WO2020248421A1 - 多输入多输出供电装置及一体化机柜 - Google Patents

多输入多输出供电装置及一体化机柜 Download PDF

Info

Publication number
WO2020248421A1
WO2020248421A1 PCT/CN2019/106651 CN2019106651W WO2020248421A1 WO 2020248421 A1 WO2020248421 A1 WO 2020248421A1 CN 2019106651 W CN2019106651 W CN 2019106651W WO 2020248421 A1 WO2020248421 A1 WO 2020248421A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
power supply
power
access control
power distribution
Prior art date
Application number
PCT/CN2019/106651
Other languages
English (en)
French (fr)
Inventor
李玉昇
刘宝昌
高鹏
马雁序
韩冠军
王振
郭云峥
刘强
张瑜
何茜
王启凡
王海东
任帅
高兴旺
Original Assignee
中国移动通信集团设计院有限公司
中国移动通信集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国移动通信集团设计院有限公司, 中国移动通信集团有限公司 filed Critical 中国移动通信集团设计院有限公司
Publication of WO2020248421A1 publication Critical patent/WO2020248421A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/02Circuit arrangements for ac mains or ac distribution networks using a single network for simultaneous distribution of power at different frequencies; using a single network for simultaneous distribution of ac power and of dc power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems

Definitions

  • the embodiments of the present disclosure relate to the technical field of power supplies, and in particular to a multiple-input multiple-output power supply device and an integrated cabinet.
  • 5G networks will be commercialized on a large scale in 2020.
  • the 5G base station side network architecture will evolve from the two-level structure of BBU and RRU of 4G/LTE to the three-level structure of CU, DU and AAU.
  • the maximum power consumption of 5G base station equipment is about 4G 2 to 3 times the power consumption of base station equipment.
  • CU, DU, AAU structural changes and high power consumption requirements, it will bring great challenges to the construction of 5G base stations.
  • some embodiments of the present disclosure provide a multiple-input multiple-output power supply device and an integrated cabinet.
  • some embodiments of the present disclosure provide a multiple input multiple output power supply device, including: a power conversion unit, an output power distribution unit, and a monitoring unit; the power conversion unit is used to convert multiple input power sources into presets The output power distribution unit is used to take power from the DC bus and perform power distribution output according to different loads; and the monitoring unit is respectively connected to the power conversion unit and the The output power distribution unit is used to manage and dispatch each module of the power conversion unit and the output power distribution unit.
  • the multiple input power sources include at least one of an AC power source, an energy storage system, a new energy source, and a stored power source;
  • the power conversion unit includes an AC access control and rectification module, an energy storage access control module, At least one of a new energy access control module and a DC power supply access control module;
  • the AC access control and rectification module includes an AC access control module and a rectification module, and the AC access control module is used for the AC
  • the power supply is connected to achieve interlocking and switching between at least two of the AC power sources, and to perform power distribution for the rectifier module;
  • the rectifier module is used to rectify the AC power output by the AC access control module into all
  • the preset DC voltage is converged to the DC bus;
  • the energy storage access control module is used to adjust the charging voltage and discharging voltage of the battery pack in the energy storage system, and adjust the voltage of the battery pack Adjusted so that the preset DC voltage is converged to the DC bus;
  • the new energy access control module is
  • the AC power source includes at least one of mains electricity and a generator; and the new energy source includes at least one of solar energy, wind energy, water energy, and hydrogen fuel cell.
  • the output power distribution unit includes at least one output power distribution module of an AC output power distribution module, an AC conversion and power distribution module, a low voltage DC power distribution module, and a high voltage DC power distribution module;
  • the AC output power distribution module The electric module is connected to the output terminal of the AC access control module and is used for power distribution of non-communication AC loads;
  • the AC conversion and power distribution module is connected to the DC bus for connecting the preset DC voltage Inverted into AC power supply to provide uninterrupted power supply and power distribution for AC communication loads;
  • the low-voltage DC power distribution module is used to provide uninterrupted power supply and power distribution for communication loads within a preset distance;
  • the high-voltage DC power distribution module It is used to provide uninterrupted power supply and power distribution for communication loads beyond the preset distance.
  • the high-voltage DC power distribution module is also used to intelligently adjust the output voltage according to the power supply distance to reduce line loss.
  • each module of the power conversion unit and each module of the output power distribution unit are also used to collect operating parameters and perform safety protection, and send the collected operating parameters to the monitoring unit; And the monitoring unit is used to control and dispatch each module of the power conversion unit and the output power distribution unit according to the operating parameters.
  • the monitoring unit is specifically configured to: manage the operating parameters and status of the power conversion unit, the output power distribution unit, and the system, and perform monitoring of the power conversion unit according to the real-time power supply capacity requirements of the load and the input energy
  • the power output of each module in the module is intelligently dispatched and matched with the corresponding output power distribution module, thereby realizing multiple working modes.
  • the working mode includes an AC power independent power supply mode, a new energy independent power supply mode, and a multi-energy hybrid power supply mode, wherein: corresponding to the AC power independent power supply mode, the power conversion unit is configured with the AC connection Incoming control module, the rectifying module, and the energy storage access control module; corresponding to the new energy independent power supply mode, the power conversion unit is configured with the new energy access control module and the energy storage access Control module; and corresponding to the multi-energy hybrid power supply mode, the power conversion unit is configured with the AC access control module, the rectification module, the energy storage access control module, and the new energy access control The module and the DC power supply are connected to the control module.
  • the device further includes a chassis and a bus backplane; the chassis is used to place the power conversion unit, the output power distribution unit, and the monitoring unit, and the bus backplane is used to establish a The connection between the power conversion unit, the output power distribution unit and the monitoring unit; the machine frame includes a preset number of universal module slots; the AC access control module, the rectifier module, and the The energy storage access control module, the new energy access control module, the DC power access control module, and the output power distribution module all adopt a modular design, have preset dimensions and interfaces, and are placed in the universal Module slot.
  • some embodiments of the present disclosure provide an integrated cabinet, which is characterized by comprising: a multiple-input multiple-output power supply device placement area, a battery module placement area, and a communication equipment placement area, which are respectively used for placing the multiple Input multiple output power supply devices, battery modules and communication equipment.
  • the multi-input multi-output power supply device and integrated cabinet provided by some embodiments of the present disclosure convert multiple input power sources into preset DC voltages and converge them to the DC bus to perform power distribution output according to different loads, supporting new and old
  • the parallel application of the system and the realization of a computer room-level smart microgrid can quickly solve problems such as insufficient site power supply capacity and reduce the construction cost of power supply system expansion, while avoiding the repeated construction of multiple power supply systems.
  • FIG. 1 is a schematic structural diagram of a multiple-input multiple-output power supply device provided by some embodiments of the present disclosure
  • Figure 2 is a schematic structural diagram of a multiple-input multiple-output power supply device provided by some embodiments of the present disclosure
  • FIG. 3 is a schematic diagram of the physical architecture of a multiple-input multiple-output power supply device provided by some embodiments of the present disclosure.
  • Fig. 4 is a schematic structural diagram of an integrated cabinet provided by some embodiments of the present disclosure.
  • Fig. 1 is a schematic structural diagram of a multiple-input multiple-output power supply device provided by some embodiments of the present disclosure.
  • the multiple input multiple output power supply device includes: a power conversion unit 1, an output power distribution unit 2 and a monitoring unit 3; the power conversion unit 1 is used to convert multiple input power sources into a preset DC voltage , And converge to the DC bus; the output power distribution unit 2 takes power from the DC bus and performs power distribution output according to different loads; the monitoring unit 3 is respectively connected to the power conversion unit 1 and the output The power distribution unit 2 is used to manage and dispatch the power conversion unit 1 and the output power distribution unit 2.
  • some embodiments of the present disclosure provide a multiple-input multiple-output power supply device, which can be used for 5G communication Power supply for the equipment.
  • the power conversion unit 1 is used to convert multiple input power sources into preset DC voltages and converge them to a DC bus to realize multi-energy parallel output and realize energy collection.
  • the multiple input power sources are at least one input power source.
  • the input power source may include a stock power source (for example, the remaining power source of the existing 2G ⁇ 3G ⁇ 4G power source).
  • the preset DC voltage can be set according to actual needs.
  • the output power distribution unit 2 is used to obtain power from the DC bus and perform power distribution output according to different loads, such as boosting or inverter output according to different load power supply requirements.
  • the power conversion unit 1 may include a plurality of independent modules, which are respectively used for power conversion of different input energy sources; the output power distribution power source 2 may also include a plurality of independent modules, which are respectively used for power distribution to different loads.
  • the monitoring unit 3 is respectively connected to the power conversion unit 1 and the output power distribution unit 2, and is used to manage and dispatch the modules of the power conversion unit 1 and the output power distribution unit 2.
  • the monitoring The unit 3 can perform scheduling according to preset scheduling rules, for example, it can reduce the cost on the premise of meeting the load demand.
  • Some embodiments of the present disclosure convert multiple input power sources into preset DC voltages and converge them to the DC bus to perform power distribution output according to different loads, support the parallel application of new and old systems, and realize a computer room-level smart micro-grid. Quickly solve problems such as insufficient site power supply capacity and reduce the construction cost of power supply system expansion, while avoiding repeated construction of multiple power supply systems.
  • Fig. 2 is a structural principle diagram of a multiple-input multiple-output power supply device provided by some embodiments of the present disclosure.
  • the multiple input power sources include at least one of an AC power source, an energy storage system, a new energy source, and a stored power source;
  • the power conversion unit 1 includes an AC access control and rectification module, and an energy storage access At least one of a control module, a new energy access control module, and a DC power access control module;
  • the AC access control and rectification module includes an AC access control module and a rectification module, and the AC access control module is used for The access of the AC power source realizes interlocking and switching between at least two of the AC power sources, and performs power distribution for the rectifier module;
  • the rectifier module is used to connect the AC power to the AC power output by the control module Rectified into the preset DC voltage and converged to the DC bus;
  • the energy storage access control module is used to adjust the charging voltage and discharging voltage of the battery pack in the energy
  • the multiple input power sources include at least two of AC power sources, energy storage systems, new energy sources, and stored power sources.
  • the power conversion unit 1 includes at least two of an AC access control and rectification module, an energy storage access control module, a new energy access control module, and a DC power access control module; corresponding modules are selected and configured according to different energy types , Perform access management control of various energy sources, and convert them into a set DC voltage (such as -54V), perform parallel output, and accept the management and energy dispatch of the monitoring unit 3. According to the amount of input energy, each module of the power conversion unit 1 may be one or more.
  • the AC access control and rectification module includes an AC access control module and a rectification module.
  • the AC access control module is used to access multiple AC power sources (such as mains, generators) to achieve interlocking and automatic (or manual) switching between multiple AC power sources, and to distribute power to each rectifier module, and to Operating parameters (voltage, current, power factor, harmonics, electric energy, etc.) are collected and secured (lightning protection, over-voltage, etc.).
  • the rectifier module converts AC power into -54V DC power (DC voltage can be set).
  • the energy storage access control module is used to manage the battery charging process and discharging process of the energy storage system. At the same time, it can collect and protect the battery pack operating parameters (voltage, charge/discharge current, capacity, temperature, etc.) , Over-discharge, over-temperature, etc.) and temperature compensation, etc., each energy storage access control module is connected to one or more sets of battery packs of the same type. Through multiple modules, different types, different manufacturers, different times, and different capacities can be realized. The battery pack is used in parallel.
  • the energy storage is connected to the control module, which solves the technical problems of mixing new and old batteries, intelligent management and control, and effectively reduces the cost of backup battery construction and operation and maintenance.
  • the new energy access control module is used for new energy (solar, wind, water, hydrogen fuel cell, etc.) access and control, converts the output voltage of the new energy into the preset DC voltage, and works in parallel with other modules Output.
  • the DC power supply access control module is used for the current network (2G/3G/4G) +24V DC power supply or -48V DC power supply access and control, converts the output voltage of the stock power supply into the preset DC voltage, and combines it with other modules Parallel work output.
  • some embodiments of the present disclosure adopt a set of power sources with multiple energy (mains, new energy, energy storage, generators, etc.) input and multiple voltage types (-48V local power supply, high-voltage DC power supply, AC power supply, etc.) output, support the parallel application of new and old systems, and realize the computer room-level smart microgrid, which can quickly solve the problem of insufficient site power supply capacity and reduce the construction cost of power supply system expansion, while avoiding the repeated construction of multiple power supply systems.
  • energy mains, new energy, energy storage, generators, etc.
  • voltage types high-voltage DC power supply, AC power supply, etc.
  • the output power distribution unit 2 includes at least one output power distribution module of an AC output power distribution module, an AC conversion and power distribution module, a low voltage DC power distribution module, and a high voltage DC power distribution module;
  • the AC output power distribution module is connected to the output end of the AC access control module for power distribution of non-communication AC loads;
  • the AC conversion and power distribution module is connected to the DC bus for connecting
  • the preset DC voltage is inverted into AC power to provide uninterrupted power and power distribution for AC communication loads;
  • the low-voltage DC power distribution module is used to provide uninterrupted power and power distribution to communication loads within a preset distance;
  • the high voltage The DC power distribution module is used to provide uninterrupted power supply and power distribution for communication loads beyond the preset distance.
  • the output power distribution unit 2 consists of one or more output power distribution modules, which are used to match the power supply of communication loads of different input voltage types, and provide output shunting and protection. At the same time, it can perform operation parameters (voltage, current, energy, etc.) collection.
  • the AC output power distribution module is used for the power distribution and protection of non-communication AC loads (such as air conditioners, lighting, fire protection, etc.), and no battery guarantees the power supply; the AC conversion and power distribution module inverts the DC power supply into an AC power supply for the AC communication load. Discontinuous power distribution and protection; low-voltage DC power distribution modules are used to provide uninterrupted power distribution and protection for communication loads at short distances (such as within 100 meters); high-voltage DC power distribution modules are used for long-distance (such as 100 meters away) , Within 2.5 kilometers) of the communication load provides uninterrupted power distribution and protection, while the output voltage can be intelligently adjusted according to the power supply distance to reduce line loss.
  • non-communication AC loads such as air conditioners, lighting, fire protection, etc.
  • some embodiments of the present disclosure can realize the effective power supply of various types of loads by rationally setting the output power distribution module in the output power distribution unit, and can solve the problem of -48V power supply for outdoor high-power equipment Problems such as limited distance.
  • the modules of the power conversion unit 1 and the modules of the output power distribution unit 2 are also used to collect operating parameters and perform safety protection, and send the collected operating parameters To the monitoring unit; the monitoring unit is used to manage and dispatch each module of the power conversion unit and the output power distribution unit according to the operating parameters.
  • the module settings in the power conversion unit 1 and the output power distribution unit 2 may be different.
  • the modules of the power conversion unit 1 and the modules of the output power distribution unit 2 are also used to collect operating parameters and perform safety protection, and send the collected operating parameters to the monitoring unit;
  • the monitoring unit is used to manage and dispatch the modules of the power conversion unit and the output power distribution unit according to the operating parameters.
  • the new energy capacity or the remaining capacity output of the stock DC power supply is prioritized, and the insufficient part is supplemented by the AC power supply to supply power to the communication load and charge the battery; when the multi-energy input capacity does not meet the load In case of demand or failure, the battery discharges to ensure uninterrupted power supply for the communication load.
  • the monitoring unit of some embodiments of the present disclosure controls and dispatches the modules of the power conversion unit and the output power distribution unit based on operating parameters, ensuring a rational configuration of power output.
  • the monitoring unit 3 is specifically configured to: manage the power conversion unit 1, the output power distribution unit 2, and the operating parameters and status of the system, and according to the load real-time power supply capacity requirements and input According to the energy situation, the power output of each module in the power conversion unit 1 is intelligently dispatched, and the corresponding output power distribution module 2 is matched, thereby realizing multiple working modes.
  • the monitoring unit 3 is used to manage various modules and the overall operating parameters and status of the system, intelligently dispatch the power output of the various modules in the power conversion unit 1, and dispatch the external battery capacity according to the real-time power supply capacity requirements of the load, Realize energy storage and peak power supply; data transmission can be carried out through FE, RS485, NB-IOT, 4G, 5G and other networks, and access to the management platform to realize the definition of power input and output, and the power equipment (including battery) can be automatically Internet-based Inspection and control.
  • some embodiments of the present disclosure implement power input and output customization through the control and scheduling of the monitoring unit, thereby realizing multiple working modes.
  • the working modes include an AC power independent power supply mode, a new energy independent power supply mode, and a multi-energy hybrid power supply mode, wherein: corresponding to the AC power independent power supply mode, the power conversion unit is configured with The AC access control module, the rectification module, and the energy storage access control module; corresponding to the new energy independent power supply mode, the power conversion unit is configured with the new energy access control module and the Energy storage access control module; corresponding to the multi-energy hybrid power supply mode, the power conversion unit is configured with the AC access control module, the rectification module, the energy storage access control module, and the new energy An access control module and the DC power supply access control module.
  • the multi-input multi-output power supply device can be configured with different power conversion modules to flexibly realize multiple working modes according to the input energy situation.
  • AC access control module configure AC access control module, rectifier module, energy storage access control module, monitoring unit 3 and corresponding power distribution module (according to load demand) in the device, and external storage battery to form AC power supply Independent power supply system.
  • the AC power supply is normal, the power is supplied by the rectifier module and the battery pack is charged through the energy storage access control module; when the AC power supply is interrupted, the battery pack supplies power to the load through the output of the energy storage access control module; when the AC power supply is restored
  • the rectifier module works to supply power to the communication device load, and charges the battery pack through the energy storage access control module.
  • the device is equipped with new energy access control modules, energy storage access control modules, corresponding power distribution modules and monitoring units, and external battery packs to form a new energy independent power supply system.
  • new energy When the new energy output is normal, the new energy is connected to the control module to supply power, and the battery pack is charged through the energy storage access control module; when the new energy output is interrupted, the battery pack is output to the load through the energy storage access control module Power supply; when the new energy output resumes power supply, the new energy access control module supplies power to the communication device load, and the battery pack is charged through the energy storage access control module.
  • each energy multiple access control modules are output in parallel, and the monitoring unit 3 performs intelligent energy scheduling.
  • Typical operation mode when there is new energy or stock DC power, the new energy capacity or the remaining capacity of the stock DC power will be called first
  • the output the insufficient part is supplemented by the AC power supply to supply power to the communication load and charge the battery at the same time; when the multi-energy input capacity does not meet the load demand or fails, the battery discharges to ensure uninterrupted power supply for the communication load.
  • some embodiments of the present disclosure provide module configurations in various working modes, which are beneficial to realize reliable operation in various working modes.
  • the multiple-input multiple-output power supply device further includes a machine frame and a bus backplane; the machine frame is used to place the power conversion unit, the output power distribution unit, and the monitoring unit, The bus backplane is used to establish the connection between the power conversion unit, the output power distribution unit and the monitoring unit; the machine frame includes a preset number of universal module slots; the AC access The control module, the rectifier module, the energy storage access control module, the new energy access control module, the DC power access control module, and the output power distribution module all adopt a modular design, with presets The size and interface are placed in the slot of the universal module.
  • FIG. 3 is a schematic diagram of the physical architecture of a multiple-input multiple-output power supply device provided by some embodiments of the present disclosure.
  • the multi-input multi-output power supply device is mainly composed of a machine frame, a bus backplane and a power conversion unit 1, an output power distribution unit 2 and a monitoring unit 3.
  • the bus backplane is used for wiring between modules.
  • the AC output power distribution module, AC conversion and power distribution module, low-voltage DC power distribution module, and high-voltage DC power distribution module of each module in the electric unit 2 are all designed in modular design.
  • Each module is designed to have a uniform size and interface, which can be arbitrarily designed. It can be inserted into any module slot in the machine frame to realize plug-and-play, flexible combination and configuration on demand.
  • the above-mentioned standardized design can directly use the MIMO power supply device in different base stations, which improves the versatility and convenience of use. Reduced costs.
  • the monitoring unit 3 Since the monitoring unit 3 is a necessary module for the multiple-input and multiple-output power supply devices of various applications, the monitoring unit 3 does not need to be configured as a general module structure.
  • some embodiments of the present disclosure adopt standardized designs to improve the versatility of the device.
  • Fig. 4 is a schematic structural diagram of an integrated cabinet provided by some embodiments of the present disclosure.
  • the cabinet includes: a multi-input multi-output power supply device (multi-input multi-output power supply device) placement area, a battery module placement area, and a communication equipment placement area, which are respectively used to place the multiple inputs described in the foregoing embodiments.
  • Input multiple output power supply devices, battery modules and communication equipment are respectively used to place the multiple inputs described in the foregoing embodiments.
  • the power supply integrated cabinet is mainly composed of a cabinet body, a multi-input multi-output power supply device placement area and a battery module placement area (the number is configured according to the backup power duration), and provides installation space and uninterrupted power supply for communication equipment (5G, etc.).
  • Cabinet dimensions such as: width 600mm, depth 600mm or 800mm, height 1400mm, 1600mm or 2000mm.
  • the integrated cabinet can be promoted and applied, it will completely subvert the existing base station power supply system construction and operation and maintenance mode, and there will be no need to purchase and install independent 48V switching power supplies, batteries and communication equipment cabinets, and the economic benefits will be significant.
  • Some embodiments of the present disclosure can solve the problem of insufficient space in the computer room by integrating communication equipment, power supply equipment, and batteries in a cabinet, and at the same time realize on-demand online expansion, and realize the growth and investment construction mode.
  • Some embodiments of the present disclosure adopt a set of power supply with multi-energy (new energy, energy storage, generator, etc.) input and multiple voltage types (-48V local power supply, high-voltage DC remote power supply, etc.) output, new and old systems are applied in parallel,
  • multi-energy new energy, energy storage, generator, etc.
  • multiple voltage types -48V local power supply, high-voltage DC remote power supply, etc.
  • the device embodiments described above are merely illustrative.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network units. Some or all of the modules may be selected according to actual needs to achieve the objectives of the solutions of the embodiments. Those of ordinary skill in the art can understand and implement it without creative work.
  • each implementation manner can be implemented by software plus a necessary general hardware platform, and of course, it can also be implemented by hardware.
  • the above technical solution essentially or the part that contributes to the related technology can be embodied in the form of a software product, and the computer software product can be stored in a computer-readable storage medium, such as ROM/RAM, magnetic disk , CD-ROM, etc., including a number of instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute the methods described in each embodiment or some parts of the embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

一种多输入多输出供电装置及一体化机柜,该装置包括:功率转换单元(1)、输出配电单元(2)和监控单元(3);功率转换单元(1)用于将多个输入电源转换成预设直流电压并汇流到直流母线上;输出配电单元(2)用于从直流母线取电,并根据不同负载进行配电;以及监控单元(3)用于对功率转换单元(1)和输出配电单元(2)的各模块进行管控和调度。

Description

多输入多输出供电装置及一体化机柜
相关申请的交叉引用
本申请主张在2019年6月10日在中国提交的中国专利申请号No.201910497350.6的优先权,其全部内容通过引用包含于此。
技术领域
本公开实施例涉及电源技术领域,具体涉及一种多输入多输出供电装置及一体化机柜。
背景技术
预计2020年5G网络实现规模商用。从5G试验网工程建设来看,5G基站侧网络架构将从4G/LTE的BBU、RRU两级结构演进到CU、DU和AAU三级结构,在供电方面,5G基站设备最大功耗约为4G基站设备功耗的2~3倍。面对5G基站设备(CU、DU、AAU)结构变化和高功耗需求,将给5G基站建设带来很大的挑战,基于现网基站建设5G网络,主要面临市电容量、直流电源容量、备电时间、输出配电等问题,目前主要通过扩容或更换相关供电设备的方案解决,但这种解决方案实施周期长,将阻碍5G网络快速建设、同时会增加建设运维成本,主要表现在以下几个方面:
对于市电容量不足站点,市电增容申请、建设时间长(一般3~6个月),有些密集城区站点由于电网总体容量受限、线路敷设困难,无法开展市电增容工程建设;
对于直流电源容量不足站点,面临整流模块扩容槽位不足或同型号的整流模块停产,导致无法进行系统扩容,需更换整个直流电源系统,影响现网通信设备正常工作,同时造成现有电源设备资产浪费,增加建设成本;
对于备电时间不足站点,主要面临机房空间或承重不足,无法进行蓄电池组扩容或更换,影响供电可靠性,增加运维保障成本;
对于远距离(大于100米)的室外大功耗设备(如:AAU)供电站点,采用室内-48V直流供电,供电线路损耗大,末端电压低造成通信设备无法正常工作,需单独增加1套升压设备,根据供电距离调整输出供电电压,无法做到与现有电源匹配管理,对供电可靠性有一定的影响,增加建设运维成本;以及
对于采用新能源供电的站点,多套电源系统独立工作,无法做到协调统一管理,能源使用率不高,维护工作量大。
发明内容
为解决或至少部分地解决相关技术中存在的问题,本公开的一些实施例提供一种多输入多输出供电装置及一体化机柜。
第一方面,本公开的一些实施例提供一种多输入多输出供电装置,包括:功率转换单元、输出配电单元和监控单元;所述功率转换单元用于将多个输入电源转换成预设直流电压,并汇流到直流母线上;所述输出配电单元用于从所述直流母线取电,并根据不同的负载进行配电输出;以及所述监控单元分别连接所述功率转换单元和所述输出配电单元,用于对所述功率转换单元和所述输出配电单元的各模块进行管控和调度。
可选地,所述多个输入电源包括交流电源、储能系统、新能源及存量电源中的至少一种;所述功率转换单元包括交流接入控制及整流模块、储能接入控制模块、新能源接入控制模块和直流电源接入控制模块中的至少一种;所述交流接入控制及整流模块包括交流接入控制模块和整流模块,所述交流接入控制模块用于所述交流电源的接入,实现至少两个所述交流电源间的互锁及切换,并为所述整流模块进行配电;所述整流模块用于将所述交流接入控制模块输出的交流电整流为所述预设直流电压,并汇流到所述直流母线;所述储能接入控制模块用于对所述储能系统中蓄电池组的充电电压和放电电压进行调节,并将所述蓄电池组的电压调整为所述预设直流电压汇流到所述直流母线;所述新能源接入控制模块用于所述新能源的接入,并将所述新 能源的电压调整为所述预设直流电压汇流到所述直流母线;以及所述直流电源接入控制模块用于所述存量电源的接入,并将所述存量电源的电压调整为所述预设直流电压汇流到所述直流母线。
可选地,所述交流电源包括市电和发电机中的至少一种;以及所述新能源包括太阳能、风能、水能及氢燃料电池中的至少一种。
可选地,所述输出配电单元包括交流输出配电模块、交流转换及配电模块、低压直流配电模块及高压直流配电模块中的至少一种输出配电模块;所述交流输出配电模块与所述交流接入控制模块的输出端相连接,用于非通信交流负载的配电;所述交流转换及配电模块与所述直流母线相连,用于将所述预设直流电压逆变成交流电源为交流通信负载提供不间断电源和配电;所述低压直流配电模块用于为预设距离以内的通信负载提供不间断电源和配电;以及所述高压直流配电模块用于为所述预设距离以外的通信负载提供不间断电源和配电。
可选地,所述高压直流配电模块还用于根据供电距离智能调节输出电压,降低线路损耗。
可选地,所述功率转换单元的各模块以及所述输出配电单元的各模块还用于对运行参数进行采集以及进行安全保护,并将采集的所述运行参数发送给所述监控单元;以及所述监控单元用于根据所述运行参数对所述功率转换单元和所述输出配电单元的各模块进行管控和调度。
可选地,所述监控单元具体用于:对所述功率转换单元、所述输出配电单元和系统的运行参数、状态进行管理,根据负载实时供电容量需求以及输入能源情况,对功率转换单元中各模块的功率输出进行智能调度,并匹配对应的所述输出配电模块,从而实现多种工作方式。
可选地,所述工作方式包括交流电源独立供电方式、新能源独立供电方式及多能源混合供电方式,其中:对应于所述交流电源独立供电方式,所述功率转换单元配置有所述交流接入控制模块、所述整流模块及所述储能接入控制模块;对应于所述新能源独立供电方式,所述功率转换单元配置有所述新能源接入控制模块和所述储能接入控 制模块;以及对应于所述多能源混合供电方式,所述功率转换单元配置有所述交流接入控制模块、所述整流模块、所述储能接入控制模块、所述新能源接入控制模块及所述直流电源接入控制模块。
可选地,所述装置还包括机框和总线背板;所述机框用于放置所述功率转换单元、所述输出配电单元和所述监控单元,所述总线背板用于建立所述功率转换单元、所述输出配电单元和所述监控单元之间的连接;所述机框包括预设个数的通用模块槽位;所述交流接入控制模块、所述整流模块、所述储能接入控制模块、所述新能源接入控制模块、所述直流电源接入控制模块和所述输出配电模块均采用模块设计,具有预设的尺寸和接口,放置于所述通用模块槽位。
第二方面,本公开的一些实施例提供一种一体化机柜,其特征在于,包括:多输入多输出供电装置放置区、电池模块放置区及通信设备放置区,分别用于放置所述的多输入多输出供电装置、电池模块及通信设备。
本公开的一些实施例提供的多输入多输出供电装置及一体化机柜,通过将多个输入电源转换成预设直流电压,并汇流到直流母线上,根据不同的负载进行配电输出,支持新旧系统并机应用,实现机房级智能微电网,可以迅速解决站点供电容量不足等问题以及降低供电系统扩容建设成本,同时避免多套供电系统重复建设。
附图说明
为了更清楚地说明本公开实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本公开的一些实施例提供的多输入多输出供电装置的结构示意图;
图2是本公开的一些实施例提供的多输入多输出供电装置的结 构原理图;
图3是本公开的一些实施例提供的多输入多输出供电装置的物理架构示意图;以及
图4是本公开的一些实施例提供的一体化机柜的架构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
图1是本公开的一些实施例提供的多输入多输出供电装置的结构示意图。如图1所示,所述多输入多输出供电装置包括:功率转换单元1、输出配电单元2和监控单元3;所述功率转换单元1用于将多个输入电源转换成预设直流电压,并汇流到直流母线上;所述输出配电单元2从所述直流母线取电,并根据不同的负载进行配电输出;所述监控单元3分别连接所述功率转换单元1和所述输出配电单元2,用于对所述功率转换单元1和所述输出配电单元2进行管控和调度。
基于现有5G网络供电设备在市电扩容、直流电源容量扩容、蓄电池扩容、输出配电等方面存在的问题,本公开的一些实施例提供一种多输入多输出供电装置,可以用于5G通信设备的供电。
所述功率转换单元1用于将多个输入电源转换成预设直流电压,并汇流到直流母线上,实现多能源并机输出,实现了能量的汇集。所述多个输入电源至少为1个输入电源。所述输入电源可以包括存量电源(比如现有2G\3G\4G电源的剩余电源)。所述预设直流电压可根据实际需要设定。
所述输出配电单元2用于从所述直流母线取电,并根据不同的负载进行配电输出,比如根据不同负载供电需求进行升压或逆变输出。
功率转换单元1可包括多个独立模块,分别用于对不同的输入能源进行功率转换;所述输出配电电源2也可包括多个独立模块,分别用于对不同的负载进行配电。所述监控单元3分别连接所述功率转换单元1和所述输出配电单元2,用于对所述功率转换单元1和所述输出配电单元2的各模块进行管控和调度,所述监控单元3进行调度可以根据预设的调度规则,比如可以是在满足负载需求的前提下降低成本。
本公开的一些实施例通过将多个输入电源转换成预设直流电压,并汇流到直流母线上,根据不同的负载进行配电输出,支持新旧系统并机应用,实现机房级智能微电网,可以迅速解决站点供电容量不足等问题以及降低供电系统扩容建设成本,同时避免多套供电系统重复建设。
图2是本公开的一些实施例提供的多输入多输出供电装置的结构原理图。如图2所示,所述多个输入电源包括交流电源、储能系统、新能源及存量电源中的至少一种;所述功率转换单元1包括交流接入控制及整流模块、储能接入控制模块、新能源接入控制模块和直流电源接入控制模块中的至少一种;所述交流接入控制及整流模块包括交流接入控制模块和整流模块,所述交流接入控制模块用于所述交流电源的接入,实现至少两个所述交流电源间的互锁及切换,并为所述整流模块进行配电;所述整流模块用于将所述交流接入控制模块输出的交流电整流为所述预设直流电压,并汇流到所述直流母线;所述储能接入控制模块用于对所述储能系统中蓄电池组的充电电压和放电电压进行调节,并将所述蓄电池组的电压调整为所述预设直流电压汇流到所述直流母线;所述新能源接入控制模块用于所述新能源的接入,并将所述新能源的电压调整为所述预设直流电压汇流到所述直流母线;所述直流电源接入控制模块用于所述存量电源的接入,并将所述存量电源的电压调整为所述预设直流电压汇流到所述直流母线。
所述多个输入电源包括交流电源、储能系统、新能源及存量电源中的至少两种。所述功率转换单元1包括交流接入控制及整流模块、 储能接入控制模块、新能源接入控制模块和直流电源接入控制模块中的至少两种;根据不同能源类型选择配置相应的模块,对各类能源进行接入管理控制,并转换成设定的直流电压(如:-54V),进行并机输出,同时接受监控单元3的管理和能量调度。根据输入能源的数量,所述功率转换单元1的各模块均可以为一个或多个。
所述交流接入控制及整流模块包括交流接入控制模块和整流模块。交流接入控制模块用于接入多路交流电源(如市电、发电机),实现多路交流电源间互锁、自动(或手动)切换,为每个整流模块进行配电,同时可对运行参数(电压、电流、功率因数、谐波、电能等)进行采集和安全保护(防雷、过欠压等)。整流模块将交流电源转换成-54V直流电源(直流电压可设定)。
储能接入控制模块用于对储能系统的蓄电池充电过程和放电过程进行管理,同时可对蓄电池组运行参数(电压、充/放电电流、容量、温度等)进行采集、安全保护(过充、过放、过温等)和温度补偿等,每个储能接入控制模块接入1组或多组同类型蓄电池组,通过多个模块可实现不同类型、不同厂家、不同时间、不同容量的蓄电池组并机使用。
由于目前电池单体固有差异性和固定串并联成组方法的不匹配造成电池系统的“短板效应”(部分电池单体发生过充和过放现象),不同厂家、不同时期、不同类型的蓄电池无法直接并联使用,通过储能接入控制模块,解决了新旧电池混用、智能管控等技术难题,有效降低备用电池建设和运维成本。
新能源接入控制模块用于新能源(太阳能、风能、水能、氢燃料电池等)接入和控制,将新能源的输出电压转换成所述预设直流电压,并与其他模块并机工作输出。
直流电源接入控制模块用于现网(2G/3G/4G)+24V直流电源或-48V直流电源接入和控制,将存量电源的输出电压转换成所述预设直流电压,并与其他模块并机工作输出。
在上述实施例的基础上,本公开的一些实施例通过一套电源多能 源(市电、新能源、储能、发电机等)输入和多种电压类型(-48V本地供电、高压直流供电、交流供电等)输出,支持新旧系统并机应用,实现机房级智能微电网,可迅速解决站点供电容量不足等问题以及降低供电系统扩容建设成本,同时避免多套供电系统重复建设。
进一步地,基于上述实施例,所述输出配电单元2包括交流输出配电模块、交流转换及配电模块、低压直流配电模块及高压直流配电模块中的至少一种输出配电模块;所述交流输出配电模块与所述交流接入控制模块的输出端相连接,用于非通信交流负载的配电;所述交流转换及配电模块与所述直流母线相连,用于将所述预设直流电压逆变成交流电源为交流通信负载提供不间断电源和配电;所述低压直流配电模块用于为预设距离以内的通信负载提供不间断电源和配电;所述高压直流配电模块用于为所述预设距离以外的通信负载提供不间断电源和配电。
输出配电单元2由一个或多个输出配电模块组成,用于匹配不同输入电压类型的通信负载供电,并提供输出分路和保护,同时可以对运行参数(电压、电流、电能等)进行采集。
交流输出配电模块用于非通信交流负载(如空调、照明、消防等)配电与保护,无蓄电池保证供电;交流转换及配电模块将直流电源逆变成交流电源为交流通信负载提供不间断电源配电和保护;低压直流配电模块用于为近距离(如100米以内)的通信负载提供不间断电源配电和保护;高压直流配电模块用于为远距离(如100米以外,2.5千米以内)的通信负载提供不间断电源配电和保护,同时可根据供电距离智能调节输出电压,降低线路损耗。
在上述实施例的基础上,本公开的一些实施例通过合理设置输出配电单元中的输出配电模块,可以实现各种不同类型的负载的有效供电,并可解决室外高功率设备-48V供电距离受限等问题。
进一步地,基于上述实施例,所述功率转换单元1的各模块以及所述输出配电单元2的各模块还用于对运行参数进行采集以及进行安全保护,并将采集的所述运行参数发送给所述监控单元;所述监控 单元用于根据所述运行参数对所述功率转换单元和所述输出配电单元的各模块进行管控和调度。
对于不同的基站,因为输入能源的不同及负载的不同,所述功率转换单元1和所述输出配电单元2中的模块设置可能不同。所述功率转换单元1的各模块以及所述输出配电单元2的各模块还用于对运行参数进行采集以及进行安全保护,并将采集的所述运行参数发送给所述监控单元;所述监控单元用于根据所述运行参数对所述功率转换单元和所述输出配电单元的各模块进行管控和调度。
比如,当有新能源或存量直流电源时,优先调用新能源容量或存量直流电源剩余容量输出,不足部分由交流电源补充,为通信负载供电,同时为蓄电池充电;当多能源输入容量不满足负载需求或故障时,由蓄电池放电保证通信负载不间断供电。
在上述实施例的基础上,本公开的一些实施例监控单元基于运行参数对所述功率转换单元和所述输出配电单元的各模块进行管控和调度,保证了功率输出的合理化配置。
进一步地,基于上述实施例,所述监控单元3具体用于:对所述功率转换单元1、所述输出配电单元2和系统的运行参数、状态进行管理,根据负载实时供电容量需求以及输入能源情况,对功率转换单元1中各模块的功率输出进行智能调度,并匹配对应的所述输出配电模块2,从而实现多种工作方式。
监控单元3用于对各类模块和系统整体的运行参数、状态进行管理,对功率转换单元1中的各类模块功率输出进行智能调度;根据负载实时供电容量需求,对外部蓄电池容量进行调度,实现储能错峰供电;并可通过FE、RS485、NB-IOT、4G、5G等网络进行数据传输,接入管理平台,实现电源输入、输出可定义,电源设备(含电池)可互联网化自动巡检和管控。
在上述实施例的基础上,本公开的一些实施例通过监控单元的管控和调度实现电源输入、输出自定义,从而实现多种工作方式。
进一步地,基于上述实施例,所述工作方式包括交流电源独立供 电方式、新能源独立供电方式及多能源混合供电方式,其中:对应于所述交流电源独立供电方式,所述功率转换单元配置有所述交流接入控制模块、所述整流模块及所述储能接入控制模块;对应于所述新能源独立供电方式,所述功率转换单元配置有所述新能源接入控制模块和所述储能接入控制模块;对应于所述多能源混合供电方式,所述功率转换单元配置有所述交流接入控制模块、所述整流模块、所述储能接入控制模块、所述新能源接入控制模块及所述直流电源接入控制模块。
多输入多输出电源装置可根据输入能源情况,配置不同功率转换模块灵活实现多种工作方式。
方式1:交流电源独立供电方式
根据负载供电容量需求,在装置中配置交流接入控制模块、整流模块、储能接入控制模块、监控单元3和相应的配电模块(根据负载需求),并外置蓄电池,即组成交流电源独立供电系统。当交流电源正常时,由整流模块供电,并通过储能接入控制模块对电池组进行充电;当交流电源中断后,由电池组通过储能接入控制模块输出向负荷供电;当交流电源恢复供电时,整流模块工作向通信设备负载供电,并通过储能接入控制模块对电池组进行充电。
方式2:新能源独立供电方式
根据负载供电容量需求,在装置中配置新能源接入控制模块、储能接入控制模块、相应的配电模块和监控单元,并外置蓄电池组,即组成新能源独立供电系统。当新能源输出正常时,由新能源接入控制模块供电,并通过储能接入控制模块对电池组进行充电;当新能源输出中断后,由电池组通过储能接入控制模块输出向负荷供电;当新能源输出恢复供电时,新能源接入控制模块向通信设备负载供电,并通过储能接入控制模块对电池组进行充电。
方式3:多能源混合供电方式
根据负载供电容量需求,在装置中配置交流接入控制模块、整流模块、储能接入控制模块、新能源接入控制模块、直流电源接入控制 模块、相应的配电模块和监控单元,接入交流电源、新能源和存量直流电源,并外置蓄电池组(根据后备时间选择配置),即组成多能源混合供电系统。
根据各能源输入容量情况,多种接入控制模块并机输出,监控单元3进行能量智能调度,典型运行模式:当有新能源或存量直流电源时,优先调用新能源容量或存量直流电源剩余容量输出,不足部分由交流电源补充,为通信负载供电,同时为蓄电池充电;当多能源输入容量不满足负载需求或故障时,由蓄电池放电保证通信负载不间断供电。
在上述实施例的基础上,本公开的一些实施例给出了各种不同工作方式下的模块配置,有利于实现各种工作方式下的可靠工作。
进一步地,基于上述实施例,所述多输入多输出供电装置还包括机框和总线背板;所述机框用于放置所述功率转换单元、所述输出配电单元和所述监控单元,所述总线背板用于建立所述功率转换单元、所述输出配电单元和所述监控单元之间的连接;所述机框包括预设个数的通用模块槽位;所述交流接入控制模块、所述整流模块、所述储能接入控制模块、所述新能源接入控制模块、所述直流电源接入控制模块和所述输出配电模块均采用模块设计,具有预设的尺寸和接口,放置于所述通用模块槽位。
图3是本公开的一些实施例提供的多输入多输出供电装置的物理架构示意图。如图3所示,多输入多输出电源装置主要由机框、总线背板和功率转换单元1、输出配电单元2和监控单元3组成,功率转换单元1、输出配电单元2和监控单元3集成在一个所述机框中。所述总线背板用于各模块间的接线。
功率转换单元1中的各模块所述交流接入控制模块、所述整流模块、所述储能接入控制模块、所述新能源接入控制模块、所述直流电源接入控制模块以及输出配电单元2中的各模块交流输出配电模块、交流转换及配电模块、低压直流配电模块及高压直流配电模块均采用模块设计,每种模块均设计成统一外形尺寸和接口,可任意插入在机 框中任意一个模块槽位中使用,实现即插即用,灵活组合,按需配置。
由于不同的基站所采用的功率转换模块和输出配电模块可能不同,因此,采用上述标准化设计,可以直接将多输入多输出供电装置用于不同的基站,提高了使用的通用性和便利性,降低了成本。
由于监控单元3对于各个应用场合的多输入多输出供电装置来讲是必需模块,因此监控单元3无需设置成通用模块结构。
在上述实施例的基础上,本公开的一些实施例通过采用标准化设计,提高了设备的通用性。
图4是本公开的一些实施例提供的一体化机柜的架构示意图。如图4所示,所述机柜包括:多输入多输出供电装置(多输入多输出电源装置)放置区、电池模块放置区及通信设备放置区,分别用于放置上述各实施例所述的多输入多输出供电装置、电池模块及通信设备。
所述供电一体化机柜主要由柜体、多输入多输出供电装置放置区和电池模块放置区(数量根据备电时长配置)组成,为通信设备(5G等)提供安装空间和不间断供电。机柜外形尺寸如:宽600mm,深600mm或800mm,高1400mm、1600mm或2000mm。
所述一体化机柜如能得到推广应用,将彻底颠覆现有基站供电系统建设和运维模式,将无需采购和安装独立的48V开关电源、电池和通信设备机柜等设备,经济效益显著。
本公开的一些实施例通过将通信设备、电源设备和电池集成在一个机柜内,能够解决机房空间不足问题,同时实现随需在线扩容,实现边成长边投资建设模式。
本公开的一些实施例通过一套电源多能源(新能源、储能、发电机等)输入和多种电压类型(-48V本地供电、高压直流拉远供电等)输出,新旧系统并机应用,实现智能微电网,能够迅速解决站点供电容量不足、室外高功率设备-48V供电距离受限等问题以及降低供电系统扩容建设成本,同时避免多套供电系统重复建设。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的 部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。

Claims (10)

  1. 一种多输入多输出供电装置,包括:功率转换单元、输出配电单元和监控单元;
    所述功率转换单元用于将多个输入电源转换成预设直流电压,并汇流到直流母线上;
    所述输出配电单元用于从所述直流母线取电,并根据不同的负载进行配电输出;以及
    所述监控单元分别连接所述功率转换单元和所述输出配电单元,用于对所述功率转换单元和所述输出配电单元的各模块进行管控和调度。
  2. 根据权利要求1所述的多输入多输出供电装置,其中,所述多个输入电源包括交流电源、储能系统、新能源及存量电源中的至少一种;所述功率转换单元包括交流接入控制及整流模块、储能接入控制模块、新能源接入控制模块和直流电源接入控制模块中的至少一种;
    所述交流接入控制及整流模块包括交流接入控制模块和整流模块,所述交流接入控制模块用于所述交流电源的接入,实现至少两个所述交流电源间的互锁及切换,并为所述整流模块进行配电;
    所述整流模块用于将所述交流接入控制模块输出的交流电整流为所述预设直流电压,并汇流到所述直流母线;
    所述储能接入控制模块用于对所述储能系统中蓄电池组的充电电压和放电电压进行调节,并将所述蓄电池组的电压调整为所述预设直流电压汇流到所述直流母线;
    所述新能源接入控制模块用于所述新能源的接入,并将所述新能源的电压调整为所述预设直流电压汇流到所述直流母线;以及
    所述直流电源接入控制模块用于所述存量电源的接入,并将所述存量电源的电压调整为所述预设直流电压汇流到所述直流母线。
  3. 根据权利要求2所述的多输入多输出供电装置,其中,所述交流电源包括市电和发电机中的至少一种;以及所述新能源包括太阳 能、风能、水能及氢燃料电池中的至少一种。
  4. 根据权利要求2所述的多输入多输出供电装置,其中,所述输出配电单元包括交流输出配电模块、交流转换及配电模块、低压直流配电模块及高压直流配电模块中的至少一种输出配电模块;
    所述交流输出配电模块与所述交流接入控制模块的输出端相连接,用于非通信交流负载的配电;
    所述交流转换及配电模块与所述直流母线相连,用于将所述预设直流电压逆变成交流电源为交流通信负载提供不间断电源和配电;
    所述低压直流配电模块用于为预设距离以内的通信负载提供不间断电源和配电;以及
    所述高压直流配电模块用于为所述预设距离以外的通信负载提供不间断电源和配电。
  5. 根据权利要求4所述的多输入多输出供电装置,其中,所述高压直流配电模块还用于根据供电距离智能调节输出电压,降低线路损耗。
  6. 根据权利要求4所述的多输入多输出供电装置,其中,所述功率转换单元的各模块以及所述输出配电单元的各模块还用于对运行参数进行采集以及进行安全保护,并将采集的所述运行参数发送给所述监控单元;以及所述监控单元用于根据所述运行参数对所述功率转换单元和所述输出配电单元的各模块进行管控和调度。
  7. 根据权利要求6所述的多输入多输出供电装置,其中,所述监控单元具体用于:
    对所述功率转换单元、所述输出配电单元和系统的运行参数、状态进行管理,根据负载实时供电容量需求以及输入能源情况,对功率转换单元中各模块的功率输出进行智能调度,并匹配对应的所述输出配电模块,从而实现多种工作方式。
  8. 根据权利要求7所述的多输入多输出供电装置,其中,所述工作方式包括交流电源独立供电方式、新能源独立供电方式及多能源混合供电方式,其中:
    对应于所述交流电源独立供电方式,所述功率转换单元配置有所述交流接入控制模块、所述整流模块及所述储能接入控制模块;
    对应于所述新能源独立供电方式,所述功率转换单元配置有所述新能源接入控制模块和所述储能接入控制模块;以及
    对应于所述多能源混合供电方式,所述功率转换单元配置有所述交流接入控制模块、所述整流模块、所述储能接入控制模块、所述新能源接入控制模块及所述直流电源接入控制模块。
  9. 根据权利要求4所述的多输入多输出供电装置,其中,所述装置还包括机框和总线背板;所述机框用于放置所述功率转换单元、所述输出配电单元和所述监控单元;所述总线背板用于建立所述功率转换单元、所述输出配电单元和所述监控单元之间的连接;
    所述机框包括预设个数的通用模块槽位;所述交流接入控制模块、所述整流模块、所述储能接入控制模块、所述新能源接入控制模块、所述直流电源接入控制模块和所述输出配电模块均采用模块设计,具有预设的尺寸和接口,放置于所述通用模块槽位。
  10. 一种一体化机柜,包括:多输入多输出供电装置放置区、电池模块放置区及通信设备放置区,分别用于放置如权利要求1至9所述的多输入多输出供电装置、电池模块及通信设备。
PCT/CN2019/106651 2019-06-10 2019-09-19 多输入多输出供电装置及一体化机柜 WO2020248421A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910497350.6 2019-06-10
CN201910497350.6A CN112072664A (zh) 2019-06-10 2019-06-10 一种多输入多输出供电装置及一体化机柜

Publications (1)

Publication Number Publication Date
WO2020248421A1 true WO2020248421A1 (zh) 2020-12-17

Family

ID=73658793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/106651 WO2020248421A1 (zh) 2019-06-10 2019-09-19 多输入多输出供电装置及一体化机柜

Country Status (2)

Country Link
CN (1) CN112072664A (zh)
WO (1) WO2020248421A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113595225A (zh) * 2021-06-23 2021-11-02 杭州中恒电气股份有限公司 一种智能供电系统和方法
CN115313615A (zh) * 2022-08-30 2022-11-08 安徽明德源能科技有限责任公司 数据中心电源系统
CN117477521B (zh) * 2023-12-26 2024-03-22 苏州元脑智能科技有限公司 供备电系统、供备电控制方法和数据中心

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101814769A (zh) * 2010-03-08 2010-08-25 北京凯华网联新能源技术有限公司 一种风光市电互补通讯基站供电系统
US20110148194A1 (en) * 2009-12-17 2011-06-23 Delta Electronics, Inc. High voltage direct current uninterruptible power supply system with multiple input power sources
CN103676817A (zh) * 2013-06-13 2014-03-26 奇瑞汽车股份有限公司 一种通信基站光电互补电源系统及其运作方法
CN107294198A (zh) * 2017-06-29 2017-10-24 江苏省邮电规划设计院有限责任公司 一种4g基站电源系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201509076U (zh) * 2009-09-25 2010-06-16 佛山市联动科技实业有限公司 移动通信电源的远程直流供电系统
CN101951014A (zh) * 2010-10-29 2011-01-19 上海致远绿色能源有限公司 风光柴市电一体化供电系统
CN102214945B (zh) * 2010-12-21 2013-12-18 深圳市泰昂能源科技股份有限公司 一种基于蓄电池并联的直流电源系统
CN104124748B (zh) * 2013-04-27 2016-04-20 广州邦讯信息系统有限公司 一种清洁能源补偿的公交站智能供电电源系统
CN104682556A (zh) * 2014-12-16 2015-06-03 国家电网公司 变电站直流电源的远程智能维护系统及其应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110148194A1 (en) * 2009-12-17 2011-06-23 Delta Electronics, Inc. High voltage direct current uninterruptible power supply system with multiple input power sources
CN101814769A (zh) * 2010-03-08 2010-08-25 北京凯华网联新能源技术有限公司 一种风光市电互补通讯基站供电系统
CN103676817A (zh) * 2013-06-13 2014-03-26 奇瑞汽车股份有限公司 一种通信基站光电互补电源系统及其运作方法
CN107294198A (zh) * 2017-06-29 2017-10-24 江苏省邮电规划设计院有限责任公司 一种4g基站电源系统

Also Published As

Publication number Publication date
CN112072664A (zh) 2020-12-11

Similar Documents

Publication Publication Date Title
CN107612051B (zh) 一种基于双冗余电力电子变压器的交直流混合系统
WO2020248421A1 (zh) 多输入多输出供电装置及一体化机柜
CN202488178U (zh) 基于直流母线的光伏储能电动汽车充电站系统
CN102368631A (zh) 一种高效可靠的数据中心电子设备供电架构
CN113644736B (zh) 5g基站智能微电网多源供电系统
CN106300325A (zh) 一种用于数据中心的直流供电系统
CN203377670U (zh) 分散式智能直流电源
CN202679050U (zh) 通信基站集中供电系统
CN201378749Y (zh) 消防设备应急电源
CN113725880B (zh) 存量基站的5g智能电源管理系统、供电系统及供电方法
CN205212524U (zh) 交直流混合微网系统
CN202455149U (zh) 一种用于向电子设备供电的供电系统以及机架电源
CN219436708U (zh) 一种回馈式储能系统及其远程运维管理系统
CN102916484A (zh) 基于iec61850协议的分布式一体化电源系统
CN209767152U (zh) 基于能源池的直流微网供电系统
CN111416373A (zh) 一种配变动态增容光储一体化装置
CN110943476A (zh) 多级ups并联分布式控制系统及其接线电路
CN106849298B (zh) 用于变电站预制舱的分布式交直流电源模块
CN207200374U (zh) 降低机房用电成本的配电系统
CN210608558U (zh) 高压锂电池低压替换备电储能装置
CN112398155A (zh) 基于三站合一的数据中心电源系统
CN207074414U (zh) 一种服务器供电电源系统
CN113036809A (zh) 一种基于风光储一体化的新型农村配电网
CN110994605A (zh) 一种交直流微网系统
CN203205735U (zh) 基于光伏发电并网/离网一体化总线式供电的大功率逆变电控柜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19932332

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19932332

Country of ref document: EP

Kind code of ref document: A1