WO2020248886A1 - 图像处理方法及显示设备 - Google Patents

图像处理方法及显示设备 Download PDF

Info

Publication number
WO2020248886A1
WO2020248886A1 PCT/CN2020/094303 CN2020094303W WO2020248886A1 WO 2020248886 A1 WO2020248886 A1 WO 2020248886A1 CN 2020094303 W CN2020094303 W CN 2020094303W WO 2020248886 A1 WO2020248886 A1 WO 2020248886A1
Authority
WO
WIPO (PCT)
Prior art keywords
chip
signal
area
video
video image
Prior art date
Application number
PCT/CN2020/094303
Other languages
English (en)
French (fr)
Inventor
初德进
李慧娟
左剑
孙龙
姜俊厚
Original Assignee
海信视像科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910721816.6A external-priority patent/CN112073795B/zh
Priority claimed from CN201910741593.XA external-priority patent/CN112073796B/zh
Application filed by 海信视像科技股份有限公司 filed Critical 海信视像科技股份有限公司
Priority to CN202080007439.0A priority Critical patent/CN113287322A/zh
Publication of WO2020248886A1 publication Critical patent/WO2020248886A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/431Generation of visual interfaces for content selection or interaction; Content or additional data rendering

Definitions

  • the embodiments of the present application relate to display technology. More specifically, it relates to an image processing method and a display device.
  • the display device can provide users with playback screens such as audio, video, and pictures, it has received widespread attention from users.
  • users have increasingly demanded functions for display devices. For example, a user wants to watch high-definition cable TV through a display device, and sometimes the user wants to watch Internet TV through a display device.
  • the present application provides a display device, including: a first chip; a second chip connected to the first chip; a display screen connected to the second chip, wherein: the first chip Chip is used for:
  • the first indication information and the video image signal are sent to the second chip, where the first indication information is used to instruct the second chip to The area where the graphics layer is superimposed in the video image signal is subjected to motion compensation processing, and the motion compensated image is used to be output by the second chip to the display screen for display.
  • this application provides yet another display device, including: a first chip; a second chip connected to the first chip; a display screen connected to the second chip, wherein: the first chip One chip is used for:
  • the second instruction information and the video image signal are sent to the second chip, where the second instruction information is used to enable the second chip to remove the second instruction information from the video image signal
  • the image outside the corresponding area is subjected to motion compensation, and the image in the area corresponding to the second indication information in the video image signal is not subjected to motion compensation to generate a motion-compensated image, and the motion-compensated image is used by the
  • the second chip is sent to the display screen for image display.
  • this application provides an image processing method applied to a display device, the display device including a first chip, a second chip, and a display screen, and the method includes:
  • the first chip detects whether the graphics layer corresponding to the graphics layer signal is a transparent layer when superimposing a video layer signal and a graphics layer signal to generate a video image signal;
  • the first chip In response to the graphics layer corresponding to the graphics layer signal being a transparent layer, the first chip sends the first indication information and the video image signal to the second chip, where the first indication information is used to indicate the The second chip performs motion compensation processing on the area where the graphics layer is superimposed in the video image signal;
  • the second chip outputs the motion-compensated image to the display screen for display.
  • this application provides yet another image processing method, which is applied to a display device, and the display device includes a first chip and a second chip, including:
  • the first chip determines the second indication information of the graphics layer signal, and superimposes the graphics layer signal and the video layer signal into a video image signal, where the second indication information includes the graphics layer signal corresponding to the graphics layer signal. location information;
  • the first chip sends the second instruction information and the video image signal to the second chip, and the second instruction information is used to enable the second chip to remove the video image signal from the video image signal.
  • Motion compensation is performed on the image outside the area corresponding to the second indication information, and motion compensation is not performed on the image in the area corresponding to the second indication information in the video image signal to generate a motion compensated image,
  • the second chip outputs the motion compensated image to the display screen for display.
  • this application provides yet another image processing method applied to a display device, the display device including a first chip and a second chip, and the method includes:
  • the first chip sends the video image signal to the second chip through an HDMI channel
  • the second chip performs motion compensation on the video image signal, and outputs the motion compensated image to the display screen for display;
  • the second chip treats the Motion compensation is performed on images in the video image signal other than the region corresponding to the graphics layer signal, and motion compensation is not performed on the image of the region corresponding to the graphics layer signal.
  • FIG. 1 exemplarily shows a schematic diagram of an operation scene between a display device and a control device in some embodiments
  • FIG. 2 exemplarily shows a block diagram of the hardware configuration of the control device 100 in some embodiments
  • FIG. 3 exemplarily shows a hardware configuration block diagram of the display device 200 in some embodiments
  • FIG. 4 exemplarily shows a block diagram of the hardware architecture of the display device 200 according to FIG. 3;
  • FIG. 5 exemplarily shows a schematic diagram of the functional configuration of the display device 200 in some embodiments
  • FIG. 6a exemplarily shows a schematic diagram of software configuration in the display device 200 in some embodiments
  • FIG. 6b exemplarily shows a configuration diagram of an application program in the display device 200 in some embodiments
  • FIG. 7 exemplarily shows a schematic diagram of a user interface in the display device 200 in some embodiments.
  • Fig. 8 exemplarily shows a schematic flow chart of an image processing method
  • FIG. 9 exemplarily shows a processing flow diagram of the video layer signal and the graphics layer signal by the first chip
  • Fig. 10 exemplarily shows a schematic diagram of a frame picture
  • Fig. 11 exemplarily shows a schematic diagram of a frame picture
  • Fig. 12 exemplarily shows a schematic diagram of a frame picture
  • FIG. 13 exemplarily shows a schematic flowchart of another image processing method.
  • various external device interfaces are usually provided on the display device to facilitate the connection of different peripheral devices or cables to realize corresponding functions.
  • a high-definition camera is connected to the interface of the display device, if the hardware system of the display device does not have the hardware interface of the high-pixel camera that receives the source code, then the data received by the camera cannot be presented to the display of the display device. On the screen.
  • the hardware system of traditional display devices only supports one hard decoding resource, and usually only supports 4K resolution video decoding. Therefore, when you want to realize the video chat while watching Internet TV, in order not to reduce
  • the definition of the network video screen requires the use of hard decoding resources (usually the GPU in the hardware system) to decode the network video.
  • the general-purpose processor such as CPU
  • the video chat screen is processed by soft decoding.
  • Using soft decoding to process the video chat screen will greatly increase the data processing burden of the CPU.
  • the CPU's data processing burden is too heavy, the picture may freeze or become unsmooth.
  • the CPU soft decoding is used to process the video chat screen, it is usually impossible to achieve multi-channel video calls.
  • the user wants to simultaneously video chat with multiple other users in the same chat scene When, access will be blocked.
  • Some embodiments of the present application disclose a dual hardware system architecture to implement multiple channels of video chat data (at least one local video).
  • module used in the various embodiments of this application can refer to any known or later developed hardware, software, firmware, artificial intelligence, fuzzy logic, or a combination of hardware or/and software code that can execute related to the component Function.
  • remote control used in the various embodiments of this application refers to a component of an electronic device (such as the display device disclosed in this application), which can generally control the electronic device wirelessly within a short distance.
  • the component can generally be connected to an electronic device using infrared and/or radio frequency (RF) signals and/or Bluetooth, and can also include at least one of functional modules such as WiFi, wireless USB, Bluetooth, and motion sensors.
  • RF radio frequency
  • a handheld touch remote control uses a user interface in a touch screen to replace most of the physical built-in hard keys in general remote control devices.
  • gesture used in the embodiments of the present application refers to a user's behavior through a change of hand shape or hand movement to express expected ideas, actions, goals, and/or results.
  • the term "hardware system” used in the various embodiments of this application may include integrated circuit (IC), printed circuit board (Printed circuit board, PCB) and other mechanical, optical, electrical, and magnetic devices with computing, At least one of the physical components of control, storage, input and output functions.
  • IC integrated circuit
  • PCB printed circuit board
  • other mechanical, optical, electrical, and magnetic devices with computing At least one of the physical components of control, storage, input and output functions.
  • Fig. 1 exemplarily shows a schematic diagram of an operation scenario between a display device and a control device in some embodiments. As shown in FIG. 1, the user can operate the display device 200 by controlling the device 100.
  • the control device 100 may be a remote control 100A, which may communicate with the display device 200 through at least one of infrared protocol communication, Bluetooth protocol communication, Zig Bee protocol communication, or other short-distance communication methods.
  • the user can control the display device 200 by inputting user instructions through keys on the remote control, voice input, control panel input, etc.
  • the user can control the display device 200 by inputting corresponding control commands through the volume plus and minus keys, channel control keys, up/down/left/right movement keys, voice input keys, menu keys, and switch buttons on the remote control. Function.
  • the control device 100 can also be a smart device, such as a mobile terminal 100B, a tablet computer, a computer, a notebook computer, etc., which can be connected through a local area network (LAN, Wide Area Network), a wide area network (WAN, Wide Area Network), and a wireless local area network ((WLAN) , Wireless Local Area Network) or at least one of other networks communicates with the display device 200, and controls the display device 200 through an application program corresponding to the display device 200. For example, using an application program running on a smart device Control the display device 200.
  • the application can provide various controls for the user through an intuitive user interface (UI, User Interface) on the screen associated with the smart device.
  • UI User Interface
  • both the mobile terminal 100B and the display device 200 can be installed with software applications, so that the connection and communication between the two can be realized through a network communication protocol, thereby realizing one-to-one control operation and data communication.
  • the mobile terminal 100B can establish a control command protocol with the display device 200, synchronize the remote control keyboard to the mobile terminal 100B, and control the display device 200 by controlling the user interface of the mobile terminal 100B; or the mobile terminal 100B
  • the audio and video content displayed on the screen is transmitted to the display device 200 to realize the synchronous display function.
  • the display device 200 can also communicate with the server 300 through multiple communication methods.
  • the display device 200 may be allowed to communicate with the server 300 through at least one of a local area network, a wireless local area network, or other networks.
  • the server 300 may provide various contents and interactions to the display device 200.
  • the display device 200 transmits and receives information, interacts with an Electronic Program Guide (EPG, Electronic Program Guide), receives software program updates, or accesses a remotely stored digital media library.
  • EPG Electronic Program Guide
  • the server 300 may be a group or multiple groups, and may be one or more types of servers.
  • the server 300 provides other network service content such as video on demand and advertising services.
  • the display device 200 may be a liquid crystal display, an OLED (Organic Light Emitting Diode) display, a projection display device, or a smart TV.
  • OLED Organic Light Emitting Diode
  • the specific display device type, size, resolution, etc. are not limited, and those skilled in the art can understand that the display device 200 can make some changes in performance and configuration as required.
  • the display device 200 may additionally provide a smart network TV function that provides a computer support function. Examples include Internet TV, Smart TV, Internet Protocol TV (IPTV) and so on.
  • IPTV Internet Protocol TV
  • the display device may be connected or provided with a camera, which is used to present the picture captured by the camera on the display interface of the display device or other display devices to realize interactive chats between users.
  • the picture captured by the camera may be displayed on the display device in full screen, half screen, or in any selectable area.
  • the camera is connected to the monitor rear shell through a connecting plate, and is fixedly installed on the upper middle of the monitor rear shell.
  • a connecting plate As an installable method, it can be fixedly installed at any position of the monitor rear shell to ensure its It is sufficient that the image capture area is not blocked by the rear shell, for example, the image capture area and the display device have the same orientation.
  • the camera can be connected to the display back shell through a connecting plate or other conceivable connectors.
  • a lifting motor is installed on the connector.
  • the camera used in this application may have 16 million pixels to achieve the purpose of ultra-high-definition display. In actual use, a camera with higher or lower than 16 million pixels can also be used.
  • the content displayed in different application scenarios of the display device can be merged in many different ways, so as to achieve functions that cannot be achieved by traditional display devices.
  • the user can video chat with at least one other user while watching a video program.
  • the presentation of the video program can be used as the background picture, and the video chat window is displayed on the background picture.
  • At least one video chat is performed across terminals.
  • the user can video chat with at least one other user while entering the education application for learning.
  • students can realize remote interaction with teachers while learning content in educational applications. Visually, you can call this function "learning and chatting”.
  • a video chat is conducted with players entering the game.
  • players entering the game.
  • a player enters a game application to participate in a game, it can realize remote interaction with other players. Visually, you can call this function "watch and play".
  • the game scene is integrated with the video picture, and the portrait in the video picture is cut out and displayed on the game picture to improve user experience.
  • somatosensory games such as ball games, boxing games, running games, dancing games, etc.
  • human body postures and movements are acquired through the camera, body detection and tracking, and the detection of human bone key points data, and then the game Animations are integrated to realize games such as sports and dance scenes.
  • the user can interact with at least one other user in video and voice in the K song application.
  • multiple users can jointly complete the recording of a song.
  • the user can turn on the camera locally to obtain pictures and videos, which is vivid, and this function can be called "look in the mirror".
  • Fig. 2 exemplarily shows a configuration block diagram of the control device 100 according to an exemplary embodiment.
  • the control device 100 includes a controller 110, a communicator 130, a user input/output interface 140, a memory 190, and a power supply 180.
  • the control device 100 is used to control the display device 200, and can receive input operation instructions from the user, and convert the operation instructions into instructions that the display device 200 can recognize and respond to, and play an intermediary role in the interaction between the user and the display device 200 .
  • the user operates the channel addition and subtraction keys on the control device 100, and the display device 200 responds to the channel addition and subtraction operations.
  • control device 100 may be a smart device.
  • control device 100 can install various applications for controlling the display device 200 according to user requirements.
  • the mobile terminal 100B or other smart electronic devices can perform similar functions to the control device 100 after installing an application for controlling the display device 200.
  • the user can install various function keys or virtual buttons of the graphical user interface that can be provided on the mobile terminal 100B or other smart electronic devices by installing applications to realize the function of the physical keys of the control device 100.
  • the controller 110 includes at least one of a processor 112, a RAM 113 and a ROM 114, a communication interface, and a communication bus.
  • the controller 110 is used to control the operation and operation of the control device 100, as well as the communication and cooperation between internal components, and external and internal data processing functions.
  • the communicator 130 realizes communication of control signals and data signals with the display device 200 under the control of the controller 110. For example, the received user input signal is sent to the display device 200.
  • the communicator 130 may include at least one of communication modules such as a WIFI module 131, a Bluetooth module 132, and an NFC module 133.
  • the user input/output interface 140 wherein the input interface includes at least one of input interfaces such as a microphone 141, a touch panel 142, a sensor 143, and a button 144.
  • input interfaces such as a microphone 141, a touch panel 142, a sensor 143, and a button 144.
  • the user can implement the user instruction input function through voice, touch, gesture, pressing and other actions.
  • the input interface converts the received analog signal into a digital signal and the digital signal into a corresponding instruction signal, which is sent to the display device 200.
  • the output interface includes an interface for sending the received user instruction to the display device 200.
  • it may be an infrared interface or a radio frequency interface.
  • the user input instruction needs to be converted into an infrared control signal according to the infrared control protocol, and sent to the display device 200 via the infrared sending module.
  • a radio frequency signal interface a user input instruction needs to be converted into a digital signal, which is then modulated according to the radio frequency control signal modulation protocol, and then sent to the display device 200 by the radio frequency transmitting terminal.
  • control device 100 includes at least one of a communicator 130 and an output interface.
  • the control device 100 is configured with a communicator 130, such as: WIFI, Bluetooth, NFC and other modules, which can encode user input instructions through the WIFI protocol, or Bluetooth protocol, or NFC protocol, and send to the display device 200.
  • a communicator 130 such as: WIFI, Bluetooth, NFC and other modules, which can encode user input instructions through the WIFI protocol, or Bluetooth protocol, or NFC protocol, and send to the display device 200.
  • the memory 190 is used to store various operating programs, data and applications for driving and controlling the control device 100 under the control of the controller 110.
  • the memory 190 can store various control signal instructions input by the user.
  • the power supply 180 is used to provide operating power support for each element of the control device 100 under the control of the controller 110. Can battery and related control circuit.
  • FIG. 3 exemplarily shows a hardware configuration block diagram of a hardware system in the display device 200 according to an exemplary embodiment.
  • the mechanism relationship of the hardware system can be shown in Figure 3.
  • one hardware system in the dual hardware system architecture is referred to as the first hardware system or A system, A chip, and the other hardware system is referred to as the second hardware system or N system, N chip.
  • the A chip includes the controller and various interfaces of the A chip
  • the N chip includes the controller and various interfaces of the N chip.
  • An independent operating system may be installed in the A chip and the N chip, so that there are two independent but interrelated subsystems in the display device 200.
  • the A chip and the N chip can realize connection, communication and power supply through multiple different types of interfaces.
  • the interface type of the interface between the A chip and the N chip may include at least one of general-purpose input/output (GPIO), USB interface, HDMI interface, UART interface, and the like.
  • GPIO general-purpose input/output
  • USB interface USB interface
  • HDMI interface HDMI interface
  • UART interface UART interface
  • One or more of these interfaces can be used between the A chip and the N chip for communication or power transmission.
  • the N chip can be powered by an external power source
  • the A chip can be powered by the N chip instead of the external power source.
  • the A chip may also include interfaces for connecting other devices or components, such as the MIPI interface for connecting to a camera (Camera), Bluetooth interface, etc. shown in FIG. 3.
  • the N chip can also include a VBY interface for connecting to the display screen TCON (Timer Control Register), which is used to connect a power amplifier (Amplifier, AMP) and a speaker (Speaker). ) I2S interface; and at least one of IR/Key interface, USB interface, Wifi interface, Bluetooth interface, HDMI interface, Tuner interface, etc.
  • TCON Timer Control Register
  • AMP power amplifier
  • Speaker speaker
  • I2S interface I2S interface
  • I2S interface I2S interface
  • IR/Key interface at least one of IR/Key interface, USB interface, Wifi interface, Bluetooth interface, HDMI interface, Tuner interface, etc.
  • FIG. 4 is only an exemplary description of the dual hardware system architecture of the present application, and does not represent a limitation to the present application. In practical applications, both hardware systems can contain more or less hardware or interfaces as required.
  • FIG. 4 exemplarily shows a hardware architecture block diagram of the display device 200 according to FIG. 3.
  • the hardware system of the display device 200 may include an A chip and an N chip, and modules connected to the A chip or the N chip through various interfaces.
  • the N chip may include a tuner and demodulator 220, a communicator 230, an external device interface 250, a controller 210, a memory 290, a user input interface, a video processor 260-1, an audio processor 260-2, a display 280, and an audio output interface 272. At least one of the power supplies. In other embodiments, the N chip may also include more or fewer modules.
  • the tuner and demodulator 220 is used to perform modulation and demodulation processing such as amplifying, mixing, and resonating broadcast television signals received through wired or wireless methods, thereby demodulating the user’s information from multiple wireless or cable broadcast television signals. Select the audio and video signals carried in the frequency of the TV channel, and additional information (such as EPG data signals).
  • the signal path of the tuner and demodulator 220 can be varied, such as: terrestrial broadcasting, cable broadcasting, satellite broadcasting or Internet broadcasting; and according to different modulation types, the signal adjustment method can be digitally modulated The method may also be an analog modulation method; and according to different types of received television signals, the tuner demodulator 220 may demodulate analog signals and/or digital signals.
  • the tuner and demodulator 220 is also used to respond to the TV channel frequency selected by the user and the TV signal carried by the frequency according to the user's selection and control by the controller 210.
  • the tuner demodulator 220 may also be in an external device, such as an external set-top box.
  • the set-top box outputs TV audio and video signals through modulation and demodulation, and inputs them to the display device 200 through the external device interface 250.
  • the communicator 230 is a component for communicating with external devices or external servers according to various communication protocol types.
  • the communicator 230 may include a WIFI module 231, a Bluetooth communication protocol module 232, a wired Ethernet communication protocol module 233, and an infrared communication protocol module and other network communication protocol modules or near field communication protocol modules.
  • the display device 200 may establish a control signal and a data signal connection with an external control device or content providing device through the communicator 230.
  • the communicator may receive the control signal of the remote controller 100 according to the control of the controller.
  • the external device interface 250 is a component that provides data transmission between the N chip controller 210 and the A chip and other external devices.
  • the external device interface can be connected to external devices such as set-top boxes, game devices, notebook computers, etc. in a wired/wireless manner, and can receive external devices such as video signals (such as moving images), audio signals (such as music), and additional information (such as EPG). ) And other data.
  • the external device interface 250 may include: a high-definition multimedia interface (HDMI) terminal 251, a composite video blanking synchronization (CVBS) terminal 252, an analog or digital component terminal 253, a universal serial bus (USB) terminal 254, red, green, and blue ( RGB) terminal (not shown in the figure) and any one or more.
  • HDMI high-definition multimedia interface
  • CVBS composite video blanking synchronization
  • USB universal serial bus
  • RGB red, green, and blue
  • the controller 210 controls the work of the display device 200 and responds to user operations by running various software control programs (such as an operating system and/or various application programs) stored on the memory 290.
  • various software control programs such as an operating system and/or various application programs
  • the controller 210 includes at least one of a read-only memory RAM 213, a random access memory ROM 214, a graphics processor 216, a CPU processor 212, a communication interface 218, and a communication bus.
  • RAM213 and ROM214, graphics processor 216, CPU processor 212, and communication interface 218 are connected by a bus.
  • the graphics processor 216 is used to generate various graphics objects, such as icons, operation menus, and user input instructions to display graphics. Including an arithmetic unit, which performs operations by receiving various interactive commands input by the user, and displays various objects according to display attributes. As well as including a renderer, various objects obtained based on the arithmetic unit are generated, and the rendering result is displayed on the display 280.
  • the CPU processor 212 is configured to execute operating system and application program instructions stored in the memory 290. And according to receiving various interactive instructions input from the outside, to execute various applications, data and content, so as to finally display and play various audio and video content.
  • the CPU processor 212 may include multiple processors.
  • the multiple processors may include one main processor and multiple or one sub-processors.
  • the main processor is used to perform some operations of the display device 200 in the pre-power-on mode, and/or to display images in the normal mode.
  • the communication interface may include the first interface 218-1 to the nth interface 218-n. These interfaces may be network interfaces connected to external devices via a network.
  • the controller 210 may control the overall operation of the display device 200. For example, in response to receiving a user command for selecting a UI object to be displayed on the display 280, the controller 210 may perform an operation related to the object selected by the user command.
  • the object may be any one of the selectable objects, such as a hyperlink or an icon.
  • Operations related to the selected object for example: display operations connected to hyperlink pages, documents, images, etc., or perform operations corresponding to the icon.
  • the user command for selecting the UI object may be a command input through various input devices (for example, a mouse, a keyboard, a touch pad, etc.) connected to the display device 200 or a voice command corresponding to the voice spoken by the user.
  • the memory 290 includes storing various software modules for driving and controlling the display device 200.
  • various software modules stored in the memory 290 include: at least one of a basic module, a detection module, a communication module, a display control module, a browser module, and various service modules.
  • the basic module is the underlying software module used for signal communication between various hardware in the display device 200 and sending processing and control signals to the upper module.
  • the detection module is a management module used to collect various information from various sensors or user input interfaces, and perform digital-to-analog conversion and analysis management.
  • the voice recognition module includes a voice analysis module and a voice command database module.
  • the display control module is a module for controlling the display 280 to display image content, and can be used to play information such as multimedia image content and UI interfaces.
  • the communication module is a module used for control and data communication with external devices.
  • the browser module is a module used to perform data communication between browser servers.
  • the service module is a module used to provide various services and various applications.
  • the memory 290 is also used to store and receive external data and user data, images of various items in various user interfaces, and visual effect diagrams of focus objects.
  • the user input interface is used to send a user's input signal to the controller 210, or to transmit a signal output from the controller to the user.
  • the control device (such as a mobile terminal or a remote control) may send input signals input by the user, such as a power switch signal, a channel selection signal, and a volume adjustment signal, to the user input interface, and then the user input interface forwards the input signal to the controller;
  • the control device may receive output signals such as audio, video, or data output from the user input interface processed by the controller, and display the received output signal or output the received output signal as audio or vibration.
  • the user may input a user command on a graphical user interface (GUI) displayed on the display 280, and the user input interface receives the user input command through the graphical user interface (GUI).
  • GUI graphical user interface
  • the user can input a user command by inputting a specific sound or gesture, and the user input interface recognizes the sound or gesture through the sensor to receive the user input command.
  • the video processor 260-1 is used to receive video signals, and perform video data processing such as decompression, decoding, scaling, noise reduction, frame rate conversion, resolution conversion, and image synthesis according to the standard codec protocol of the input signal.
  • the video signal displayed or played directly on the display 280.
  • the video processor 260-1 includes a demultiplexing module, a video decoding module, an image synthesis module, a frame rate conversion module, a display formatting module, and the like.
  • the demultiplexing module is used to demultiplex the input audio and video data stream. For example, if MPEG-2 is input, the demultiplexing module will demultiplex into video signals and audio signals.
  • the video decoding module is used to process the demultiplexed video signal, including decoding and scaling.
  • An image synthesis module such as an image synthesizer, is used to superimpose and mix the GUI signal generated by the graphics generator with the zoomed video image according to user input or itself to generate an image signal for display.
  • Frame rate conversion module used to convert the frame rate of the input video, such as converting the frame rate of the input 24Hz, 25Hz, 30Hz, 60Hz video to the frame rate of 60Hz, 120Hz or 240Hz, where the input frame rate can be compared with the source
  • the video stream is related, and the output frame rate can be related to the update rate of the display.
  • the input has a usual format, such as frame insertion.
  • the display formatting module is used to change the signal output by the frame rate conversion module into a signal that conforms to a display format such as a display, such as format conversion of the signal output by the frame rate conversion module to output RGB data signals.
  • the display 280 is used to receive the image signal input from the video processor 260-1, display video content and images, and a menu control interface.
  • the display 280 includes a display component for presenting a picture and a driving component for driving image display.
  • the displayed video content can be from the video in the broadcast signal received by the tuner and demodulator 220, or from the video content input by the communicator or the interface of an external device.
  • the display 220 simultaneously displays a user manipulation interface UI generated in the display device 200 and used to control the display device 200.
  • the display 280 it also includes a driving component for driving the display.
  • the display 280 is a projection display, it may also include a projection device and a projection screen.
  • the audio processor 260-2 is used to receive audio signals, and perform decompression and decoding according to the standard codec protocol of the input signal, as well as audio data processing such as noise reduction, digital-to-analog conversion, and amplification processing, and the result can be in the speaker 272 The audio signal to be played.
  • the audio output interface 270 is used to receive the audio signal output by the audio processor 260-2 under the control of the controller 210.
  • the audio output interface may include a speaker 272 or output to an external audio output terminal 274 of the generator of an external device, such as : External audio terminal or headphone output terminal, etc.
  • the video processor 260-1 may include one or more chips.
  • the audio processor 260-2 may also include one or more chips.
  • the video processor 260-1 and the audio processor 260-2 may be separate chips, or they may be integrated with the controller 210 in one or more chips.
  • the power supply is used to provide power supply support for the display device 200 with power input from an external power supply under the control of the controller 210.
  • the power supply may include a built-in power supply circuit installed inside the display device 200, or may be a power supply installed outside the display device 200, such as a power interface that provides an external power supply in the display device 200.
  • the A chip may include a controller 310, a communicator 330, a detector 340, and a memory 390. In some embodiments, it may also include a user input interface, a video processor, an audio processor, a display, and an audio output interface. In some embodiments, there may also be a power supply that independently powers the A chip.
  • the communicator 330 is a component for communicating with external devices or external servers according to various communication protocol types.
  • the communicator 330 may include a WIFI module 331, a Bluetooth communication protocol module 332, a wired Ethernet communication protocol module 333, and an infrared communication protocol module and other network communication protocol modules or near field communication protocol modules.
  • the communicator 330 of the A chip and the communicator 230 of the N chip also interact with each other.
  • the WiFi module 231 of the N chip is used to connect to an external network and generate network communication with an external server and the like.
  • the WiFi module 331 of the A chip is used to connect to the WiFi module 231 of the N chip, and does not directly connect to an external network or the like. Therefore, for the user, a display device as in the above embodiment can externally display a WiFi account.
  • the detector 340 is a component used by the chip of the display device A to collect signals from the external environment or interact with the outside.
  • the detector 340 may include a light receiver 342, a sensor used to collect the intensity of ambient light, which can adaptively display parameter changes by collecting ambient light, etc.; it may also include an image collector 341, such as a camera, a camera, etc., which can be used to collect external Environmental scenes, as well as gestures used to collect user attributes or interact with users, can adaptively change display parameters, and can also recognize user gestures to achieve the function of interaction with users.
  • the external device interface 350 provides components for data transmission between the controller 310 and the N chip or other external devices.
  • the external device interface can be connected to external devices such as set-top boxes, game devices, notebook computers, etc., in a wired/wireless manner.
  • the controller 310 controls the work of the display device 200 and responds to user operations by running various software control programs (such as installed third-party applications, etc.) stored on the memory 390 and interacting with the N chip.
  • various software control programs such as installed third-party applications, etc.
  • the controller 310 includes at least one of a read-only memory ROM313, a random access memory RAM314, a graphics processor 316, a CPU processor 312, a communication interface 318, and a communication bus.
  • the ROM 313 and the RAM 314, the graphics processor 316, the CPU processor 312, and the communication interface 318 are connected by a bus.
  • the CPU processor 312 runs the system startup instruction in the ROM, and copies the temporary data of the operating system stored in the memory 390 to the RAM 314 to start the operating system. After the operating system is started, the CPU processor 312 copies the temporary data of the various application programs in the memory 390 to the RAM 314, and then starts to run and start the various application programs.
  • the CPU processor 312 is used to execute the operating system and application instructions stored in the memory 390, communicate with the N chip, transmit and interact with signals, data, instructions, etc., and execute various interactive instructions received from external inputs Various applications, data and content, in order to finally display and play various audio and video content.
  • the communication interface may include the first interface 318-1 to the nth interface 318-n. These interfaces may be network interfaces connected to external devices via a network, or network interfaces connected to the N chip via a network.
  • the controller 310 may control the overall operation of the display device 200. For example, in response to receiving a user command for selecting a UI object to be displayed on the display 280, the controller 210 may perform an operation related to the object selected by the user command.
  • the graphics processor 316 is used to generate various graphics objects, such as icons, operation menus, and user input instructions to display graphics. Including an arithmetic unit, which performs operations by receiving various interactive commands input by the user, and displays various objects according to display attributes. As well as including a renderer, various objects obtained based on the arithmetic unit are generated, and the rendering result is displayed on the display 280.
  • Both the graphics processor 316 of the A chip and the graphics processor 216 of the N chip can generate various graphics objects. Differentily, if application 1 is installed on the A chip and application 2 is installed on the N chip, when the user is in the interface of the application 1 and the user inputs instructions in the application 1, the A chip graphics processor 316 generates a graphic object. When the user is on the interface of Application 2 and performs the user-input instructions in Application 2, the graphics processor 216 of the N chip generates the graphics object.
  • Fig. 5 exemplarily shows a schematic diagram of a functional configuration of a display device according to an exemplary embodiment.
  • the memory 390 of the A chip and the memory 290 of the N chip are used to store operating systems, applications, content, and user data, respectively.
  • the controller 310 of the A chip and the memory 290 of the N chip The system operation of driving the display device 200 and responding to various operations of the user are performed under the control of the controller 210.
  • the memory 390 of the A chip and the memory 290 of the N chip may include volatile and/or nonvolatile memory.
  • the memory 290 is used to store the operating program that drives the controller 210 in the display device 200, and store various application programs built in the display device 200, various application programs downloaded by the user from an external device, and application related programs The various graphical user interfaces, and various objects related to the graphical user interface, user data information, and various internal data supporting applications.
  • the memory 290 is used to store system software such as an operating system (OS) kernel, middleware, and applications, and to store input video data and audio data, and other user data.
  • OS operating system
  • the memory 290 is used to store driver programs and related data such as the video processor 260-1 and the audio processor 260-2, the display 280, the communication interface 230, the tuner and demodulator 220, and the input/output interface.
  • the memory 290 may store software and/or programs.
  • the software programs used to represent an operating system (OS) include, for example, kernels, middleware, application programming interfaces (APIs), and/or application programs.
  • OS operating system
  • the kernel may control or manage system resources, or functions implemented by other programs (such as the middleware, API, or application program), and the kernel may provide interfaces to allow middleware and APIs, or applications to access the controller , In order to achieve control or management of system resources.
  • the memory 290 includes a broadcast receiving module 2901, a channel control module 2902, a volume control module 2903, an image control module 2904, a display control module 2905, an audio control module 2906, an external command recognition module 2907, a communication control module 2908, and an optical receiver At least one of a module 2909, a power control module 2910, an operating system 2911, and other application programs 2912, a browser module, and so on.
  • the controller 210 executes various software programs in the memory 290, such as: broadcast and television signal reception and demodulation function, TV channel selection control function, volume selection control function, image control function, display control function, audio control function, external command Various functions such as identification function, communication control function, optical signal receiving function, power control function, software control platform supporting various functions, and browser function.
  • the memory 390 includes storing various software modules for driving and controlling the display device 200.
  • various software modules stored in the memory 390 include: at least one of a basic module, a detection module, a communication module, a display control module, a browser module, and various service modules. Since the functions of the memory 390 and the memory 290 are relatively similar, please refer to the memory 290 for related parts, and will not be repeated here.
  • the memory 390 includes an image control module 3904, an audio control module 2906, an external command recognition module 3907, a communication control module 3908, an optical receiving module 3909, an operating system 3911, and other application programs 3912, a browser module, and so on.
  • the controller 210 executes various software programs in the memory 290, such as: image control function, display control function, audio control function, external command recognition function, communication control function, light signal receiving function, power control function, support for various Functional software control platform, and various functions such as browser functions.
  • the external command recognition module 2907 of the N chip and the external command recognition module 3907 of the A chip can recognize different commands.
  • the external command recognition module 3907 of the A chip may include a graphic recognition module 2907-1.
  • the graphic recognition module 3907-1 stores a graphic database, and the camera receives external commands. In order to control the display device, the corresponding relationship is made with the instructions in the graphics database.
  • the voice receiving device and the remote controller are connected to the N chip, the external command recognition module 2907 of the N chip may include a voice recognition module 2907-2.
  • the graphics recognition module 2907-2 stores a voice database, and the voice receiving device, etc.
  • the external voice commands or time correspond to the commands in the voice database to control the display device.
  • a control device 100 such as a remote controller is connected to the N chip, and the key command recognition module interacts with the control device 100.
  • Fig. 6a exemplarily shows a configuration block diagram of the software system in the display device 200 according to an exemplary embodiment.
  • the operating system 2911 includes operating software for processing various basic system services and for implementing hardware-related tasks, acting as a medium for data processing between application programs and hardware components.
  • part of the operating system kernel may include a series of software to manage the hardware resources of the display device and provide services for other programs or software codes.
  • part of the operating system kernel may include one or more device drivers, and the device drivers may be a set of software codes in the operating system to help operate or control devices or hardware associated with the display device.
  • the drive may contain code to manipulate video, audio, and/or other multimedia components. Examples include displays, cameras, Flash, WiFi, and audio drivers.
  • the accessibility module 2911-1 is used to modify or access the application program, so as to realize the accessibility of the application program and the operability of its display content.
  • the communication module 2911-2 is used to connect to other peripherals via related communication interfaces and communication networks.
  • the user interface module 2911-3 is used to provide objects that display the user interface for access by various applications, and can realize user operability.
  • the control application 2911-4 is used to control process management, including runtime applications.
  • the event transmission system 2914 can be implemented in the operating system 2911 or in the application 2912. In some embodiments, it is implemented in the operating system 2911 on the one hand, and implemented in the application program 2912 at the same time, for monitoring various user input events, and responding to the recognition results of various events or sub-events according to various events. And implement one or more sets of pre-defined operation procedures.
  • the event monitoring module 2914-1 is used to monitor input events or sub-events of the user input interface.
  • the event recognition module 2914-1 is used to input the definitions of various events to various user input interfaces, recognize various events or sub-events, and transmit them to the processing to execute the corresponding one or more groups of processing programs .
  • the event or sub-event refers to the input detected by one or more sensors in the display device 200 and the input of an external control device (such as the control device 100).
  • an external control device such as the control device 100.
  • various sub-events of voice input, gesture input sub-events of gesture recognition, and sub-events of remote control button command input of control devices include multiple forms, including but not limited to one or a combination of pressing up/down/left/right/, confirming keys, and pressing keys.
  • non-physical buttons such as moving, pressing, and releasing.
  • the interface layout management module 2913 which directly or indirectly receives various user input events or sub-events monitored by the event transmission system 2914, is used to update the layout of the user interface, including but not limited to the position of each control or sub-control in the interface, and the container
  • the size, position, level, etc. of the interface are related to various execution operations.
  • the application layer of the display device includes various applications that can be executed on the display device 200.
  • the application layer 2912 of the N chip may include, but is not limited to, one or more applications, such as video-on-demand applications, application centers, and game applications.
  • the application layer 3912 of the A chip may include, but is not limited to, one or more applications, such as a live TV application, a media center application, and so on. It should be noted that the application programs contained on the A chip and the N chip are determined according to the operating system and other designs. This application does not need to define and divide the application programs contained on the A chip and the N chip in some embodiments. .
  • Live TV applications can provide live TV through different sources.
  • a live TV application may use input from cable TV, wireless broadcasting, satellite services, or other types of live TV services to provide TV signals.
  • the live TV application can display the video of the live TV signal on the display device 200.
  • Video-on-demand applications can provide videos from different storage sources. Unlike live TV applications, VOD provides video display from certain storage sources. For example, the video on demand can come from the server side of cloud storage, and from the local hard disk storage that contains the stored video programs.
  • Media center applications can provide various multimedia content playback applications.
  • the media center can provide services that are different from live TV or video on demand, and users can access various images or audio through the media center application.
  • Application center can provide storage of various applications.
  • the application program may be a game, an application program, or some other application program that is related to a computer system or other device but can be run on a display device.
  • the application center can obtain these applications from different sources, store them in the local storage, and then run on the display device 200.
  • FIG. 7 exemplarily shows a schematic diagram of a user interface in the display device 200 according to an exemplary embodiment.
  • the user interface includes multiple view display areas, for example, a first view display area 201 and a play screen 202, where the play screen includes layout of one or more different items.
  • the user interface also includes a selector indicating that the item is selected, and the position of the selector can be moved through user input to change the selection of different items.
  • multiple view display areas can present display screens of different levels.
  • the display area of the first view may present the content of the video chat item
  • the display area of the second view may present the content of the application layer item (eg, webpage video, VOD display, application screen, etc.).
  • the content of the display area of the second view includes content displayed on the video layer and part of the content displayed on the floating layer
  • the content of the display area of the first view includes content displayed on the floating layer.
  • the floating layers used in the first view display area and the second view display area are different floating layers.
  • the presentation of different view display areas has different priorities, and the display priorities of the view display areas are different between view display areas with different priorities.
  • the priority of the system layer (such as the video layer) is higher than that of the application layer.
  • two different display windows can be drawn in the same layer to achieve the same level of display.
  • the selector can be in the first view display area and the second view. Switch between display areas (ie switch between two display windows).
  • the size and position of the display area of the first view change, the size and position of the display area of the second view may change accordingly.
  • independent operating systems may be installed in the A chip and the N chip, so that there are two independent but related sub-systems in the display device 200. system.
  • both the A chip and the N chip can be independently installed with Android and various APPs, so that each chip can realize a certain function, and the A chip and the N chip can realize a certain function in cooperation.
  • a smart TV 200 that is not dual-chip (for example, a single-chip smart TV), there is a system chip, and the operating system controls the realization of all functions of the smart TV.
  • Both the first chip (referred to as the A chip in some embodiments) and the second chip (also called the N chip in some embodiments) can be used to receive video signals.
  • the video signal includes at least one of a network video signal derived from network media, a cable video signal derived from a broadcasting network, and a pre-stored local video signal.
  • the first chip is used to receive at least one of a network video signal and a local video signal.
  • the second chip is used to receive at least one of a wired video signal and a local video signal of the network video signal transmitted from the first chip.
  • network video signals include: video layer signals.
  • the first chip is equipped with a graphics layer signal generator. While the first chip receives network video signals, the graphics layer signal generator generates corresponding graphics layer signals according to requirements. At this time, the first chip has both video layer signals and graphics. Layer signal.
  • the first chip needs to send the video layer signal and the graphics layer signal to the second chip.
  • the second chip processes the video layer signal and the graphics layer signal and sends it to the display screen of the display device for display. In order to ensure the smoothness of the displayed picture, the second chip usually needs to perform image processing on the received video signal, such as motion compensation processing.
  • the video layer signals are all signals with a certain motion vector, if the motion compensation technology only acts on the video layer signals, the video layer signals will be smoother without obvious jitter.
  • the signal received by the second chip is a video image signal generated by superimposing a video layer signal and a graphics layer signal, since the graphics layer signal in the motion compensation frame is compared with the two frames before and after the graphics layer signal, there must be pixel movement .
  • the video layer signal and the graphics layer signal cannot be transmitted under the HDMI channel at the same time, so the first chip will mix the video layer signal and the graphics layer signal, encode it into a video image signal according to the HDMI protocol and send it to the second chip .
  • the second chip cannot distinguish whether the received video image signal contains a graphics layer signal. If the video image signal containing the graphics layer signal is continuously processed for motion compensation, a picture of the corresponding area of the graphics layer signal will appear. The phenomenon of being torn apart. Therefore, a solution that can be adopted is: if there is a time signal on the graphics layer, the first chip sends an instruction message to turn off motion compensation to the second chip, and accordingly, the second chip no longer performs motion on the received video image signal. Compensation treatment.
  • the existing third-party applications will create a transparent graphics layer superimposed on the video layer image when playing the video in full screen. At this time, if the motion compensation function is completely turned off, the output image will shake seriously. .
  • Fig. 8 exemplarily shows a schematic flowchart of an image processing method. As shown in Figure 8, the method mainly includes the following steps:
  • the first chip detects whether the graphics layer corresponding to the graphics layer signal is a transparent layer when superimposing the video layer signal and the graphics layer signal to generate a video image signal.
  • the video layer signal may be a video signal or an image signal.
  • Fig. 9 exemplarily shows the processing flow diagram of the video layer signal and the graphics layer signal by the first chip.
  • the first chip is used to receive video layer signals, where the video layer signals can be video signals derived from network media or local media, or image signals derived from network media or local media.
  • the video layer signals can be video signals derived from network media or local media, or image signals derived from network media or local media.
  • it may include at least one of video programs such as online movies, TV shows, news, variety shows, and advertisements; and also includes at least one of video programs such as self-timed DVDs, video chats, and video games.
  • the graphics layer signal is also called OSD (Object Sequence Diagram, on-screen menu adjustment mode).
  • the graphics layer signal comes from the graphics layer signal generator provided inside the first chip.
  • the OSD layer signals mainly include user settings, prompt menus, and third-party application layers. In the Android system, they are controlled by the surface finger service (also known as the graphics layer signal generator).
  • Each OSD layer signal can be called a surface, and each surface has basic elements such as content, size, position coordinates, and transparency.
  • the first chip determines the position information of the graphics layer signal in the basic element, where the position information is the size information and position coordinate information of the surface corresponding to the size and position coordinates of the basic element, respectively.
  • the basic elements are generated based on the video layer signal frame picture.
  • the resolution of the video layer signal frame picture is 1920*1080
  • the position information of the graphics layer signal is delimited with the upper left corner of each frame picture as the origin.
  • the frame picture resolution shown in Fig. 10 is 1920*1080
  • the upper left corner of the frame picture is delineated by origin B
  • the upper left corner of the graphics layer picture is point A.
  • the relative position coordinates of point A relative to point B are (m, n).
  • the size information of the graphics layer picture is (w, h), and the corresponding position information is (m, n, w, h).
  • the graphics layer signal generator has a surface output, before superimposing the video layer signal and the graphics layer signal to generate a video image signal, the graphics layer picture frame is intercepted by the graphics layer signal; Then, according to the analysis result of the pixel values of the pixels in the graphics layer picture frame, it is determined whether the graphics layer corresponding to the graphics layer signal is a transparent layer.
  • the graphic layer of is a transparent layer, but it is not limited to this detection method, and other methods, such as sub-region detection, can also be used.
  • step S102 is executed; otherwise, step S104 is executed.
  • the first chip In response to the graphics layer corresponding to the graphics layer signal being a transparent layer, the first chip sends the first indication information and the video image signal to the second chip, where the first indication information is used for Instruct the second chip to perform motion compensation processing on the area where the graphics layer is superimposed in the video image signal.
  • the second chip when the graphics layer corresponding to the graphics layer signal is a transparent layer, the second chip performs motion compensation on the entire image frame of the image frame analyzed by the video image signal.
  • the first chip is connected to the second chip through the HDMI channel, and in the HDMI data transmission protocol, the audio and video signals are transmitted in a time-division multiplexing manner, and the OSD layer signals and the OSD layer signals cannot be transmitted separately.
  • the signal of the video layer Therefore, in some embodiments of the present application, the video image signal obtained by the first chip superimposing the video layer signal and the graphics layer signal is sent to the second chip through the HDMI channel.
  • the first chip superimposes the graphics layer signal and the video layer signal into a video image signal conforming to the HDMI protocol, and the video image signal exists in the form of HDMI data packets.
  • the encoding method of the video image signal is different from the encoding method of the video layer signal.
  • the first indication information may be added to a reserved HDMI information packet (packet, or called Info Frame Type code) and sent to the second chip.
  • a reserved HDMI information packet packet, or called Info Frame Type code
  • SPD source product description
  • NVBI NTSC VBI
  • this application Some embodiments add the first indication to the HDMI information packet, and the graphics layer information of each frame of video image signal can be transmitted in real time.
  • the first chip and the second chip can be connected by another transmission method, which cannot support simultaneous transmission of the graphics layer signal and the video layer signal.
  • the graphics layer signal and the video layer signal need to be encoded into One video signal.
  • S103 The second chip performs motion compensation on the video image signal to generate a motion compensated image.
  • the second chip will perform motion compensation processing on the image of the area corresponding to the position information in the received video image signal according to the first instruction information, and the images other than the area corresponding to the position information will also continue to move. Compensation is to perform motion compensation processing on all image areas corresponding to the video image signal to obtain a motion-compensated image, and continue to perform step S107. Therefore, the second chip can accurately know whether the graphics layer corresponding to the graphics layer signal is in a transparency state, and perform corresponding processing, which can effectively avoid the output picture quality brought by the direct closing of the motion compensation processing function when the graphics layer signal is present. Reduce the problem.
  • the graphics layer of the transparent layer does not affect the display after motion compensation, so the motion compensation processing can be performed on the entire frame in the video image signal.
  • the first chip In response to the graphics layer corresponding to the graphics layer signal is not a transparent layer, the first chip sends second indication information and the video image signal to the second chip.
  • the second indication information includes position information of the graphics layer corresponding to the graphics layer signal.
  • the first chip determines the size and position coordinates of the graphics layer signal on the basic elements of the surface as the position information of the graphics layer, adds the position information to the second indication information, and then passes the second indication information together with the video image signal
  • the HDMI channel is sent to the second chip.
  • the second indication information can be sent to the second chip by reserving HDMI information packets.
  • the second chip receives the second instruction information and the video image signal, and can perform image processing in the manner shown in step S104.
  • the second chip performs motion compensation on the image in the video image signal except for the area corresponding to the position information, and does not perform motion compensation on the image in the area corresponding to the position information in the video image signal.
  • the second chip determines the first area corresponding to the graphics layer signal in the video image signal according to the received position information; determines the second area outside the first area in the video image signal; Perform motion compensation on the image of the second region.
  • the position information sent by the first chip is (m, n, w, h), where the picture size information of the graphics layer signal is (w, h) and the position coordinate information (m, n).
  • the second chip determines the position of the picture of the graphics layer signal according to the position coordinate information (m, n), and then determines that the picture of the graphics layer signal is in the frame picture of the video image signal according to the size information of the picture of the graphics layer signal as (w, h)
  • the occupied area is the first area. Then, the area occupied by the frame of the video image signal after removing the graphics layer signal from the frame of the video image signal is the second area. The image undergoes motion compensation.
  • the process of performing motion compensation on the image in the second area is specifically: the motion compensation module in the second chip filters out the pixels corresponding to the area occupied by the image of the graphics layer signal (the first area), and does not perform the motion vector of this area. Calculate and insert the compensation frame, and perform motion compensation on the pixels in the second area.
  • the first chip in some embodiments of the present application first determines the position information of the graphics layer signal, superimposes the graphics layer signal and the video layer signal, and converts it into a video image signal, and then connects the position information to the video image signal.
  • the second chip performs motion compensation on the image in the video image signal except for the area corresponding to the position information, and the second chip stitches the motion compensated image and the image of the graphics layer signal to generate a motion compensated image.
  • the mixed compensation frame is inserted between the current frame of video picture and the previous frame (or the next frame) video picture, thereby avoiding the problem of the graphics layer signal being torn during the motion compensation process.
  • the first area corresponding to the position information is generated based on the resolution of the video layer signal received by the first chip (also referred to as the input resolution in some embodiments of the present application).
  • the second area is calculated based on the resolution of the display screen (also referred to as display resolution in the embodiment of this application).
  • the input resolution and display resolution are often inconsistent.
  • the input resolution of a network video is 1920*1080, but the display resolution is different depending on the display performance.
  • the display resolution of the 4K display is 3840*2160.
  • the display resolution of FHD (Full High Definition) displays generally can only reach 1920*1080. If the N chip and FHD (Full High Definition) display screen, the input resolution and display resolution are inconsistent. Generally, the inconsistency between the input resolution and the display resolution will cause inaccuracy in the calculation result of the second area.
  • the problems caused by the inconsistency between the input resolution and the display resolution will be described in detail in conjunction with specific embodiments.
  • the input resolution of the network video is 1920*1080
  • the position information sent by the first chip is (0,0,20,30)
  • the size information of the picture of the graphics layer signal is ( 20, 30), position coordinate information (0, 0).
  • the screen size information of the graphics layer signal is (20, 30).
  • the video signal resolution needs to be converted into the display screen resolution.
  • the resolution of the converted frame picture is 3840*2160. At this time, it is obviously inaccurate to determine the second area based on the image size information of the graphics layer signal on the 3840*2160 resolution frame image as (20, 30) and the position coordinate information (0, 0).
  • the position information sent by the first chip may be scaled according to the correspondence between the resolution of the video layer signal and the resolution of the display screen, and then the position information sent by the first chip may be scaled according to the scaled position information.
  • Two areas It is also possible to determine the first area corresponding to the position information in the video image signal; the second chip determines the second area outside the first area in the video image signal; and then the resolution based on the video layer signal. The corresponding relationship between the resolution ratio and the resolution of the display screen and the corresponding relationship between the resolution of the display screen are subjected to scaling processing on the second area.
  • the first possibility is that the second chip first judges whether the resolution of the video layer signal is consistent with the resolution of the display screen; if not, the second chip determines whether the resolution of the display screen and the resolution of the video layer signal correspond to each other.
  • the position information and the video image signal are scaled to generate the adjusted position information and the adjusted video image signal, and motion compensation is performed on the image of the adjusted video image signal except for the area corresponding to the adjusted position information.
  • the second chip is connected to the 4K display screen.
  • the size information of the graphics layer signal is (w, h)
  • the position information (m, n) is (m, n, w, h);
  • the first chip Send (m, n, w, h) to the second chip.
  • the resolution of the display screen is 3840*2160
  • the resolution of the video signal is 1920*1080.
  • the second chip calculates that the corresponding relationship between the display screen resolution and the video signal resolution is twice.
  • the second chip enlarges the frame picture of the video image signal based on the corresponding relationship of 2 times, and the resolution of the generated frame picture is 3840*2160.
  • the second chip magnifies (m, n, w, h) twice based on the corresponding relationship of 2 times to generate the processed position information (2m, 2n, 2w, 2h); the second chip according to the new position coordinate information ( 2m, 2n) Determine the position of the frame picture of the graphics layer signal, and then according to the new size information (2w, 2h), determine the area occupied by the position information in the frame picture (the frame picture is consistent with the display screen resolution), and then The area corresponding to the position information after the frame image removal processing is the first area occupied by the frame image, and the remaining area is the second area.
  • the second chip performs motion compensation on the image corresponding to the second area.
  • the second chip determines the first area corresponding to the position information in the video image signal; the second chip determines the second area outside the first area in the video image signal; The two chips determine whether the resolution of the video layer signal is consistent with the resolution of the display screen; if not, according to the correspondence between the resolution of the display screen and the resolution of the video layer signal, the second The area is scaled.
  • the second chip is connected to the 4K display screen.
  • the image size information of the graphics layer signal of the first chip is (w, h)
  • the position information generated by the first chip is (m, n, w, h);
  • the first chip sends (m, n, w, h) to the second chip;
  • the second chip determines the first area corresponding to the position information in the video image signal; determines that the video image signal is divided by The second area outside the first area;
  • the second chip calculates that the corresponding relationship between the display screen resolution and the video signal resolution is 2 times; the second chip magnifies the second area by 2 times.
  • the zooming process can refer to Figure 11 and Figure 12, where in Figure 11, area 1 is the first area before the enlargement processing, area 2 is the second area before the enlargement processing, and area 3 in Figure 12 is the enlargement processing After the second area.
  • the second chip performs motion compensation on the image corresponding to the enlarged second area.
  • the technical solution shown in the embodiment of the present application can avoid the inaccuracy of the calculation result of the motion compensation area due to the inconsistency between the resolution of the video layer signal and the resolution of the display screen.
  • S106 The second chip stitches the image of the second region after motion compensation and the image of the first region to generate a motion compensated image.
  • the calculated compensation frame is mixed with the corresponding area of the OSD layer to obtain a motion-compensated image, and then the mixed compensation frame is inserted between the current frame of the video picture and the previous frame (or the next frame) of the video picture. Furthermore, while the OSD layer signal is torn apart by the motion compensation processing technology, the motion compensation technology can better solve the problem of video signal jam and jitter.
  • the second chip outputs the motion-compensated image to the display screen for display.
  • the deleting step may not be performed in the order listed above, and it only needs to be able to control the motion compensation processing of the second chip according to the graphics layer.
  • the display device may directly determine the position of the graphics layer without detecting the transparent layer, and control the motion compensation area according to the position of the graphics layer.
  • the display device may first determine the position of the graphics layer. When the area covered by the position of the graphics layer is smaller than the first preset value, the motion compensation area is controlled according to the position of the graphics layer. When the value is greater than the second preset value, the detection of the transparent layer is performed. If the transparent layer is a transparent layer, the motion compensation processing is performed for the entire frame;
  • the transparent layer is judged first. If it is a transparent layer, then the entire frame is subjected to motion compensation. If not, the position of the graphics layer is detected, and then no motion compensation is performed in the area corresponding to the position. Perform motion compensation.
  • the transparent graphics layer created for third-party applications is usually a full-screen transparent graphics layer. Therefore, in order to reduce the amount of data processing for pixel analysis on the image layer, some embodiments of this application also provide another An image processing method is applied to a display device.
  • the display device includes a first chip, a second chip and a display screen.
  • FIG. 13 exemplarily shows a schematic flowchart of another image processing method. As shown in Figure 13, the method mainly includes the following steps:
  • the first chip acquires position information in the graphics layer signal when superimposing the video layer signal and the graphics layer signal to generate a video image signal.
  • the first chip obtains the position information of the graphics layer signal in the basic elements of the surface, where the position information is the size information and position coordinate information of the surface.
  • S202 According to the position information, determine whether the relative area of the graphics layer corresponding to the graphics layer signal in the video layer corresponding to the video layer signal is greater than a preset area value.
  • the position information calculate the relative area of the graphics layer corresponding to the graphics layer signal in the video layer corresponding to the video layer signal, and then compare the relative area with the preset area value. If it is greater than the preset area value, the graphics The graphics layer corresponding to the layer signal may be a transparent graphics layer created by a third-party application, and then step S203 is performed; otherwise, step S206 is performed.
  • the aforementioned preset area value may be determined according to the resolution of the video layer signal.
  • step S204 is executed; otherwise, step S206 is executed.
  • the first chip In response to the graphics layer corresponding to the graphics layer signal being a transparent layer, the first chip sends the first indication information and the video image signal to the second chip, where the first indication information is used for Instruct the second chip to perform motion compensation processing on the area where the graphics layer is superimposed in the video image signal.
  • S205 The second chip performs motion compensation on the video image signal to generate a motion compensated image.
  • the second chip performs motion compensation processing on the entire image corresponding to the received video image signal to obtain a motion compensated image, and continues to perform step S209.
  • the first chip sends the second indication information and the video image signal to the second chip.
  • the second indication information includes position information of the graphics layer corresponding to the graphics layer signal.
  • the second chip performs motion compensation on the image in the video image signal except for the area corresponding to the position information, and does not perform motion compensation on the image in the area corresponding to the position information in the video image signal.
  • S208 The second chip stitches the image of the second region after motion compensation and the image of the first region to generate a motion compensated image.
  • S209 The second chip outputs the motion-compensated image to the display screen for display.
  • this example also provides a video data processing device, wherein the device is respectively arranged in the first chip and the second chip, and mainly includes a memory and a processor, wherein: the memory is used for Store program code; the processor is used to read the program code stored in the memory, and the processors provided in the first chip and the second chip can execute the above-mentioned first and second embodiments Methods.
  • some embodiments of the present application also provide a display device, which mainly includes a first chip, a second chip and a display screen, wherein:
  • the first chip is used to: when superimposing a video layer signal and a graphics layer signal to generate a video image signal, detect whether the graphics layer corresponding to the graphics layer signal is a transparent layer, and respond to the graphics layer corresponding to the graphics layer signal Is a transparent layer, sending first indication information and the video image signal to the second chip, where the first indication information is used to instruct the second chip to superimpose the graphics layer in the video image signal Area for motion compensation processing;
  • the second chip is configured to: according to the first instruction information, perform motion compensation processing on the area where the graphics layer is superimposed in the video image signal and output the motion compensated image to the display screen for display.
  • the first chip is configured to: in response to the graphics layer corresponding to the graphics layer signal being not a transparent layer, the first chip sends second indication information and the video image signal to the second chip.
  • the second indication information includes position information of the graphics layer corresponding to the graphics layer signal.
  • the second chip is configured to: perform motion compensation on images in the video image signal other than the area corresponding to the position information, and not perform motion compensation on the images in the area corresponding to the position information in the video image signal .
  • the first chip and the second chip are connected through an HDMI data line, and the first chip is used to: superimpose a video layer signal and a graphics layer signal to generate The video image signal conforms to the HDMI protocol, and the video image signal is sent to the second chip through the HDMI channel.
  • the second chip is used to: determine the first area corresponding to the location information in the video image signal; determine the second area outside the first area in the video image signal; The image in the first region is not subject to motion compensation, and the image in the second region is subject to motion compensation.
  • the second chip is used to splice the image of the second region after motion compensation and the image of the first region to generate a motion compensated image.
  • the second chip is configured to: perform scaling processing on the first area and the second area according to the correspondence between the resolution of the display screen and the resolution of the video image signal , Generating an adjusted first area and an adjusted second area; no motion compensation is performed on the image in the adjusted first area, and motion compensation is performed on the image in the adjusted second area.
  • the second chip is configured to: perform scaling processing on the position information and the video image signal according to the correspondence between the resolution of the display screen and the resolution of the video image signal, Generate adjusted position information and adjusted video image signals; perform motion compensation on images in the adjusted video image signal except for the area corresponding to the adjusted position information, and perform motion compensation on the adjusted video image Motion compensation is performed on the image of the region corresponding to the adjusted position information in the signal.
  • the first chip is configured to: before detecting whether the graphics layer corresponding to the graphics layer signal is a transparent layer, first obtain the position information in the graphics layer signal; determine according to the position information Whether the relative area of the graphics layer corresponding to the graphics layer signal in the video layer corresponding to the video layer signal is greater than a preset area value; in response to the relative area being greater than the preset area value, the graphics layer signal is detected Whether the corresponding graphics layer is a transparent layer; in response to the relative area being not greater than the preset area value, the first chip sends the second indication information including the position information and the video image signal to the second chip
  • the position information in the second indication information is used to instruct the second chip to perform motion compensation on the image in the video image signal except for the area corresponding to the position information, and perform motion compensation on the video image signal
  • the image of the region corresponding to the position information in the above is not subject to motion compensation.
  • the first chip is used to: intercept the graphics layer picture frame at the graphics layer signal; determine the graphics layer according to the analysis result of the pixel values of the pixels in the graphics layer picture frame Whether the graphics layer corresponding to the signal is a transparent layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Controls And Circuits For Display Device (AREA)

Abstract

本申请提供了一种图像处理方法及显示设备,在第一芯片在将视频层信号与图形层信号叠加生成视频图像信号时,先对图形层信号对应的图形层的透明度进行检测,并且检测其为透明层时,则指示第二芯片对该视频图像信号中叠加图形层的区域进行运动补偿处理的指示信息以及该视频图像信号一同发送给第二芯片。这样,第二芯片便会根据该指示信息对该视频图像信号对应的全部图像区域进行运动补偿处理,并将处理后的信号输出到显示屏进行显示,以提升显示效果。

Description

图像处理方法及显示设备
本申请要求于2019年06月10日提交中国专利局、申请号为201910498648.9、申请名称为″视频数据处理方法、装置及显示设备″的中国专利申请;2019年06月10日提交中国专利局、申请号为201910498192.6、申请名称为″一种双硬件的运动补偿方法及系统″的中国专利申请;2019年08月06日提交中国专利局、申请号为201910721816.6、申请名称为″视频数据处理方法、装置及显示设备″的中国专利申请以及2019年08月12日提交中国专利局、申请号为201910741593.X、申请名称为″一种图像运动补偿方法及显示设备″的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及显示技术。更具体地讲,涉及图像处理方法及显示设备。
背景技术
当前,由于显示设备可以为用户提供诸如音频、视频、图片等的播放画面,受到用户的广泛关注。近年来,用户对显示设备的功能需求与日俱增。例如,用户想要通过显示设备观看高清的有线电视,有的时候用户想要通过显示设备观看网络电视。
发明内容
第一方面,本申请提供了一种显示设备,包括:第一芯片;和所述第一芯片相连接的第二芯片;和所述第二芯片相连接的显示屏,其中:所述第一芯片用于:
在将视频层信号与图形层信号叠加生成视频图像信号时,检测所述图形层信号对应的图形层是否为透明层;
响应于所述图形层信号对应的图形层为透明层,将第一指示信息以及所述视频图像信号发送给第二芯片,其中,所述第一指示信息用于指示所述第二芯片对所述视频图像信号中叠加所述图形层的区域进行运动补偿处理,运动补偿后的图像用于被所述第二芯片输出到所述显示屏进行显示。
第二方面,本申请提供了又一种显示设备,包括:第一芯片;和所述第一芯片相连接的第二芯片;和所述第二芯片相连接的显示屏,其中:所述第一芯片用于:
确定图形层信号的第二指示信息,并将图形层信号和视频层信号叠加后转化为成视频图像信号,其中,所述第二指示信息包括所述图形层信号对应的图形层的位置信息;
将所述第二指示信息和所述视频图像信号发送给所述第二芯片,其中所述第二指示信息用于使所述第二芯片对所述视频图像信号中除所述第二指示信息对应的区域以外的图像进行运动补偿,对所述视频图像信号中所述第二指示信息对应的区域的图像不进行运动补偿生成运动补偿后的图像,所述运动补偿后的图像用于被所述第二芯片发送给所述显示屏以进行图像显示。
第三方面,本申请提供了一种图像处理方法,应用于显示设备中,所述显示设备包括第 一芯片、第二芯片和显示屏,所述方法包括:
所述第一芯片在将视频层信号与图形层信号叠加生成视频图像信号时,检测所述图形层信号对应的图形层是否为透明层;
响应于所述图形层信号对应的图形层为透明层,所述第一芯片将第一指示信息以及所述视频图像信号发送给第二芯片,其中,所述第一指示信息用于指示所述第二芯片对所述视频图像信号中叠加所述图形层的区域进行运动补偿处理;
所述第二芯片将运动补偿后的图像输出到所述显示屏进行显示。
第四方面,本申请提供了又一种图像处理方法,应用于显示设备中,所述显示设备包括第一芯片和第二芯片,包括:
第一芯片确定图形层信号的第二指示信息,并将图形层信号和视频层信号叠加后转化为成视频图像信号,其中,所述第二指示信息包括所述图形层信号对应的图形层的位置信息;
所述第一芯片将所述第二指示信息和所述视频图像信号发送给所述第二芯片,所述第二指示信息用于使所述第二芯片对所述视频图像信号中除所述第二指示信息对应的区域以外的图像进行运动补偿,对所述视频图像信号中所述第二指示信息对应的区域的图像不进行运动补偿以生成运动补偿后的图像,
所述第二芯片将运动补偿后的图像输出到显示屏进行显示。
第五方面,本申请提供了又一种图像处理方法,应用于显示设备中,所述显示设备包括第一芯片和第二芯片,所述方法包括:
所述第一芯片通过HDMI通道将所述视频图像信号发送给所述第二芯片;
所述第二芯片对视频图像信号进行运动补偿,并将运动补偿后的图像输出到显示屏进行显示;
其中,在所述视频信号中的图形层是透明层时,对所述视频图像信号的整帧进行运动补偿处理;在所述视频信号中的图形层不是透明层时,第二芯片对所述视频图像信号中除所述图形层信号对应的区域以外的图像进行运动补偿、对所述图形层信号对应的区域的图像不进行运动补偿。
附图说明
为了更清楚地说明本申请实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1中示例性示出了一些实施例中显示设备与控制装置之间操作场景的示意图;
图2中示例性示出了一些实施例中控制装置100的硬件配置框图;
图3中示例性示出了一些实施例中显示设备200的硬件配置框图;
图4中示例性示出了根据图3显示设备200的硬件架构框图;
图5中示例性示出了一些实施例中显示设备200的功能配置示意图;
图6a中示例性示出了一些实施例中显示设备200中软件配置示意图;
图6b中示例性示出了一些实施例中显示设备200中应用程序的配置示意图;
图7中示例性示出了一些实施例中显示设备200中用户界面的示意图;
图8中示例性示出了一种图像处理方法的流程示意图;
图9中示例性示出了第一芯片对视频层信号和图形层信号的处理流程示意图;
图10中示例性示出了帧画面的示意图;
图11中示例性示出了帧画面的示意图;
图12中示例性示出了帧画面的示意图;
图13中示例性示出了另一种图像处理方法的流程示意图。
具体实施方式
为使本申请的目的、实施方式和优点更加清楚,下面将结合本申请示例性实施例中的附图,对本申请示例性实施例进行清楚、完整地描述,显然,所描述的示例性实施例仅是本申请一部分实施例,而不是全部的实施例。
为便于用户使用,显示设备上通常会设置各种外部装置接口,以便于连接不同的外设设备或线缆以实现相应的功能。而在显示设备的接口上连接有高清晰度的摄像头时,如果显示设备的硬件系统没有接收源码的高像素摄像头的硬件接口,那么就会导致无法将摄像头接收到的数据呈现到显示设备的显示屏上。
并且,受制于硬件结构,传统显示设备的硬件系统仅支持一路硬解码资源,且通常最大仅能支持4K分辨率的视频解码,因此当要实现边观看网络电视边进行视频聊天时,为了不降低网络视频画面清晰度,就需要使用硬解码资源(通常是硬件系统中的GPU)对网络视频进行解码,而在此情况下,只能采取由硬件系统中的通用处理器(例如CPU)对视频进行软解码的方式处理视频聊天画面。
采用软解码处理视频聊天画面,会大大增加CPU的数据处理负担,当CPU的数据处理负担过重时,可能会出现画面卡顿或者不流畅的问题。在一些实施例中,受制于CPU的数据处理能力,当采用CPU软解码处理视频聊天画面时,通常无法实现多路视频通话,当用户想要再同一聊天场景同时与多个其他用户进行视频聊天时,会出现接入受阻的情况。
本申请一些实施方式公开了一种双硬件系统架构,以实现多路视频聊天数据(至少一路本地视频)。
下面首先结合附图对本申请所涉及的概念进行说明。在此需要指出的是,以下对各个概念的说明,仅为了使本申请的内容更加容易理解,并不表示对本申请保护范围的限定。
本申请各实施例中使用的术语″模块″,可以是指任何已知或后来开发的硬件、软件、固件、人工智能、模糊逻辑或硬件或/和软件代码的组合,能够执行与该元件相关的功能。
本申请各实施例中使用的术语″遥控器″,是指电子设备(如本申请中公开的显示设备)的一个组件,该组件通常可在较短的距离范围内无线控制电子设备。该组件一般可以使用红外线和/或射频(RF)信号和/或蓝牙与电子设备连接,也可以包括WiFi、无线USB、蓝牙、动作传感器等功能模块中的至少一个。例如:手持式触摸遥控器,是以触摸屏中用户界面取代一般遥控装置中的大部分物理内置硬键。
本申请各实施例中使用的术语″手势″,是指用户通过一种手型的变化或手部运动等动作,用于表达预期想法、动作、目的/或结果的用户行为。
本申请各实施例中使用的术语″硬件系统″,可以包含由集成电路(Integrated Circuit, IC)、印刷电路板(Printed circuit board,PCB)等机械、光、电、磁器件构成的具有计算、控制、存储、输入和输出功能的实体部件中的至少一个。
图1中示例性示出了一些实施例中显示设备与控制装置之间操作场景的示意图。如图1所示,用户可通过控制装置100来操作显示设备200。
其中,控制装置100可以是遥控器100A,其可与显示设备200之间通过红外协议通信、蓝牙协议通信、紫蜂(Zig Bee)协议通信或其他短距离通信方式中的至少一个进行通信,用于通过无线或其他有线方式来控制显示设备200。用户可以通过遥控器上按键、语音输入、控制面板输入等输入用户指令,来控制显示设备200。如:用户可以通过遥控器上音量加减键、频道控制键、上/下/左/右的移动按键、语音输入按键、菜单键、开关机按键等输入相应控制指令,来实现控制显示设备200的功能。
控制装置100也可以是智能设备,如移动终端100B、平板电脑、计算机、笔记本电脑等,其可以通过本地网(LAN,Local Area Network)、广域网(WAN,Wide Area Network)、无线局域网((WLAN,Wireless Local Area Network)或其他网络中的至少一个与显示设备200之间通信,并通过与显示设备200相应的应用程序实现对显示设备200的控制。例如,使用在智能设备上运行的应用程序控制显示设备200。该应用程序可以在与智能设备关联的屏幕上通过直观的用户界面(UI,User Interface)为用户提供各种控制。
示例的,移动终端100B与显示设备200均可安装软件应用,从而可通过网络通信协议实现二者之间的连接通信,进而实现一对一控制操作的和数据通信的目的。如:可以使移动终端100B与显示设备200建立控制指令协议,将遥控控制键盘同步到移动终端100B上,通过控制移动终端100B上用户界面,实现控制显示设备200的功能;也可以将移动终端100B上显示的音视频内容传输到显示设备200上,实现同步显示功能。
如图1所示,显示设备200还可与服务器300通过多种通信方式进行数据通信。在本申请各个实施例中,可允许显示设备200通过局域网、无线局域网或其他网络中的至少一个与服务器300进行通信连接。服务器300可以向显示设备200提供各种内容和互动。
示例的,显示设备200通过发送和接收信息,以及电子节目指南(EPG,Electronic Program Guide)互动,接收软件程序更新,或访问远程储存的数字媒体库。服务器300可以是一组,也可以是多组,可以是一类或多类服务器。通过服务器300提供视频点播和广告服务等其他网络服务内容。
显示设备200,可以是液晶显示器、OLED(Organic Light Emitting Diode)显示器、投影显示设备、智能电视。具体显示设备类型,尺寸大小和分辨率等不作限定,本领技术人员可以理解的是,显示设备200可以根据需要做性能和配置上的一些改变。
显示设备200除了提供广播接收电视功能之外,还可以附加提供计算机支持功能的智能网络电视功能。示例的包括,网络电视、智能电视、互联网协议电视(IPTV)等。
如图1所述,显示设备上可以连接或设置有摄像头,用于将摄像头拍摄到的画面呈现在本显示设备或其他显示设备的显示界面上,以实现用户之间的交互聊天。在一些实施方式中,摄像头拍摄到的画面可在显示设备上全屏显示、半屏显示、或者显示任意可选区域。
作为一种可选的连接方式,摄像头通过连接板与显示器后壳连接,固定安装在显示器后壳的上侧中部,作为可安装的方式,可以固定安装在显示器后壳的任意位置,能保证其图像采集区域不被后壳遮挡即可,例如,图像采集区域与显示设备的显示朝向相同。
作为另一种可选的连接方式,摄像头通过连接板或者其他可想到的连接器可升降的与显示后壳连接,连接器上安装有升降马达,在用户观看角度,当用户要使用摄像头或者有应用程序要使用摄像头时,再升出显示器之上,当不需要使用摄像头时,其可内嵌到后壳之后,以达到保护摄像头免受损坏。
作为一种实施例,本申请所采用的摄像头可以为1600万像素,以达到超高清显示目的。在实际使用中,也可采用比1600万像素更高或更低的摄像头。
当显示设备上安装有摄像头以后,显示设备不同应用场景所显示的内容可得到多种不同方式的融合,从而达到传统显示设备无法实现的功能。
示例性的,用户可以在边观看视频节目的同时,与至少一位其他用户进行视频聊天。视频节目的呈现可作为背景画面,视频聊天的窗口显示在背景画面之上。形象的,可以称该功能为″边看边聊″。
可选的,在″边看边聊″的场景中,在观看直播视频或网络视频的同时,跨终端的进行至少一路的视频聊天。
另一示例中,用户可以在边进入教育应用学习的同时,与至少一位其他用户进行视频聊天。例如,学生在学习教育应用程序中内容的同时,可实现与老师的远程互动。形象的,可以称该功能为″边学边聊″。
另一示例中,用户在玩纸牌游戏时,与进入游戏的玩家进行视频聊天。例如,玩家在进入游戏应用参与游戏时,可实现与其他玩家的远程互动。形象的,可以称该功能为″边看边玩″。
可选的,游戏场景与视频画面进行融合,将视频画面中人像进行抠图,显示在游戏画面中,提升用户体验。
可选的,在体感类游戏中(如打球类、拳击类、跑步类、跳舞类等),通过摄像头获取人体姿势和动作,肢体检测和追踪、人体骨骼关键点数据的检测,再与游戏中动画进行融合,实现如体育、舞蹈等场景的游戏。
另一示例中,用户可以在K歌应用中,与至少一位其他用户进行视频和语音的交互。形象的,可以称该功能为″边看边唱″。优选的,当至少一位用户在聊天场景进入该应用时,可多个用户共同完成一首歌的录制。
另一个示例中,用户可在本地打开摄像头获取图片和视频,形象的,可以称该功能为″照镜子″。
在另一些示例中,还可以再增加更多功能或减少上述功能。本申请对该显示设备的功能不作具体限定。
图2中示例性示出了根据示例性实施例中控制装置100的配置框图。如图3所示,控制装置100包括控制器110、通信器130、用户输入/输出接口140、存储器190、供电电源180。
控制装置100用于可控制所述显示设备200,以及可接收用户的输入操作指令,且将操作指令转换为显示设备200可识别和响应的指令,起到用户与显示设备200之间交互中介作用。如:用户通过操作控制装置100上频道加减键,显示设备200响应频道加减的操作。
在一些实施方式中,控制装置100可是一种智能设备。如:控制装置100可根据用户需求安装控制显示设备200的各种应用。
在一些实施方式中,如图1所示,移动终端100B或其他智能电子设备,可在安装操控显示设备200的应用之后,起到控制装置100类似功能。如:用户可以通过安装应用,在移动终端100B或其他智能电子设备上可提供的图形用户界面的各种功能键或虚拟按钮,以实现控制装置100实体按键的功能。
控制器110包括处理器112、RAM113和ROM114、通信接口以及通信总线中的至少一个。控制器110用于控制控制装置100的运行和操作,以及内部各部件之间通信协作以及外部和内部的数据处理功能。
通信器130在控制器110的控制下,实现与显示设备200之间控制信号和数据信号的通信。如:将接收到的用户输入信号发送至显示设备200上。通信器130可包括WIFI模块131、蓝牙模块132、NFC模块133等通信模块中至少一种。
用户输入/输出接口140,其中,输入接口包括麦克风141、触摸板142、传感器143、按键144等输入接口中至少一者。如:用户可以通过语音、触摸、手势、按压等动作实现用户指令输入功能,输入接口通过将接收的模拟信号转换为数字信号,以及数字信号转换为相应指令信号,发送至显示设备200。
输出接口包括将接收的用户指令发送至显示设备200的接口。在一些实施方式中,可以是红外接口,也可以是射频接口。如:红外信号接口时,需要将用户输入指令按照红外控制协议转化为红外控制信号,经红外发送模块进行发送至显示设备200。再如:射频信号接口时,需将用户输入指令转化为数字信号,然后按照射频控制信号调制协议进行调制后,由射频发送端子发送至显示设备200。
在一些实施方式中,控制装置100包括通信器130和输出接口中至少一者。控制装置100中配置通信器130,如:WIFI、蓝牙、NFC等模块,可将用户输入指令通过WIFI协议、或蓝牙协议、或NFC协议编码,发送至显示设备200.
存储器190,用于在控制器110的控制下存储驱动和控制控制装置100的各种运行程序、数据和应用。存储器190,可以存储用户输入的各类控制信号指令。
供电电源180,用于在控制器110的控制下为控制装置100各元件提供运行电力支持。可以电池及相关控制电路。
图3中示例性示出了根据示例性实施例中显示设备200中硬件系统的硬件配置框图。
在采用双硬件系统架构时,硬件系统的机构关系可以图3所示。为便于表述以下将双硬件系统架构中的一个硬件系统称为第一硬件系统或A系统、A芯片,并将另一个硬件系统称为第二硬件系统或N系统、N芯片。A芯片包含A芯片的控制器及各类接口,N芯片则包含N芯片的控制器及各类接口。A芯片及N芯片中可以各自安装有独立的操作系统,从而使显示设备200中存在两个在独立但又存在相互关联的子系统。
如图3所示,A芯片与N芯片之间可以通过多个不同类型的接口实现连接、通信及供电。A芯片与N芯片之间接口的接口类型可以包括通用输入输出接口(General-purpose input/output,GPIO)、USB接口、HDMI接口、UART接口等中的至少一个。A芯片与N芯片之间可以使用这些接口中的一个或多个进行通信或电力传输。例如图3所示,在双硬件系统架构下,可以由外接的电源(power)为N芯片供电,而A芯片则可以不由外接电源,而由N芯片供电。
除用于与N芯片进行连接的接口之外,A芯片还可以包含用于连接其他设备或组件的接 口,例如图3中所示的用于连接摄像头(Camera)的MIPI接口,蓝牙接口等。
类似的,除用于与N芯片进行连接的接口之外,N芯片还可以包含用于连接显示屏TCON(Timer Control Register)的VBY接口,用于连接功率放大器(Amplifier,AMP)及扬声器(Speaker)的i2S接口;以及IR/Key接口,USB接口,Wifi接口,蓝牙接口,HDMI接口,Tuner接口等中的至少一个。
下面结合图4对本申请双硬件系统架构进行在一些实施例中说明。需要说明的是图4仅仅是对本申请双硬件系统架构的一个示例性说明,并不表示对本申请的限定。在实际应用中,两个硬件系统均可根据需要包含更多或更少的硬件或接口。
图4中示例性示出了根据图3显示设备200的硬件架构框图。如图4所示,显示设备200的硬件系统可以包括A芯片和N芯片,以及通过各类接口与A芯片或N芯片相连接的模块。
N芯片可以包括调谐解调器220、通信器230、外部装置接口250、控制器210、存储器290、用户输入接口、视频处理器260-1、音频处理器260-2、显示器280、音频输出接口272、供电电源中的至少一个。在其他实施例中N芯片也可以包括更多或更少的模块。
其中,调谐解调器220,用于对通过有线或无线方式接收广播电视信号,进行放大、混频和谐振等调制解调处理,从而从多个无线或有线广播电视信号中解调出用户所选择电视频道的频率中所携带的音视频信号,以及附加信息(例如EPG数据信号)。根据电视信号广播制式不同,调谐解调器220的信号途径可以有很多种,诸如:地面广播、有线广播、卫星广播或互联网广播等;以及根据调制类型不同,所述信号的调整方式可以数字调制方式,也可以模拟调制方式;以及根据接收电视信号种类不同,调谐解调器220可以解调模拟信号和/或数字信号。
调谐解调器220,还用于根据用户选择,以及由控制器210控制,响应用户选择的电视频道频率以及该频率所携带的电视信号。
在其他一些示例性实施例中,调谐解调器220也可在外置设备中,如外置机顶盒等。这样,机顶盒通过调制解调后输出电视音视频信号,经过外置装置接口250输入至显示设备200中。
通信器230是用于根据各种通信协议类型与外部设备或外部服务器进行通信的组件。例如:通信器230可以包括WIFI模块231,蓝牙通信协议模块232,有线以太网通信协议模块233,及红外通信协议模块等其他网络通信协议模块或近场通信协议模块。
显示设备200可以通过通信器230与外部控制设备或内容提供设备之间建立控制信号和数据信号的连接。例如,通信器可根据控制器的控制接收遥控器100的控制信号。
外部装置接口250,是提供N芯片控制器210和A芯片及外部其他设备间数据传输的组件。外部装置接口可按照有线/无线方式与诸如机顶盒、游戏装置、笔记本电脑等的外部设备连接,可接收外部设备的诸如视频信号(例如运动图像)、音频信号(例如音乐)、附加信息(例如EPG)等数据。
其中,外部装置接口250可以包括:高清多媒体接口(HDMI)端子251、复合视频消隐同步(CVBS)端子252、模拟或数字分量端子253、通用串行总线(USB)端子254、红绿蓝(RGB)端子(图中未示出)等任一个或多个。本申请不对外部装置接口的数量和类型进行限制。
控制器210,通过运行存储在存储器290上的各种软件控制程序(如操作系统和/或各种应用程序),来控制显示设备200的工作和响应用户的操作。
如图4所示,控制器210包括只读存储器RAM213、随机存取存储器ROM214、图形处理器216、CPU处理器212、通信接口218、以及通信总线中的至少一个。其中,RAM213和ROM214以及图形处理器216、CPU处理器212、通信接口218通过总线相连接。
ROM213,用于存储各种系统启动的指令。如在收到开机信号时,显示设备200电源开始启动,CPU处理器212运行ROM中系统启动指令,将存储在存储器290的操作系统的临时数据拷贝至RAM214中,以开始运行启动操作系统。当操作系统启动完成后,CPU处理器212再将存储器290中各种应用程序的临时数据拷贝至RAM214中,然后,开始运行启动各种应用程序。
图形处理器216,用于产生各种图形对象,如:图标、操作菜单、以及用户输入指令显示图形等。包括运算器,通过接收用户输入各种交互指令进行运算,根据显示属性显示各种对象。以及包括渲染器,产生基于运算器得到的各种对象,进行渲染的结果显示在显示器280上。
CPU处理器212,用于执行存储在存储器290中操作系统和应用程序指令。以及根据接收外部输入的各种交互指令,来执行各种应用程序、数据和内容,以便最终显示和播放各种音视频内容。
在一些示例性实施例中,CPU处理器212,可以包括多个处理器。所述多个处理器中可包括一个主处理器以及多个或一个子处理器。主处理器,用于在预加电模式中执行显示设备200一些操作,和/或在正常模式下显示画面的操作。多个或一个子处理器,用于执行在待机模式等状态下的一种操作。
通信接口,可包括第一接口218-1到第n接口218-n。这些接口可以是经由网络被连接到外部设备的网络接口。
控制器210可以控制显示设备200的整体操作。例如:响应于接收到用于选择在显示器280上显示UI对象的用户命令,控制器210便可以执行与由用户命令选择的对象有关的操作。
其中,所述对象可以是可选对象中的任何一个,例如超链接或图标。与所选择的对象有关操作,例如:显示连接到超链接页面、文档、图像等操作,或者执行与图标相对应程序的操作。用于选择UI对象用户命令,可以是通过连接到显示设备200的各种输入装置(例如,鼠标、键盘、触摸板等)输入命令或者与由用户说出语音相对应的语音命令。
存储器290,包括存储用于驱动和控制显示设备200的各种软件模块。如:存储器290中存储的各种软件模块,包括:基础模块、检测模块、通信模块、显示控制模块、浏览器模块、和各种服务模块等中的至少一个。
其中,基础模块是用于显示设备200中各个硬件之间信号通信、并向上层模块发送处理和控制信号的底层软件模块。检测模块是用于从各种传感器或用户输入接口中收集各种信息,并进行数模转换以及分析管理的管理模块。
例如:语音识别模块中包括语音解析模块和语音指令数据库模块。显示控制模块是用于控制显示器280进行显示图像内容的模块,可以用于播放多媒体图像内容和UI界面等信息。通信模块,是用于与外部设备之间进行控制和数据通信的模块。浏览器模块,是用于执行浏 览服务器之间数据通信的模块。服务模块,是用于提供各种服务以及各类应用程序在内的模块。
同时,存储器290还用于存储接收外部数据和用户数据、各种用户界面中各个项目的图像以及焦点对象的视觉效果图等。
用户输入接口,用于将用户的输入信号发送给控制器210,或者,将从控制器输出的信号传送给用户。示例性的,控制装置(例如移动终端或遥控器)可将用户输入的诸如电源开关信号、频道选择信号、音量调节信号等输入信号发送至用户输入接口,再由用户输入接口转送至控制器;或者,控制装置可接收经控制器处理从用户输入接口输出的音频、视频或数据等输出信号,并且显示接收的输出信号或将接收的输出信号输出为音频或振动形式。
在一些实施方式中,用户可在显示器280上显示的图形用户界面(GUI)输入用户命令,则用户输入接口通过图形用户界面(GUI)接收用户输入命令。或者,用户可通过输入特定的声音或手势进行输入用户命令,则用户输入接口通过传感器识别出声音或手势,来接收用户输入命令。
视频处理器260-1,用于接收视频信号,根据输入信号的标准编解码协议,进行解压缩、解码、缩放、降噪、帧率转换、分辨率转换、图像合成等视频数据处理,可得到直接在显示器280上显示或播放的视频信号。
示例的,视频处理器260-1,包括解复用模块、视频解码模块、图像合成模块、帧率转换模块、显示格式化模块等。
其中,解复用模块,用于对输入音视频数据流进行解复用处理,如输入MPEG-2,则解复用模块进行解复用成视频信号和音频信号等。
视频解码模块,用于对解复用后的视频信号进行处理,包括解码和缩放处理等。
图像合成模块,如图像合成器,其用于将图形生成器根据用户输入或自身生成的GUI信号,与缩放处理后视频图像进行叠加混合处理,以生成可供显示的图像信号。
帧率转换模块,用于对输入视频的帧率进行转换,如将输入的24Hz、25Hz、30Hz、60Hz视频的帧率转换为60Hz、120Hz或240Hz的帧率,其中,输入帧率可以与源视频流有关,输出帧率可以与显示器的更新率有关。输入有通常的格式采用如插帧方式实现。
显示格式化模块,用于将帧率转换模块输出的信号,改变为符合诸如显示器显示格式的信号,如将帧率转换模块输出的信号进行格式转换以输出RGB数据信号。
显示器280,用于接收源自视频处理器260-1输入的图像信号,进行显示视频内容和图像以及菜单操控界面。显示器280包括用于呈现画面的显示器组件以及驱动图像显示的驱动组件。显示视频内容,可以来自调谐解调器220接收的广播信号中的视频,也可以来自通信器或外部设备接口输入的视频内容。显示器220,同时显示显示设备200中产生且用于控制显示设备200的用户操控界面UI。
以及,根据显示器280类型不同,还包括用于驱动显示的驱动组件。或者,倘若显示器280为一种投影显示器,还可以包括一种投影装置和投影屏幕。
音频处理器260-2,用于接收音频信号,根据输入信号的标准编解码协议,进行解压缩和解码,以及降噪、数模转换、和放大处理等音频数据处理,得到可以在扬声器272中播放的音频信号。
音频输出接口270,用于在控制器210的控制下接收音频处理器260-2输出的音频信号, 音频输出接口可包括扬声器272,或输出至外接设备的发生装置的外接音响输出端子274,如:外接音响端子或耳机输出端子等。
在其他一些示例性实施例中,视频处理器260-1可以包括一个或多个芯片组成。音频处理器260-2,也可以包括一个或多个芯片组成。
以及,在其他一些示例性实施例中,视频处理器260-1和音频处理器260-2,可以为单独的芯片,也可以与控制器210一起集成在一个或多个芯片中。
供电电源,用于在控制器210控制下,将外部电源输入的电力为显示设备200提供电源供电支持。供电电源可以包括安装显示设备200内部的内置电源电路,也可以是安装在显示设备200外部的电源,如在显示设备200中提供外接电源的电源接口。
与N芯片相类似,如图4所示,A芯片可以包括控制器310、通信器330、检测器340、存储器390。在某些实施例中还可以包括用户输入接口、视频处理器、音频处理器、显示器、音频输出接口。在某些实施例中,也可以存在独立为A芯片供电的供电电源。
通信器330是用于根据各种通信协议类型与外部设备或外部服务器进行通信的组件。例如:通信器330可以包括WIFI模块331,蓝牙通信协议模块332,有线以太网通信协议模块333,及红外通信协议模块等其他网络通信协议模块或近场通信协议模块。
A芯片的通信器330和N芯片的通信器230也有相互交互。例如,N芯片的WiFi模块231用于连接外部网络,与外部服务器等产生网络通信。A芯片的WiFi模块331用于连接至N芯片的WiFi模块231,而不与外界网络等产生直接连接。因此,对于用户而言,一个如上述实施例中的显示设备至对外显示一个WiFi账号。
检测器340,是显示设备A芯片用于采集外部环境或与外部交互的信号的组件。检测器340可以包括光接收器342,用于采集环境光线强度的传感器,可以通过采集环境光来自适应显示参数变化等;还可以包括图像采集器341,如相机、摄像头等,可以用于采集外部环境场景,以及用于采集用户的属性或与用户交互手势,可以自适应变化显示参数,也可以识别用户手势,以实现与用户之间互动的功能。
外部装置接口350,提供控制器310与N芯片或外部其他设备间数据传输的组件。外部装置接口可按照有线/无线方式与诸如机顶盒、游戏装置、笔记本电脑等的外部设备连接。
控制器310,通过运行存储在存储器390上的各种软件控制程序(如用安装的第三方应用等),以及与N芯片的交互,来控制显示设备200的工作和响应用户的操作。
如图4所示,控制器310包括只读存储器ROM313、随机存取存储器RAM314、图形处理器316、CPU处理器312、通信接口318、以及通信总线中的至少一个。其中,ROM313和RAM314以及图形处理器316、CPU处理器312、通信接口318通过总线相连接。
ROM313,用于存储各种系统启动的指令。CPU处理器312运行ROM中系统启动指令,将存储在存储器390的操作系统的临时数据拷贝至RAM314中,以开始运行启动操作系统。当操作系统启动完成后,CPU处理器312再将存储器390中各种应用程序的临时数据拷贝至RAM314中,然后,开始运行启动各种应用程序。
CPU处理器312,用于执行存储在存储器390中操作系统和应用程序指令,和与N芯片进行通信、信号、数据、指令等传输与交互,以及根据接收外部输入的各种交互指令,来执行各种应用程序、数据和内容,以便最终显示和播放各种音视频内容。
通信接口,可包括第一接口318-1到第n接口318-n。这些接口可以是经由网络被连接 到外部设备的网络接口,也可以是经由网络被连接到N芯片的网络接口。
控制器310可以控制显示设备200的整体操作。例如:响应于接收到用于选择在显示器280上显示UI对象的用户命令,控制器210便可以执行与由用户命令选择的对象有关的操作。
图形处理器316,用于产生各种图形对象,如:图标、操作菜单、以及用户输入指令显示图形等。包括运算器,通过接收用户输入各种交互指令进行运算,根据显示属性显示各种对象。以及包括渲染器,产生基于运算器得到的各种对象,进行渲染的结果显示在显示器280上。
A芯片的图形处理器316与N芯片的图形处理器216均能产生各种图形对象。区别性的,若应用1安装于A芯片,应用2安装在N芯片,当用户在应用1的界面,且在应用1内进行用户输入的指令时,由A芯片图形处理器316产生图形对象。当用户在应用2的界面,且在应用2内进行用户输入的指令时,由N芯片的图形处理器216产生图形对象。
图5中示例性示出了根据示例性实施例中显示设备的功能配置示意图。
在一些实施方式中,如图5所示,A芯片的存储器390和N芯片的存储器290分别用于存储操作系统、应用程序、内容和用户数据等,在A芯片的控制器310和N芯片的控制器210的控制下执行驱动显示设备200的系统运行以及响应用户的各种操作。A芯片的存储器390和N芯片的存储器290可以包括易失性和/或非易失性存储器。
对于N芯片,存储器290,用于存储驱动显示设备200中控制器210的运行程序,以及存储显示设备200内置各种应用程序,以及用户从外部设备下载的各种应用程序、以及与应用程序相关的各种图形用户界面,以及与图形用户界面相关的各种对象,用户数据信息,以及各种支持应用程序的内部数据。存储器290用于存储操作系统(OS)内核、中间件和应用等系统软件,以及存储输入的视频数据和音频数据、及其他用户数据。
存储器290,用于存储视频处理器260-1和音频处理器260-2、显示器280、通信接口230、调谐解调器220、输入/输出接口等驱动程序和相关数据。
在一些实施方式中,存储器290可以存储软件和/或程序,用于表示操作系统(OS)的软件程序包括,例如:内核、中间件、应用编程接口(API)和/或应用程序。示例性的,内核可控制或管理系统资源,或其它程序所实施的功能(如所述中间件、API或应用程序),以及内核可以提供接口,以允许中间件和API,或应用访问控制器,以实现控制或管理系统资源。
示例的,存储器290,包括广播接收模块2901、频道控制模块2902、音量控制模块2903、图像控制模块2904、显示控制模块2905、音频控制模块2906、外部指令识别模块2907、通信控制模块2908、光接收模块2909、电力控制模块2910、操作系统2911、以及其他应用程序2912、浏览器模块等等中的至少一个。控制器210通过运行存储器290中各种软件程序,来执行诸如:广播电视信号接收解调功能、电视频道选择控制功能、音量选择控制功能、图像控制功能、显示控制功能、音频控制功能、外部指令识别功能、通信控制功能、光信号接收功能、电力控制功能、支持各种功能的软件操控平台、以及浏览器功能等各类功能。
存储器390,包括存储用于驱动和控制显示设备200的各种软件模块。如:存储器390中存储的各种软件模块,包括:基础模块、检测模块、通信模块、显示控制模块、浏览器模块、和各种服务模块等中的至少一个。由于存储器390与存储器290的功能比较相似,相关之处参见存储器290即可,在此就不再赘述。
示例的,存储器390,包括图像控制模块3904、音频控制模块2906、外部指令识别模块3907、通信控制模块3908、光接收模块3909、操作系统3911、以及其他应用程序3912、浏览器模块等等。控制器210通过运行存储器290中各种软件程序,来执行诸如:图像控制功能、显示控制功能、音频控制功能、外部指令识别功能、通信控制功能、光信号接收功能、电力控制功能、支持各种功能的软件操控平台、以及浏览器功能等各类功能。
区别性的,N芯片的外部指令识别模块2907和A芯片的外部指令识别模块3907可识别不同的指令。
示例性的,由于摄像头等图像接收设备与A芯片连接,因此,A芯片的外部指令识别模块3907可包括图形识别模块2907-1,图形识别模块3907-1内存储有图形数据库,摄像头接收到外界的图形指令时,与图形数据库中的指令进行对应关系,以对显示设备作出指令控制。而由于语音接收设备以及遥控器与N芯片连接,因此,N芯片的外部指令识别模块2907可包括语音识别模块2907-2,图形识别模块2907-2内存储有语音数据库,语音接收设备等接收到外界的语音指令或时,与语音数据库中的指令进行对应关系,以对显示设备作出指令控制。同样的,遥控器等控制装置100与N芯片连接,由按键指令识别模块与控制装置100进行指令交互。
图6a中示例性示出了根据示例性实施例中显示设备200中软件系统的配置框图。
对N芯片,如图6a中所示,操作系统2911,包括用于处理各种基础系统服务和用于实施硬件相关任务的执行操作软件,充当应用程序和硬件组件之间完成数据处理的媒介。
一些实施方式中,部分操作系统内核可以包含一系列软件,用以管理显示设备硬件资源,并为其他程序或软件代码提供服务。
其他一些实施方式中,部分操作系统内核可包含一个或多个设备驱动器,设备驱动器可以是操作系统中的一组软件代码,帮助操作或控制显示设备关联的设备或硬件。驱动器可以包含操作视频、音频和/或其他多媒体组件的代码。示例的,包括显示器、摄像头、Flash、WiFi和音频驱动器。
其中,可访问性模块2911-1,用于修改或访问应用程序,以实现应用程序的可访问性和对其显示内容的可操作性。
通信模块2911-2,用于经由相关通信接口和通信网络与其他外设的连接。
用户界面模块2911-3,用于提供显示用户界面的对象,以供各应用程序访问,可实现用户可操作性。
控制应用程序2911-4,用于控制进程管理,包括运行时间应用程序等。
事件传输系统2914,可在操作系统2911内或应用程序2912中实现。一些实施方式中,一方面在在操作系统2911内实现,同时在应用程序2912中实现,用于监听各种用户输入事件,将根据各种事件指代响应各类事件或子事件的识别结果,而实施一组或多组预定义的操作的处理程序。
其中,事件监听模块2914-1,用于监听用户输入接口输入事件或子事件。
事件识别模块2914-1,用于对各种用户输入接口输入各类事件的定义,识别出各种事件或子事件,且将其传输给处理用以执行其相应一组或多组的处理程序。
其中,事件或子事件,是指显示设备200中一个或多个传感器检测的输入,以及外界控制设备(如控制装置100等)的输入。如:语音输入各种子事件,手势识别的手势输入子事 件,以及控制装置的遥控按键指令输入的子事件等。示例的,遥控器中一个或多个子事件包括多种形式,包括但不限于按键按上/下/左右/、确定键、按键按住等中一个或组合。以及非实体按键的操作,如移动、按住、释放等操作。
界面布局管理模块2913,直接或间接接收来自于事件传输系统2914监听到各用户输入事件或子事件,用于更新用户界面的布局,包括但不限于界面中各控件或子控件的位置,以及容器的大小或位置、层级等与界面布局相关各种执行操作。
由于A芯片的操作系统3911与N芯片的操作系统2911的功能比较相似,相关之处参见操作系统2911即可,在此就不再赘述。
如图6b中所示的交互界面中的应用程序控件,显示设备的应用程序层包含可在显示设备200执行的各种应用程序。
N芯片的应用程序层2912可包含但不限于一个或多个应用程序,如:视频点播应用程序、应用程序中心、游戏应用等。A芯片的应用程序层3912可包含但不限于一个或多个应用程序,如:直播电视应用程序、媒体中心应用程序等。需要说明的是,A芯片和N芯片上分别包含什么应用程序是根据操作系统和其他设计确定的,本申请无需对A芯片和N芯片上所包含的应用程序做在一些实施例中限定和划分。
直播电视应用程序,可以通过不同的信号源提供直播电视。例如,直播电视应用程可以使用来自有线电视、无线广播、卫星服务或其他类型的直播电视服务的输入提供电视信号。以及,直播电视应用程序可在显示设备200上显示直播电视信号的视频。
视频点播应用程序,可以提供来自不同存储源的视频。不同于直播电视应用程序,视频点播提供来自某些存储源的视频显示。例如,视频点播可以来自云存储的服务器端、来自包含已存视频节目的本地硬盘储存器。
媒体中心应用程序,可以提供各种多媒体内容播放的应用程序。例如,媒体中心,可以为不同于直播电视或视频点播,用户可通过媒体中心应用程序访问各种图像或音频所提供服务。
应用程序中心,可以提供储存各种应用程序。应用程序可以是一种游戏、应用程序,或某些和计算机系统或其他设备相关但可以在显示设备中运行的其他应用程序。应用程序中心可从不同来源获得这些应用程序,将它们储存在本地储存器中,然后在显示设备200上可运行。
图7中示例性示出了根据示例性实施例中显示设备200中用户界面的示意图。如图7所示,用户界面包括多个视图显示区,示例的,第一视图显示区201和播放画面202,其中,播放画面包括布局一个或多个不同项目。以及用户界面中还包括指示项目被选择的选择器,可通过用户输入而移动选择器的位置,以改变选择不同的项目。
需要说明的是,多个视图显示区可以呈现不同层级的显示画面。如,第一视图显示区可呈现视频聊天项目内容,第二视图显示区可呈现应用层项目内容(如,网页视频、VOD显示、应用程序画面等)。
在一些实施方式中,第二视图显示区的内容包括视频层显示的内容,以及部分浮层显示的内容,第一视图显示区的内容包含浮层显示的内容。第一视图显示区和第二视图显示区中使用的浮层为不同的悬浮层。
在一些实施方式中,不同视图显示区的呈现存在优先级区别,优先级不同的视图显示区 之间,视图显示区的显示优先级不同。如,系统层(例如视频层)的优先级高于应用层的优先级,当用户在应用层使用获取选择器和画面切换时,不遮挡系统层的视图显示区的画面显示;以及,根据用户的选择使应用层的视图显示区的大小和位置发生变化时,系统层的视图显示区的大小和位置不受影响。
在一些实施方式中,例如画中画的方式,可以在同时图层中绘制两个不同的显示窗口,实现相同层级的显示画面,此时,选择器可以在第一视图显示区和第二视图显示区之间做切换(即在两个显示窗口之间切换)。此时,在一些实施方式中,当第一视图显示区的大小和位置发生变化时,第二视图显示区的大小和位置可随及发生改变。
在一些实施方式中,对于双芯片的智能电视200而言,由于A芯片及N芯片中可能分别安装有独立的操作系统,从而使显示设备200中存在两个在独立但又存在相互关联的子系统。例如,A芯片和N芯片均可以独立安装有安卓(Android)及各类APP,使得每个芯片均可以实现一定的功能,并且使A芯片和N芯片协同实现某项功能。
在一些实施方式中,非双芯片的智能电视200(例如单芯片智能电视),存在一个系统芯片,操作系统控制智能电视的所有功能实现。
第一芯片(一些实施例中称之为A芯片)和第二芯片(一些实施例中也称之为N芯片)均可用于接收视频信号。其中视频信号包括:来源于网络媒体的网络视频信号、来源于自广电网络的有线视频信号和预先存储的本地视频信号中的至少一种。在在一些实施例中应用过程中,第一芯片用于接收网络视频信号以及本地视频信号中的至少一种。第二芯片用于接收有线视频信号,以及第一芯片传输过来的网络视频信号本地视频信号中的至少一种。
以第一芯片用于接收网络视频信号为例。通常,网络视频信号包括:视频层信号。第一芯片中设置有图形层信号发生器,第一芯片在接收网络视频信号的同时,图形层信号发生器根据需求产生相应的图形层信号,此时,第一芯片同时存在视频层信号和图形层信号。第一芯片需要将视频层信号和图形层信号发送至第二芯片。第二芯片将视频层信号和图形层信号处理后发送至显示设备的显示屏上展示。为了保证播放出来的画面流畅,第二芯片通常需要对接收到的视频信号进行图像处理,例如:运动补偿处理。
在运动补偿的过程中,由于视频层信号都是具有一定的运动矢量的信号,运动补偿技术若只作用于视频层信号,会将视频层信号更流畅、无明显的抖动现象。但是,若第二芯片接收到的信号为视频层信号与图形层信号叠加生成的视频图像信号,由于运动补偿帧中的图形层信号与前后两帧图形层信号相比,必存在像素点的移动。而根据HDMI协议,视频层信号和图形层信号无法在HDMI通道下同时传输,因此第一芯片会将视频层信号以及图形层信号混合后,按照HDMI协议编码成视频图像信号再发送给第二芯片。这样,第二芯片便不能区分其接收到的视频图像信号是否包含有图形层信号,如果继续对上述包含有图形层信号的视频图像信号进行运动补偿处理,便会出现图形层信号对应区域的画面被撕裂的现象。因此,可以采用的一种解决方式为:如果存在图形层时信时,第一芯片向第二芯片发送关闭运动补偿的指示消息,相应的,第二芯片对接收的视频图像信号不再进行运动补偿处理。但是,现有的第三方应用程序在全屏播放视频时,会创建一个透明的图形层叠加在视频层图像之上,此时若直接将运动补偿功能完全关闭,便会出现输出画面抖动严重的现象。
针对上述问题,本申请一些实施例提供了一种图像处理方法应用于显示设备中,该显示设备包括第一芯片、第二芯片和显示屏。图8中示例性示出了一种图像处理方法的流程示意 图。如图8所示,该方法主要包括如下步骤:
S101:第一芯片在将视频层信号与图形层信号叠加生成视频图像信号时,检测所述图形层信号对应的图形层是否为透明层。
本申请一些实施例中,视频层信号可以是视频信号也可以是图像信号。图9中示例性示出了第一芯片对视频层信号和图形层信号的处理流程示意图。如图9所示,第一芯片用于接收视频层信号,其中,视频层信号可以为来源于网络媒体或本地媒体的视频信号,也可以为来源于网络媒体或本地媒体的图像信号,在一些实施例中,可以包括网络电影、电视剧、新闻、综艺节目、广告等视频节目中的至少一种;还包括自拍Dv短片、视频聊天、视频游戏等视频节目中的至少一种。
本申请一些实施例中,图形层信号也称之为OSD(Object Sequence Diagram,屏幕菜单式调节方式)。图形层信号来源于第一芯片内部设置的图形层信号发生器。OSD层信号主要包括用户设置、提示菜单以及第三方应用图层等,在安卓系统中,是由surface finger服务(也可称之为图形层信号发生器)来控制实现的。每个OSD层信号可以称为一个surface,每个surface都具有内容、大小、位置坐标以及透明度这些基本元素。第一芯片在基本元素中确定图形层信号的位置信息,其中所述位置信息为surface的尺寸信息和位置坐标信息分别对应基本元素的大小和位置坐标。
其中,基本元素基于视频层信号帧画面生成,举例说明:视频层信号帧画面的分辨率为1920*1080,图形层信号的位置信息以每帧画面的左上角为原点进行划定。在一些实施例中,请参阅图10,其中,图10示出的帧画面分辨率1920*1080,帧画面的左上角为B原点进行划定,图形层画面的左上角为A点。A点相对于B点的相对位置坐标为(m,n)。图形层画面的尺寸信息为(w,h),相应的位置信息为(m,n,w,h)。
基于第一芯片的上述信号处理过程,当图形层信号发生器有surface输出时,在将视频层信号与图形层信号叠加生成视频图像信号前,通过在所述图形层信号截取图形层图片帧;然后,根据对该图形层图片帧中像素点的像素值的分析结果,判断所述图形层信号对应的图形层是否为透明层。例如,通过检测该图形层图片帧中各像素点的像素值是否均为0,即各像素点的像素值均满足R=0、B=0且G=0时,则说明该图形层信号对应的图形层为透明层,但并不限于该检测方式,还可以采用其它方式、如分区域检测等。
如果所述图形层信号对应的图形层为透明层,则执行步骤S102,否则,则执行步骤S104。
S102:响应于所述图形层信号对应的图形层为透明层,则所述第一芯片将第一指示信息以及所述视频图像信号发送给第二芯片,其中,所述第一指示信息用于指示所述第二芯片对所述视频图像信号中叠加所述图形层的区域进行运动补偿处理。
在一些实施例中,在所述图形层信号对应的图形层为透明层时,第二芯片对视频图像信号解析出的图像帧整帧图像进行运动补偿。
本申请一些实施例中,第一芯片通过HDMI通道与第二芯片相连接,并且在HDMI数据传输协议中,音视频信号采用分时复用的方式进行数据传输,无法分别单独传输OSD层信号与视频层的信号。因此,本申请一些实施例中,第一芯片将视频层信号与图形层信号叠加得到的视频图像信号,通过HDMI通道发送给所述第二芯片。在一些实施例中,第一芯片将图形层信号和视频层信号叠加后转化成符合HDMI协议的视频图像信号,视频图像信号以HDMI数据包的形式存在。其中,视频图像信号的编码方式和视频层信号的编码方式不同。
另外,可以将第一指示信息可以添加至预留的HDMI信息包(packet,或称为Info Frame Type code)中并发送至第二芯片。如采用HDMI协议中的SPD(source product description,产品来源说明)、NVBI(NTSC VBI)这两个预留的信息包,并且此两个信息包在每个图像帧率都会发送,因此,本申请一些实施例将第一指示添加至HDMI信息包中,可以实时传送每帧视频图像信号的图形层信息。
在一些实施例中,第一芯片和第二芯片可以通过另一种传输方式连接,该传输方式无法支持图形层信号和视频层信号的同时分别传输,需要将图形层信号和视频层信号编码成一路视频信号。
S103:所述第二芯片对所述视频图像信号进行运动补偿,生成运动补偿后的图像。
这样,第二芯片会根据该第一指示信息对接收到的视频图像信号中所述位置信息对应的区域的图像进行运动补偿处理、并且除所述位置信息对应的区域以外的图像也继续进行运动补偿,即对视频图像信号对应的全部图像区域均进行运动补偿处理,得到运动补偿后的图像,并继续执行步骤S107。因此,第二芯片可以准确的获知图形层信号对应的图形层是否为透明度状态,并进行相应的处理,可以有效避免当存在图形层信号时,直接关闭运动补偿处理功能所带来的输出画面质量降低的问题。
在一些实施例中,透明层的图形层不影响运动补偿后的显示,因此可以对所述视频图像信号中的整帧进行运动补偿处理。
S104:响应于所述图形层信号对应的图形层不是透明层,则所述第一芯片将第二指示信息和所述视频图像信号发送给第二芯片。其中,所述第二指示信息中包括图形层信号对应的图形层的位置信息。
第一芯片将在surface的基本元素确定图形层信号的大小和位置坐标作为图形层的位置信息,并将该位置信息添加至第二指示信息中,然后将第二指示信息与视频图像信号一同通过HDMI通道发送至第二芯片。其中,第二指示信息可以通过预留HDMI信息包发送给第二芯片。然后,所述第二芯片接收到该第二指示信息和视频图像信号,可以按照步骤S104中所示的方式进行图像处理。
S105:所述第二芯片对所述视频图像信号中除所述位置信息对应的区域以外的图像进行运动补偿、对所述视频图像信号中所述位置信息对应的区域的图像不进行运动补偿。
在一些实施例中,第二芯片根据接收到的位置信息,确定图形层信号在所述视频图像信号中对应的第一区域;确定所述视频图像信号中第一区域之外的第二区域;对所述第二区域的图像进行运动补偿。
其中,第一区域的确定过程可以继续参阅图10。第一芯片发送的位置信息为(m,n,w,h),其中,图形层信号的画面尺寸信息为(w,h),位置坐标信息(m,n)。第二芯片根据位置坐标信息(m,n)确定图形层信号的画面的位置,然后根据图形层信号的画面的尺寸信息为(w,h)确定图形层信号的画面在视频图像信号的帧画面占用的区域即为第一区域,然后,在视频图像信号的帧画面去除图形层信号的画面在视频图像信号的帧画面占用的区域剩余的区域即为第二区域,对所述第二区域的图像进行运动补偿。
对第二区域的图像进行运动补偿的过程具体为:第二芯片中的运动补偿模块经过滤掉图形层信号的画面占用的区域(第一区域)对应的像素点,不进行此区域的运动矢量计算及插入补偿帧,对第二区域的像素点进行运动补偿。
可见,本申请一些实施例中第一芯片首先确定图形层信号的位置信息,并将图形层信号和视频层信号叠加后转化为成视频图像信号,然后,将所述位置信息连通视频图像信号一同以HDMI数据包形式发送给第二芯片。第二芯片对所述视频图像信号中除所述位置信息对应的区域以外的图像进行运动补偿,第二芯片将运动补偿后的图像和图形层信号的图像进行拼接以生成运动补偿后的图像。在当前帧视频画面与上一帧(或下一帧)视频画面之间插入该混合后补偿帧,进而,可以避免图形层信号在运动补偿过程中被撕裂问题的出现。
在实际应用的过程中,位置信息对应的第一区域是基于第一芯片接收的视频层信号的分辨率(在本申请一些实施例中也称之为输入分辨率)生成的。第二区域的是基于显示屏的分辨率(在本申请实施例中也称之为显示分辨率)计算。在视频播放的过程中,时常伴随着输入分辨率与显示分辨率不一致的情况。例如:一个网络视频的输入分辨率为1920*1080,但是,显示屏性能的不同,相应的显示分辨率也不同。4K显示屏的显示分辨率为3840*2160。FHD(Full High Definition)显示屏的显示分辨率一般只能达1920*1080。如果N芯片与FHD(Full High Definition)显示屏,便出现输入分辨率与显示分辨率不一致的情况。通常,输入分辨率与显示分辨率不一致会导致第二区域计算结果的不准确性。
下面结合具体实施例对输入分辨率与显示分辨率不一致将会导致的问题作以详细的说明。对于4K显示屏而言,如果网络视频的输入分辨率为1920*1080,第一芯片发送的位置信息为(0,0,20,30),相应的,图形层信号的画面的尺寸信息为(20,30),位置坐标信息(0,0)。在分辨率为1920*1080的视频信号中图形层信号的画面的尺寸信息为(20,30)。但是,视频播放的过程中,需要将视频信号分辨率转化为显示屏分辨率。转化后的帧画面的分辨率为3840*2160。此时在3840*2160分辨率的帧画面上根据图形层信号的画面的尺寸信息为(20,30),以及,位置坐标信息(0,0)来确定第二区域显然是不准确的。
为了保证第二区域的准确性。可以在运动补偿之前,根据视频层信号的分辨率与所述显示屏的分辨率之间的对应关系,对第一芯片发送的位置信息进行缩放处理,然后根据缩放处理后的位置信息,确定第二区域。也可以,确定所述位置信息在所述视频图像信号中对应的第一区域;所述第二芯片确定所述视频图像信号中第一区域之外的第二区域;然后基于视频层信号的分辨率与所述显示屏的分辨率之间的对应关系与所述显示屏的分辨率之间的对应关系,对于第二区域进行缩放处理。
第一种可能性第二芯片首先判断视频层信号的分辨率与显示屏的分辨率是否一致;如果不一致第二芯片根据显示屏的分辨率与视频层信号的分辨率之间的对应关系,对该位置信息和视频图像信号进行缩放处理,生成调整后的位置信息和调整后的视频图像信号,对调整后的视频图像信号除所述调整后的位置信息对应的区域以外图像进行运动补偿。
下面结合具体实例对第二区域的计算方法作以详细的说明。在一实施例中第二芯片与4K显示屏相连接。对于一网络视频信号而言,图形层信号的尺寸信息为(w,h),位置信息(m,n),第一芯片生成的位置信息为(m,n,w,h);第一芯片发送(m,n,w,h)至第二芯片。显示屏的分辨率为3840*2160,视频信号的分辨率1920*1080,第二芯片计算出显示屏分辨率与视频信号分辨率之间的对应关系为2倍。第二芯片基于2倍的对应关系,对视频图像信号的帧画面放大处理,生成帧画面的分辨率为3840*2160。第二芯片基于2倍的对应关系对(m,n,w,h)放大两倍处理,生成处理后的位置信息(2m,2n,2w,2h);第二芯片根据新的位置坐标信息(2m,2n)确定图形层信号的帧画面的位置,然后根据新的 尺寸信息为(2w,2h),确定位置信息在帧画面(帧画面与显示屏分辨率一致)占用的区域,然后,在帧画面去除处理后的位置信息对应的区域在帧画面占用的区域为第一区域,剩余的区域即为第二区域。
最后,第二芯片对第二区域对应的图像进行运动补偿。
对于第二种情况,第二芯片确定所述位置信息在所述视频图像信号中对应的第一区域;所述第二芯片确定所述视频图像信号中第一区域之外的第二区域;第二芯片判断视频层信号的分辨率与所述显示屏的分辨率是否一致;如果不一致,根据所述显示屏的分辨率与视频层信号的分辨率之间的对应关系,则对所述第二区域进行缩放处理。
下面结合具体实例对第二区域的缩放过程作以详细的说明。在一实施例中第二芯片与4K显示屏相连接。对于一网络视频信号而言,第一芯片图形层信号的画面的尺寸信息为(w,h),位置坐标信息(m,n),第一芯片生成的位置信息为(m,n,w,h);第一芯片发送(m,n,w,h)至第二芯片;第二芯片确定在所述位置信息在视频图像信号中对应的第一区域;确定所述视频图像信号中除第一区域之外的第二区域;第二芯片计算出显示屏分辨率与视频信号分辨率之间的对应关系为2倍;第二芯片对第二区域放大2倍处理。在一些实施例中缩放过程可以参阅图11以及图12,其中图11中,区域1为放大处理前的第一区域,区域2为放大处理前的第二区域,图12中区域3为放大处理后的第二区域。
最后,第二芯片对放大处理后的第二区域对应的图像进行运动补偿。
采用本申请实施例示出的技术方案可避免由于视频层信号的分辨率与所述显示屏的分辨率不一致造成动补偿区域计算结果不准确问题的出现。
S106:第二芯片将运动补偿后的第二区域的图像和第一区域的图像进行拼接以生成运动补偿后的图像。
将计算得到的补偿帧与OSD层对应区域混合得到运动补偿后的图像,然后,在当前帧视频画面与上一帧(或下一帧)视频画面之间插入该混合后补偿帧。进而,可以在解决中OSD层信号被运动补偿处理技术撕裂的同时,还能更好的通过运动补偿技术解决视频信号的卡顿与抖动问题。
S107:所述第二芯片将运动补偿后的图像输出到所述显示屏进行显示。
在一些实施例中,删除步骤可以不依照上述罗列的次序进行,只需能够根据图形层进行第二芯片的的运动补偿处理的控制即可。
在一些实施例中,显示设备可以不进行透明层的检测,直接进行图形层位置的判断,并根据图形层的位置控制运动补偿的区域。
在一些实施例中,显示设备可以先进行图形层位置的判断,在图形层位置覆盖的区域小于第一预设值的时候根据图形层的位置控制运动补偿的区域,在图形层位置覆盖的区域大于第二预设值的时候再进行透明层的检测,是透明层,则整帧进行运动补偿处理,不是,则不进行运动补偿处理。
在一些实施例中,先进行透明层的判断,是透明层,则整帧进行运动补偿处理,不是,则检测图形层的位置,然后在位置对应的区域不进行运动补偿,位置对应的区域外进行运动补偿。
在一些实施例中,针对第三方应用所创建的透明的图形层通常是一个全屏的透明图形层,因此,为了减少对图像层进行像素分析的数据处理量,本申请一些实施例还提供了另一种图 像处理方法,应用于显示设备中,该显示设备包括第一芯片、第二芯片和显示屏。图13中示例性示出了另一种图像处理方法的流程示意图。如图13所示,该方法主要包括如下步骤:
S201:第一芯片在将视频层信号与图形层信号叠加生成视频图像信号时,获取所述图形层信号中的位置信息。
第一芯片在surface的基本元素中获取图形层信号的位置信息,其中所述位置信息为surface的尺寸信息和位置坐标信息。
S202:根据所述位置信息,判断所述图形层信号对应的图形层在所述视频层信号所对应的视频层中的相对面积是否大于预设面积值。
根据该位置信息,计算图形层信号对应的图形层在视频层信号所对应的视频层中的相对面积,然后将该相对面积与预设面积值进行比较,如果大于预设面积值,则说明图形层信号对应的图形层可能为第三方应用所创建的透明图形层,进而执行步骤S203,否则,则执行步骤S206。另外,上述预设面积值可以根据视频层信号的分辨率确定。
S203:响应于所述相对面积大于预设面积值,则检测所述图形层信号对应的图形层是否为透明层。
如果所述图形层信号对应的图形层为透明层,则执行步骤S204,否则,则执行步骤S206。
S204:响应于所述图形层信号对应的图形层为透明层,则所述第一芯片将第一指示信息以及所述视频图像信号发送给第二芯片,其中,所述第一指示信息用于指示所述第二芯片对所述视频图像信号中叠加所述图形层的区域进行运动补偿处理。
S205:所述第二芯片对所述视频图像信号进行运动补偿,生成运动补偿后的图像。
第二芯片对接收到的视频图像信号对应的整个图像均进行运动补偿处理,得到运动补偿后的图像,并继续执行步骤S209。
S206:所述第一芯片将第二指示信息和所述视频图像信号发送给第二芯片。其中,所述第二指示信息中包括图形层信号对应的图形层的位置信息。
即如果图形层信号对应的图形层在所述视频层信号所对应的视频层中的相对面积不大于预设面积值,以及,图形层信号对应的图形层不是透明层时,均执行该步骤,以指示第二芯片对接收到的视频图像信号进行分区域处理,即执行步骤S207和S208中的方法,以实现在解决OSD层信号被运动补偿处理技术撕裂的同时,还能更好的通过运动补偿技术解决视频信号的卡顿与抖动问题的效果。
S207:所述第二芯片对所述视频图像信号中除所述位置信息对应的区域以外的图像进行运动补偿、对所述视频图像信号中所述位置信息对应的区域的图像不进行运动补偿。
S208:第二芯片将运动补偿后的第二区域的图像和第一区域的图像进行拼接以生成运动补偿后的图像。
S209:所述第二芯片将运动补偿后的图像输出到所述显示屏进行显示。
基于与上述方法同样的构思,本实例还提供了一种视频数据处理装置,其中该装置分别设置在第一芯片和第二芯片中,主要包括存储器和处理器,其中:所述存储器,用于存储程序代码;所述处理器,用于读取所述存储器中存储的程序代码,并且,设置在第一芯片和第二芯片中的处理器可以执行上述第一实施例和第二实施例中的方法。
基于与上述方法和装置同样的构思,本申请一些实施例还提供了一种显示设备,该显示设备主要包括第一芯片、第二芯片和显示屏,其中:
所述第一芯片用于:在将视频层信号与图形层信号叠加生成视频图像信号时,检测所述图形层信号对应的图形层是否为透明层,响应于所述图形层信号对应的图形层为透明层,将第一指示信息以及所述视频图像信号发送给第二芯片,其中,所述第一指示信息用于指示所述第二芯片对所述视频图像信号中叠加所述图形层的区域进行运动补偿处理;
所述第二芯片用于:根据所述第一指示信息,对所述视频图像信号中叠加所述图形层的区域进行运动补偿处理并将运动补偿后的图像输出到所述显示屏进行显示。
在一些实施例中,所述第一芯片用于:响应于所述图形层信号对应的图形层不是透明层,则所述第一芯片将第二指示信息和所述视频图像信号发送给第二芯片。其中,所述第二指示信息中包括所述图形层信号对应的图形层的位置信息。
所述第二芯片用于:对所述视频图像信号中除所述位置信息对应的区域以外的图像进行运动补偿、对所述视频图像信号中所述位置信息对应的区域的图像不进行运动补偿。
在一些实施例中,在所述显示设备中,所述第一芯片和所述第二芯片通过HDMI数据线相连接,所述第一芯片用于:将视频层信号与图形层信号叠加后生成符合HDMI协议的视频图像信号,以及,通过所述HDMI通道将所述视频图像信号发送给所述第二芯片。
在一些实施例中,所述第二芯片用于:确定所述位置信息在所述视频图像信号中对应的第一区域;确定所述视频图像信号中第一区域之外的第二区域;对所述第一区域内的图像不进行运动补偿,对所述第二区域的图像进行运动补偿。
在一些实施例中,所述第二芯片用于:将运动补偿后的第二区域的图像和第一区域的图像进行拼接以生成运动补偿后的图像。
在一些实施例中,所述第二芯片用于:根据所述显示屏的分辨率与视频图像信号的分辨率之间的对应关系,对所述第一区域及所述第二区域进行缩放处理,生成调整后的第一区域和调整后的第二区域;对所述调整后的第一区域内的图像不进行运动补偿,对所述调整后的第二区域的图像进行运动补偿。
在一些实施例中,所述第二芯片用于:根据所述显示屏的分辨率与所述视频图像信号的分辨率之间的对应关系,对所述位置信息和视频图像信号进行缩放处理,生成调整后的位置信息和调整后的视频图像信号;对所述调整后的视频图像信号中除所述调整后的位置信息对应的区域以外的图像进行运动补偿,对所述调整后的视频图像信号中所述调整后的位置信息对应的区域的图像进行运动补偿。
在一些实施例中,所述第一芯片用于:在检测所述图形层信号对应的图形层是否为透明层之前,先获取所述图形层信号中的位置信息;根据所述位置信息,判断所述图形层信号对应的图形层在所述视频层信号所对应的视频层中的相对面积是否大于预设面积值;响应于所述相对面积大于预设面积值,则检测所述图形层信号对应的图形层是否为透明层;响应于所述相对面积不大于预设面积值,则所述第一芯片将包含所述位置信息的第二指示信息和所述视频图像信号发送给第二芯片;其中,所述第二指示信息中的位置信息,用于指示所述第二芯片对所述视频图像信号中除所述位置信息对应的区域以外的图像进行运动补偿、对所述视频图像信号中所述位置信息对应的区域的图像不进行运动补偿。
在一些实施例中,所述第一芯片用于:在所述图形层信号,截取图形层图片帧;根据对所述图形层图片帧中像素点的像素值的分析结果,判断所述图形层信号对应的图形层是否为透明层。
需要说明的是上述实施例提供的图像处理方法及装置,不仅适用于上述双芯片电视还可以适用于其它单芯片的显示设备。
基于本申请中示出的示例性实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。此外,虽然本申请中公开内容按照示范性一个或几个实例来介绍,但应理解,可以就这些公开内容的各个方面也可以单独构成一个完整技术方案。
应当理解,本申请中说明书和权利要求书及上述附图中的术语″第一″、″第二″、″第三″等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,例如能够根据本申请实施例图示或描述中给出那些以外的顺序实施。
此外,术语″包括″和″具有″以及他们的任何变形,意图在于覆盖但不排他的包含,例如,包含了一系列组件的产品或设备不必限于清楚地列出的那些组件,而是可包括没有清楚地列出的或对于这些产品或设备固有的其它组件。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。楚地列出的或对于这些产品或设备固有的其它组件。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (23)

  1. 一种显示设备,包括:
    第一芯片;
    和所述第一芯片相连接的第二芯片;
    和所述第二芯片相连接的显示屏,其中:
    所述第一芯片用于:
    在将视频层信号与图形层信号叠加生成视频图像信号时,检测所述图形层信号对应的图形层是否为透明层;
    响应于所述图形层信号对应的图形层为透明层,将第一指示信息以及所述视频图像信号发送给第二芯片,其中,所述第一指示信息用于指示所述第二芯片对所述视频图像信号中叠加所述图形层的区域进行运动补偿处理,运动补偿后的图像用于被所述第二芯片输出到所述显示屏进行显示。
  2. 如权利要求1所述的显示设备,所述第一芯片还用于:
    响应于所述图形层信号对应的图形层不是透明层,则所述第一芯片将第二指示信息和所述视频图像信号发送给第二芯片;
    其中,所述第二指示信息中包括所述图形层信号对应的图形层的位置信息,用于指示所述第二芯片对所述视频图像信号中除所述位置信息对应的区域以外的图像进行运动补偿、对所述视频图像信号中所述位置信息对应的区域的图像不进行运动补偿。
  3. 如权利要求1所述的显示设备,所述第一芯片还用于:
    第一芯片和所述第二芯片通过HDMI数据线相连接以进行所述视频图像信号的传输。
  4. 一种显示设备,包括:
    第一芯片;
    和所述第一芯片相连接的第二芯片;
    和所述第二芯片相连接的显示屏,其中:
    所述第一芯片用于:
    确定图形层信号的第二指示信息,并将图形层信号和视频层信号叠加后转化为成视频图像信号,其中,所述第二指示信息包括所述图形层信号对应的图形层的位置信息;
    将所述第二指示信息和所述视频图像信号发送给所述第二芯片,其中所述第二指示信息用于使所述第二芯片对所述视频图像信号中除所述第二指示信息对应的区域以外的图像进行运动补偿,对所述视频图像信号中所述第二指示信息对应的区域的图像不进行运动补偿生成运动补偿后的图像,所述运动补偿后的图像用于被所述第二芯片发送给所述显示屏以进行图像显示。
  5. 如权利要求4所述的显示设备,其特征在于,所述第一芯片和所述第二芯片通过HDMI数据线相连接;
    所述第一芯片还用于:
    将图形层信号和视频层信号叠加后生成符合HDMI协议的视频图像信号;
    通过所述HDMI通道将所述视频图像信号发送给所述第二芯片。
  6. 如权利要求4或5所述的显示设备,其特征在于,所述第二芯片还用于:
    确定所述第二指示信息在所述视频图像信号中对应的第一区域;
    确定所述视频图像信号中第一区域之外的第二区域;
    对所述第一区域内的图像不进行运动补偿,对所述第二区域的图像进行运动补偿。
  7. 如权利要求6、所述的显示设备,其特征在于,所述第二芯片还用于:
    将第一区域的图像和运动补偿后的第二区域的图像进行拼接以生成运动补偿后的图像。
  8. 一种图像处理方法,应用于显示设备中,所述显示设备包括第一芯片、第二芯片和显示屏,所述方法包括:
    所述第一芯片在将视频层信号与图形层信号叠加生成视频图像信号时,检测所述图形层信号对应的图形层是否为透明层;
    响应于所述图形层信号对应的图形层为透明层,所述第一芯片将第一指示信息以及所述视频图像信号发送给第二芯片,其中,所述第一指示信息用于指示所述第二芯片对所述视频图像信号中叠加所述图形层的区域进行运动补偿处理;
    所述第二芯片将运动补偿后的图像输出到所述显示屏进行显示。
  9. 如权利要求8所述的方法,所述方法还包括:
    响应于所述图形层信号对应的图形层不是透明层,则所述第一芯片将第二指示信息和所述视频图像信号发送给第二芯片;
    其中,所述第二指示信息中包括所述图形层信号对应的图形层的位置信息,用于指示所述第二芯片对所述视频图像信号中除所述位置信息对应的区域以外的图像进行运动补偿、对所述视频图像信号中所述位置信息对应的区域的图像不进行运动补偿以生成运动补偿后的图像。
  10. 如权利要求8或9所述的方法,在所述显示设备中,所述第一芯片和所述第二芯片通过HDMI数据线相连接,所述第一芯片将视频层信号与图形层信号叠加生成视频图像信号包括:
    所述第一芯片将视频层信号与图形层信号叠加后生成符合HDMI协议的视频图像信号;
    所述第一芯片将所述视频图像信号发送给第二芯片包括:
    所述第一芯片通过所述HDMI通道将所述视频图像信号发送给所述第二芯片。
  11. 如权利要求9所述的方法,所述第二芯片对所述视频图像信号中除所述位置信息对应的区域以外的图像进行运动补偿、对所述视频图像信号中所述位置信息对应的区域的图像不进行运动补偿以生成运动补偿后的图像,包括:
    所述第二芯片确定所述位置信息在所述视频图像信号中对应的第一区域;
    所述第二芯片确定所述视频图像信号中第一区域之外的第二区域;
    所述第二芯片对所述第一区域内的图像不进行运动补偿,对所述第二区域的图像进行运动补偿以生成运动补偿后的图像。
  12. 如权利要求11所述的方法,在所述第二芯片对所述第一区域内的图像不进行运动补偿,对所述第二区域的图像进行运动补偿之后,所述方法还包括:
    所述第二芯片将运动补偿后的第二区域的图像和第一区域的图像进行拼接以生成运动补偿后的图像。
  13. 如权利要求11所述的方法,响应于视频图像信号的分辨率与所述显示设备的显示屏分辨率不一致,所述第二芯片对所述第一区域内的图像不进行运动补偿,对所述第二区域 的图像进行运动补偿以生成运动补偿后的图像,包括:
    第二芯片根据所述显示屏的分辨率与视频图像信号的分辨率之间的对应关系,对所述第一区域及所述第二区域进行缩放处理,生成调整后的第一区域和调整后的第二区域;
    第二芯片对所述调整后的第一区域内的图像不进行运动补偿,对所述调整后的第二区域的图像进行运动补偿以生成运动补偿后的图像。
  14. 如权利要求9所述的方法,响应于视频图像信号的分辨率与所述显示设备的显示屏分辨率不一致,所述第二芯片对所述视频图像信号中除所述位置信息对应的区域以外的图像进行运动补偿、对所述视频图像信号中所述位置信息对应的区域的图像不进行运动补偿以生成运动补偿后的图像,包括:
    所述第二芯片根据所述显示屏的分辨率与所述视频图像信号的分辨率之间的对应关系,对所述位置信息和视频图像信号进行缩放处理,生成调整后的位置信息和调整后的视频图像信号;
    第二芯片对所述调整后的视频图像信号中除所述调整后的位置信息对应的区域以外的图像进行运动补偿,对所述调整后的视频图像信号中所述调整后的位置信息对应的区域的图像进行运动补偿以生成运动补偿后的图像。
  15. 如权利要求8所述的方法,检测所述图形层信号对应的图形层是否为透明层之前,所述方法还包括:
    获取所述图形层信号中的位置信息;
    根据所述位置信息,判断所述图形层信号对应的图形层在所述视频层信号所对应的视频层中的相对面积是否大于预设面积值;
    响应于所述相对面积大于预设面积值,则检测所述图形层信号对应的图形层是否为透明层;
    响应于所述相对面积不大于预设面积值,则所述第一芯片将包含所述位置信息的第二指示信息和所述视频图像信号发送给第二芯片;
    其中,所述第二指示信息中的位置信息,用于指示所述第二芯片对所述视频图像信号中除所述位置信息对应的区域以外的图像进行运动补偿、对所述视频图像信号中所述位置信息对应的区域的图像不进行运动补偿。
  16. 如权利要求8所述的方法,所述检测所述图形层信号对应的图形层是否为透明层,包括:
    在所述图形层信号,截取图形层图片帧;
    根据对所述图形层图片帧中像素点的像素值的分析结果,判断所述图形层信号对应的图形层是否为透明层。
  17. 一种图像处理方法,应用于显示设备中,所述显示设备包括第一芯片和第二芯片,所述方法包括:
    第一芯片确定图形层信号的第二指示信息,并将图形层信号和视频层信号叠加后转化为成视频图像信号,其中,所述第二指示信息包括所述图形层信号对应的图形层的位置信息;
    所述第一芯片将所述第二指示信息和所述视频图像信号发送给所述第二芯片,所述第二指示信息用于使所述第二芯片对所述视频图像信号中除所述第二指示信息对应的区域以外的图像进行运动补偿,对所述视频图像信号中所述第二指示信息对应的区域的图像不进行运动 补偿以生成运动补偿后的图像,
    所述第二芯片将运动补偿后的图像输出到显示屏进行显示。
  18. 如权利要求1所述的方法,在所述显示设备中,第一芯片和第二芯片通过HDMI数据线相连接,将图形层信号和视频层信号叠加后转化为成视频图像信号的步骤包括:
    所述第一芯片将图形层信号和视频层信号叠加后生成符合HDMI协议的视频图像信号;
    所述第一芯片将所述视频图像信号发送给所述第二芯片包括:
    所述第一芯片通过所述HDMI通道将所述视频图像信号发送给所述第二芯片。
  19. 如权利要求17或18所述的方法,所述第二芯片对所述视频图像信号中除所述位置信息对应的区域以外的图像进行运动补偿,对所述视频图像信号中所述第二指示信息对应的区域的图像不进行运动补偿以生成运动补偿后的图像包括:
    所述第二芯片确定所述第二指示信息在所述视频图像信号中对应的第一区域;
    所述第二芯片确定所述视频图像信号中第一区域之外的第二区域;
    所述第二芯片对所述第一区域内的图像不进行运动补偿,对所述第二区域的图像进行运动补偿以生成运动补偿后的图像。
  20. 如权利要求19所述的方法,所述第二芯片对所述第一区域内的图像不进行运动补偿,对所述第二区域的图像进行运动补偿以生成运动补偿后的图像包括:
    所述第二芯片对所述第一区域内的图像不进行运动补偿,对所述第二区域的图像进行运动补偿;
    所述第二芯片将第一区域的图像和运动补偿后的第二区域的图像进行拼接以生成运动补偿后的图像。
  21. 如权利要求19所述的方法,如果视频图像信号的分辨率与所述显示屏的分辨率不一致,所述对所述第一区域内的图像不进行运动补偿,对所述第二区域的图像进行运动补偿以生成运动补偿后的图像的步骤包括:
    第二芯片根据所述显示屏的分辨率与视频图像信号的分辨率之间的对应关系,对所述第一区域及所述第二区域进行缩放处理,生成调整后的第一区域和调整后的第二区域;
    第二芯片对所述调整后的第一区域内的图像不进行运动补偿,对所述调整后的第二区域的图像进行运动补偿以生成运动补偿后的图像。
  22. 据权利要求17所述的方法,如果视频图像信号的分辨率与所述显示屏的分辨率不一致,所述对所述视频图像信号中除所述第二指示信息对应的区域以外的图像进行运动补偿,对所述视频图像信号中所述第二指示信息对应的区域的图像不进行运动补偿以生成运动补偿后的图像的步骤包括:
    所述第二芯片根据所述显示屏的分辨率与视频图像信号的分辨率之间的对应关系,对所述第二指示信息和视频图像信号进行缩放处理,生成调整后的第二指示信息和调整后的视频图像信号;
    第二芯片对所述调整后的视频图像信号中除所述调整后的第二指示信息对应的区域以外的图像进行运动补偿,对所述调整后的视频图像信号中所述调整后的第二指示信息对应的区域的图像进行运动补偿以生成运动补偿后的图像。
  23. 一种图像处理方法,应用于显示设备中,所述显示设备包括第一芯片和第二芯片,所述方法包括:
    所述第一芯片通过HDMI通道将所述视频图像信号发送给所述第二芯片;
    所述第二芯片对视频图像信号进行运动补偿,并将运动补偿后的图像输出到显示屏进行显示;
    其中,在所述视频信号中的图形层是透明层时,对所述视频图像信号的整帧进行运动补偿处理;在所述视频信号中的图形层不是透明层时,第二芯片对所述视频图像信号中除所述图形层信号对应的区域以外的图像进行运动补偿、对所述图形层信号对应的区域的图像不进行运动补偿。
PCT/CN2020/094303 2019-06-10 2020-06-04 图像处理方法及显示设备 WO2020248886A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080007439.0A CN113287322A (zh) 2019-06-10 2020-06-04 图像处理方法及显示设备

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201910498192 2019-06-10
CN201910498648.9 2019-06-10
CN201910498192.6 2019-06-10
CN201910498648 2019-06-10
CN201910721816.6 2019-08-06
CN201910721816.6A CN112073795B (zh) 2019-06-10 2019-08-06 视频数据处理方法、装置及显示设备
CN201910741593.X 2019-08-12
CN201910741593.XA CN112073796B (zh) 2019-06-10 2019-08-12 一种图像运动补偿方法及显示设备

Publications (1)

Publication Number Publication Date
WO2020248886A1 true WO2020248886A1 (zh) 2020-12-17

Family

ID=73780632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/094303 WO2020248886A1 (zh) 2019-06-10 2020-06-04 图像处理方法及显示设备

Country Status (2)

Country Link
CN (1) CN113287322A (zh)
WO (1) WO2020248886A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1496114A (zh) * 2002-09-24 2004-05-12 ���µ�����ҵ��ʽ���� 用于处理视频信号的方法和视频处理单元
JP2006352246A (ja) * 2005-06-13 2006-12-28 Fujinon Corp プロンプター装置
CN101212683A (zh) * 2006-12-27 2008-07-02 株式会社东芝 视频信号处理电路、视频信号处理设备、及视频信号处理方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101285672B1 (ko) * 2006-09-27 2013-07-11 엘지전자 주식회사 영상기기의 오에스디 표시 방법 및 그 영상기기
CN104363502B (zh) * 2014-10-28 2017-11-07 深圳创维-Rgb电子有限公司 Osd画面保护方法及装置
CN106210852B (zh) * 2016-07-07 2019-06-28 青岛海信电器股份有限公司 一种终端静态图层信息检测方法及终端
CN109218647A (zh) * 2018-11-27 2019-01-15 青岛海信电器股份有限公司 一种图像数据的传输方法及智能电视

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1496114A (zh) * 2002-09-24 2004-05-12 ���µ�����ҵ��ʽ���� 用于处理视频信号的方法和视频处理单元
JP2006352246A (ja) * 2005-06-13 2006-12-28 Fujinon Corp プロンプター装置
CN101212683A (zh) * 2006-12-27 2008-07-02 株式会社东芝 视频信号处理电路、视频信号处理设备、及视频信号处理方法

Also Published As

Publication number Publication date
CN113287322A (zh) 2021-08-20

Similar Documents

Publication Publication Date Title
CN113330736B (zh) 一种显示器及图像处理方法
CN112073797B (zh) 一种音量调节方法及显示设备
WO2020248680A1 (zh) 视频数据处理方法、装置及显示设备
WO2021031629A1 (zh) 显示设备和控制装置按键复用方法
WO2021189358A1 (zh) 显示设备和音量调节方法
CN110708581B (zh) 显示设备及呈现多媒体屏保信息的方法
CN111526415A (zh) 一种双屏显示设备及其hdmi的切换方法
WO2021031598A1 (zh) 视频聊天窗口位置的自适应调整方法及显示设备
CN112073795B (zh) 视频数据处理方法、装置及显示设备
CN112399243A (zh) 一种播放方法及显示设备
CN112783380A (zh) 显示设备和方法
WO2021031620A1 (zh) 显示设备和背光亮度调节方法
CN111385631B (zh) 一种显示设备、通信方法及存储介质
WO2020248681A1 (zh) 显示设备及蓝牙开关状态的显示方法
CN112463267B (zh) 在显示设备屏幕上呈现屏保信息的方法及显示设备
WO2020248699A1 (zh) 一种声音处理法及显示设备
WO2020248790A1 (zh) 语音控制方法及显示设备
WO2020248886A1 (zh) 图像处理方法及显示设备
CN112399245A (zh) 一种播放方法及显示设备
CN112073666A (zh) 一种显示设备的电源控制方法及显示设备
CN112073777A (zh) 一种语音交互方法及显示设备
CN112073808A (zh) 一种色彩空间切换方法及显示装置
CN112073796B (zh) 一种图像运动补偿方法及显示设备
CN112073763B (zh) 一种显示设备
CN113630633B (zh) 显示设备及交互控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20822582

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20822582

Country of ref document: EP

Kind code of ref document: A1