行時または落下時における気流の効果がすぐに得られない場合であっても、確実にパラシュートを開傘することが可能となる。 According to one aspect of the present invention, it is possible to reliably open the parachute even when the effect of the airflow when the flight device is flying or falling is not immediately obtained.
実施の形態1に係るパラシュート装置を搭載した飛行装置の外観を模式的に示す図である。It is a figure which shows typically the appearance of the flight apparatus equipped with the parachute apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係るパラシュート装置を搭載した飛行装置の機能ブロック図である。It is a functional block diagram of the flight apparatus equipped with the parachute apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係るパラシュート装置の構成を模式的に示す図である。It is a figure which shows typically the structure of the parachute apparatus which concerns on Embodiment 1. FIG. パラシュートが開いた状態を模式的に示す図である。It is a figure which shows typically the state which the parachute is open. 実施の形態1に係るパラシュート収容部の斜視図である。It is a perspective view of the parachute accommodating part which concerns on Embodiment 1. FIG. 実施の形態1に係るパラシュート収容部の上面図である。It is a top view of the parachute accommodating part which concerns on Embodiment 1. FIG. 実施の形態1に係るパラシュート収容部の側断面図である。It is a side sectional view of the parachute accommodating part which concerns on Embodiment 1. FIG. 実施の形態1に係る飛翔体射出機構の構成を示す図である。It is a figure which shows the structure of the flying object injection mechanism which concerns on Embodiment 1. FIG. 実施の形態1に係るパラシュート装置を搭載した飛行装置のパラシュートが開いた状態を模式的に示す図である。It is a figure which shows typically the state in which the parachute of the flight apparatus equipped with the parachute apparatus which concerns on Embodiment 1 is open. 実施の形態2に係るパラシュート装置を搭載した飛行装置の外観を模式的に示す図である。It is a figure which shows typically the appearance of the flight apparatus equipped with the parachute apparatus which concerns on Embodiment 2. FIG. 実施の形態2に係るパラシュート装置の構成を模式的に示す図である。It is a figure which shows typically the structure of the parachute apparatus which concerns on Embodiment 2. 実施の形態2に係るパラシュート収容部の上面図である。It is a top view of the parachute accommodating part which concerns on Embodiment 2. FIG. 実施の形態2に係るパラシュート収容部の側断面図である。It is a side sectional view of the parachute accommodating part which concerns on Embodiment 2. FIG.
1.実施の形態の概要
 先ず、本願において開示される発明の代表的な実施の形態について概要を説明する。なお、以下の説明では、一例として、発明の構成要素に対応する図面上の参照符号を、括弧を付して記載している。
1. 1. Outline of Embodiment First, an outline of a typical embodiment of the invention disclosed in the present application will be described. In the following description, as an example, reference numerals on drawings corresponding to the components of the invention are described in parentheses.
 〔1〕本発明の代表的な実施の形態に係るパラシュート装置(4,4A)は、パラシュート(400)と、前記パラシュートを収容するパラシュート収容部(40,40A)と、前記パラシュートに連結された飛翔体本体部(44)と、ガスを発生するガス発生装置(45)とを有する飛翔体(43)と、前記飛翔体を保持し、保持した前記飛翔体を射出するための射出部(41)とを備え、前記飛翔体本体部は、前記射出部と係合され、前記ガス発生装置は、前記射出部と前記飛翔体本体部とによって画成される空間(440)に配置され、前記射出部は、前記パラシュート収容部の中心軸(P)に対して、前記射出部の前記飛翔体の射出方向における端部(413)が前記パラシュート収容部の中心軸(P)から離れる方向に、傾斜していることを特徴とする。 [1] The parachute device (4,4A) according to a typical embodiment of the present invention is connected to the parachute (400), the parachute accommodating portion (40, 40A) accommodating the parachute, and the parachute. A parachute (43) having a parachute main body (44) and a gas generator (45) for generating gas, and an injection unit (41) for holding the parachute and ejecting the held parachute. ), The parachute body is engaged with the parachute, and the gas generator is arranged in a space (440) defined by the parachute and the parachute body. The injection portion is such that the end portion (413) of the injection portion in the injection direction of the flying object is separated from the central axis (P) of the parachute housing portion with respect to the central axis (P) of the parachute housing portion. It is characterized by being inclined.
 〔2〕上記パラシュート装置(4)において、前記パラシュート収容部は、一端が開口し、他端が有底の筒状に形成され、前記射出部は、前記パラシュート収容部の内側に配置されていてもよい。 [2] In the parachute device (4), one end of the parachute accommodating portion is open and the other end is formed in a bottomed tubular shape, and the injection portion is arranged inside the parachute accommodating portion. May be good.
 〔3〕上記パラシュート装置(4)において、前記パラシュート収容部は、筒状の側壁部(401)と、前記側壁部の一端側を塞ぐように形成された底部(402)とを有し、前記側壁部は、前記パラシュート収容部の中心軸(P)から離れる方向に突出して形成された突出部(405)を有し、前記射出部の少なくとも一部は、前記パラシュート収容部の内側における前記突出部によって画成される空間(415)に配置されていてもよい。 [3] In the parachute device (4), the parachute accommodating portion has a tubular side wall portion (401) and a bottom portion (402) formed so as to close one end side of the side wall portion. The side wall portion has a protrusion (405) formed so as to project in a direction away from the central axis (P) of the parachute housing portion, and at least a part of the injection portion is the protrusion inside the parachute housing portion. It may be arranged in the space (415) defined by the unit.
 〔4〕上記パラシュート装置(4A)において、前記パラシュート収容部(40A)は、筒状の側壁部(401A)と、前記側壁部の一端側を塞ぐように形成された底部(402A)とを有し、前記射出部は、前記側壁部の外周面(4010)に配置されていてもよい。 [4] In the parachute device (4A), the parachute accommodating portion (40A) has a tubular side wall portion (401A) and a bottom portion (402A) formed so as to close one end side of the side wall portion. However, the injection portion may be arranged on the outer peripheral surface (4010) of the side wall portion.
 〔5〕上記パラシュート装置(4,4A)において、前記側壁部の開口部を覆うカバー部材(49)を更に備えていてもよい。 [5] The parachute device (4, 4A) may further include a cover member (49) that covers the opening of the side wall portion.
 〔6〕上記パラシュート装置において、前記飛翔体を複数有し、前記射出部は、前記飛翔体毎に設けられ、それぞれの前記射出部は、前記パラシュート収容部の中心軸を中心とした回転方向において等間隔に配置されていてもよい。 [6] In the parachute device, the parachute device has a plurality of the projectiles, the injection unit is provided for each of the projectiles, and each injection unit is in a rotation direction about the central axis of the parachute accommodating unit. It may be arranged at equal intervals.
 〔7〕本発明の代表的な実施の形態に係る飛行装置(1,1A)は、機体ユニット(2)と、前記機体ユニットに接続され、推力を発生する推力発生部(3,3_1~3_n)と、前記推力発生部を制御する飛行制御部(14)と、前記機体ユニットの飛行時の異常を検出する異常検出部(15)と、上記パラシュート装置(4,4A)と、前記異常検出部による異常の検出に応じて、前記飛翔体を前記射出部から射出させる落下制御部(16)とを備えていてもよい。 [7] The flight device (1,1A) according to a typical embodiment of the present invention is connected to the airframe unit (2) and the thrust generation unit (3,3_1 to 3_n) that generates thrust. ), The flight control unit (14) that controls the thrust generation unit, the abnormality detection unit (15) that detects an abnormality during flight of the aircraft unit, the parachute device (4, 4A), and the abnormality detection. A drop control unit (16) for ejecting the flying object from the injection unit may be provided according to the detection of the abnormality by the unit.
2.実施の形態の具体例
 以下、本発明の実施の形態の具体例について図を参照して説明する。なお、以下の説明において、各実施の形態において共通する構成要素には同一の参照符号を付し、繰り返しの説明を省略する。また、図面は模式的なものであり、各要素の寸法の関係、各要素の比率などは、現実と異なる場合があることに留意する必要がある。図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。
2. 2. Specific Examples of Embodiments Hereinafter, specific examples of embodiments of the present invention will be described with reference to the drawings. In the following description, the same reference reference numerals will be given to the components common to each embodiment, and the repeated description will be omitted. In addition, it should be noted that the drawings are schematic, and the relationship between the dimensions of each element, the ratio of each element, and the like may differ from the reality. Even between drawings, there may be parts with different dimensional relationships and ratios.
 ≪実施の形態1≫
 図1は、実施の形態1に係るパラシュート装置を搭載した飛行装置の外観を模式的に示す図である。図1に示される飛行装置1は、例えば、3つ以上のロータを搭載したマルチロータの回転翼機型の飛行装置であり、所謂ドローンである。
<< Embodiment 1 >>
FIG. 1 is a diagram schematically showing the appearance of a flight device equipped with the parachute device according to the first embodiment. The flight device 1 shown in FIG. 1 is, for example, a multi-rotor rotary-wing aircraft type flight device equipped with three or more rotors, and is a so-called drone.
 図1に示すように、飛行装置1は、機体ユニット2、推力発生部3_1~3_n(nは3以上の整数)、パラシュート装置4、報知装置5、およびアーム部6を備えている。 As shown in FIG. 1, the flight device 1 includes an airframe unit 2, thrust generating units 3_1 to 3_n (n is an integer of 3 or more), a parachute device 4, a notification device 5, and an arm unit 6.
 機体ユニット2は、飛行装置1の本体部分である。機体ユニット2は、後述のように、飛行装置1の飛行を制御するための各種機能部を収容している。なお、図1では、一例として円柱状の機体ユニット2を図示しているが、機体ユニット2の形状は特に制限されない。 The airframe unit 2 is the main body of the flight device 1. As will be described later, the airframe unit 2 houses various functional units for controlling the flight of the flight device 1. Although the columnar airframe unit 2 is shown as an example in FIG. 1, the shape of the airframe unit 2 is not particularly limited.
 推力発生部3_1~3_nは、推力を発生するロータである。なお、以下の説明において、各推力発生部3_1~3_nを特に区別しない場合には、単に、「推力発生部3」と表記する。 Thrust generating units 3_1 to 3_n are rotors that generate thrust. In the following description, when each thrust generating unit 3_1 to 3_n is not particularly distinguished, it is simply referred to as "thrust generating unit 3".
 推力発生部3は、例えば、プロペラ30と、プロペラ30を回転させるモータ31とが筒状の筐体32に収容された構造を有している。筒状の筐体32の開口部には、プロペラ30との接触を防止するための網(例えば、樹脂材料や金属材料(ステンレス鋼等)等)が設けられていてもよい。 The thrust generating unit 3 has, for example, a structure in which a propeller 30 and a motor 31 for rotating the propeller 30 are housed in a tubular housing 32. A net (for example, a resin material, a metal material (stainless steel, etc.), etc.) for preventing contact with the propeller 30 may be provided in the opening of the tubular housing 32.
 飛行装置1が備える推力発生部3の個数nは特に制限されないが、3つ以上であることが好ましい。例えば、飛行装置1は、3つの推力発生部3を備えたトライコプター、4つの推力発生部3を備えたクワッドコプター、6つの推力発生部を備えたヘキサコプター、および8つの推力発生部3を備えたオクトコプターなどの何れであってもよい。 The number n of the thrust generating units 3 included in the flight device 1 is not particularly limited, but is preferably three or more. For example, the flight device 1 includes a tricopter with three thrust generators 3, a quadcopter with four thrust generators 3, a hexacopter with six thrust generators, and eight thrust generators 3. It may be any of the provided octocopters.
 なお、図1では、飛行装置1が4つ(n=4)の推力発生部3_1~3_4を搭載したクワッドコプターである場合を一例として図示している。 Note that FIG. 1 shows a case where the flight device 1 is a quadcopter equipped with four (n = 4) thrust generating units 3_1 to 3_4 as an example.
 アーム部6は、機体ユニット2と各推力発生部3とを連結するための構造体である。アーム部6は、機体ユニット2から、例えば、機体ユニット2の中央部Oから放射状に突出して形成されている。各アーム部6の先端には、推力発生部3がそれぞれ取り付けられている。 The arm portion 6 is a structure for connecting the airframe unit 2 and each thrust generating portion 3. The arm portion 6 is formed so as to radiate from the airframe unit 2, for example, from the central portion O of the airframe unit 2. A thrust generating portion 3 is attached to the tip of each arm portion 6.
 報知装置5は、飛行装置1の外部に危険を知らせるための装置である。報知装置5は、例えば、LED(Light Emitting Diode)等から成る光源や音声発生装置(アンプおよびスピーカ等)を含んで構成されている。報知装置5は、後述する異常検出部15による異常の検出に応じて、飛行装置1が危険な状態であることを、光や音声によって外部に報知する。 The notification device 5 is a device for notifying the outside of the flight device 1 of danger. The notification device 5 includes, for example, a light source including an LED (Light Emitting Diode) and a sound generator (amplifier, speaker, etc.). The notification device 5 notifies the outside by light or voice that the flight device 1 is in a dangerous state in response to the detection of the abnormality by the abnormality detection unit 15 described later.
 なお、報知装置5は、機体ユニット2の外部に露出していてもよいし、光源から発生した光やスピーカから発生した音声等を外部に出力可能な形態で機体ユニット2の内部に収容されていてもよい。 The notification device 5 may be exposed to the outside of the airframe unit 2, or is housed inside the airframe unit 2 in a form capable of outputting light generated from a light source, voice generated from a speaker, or the like to the outside. You may.
 パラシュート装置4は、飛行装置1に異常が発生し、落下のおそれがある場合に、飛行装置1の落下速度を緩やかにして、飛行装置1を安全に落下させるための装置である。パラシュート装置4は、例えば図1に示すように、機体ユニット2上に設置されている。なお、パラシュート装置4の具体的な構成については、後述する。 The parachute device 4 is a device for safely dropping the flight device 1 by slowing the fall speed of the flight device 1 when an abnormality occurs in the flight device 1 and there is a risk of falling. The parachute device 4 is installed on the airframe unit 2, for example, as shown in FIG. The specific configuration of the parachute device 4 will be described later.
 図2は、実施の形態1に係るパラシュート装置4を搭載した飛行装置1の機能ブロック図である。 FIG. 2 is a functional block diagram of the flight device 1 equipped with the parachute device 4 according to the first embodiment.
 図2に示すように、機体ユニット2は、電源部11、センサ部12、モータ駆動部13_1~13_n(nは3以上の整数)、飛行制御部14、異常検出部15、落下制御部16、通信部17、および記憶部18を含む。 As shown in FIG. 2, the airframe unit 2 includes a power supply unit 11, a sensor unit 12, a motor drive unit 13_1 to 13_n (n is an integer of 3 or more), a flight control unit 14, an abnormality detection unit 15, and a drop control unit 16. The communication unit 17 and the storage unit 18 are included.
 これらの機能部のうち、飛行制御部14、異常検出部15、および落下制御部16は、例えば、プロセッサ(例えばCPU:Central Processing Unit)およびメモリを含むプログラム処理装置(例えば、マイクロコントローラ)によるプログラム処理によって実現される。 Among these functional units, the flight control unit 14, the abnormality detection unit 15, and the drop control unit 16 are, for example, a program by a program processing device (for example, a microcontroller) including a processor (for example, CPU: Central Processing Unit) and a memory. It is realized by processing.
 電源部11は、バッテリ22と電源回路23とを含む。バッテリ22は、例えば二次電池(例えばリチウムイオン二次電池)である。電源回路23は、バッテリ22の出力電圧に基づいて電源電圧を生成し、上記機能部を構成する各ハードウェアに供給する回路である。電源回路23は、例えば複数のレギュレータ回路を含み、上記ハードウェア毎に適切な大きさの電源電圧を供給する。 The power supply unit 11 includes a battery 22 and a power supply circuit 23. The battery 22 is, for example, a secondary battery (for example, a lithium ion secondary battery). The power supply circuit 23 is a circuit that generates a power supply voltage based on the output voltage of the battery 22 and supplies it to each hardware constituting the functional unit. The power supply circuit 23 includes, for example, a plurality of regulator circuits, and supplies a power supply voltage of an appropriate magnitude for each of the hardware.
 センサ部12は、飛行装置1の状態を検知する機能部である。センサ部12は、飛行装置1の機体の傾きを検出する。センサ部12は、例えば、角速度センサ24、加速度センサ25、磁気センサ26、および角度算出部27を含む。 The sensor unit 12 is a functional unit that detects the state of the flight device 1. The sensor unit 12 detects the inclination of the airframe of the flight device 1. The sensor unit 12 includes, for example, an angular velocity sensor 24, an acceleration sensor 25, a magnetic sensor 26, and an angle calculation unit 27.
 角速度センサ24は、角速度(回転速度)を検出するセンサである。例えば、角速度センサ24は、x軸、y軸、およびz軸の3つの基準軸に基づいて角速度を検出する3軸ジャイロセンサである。 The angular velocity sensor 24 is a sensor that detects the angular velocity (rotational velocity). For example, the angular velocity sensor 24 is a 3-axis gyro sensor that detects an angular velocity based on three reference axes of x-axis, y-axis, and z-axis.
 加速度センサ25は、加速度を検出するセンサである。例えば、加速度センサ25は、x軸、y軸、およびz軸の3つの基準軸に基づいて加速度を検出する3軸加速度センサである。 The acceleration sensor 25 is a sensor that detects acceleration. For example, the acceleration sensor 25 is a three-axis acceleration sensor that detects acceleration based on three reference axes of x-axis, y-axis, and z-axis.
 磁気センサ26は、地磁気を検出するセンサである。例えば、磁気センサ26は、x軸、y軸、およびz軸の3つの基準軸に基づいて方位(絶対方向)を検出する3軸地磁気センサ(電子コンパス)である。 The magnetic sensor 26 is a sensor that detects the geomagnetism. For example, the magnetic sensor 26 is a 3-axis geomagnetic sensor (electronic compass) that detects an orientation (absolute direction) based on three reference axes of x-axis, y-axis, and z-axis.
 角度算出部27は、角速度センサ24および加速度センサ25の少なくとも一方の検出結果に基づいて、飛行装置1の機体の傾きを算出する。ここで、飛行装置1の機体の傾きとは、地面(水平方向)に対する機体(機体ユニット2)の角度のことである。 The angle calculation unit 27 calculates the inclination of the airframe of the flight device 1 based on the detection results of at least one of the angular velocity sensor 24 and the acceleration sensor 25. Here, the inclination of the airframe of the flight device 1 is the angle of the airframe (airframe unit 2) with respect to the ground (horizontal direction).
 例えば、角度算出部27は、角速度センサ24の検出結果に基づいて、地面に対する機体の角度を算出してもよいし、角速度センサ24および加速度センサ25の検出結果に基づいて、地面に対する機体の角度を算出してもよい。なお、角速度センサ24や加速度センサ25の検出結果を用いた角度の算出方法は、公知の計算式を用いてもよい。 For example, the angle calculation unit 27 may calculate the angle of the aircraft with respect to the ground based on the detection result of the angular velocity sensor 24, or the angle of the aircraft with respect to the ground based on the detection results of the angular velocity sensor 24 and the acceleration sensor 25. May be calculated. As a method of calculating the angle using the detection results of the angular velocity sensor 24 and the acceleration sensor 25, a known calculation formula may be used.
 また、角度算出部27は、角速度センサ24および加速度センサ25の少なくとも一方の検出結果に基づいて算出した角度を、磁気センサ26の検出結果に基づいて補正してもよい。角度算出部27は、例えば、飛行制御部14等と同様に、マイクロコントローラによるプログラム処理によって実現される。 Further, the angle calculation unit 27 may correct the angle calculated based on the detection result of at least one of the angular velocity sensor 24 and the acceleration sensor 25 based on the detection result of the magnetic sensor 26. The angle calculation unit 27 is realized by program processing by a microcontroller, for example, like the flight control unit 14 and the like.
 なお、センサ部12は、上述した角速度センサ24、加速度センサ25、および磁気センサ26に加えて、例えば、気圧センサ、風量(風向き)センサ、超音波センサ、GPS受信機、およびカメラ等を含んでもよい。 In addition to the above-mentioned angular velocity sensor 24, acceleration sensor 25, and magnetic sensor 26, the sensor unit 12 may include, for example, a pressure sensor, an air volume (wind direction) sensor, an ultrasonic sensor, a GPS receiver, a camera, and the like. Good.
 通信部17は、外部装置9と通信を行うための機能部である。ここで、外部装置9は、飛行装置1の動作を制御し、飛行装置1の状態を監視する送信機やサーバ等である。通信部17は、例えば、アンテナおよびRF(Radio Frequency)回路等によって構成されている。通信部17と外部装置9との間の通信は、例えば、ISMバンド(2.4GHz帯)の無線通信によって実現される。 The communication unit 17 is a functional unit for communicating with the external device 9. Here, the external device 9 is a transmitter, a server, or the like that controls the operation of the flight device 1 and monitors the state of the flight device 1. The communication unit 17 is composed of, for example, an antenna, an RF (Radio Frequency) circuit, and the like. Communication between the communication unit 17 and the external device 9 is realized, for example, by wireless communication in the ISM band (2.4 GHz band).
 通信部17は、外部装置9から送信された飛行装置1の操作情報を受信して飛行制御部14に出力するとともに、センサ部12によって計測された各種計測データ等を外部装置9へ送信する。また、通信部17は、異常検出部15によって飛行装置1の異常が検出された場合に、飛行装置1に異常が発生したことを示す情報を外部装置9に送信する。更に、通信部17は、飛行装置1が地上に落下した場合に、飛行装置1が落下したことを示す情報を外部装置9に送信する。 The communication unit 17 receives the operation information of the flight device 1 transmitted from the external device 9 and outputs it to the flight control unit 14, and also transmits various measurement data and the like measured by the sensor unit 12 to the external device 9. Further, when the abnormality detection unit 15 detects an abnormality in the flight device 1, the communication unit 17 transmits information indicating that the abnormality has occurred in the flight device 1 to the external device 9. Further, when the flight device 1 falls to the ground, the communication unit 17 transmits information indicating that the flight device 1 has fallen to the external device 9.
 モータ駆動部13_1~13_nは、推力発生部3_n毎に設けられ、飛行制御部14からの指示に応じて、駆動対象のモータ31を駆動する機能部である。 The motor drive units 13_1 to 13_n are provided for each thrust generation unit 3_n, and are functional units that drive the motor 31 to be driven in response to an instruction from the flight control unit 14.
 なお、以下の説明において、各モータ駆動部13_1~13_nを特に区別しない場合には、単に、「モータ駆動部13」と表記する。 In the following description, when each motor drive unit 13_1 to 13_n is not particularly distinguished, it is simply referred to as "motor drive unit 13".
 モータ駆動部13は、飛行制御部14から指示された回転数でモータ31が回転するように、モータ31を駆動する。例えば、モータ駆動部13は、ESC(Electronic Speed Controller)である。 The motor drive unit 13 drives the motor 31 so that the motor 31 rotates at the rotation speed instructed by the flight control unit 14. For example, the motor drive unit 13 is an ESC (Electronic Speed Controller).
 飛行制御部14は、飛行装置1の各機能部を統括的に制御する機能部である。
 飛行制御部14は、飛行装置1が安定して飛行するように推力発生部3を制御する。具体的には、飛行制御部14は、通信部17によって受信した外部装置9からの操作情報(上昇や下降、前進や後退等の指示)と、センサ部12の検出結果とに基づいて、機体が安定した状態で所望の方向に飛行するように、各推力発生部3のモータ31の適切な回転数を算出し、算出した回転数を各モータ駆動部13にそれぞれ指示する。
The flight control unit 14 is a functional unit that comprehensively controls each functional unit of the flight device 1.
The flight control unit 14 controls the thrust generation unit 3 so that the flight device 1 flies stably. Specifically, the flight control unit 14 is based on the operation information (instructions for ascending / descending, forward / backward, etc.) from the external device 9 received by the communication unit 17 and the detection result of the sensor unit 12. The appropriate rotation speed of the motor 31 of each thrust generating unit 3 is calculated, and the calculated rotation speed is instructed to each motor driving unit 13 so that the aircraft flies in a desired direction in a stable state.
 飛行制御部14は、例えば風等の外部からの影響によって機体の姿勢が乱れた場合に、角速度センサ24の検出結果に基づいて、機体が水平になるように、各推力発生部3のモータ31の適切な回転数をそれぞれ算出し、算出した回転数を各モータ駆動部13にそれぞれ指示する。 The flight control unit 14 is a motor 31 of each thrust generating unit 3 so that the aircraft becomes horizontal based on the detection result of the angular velocity sensor 24 when the posture of the aircraft is disturbed by an external influence such as wind. Appropriate rotation speeds are calculated, and the calculated rotation speeds are instructed to each motor drive unit 13.
 また、例えば、飛行制御部14は、飛行装置1のホバリング時に飛行装置1のドリフトを防止するために、加速度センサ25の検出結果に基づいて各推力発生部3のモータ31の適切な回転数を算出し、算出した回転数を各モータ駆動部13にそれぞれ指示する。 Further, for example, the flight control unit 14 determines the appropriate rotation speed of the motor 31 of each thrust generating unit 3 based on the detection result of the acceleration sensor 25 in order to prevent the flight device 1 from drifting when the flight device 1 is hovering. It is calculated, and the calculated rotation speed is instructed to each motor drive unit 13.
 また、飛行制御部14は、通信部17を制御して、外部装置9との間で上述した各種データの送受信を実現する。 Further, the flight control unit 14 controls the communication unit 17 to realize the transmission and reception of various data described above with the external device 9.
 記憶部18は、飛行装置1の動作を制御するための各種プログラムやパラメータ等を記憶するための機能部である。例えば、記憶部18は、フラッシュメモリおよびROM等の不揮発性メモリやRAM等から構成されている。 The storage unit 18 is a functional unit for storing various programs, parameters, etc. for controlling the operation of the flight device 1. For example, the storage unit 18 is composed of a flash memory, a non-volatile memory such as a ROM, a RAM, and the like.
 記憶部18に記憶される上記パラメータは、例えば、後述する残容量閾値28および傾き閾値29等である。 The parameters stored in the storage unit 18 are, for example, the remaining capacity threshold value 28 and the inclination threshold value 29, which will be described later.
 異常検出部15は、飛行時の異常を検出する機能部である。具体的には、異常検出部15は、センサ部12の検出結果と、バッテリ22の状態と、推力発生部3の動作状態とを監視し、飛行装置1が異常状態であるか否かを判定する。 The abnormality detection unit 15 is a functional unit that detects an abnormality during flight. Specifically, the abnormality detecting unit 15 monitors the detection result of the sensor unit 12, the state of the battery 22, and the operating state of the thrust generating unit 3, and determines whether or not the flight device 1 is in an abnormal state. To do.
 ここで、異常状態とは、飛行装置1の自律飛行が不可能になるおそれがある状態を言う。例えば、推力発生部3が故障したこと、バッテリ22の残容量が所定の閾値よりも低下したこと、および機体(機体ユニット2)が異常に傾いたこと、の少なくとも一つが発生した状態を異常状態と言う。 Here, the abnormal state means a state in which autonomous flight of the flight device 1 may become impossible. For example, an abnormal state is a state in which at least one of a state in which the thrust generating unit 3 has failed, the remaining capacity of the battery 22 has dropped below a predetermined threshold value, and the airframe (airframe unit 2) is abnormally tilted is generated. Say.
 異常検出部15は、推力発生部3の故障を検出した場合に、飛行装置1が異常状態であると判定する。ここで、推力発生部3の故障とは、例えば、飛行制御部14が指定した回転数でモータ31が回転しないこと、プロペラ30が回転しないこと、およびプロペラ30の破損したこと等を言う。 When the abnormality detecting unit 15 detects a failure of the thrust generating unit 3, it determines that the flight device 1 is in an abnormal state. Here, the failure of the thrust generating unit 3 means, for example, that the motor 31 does not rotate at the rotation speed specified by the flight control unit 14, the propeller 30 does not rotate, the propeller 30 is damaged, and the like.
 また、異常検出部15は、バッテリ22の残容量が所定の閾値(以下、「残容量閾値」とも称する。)28よりも低下したことを検出した場合に、飛行装置1が異常状態であると判定する。 Further, when the abnormality detection unit 15 detects that the remaining capacity of the battery 22 is lower than a predetermined threshold value (hereinafter, also referred to as “remaining capacity threshold value”) 28, the flight device 1 is in an abnormal state. judge.
 ここで、残容量閾値28は、例えば、飛行制御部14が指示した回転数でモータが回転できなくなる程度の容量値とすればよい。残容量閾値28は、例えば、予め記憶部18に記憶されている。 Here, the remaining capacity threshold value 28 may be, for example, a capacity value such that the motor cannot rotate at the rotation speed instructed by the flight control unit 14. The remaining capacity threshold value 28 is stored in the storage unit 18 in advance, for example.
 また、異常検出部15は、飛行装置1(機体)の異常な傾きを検出した場合に、飛行装置1が異常であると判定する。例えば、異常検出部15は、角度算出部27によって算出した角度が所定の閾値(以下、「傾き閾値」とも称する。)29を超えている状態が所定期間継続した場合に、飛行装置1が異常状態であると判定する。 Further, when the abnormality detection unit 15 detects an abnormal inclination of the flight device 1 (airframe), the abnormality detection unit 15 determines that the flight device 1 is abnormal. For example, in the abnormality detection unit 15, the flight device 1 is abnormal when the angle calculated by the angle calculation unit 27 exceeds a predetermined threshold value (hereinafter, also referred to as “tilt threshold value”) 29 for a predetermined period of time. Determined to be in a state.
 例えば、飛行装置1が前後方向に移動するときの角度(ピッチ角)や飛行装置1が左右方向に移動するときの角度(ロール角)を予め実験により取得する。傾き閾値29は、その実験によって得られた角度よりも大きい値に設定すればよい。傾き閾値29は、例えば、予め記憶部18に記憶されている。 For example, the angle (pitch angle) when the flight device 1 moves in the front-rear direction and the angle (roll angle) when the flight device 1 moves in the left-right direction are acquired in advance by an experiment. The inclination threshold value 29 may be set to a value larger than the angle obtained by the experiment. The inclination threshold value 29 is stored in the storage unit 18 in advance, for example.
 落下制御部16は、飛行装置1の落下を制御するための機能部である。具体的には、落下制御部16は、異常検出部15によって飛行装置1が異常状態であることが検出された場合に、飛行装置1を安全に落下させるための落下準備処理を実行する。 The fall control unit 16 is a functional unit for controlling the fall of the flight device 1. Specifically, the drop control unit 16 executes a fall preparation process for safely dropping the flight device 1 when the abnormality detection unit 15 detects that the flight device 1 is in an abnormal state.
 具体的には、落下制御部16は、落下準備処理として以下に示す処理を実行する。すなわち、落下制御部16は、異常検出部15による異常の検出に応じて報知装置5を制御して、危険な状態であることを外部に報知する。また、落下制御部16は、異常検出部15による異常の検出に応じて各モータ駆動部13を制御して、各モータ31の回転を停止させる。更に、落下制御部16は、異常検出部15による異常の検出に応じて、パラシュートの開傘を指示する制御信号をパラシュート装置4に出力して、パラシュート400を開傘させる。 Specifically, the fall control unit 16 executes the following process as the fall preparation process. That is, the drop control unit 16 controls the notification device 5 in response to the detection of the abnormality by the abnormality detection unit 15 to notify the outside that it is in a dangerous state. Further, the drop control unit 16 controls each motor drive unit 13 in response to the detection of the abnormality by the abnormality detection unit 15, and stops the rotation of each motor 31. Further, the drop control unit 16 outputs a control signal instructing the parachute to open the umbrella to the parachute device 4 in response to the detection of the abnormality by the abnormality detection unit 15, and causes the parachute 400 to open the umbrella.
 次に、実施の形態1に係るパラシュート装置4について、具体的に説明する。
 図3は、実施の形態1に係るパラシュート装置4の構成を模式的に示す図である。図3には、パラシュート装置4の側断面(部分断面)が示されている。
Next, the parachute device 4 according to the first embodiment will be specifically described.
FIG. 3 is a diagram schematically showing the configuration of the parachute device 4 according to the first embodiment. FIG. 3 shows a side cross section (partial cross section) of the parachute device 4.
 パラシュート装置4は、パラシュート400、パラシュート収容部40、射出部41、射出制御部42、飛翔体43、リード線47、およびカバー部材49を備えている。 The parachute device 4 includes a parachute 400, a parachute accommodating unit 40, an injection unit 41, an injection control unit 42, a flying object 43, a lead wire 47, and a cover member 49.
 図4は、パラシュート400が開いた状態を模式的に示す図である。
 同図に示すように、パラシュート400は、傘体(キャノピー)406、および吊索407を含む。
FIG. 4 is a diagram schematically showing a state in which the parachute 400 is open.
As shown in the figure, the parachute 400 includes an umbrella body (canopy) 406 and a suspension rope 407.
 吊索407は、傘体406とパラシュート収容部40(パラシュート取り付け部404)とを連結する。 The suspension rope 407 connects the umbrella body 406 and the parachute accommodating portion 40 (parachute attachment portion 404).
 傘体406は、連結索46によって飛翔体43と連結されている。例えば、図4に示すように、連結索46は、傘体406の頂点よりもエッジ(周縁)側において、傘体406と接続されている。より具体的には、各連結索46は、互いに離間して、パラシュート400の周縁部に接続されている。例えば、図4に示すように、パラシュート400が開いたときの頂点側から見たときのパラシュート400の形状が円形状である場合には、各連結索46は、パラシュート400の周縁部の円周方向に沿って等間隔に、パラシュート400(傘体406)に接続されている。 The umbrella body 406 is connected to the flying body 43 by the connecting rope 46. For example, as shown in FIG. 4, the connecting rope 46 is connected to the umbrella body 406 on the edge (peripheral) side of the apex of the umbrella body 406. More specifically, the connecting ropes 46 are separated from each other and connected to the peripheral edge of the parachute 400. For example, as shown in FIG. 4, when the shape of the parachute 400 when viewed from the apex side when the parachute 400 is opened is circular, each connecting rope 46 is the circumference of the peripheral portion of the parachute 400. It is connected to the parachute 400 (umbrella body 406) at equal intervals along the direction.
 なお、飛翔体43が1つだけ設けられる場合には、連結索46は、パラシュート400の周縁部のどこか一か所に接続されていればよい。この場合、連結索46が接続されるパラシュート400の周縁部上の位置については、特に制限されない。 If only one flying object 43 is provided, the connecting rope 46 may be connected to somewhere on the peripheral edge of the parachute 400. In this case, the position on the peripheral edge of the parachute 400 to which the connecting rope 46 is connected is not particularly limited.
 連結索46は、例えば、金属材料(例えば、ステンレス鋼)、または、繊維材料(例えば、ナイロン紐)から構成されている。 The connecting rope 46 is made of, for example, a metal material (for example, stainless steel) or a fiber material (for example, a nylon string).
 ここで、飛行装置1を低速で落下させるために必要な傘体406の直径Dは、例えば、下記式(1)に基づいて算出することができる。式(1)において、mは飛行装置1の総重量、vは飛行装置1の落下速度、ρは空気密度、Cdは抵抗係数である。 Here, the diameter D of the umbrella body 406 required to drop the flight device 1 at a low speed can be calculated based on, for example, the following equation (1). In the formula (1), m is the total weight of the flight device 1, v is the falling speed of the flight device 1, ρ is the air density, and Cd is the drag coefficient.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 例えば、飛行装置1の総重量m=250〔kg〕、抵抗係数Cd=0.9、空気密度ρ=1.3kg/mとしたとき、飛行装置1の落下速度vを5〔m/s〕とするために必要な傘体406の直径Dは、式(1)より14.6〔m〕と算出される。 For example, when the total weight of the flight device 1 is m = 250 [kg], the drag coefficient Cd = 0.9, and the air density ρ = 1.3 kg / m, the falling speed v of the flight device 1 is 5 [m / s]. The diameter D of the umbrella body 406 required for this is calculated as 14.6 [m] from the equation (1).
 例えば図3に示すように、パラシュート400は、その使用前において、傘体406が折り畳まれた状態でパラシュート収容部40に収容されている。 For example, as shown in FIG. 3, the parachute 400 is housed in the parachute housing unit 40 in a folded state of the umbrella body 406 before its use.
 図5A~図5Cは、パラシュート収容部40の構成を示す図である。
 図5Aには、パラシュート収容部40の斜視図が示され、図5Bには、パラシュート収容部40の上面図が示され、図5Cには、図5Bにおけるパラシュート収容部40のA-A断面を示す側断面図が示されている。
 なお、図5A~図5Cにおいて、パラシュート400、飛翔体43、射出部41、射出制御部42、およびリード線47の全部または一部については、図示を省略している。
5A to 5C are views showing the configuration of the parachute accommodating portion 40.
FIG. 5A shows a perspective view of the parachute accommodating portion 40, FIG. 5B shows a top view of the parachute accommodating portion 40, and FIG. 5C shows a cross section of the parachute accommodating portion 40 in FIG. A side sectional view showing is shown.
In FIGS. 5A to 5C, all or part of the parachute 400, the flying object 43, the injection unit 41, the injection control unit 42, and the lead wire 47 are not shown.
 パラシュート収容部40は、パラシュート400を収容する容器である。
 図5A~図5Cに示すように、パラシュート収容部40は、例えば、一端が開口し、他端が有底の円筒形状を有する。図1に示すように、パラシュート収容部40は、機体ユニット2の上面、すなわち飛行装置1の飛行時において地面と反対側に面する面に設定されている。例えば、パラシュート収容部40は、機体ユニットの上面において、機体ユニット2の中央部Oとパラシュート収容部40の中心軸Pとが重なるように設置されていることが好ましい。
The parachute accommodating portion 40 is a container for accommodating the parachute 400.
As shown in FIGS. 5A to 5C, the parachute accommodating portion 40 has, for example, a cylindrical shape with one end open and the other end bottomed. As shown in FIG. 1, the parachute accommodating portion 40 is set on the upper surface of the airframe unit 2, that is, the surface facing the opposite side to the ground during flight of the flight device 1. For example, the parachute accommodating portion 40 is preferably installed on the upper surface of the airframe unit so that the central portion O of the airframe unit 2 and the central axis P of the parachute accommodating portion 40 overlap.
 パラシュート収容部40は、筒状の側壁部401と、側壁部401の一端側の開口を塞ぐように形成された底部402とを有する。パラシュート収容部40は、例えば、樹脂から構成されている。側壁部401および底部402は、例えば樹脂成形品として一体成形されていてもよいし、別個の部品として形成され、互いに接合されていてもよい。本実施の形態では、側壁部401と底部402とが一体成形された部品であるとして説明する。 The parachute accommodating portion 40 has a tubular side wall portion 401 and a bottom portion 402 formed so as to close an opening on one end side of the side wall portion 401. The parachute accommodating portion 40 is made of, for example, a resin. The side wall portion 401 and the bottom portion 402 may be integrally molded, for example, as a resin molded product, or may be formed as separate parts and joined to each other. In the present embodiment, the side wall portion 401 and the bottom portion 402 will be described as integrally molded parts.
 側壁部401は、例えば、テーパ状の筒形状を有する。より具体的には、側壁部401は、上面の面積と下面の面積が異なる円錐台状の外形を有している。側壁部401において、開口側の半径r1は、底部402側の半径r2よりも大きい。 The side wall portion 401 has, for example, a tapered tubular shape. More specifically, the side wall portion 401 has a truncated cone-like outer shape in which the area of the upper surface and the area of the lower surface are different. In the side wall portion 401, the radius r1 on the opening side is larger than the radius r2 on the bottom portion 402 side.
 パラシュート収容部40において、パラシュート400を収容するための収容空間403が側壁部401と底部402とによって画成されている。 In the parachute accommodating portion 40, an accommodating space 403 for accommodating the parachute 400 is defined by a side wall portion 401 and a bottom portion 402.
 底部402には、パラシュート収容部40とパラシュート400とを連結するためのパラシュート取り付け部404が設けられている。例えば、図4に示したように、パラシュート400の吊索407の一端がパラシュート取り付け部404に連結されることにより、パラシュート400とパラシュート収容部40とが連結される。 The bottom portion 402 is provided with a parachute mounting portion 404 for connecting the parachute accommodating portion 40 and the parachute 400. For example, as shown in FIG. 4, one end of the suspension rope 407 of the parachute 400 is connected to the parachute attachment portion 404, whereby the parachute 400 and the parachute accommodating portion 40 are connected.
 図5A~図5Cに示すように、側壁部401は、パラシュート収容部40の中心軸Pから離れる方向に突出して形成された突出部405を有している。換言すれば、突出部405は、側壁部401の一部を他の部分よりも外側に突出させることによって形成されている。 As shown in FIGS. 5A to 5C, the side wall portion 401 has a protruding portion 405 formed so as to project in a direction away from the central axis P of the parachute accommodating portion 40. In other words, the projecting portion 405 is formed by projecting a part of the side wall portion 401 outward from the other portion.
 パラシュート収容部40の内側には、側壁部401の突出部405によって、空間415が画成されている。図5A~図5Cに示すように、射出部41の少なくとも一部は、パラシュート収容部40の内側における空間415に配置されている。 Inside the parachute accommodating portion 40, a space 415 is defined by a protruding portion 405 of the side wall portion 401. As shown in FIGS. 5A to 5C, at least a part of the injection portion 41 is arranged in the space 415 inside the parachute accommodating portion 40.
 パラシュート収容部40には、側壁部401の開口部を覆うカバー部材49が設けられていてもよい。カバー部材49は、例えば、樹脂材料から成る蓋であってもよいし、薄膜部材であってもよい。図3に示すように、カバー部材49は、突出部405によって形成される開口部も覆うように、パラシュート収容部40の開口部を全体的に覆って配置されることが好ましい。カバー部材49は、パラシュート400および飛翔体射出機構50を収容空間403に収容した後に、パラシュート収容部40に固定される。カバー部材49は、飛翔体43の射出時にカバー部材49がパラシュート収容部40から容易に外れる程度の締結力よって、パラシュート収容部40に固定されている。 The parachute accommodating portion 40 may be provided with a cover member 49 that covers the opening of the side wall portion 401. The cover member 49 may be, for example, a lid made of a resin material or a thin film member. As shown in FIG. 3, the cover member 49 is preferably arranged so as to cover the opening of the parachute accommodating portion 40 as a whole so as to cover the opening formed by the protruding portion 405. The cover member 49 is fixed to the parachute accommodating portion 40 after accommodating the parachute 400 and the projectile injection mechanism 50 in the accommodating space 403. The cover member 49 is fixed to the parachute accommodating portion 40 by a fastening force such that the cover member 49 can be easily disengaged from the parachute accommodating portion 40 when the flying object 43 is ejected.
 飛翔体43は、パラシュート400をパラシュート収容部40の外部に放出し、パラシュート400の開傘(展開)を補助するための装置である。飛翔体43は、ガスを発生するガス発生装置45を有する。 The flying object 43 is a device for discharging the parachute 400 to the outside of the parachute accommodating portion 40 and assisting in opening (deploying) the parachute 400. The projectile 43 has a gas generator 45 that generates gas.
 リード線47は、ガス発生装置45を点火するための電気配線である。リード線47は、例えば、ビニール線、すずめっき線、またはエナメル線等から構成されている。リード線47の一端は、ガス発生装置45に接続され、リード線47の他端は、射出制御部42に接続されている。 The lead wire 47 is an electric wiring for igniting the gas generator 45. The lead wire 47 is composed of, for example, a vinyl wire, a tin-plated wire, an enamel wire, or the like. One end of the lead wire 47 is connected to the gas generator 45, and the other end of the lead wire 47 is connected to the injection control unit 42.
 射出制御部42がリード線47を介してガス発生装置45を点火することにより、ガス発生装置45からガスが発生する。飛翔体43は、ガス発生装置45から発生したガスを噴射することによって推力を得て、射出部41から射出される。 When the injection control unit 42 ignites the gas generator 45 via the lead wire 47, gas is generated from the gas generator 45. The projectile 43 obtains thrust by injecting the gas generated from the gas generator 45, and is ejected from the injection unit 41.
 パラシュート装置4は、少なくとも1つの飛翔体43を備えている。例えば、パラシュート装置4は、3つ以上の飛翔体43を備えていることが好ましい。本実施の形態では、一例として、図1に示すように、パラシュート装置4が3つの飛翔体を備えている場合を例にとり説明する。なお、飛翔体43の具体的な構成については後述する。 The parachute device 4 includes at least one flying object 43. For example, the parachute device 4 preferably includes three or more projectiles 43. In the present embodiment, as an example, as shown in FIG. 1, a case where the parachute device 4 includes three flying objects will be described as an example. The specific configuration of the flying object 43 will be described later.
 射出制御部42は、飛翔体43を射出部41から射出するための制御を行う機能部である。射出制御部42は、例えば、機体ユニット2内の落下制御部16からパラシュート400の開傘を指示する制御信号を受信した場合に、点火信号を出力する電子回路である。点火信号がリード線47を介して各飛翔体43に設けられたガス発生装置45に入力されることにより、後述する点火薬453が点火して、ガス発生装置45からガスが発生する。 The injection control unit 42 is a functional unit that controls the flying object 43 to be ejected from the injection unit 41. The injection control unit 42 is, for example, an electronic circuit that outputs an ignition signal when a control signal instructing the opening of the parachute 400 is received from the drop control unit 16 in the airframe unit 2. When the ignition signal is input to the gas generator 45 provided in each flying object 43 via the lead wire 47, the igniter 453 described later is ignited, and gas is generated from the gas generator 45.
 射出部41は、飛翔体43を保持し、保持している飛翔体43を射出するため装置である。射出部41は、飛翔体43毎に設けられている。図1に示すように、実施の形態1に係るパラシュート装置4は、3つの飛翔体43を別々に収容するために、3つの射出部41を備えている。 The injection unit 41 is a device for holding the flying object 43 and injecting the holding flying object 43. The injection unit 41 is provided for each flying object 43. As shown in FIG. 1, the parachute device 4 according to the first embodiment includes three injection portions 41 for separately accommodating the three projectiles 43.
 図3および図5Cに示すように、射出部41は、一端が開口し、他端が有底の筒状に形成されている。具体的には、射出部41は、筒状(例えば円筒状)の側壁部411と、側壁部411の一方の開口を覆う底部412とを有する。側壁部411と底部412とは、飛翔体43を収容するための収容空間を画成している。側壁部411には、後述するように、リード線47を通すための貫通穴4110が形成されている。 As shown in FIGS. 3 and 5C, the injection portion 41 is formed in a tubular shape with one end open and the other end bottomed. Specifically, the injection portion 41 has a tubular (for example, cylindrical) side wall portion 411 and a bottom portion 412 that covers one opening of the side wall portion 411. The side wall portion 411 and the bottom portion 412 define a storage space for accommodating the flying object 43. As will be described later, the side wall portion 411 is formed with a through hole 4110 for passing the lead wire 47.
 側壁部411および底部412は、例えば樹脂から構成されている。側壁部411および底部412は、例えば樹脂成形品として一体成形されていてもよいし、別個の部品として形成され、互いに接合されていてもよい。本実施の形態では、射出部41は、側壁部411と底部412とが一体成形された部品であるとして説明する。 The side wall portion 411 and the bottom portion 412 are made of, for example, resin. The side wall portion 411 and the bottom portion 412 may be integrally molded, for example, as a resin molded product, or may be formed as separate parts and joined to each other. In the present embodiment, the injection portion 41 will be described as a component in which the side wall portion 411 and the bottom portion 412 are integrally molded.
 射出部41は、パラシュート収容部40に設けられている。具体的には、上述したように、各射出部41は、パラシュート収容部40の側壁部401に形成された複数の突出部405によって画成される各空間415に、一つずつ配置されている。 The injection unit 41 is provided in the parachute accommodating unit 40. Specifically, as described above, each injection portion 41 is arranged one by one in each space 415 defined by a plurality of protrusions 405 formed on the side wall portion 401 of the parachute accommodating portion 40. ..
 ここで、各射出部41は、例えば図1等に示すように、パラシュート収容部40の中心軸Pに対して、射出部41の飛翔体43の射出方向(射出部41の中心軸Qと平行な方向:軸線方向Q)における端部がパラシュート収容部40の中心軸Pから離れる方向に、傾斜している。 Here, as shown in FIG. 1, for example, each injection unit 41 is parallel to the central axis P of the parachute accommodating unit 40 in the injection direction of the flying object 43 of the injection unit 41 (parallel to the central axis Q of the injection unit 41). Direction: The end portion in the axial direction Q) is inclined in a direction away from the central axis P of the parachute accommodating portion 40.
 より具体的には、図5Cに示すように、各射出部41は、パラシュート収容部40(側壁部401)の中心軸Pに垂直な方向から見たときに、パラシュート収容部40の中心軸Pと各射出部41の中心軸Qとのなす角(角度φ)が鋭角(0°<φ<90°)となるように、配置されている。 More specifically, as shown in FIG. 5C, each injection portion 41 has a central axis P of the parachute accommodating portion 40 when viewed from a direction perpendicular to the central axis P of the parachute accommodating portion 40 (side wall portion 401). It is arranged so that the angle (angle φ) formed by the center axis Q of each injection portion 41 is an acute angle (0 ° <φ <90 °).
 また、複数の射出部41は、パラシュート収容部40の中心軸Pを中心とした回転方向において等間隔に配置されている。例えば、本実施の形態のように、パラシュート装置4が3つの射出部41を有している場合には、各射出部41は、パラシュート収容部40の中心軸Pを中心とした回転方向に120°(=360°/3)間隔で配置される。 Further, the plurality of injection portions 41 are arranged at equal intervals in the rotation direction about the central axis P of the parachute accommodating portion 40. For example, when the parachute device 4 has three injection portions 41 as in the present embodiment, each injection portion 41 is 120 in the rotation direction about the central axis P of the parachute accommodating portion 40. They are arranged at ° (= 360 ° / 3) intervals.
 図6は、実施の形態1に係る飛翔体射出機構の構成を示す図である。
 同図には、飛翔体43、射出部41、およびリード線47を含む飛翔体射出機構50の断面形状が示されている。
FIG. 6 is a diagram showing a configuration of a flying object injection mechanism according to the first embodiment.
The figure shows the cross-sectional shape of the flying object injection mechanism 50 including the flying object 43, the injection portion 41, and the lead wire 47.
 飛翔体43は、ガス発生装置45と飛翔体本体部44を有する。図6に示すように、飛翔体本体部44の一端側が射出部41の内側に挿入され、且つ、射出部41の内側においてガス発生装置45が射出部41の底部412(底面412a)と対面するように、飛翔体43が配置されている。 The flying object 43 has a gas generator 45 and a flying object main body 44. As shown in FIG. 6, one end side of the flying object main body 44 is inserted inside the injection section 41, and the gas generator 45 faces the bottom 412 (bottom surface 412a) of the injection section 41 inside the injection section 41. As described above, the flying object 43 is arranged.
 ガス発生装置45は、飛翔体43を射出部41の射出口413から射出するための推力の基になるガスを発生する装置である。ガス発生装置45は、例えば図6に示すように、ハウジング451、封止部材452、点火薬453、およびガス発生剤454を有する。 The gas generator 45 is a device that generates gas that is the basis of thrust for injecting the flying object 43 from the injection port 413 of the injection unit 41. The gas generator 45 has, for example, a housing 451, a sealing member 452, an igniter 453, and a gas generator 454, as shown in FIG.
 ハウジング451は、ガス発生装置45を収容するとともにガス発生装置45から発生したガスを放出するガス放出室455を有する筐体である。例えば、ハウジング451は、ドーム形状を有している。ハウジング451は、例えば、樹脂から構成されている。好ましくは、ハウジング451は、繊維強化プラスチック(FRP:Fiber-Reinforced Plastics)等によって構成されている。なお、ハウジング451は、樹脂に限らず金属によって構成されていてもよい。 The housing 451 is a housing having a gas discharge chamber 455 that houses the gas generator 45 and discharges the gas generated from the gas generator 45. For example, the housing 451 has a dome shape. The housing 451 is made of, for example, a resin. Preferably, the housing 451 is made of fiber reinforced plastic (FRP: Fiber-Reinforced Plastics) or the like. The housing 451 is not limited to resin and may be made of metal.
 図6に示すように、ガス放出室455には、ガス発生剤454が充填されている。 点火薬453は、ガス発生剤を点火するための薬剤である。点火薬453は、リード線47の一端に形成されている。例えば、樹脂等を混ぜ込んだ液状の点火薬をリード線47の先端に塗り固めることにより、リード線47の一端に点火薬453を固定することができる。 As shown in FIG. 6, the gas discharge chamber 455 is filled with the gas generating agent 454. Ignition agent 453 is an agent for igniting a gas generating agent. The igniter 453 is formed at one end of the lead wire 47. For example, the igniter 453 can be fixed to one end of the lead wire 47 by applying a liquid igniter mixed with resin or the like to the tip of the lead wire 47.
 なお、図6では、点火薬453が球状である場合が例示されているが、点火薬453の形状は特に制限されない。 Although FIG. 6 illustrates a case where the ignition charge 453 is spherical, the shape of the ignition charge 453 is not particularly limited.
 点火薬453は、少なくとも一部がガス発生剤454に覆われた状態で固定されている。例えば、図6に示すように、点火薬453は、ハウジング451内において、ガス発生剤454に埋め込まれた状態で固定されている。点火薬453の固定方法は、例えば以下の通りである。 The ignition charge 453 is fixed in a state where at least a part thereof is covered with the gas generating agent 454. For example, as shown in FIG. 6, the ignition charge 453 is fixed in the housing 451 in a state of being embedded in the gas generating agent 454. The method of fixing the ignition charge 453 is as follows, for example.
 先ず、樹脂等を混ぜ込んだ粉状のガス発生剤454をハウジング451のガス放出室455内に流し込む。その後、リード線47の先端に形成された点火薬453を粉状のガス発生剤454中に入れた状態で、ガス発生剤454を圧填する。これにより、点火薬453が、ガス発生剤454の内部に固定されるとともに、リード線47の一端がガス発生装置45と接続される。 First, a powdery gas generator 454 mixed with a resin or the like is poured into the gas discharge chamber 455 of the housing 451. Then, the gas generating agent 454 is filled with the igniter 453 formed at the tip of the lead wire 47 in the powdery gas generating agent 454. As a result, the ignition charge 453 is fixed inside the gas generator 454, and one end of the lead wire 47 is connected to the gas generator 45.
 点火薬453は、リード線(導線)47を介して射出制御部42と電気的に接続されている。点火薬453は、射出制御部42から出力された点火信号に応じて点火し、ガス発生剤454を化学的に反応させることにより、ガスを発生させる。 The ignition charge 453 is electrically connected to the injection control unit 42 via a lead wire (lead wire) 47. The igniting agent 453 ignites in response to the ignition signal output from the injection control unit 42, and chemically reacts the gas generating agent 454 to generate gas.
 ガス放出室455には、ガス発生剤454から発生したガスを放出するガス放出孔456が形成されている。また、ガス放出室455には、ガス放出孔456を覆ってガス発生剤454をガス放出室455内に封止する封止部材452が設けられている。 The gas discharge chamber 455 is formed with a gas discharge hole 456 that discharges the gas generated from the gas generator 454. Further, the gas discharge chamber 455 is provided with a sealing member 452 that covers the gas discharge hole 456 and seals the gas generating agent 454 in the gas discharge chamber 455.
 封止部材452は、ガス発生剤454からガスが発生した場合に、発生したガスの圧力によって容易に破壊される材料によって構成されている。例えば、封止部材452は、ポリエステル等の薄膜である。 The sealing member 452 is made of a material that is easily destroyed by the pressure of the generated gas when gas is generated from the gas generating agent 454. For example, the sealing member 452 is a thin film such as polyester.
 図6に示すように、ガス発生装置45は、射出部41と飛翔体本体部44とによって画成される空間440に配置されている。 As shown in FIG. 6, the gas generator 45 is arranged in the space 440 defined by the injection unit 41 and the projectile body unit 44.
 飛翔体本体部44は、パラシュートに連結される部品である。飛翔体本体部44は、ガス発生装置45を保持するとともに、連結索46に連結される。飛翔体本体部44は、例えば、棒状に形成されている。より具体的には、飛翔体本体部44は、例えば一部が中空の円柱状に形成されている。飛翔体本体部44は、射出部41と係合されている。 The flying object main body 44 is a part connected to the parachute. The flying object main body 44 holds the gas generator 45 and is connected to the connecting rope 46. The flying object main body 44 is formed in a rod shape, for example. More specifically, the flying object main body 44 is formed in a hollow columnar shape, for example. The projectile body portion 44 is engaged with the injection portion 41.
 飛翔体本体部44は、一端においてガス発生装置45を保持し、他端において連結索46と連結されている。換言すれば、飛翔体本体部44は、軸線方向Qにおいて、ガス発生装置45を保持する保持部441と、連結索46と連結するための連結部442の二つの機能部に分けられている。例えば、保持部441および連結部442はそれぞれ有底の筒形状を有している。保持部441と連結部442とは、互いの底面が対面し、且つ同軸となるように接合されている。 The flying object main body 44 holds the gas generator 45 at one end and is connected to the connecting rope 46 at the other end. In other words, the flying object main body 44 is divided into two functional parts in the axial direction Q: a holding part 441 that holds the gas generator 45 and a connecting part 442 for connecting to the connecting rope 46. For example, the holding portion 441 and the connecting portion 442 each have a bottomed tubular shape. The holding portion 441 and the connecting portion 442 are joined so that their bottom surfaces face each other and are coaxial with each other.
 飛翔体本体部44は、例えば、樹脂から構成されている。保持部441および連結部442は、例えば樹脂成形品として一体成形されていてもよいし、別個の部品として形成され、互いに接合されていてもよい。本実施の形態では、飛翔体本体部44は、保持部441と連結部442とが一体成形された部品であるとして説明する。 The flying object main body 44 is made of, for example, resin. The holding portion 441 and the connecting portion 442 may be integrally molded, for example, as a resin molded product, or may be formed as separate parts and joined to each other. In the present embodiment, the flying object main body portion 44 will be described as a component in which the holding portion 441 and the connecting portion 442 are integrally molded.
 保持部441は、その内部にガス発生装置45を収容して、保持する。具体的には、保持部441は、射出部41の内部において、ガス発生装置45のガスが放出される側、すなわちハウジング451のガス放出孔456(封止部材452)側が射出部41の底部412(底面412a)と対面するように、ガス発生装置45を保持している。例えば、保持部441は、ガス発生装置45の形状に対応するように形成された穴441aを有している。例えば、ガス発生装置45(ハウジング451)が穴441aに対して圧入または接着されることにより、ガス発生装置45が保持部441に保持される。 The holding unit 441 accommodates and holds the gas generator 45 inside. Specifically, in the holding portion 441, inside the injection portion 41, the side on which the gas of the gas generator 45 is discharged, that is, the gas discharge hole 456 (sealing member 452) side of the housing 451 is the bottom portion 412 of the injection portion 41. The gas generator 45 is held so as to face (bottom surface 412a). For example, the holding portion 441 has a hole 441a formed so as to correspond to the shape of the gas generator 45. For example, the gas generator 45 (housing 451) is press-fitted or adhered to the hole 441a to hold the gas generator 45 in the holding portion 441.
 連結部442は、軸線方向Qと平行な方向において保持部441と反対側に突出して形成されている。上述したように、連結部442は、有底の筒状(例えば円筒状)に形成されている。連結部442は、保持部441と反対側の端部に、連結索46を係止するための係止部4420を有する。係止部4420は、例えば貫通穴である。例えば、連結索46は、係止部4420としての貫通穴に挿通された状態で係止部4420に係止されている。 The connecting portion 442 is formed so as to project on the opposite side of the holding portion 441 in a direction parallel to the axial direction Q. As described above, the connecting portion 442 is formed in a bottomed tubular shape (for example, a cylindrical shape). The connecting portion 442 has a locking portion 4420 for locking the connecting rope 46 at an end opposite to the holding portion 441. The locking portion 4420 is, for example, a through hole. For example, the connecting rope 46 is locked to the locking portion 4420 in a state of being inserted into the through hole as the locking portion 4420.
 実施の形態1に係る飛翔体射出機構50において、リード線47は、一端がガス発生装置45と接続された状態で、空間440から飛翔体43の射出方向(軸線方向Q)と異なる方向に引き出されている。 In the projectile injection mechanism 50 according to the first embodiment, the lead wire 47 is pulled out from the space 440 in a direction different from the injection direction (axis direction Q) of the projectile 43 with one end connected to the gas generator 45. It has been.
 具体的には、リード線47は、飛翔体43の射出方向と交差する方向に引き出されている。例えば、リード線47は、図6における軸線方向Qと直交するR方向に引き出されている。より具体的には、図6に示すように、リード線47は、ガス発生装置45のハウジング451に形成された貫通穴4510と、飛翔体本体部44の保持部441に形成された貫通穴4410と、射出部41の側壁部411に形成された貫通穴4110とを通って、射出部41の外部に引き出されている。 Specifically, the lead wire 47 is pulled out in a direction intersecting the injection direction of the flying object 43. For example, the lead wire 47 is drawn out in the R direction orthogonal to the axial direction Q in FIG. More specifically, as shown in FIG. 6, the lead wire 47 has a through hole 4510 formed in the housing 451 of the gas generator 45 and a through hole 4410 formed in the holding portion 441 of the flying object main body 44. And through the through hole 4110 formed in the side wall portion 411 of the injection portion 41, the injection portion 41 is pulled out to the outside.
 リード線47は、飛翔体43が射出部41の射出口413から射出されたときに、切断可能に構成されている。例えば、飛翔体43が射出口413から射出されたときに、飛翔体43によってリード線47が引っ張られ、その引張力によってリード線47が貫通穴4110の縁部に押し付けられることにより、リード線47を破断することが可能となっている。 The lead wire 47 is configured to be cuttable when the projectile 43 is ejected from the injection port 413 of the injection unit 41. For example, when the projectile 43 is ejected from the injection port 413, the lead wire 47 is pulled by the projectile 43, and the lead wire 47 is pressed against the edge of the through hole 4110 by the tensile force of the lead wire 47. It is possible to break.
 次に、実施の形態1に係るパラシュート装置4におけるパラシュート400の開傘の流れについて説明する。 Next, the flow of opening the parachute 400 in the parachute device 4 according to the first embodiment will be described.
 例えば、パラシュート装置4を搭載した飛行装置1が飛行しているときに、強風によって飛行装置1の機体(機体ユニット2)の傾きが傾き閾値29を超えた状態が所定期間継続し、異常検出部15が異常状態であると判定した場合、飛行装置1側の落下制御部16が、パラシュート400の開傘を指示する制御信号をパラシュート装置4の射出制御部42に対して送信する。 For example, when the flight device 1 equipped with the parachute device 4 is flying, the state in which the tilt of the aircraft (aircraft unit 2) of the flight device 1 exceeds the tilt threshold 29 continues for a predetermined period due to strong wind, and the abnormality detection unit When it is determined that 15 is in an abnormal state, the fall control unit 16 on the flight device 1 side transmits a control signal instructing the opening of the parachute 400 to the injection control unit 42 of the parachute device 4.
 射出制御部42は、パラシュート400の開傘を指示する制御信号を受信した場合、リード線47を介してガス発生装置45に点火信号を出力する。具体的には、射出制御部42はリード線47に所定の電流を流して、リード線47の一端に形成されている点火薬453を点火させる。 When the injection control unit 42 receives the control signal instructing the opening of the parachute 400, the injection control unit 42 outputs an ignition signal to the gas generator 45 via the lead wire 47. Specifically, the injection control unit 42 causes a predetermined current to flow through the lead wire 47 to ignite the igniter 453 formed at one end of the lead wire 47.
 点火薬453が点火することにより、点火薬453を覆っているガス発生剤454が化学的に反応し、ガスが発生する。ガス放出室455内に発生したガスの圧力が高まると、ガス放出孔456を覆っている封止部材452が破れる。これにより、ガス放出室455内のガスが、ガス放出孔456から射出部41内の空間418に放出され、空間418にガスが充満する。そして、空間418内のガスの圧力が所定値を超えたとき、飛翔体43は、ガスの圧力によって射出口413側に移動し、射出部41の射出口413から射出される。 When the igniter 453 ignites, the gas generating agent 454 covering the igniter 453 chemically reacts to generate gas. When the pressure of the gas generated in the gas discharge chamber 455 increases, the sealing member 452 covering the gas discharge hole 456 breaks. As a result, the gas in the gas discharge chamber 455 is discharged from the gas discharge hole 456 into the space 418 in the injection section 41, and the space 418 is filled with the gas. Then, when the pressure of the gas in the space 418 exceeds a predetermined value, the projectile 43 moves to the injection port 413 side by the pressure of the gas and is ejected from the injection port 413 of the injection unit 41.
 このとき、点火薬453とともにガス発生剤454に固定されていたリード線47は、ガス発生剤454が化学的に反応することにより、飛翔体43と分離可能になる。そのため、飛翔体43が射出部41から射出されたとき、例えば、リード線47は、飛翔体43から分離し、射出部41側に残る。あるいは、リード線47が射出部41の貫通穴4110の縁部によって切断され、リード線47の一部が飛翔体43とともに射出され、リード線47の残りの部分が射出部41側に残る。 At this time, the lead wire 47 fixed to the gas generating agent 454 together with the ignition charge 453 becomes separable from the projectile 43 by the chemical reaction of the gas generating agent 454. Therefore, when the projectile 43 is ejected from the injection section 41, for example, the lead wire 47 is separated from the projectile 43 and remains on the injection section 41 side. Alternatively, the lead wire 47 is cut by the edge of the through hole 4110 of the injection portion 41, a part of the lead wire 47 is ejected together with the projectile 43, and the remaining portion of the lead wire 47 remains on the injection portion 41 side.
 飛翔体43が各射出部41からそれぞれ射出されると、各飛翔体43は、連結索46を介してパラシュート400(傘体406)を引っ張る。これにより、パラシュート400がパラシュート収容部40から放出される。その後、各飛翔体43によって更に引っ張られたパラシュート400は、畳まれた状態の傘体406の内部に空気が入り込むことによって、開傘する。 When the projectile 43 is ejected from each injection unit 41, each projectile 43 pulls the parachute 400 (umbrella body 406) via the connecting rope 46. As a result, the parachute 400 is released from the parachute accommodating portion 40. After that, the parachute 400 further pulled by each projectile 43 is opened by air entering the inside of the folded umbrella body 406.
 図7は、実施の形態1に係る飛行装置1のパラシュート400が開いた状態を模式的に示す図である。
 例えば、上述した処理手順を経て各飛翔体43が射出された場合、各飛翔体43は、射出部41の中心軸Qの軸線方向に飛び出す。すなわち、各飛翔体43は、パラシュート収容部40の中心軸Pから離れる方向に飛行する。これにより、各飛翔体43は、真上に(パラシュート収容部40の中心軸Pと平行な方向に)射出する場合に比べて、放出されたパラシュート400の傘体406をその頂点部分からエッジ(周縁)側に効果的に引っ張ることができる。これにより、傘体406を速やかに広げて空気をはらみ易くすることができる。
FIG. 7 is a diagram schematically showing a state in which the parachute 400 of the flight device 1 according to the first embodiment is opened.
For example, when each projectile 43 is ejected through the above-described processing procedure, each projectile 43 projects in the axial direction of the central axis Q of the injection unit 41. That is, each projectile 43 flies in a direction away from the central axis P of the parachute accommodating portion 40. As a result, each projectile 43 has an edge (a direction) from the apex of the released parachute 400 umbrella body 406 as compared with the case where each projectile ejects directly above (in a direction parallel to the central axis P of the parachute accommodating portion 40). It can be effectively pulled to the peripheral) side. As a result, the umbrella body 406 can be quickly expanded to facilitate the inclusion of air.
 以上、実施の形態1に係るパラシュート装置4は、パラシュート400を収容するパラシュート収容部40と、パラシュート400に連結された飛翔体本体部44およびガスを発生するガス発生装置45を有する飛翔体43と、飛翔体43を保持し、保持した飛翔体43を射出するための射出部41とを備え、射出部41は、パラシュート収容部40の中心軸Pに対して、射出部41の飛翔体43の射出方向における端部(射出口413)がパラシュート収容部40の中心軸Pから離れる方向に、傾斜している。 As described above, the parachute device 4 according to the first embodiment includes a parachute accommodating portion 40 for accommodating the parachute 400, a flying object main body 44 connected to the parachute 400, and a flying object 43 having a gas generating device 45 for generating gas. The projectile 43 is provided with an injection unit 41 for holding the projectile 43 and ejecting the held projectile 43. The injection unit 41 of the projectile 43 of the injection unit 41 with respect to the central axis P of the parachute accommodating unit 40. The end portion (injection port 413) in the injection direction is inclined in a direction away from the central axis P of the parachute accommodating portion 40.
 これによれば、上述したように、射出部41が、パラシュート収容部40の中心軸Pに対して、射出部41の飛翔体43の射出方向における端部(射出口413)がパラシュート収容部40の中心軸Pから離れる方向に、傾斜しているので、ガス発生装置45から発生したガスの圧力によって射出された飛翔体本体部44は、パラシュート収容部40の中心軸Pから離れる方向に飛行する。これにより、パラシュート400の傘体406は、各飛翔体43によって、傘体406の頂点部分からエッジ(周縁)側に引っ張られる。これにより、傘体406を速やかに広げて空気をはらみ易くすることができるので、パラシュート400を素早く且つ確実に開傘させることが可能となる。 According to this, as described above, the injection portion 41 has the end portion (injection port 413) of the projectile 43 of the injection portion 41 in the injection direction with respect to the central axis P of the parachute accommodating portion 40. Since it is inclined in the direction away from the central axis P of the parachute, the flying object main body 44 ejected by the pressure of the gas generated from the gas generator 45 flies in the direction away from the central axis P of the parachute accommodating portion 40. .. As a result, the umbrella body 406 of the parachute 400 is pulled from the apex portion of the umbrella body 406 to the edge (peripheral) side by each flying body 43. As a result, the umbrella body 406 can be quickly expanded to facilitate the inclusion of air, so that the parachute 400 can be opened quickly and reliably.
 したがって、飛行装置1のような地上に対して垂直な方向へ移動することが多い回転翼機にパラシュート装置4を取り付けた場合であっても、確実にパラシュート400を開傘させることが可能となる。 Therefore, even when the parachute device 4 is attached to a rotary wing aircraft that often moves in a direction perpendicular to the ground such as the flight device 1, the parachute 400 can be reliably opened. ..
 また、パラシュート装置4において、射出部41は、パラシュート収容部40の内側に配置されている。これによれば、外部から衝撃等が射出部41や飛翔体43に直接加わることを防ぐことができるので、飛翔体射出機構50の信頼性を向上させることができる。 Further, in the parachute device 4, the injection unit 41 is arranged inside the parachute accommodating unit 40. According to this, it is possible to prevent an impact or the like from being directly applied to the injection unit 41 or the flying object 43 from the outside, so that the reliability of the flying object injection mechanism 50 can be improved.
 また、パラシュート装置4において、パラシュート収容部40の側壁部401は、パラシュート収容部40の中心軸Pから離れる方向に突出して形成された突出部405を有し、射出部41の少なくとも一部は、パラシュート収容部40の内側における突出部405によって画成される空間415に配置されている。 Further, in the parachute device 4, the side wall portion 401 of the parachute accommodating portion 40 has a protruding portion 405 formed so as to project in a direction away from the central axis P of the parachute accommodating portion 40, and at least a part of the injection portion 41 is formed. It is arranged in the space 415 defined by the protrusion 405 inside the parachute accommodating portion 40.
 これによれば、パラシュート収容部40の内側に射出部41を設けることによる、パラシュート収容部40内の収容空間403の狭小化を抑えることが可能となる。すなわち、パラシュート収容部40内のパラシュート400を収容するための収容空間403をより広く確保することができるので、より大きなパラシュート400を採用することが可能となる。 According to this, it is possible to suppress the narrowing of the accommodation space 403 in the parachute accommodating portion 40 by providing the injection portion 41 inside the parachute accommodating portion 40. That is, since the accommodation space 403 for accommodating the parachute 400 in the parachute accommodating portion 40 can be secured more widely, it is possible to adopt a larger parachute 400.
 また、パラシュート装置4は、パラシュート収容部40の側壁部401の開口部を覆うカバー部材49を更に備えている。 Further, the parachute device 4 further includes a cover member 49 that covers the opening of the side wall portion 401 of the parachute accommodating portion 40.
 これによれば、パラシュート400のみならず、飛翔体射出機構50が雨水や異物に曝されることによる飛翔体射出機構50の劣化、例えば飛翔体43のガス発生装置45の劣化を防止することが可能となる。 According to this, it is possible to prevent not only the parachute 400 but also the flying object injection mechanism 50 from being exposed to rainwater or foreign matter, resulting in deterioration of the flying object injection mechanism 50, for example, deterioration of the gas generator 45 of the flying object 43. It will be possible.
 また、図5A~図5Cに示すように、各射出部41は、パラシュート収容部40の中心軸Pを中心とした回転方向に等間隔に配置されている。これによれば、射出された飛翔体43によって、パラシュート400の傘体406を複数の方向から均等に引っ張ることが可能となる。これにより、より確実にパラシュート400を開傘させることが可能となる。 Further, as shown in FIGS. 5A to 5C, the injection portions 41 are arranged at equal intervals in the rotation direction about the central axis P of the parachute accommodating portion 40. According to this, the ejected projectile 43 makes it possible to evenly pull the umbrella body 406 of the parachute 400 from a plurality of directions. This makes it possible to open the parachute 400 more reliably.
 ≪実施の形態2≫
 図8は、実施の形態2に係るパラシュート装置を搭載した飛行装置の外観を模式的に示す図である。
<< Embodiment 2 >>
FIG. 8 is a diagram schematically showing the appearance of a flight device equipped with the parachute device according to the second embodiment.
 図8に示される、実施の形態2に係るパラシュート装置4Aは、飛翔体射出機構50Aがパラシュート収容部40Aの外側に配置される点において、実施の形態1に係るパラシュート装置4と相違し、その他の点においては、実施の形態1に係るパラシュート装置4と同様である。 The parachute device 4A according to the second embodiment shown in FIG. 8 is different from the parachute device 4 according to the first embodiment in that the projectile injection mechanism 50A is arranged outside the parachute accommodating portion 40A. In this respect, it is the same as the parachute device 4 according to the first embodiment.
 図9は、実施の形態2に係るパラシュート装置4Aの構成を模式的に示す図である。図9には、パラシュート装置4Aの側断面(部分断面)が示されている。
 図9に示すように、パラシュート装置4Aにおいて、飛翔体43、射出部41A、およびリード線47を含む飛翔体射出機構50Aは、パラシュート収容部40Aの側壁部401Aの外側に設置されている。
FIG. 9 is a diagram schematically showing the configuration of the parachute device 4A according to the second embodiment. FIG. 9 shows a side cross section (partial cross section) of the parachute device 4A.
As shown in FIG. 9, in the parachute device 4A, the projectile injection mechanism 50A including the projectile 43, the injection section 41A, and the lead wire 47 is installed outside the side wall portion 401A of the parachute accommodating section 40A.
 図10A、図10Bは、実施の形態2に係るパラシュート収容部40Aの構成を示す図である。
 図10Aには、パラシュート収容部40Aの上面図が示され、図10Bには、図10Aにおけるパラシュート収容部40のA-A断面を示す側断面図が示されている。
10A and 10B are diagrams showing the configuration of the parachute accommodating portion 40A according to the second embodiment.
FIG. 10A shows a top view of the parachute accommodating portion 40A, and FIG. 10B shows a side sectional view showing a cross section of the parachute accommodating portion 40 in FIG. 10A.
 なお、図10Aおよび図10Bにおいて、パラシュート400、飛翔体43、射出部41A、射出制御部42、およびリード線47の全部または一部については、図示を省略している。 Note that in FIGS. 10A and 10B, all or part of the parachute 400, the projectile 43, the injection unit 41A, the injection control unit 42, and the lead wire 47 are not shown.
 パラシュート収容部40Aは、筒状の側壁部401Aと、側壁部401Aの一端側の開口を塞ぐように形成された底部402Aとを有する。パラシュート収容部40Aは、実施の形態1に係るパラシュート収容部40と同様に、例えば、側壁部401Aと底部402Aとが一体に形成された樹脂成型品である。 The parachute accommodating portion 40A has a tubular side wall portion 401A and a bottom portion 402A formed so as to close an opening on one end side of the side wall portion 401A. The parachute accommodating portion 40A is, for example, a resin molded product in which the side wall portion 401A and the bottom portion 402A are integrally formed, similarly to the parachute accommodating portion 40 according to the first embodiment.
 側壁部401Aは、例えば、上面の面積と下面の面積が異なる円錐台状(テーパ状)の外形を有している。側壁部401Aにおいて、開口側の半径r1Aは、底部402A側の半径r2よりも大きい。 The side wall portion 401A has, for example, a truncated cone-like (tapered) outer shape in which the area of the upper surface and the area of the lower surface are different. In the side wall portion 401A, the radius r1A on the opening side is larger than the radius r2 on the bottom portion 402A side.
 パラシュート収容部40Aにおいて、パラシュート400を収容するための収容空間403が側壁部401Aと底部402Aとによって画成されている。 In the parachute accommodating portion 40A, the accommodating space 403 for accommodating the parachute 400 is defined by the side wall portion 401A and the bottom portion 402A.
 底部402Aにおける側壁部401Aの開口部側の面には、パラシュート収容部40Aとパラシュート400とを連結するためのパラシュート取り付け部404が設けられている。底部402Aにおける側壁部401Aの開口部と反対側の面(図1における機体ユニット2側の面)には、射出制御部42が設けられている。 A parachute mounting portion 404 for connecting the parachute accommodating portion 40A and the parachute 400 is provided on the surface of the bottom portion 402A on the opening side of the side wall portion 401A. An injection control unit 42 is provided on the surface of the bottom portion 402A opposite to the opening of the side wall portion 401A (the surface on the airframe unit 2 side in FIG. 1).
 射出部41Aは、パラシュート収容部40Aに設けられている。具体的には、図10A等に示すように、各射出部41Aは、側壁部401Aの外周面4010に配置されている。 The injection unit 41A is provided in the parachute accommodating unit 40A. Specifically, as shown in FIG. 10A and the like, each injection portion 41A is arranged on the outer peripheral surface 4010 of the side wall portion 401A.
 ここで、射出部41Aは、パラシュート収容部40Aの中心軸Pに対して、射出部41Aの飛翔体43の射出方向(射出部41Aの軸線方向Q)における端部がパラシュート収容部40の中心軸Pから離れる方向に、傾斜している。 Here, in the injection unit 41A, the end portion of the injection unit 41A in the injection direction (axis direction Q of the injection unit 41A) with respect to the central axis P of the parachute accommodation unit 40A is the central axis of the parachute accommodation unit 40. It is inclined in the direction away from P.
 具体的には、各射出部41A(側壁部411A)の中心軸Qは、各側壁部411Aにおける底部412Aと反対側の端部に形成された開口部である射出口413がパラシュート収容部40Aの中心軸Pから離れる方向に、傾斜している。 Specifically, the central axis Q of each injection portion 41A (side wall portion 411A) has an injection port 413, which is an opening formed at an end of each side wall portion 411A opposite to the bottom portion 412A, of the parachute accommodating portion 40A. It is inclined in a direction away from the central axis P.
 より具体的には、図10Bに示すように、各射出部41Aは、パラシュート収容部40Aの中心軸Pに垂直な方向から見たときに、パラシュート収容部40Aの中心軸Pと各射出部41Aの中心軸Qとのなす角(角度φ)が鋭角(0°<φ<90°)となるように、配置されている。 More specifically, as shown in FIG. 10B, each injection portion 41A has a central axis P of the parachute accommodating portion 40A and each injection portion 41A when viewed from a direction perpendicular to the central axis P of the parachute accommodating portion 40A. It is arranged so that the angle (angle φ) formed by the central axis Q of the above is an acute angle (0 ° <φ <90 °).
 また、複数の射出部41Aは、パラシュート収容部40Aの中心軸Pを中心とした回転方向において等間隔に配置されている。例えば、実施の形態2のように、パラシュート装置4Aが3つの射出部41Aを有している場合には、各射出部41Aは、パラシュート収容部40Aの中心軸Pを中心とした回転方向に120°(=360°/3)間隔で配置される。 Further, the plurality of injection portions 41A are arranged at equal intervals in the rotation direction about the central axis P of the parachute accommodating portion 40A. For example, when the parachute device 4A has three injection portions 41A as in the second embodiment, each injection portion 41A is 120 in the rotation direction about the central axis P of the parachute accommodating portion 40A. They are arranged at ° (= 360 ° / 3) intervals.
 パラシュート収容部40Aには、側壁部401Aの開口部を覆うカバー部材49が設けられていてもよい。例えば、図9に示すように、カバー部材49は、側壁部401Aのみならず、飛翔体射出機構50Aの少なくとも一部を覆うように配置されることが好ましい。 The parachute accommodating portion 40A may be provided with a cover member 49 that covers the opening of the side wall portion 401A. For example, as shown in FIG. 9, the cover member 49 is preferably arranged so as to cover not only the side wall portion 401A but also at least a part of the projectile injection mechanism 50A.
 以上、実施の形態2に係るパラシュート装置4Aは、実施の形態1に係るパラシュート装置4と同様に、射出部41Aが、パラシュート収容部40Aの中心軸Pに対して、射出部41Aの飛翔体43の射出方向(軸線方向Q)における端部がパラシュート収容部40Aの中心軸Pから離れる方向に、傾斜している。 As described above, in the parachute device 4A according to the second embodiment, the injection unit 41A has the projectile body 43 of the injection unit 41A with respect to the central axis P of the parachute accommodating unit 40A, similarly to the parachute device 4 according to the first embodiment. The end portion in the injection direction (axis direction Q) of the parachute accommodating portion 40A is inclined in a direction away from the central axis P of the parachute accommodating portion 40A.
 これによれば、実施の形態1に係るパラシュート装置4と同様に、ガス発生装置45から発生したガスの圧力によって射出された飛翔体本体部44は、パラシュート収容部40Aの中心軸Pから離れる方向に飛行する。これにより、傘体406を速やかに広げて空気をはらみ易くすることができるので、パラシュート400を素早く且つ確実に開傘させることが可能となる。 According to this, similarly to the parachute device 4 according to the first embodiment, the flying object main body 44 ejected by the pressure of the gas generated from the gas generator 45 is in the direction away from the central axis P of the parachute accommodating portion 40A. Fly to. As a result, the umbrella body 406 can be quickly expanded to facilitate the inclusion of air, so that the parachute 400 can be opened quickly and reliably.
 また、パラシュート装置4Aにおいて、射出部41Aは、パラシュート収容部40Aの側壁部411Aの外周面4010に配置されている。これによれば、パラシュート収容部40A内のパラシュート400収容するための収容空間403をより広く確保することができるので、より大きなパラシュート400を採用することが可能となる。 Further, in the parachute device 4A, the injection portion 41A is arranged on the outer peripheral surface 4010 of the side wall portion 411A of the parachute accommodating portion 40A. According to this, since it is possible to secure a wider accommodation space 403 for accommodating the parachute 400 in the parachute accommodating portion 40A, it is possible to adopt a larger parachute 400.
 ≪実施の形態の拡張≫
 以上、本発明者らによってなされた発明を実施の形態に基づいて具体的に説明したが、本発明はそれに限定されるものではなく、その要旨を逸脱しない範囲において種々変更可能であることは言うまでもない。
≪Expansion of embodiment≫
Although the inventions made by the present inventors have been specifically described above based on the embodiments, it goes without saying that the present invention is not limited thereto and can be variously modified without departing from the gist thereof. No.
 例えば、上記実施の形態において、射出制御部42がパラシュート装置4,4Aに設けられる場合を例示したが、これに限られない。例えば、射出制御部42は、機体ユニット2に設けられていてもよい。 For example, in the above embodiment, the case where the injection control unit 42 is provided in the parachute devices 4 and 4A has been illustrated, but the present invention is not limited to this. For example, the injection control unit 42 may be provided in the airframe unit 2.
 また、上記実施の形態では、パラシュート収容部40,40Aが円筒状である場合を例示したが、これに限られない。すなわち、パラシュート収容部40,40Aは、内部にパラシュート400を収容するための空間を有していればよく、例えば、中空の多角柱(例えば四角柱)状であってもよい。 Further, in the above embodiment, the case where the parachute accommodating portions 40 and 40A are cylindrical is illustrated, but the present invention is not limited to this. That is, the parachute accommodating portions 40 and 40A may have a space for accommodating the parachute 400 inside, and may be, for example, a hollow polygonal column (for example, a square column).
 また、パラシュート収容部40,40Aがテーパ状である場合を例示したが、これに限られない。なお、パラシュート収容部40,40Aの外形をテーパ状にしない場合には、射出部41,41Aの中心軸Qの角度(中心軸Qの中心軸Pに対する角度φ)が適切になるように、パラシュート収容部40,40Aに対する射出部41の接合構造を工夫する必要がある。 Further, the case where the parachute accommodating portions 40 and 40A are tapered has been illustrated, but the present invention is not limited to this. If the outer shapes of the parachute accommodating portions 40 and 40A are not tapered, the parachute so that the angle of the central axis Q of the injection portions 41 and 41A (the angle φ of the central axis Q with respect to the central axis P) becomes appropriate. It is necessary to devise a joining structure of the injection portion 41 to the accommodating portions 40 and 40A.
 また、上記実施の形態において、射出部41,41Aの外形が円筒状である場合を例示したが、これに限られない。すなわち、射出部41,41Aは、内部に飛翔体43を収容し、飛翔体43を射出可能な構造であればよく、例えば、外形が多角柱(例えば四角柱)状で、飛翔体43を収容する空間が円筒状であってもよい。 Further, in the above embodiment, the case where the outer shapes of the injection portions 41 and 41A are cylindrical has been illustrated, but the present invention is not limited to this. That is, the injection portions 41 and 41A may have a structure in which the flying object 43 is housed and the flying body 43 can be injected. For example, the outer shape is a polygonal column (for example, a square column) and the flying object 43 is housed. The space to be used may be cylindrical.
 また、実施の形態1において、射出制御部42がパラシュート収容部40の内側に配置される場合を例示したが、これに限られず、実施の形態2に係るパラシュート装置4Aのように、射出制御部42をパラシュート収容部40の外側(例えば、底部402における機体ユニット2側の面)に配置してもよい。また、実施の形態2において、射出制御部42がパラシュート収容部40Aの外側に配置される場合を例示したが、これに限られず、実施の形態1に係るパラシュート装置4のように、射出制御部42をパラシュート収容部40Aの内側(例えば、底部402Aにおける側壁部401Aの開口部側の面)に配置してもよい。 Further, in the first embodiment, the case where the injection control unit 42 is arranged inside the parachute accommodating unit 40 has been illustrated, but the present invention is not limited to this, and the injection control unit is similar to the parachute device 4A according to the second embodiment. 42 may be arranged outside the parachute accommodating portion 40 (for example, the surface of the bottom portion 402 on the aircraft unit 2 side). Further, in the second embodiment, the case where the injection control unit 42 is arranged outside the parachute accommodating unit 40A has been illustrated, but the present invention is not limited to this, and the injection control unit is similar to the parachute device 4 according to the first embodiment. 42 may be arranged inside the parachute accommodating portion 40A (for example, the surface of the bottom portion 402A on the opening side of the side wall portion 401A).
 1,1A…飛行装置、2…機体ユニット、3,3_1~3_n…推力発生部、4,4A…パラシュート装置、5…報知装置、6…アーム部、9…外部装置、11…電源部、12…センサ部、13,13_1~13_n…モータ駆動部、14…飛行制御部、15…異常検出部、16…落下制御部、17…通信部、18…記憶部、22…バッテリ、23…電源回路、24…角速度センサ、25…加速度センサ、26…磁気センサ、27…角度算出部、28…残容量閾値、29…傾き閾値、30…プロペラ、31…モータ、32…筐体、40,40A…パラシュート収容部、41,41A…射出部、42…射出制御部、43…飛翔体、44…飛翔体本体部、45…ガス発生装置、46…連結索、47…リード線(導線)、49…カバー部材、50,50A…飛翔体射出機構、400…パラシュート、401,401A…側壁部、402,402A…底部、403…収容空間、404…パラシュート取り付け部、405…突出部、406…傘体(キャノピー)、407…吊索、411,411A…側壁部、412,412A…底部、412a…底面、413…射出口、415,418…空間、440…空間、441…保持部、441a…穴、442…連結部、451…ハウジング、452…封止部材、453…点火薬、454…ガス発生剤、455…ガス放出室、456…ガス放出孔、4010…外周面、4110,4410,4510…貫通穴、4420…係止部、O…中央部、P…中心軸、Q…中心軸、軸線方向。 1,1A ... Flight device, 2 ... Aircraft unit, 3,3_1 to 3_n ... Thrust generator, 4,4A ... Parachute device, 5 ... Notification device, 6 ... Arm section, 9 ... External device, 11 ... Power supply section, 12 ... Sensor unit, 13, 13_1 to 13_n ... Motor drive unit, 14 ... Flight control unit, 15 ... Abnormality detection unit, 16 ... Drop control unit, 17 ... Communication unit, 18 ... Storage unit, 22 ... Battery, 23 ... Power supply circuit , 24 ... angular velocity sensor, 25 ... acceleration sensor, 26 ... magnetic sensor, 27 ... angle calculation unit, 28 ... remaining capacity threshold, 29 ... tilt threshold, 30 ... propeller, 31 ... motor, 32 ... housing, 40, 40A ... Parachute accommodating unit, 41, 41A ... injection unit, 42 ... injection control unit, 43 ... flying object, 44 ... flying object main body, 45 ... gas generator, 46 ... connecting rope, 47 ... lead wire (lead wire), 49 ... Cover member, 50, 50A ... Flying object injection mechanism, 400 ... Parachute, 401, 401A ... Side wall, 402, 402A ... Bottom, 403 ... Storage space, 404 ... Parachute mounting part, 405 ... Projection, 406 ... Umbrella ( Canopy), 407 ... Suspension rope, 411, 411A ... Side wall, 421, 412A ... Bottom, 412a ... Bottom, 413 ... Outlet, 415, 418 ... Space, 440 ... Space, 441 ... Holding, 441a ... Hole, 442 ... Connecting part, 451 ... Housing, 452 ... Sealing member, 453 ... Ignition agent, 454 ... Gas generator, 455 ... Gas discharge chamber, 456 ... Gas discharge hole, 4010 ... Outer surface, 4110, 4410, 4510 ... Through hole , 4420 ... Locking portion, O ... Central portion, P ... Central axis, Q ... Central axis, axial direction.

Claims (7)

  1.  パラシュートと、
     前記パラシュートを収容するパラシュート収容部と、
     前記パラシュートに連結された飛翔体本体部と、ガスを発生するガス発生装置とを有する飛翔体と、
     前記飛翔体を保持し、保持した前記飛翔体を射出するための射出部と、を備え、
     前記飛翔体本体部は、前記射出部と係合され、
     前記ガス発生装置は、前記射出部と前記飛翔体本体部とによって画成される空間に配置され、
     前記射出部は、前記パラシュート収容部の中心軸に対して、前記射出部の前記飛翔体の射出方向における端部が前記パラシュート収容部の中心軸から離れる方向に、傾斜している
     パラシュート装置。
    With a parachute
    A parachute accommodating portion for accommodating the parachute and
    A flying object having a flying object main body connected to the parachute and a gas generator for generating gas, and a flying object.
    An injection unit for holding the projectile and ejecting the held projectile is provided.
    The flying object main body is engaged with the injection portion,
    The gas generator is arranged in a space defined by the injection portion and the flying object main body portion.
    The injection portion is a parachute device in which an end portion of the injection portion in the injection direction of the flying object is inclined with respect to the central axis of the parachute accommodating portion in a direction away from the central axis of the parachute accommodating portion.
  2.  請求項1に記載のパラシュート装置において、
     前記パラシュート収容部は、一端が開口し、他端が有底の筒状に形成され、
     前記射出部は、前記パラシュート収容部の内側に配置されている
     ことを特徴とするパラシュート装置。
    In the parachute device according to claim 1,
    The parachute accommodating portion is formed in a tubular shape with one end open and the other end bottomed.
    The parachute device, characterized in that the injection portion is arranged inside the parachute accommodating portion.
  3.  請求項2に記載のパラシュート装置において、
     前記パラシュート収容部は、筒状の側壁部と、前記側壁部の一端側を塞ぐように形成された底部とを有し、
     前記側壁部は、前記パラシュート収容部の中心軸から離れる方向に突出して形成された突出部を有し、
     前記射出部の少なくとも一部は、前記パラシュート収容部の内側における前記突出部によって画成される空間に配置されている
     ことを特徴とするパラシュート装置。
    In the parachute device according to claim 2.
    The parachute accommodating portion has a tubular side wall portion and a bottom portion formed so as to close one end side of the side wall portion.
    The side wall portion has a protruding portion formed so as to project in a direction away from the central axis of the parachute accommodating portion.
    A parachute device, characterized in that at least a part of the injection portion is arranged in a space defined by the protrusion inside the parachute accommodating portion.
  4.  請求項1に記載のパラシュート装置において、
     前記パラシュート収容部は、筒状の側壁部と、前記側壁部の一端側を塞ぐように形成された底部とを有し、
     前記射出部は、前記側壁部の外周面に配置されている
     ことを特徴とするパラシュート装置。
    In the parachute device according to claim 1,
    The parachute accommodating portion has a tubular side wall portion and a bottom portion formed so as to close one end side of the side wall portion.
    A parachute device characterized in that the injection portion is arranged on an outer peripheral surface of the side wall portion.
  5.  請求項3または4に記載のパラシュート装置において、
     前記側壁部の開口部を覆うカバー部材を更に備える
     ことを特徴とするパラシュート装置。
    In the parachute device according to claim 3 or 4.
    A parachute device further comprising a cover member that covers the opening of the side wall portion.
  6.  請求項1乃至5の何れか一項に記載のパラシュート装置において、
     前記飛翔体を複数有し、
     前記射出部は、前記飛翔体毎に設けられ、
     それぞれの前記射出部は、前記パラシュート収容部の中心軸を中心とした回転方向において等間隔に配置されている
     ことを特徴とするパラシュート装置。
    In the parachute device according to any one of claims 1 to 5.
    Having a plurality of the projectiles
    The injection portion is provided for each of the projectiles.
    A parachute device characterized in that the injection portions are arranged at equal intervals in a rotation direction centered on the central axis of the parachute accommodating portion.
  7.  機体ユニットと、
     前記機体ユニットに接続され、推力を発生する推力発生部と、
     前記推力発生部を制御する飛行制御部と、
     前記機体ユニットの飛行時の異常を検出する異常検出部と、請求項1乃至6の何れか一項に記載のパラシュート装置と、
     前記異常検出部による異常の検出に応じて、前記飛翔体を前記射出部から射出させる落下制御部と、を備える
     ことを特徴とする飛行装置。
    Airframe unit and
    A thrust generating unit that is connected to the airframe unit and generates thrust,
    A flight control unit that controls the thrust generation unit and
    An abnormality detection unit that detects an abnormality during flight of the airframe unit, and a parachute device according to any one of claims 1 to 6.
    A flight device including a drop control unit that ejects the flying object from the injection unit in response to detection of an abnormality by the abnormality detection unit.
PCT/JP2020/018420 2019-06-14 2020-05-01 Parachute device and flying device WO2020250598A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019110707A JP7104662B2 (en) 2019-06-14 2019-06-14 Parachute and flight equipment
JP2019-110707 2019-06-14

Publications (1)

Publication Number Publication Date
WO2020250598A1 true WO2020250598A1 (en) 2020-12-17

Family

ID=73780955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/018420 WO2020250598A1 (en) 2019-06-14 2020-05-01 Parachute device and flying device

Country Status (2)

Country Link
JP (1) JP7104662B2 (en)
WO (1) WO2020250598A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4785084B2 (en) * 2008-06-09 2011-10-05 防衛省技術研究本部長 Parachute mounting device
US20160251083A1 (en) * 2013-10-24 2016-09-01 Parazero Ltd. Apparatus and method for rapid deployment of a parachute
JP2018193055A (en) * 2017-05-16 2018-12-06 日本化薬株式会社 Expand device of parachute or paraglider, and flying object therewith

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4785084B2 (en) * 2008-06-09 2011-10-05 防衛省技術研究本部長 Parachute mounting device
US20160251083A1 (en) * 2013-10-24 2016-09-01 Parazero Ltd. Apparatus and method for rapid deployment of a parachute
JP2018193055A (en) * 2017-05-16 2018-12-06 日本化薬株式会社 Expand device of parachute or paraglider, and flying object therewith

Also Published As

Publication number Publication date
JP7104662B2 (en) 2022-07-21
JP2020203497A (en) 2020-12-24

Similar Documents

Publication Publication Date Title
WO2021084872A1 (en) Parachute device, flight device, and projectile ejection mechanism
US11745873B2 (en) Flying apparatus
JP7046923B2 (en) Aircraft and how to control the aircraft
US11753173B2 (en) Parachute device, flight device, and flying body ejection mechanism
JP7062495B2 (en) Parachute or paraglider deployer and flying object with it
WO2020230614A1 (en) Parachute device, flight device, and injection molding mechanism for flying body
WO2021161685A1 (en) Flying device and parachute device
WO2020250598A1 (en) Parachute device and flying device
JP7227869B2 (en) Parachute devices, drones and flight systems
WO2021014712A1 (en) Parachute device, flight device, and flying body ejection mechanism
JP7360921B2 (en) Parachute equipment and flight equipment
JP2023109122A (en) Linear connection tool for air vehicle, safety device, air vehicle including safety device, and tying method using linear connection tool for air vehicle
JP7154963B2 (en) Parachute device and unmanned floating aircraft using the same
JP2023003136A (en) Parachute device, ejection device, and flight device
EP4349714A1 (en) Safety device and flight vehicle provided with safety device
JP2023182484A (en) Safety device and flight body including safety device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20823123

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20823123

Country of ref document: EP

Kind code of ref document: A1