WO2020249686A1 - Dynamic balancing device for rotor - Google Patents

Dynamic balancing device for rotor Download PDF

Info

Publication number
WO2020249686A1
WO2020249686A1 PCT/EP2020/066224 EP2020066224W WO2020249686A1 WO 2020249686 A1 WO2020249686 A1 WO 2020249686A1 EP 2020066224 W EP2020066224 W EP 2020066224W WO 2020249686 A1 WO2020249686 A1 WO 2020249686A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
flyweight
weight
longitudinal axis
unbalance
Prior art date
Application number
PCT/EP2020/066224
Other languages
French (fr)
Inventor
Etienne Romain Pascal Grenier
Original Assignee
Safran Aircraft Engines
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Aircraft Engines filed Critical Safran Aircraft Engines
Publication of WO2020249686A1 publication Critical patent/WO2020249686A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/027Arrangements for balancing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M1/00Testing static or dynamic balance of machines or structures
    • G01M1/14Determining imbalance
    • G01M1/16Determining imbalance by oscillating or rotating the body to be tested
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M1/00Testing static or dynamic balance of machines or structures
    • G01M1/30Compensating imbalance
    • G01M1/36Compensating imbalance by adjusting position of masses built-in the body to be tested
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/15Load balancing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/30Retaining components in desired mutual position
    • F05D2260/34Balancing of radial or axial forces on regenerative rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/32Correcting- or balancing-weights or equivalent means for balancing rotating bodies, e.g. vehicle wheels
    • F16F15/322Correcting- or balancing-weights or equivalent means for balancing rotating bodies, e.g. vehicle wheels the rotating body being a shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2230/00Purpose; Design features
    • F16F2230/18Control arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention relates to the balancing of a rotor.
  • the present invention relates to a device and a dynamic balancing method for a rotor, for example a turbomachine rotor.
  • a rotor movable in rotation with respect to a casing about a longitudinal axis is liable to be unbalanced.
  • An unbalance corresponds to a localized imbalance of the rotor.
  • An unbalance can, for example, arise from manufacturing defects of the rotor, develop following wear of the rotor, or even appear thanks to unsteady aerodynamic phenomena when all or part of the rotor is coupled to a circulation of fluid during its rotation.
  • An unbalance generally causes vibrations within the rotor, when the latter rotates around the longitudinal axis. Such vibrations are detrimental to the correct functioning of the rotor.
  • Balancing a rotor is therefore an essential step in its design and operation.
  • a so-called "static” solution involves disassembling the rotor in order to install a set of balancing weights at given rotor positions.
  • Such static balancing therefore requires both the immobilization of the rotor as such, but also structures to which said rotor is linked. Furthermore, determining the number and positions of the weights is a tedious, sophisticated and expensive undertaking.
  • Dynamic rotor balancing devices are, in fact, known from the state of the art, and make it possible to automate the balancing of the rotor.
  • One of these devices has, for example, been described in document FR 3 004 418, in the name of the Applicant.
  • two weights are movable along a guide slide surrounding the longitudinal axis of a turbomachine rotor, as a function of an estimate of the unbalance of said rotor.
  • An object of the invention is to provide dynamic balancing of a rotor in a reliable, simple and inexpensive manner.
  • a dynamic balancing device for a rotor said rotor being movable in rotation with respect to a casing about a longitudinal axis, the device comprising:
  • a second flyweight mounted so as to be able to rotate on the support axis about the longitudinal axis.
  • the device according to the invention can include at least one of the characteristics below, taken alone or in combination:
  • each of the first weight and the second weight is capable of being rotated around the longitudinal axis without interfering with the other of the first weight and the second weight
  • the first flyweight is offset from the second flyweight along the longitudinal axis
  • At least one of the first motor and the second motor is an electric motor
  • the first weight has a shape complementary to the second weight so that, when the first weight and the second weight are positioned with respect to each other with a predefined angular offset, around the longitudinal axis, the device exerts no unbalance on the rotor.
  • an assembly for a turbomachine comprising:
  • a turbomachine comprising an assembly as described above.
  • the method according to the invention can further comprise a step of simultaneously rotating the first flyweight and the second flyweight, the first flyweight being moved in phase opposition with the second flyweight about the axis support so as to:
  • Figure 1 is a schematic sectional view of a turbomachine.
  • Figure 2 is a schematic sectional view of an assembly comprising an exemplary embodiment of a dynamic balancing device according to the invention.
  • Figure 3 schematically illustrates part of an exemplary implementation of a dynamic balancing method according to the invention.
  • FIG. 4 schematically illustrates another part of an example of implementation of a dynamic balancing method according to the invention.
  • FIG. 5 is a flowchart illustrating an example of the implementation of a dynamic balancing method according to the invention.
  • a device 1 and a dynamic balancing method E for a rotor, typically a turbomachine rotor 2, will now be described.
  • a turbomachine 2 comprises at least one casing 20, for example a set of casings forming a fairing (ie stator assembly) 20, a fan 21, a low pressure compressor 22, a high pressure compressor 23, a chamber combustion chamber 24, a high pressure turbine 25 and a low pressure turbine 26.
  • Each of the blower 21, of the low pressure compressor 22, of the high pressure compressor 23, of the high pressure turbine 25, and of the low pressure turbine 26, comprises a rotor movable in rotation with respect to the casing 20 about a longitudinal axis XX.
  • the fan 21 comprises a plurality of blades 210 fixed by their foot to a hub 212 on which is fixed an air inlet cone 214 centered on the longitudinal axis XX.
  • the fan 21 and the low pressure compressor 22 are integral in rotation, and are capable of being set in rotation by a low pressure shaft 27 which is itself capable of being put into operation. rotation by the low pressure turbine 26.
  • the assembly formed by the fan 21, the low pressure compressor 22, the low pressure shaft 27 and the low pressure turbine 26, forms the low pressure body.
  • the high pressure compressor 23 is, for its part, capable of being rotated by a high pressure shaft 28, which is itself capable of being rotated by the high pressure turbine 25.
  • the assembly formed by the high pressure compressor 23, the high pressure shaft 28 and the high pressure turbine 25, form the high pressure body.
  • the positioning of each of the low pressure shaft 27 and the high pressure shaft 28 is provided by a set of bearings (not shown).
  • the blower 21 draws in an air flow which separates between a secondary flow, circulating around the assembly 20 of casings, and a primary flow, successively compressed within the low pressure compressor 22 and the high pressure compressor 23 , ignited within the combustion chamber 24, then successively expanded within the high pressure turbine 25 and the low pressure turbine 26.
  • Upstream and downstream are here defined relative to the direction of normal air flow through the turbomachine 2 in operation.
  • an axial direction corresponds to the direction of the longitudinal axis XX
  • a radial direction is a direction which is perpendicular to this longitudinal axis XX and which passes through said longitudinal axis XX
  • a circumferential or tangential direction corresponds to the direction of a flat, closed curved line, all points of which are equidistant from the longitudinal axis XX.
  • the terms “internal (or internal)” and “external (or external)”, respectively, are used with reference to a radial direction such that the part or the internal face (ie radially internal) d an element is closer to the longitudinal axis XX than the part or the external face (ie radially external) of the same element.
  • a rotor such as a turbomachine rotor 2
  • An unbalance corresponds to a localized imbalance of the rotor and generally causes vibrations within the rotor, during the rotation of the latter around the longitudinal axis XX which is its axis of rotation.
  • An unbalance is characterized in particular by a radial direction, a distance from the axis of rotation XX of the rotor, and an intensity. It can also be measured according to different methods.
  • the unbalance of the blower 21 it is possible to measure the unbalance of the blower 21 by placing one or more vibration sensors, such as accelerometers, at one or more bearings of the low pressure shaft 27, the unbalance then being deduced from overall models using the measurements obtained from the sensors of vibration.
  • vibration sensors such as accelerometers
  • balancing the rotor requires knowing precisely the unbalance in order to be able to correct it. This is particularly advantageous during the design of the turbomachine 2, for example during work carried out on models of said turbomachine 2.
  • a dynamic balancing device 1 of a rotor 21, 22, 27, 26 movable in rotation relative to a set 20 of housings around a longitudinal axis, such as a turbomachine rotor 2, for example a low-pressure body model 21, 22, 27, 26 of a turbomachine 2, comprises:
  • the support axis 100 is thus integral in rotation with the rotor about the longitudinal axis X-X.
  • the fact that the support axis 100 extends along the longitudinal axis XX makes it possible to s' free from centrifugal forces exerted by the weights 11, 12 on the shaft 27 driving the rotor 21, 22, 27, 26 in rotation, and also extending along the longitudinal axis XX.
  • by varying the angular position of the two weights 1 1, 12 around the longitudinal axis XX it is possible to create a counter-unbalance varying between 0 and 2 times the individual unbalance of each weight 1 1 , 12.
  • the dynamic balancing device 1 comprises a support 10 suitable for being mounted fixedly on the rotor, so as to be integral in rotation with the rotor.
  • the support axis 100 has:
  • the first flyweight 11 is mounted to be movable in rotation on the first end part 1001
  • the second weight 12 is mounted to be movable in rotation on the second end part 1002.
  • Each of the first flyweight 11 and the second flyweight 12 is advantageously capable of being rotated around the longitudinal axis XX without interfering with the other of the first flyweight 11 and the second flyweight 12.
  • This allows the dynamic balancing device 1 to provide a finer unbalance correction, because the two weights 11, 12 can occupy the same angular position around the longitudinal axis XX, without coming into abutment against one another.
  • the counterbalance created can take any angular position around the longitudinal axis XX.
  • the first weight 11 is offset axially with respect to the second weight 12, that is to say it is offset with respect to the second weight 12 along the axis longitudinal XX.
  • the first weight 11 and the second weight 12 being able to be arranged in the same position along the longitudinal axis XX.
  • one of the first flyweight 11 and the second flyweight 12 is, for example, hollowed out with a slot having a shape complementary to the other of the first flyweight 11 and the second flyweight 12 so that the latter can be driven in rotation about the longitudinal axis XX without interfering with that of the first weight 11 and of the second weight 12 which is hollowed out.
  • each of the first flyweight 11 and the second flyweight 12 advantageously has the shape of a half-disc, the first flyweight 11 preferably being identical to the second flyweight 12 In this way, the space occupied by the dynamic balancing device 1 is optimized.
  • the first flyweight 11 has a shape complementary to the second flyweight 12 so that, when the first flyweight 11 and the second flyweight 12 are positioned relative to each other with a predefined angular offset around of the longitudinal axis XX, typically 180 °, the dynamic balancing device 1 exerts no unbalance on the rotor.
  • the dynamic balancing device 1 may, in one embodiment, comprise more than two weights 11, 12.
  • the other weights may or may not be offset axially relative to the first weight 11 and to the second weight 12, and / or be, or not, offset axially with respect to each other.
  • the additional weights make it possible in particular to correct imbalances in the form of moments of inertia with respect to the longitudinal axis X-X.
  • At least one of the first flyweight 11 and the second flyweight 12 comprises a dense material, preferably with a density of between 15 and 20 tonnes per cubic meter.
  • the two weights 1 1, 12 include a material, for example Triamet® G19, which has a density of 18 tonnes per cubic meter.
  • Each of the weights 1 1, 12 then advantageously has an unbalance of between 75 and 150 cm. g, preferably equal to 100 cm. g, which is in particular sufficient for balancing unbalances of experimental rotors in the form of models.
  • the dynamic balancing device 1 comprises:
  • a second motor 14 configured to drive the second flyweight 12 in rotation.
  • Each of the first motor 13 and of the second motor 14 is configured to be fixedly mounted on the rotor, for example by being suitable for being fixedly mounted on a support 15, 16 corresponding, the supports 15, 16 of the motors 13, 14 can then be fixed to the support 10 of the weights, for example by means of bolted screws 18 passing through each of these three supports 10, 15, 16.
  • At least one of the first motor 13 and the second motor 14 is an electric motor. It is indeed an engine that can easily be made compact, which can be particularly interesting when the dynamic balancing device 1 is used in a model, of reduced dimensions.
  • At least one of the first motor 13 and the second motor 14 is configured to drive the weights 11, 12 at speeds between 10,000 and 15,000 revolutions per minute, preferably 12,000 revolutions per minute.
  • At least one of the first motor 13 and of the second motor 14 drives the corresponding flyweight 11, 12 via a reduction mechanism (not shown).
  • a reduction mechanism (not shown).
  • the use of a reduction mechanism is moreover all the more advantageous as the driving speed of the motors 13, 14 is high.
  • the reduction mechanism can serve as a safety mechanism in the event of failure of the motors 13, 14. In this case, the weights 1 1, 12 could indeed generate a greater unbalance. at the initial unbalance of the rotor.
  • the presence of the reduction mechanism makes it possible to keep the weights 11, 12 in their position at the time of failure, the time to perform maintenance.
  • the dynamic balancing device 1 is controllable remotely. To do this, it typically includes a computer (not shown). In addition, in order to ensure the control and the supply of electric power to the motors 13, 14 in a frame, it comprises a telemetry (not shown) which allows signals to be transmitted between a rotating frame and a fixed frame, and comprises for example two rotary transformers, one for the electric power, and the other for the relay of weak signals. In other embodiments, the electrical power supply is provided by accumulators (not shown) on board the dynamic balancing device 1, the commands being relayed by means of intangible media such as Wifi or Bluetooth.
  • the dynamic balancing device 1 can typically be controlled as follows.
  • a balancing (or unbalancing) order is sent to the dynamic balancing device 1, once the latter is mounted on a rotor to be balanced (or unbalanced).
  • This order can, for example, consist of a counter-unbalance (or unbalance) objective, that is to say to reach a specific counter-unbalance (or unbalance) value for the rotor.
  • the computer receives the order and compares it to the dynamic situation of the rotor, typically using the data provided by the vibration sensors arranged at the bearings of the rotor. It then controls the operation of the motors 13, 14 which rotate the weights 1 1, 12 around the longitudinal axis, and return the positions reached to the computer. By slaving, the computer then refines the position of the weights 1 1, 12 in order to achieve the fixed counter-unbalance.
  • a dynamic balancing process E of a rotor comprises the following steps.
  • the unbalance of the rotor is symbolized by a disc connected by a rod to the longitudinal axis X-X.
  • the radius of the disc corresponds to the intensity of the unbalance
  • the length of the rod corresponds to the distance of the unbalance from the longitudinal axis X-X
  • the direction of the rod corresponds to the radial direction of the unbalance.
  • the dynamic balancing process E described is implemented during the operation of the rotor, that is to say when the rotor is set in rotation with respect to the housing 20 around the longitudinal axis X-X.
  • a first step the radial direction of the unbalance is sought.
  • the angular position of the unbalance seeks to be determined.
  • the first weight 11 is first of all rotated E1 relative to the second weight 12 around the support axis 10 so that the first weight 11 and the second flyweight 12 occupy a common angular sector A.
  • the flyweights 1 1, 12 are rotated one by one relative to the other so as to be positioned at 180 ° from each other (ie symmetrically opposite to each other with respect to the longitudinal axis), within an angular opening O near.
  • the first weight 11 and the second weight 12 are rotated E2 simultaneously in phase with the first weight 11 around the support axis 10 so as to:
  • the intensity of the unbalance is sought and counterbalanced.
  • the first flyweight 11 and the second flyweight 12 are placed in simultaneous rotation E3, the first flyweight 11 being moved in phase opposition with the second flyweight 12 around the support axis 10 in order to :
  • the two weights 1 1, 12 are rotated with equal speeds but opposite directions of rotation until the dynamic situation of the rotor becomes low, that is to say that the assembly formed by the rotor and the dynamic balancing device 1 have a total residual unbalance (ie the sum of the initial unbalance of the rotor and the counter-unbalance formed by the two weights 11, 12) which is minimal.
  • the common angular sector A is then centered on the radial direction of the unbalance, and opposite the unbalance with respect to the longitudinal axis X-X.
  • the weights 1 1, 12 are rotated simultaneously around the axis of support 10, the first weight 11 being displaced in phase opposition with the second weight 12, so as to increase the intensity of the initial unbalance, that is to say until the intensity of the unbalance is worsened.
  • the common angular sector A is then centered on the radial direction of the unbalance, but this time on the same side as the unbalance with respect to the longitudinal axis X-X.
  • the dynamic balancing device 1 is housed within the cone 214 of the fan 21 of the turbomachine 2. This is not, however, limiting, since such a device d dynamic balancing 1 can be arranged at any position within the low pressure body 21, 22, 27, 26.
  • the device 1 and the dynamic balancing method E described it is possible to adjust the balancing of a rotor without stopping the machine, or removing parts to gain access to the balancing zones and implement the adjustments. Even, it is possible to intentionally unbalance the rotor, for example during the design work of said rotor, in order to study its behavior, typically on a model.
  • these elements are in particular advantageous for autonomously and automatically correcting the unbalance of a rotor, whether during maintenance, during manufacture, for example in series production, or during test phases on said rotor.
  • this determination can be implemented by means of a dynamic model linking the information acquired by the vibration sensors and that relating to the relative position of weights around the longitudinal axis. This is in particular simpler and more efficient than the methods of determining unbalance known from the state of the art, where the unbalance is determined by reading the number and the radial position of weights making it possible to await a fixed vibratory situation.
  • the turbomachine 2 is of the double-body, double-flow, direct-drive turbojet type. This is not, however, limiting, given that the device 1 and the dynamic balancing method E described can also be used for any type of turbomachine 2, such as a turboprop, a turbojet having a gearbox architecture, or a turbomachine of the triple-body, double-flow type, whether it be moreover models or full-size turbomachines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Testing Of Balance (AREA)

Abstract

The present invention concerns a dynamic balancing device (1) for a rotor, the rotor being able to rotate relative to a housing around a longitudinal axis (X-X), the device (1) comprising: - a support shaft (100) suitable for being fixedly mounted on the rotor, extending along the longitudinal axis (X-X), - a first flyweight (11) mounted so as to be able to rotate on the support shaft (100) around the longitudinal axis (X-X), and - a second flyweight (12) mounted so as to be able to rotate on the support shaft (100) around the longitudinal axis (X-X).

Description

DISPOSITIF D’EQUILIBRAGE DYNAMIQUE POUR ROTOR DYNAMIC BALANCING DEVICE FOR ROTOR
DOMAINE DE L'INVENTION FIELD OF THE INVENTION
La présente invention concerne l’équilibrage d’un rotor. The present invention relates to the balancing of a rotor.
Plus précisément, la présente invention concerne un dispositif et un procédé d’équilibrage dynamique pour rotor, par exemple un rotor de turbomachine. More specifically, the present invention relates to a device and a dynamic balancing method for a rotor, for example a turbomachine rotor.
ETAT DE LA TECHNIQUE STATE OF THE ART
Un rotor mobile en rotation par rapport à un carter autour d’un axe longitudinal, est susceptible de présenter un balourd. A rotor movable in rotation with respect to a casing about a longitudinal axis is liable to be unbalanced.
Un balourd correspond à un déséquilibre localisé du rotor. Un balourd peut, par exemple, naître de défauts de fabrication du rotor, se développer suite à l’usure du rotor, ou encore apparaître à la faveur de phénomènes aérodynamiques instationnaires lorsque tout ou partie du rotor est couplé à une circulation de fluide lors de sa mise en rotation. An unbalance corresponds to a localized imbalance of the rotor. An unbalance can, for example, arise from manufacturing defects of the rotor, develop following wear of the rotor, or even appear thanks to unsteady aerodynamic phenomena when all or part of the rotor is coupled to a circulation of fluid during its rotation.
Un balourd entraîne généralement des vibrations au sein du rotor, lors de la mise en rotation de ce-dernier autour de l’axe longitudinal. De telles vibrations sont dommageables au bon fonctionnement du rotor. An unbalance generally causes vibrations within the rotor, when the latter rotates around the longitudinal axis. Such vibrations are detrimental to the correct functioning of the rotor.
L’équilibrage d’un rotor constitue donc une étape essentielle de sa conception et de son exploitation. Balancing a rotor is therefore an essential step in its design and operation.
Plusieurs solutions d’équilibrage d’un rotor présentant un balourd ont déjà été proposées. Several solutions for balancing a rotor exhibiting unbalance have already been proposed.
Une solution dite « statique » implique le démontage du rotor en vue d’installer un ensemble de masselottes d'équilibrage à des positions données du rotor. Un tel équilibrage statique requiert donc à la fois l'immobilisation du rotor en tant que tel, mais aussi des structures auxquelles ledit rotor est lié. En outre, la détermination du nombre et des positions des masselottes constitue une entreprise fastidieuse, sophistiquée et coûteuse. A so-called "static" solution involves disassembling the rotor in order to install a set of balancing weights at given rotor positions. Such static balancing therefore requires both the immobilization of the rotor as such, but also structures to which said rotor is linked. Furthermore, determining the number and positions of the weights is a tedious, sophisticated and expensive undertaking.
Des solutions dites « dynamiques » ont donc été proposées. Des dispositifs d’équilibre dynamique pour rotor sont, en effet, connus de l’état de la technique, et permettent d’automatiser l'équilibrage du rotor. Un de ces dispositifs a, par exemple, été décrit dans le document FR 3 004 418, au nom de la Demanderesse. Dans ce dispositif, deux masselottes sont mobiles le long d'une coulisse de guidage entourant l’axe longitudinal d’un rotor de turbomachine, en fonction d'une estimation du balourd dudit rotor. So-called “dynamic” solutions have therefore been proposed. Dynamic rotor balancing devices are, in fact, known from the state of the art, and make it possible to automate the balancing of the rotor. One of these devices has, for example, been described in document FR 3 004 418, in the name of the Applicant. In this device, two weights are movable along a guide slide surrounding the longitudinal axis of a turbomachine rotor, as a function of an estimate of the unbalance of said rotor.
De tels dispositifs n’apportent toutefois pas entière satisfaction. Notamment, les deux masselottes ne peuvent pas prendre la même position angulaire autour de l’axe longitudinal, puisqu’elles viennent nécessairement en butée l’une contre l’autre. Par conséquent, la finesse de correction d’un balourd n’est pas optimale. However, such devices are not entirely satisfactory. In particular, the two weights cannot take the same angular position around the longitudinal axis, since they necessarily come into abutment against one another. Consequently, the fineness of correction of an unbalance is not optimal.
Il existe donc un besoin de pallier au moins des inconvénients de l’état de la technique. There is therefore a need to at least overcome the drawbacks of the state of the art.
EXPOSE DE L'INVENTION DISCLOSURE OF THE INVENTION
Un but de l’invention est d’assurer l’équilibrage dynamique d’un rotor de manière fiable, simple et peu coûteuse. An object of the invention is to provide dynamic balancing of a rotor in a reliable, simple and inexpensive manner.
Il est à cet effet proposé, selon un premier aspect de l’invention un dispositif d’équilibrage dynamique pour rotor, ledit rotor étant mobile en rotation par rapport à un carter autour d’un axe longitudinal, le dispositif comprenant : To this end, there is proposed, according to a first aspect of the invention, a dynamic balancing device for a rotor, said rotor being movable in rotation with respect to a casing about a longitudinal axis, the device comprising:
- un axe de support propre à être monté fixe sur le rotor, en s’étendant selon l’axe longitudinal, - a support axis suitable for being mounted fixed on the rotor, extending along the longitudinal axis,
- une première masselotte montée mobile en rotation sur l’axe de support autour de l’axe longitudinal, et - a first flyweight mounted to rotate on the support axis around the longitudinal axis, and
- une deuxième masselotte montée mobile en rotation sur l’axe de support autour de l’axe longitudinal. - a second flyweight mounted so as to be able to rotate on the support axis about the longitudinal axis.
Dans un tel dispositif d’équilibrage dynamique, il n’est plus nécessaire de modifier la position radiale ou la masse d’une masselotte d’équilibrage pour déterminer et/ou corriger un balourd de rotor. En effet, il suffit d’exploiter le déphasage entre les deux masselottes, qui procure par ailleurs une correction plus fine. En outre, il est moins coûteux énergétiquement de mettre en rotation des masselottes que de les déplacer radialement, puisqu’il n’est plus nécessaire de lutter contre les efforts centrifuges générés par le rotor lorsqu’il est mis en rotation. Ceci est d’ailleurs d’autant avantageux que les rotors à équilibrer sont de dimensions réduites, tels que, par exemple, les maquettes de rotors expérimentaux. In such a dynamic balancing device, it is no longer necessary to modify the radial position or the mass of a balancing weight to determine and / or correct a rotor unbalance. Indeed, it suffices to exploit the phase shift between the two weights, which also provides a finer correction. In addition, it is less costly in terms of energy to rotate the weights than to move them radially, since it is no longer necessary to combat the centrifugal forces generated by the rotor when it is rotated. This is all the more advantageous in that the rotors to be balanced are of small dimensions, such as, for example, experimental rotor models.
Avantageusement, mais facultativement, le dispositif selon l’invention peut comprendre l’une au moins des caractéristiques ci-dessous, prise seule ou en combinaison : Advantageously, but optionally, the device according to the invention can include at least one of the characteristics below, taken alone or in combination:
- chacune de la première masselotte et de la deuxième masselotte est susceptible d’être entraînée en rotation autour de l’axe longitudinal sans interférer avec l’autre de la première masselotte et de la deuxième masselotte, - each of the first weight and the second weight is capable of being rotated around the longitudinal axis without interfering with the other of the first weight and the second weight,
- la première masselotte est décalée par rapport à la deuxième masselotte le long de l’axe longitudinal, - the first flyweight is offset from the second flyweight along the longitudinal axis,
- il comprend en outre un support, l’axe de support présentant : - it further comprises a support, the support axis having:
o une première partie d’extrémité faisant saillie d’une première surface du support, o une deuxième partie d’extrémité faisant saillie d’une deuxième surface du support, opposée à la première surface, o a first end portion projecting from a first surface of the support, o a second end portion projecting from a second surface of the support, opposite the first surface,
o la première masselotte étant montée mobile en rotation sur la première partie d’extrémité, et o the first weight being mounted so as to be able to rotate on the first end part, and
o la deuxième masselotte étant montée mobile en rotation sur la deuxième partie d’extrémité,o the second weight being mounted so as to be able to rotate on the second end part,
- il comprend en outre : - it also includes:
o un premier moteur configuré pour entraîner en rotation la première masselotte, et o un deuxième moteur configuré pour entraîner en rotation la deuxième masselotte, chacun du premier moteur et du deuxième moteur étant configuré pour être monté fixe sur le rotor, o a first motor configured to drive the first flyweight in rotation, and o a second motor configured to drive the second flyweight in rotation, each of the first motor and the second motor being configured to be fixedly mounted on the rotor,
- l’un au moins parmi le premier moteur et le deuxième moteur est un moteur électrique, et - at least one of the first motor and the second motor is an electric motor, and
- la première masselotte présente une forme complémentaire de la deuxième masselotte de sorte que, lorsque la première masselotte et la deuxième masselotte sont positionnées l’une par rapport à l’autre avec un décalage angulaire prédéfini, autour de l’axe longitudinal, le dispositif n’exerce aucun balourd sur le rotor. - the first weight has a shape complementary to the second weight so that, when the first weight and the second weight are positioned with respect to each other with a predefined angular offset, around the longitudinal axis, the device exerts no unbalance on the rotor.
Selon un deuxième aspect de l’invention, il est proposé un ensemble pour turbomachine comprenant : According to a second aspect of the invention, there is provided an assembly for a turbomachine comprising:
- un carter, - a housing,
- un rotor mobile en rotation par rapport au carter autour d’un axe longitudinal, et - a rotor movable in rotation with respect to the housing about a longitudinal axis, and
- un dispositif d’équilibrage dynamique pour rotor tel que précédemment décrit. - a dynamic balancing device for a rotor as described above.
Selon un troisième aspect de l’invention, il est proposé une turbomachine comprenant un ensemble tel que précédemment décrit. According to a third aspect of the invention, there is provided a turbomachine comprising an assembly as described above.
Selon un quatrième aspect de l’invention, il est proposé un procédé d’équilibrage dynamique d’un rotor, ledit rotor : According to a fourth aspect of the invention, there is provided a method of dynamic balancing of a rotor, said rotor:
- étant mobile en rotation par rapport à un carter autour d’un axe longitudinal, et - being movable in rotation with respect to a housing around a longitudinal axis, and
- présentant un balourd ayant une direction radiale et une intensité, - having an unbalance having a radial direction and an intensity,
le procédé comprenant des étapes de : the method comprising steps of:
- mise en rotation d’une première masselotte par rapport à une deuxième masselotte autour d’un axe de support monté fixe sur le rotor, et s’étendant selon l’axe longitudinal, de sorte à ce que la première masselotte et la deuxième masselotte occupent un secteur angulaire commun, et - Rotation of a first weight relative to a second weight about a support axis fixedly mounted on the rotor, and extending along the longitudinal axis, so that the first weight and the second weight occupy a common angular sector, and
- mise en rotation simultanée de la première masselotte et de la deuxième masselotte en phase avec la première masselotte autour de l’axe de support de sorte à : - simultaneous rotation of the first weight and the second weight in phase with the first weight around the support axis so as to:
o maintenir constant le secteur angulaire commun, et o déplacer ledit secteur angulaire commun autour de l’axe de support jusqu’à aligner le secteur angulaire commun avec la direction radiale du balourd. o keep the common angular sector constant, and o moving said common angular sector around the support axis until the common angular sector is aligned with the radial direction of the unbalance.
Avantageusement, mais facultativement, le procédé selon l’invention peut en outre comprendre une étape de mise en rotation simultanée de la première masselotte et de la deuxième masselotte, la première masselotte étant déplacée en opposition de phase avec la deuxième masselotte autour de l’axe de support de sorte à : Advantageously, but optionally, the method according to the invention can further comprise a step of simultaneously rotating the first flyweight and the second flyweight, the first flyweight being moved in phase opposition with the second flyweight about the axis support so as to:
- augmenter le secteur angulaire commun, et - increase the common angular sector, and
- jusqu’à compenser l’intensité du balourd. - until compensating for the intensity of the unbalance.
DESCRIPTION DES FIGURES DESCRIPTION OF FIGURES
D’autres caractéristiques, buts et avantages de l’invention ressortiront de la description qui suit, qui est purement illustrative et non limitative, et qui doit être lue en regard des dessins annexés sur lesquels : Other characteristics, aims and advantages of the invention will emerge from the following description, which is purely illustrative and not limiting, and which should be read with reference to the accompanying drawings in which:
La figure 1 est une vue en coupe schématique d’une turbomachine. Figure 1 is a schematic sectional view of a turbomachine.
La figure 2 est vue en coupe schématique d’un ensemble comprenant un exemple de réalisation d’un dispositif d’équilibrage dynamique selon l’invention. Figure 2 is a schematic sectional view of an assembly comprising an exemplary embodiment of a dynamic balancing device according to the invention.
La figure 3 illustre de façon schématique une partie d’un exemple de mise en œuvre d’un procédé d’équilibrage dynamique selon l’invention. Figure 3 schematically illustrates part of an exemplary implementation of a dynamic balancing method according to the invention.
La figure 4 illustre de façon schématique une autre partie d’un exemple de mise en œuvre d’un procédé d’équilibrage dynamique selon l’invention. FIG. 4 schematically illustrates another part of an example of implementation of a dynamic balancing method according to the invention.
La figure 5 est un organigramme illustrant un exemple de mise en œuvre d’un procédé d’équilibrage dynamique selon l’invention. FIG. 5 is a flowchart illustrating an example of the implementation of a dynamic balancing method according to the invention.
Sur l’ensemble des figures, les éléments similaires portent des références identiques. In all of the figures, similar elements bear identical references.
DESCRIPTION DETAILLEE DE L'INVENTION DETAILED DESCRIPTION OF THE INVENTION
En référence aux figures, un dispositif 1 et un procédé E d’équilibrage dynamique pour rotor, typiquement un rotor de turbomachine 2, vont à présent être décrits. With reference to the figures, a device 1 and a dynamic balancing method E for a rotor, typically a turbomachine rotor 2, will now be described.
En référence à la figure 1 , une turbomachine 2 comprend au moins un carter 20, par exemple un ensemble de carters formant carénage (i.e. ensemble stator) 20, une soufflante 21 , un compresseur basse pression 22, un compresseur haute pression 23, une chambre de combustion 24, une turbine haute pression 25 et une turbine basse pression 26. Chacun de la soufflante 21 , du compresseur basse pression 22, du compresseur haute pression 23, de la turbine haute pression 25, et de la turbine basse pression 26, comprend un rotor mobile en rotation par rapport au carter 20 autour d’un axe longitudinal X-X. De plus, la soufflante 21 comprend une pluralité de pales 210 fixées par leur pied à un moyeu 212 sur lequel est fixé un cône 214 d’entrée d’air centré sur l’axe longitudinal X-X. With reference to FIG. 1, a turbomachine 2 comprises at least one casing 20, for example a set of casings forming a fairing (ie stator assembly) 20, a fan 21, a low pressure compressor 22, a high pressure compressor 23, a chamber combustion chamber 24, a high pressure turbine 25 and a low pressure turbine 26. Each of the blower 21, of the low pressure compressor 22, of the high pressure compressor 23, of the high pressure turbine 25, and of the low pressure turbine 26, comprises a rotor movable in rotation with respect to the casing 20 about a longitudinal axis XX. In addition, the fan 21 comprises a plurality of blades 210 fixed by their foot to a hub 212 on which is fixed an air inlet cone 214 centered on the longitudinal axis XX.
Dans le mode de réalisation illustré en figure 1 , la soufflante 21 et le compresseur basse pression 22 sont solidaires en rotation, et sont susceptibles d’être mis en rotation par un arbre basse pression 27 qui est lui-même susceptible d’être mis en rotation par la turbine basse pression 26. L’ensemble formé par la soufflante 21 , le compresseur basse pression 22, l’arbre basse pression 27 et la turbine basse pression 26, forme le corps basse pression. Le compresseur haute pression 23 est, quant à lui, susceptible d’être mis en rotation par un arbre haute pression 28, qui est lui-même susceptible d’être mis en rotation par la turbine haute pression 25. L’ensemble formé par le compresseur haute pression 23, l’arbre haute pression 28 et la turbine haute pression 25, forme le corps haute pression. Le positionnement de chacun de l’arbre basse pression 27 et de l’arbre haute pression 28, est assuré par un ensemble de paliers (non représentés). In the embodiment illustrated in FIG. 1, the fan 21 and the low pressure compressor 22 are integral in rotation, and are capable of being set in rotation by a low pressure shaft 27 which is itself capable of being put into operation. rotation by the low pressure turbine 26. The assembly formed by the fan 21, the low pressure compressor 22, the low pressure shaft 27 and the low pressure turbine 26, forms the low pressure body. The high pressure compressor 23 is, for its part, capable of being rotated by a high pressure shaft 28, which is itself capable of being rotated by the high pressure turbine 25. The assembly formed by the high pressure compressor 23, the high pressure shaft 28 and the high pressure turbine 25, form the high pressure body. The positioning of each of the low pressure shaft 27 and the high pressure shaft 28 is provided by a set of bearings (not shown).
En fonctionnement, la soufflante 21 aspire un flux d’air qui se sépare entre un flux secondaire, circulant autour de l’ensemble 20 de carters, et un flux primaire, successivement comprimé au sein du compresseur basse pression 22 et du compresseur haute pression 23, enflammé au sein de la chambre de combustion 24, puis successivement détendu au sein de la turbine haute pression 25 et de la turbine basse pression 26. In operation, the blower 21 draws in an air flow which separates between a secondary flow, circulating around the assembly 20 of casings, and a primary flow, successively compressed within the low pressure compressor 22 and the high pressure compressor 23 , ignited within the combustion chamber 24, then successively expanded within the high pressure turbine 25 and the low pressure turbine 26.
L'amont et l'aval sont ici définis par rapport au sens d'écoulement normal d’air à travers la turbomachine 2 en fonctionnement. De même, une direction axiale correspond à la direction de l'axe longitudinal X-X, une direction radiale est une direction qui est perpendiculaire à cet axe longitudinal X-X et qui passe par ledit axe longitudinal X-X, et une direction circonférentielle, ou tangentielle, correspond à la direction d’une ligne courbe plane et fermée, dont tous les points se trouvent à égale distance de l’axe longitudinal X-X. Enfin, et sauf précision contraire, les termes « interne (ou intérieur) » et « externe (ou extérieur) », respectivement, sont utilisés en référence à une direction radiale de sorte que la partie ou la face interne (i.e. radialement interne) d'un élément est plus proche de l'axe longitudinal X-X que la partie ou la face externe (i.e. radialement externe) du même élément. Upstream and downstream are here defined relative to the direction of normal air flow through the turbomachine 2 in operation. Likewise, an axial direction corresponds to the direction of the longitudinal axis XX, a radial direction is a direction which is perpendicular to this longitudinal axis XX and which passes through said longitudinal axis XX, and a circumferential or tangential direction corresponds to the direction of a flat, closed curved line, all points of which are equidistant from the longitudinal axis XX. Finally, and unless otherwise specified, the terms "internal (or internal)" and "external (or external)", respectively, are used with reference to a radial direction such that the part or the internal face (ie radially internal) d an element is closer to the longitudinal axis XX than the part or the external face (ie radially external) of the same element.
Un rotor, tel qu’un rotor de turbomachine 2, est susceptible de présenter un balourd. Un balourd correspond à un déséquilibre localisé du rotor et entraîne généralement des vibrations au sein du rotor, lors de la mise en rotation de ce-dernier autour de l’axe longitudinal X-X qui est son axe de rotation. Un balourd se caractérise notamment par une direction radiale, une distance à l’axe de rotation X-X du rotor, et une intensité. Il peut, par ailleurs, être mesuré selon différents procédés. Par exemple, il est possible de mesurer le balourd de la soufflante 21 en disposant un ou plusieurs capteurs de vibrations, tels que des accéléromètres, au niveau d’un ou plusieurs paliers de l’arbre basse pression 27, le balourd étant ensuite déduit à partir de modèles d’ensemble utilisant les mesures issues des capteurs de vibration. Afin d’équilibrer un rotor et supprimer un balourd, il est avantageux de créer artificiellement un contre-balourd, de même intensité, de même direction radiale, mais opposé au balourd par rapport à l’axe de rotation X-X du rotor. A rotor, such as a turbomachine rotor 2, is liable to be unbalanced. An unbalance corresponds to a localized imbalance of the rotor and generally causes vibrations within the rotor, during the rotation of the latter around the longitudinal axis XX which is its axis of rotation. An unbalance is characterized in particular by a radial direction, a distance from the axis of rotation XX of the rotor, and an intensity. It can also be measured according to different methods. For example, it is possible to measure the unbalance of the blower 21 by placing one or more vibration sensors, such as accelerometers, at one or more bearings of the low pressure shaft 27, the unbalance then being deduced from overall models using the measurements obtained from the sensors of vibration. In order to balance a rotor and eliminate an unbalance, it is advantageous to artificially create a counter-unbalance, of the same intensity, of the same radial direction, but opposite to the unbalance with respect to the axis of rotation XX of the rotor.
Ainsi, l’équilibrage du rotor nécessite de connaître avec précision le balourd afin de pouvoir le corriger. Ceci est particulièrement avantageux lors de la conception de la turbomachine 2, par exemple lors des travaux effectués sur des maquettes de ladite turbomachine 2. Thus, balancing the rotor requires knowing precisely the unbalance in order to be able to correct it. This is particularly advantageous during the design of the turbomachine 2, for example during work carried out on models of said turbomachine 2.
En référence à la figure 2, un dispositif d’équilibrage dynamique 1 d’un rotor 21 , 22, 27, 26 mobile en rotation par rapport à un ensemble 20 de carters autour d’un axe longitudinal, tel qu’un rotor de turbomachine 2, par exemple une maquette de corps basse pression 21 , 22, 27, 26 d’une turbomachine 2, comprend : Referring to Figure 2, a dynamic balancing device 1 of a rotor 21, 22, 27, 26 movable in rotation relative to a set 20 of housings around a longitudinal axis, such as a turbomachine rotor 2, for example a low-pressure body model 21, 22, 27, 26 of a turbomachine 2, comprises:
- un axe de support 100 propre à être monté fixe sur le rotor, en s’étendant selon l’axe longitudinal X-X, - a support axis 100 suitable for being fixedly mounted on the rotor, extending along the longitudinal axis X-X,
- une première masselotte 11 montée mobile en rotation sur l’axe de support 100 autour de l’axe longitudinal X-X, et - a first flyweight 11 mounted to rotate on the support axis 100 around the longitudinal axis X-X, and
- une deuxième masselotte 12 montée mobile en rotation sur l’axe de support 100 autour de l’axe longitudinal X-X. - a second flyweight 12 rotatably mounted on the support axis 100 around the longitudinal axis X-X.
L’axe de support 100 est ainsi solidaire en rotation du rotor autour de l’axe longitudinal X-X. En outre, contrairement à des dispositifs de l’état de la technique où des masselottes étaient disposées à distance de l’axe longitudinal X-X, le fait que l’axe de support 100 s’étende selon l’axe longitudinal X-X permet de s’affranchir d’efforts centrifuges exercés par les masselottes 11 , 12 sur l’arbre 27 entraînant le rotor 21 , 22, 27, 26 en rotation, et s’étendant lui-aussi selon l’axe longitudinal X-X. En tout état de cause, en faisant varier la position angulaire des deux masselottes 1 1 , 12 autour de l’axe longitudinal X-X, il est possible de créer un contre-balourd évoluant entre 0 et 2 fois le balourd individuel de chaque masselotte 1 1 , 12. The support axis 100 is thus integral in rotation with the rotor about the longitudinal axis X-X. In addition, unlike devices of the state of the art where weights were arranged at a distance from the longitudinal axis XX, the fact that the support axis 100 extends along the longitudinal axis XX makes it possible to s' free from centrifugal forces exerted by the weights 11, 12 on the shaft 27 driving the rotor 21, 22, 27, 26 in rotation, and also extending along the longitudinal axis XX. In any event, by varying the angular position of the two weights 1 1, 12 around the longitudinal axis XX, it is possible to create a counter-unbalance varying between 0 and 2 times the individual unbalance of each weight 1 1 , 12.
Dans un mode de réalisation, par exemple illustré sur la figure 2, le dispositif d’équilibrage dynamique 1 comprend un support 10 propre à être monté fixe sur le rotor, de sorte à être solidaire en rotation du rotor. Comme visible sur la figure 2, l’axe de support 100 présente : In one embodiment, for example illustrated in FIG. 2, the dynamic balancing device 1 comprises a support 10 suitable for being mounted fixedly on the rotor, so as to be integral in rotation with the rotor. As shown in Figure 2, the support axis 100 has:
- une première partie d’extrémité 1001 faisant saillie d’une première surface du support 10,- a first end part 1001 projecting from a first surface of the support 10,
- une deuxième partie d’extrémité 1002 faisant saillie d’une deuxième surface du support 10, opposée à la première surface. - a second end part 1002 projecting from a second surface of the support 10, opposite the first surface.
Dans ce mode de réalisation, la première masselotte 11 est montée mobile en rotation sur la première partie d’extrémité 1001 , et la deuxième masselotte 12 est montée mobile en rotation sur la deuxième partie d’extrémité 1002. Chacune de la première masselotte 11 et de la deuxième masselotte 12 est, avantageusement, susceptible d’être entraînée en rotation autour de l’axe longitudinal X-X sans interférer avec l’autre de la première masselotte 11 et de la deuxième masselotte 12. Ceci permet au dispositif d’équilibrage dynamique 1 d’apporter une correction du balourd plus fine, car les deux masselottes 11 , 12 peuvent occuper la même position angulaire autour de l’axe longitudinal X-X, sans venir en butée l’une contre l’autre. En d’autres termes, le contre- balourd créé peut prendre n’importe quelle position angulaire autour de l’axe longitudinal X-X. Dans le mode de réalisation illustré en figure 2, la première masselotte 11 est décalée axialement par rapport à la deuxième masselotte 12, c’est-à-dire qu’elle est décalée par rapport à la deuxième masselotte 12 le long de l’axe longitudinal X-X. Ceci n’est cependant pas limitatif, la première masselotte 11 et la deuxième masselotte 12 pouvant être disposées à la même position le long de l’axe longitudinal X-X. Dans ce cas, l’une de la première masselotte 11 et de la deuxième masselotte 12 est, par exemple, creusée d’une lumière présentant une forme complémentaire de l’autre de la première masselotte 1 1 et de la deuxième masselotte 12 afin que cette-dernière puisse être entraînée en rotation autour de l’axe longitudinal X-X sans interférer avec celle de la première masselotte 11 et de la deuxième masselotte 12 qui est creusée. Lorsque la première masselotte 11 et la deuxième masselotte 12 occupe la même position le long de l’axe longitudinal X-X, leur encombrement axial est réduit. In this embodiment, the first flyweight 11 is mounted to be movable in rotation on the first end part 1001, and the second weight 12 is mounted to be movable in rotation on the second end part 1002. Each of the first flyweight 11 and the second flyweight 12 is advantageously capable of being rotated around the longitudinal axis XX without interfering with the other of the first flyweight 11 and the second flyweight 12. This allows the dynamic balancing device 1 to provide a finer unbalance correction, because the two weights 11, 12 can occupy the same angular position around the longitudinal axis XX, without coming into abutment against one another. In other words, the counterbalance created can take any angular position around the longitudinal axis XX. In the embodiment illustrated in FIG. 2, the first weight 11 is offset axially with respect to the second weight 12, that is to say it is offset with respect to the second weight 12 along the axis longitudinal XX. This is not, however, limiting, the first weight 11 and the second weight 12 being able to be arranged in the same position along the longitudinal axis XX. In this case, one of the first flyweight 11 and the second flyweight 12 is, for example, hollowed out with a slot having a shape complementary to the other of the first flyweight 11 and the second flyweight 12 so that the latter can be driven in rotation about the longitudinal axis XX without interfering with that of the first weight 11 and of the second weight 12 which is hollowed out. When the first weight 11 and the second weight 12 occupy the same position along the longitudinal axis XX, their axial size is reduced.
En tout état de cause, comme visible sur les figures 3 et 4, chacune de la première masselotte 1 1 et de la deuxième masselotte 12 présente avantageusement une forme de demi-disque, la première masselotte 11 étant de préférence identique à la deuxième masselotte 12. De cette manière, l’espace occupé par le dispositif d’équilibrage dynamique 1 est optimisé. Dans un mode de réalisation, la première masselotte 11 présente une forme complémentaire de la deuxième masselotte 12 de sorte que, lorsque la première masselotte 11 et la deuxième masselotte 12 sont positionnées l’une par rapport à l’autre avec un décalage angulaire prédéfini autour de l’axe longitudinal X-X, typiquement de 180°, le dispositif d’équilibrage dynamique 1 n’exerce aucun balourd sur le rotor. In any event, as can be seen in Figures 3 and 4, each of the first flyweight 11 and the second flyweight 12 advantageously has the shape of a half-disc, the first flyweight 11 preferably being identical to the second flyweight 12 In this way, the space occupied by the dynamic balancing device 1 is optimized. In one embodiment, the first flyweight 11 has a shape complementary to the second flyweight 12 so that, when the first flyweight 11 and the second flyweight 12 are positioned relative to each other with a predefined angular offset around of the longitudinal axis XX, typically 180 °, the dynamic balancing device 1 exerts no unbalance on the rotor.
Le dispositif d’équilibrage dynamique 1 peut, dans un mode de réalisation, comprendre plus que deux masselottes 1 1 , 12. Dans ce cas, les autres masselottes peuvent, ou non, être décalées axialement par rapport à la première masselotte 11 et à la deuxième masselotte 12, et/ou être, ou non, décalées axialement les unes par rapport aux autres. Les masselottes supplémentaires permettent notamment de corriger des balourds prenant la forme de moments d’inertie par rapport à l’axe longitudinal X-X. The dynamic balancing device 1 may, in one embodiment, comprise more than two weights 11, 12. In this case, the other weights may or may not be offset axially relative to the first weight 11 and to the second weight 12, and / or be, or not, offset axially with respect to each other. The additional weights make it possible in particular to correct imbalances in the form of moments of inertia with respect to the longitudinal axis X-X.
Dans un mode de réalisation, l’une au moins de la première masselotte 1 1 et de la deuxième masselotte 12 comprend un matériau dense, de préférence de densité comprise entre 15 et 20 tonnes par mètre cube. Dans une variante préférentielle, les deux masselottes 1 1 , 12 comprennent un matériau, par exemple le Triamet® G19, qui présente une densité de 18 tonnes par mètre cube. Chacune des masselottes 1 1 , 12 présente alors avantageusement un balourd compris entre 75 et 150 cm. g, de préférence valant 100 cm. g, ce qui est notamment suffisant pour l’équilibrage de balourds de rotors expérimentaux se présentant sous forme de maquettes. In one embodiment, at least one of the first flyweight 11 and the second flyweight 12 comprises a dense material, preferably with a density of between 15 and 20 tonnes per cubic meter. In a preferred variant, the two weights 1 1, 12 include a material, for example Triamet® G19, which has a density of 18 tonnes per cubic meter. Each of the weights 1 1, 12 then advantageously has an unbalance of between 75 and 150 cm. g, preferably equal to 100 cm. g, which is in particular sufficient for balancing unbalances of experimental rotors in the form of models.
Toujours en référence à la figure 2, dans un mode de réalisation, le dispositif d’équilibrage dynamique 1 comprend : Still with reference to Figure 2, in one embodiment, the dynamic balancing device 1 comprises:
- un premier moteur 13 configuré pour entraîner en rotation la première masselotte 11 , et - a first motor 13 configured to drive the first weight 11 in rotation, and
- un deuxième moteur 14 configuré pour entraîner en rotation la deuxième masselotte 12. Chacun du premier moteur 13 et du deuxième moteur 14 est configuré pour être monté fixe sur le rotor, par exemple en étant propre à être monté fixe sur un support 15, 16 correspondant, les supports 15, 16 des moteurs 13, 14 pouvant alors être fixés sur le support 10 des masselottes, par exemple par l’intermédiaire de vis boulonnées 18 traversant chacun de ces trois supports 10, 15, 16. a second motor 14 configured to drive the second flyweight 12 in rotation. Each of the first motor 13 and of the second motor 14 is configured to be fixedly mounted on the rotor, for example by being suitable for being fixedly mounted on a support 15, 16 corresponding, the supports 15, 16 of the motors 13, 14 can then be fixed to the support 10 of the weights, for example by means of bolted screws 18 passing through each of these three supports 10, 15, 16.
Avantageusement, l’un au moins parmi le premier moteur 13 et le deuxième moteur 14 est un moteur électrique. Il s’agit en effet d’un moteur qui puisse facilement être rendu compact, ce qui peut s’avérer particulièrement intéressant lorsque le dispositif d’équilibrage dynamique 1 est utilisé au sein d’une maquette, de dimensions réduites. Advantageously, at least one of the first motor 13 and the second motor 14 is an electric motor. It is indeed an engine that can easily be made compact, which can be particularly interesting when the dynamic balancing device 1 is used in a model, of reduced dimensions.
Dans une variante, l’un au moins du premier moteur 13 et du deuxième moteur 14 est configuré pour entraîner les masselottes 1 1 , 12 à des vitesses comprises entre 10 000 et 15 000 tours par minute, de préférence 12 000 tours par minute. Alternatively, at least one of the first motor 13 and the second motor 14 is configured to drive the weights 11, 12 at speeds between 10,000 and 15,000 revolutions per minute, preferably 12,000 revolutions per minute.
Dans une variante préférentielle, l’axe d’entraînement 130, 140 de chacun du premier moteur In a preferred variant, the drive axis 130, 140 of each of the first motor
13 et du deuxième moteur 14 s’étend selon l’axe de support 10. Ceci permet de soulager les paliers (non représentés) des moteurs 13, 14 de sorte que l’axe de support 10 reprenne les efforts exercés par les masselottes 11 , 12 et non les axes d’entraînement 130, 140 des moteurs 13, 14. En d’autres termes, ceci permet de limiter la centrifugation des moteurs 13, 14. En tout état de cause, les engrenages d’entraînement (non représentés) des moteurs 13,13 and the second motor 14 extends along the support axis 10. This makes it possible to relieve the bearings (not shown) of the motors 13, 14 so that the support axis 10 takes up the forces exerted by the weights 11, 12 and not the drive shafts 130, 140 of the motors 13, 14. In other words, this makes it possible to limit the centrifugation of the motors 13, 14. In any event, the drive gears (not shown) 13 engines,
14 sont souples. 14 are flexible.
Dans une variante, l’un au moins du premier moteur 13 et du deuxième moteur 14 entraîne la masselotte 1 1 , 12 correspondante par l’intermédiaire d’un mécanisme de réduction (non représenté). Ceci permet de générer un couple important sur la masselotte 11 , 12. En outre, cela permet de rendre le dispositif d’équilibrage dynamique 1 irréversible. En effet, les efforts tournants vus par les masselottes 11 , 12 ne sont, ainsi, pas appliqués aux moteurs 13, 14, ce qui protège ces-derniers. L’utilisation d’un mécanisme de réduction est d’ailleurs d’autant avantageuse que la vitesse d’entrainement des moteurs 13, 14 est élevée. Enfin, le mécanisme de réduction peut servir de mécanisme de sûreté en cas de panne des moteurs 13, 14. Dans ce cas, les masselottes 1 1 , 12 pourraient en effet générer un balourd supérieur au balourd initial du rotor. La présence du mécanisme de réduction permet de conserver les masselottes 11 , 12 dans leur position au moment de la panne, le temps d’effectuer une maintenance. Alternatively, at least one of the first motor 13 and of the second motor 14 drives the corresponding flyweight 11, 12 via a reduction mechanism (not shown). This makes it possible to generate a significant torque on the weight 11, 12. In addition, this makes it possible to make the dynamic balancing device 1 irreversible. Indeed, the rotating forces seen by the weights 11, 12 are thus not applied to the motors 13, 14, which protects the latter. The use of a reduction mechanism is moreover all the more advantageous as the driving speed of the motors 13, 14 is high. Finally, the reduction mechanism can serve as a safety mechanism in the event of failure of the motors 13, 14. In this case, the weights 1 1, 12 could indeed generate a greater unbalance. at the initial unbalance of the rotor. The presence of the reduction mechanism makes it possible to keep the weights 11, 12 in their position at the time of failure, the time to perform maintenance.
Dans un mode de réalisation, le dispositif d’équilibrage dynamique 1 est pilotable à distance. Pour ce faire, il comprend typiquement un calculateur (non représenté). En outre, afin d’assurer la commande et l’alimentation en énergie électrique des moteurs 13, 14 dans un repère, il comprend une télémesure (non représentée) qui permet de transmettre des signaux entre un repère tournant et un repère fixe, et comporte par exemple deux transformateurs tournants, l’un pour la puissance électrique, et l’autre pour le relai des signaux faibles. Dans d’autres modes de réalisation, l’alimentation en énergie électrique est assurée par des accumulateurs (non représentés) embarqués dans le dispositif d’équilibrage dynamique 1 , les commandes étant relayés au moyen de supports immatériels de type Wifi ou Bluetooth. In one embodiment, the dynamic balancing device 1 is controllable remotely. To do this, it typically includes a computer (not shown). In addition, in order to ensure the control and the supply of electric power to the motors 13, 14 in a frame, it comprises a telemetry (not shown) which allows signals to be transmitted between a rotating frame and a fixed frame, and comprises for example two rotary transformers, one for the electric power, and the other for the relay of weak signals. In other embodiments, the electrical power supply is provided by accumulators (not shown) on board the dynamic balancing device 1, the commands being relayed by means of intangible media such as Wifi or Bluetooth.
Le dispositif d’équilibrage dynamique 1 peut typiquement être piloté de la manière suivante. Un ordre d’équilibrage (ou de déséquilibrage) est envoyé au dispositif d’équilibrage dynamique 1 , une fois ce-dernier monté sur un rotor à équilibrer (ou déséquilibrer). Cet ordre peut par exemple consister en un objectif de contre-balourd (ou de balourd), c’est-à-dire d’atteindre une valeur spécifique de contre-balourd (ou de balourd) pour le rotor. The dynamic balancing device 1 can typically be controlled as follows. A balancing (or unbalancing) order is sent to the dynamic balancing device 1, once the latter is mounted on a rotor to be balanced (or unbalanced). This order can, for example, consist of a counter-unbalance (or unbalance) objective, that is to say to reach a specific counter-unbalance (or unbalance) value for the rotor.
Le calculateur reçoit l’ordre et le compare à la situation dynamique du rotor, typiquement en utilisant les données fournies par les capteurs de vibrations disposés au niveau de paliers du rotor. Il commande ensuite le fonctionnement des moteurs 13, 14 qui mettent en rotation les masselottes 1 1 , 12 autour de l’axe longitudinal, et retournent au calculateur les positions atteintes. Par asservissement, le calculateur affine ensuite la position des masselottes 1 1 , 12 afin d’atteindre le contre-balourd fixé. The computer receives the order and compares it to the dynamic situation of the rotor, typically using the data provided by the vibration sensors arranged at the bearings of the rotor. It then controls the operation of the motors 13, 14 which rotate the weights 1 1, 12 around the longitudinal axis, and return the positions reached to the computer. By slaving, the computer then refines the position of the weights 1 1, 12 in order to achieve the fixed counter-unbalance.
Plus précisément, en référence aux figures 3 à 5, un procédé d’équilibrage dynamique E d’un rotor comprend les étapes suivantes. Sur ces figures le balourd du rotor est symbolisé par un disque relié par une baguette à l’axe longitudinal X-X. Le rayon du disque correspond à l’intensité du balourd, la longueur de la baguette correspond à la distance du balourd à l’axe longitudinal X-X, et la direction de la baguette correspond à la direction radiale du balourd. Avantageusement, le procédé d’équilibrage dynamique E décrit est mis en œuvre lors du fonctionnement du rotor, c’est-à-dire lors d’une mise en rotation du rotor par rapport au carter 20 autour de l’axe longitudinal X-X. More specifically, with reference to Figures 3 to 5, a dynamic balancing process E of a rotor comprises the following steps. In these figures the unbalance of the rotor is symbolized by a disc connected by a rod to the longitudinal axis X-X. The radius of the disc corresponds to the intensity of the unbalance, the length of the rod corresponds to the distance of the unbalance from the longitudinal axis X-X, and the direction of the rod corresponds to the radial direction of the unbalance. Advantageously, the dynamic balancing process E described is implemented during the operation of the rotor, that is to say when the rotor is set in rotation with respect to the housing 20 around the longitudinal axis X-X.
Lors d’une première étape, la direction radiale du balourd est recherchée. En d’autres termes, la position angulaire du balourd cherche à être déterminée. In a first step, the radial direction of the unbalance is sought. In other words, the angular position of the unbalance seeks to be determined.
Pour ce faire, comme visible sur la figure 3, la première masselotte 11 est tout d’abord mise en rotation E1 par rapport à la deuxième masselotte 12 autour de l’axe de support 10 de sorte à ce que la première masselotte 11 et la deuxième masselotte 12 occupent un secteur angulaire commun A. Autrement dit, les masselottes 1 1 , 12 sont mises en rotation l’une par rapport à l’autre de sorte à être positionnées à 180° l’une de l’autre (i.e. symétriquement opposée l’une à l’autre par rapport à l’axe longitudinal), à une ouverture angulaire O près. Ensuite, toujours en référence à la figure 3, la première masselotte 11 et la deuxième masselotte 12 sont mises en rotation E2 de manière simultanée en phase avec la première masselotte 11 autour de l’axe de support 10 de sorte à : To do this, as visible in FIG. 3, the first weight 11 is first of all rotated E1 relative to the second weight 12 around the support axis 10 so that the first weight 11 and the second flyweight 12 occupy a common angular sector A. In other words, the flyweights 1 1, 12 are rotated one by one relative to the other so as to be positioned at 180 ° from each other (ie symmetrically opposite to each other with respect to the longitudinal axis), within an angular opening O near. Then, still with reference to FIG. 3, the first weight 11 and the second weight 12 are rotated E2 simultaneously in phase with the first weight 11 around the support axis 10 so as to:
- maintenir constant le secteur angulaire commun A, et - keep the common angular sector A constant, and
- déplacer ledit secteur angulaire commun A autour de l’axe de support 10 jusqu’à aligner le secteur angulaire commun A avec la direction radiale du balourd. - moving said common angular sector A around the support axis 10 until the common angular sector A is aligned with the radial direction of the unbalance.
En fait, au moment où l’ouverture angulaire O entre les deux masselottes 1 1 , 12 s’aligne avec la direction radiale du balourd, la situation dynamique du rotor s’améliore. En effet, le contre- balourd formé par le secteur angulaire commun A des deux masselottes 11 , 12 est dans la même direction radiale que le balourd du rotor. In fact, when the angular opening O between the two weights 11, 12 aligns with the radial direction of the unbalance, the dynamic situation of the rotor improves. Indeed, the counter-unbalance formed by the common angular sector A of the two weights 11, 12 is in the same radial direction as the unbalance of the rotor.
Lors d’une deuxième étape, l’intensité du balourd est recherchée et contrebalancée. Pour ce faire, comme visible sur la figure 4, la première masselotte 11 et la deuxième masselotte 12 sont mise en rotation simultanée E3, la première masselotte 11 étant déplacée en opposition de phase avec la deuxième masselotte 12 autour de l’axe de support 10 de sorte à : In a second step, the intensity of the unbalance is sought and counterbalanced. To do this, as visible in Figure 4, the first flyweight 11 and the second flyweight 12 are placed in simultaneous rotation E3, the first flyweight 11 being moved in phase opposition with the second flyweight 12 around the support axis 10 in order to :
- augmenter le secteur angulaire commun A, et - increase the common angular sector A, and
- jusqu’à compenser l’intensité du balourd. - until compensating for the intensity of the unbalance.
Plus précisément, les deux masselottes 1 1 , 12 sont mises en rotation avec des vitesses égales mais des sens de rotation opposées jusqu’à ce que la situation dynamique du rotor devienne faible, c’est-à-dire que l’ensemble formé par le rotor et le dispositif d’équilibrage dynamique 1 présente un balourd total résiduel (i.e. somme du balourd initial du rotor et du contre-balourd formé par les deux masselottes 1 1 , 12) qui soit minimal. Le secteur angulaire commun A est alors centré sur la direction radiale du balourd, et opposé au balourd par rapport à l’axe longitudinal X-X. More precisely, the two weights 1 1, 12 are rotated with equal speeds but opposite directions of rotation until the dynamic situation of the rotor becomes low, that is to say that the assembly formed by the rotor and the dynamic balancing device 1 have a total residual unbalance (ie the sum of the initial unbalance of the rotor and the counter-unbalance formed by the two weights 11, 12) which is minimal. The common angular sector A is then centered on the radial direction of the unbalance, and opposite the unbalance with respect to the longitudinal axis X-X.
Dans le cas où il s’agit de déséquilibrer volontairement le rotor, c’est-à-dire où un balourd supérieur au balourd initial du rotor est recherché, les masselottes 1 1 , 12 sont mises en rotation simultanées autour de l’axe de support 10, la première masselotte 11 étant déplacée en opposition de phase avec la deuxième masselotte 12, de sorte à augmenter l’intensité du balourd initial, c’est-à-dire jusqu’à aggraver l’intensité du balourd. En d’autres termes, le secteur angulaire commun A est alors centré sur la direction radiale du balourd mais, cette fois, du même côté que le balourd par rapport à l’axe longitudinal X-X. In the case where it is a question of intentionally unbalancing the rotor, that is to say where an unbalance greater than the initial unbalance of the rotor is sought, the weights 1 1, 12 are rotated simultaneously around the axis of support 10, the first weight 11 being displaced in phase opposition with the second weight 12, so as to increase the intensity of the initial unbalance, that is to say until the intensity of the unbalance is worsened. In other words, the common angular sector A is then centered on the radial direction of the unbalance, but this time on the same side as the unbalance with respect to the longitudinal axis X-X.
Dans l’exemple de réalisation illustré sur la figure 2, le dispositif d’équilibrage dynamique 1 est logé au sein du cône 214 de la soufflante 21 de la turbomachine 2. Ceci n’est cependant pas limitatif, attendu qu’un tel dispositif d’équilibrage dynamique 1 peut être disposé à n’importe quelle position au sein du corps basse pression 21 , 22, 27, 26. Grâce au dispositif 1 et au procédé E d’équilibrage dynamique décrits, il est possible d’ajuster l’équilibrage d’un rotor sans arrêt machine, ni démontage de pièces pour avoir accès aux zones d’équilibrage et mettre en œuvre les réglages. Même, il est possible de volontairement déséquilibrer le rotor, par exemple lors des travaux de conception dudit rotor, afin d’en étudier le comportement, typiquement sur une maquette. Ces éléments sont notamment avantageux pour corriger de façon autonome et automatisée le balourd d’un rotor, que ce soit lors d’une maintenance, d’une fabrication, par exemple une fabrication en série, ou de phases de tests sur ledit rotor. En tout état de cause, grâce au dispositif 1 et au procédé E d’équilibrage dynamique décrits, il est possible de déterminer directement le balourd d’un rotor. Par exemple, cette détermination peut être mise en œuvre au moyen d’un modèle dynamique reliant les informations acquises par les capteurs de vibration et celles relatives à la position relative de masselottes autour de l’axe longitudinal. Ceci est notamment plus simple et plus efficace que les procédés de détermination de balourd connus de l’état de la technique, où le balourd est déterminé par lecture du nombre et de la position radiale de masselottes permettant d’attendre une situation vibratoire fixée. In the embodiment illustrated in FIG. 2, the dynamic balancing device 1 is housed within the cone 214 of the fan 21 of the turbomachine 2. This is not, however, limiting, since such a device d dynamic balancing 1 can be arranged at any position within the low pressure body 21, 22, 27, 26. By virtue of the device 1 and the dynamic balancing method E described, it is possible to adjust the balancing of a rotor without stopping the machine, or removing parts to gain access to the balancing zones and implement the adjustments. Even, it is possible to intentionally unbalance the rotor, for example during the design work of said rotor, in order to study its behavior, typically on a model. These elements are in particular advantageous for autonomously and automatically correcting the unbalance of a rotor, whether during maintenance, during manufacture, for example in series production, or during test phases on said rotor. In any event, by virtue of the device 1 and the dynamic balancing method E described, it is possible to directly determine the unbalance of a rotor. For example, this determination can be implemented by means of a dynamic model linking the information acquired by the vibration sensors and that relating to the relative position of weights around the longitudinal axis. This is in particular simpler and more efficient than the methods of determining unbalance known from the state of the art, where the unbalance is determined by reading the number and the radial position of weights making it possible to await a fixed vibratory situation.
Dans tout ce qui a été décrit précédemment, la turbomachine 2 est de type turboréacteur à double-corps, double flux, à entraînement direct. Ceci n’est cependant pas limitatif, attendu que le dispositif 1 et le procédé E d’équilibrage dynamique décrits peuvent également être utilisés pour n’importe quel type de turbomachine 2, telles qu’un turbopropulseur, un turboréacteur présentant une architecture à réducteur, ou une turbomachine de type triple- corps, double-flux, qu’il s’agisse d’ailleurs de maquettes ou de turbomachines de taille réelle. In everything that has been described above, the turbomachine 2 is of the double-body, double-flow, direct-drive turbojet type. This is not, however, limiting, given that the device 1 and the dynamic balancing method E described can also be used for any type of turbomachine 2, such as a turboprop, a turbojet having a gearbox architecture, or a turbomachine of the triple-body, double-flow type, whether it be moreover models or full-size turbomachines.

Claims

REVENDICATIONS
1. Dispositif d’équilibrage dynamique (1) pour rotor, ledit rotor étant mobile en rotation par rapport à un carter autour d’un axe longitudinal (X-X), le dispositif (1) comprenant : 1. Dynamic balancing device (1) for a rotor, said rotor being movable in rotation with respect to a housing about a longitudinal axis (X-X), the device (1) comprising:
- un axe de support (100) propre à être monté fixe sur le rotor, en s’étendant selon l’axe longitudinal (X-X), - a support axis (100) suitable for being fixedly mounted on the rotor, extending along the longitudinal axis (X-X),
- une première masselotte (11) montée mobile en rotation sur l’axe de support (100) autour de l’axe longitudinal (X-X), - a first flyweight (11) mounted to be able to rotate on the support axis (100) around the longitudinal axis (X-X),
- une deuxième masselotte (12) montée mobile en rotation sur l’axe de support (100) autour de l’axe longitudinal (X-X), - a second flyweight (12) mounted to rotate on the support axis (100) around the longitudinal axis (X-X),
- un premier moteur (13) configuré pour entraîner en rotation la première masselotte (11), et - a first motor (13) configured to drive the first weight (11) in rotation, and
- un deuxième moteur (14) configuré pour entraîner en rotation la deuxième masselotte (12), chacun du premier moteur (13) et du deuxième moteur (14) étant configuré pour être monté fixe sur le rotor. - a second motor (14) configured to drive the second flyweight (12) in rotation, each of the first motor (13) and of the second motor (14) being configured to be fixedly mounted on the rotor.
2. Dispositif selon la revendication 1 , dans lequel chacune de la première masselotte (1 1) et de la deuxième masselotte (12) est susceptible d’être entraînée en rotation autour de l’axe longitudinal (X-X) sans interférer avec l’autre de la première masselotte (11) et de la deuxième masselotte (12). 2. Device according to claim 1, wherein each of the first flyweight (1 1) and the second flyweight (12) is capable of being rotated around the longitudinal axis (XX) without interfering with the other. of the first flyweight (11) and the second flyweight (12).
3. Dispositif selon l’une des revendications 1 et 2, dans lequel la première masselotte (1 1) est décalée par rapport à la deuxième masselotte (12) le long de l’axe longitudinal (X-X). 3. Device according to one of claims 1 and 2, wherein the first weight (1 1) is offset from the second weight (12) along the longitudinal axis (X-X).
4. Dispositif selon la revendication 3, comprenant en outre un support (10), l’axe de support (100) présentant : 4. Device according to claim 3, further comprising a support (10), the support axis (100) having:
- une première partie d’extrémité (1001) faisant saillie d’une première surface du support (10), - a first end part (1001) projecting from a first surface of the support (10),
- une deuxième partie d’extrémité (1002) faisant saillie d’une deuxième surface du support (10), opposée à la première surface, - a second end part (1002) projecting from a second surface of the support (10), opposite the first surface,
- la première masselotte (11) étant montée mobile en rotation sur la première partie d’extrémité (1001), et - the first weight (11) being mounted so as to be able to rotate on the first end part (1001), and
- la deuxième masselotte (12) étant montée mobile en rotation sur la deuxième partie d’extrémité (1002). - the second flyweight (12) being mounted so as to be able to rotate on the second end part (1002).
5. Dispositif selon l’une des revendications 1 à 4, dans lequel l’un au moins parmi le premier moteur (13) et le deuxième moteur (14) est un moteur électrique. 5. Device according to one of claims 1 to 4, wherein at least one of the first motor (13) and the second motor (14) is an electric motor.
6. Dispositif selon l’une des revendications 1 à 5, dans lequel la première masselotte (11) présente une forme complémentaire de la deuxième masselotte (12) de sorte que, lorsque la première masselotte (11) et la deuxième masselotte (12) sont positionnées l’une par rapport à l’autre avec un décalage angulaire prédéfini, autour de l’axe longitudinal (X-X), le dispositif (1) n’exerce aucun balourd sur le rotor. 6. Device according to one of claims 1 to 5, wherein the first weight (11) has a shape complementary to the second weight (12) so that, when the first weight (11) and the second weight (12) are positioned relative to each other with a predefined angular offset, around the longitudinal axis (XX), the device (1) exerts no unbalance on the rotor.
7. Ensemble pour turbomachine (2) comprenant : 7. Turbomachine assembly (2) comprising:
- un carter (10), - a housing (10),
- un rotor (21 , 22, 27, 26) mobile en rotation par rapport au carter (10) autour d’un axe longitudinal (X-X), et - a rotor (21, 22, 27, 26) movable in rotation relative to the housing (10) about a longitudinal axis (X-X), and
- un dispositif d’équilibrage dynamique (1) pour rotor selon l’une des revendications 1 à 6. - a dynamic balancing device (1) for a rotor according to one of claims 1 to 6.
8. Turbomachine (2) comprenant un ensemble selon la revendication 7. 8. Turbomachine (2) comprising an assembly according to claim 7.
9. Procédé d’équilibrage dynamique (E) d’un rotor, ledit rotor : 9. Method of dynamic balancing (E) of a rotor, said rotor:
- étant mobile en rotation par rapport à un carter autour d’un axe longitudinal (X-X), et - being movable in rotation relative to a housing around a longitudinal axis (X-X), and
- présentant un balourd ayant une direction radiale et une intensité, - having an unbalance having a radial direction and an intensity,
le procédé (E) comprenant des étapes de : the method (E) comprising steps of:
- mise en rotation (E1) d’une première masselotte (1 1) par rapport à une deuxième masselotte (12) autour d’un axe de support (100) monté fixe sur le rotor, et s’étendant selon l’axe longitudinal (X-X), de sorte à ce que la première masselotte (1 1) et la deuxième masselotte (12) occupent un secteur angulaire commun (A), et - rotation (E1) of a first flyweight (1 1) relative to a second flyweight (12) about a support axis (100) mounted fixed on the rotor, and extending along the longitudinal axis (XX), so that the first flyweight (1 1) and the second flyweight (12) occupy a common angular sector (A), and
- mise en rotation simultanée (E2) de la première masselotte (1 1) et de la deuxième masselotte (12) en phase avec la première masselotte (1 1) autour de l’axe de support (100) de sorte à : o maintenir constant le secteur angulaire commun (A), et - simultaneous rotation (E2) of the first flyweight (1 1) and the second flyweight (12) in phase with the first flyweight (1 1) around the support axis (100) so as to: o maintain constant the common angular sector (A), and
o déplacer ledit secteur angulaire commun (A) autour de l’axe de support (100) jusqu’à aligner le secteur angulaire commun (A) avec la direction radiale du balourd. o moving said common angular sector (A) around the support axis (100) until the common angular sector (A) is aligned with the radial direction of the unbalance.
10. Procédé selon la revendication 9, comprenant en outre une étape de mise en rotation simultanée (E3) de la première masselotte (1 1) et de la deuxième masselotte (12), la première masselotte (11) étant déplacée en opposition de phase avec la deuxième masselotte (12) autour de l’axe de support (100) de sorte à : 10. The method of claim 9, further comprising a step of simultaneous rotation (E3) of the first weight (1 1) and the second weight (12), the first weight (11) being displaced in phase opposition. with the second weight (12) around the support axis (100) so as to:
- augmenter le secteur angulaire commun (A), et - increase the common angular sector (A), and
- jusqu’à compenser l’intensité du balourd. - until compensating for the intensity of the unbalance.
PCT/EP2020/066224 2019-06-11 2020-06-11 Dynamic balancing device for rotor WO2020249686A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR1906198 2019-06-11
FR1906198A FR3097268B1 (en) 2019-06-11 2019-06-11 Dynamic balancing device for rotor

Publications (1)

Publication Number Publication Date
WO2020249686A1 true WO2020249686A1 (en) 2020-12-17

Family

ID=67875702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/066224 WO2020249686A1 (en) 2019-06-11 2020-06-11 Dynamic balancing device for rotor

Country Status (2)

Country Link
FR (1) FR3097268B1 (en)
WO (1) WO2020249686A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113432784A (en) * 2021-05-19 2021-09-24 东北大学 Aircraft generator rotor simplification equivalent test device for high-speed dynamic balance
CN113756875A (en) * 2021-09-03 2021-12-07 中国航发哈尔滨东安发动机有限公司 Aircraft engine core whole engine dynamic balance assembly method
CN114112193A (en) * 2021-09-22 2022-03-01 核工业理化工程研究院 Flexible rotor dynamic balance weight prediction method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2134270A1 (en) * 1971-07-09 1973-01-25 Waldrich Werkzeugmasch DEVICE FOR STATIC AND DYNAMIC BALANCING OF ROTATING ROTORS
DE4244015A1 (en) * 1992-12-24 1994-06-30 Thomas Gerlach Balancing head with adjustable imbalance for application to a machine part to be balanced
EP0657727A1 (en) * 1993-12-08 1995-06-14 Electricite De France Procedure, device and application for the dynamic balancing of a rotating object
WO2008127362A2 (en) * 2006-10-11 2008-10-23 Lord Corporation Aircraft with transient-discriminating propeller balancing system
FR3004418A1 (en) 2013-04-16 2014-10-17 Snecma SYSTEM AND METHOD FOR DYNAMIC AZIMUTAL BALANCING OF AIRCRAFT PROPELLER ROTOR

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2134270A1 (en) * 1971-07-09 1973-01-25 Waldrich Werkzeugmasch DEVICE FOR STATIC AND DYNAMIC BALANCING OF ROTATING ROTORS
DE4244015A1 (en) * 1992-12-24 1994-06-30 Thomas Gerlach Balancing head with adjustable imbalance for application to a machine part to be balanced
EP0657727A1 (en) * 1993-12-08 1995-06-14 Electricite De France Procedure, device and application for the dynamic balancing of a rotating object
WO2008127362A2 (en) * 2006-10-11 2008-10-23 Lord Corporation Aircraft with transient-discriminating propeller balancing system
FR3004418A1 (en) 2013-04-16 2014-10-17 Snecma SYSTEM AND METHOD FOR DYNAMIC AZIMUTAL BALANCING OF AIRCRAFT PROPELLER ROTOR

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113432784A (en) * 2021-05-19 2021-09-24 东北大学 Aircraft generator rotor simplification equivalent test device for high-speed dynamic balance
CN113756875A (en) * 2021-09-03 2021-12-07 中国航发哈尔滨东安发动机有限公司 Aircraft engine core whole engine dynamic balance assembly method
CN113756875B (en) * 2021-09-03 2023-11-24 中国航发哈尔滨东安发动机有限公司 Aircraft engine core engine whole motor balance assembly method
CN114112193A (en) * 2021-09-22 2022-03-01 核工业理化工程研究院 Flexible rotor dynamic balance weight prediction method
CN114112193B (en) * 2021-09-22 2023-10-17 核工业理化工程研究院 Dynamic balance weight prediction method for flexible rotor

Also Published As

Publication number Publication date
FR3097268B1 (en) 2022-07-08
FR3097268A1 (en) 2020-12-18

Similar Documents

Publication Publication Date Title
WO2020249686A1 (en) Dynamic balancing device for rotor
FR2631381A1 (en) APPARATUS AND METHOD FOR SUPPORTING A ROTARY SHAFT IN A ROTATING MACHINE
FR3071025A1 (en) PIVOT FOR SMOOTH BEARING AND GEAR TRAIN WITH REDUCED THERMAL CONSTRAINTS
FR2929325A1 (en) DEVICE AND METHOD FOR PRESSURE BALANCING IN A TURBOELECTOR BEARING ENCLOSURE
CA2547121A1 (en) Mass calibration process for parts to be assembled around a rotor
WO2023152459A1 (en) Turbomachine assembly comprising a half-shell casing bearing variable-pitch inlet stator vanes
WO2010007277A9 (en) Method and system for determining the angular position of a turbojet engine rotor
FR2964942A1 (en) Device for controlling orientation of blades of fast propeller of open-rotor turboshaft engine of civilian aircraft, has drive units that are regrouped in enclosure to ensure lubrication of drive units
FR2640227A1 (en) SYSTEM FOR HOLDING FINS OF A PROPELLER
EP1382858A1 (en) Distribution method for rotor blades of a turbomachine
FR2983236A1 (en) METHOD OF MONITORING THE PLAY OF A CINEMATIC BINDING BETWEEN A CONTROL ORDER AND A RECEIVER MEMBER.
FR2693514A1 (en) Improved centrifugal pump for used in heat engines - has casing containing seal fitted in pump housing with extension having notches facing pressure cylinder on turbine wheel
EP2304191B1 (en) Simplified system for controlling the setting of a propeller blade for an aircraft turboshaft engine
WO2017118793A1 (en) Fan module with variable-pitch blades for a turbomachine
FR3075257A1 (en) DEVICE FOR ADJUSTING THE TIMING OF A PROPELLER
FR2766988A1 (en) Rotor balancing device for fast electrical motor
FR3088680A1 (en) TURBOMACHINE MODULE HAVING A TEMPERATURE REGULATION SYSTEM FOR A FLUID DAMPING FILM AND METHOD FOR ACTIVE REGULATION OF THE TEMPERATURE OF A VIBRATION DAMPING FILM OF THE TURBOMACHINE
FR3088681A1 (en) TURBOMACHINE MODULE PROVIDED WITH A PRESSURE REGULATION SYSTEM OF A FLUID DAMPING FILM AND METHOD FOR ACTIVE PRESSURE REGULATION OF A DAMPING FILM OF THE TURBOMACHINE VIBRATION
FR3096105A1 (en) flyweight gas turbomachine rotor
EP2160584B1 (en) Transmission shaft attachment tooling and balancing stand comprising such tooling
FR3071026A1 (en) PIVOT FOR SMOOTH BEARING AND GEAR TRAIN
WO2014001701A1 (en) Fan having a variable setting by means of differential rotation of the fan disks
BE1027893B1 (en) Turbomachine maintenance test method and system
WO2017140979A1 (en) Turbine engine and assembly method thereof
FR3044092A1 (en) TEST BENCH FOR BEARINGS SIMULATING A CENTRIFUGAL EFFECT

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20732574

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20732574

Country of ref document: EP

Kind code of ref document: A1