WO2020248383A1 - 基于跨平台的数据处理方法、装置及计算机设备 - Google Patents

基于跨平台的数据处理方法、装置及计算机设备 Download PDF

Info

Publication number
WO2020248383A1
WO2020248383A1 PCT/CN2019/103173 CN2019103173W WO2020248383A1 WO 2020248383 A1 WO2020248383 A1 WO 2020248383A1 CN 2019103173 W CN2019103173 W CN 2019103173W WO 2020248383 A1 WO2020248383 A1 WO 2020248383A1
Authority
WO
WIPO (PCT)
Prior art keywords
platform
request
sub
attribute information
interface
Prior art date
Application number
PCT/CN2019/103173
Other languages
English (en)
French (fr)
Inventor
孙强
徐超
Original Assignee
平安科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 平安科技(深圳)有限公司 filed Critical 平安科技(深圳)有限公司
Publication of WO2020248383A1 publication Critical patent/WO2020248383A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/54Interprogram communication
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/54Interprogram communication
    • G06F9/547Remote procedure calls [RPC]; Web services
    • G06F9/548Object oriented; Remote method invocation [RMI]

Definitions

  • This application relates to the field of data processing technology, and in particular to a cross-platform-based data processing method, device, computer equipment, and computer-readable storage medium.
  • a computer programming language is generally used to develop data processing systems.
  • a data processing system developed using JAVA language is usually called a JAVA platform.
  • the amount of data involved in the existing system is large, and the calculation logic is also very complicated. It takes too long to query data and calculate the data using the JAVA platform, which seriously affects system performance and reduces the efficiency of data processing.
  • the embodiments of the present application provide a cross-platform-based data processing method, device, computer equipment, and computer-readable storage medium, which can solve the problem of low big data processing efficiency in traditional technologies.
  • the embodiments of the present application provide a cross-platform-based data processing method, which is applied to a server.
  • the server includes a first platform and a second platform, and the first platform and the second platform are of different types Platform
  • the method includes: the first platform receives a request sent by the front end, the request carries attribute information of the data requested to be obtained; the first platform compares the attribute information with the second platform according to the attribute information A preset matching relationship, the second platform is invoked through the interface of the second platform to enable the second platform to process the request; the first platform receives the processing of the request returned by the second platform Result; the first platform sends the processing result to the front end so that the front end displays the processing result.
  • an embodiment of the present application provides a cross-platform-based data processing device applied to a server.
  • the server includes a first platform and a second platform, and the first platform and the second platform are of different types.
  • Platform the device includes: a first receiving unit, configured to receive a request sent by a front-end by the first platform, the request carrying attribute information of the data requested to be acquired; a calling unit, configured to the first platform according to The first preset matching relationship between the attribute information and the second platform, the second platform is called through the interface of the second platform so that the second platform can process the request; the second receiving unit uses Receiving the processing result of the request returned by the second platform on the first platform; a sending unit, configured to send the processing result to the front-end by the first platform so that the front-end displays the processing result .
  • an embodiment of the present application also provides a computer device, which includes a memory and a processor, the memory stores a computer program, and the processor implements the cross-platform-based data when the computer program is executed. Processing method steps.
  • the embodiments of the present application also provide a computer-readable storage medium, the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the processor executes the The steps of the platform's data processing method.
  • FIG. 1 is a schematic diagram of an application scenario of a cross-platform-based data processing method provided by an embodiment of the application;
  • FIG. 2 is a schematic flowchart of a cross-platform-based data processing method provided by an embodiment of the application
  • FIG. 3 is a schematic diagram of another application scenario of the cross-platform-based data processing method provided by an embodiment of the application;
  • Figure 4 is a schematic block diagram of a cross-platform-based data processing device provided by an embodiment of the application.
  • Fig. 5 is a schematic block diagram of a computer device provided by an embodiment of the application.
  • FIG. 1 is a schematic diagram of an application scenario of the cross-platform-based data processing method provided by an embodiment of the application.
  • the application scenarios include: (1)
  • the front end which can also be called a terminal, refers to a computer device that interacts with the user, receives tasks input by the user, sends requests according to the tasks to request data from the server, and receives the processing results returned by the server , Present the processing results to the user, and the front end can be computer equipment such as notebooks, desktops, and smart phones.
  • the server provides services for front-end tasks and adopts distributed deployment, including a first platform and a second platform.
  • the first platform and the second platform are different types of platforms, as shown in Figure 1,
  • the first platform can be a JAVA platform for making corresponding calls based on requests
  • the second platform can be a Python platform based on the Docker engine that also adopts distributed deployment.
  • the Python platform is packaged into multiple Docker clients (ie Docker -client), that is, the Docker client corresponding to the sub-platform Python interface 1 encapsulated by Docker1 included in the second platform Python platform, the Docker client corresponding to the sub-platform Python interface 2 encapsulated by Docker2, and the Docker client corresponding to the sub-platform Python interface 3 encapsulated in Docker3. Docker client.
  • the first platform JAVA platform calls the corresponding Docker-client encapsulated Python platform through the unified JAVA interface according to the requested data through the Python interface of each Docker-client, so as to realize the first platform JAVA platform to call the corresponding Docker-client Python platform. In this way, data query and calculation functions are realized through the Python platform of Docker-client to obtain data processing results.
  • each subject in Figure 1 The working process of each subject in Figure 1 is as follows: the first platform receives a request sent by the front end, and the request carries the attribute information of the data requested; the first platform compares the attribute information with the second The first preset matching relationship of the platform, the second platform is called through the interface of the second platform to enable the second platform to process the request; the first platform receives the return from the second platform The processing result of the request; the first platform sends the processing result to the front end so that the front end displays the processing result.
  • Figure 1 only shows a desktop computer as the front end.
  • the front end can also be a smart phone, a smart watch, a notebook computer or a tablet computer.
  • the application scenarios of the above-mentioned cross-platform-based data processing method are only used to illustrate the technical solutions of the present application, and are not used to limit the technical solutions of the present application.
  • the foregoing connection relationship may also have other forms.
  • FIG. 2 is a schematic flowchart of a cross-platform-based data processing method provided by an embodiment of the application.
  • the cross-platform-based data processing method is applied to the server in FIG. 1 to complete all or part of the functions of the cross-platform-based data processing method.
  • the server includes a first platform and a second platform.
  • the platform has the characteristics of being good at cross-platform use.
  • the first platform is used for data cross-platform interaction and scheduling between different subjects.
  • the second platform is good at data query and data calculation.
  • the second platform is used for data processing.
  • the first platform and the second platform implement different functions to give full play to their respective advantages. Therefore, the first platform and the second platform are different types of platforms.
  • the method includes the following steps S201-S204 :
  • the first platform receives a request sent by a front end, and the request carries attribute information of the data requested to be obtained.
  • the attribute information of the data includes identifiable information such as the data name, data code, or data identification of the data.
  • the front-end when it performs data processing tasks, if it involves the processing of big data, it will send a request to the server for data acquisition.
  • the request carries the attribute information that needs to be acquired.
  • the first platform receives the data sent by the front-end.
  • the first platform can be a JAVA platform.
  • the first platform may also adopt a PHP platform.
  • PHP is an abbreviation of Hypertext Preprocessor, which is a computer scripting language (English: Script languages).
  • the front-end page can use WebSocket instant messaging technology to perform full-duplex communication with the server to receive the latest data in real time.
  • WebSocket is a protocol for full-duplex communication on a single TCP connection, allowing the server to actively push data to the front-end .
  • the first platform calls the second platform through the interface of the second platform according to the first preset matching relationship between the attribute information and the second platform, so that the second platform can process the request.
  • the first preset matching relationship refers to the matching relationship between the data request and the second platform for data processing, and can also be referred to as the corresponding relationship between the data request and the second platform for data processing, that is, the front-end request Which part of the data is designated to process the data to return the data processing result to the front end, for example, the pre-designated request A data is processed by B, the requested C data is processed by D, and the preset matching relationship between A and B is satisfied.
  • the preset matching relationship is satisfied between C and D.
  • the second platform can be a Python platform or a C language platform. The second platform selects the best platform based on the tasks that the second platform needs to handle.
  • the Python platform can be selected for query data and calculation data, and the second platform is set There is an external interface, and the external calls the second platform through the interface to realize the cooperation between the different processing parts of the data request.
  • the interface in the software class refers to the reference type that defines the agreement.
  • the first platform after receiving the data request, the first platform obtains the attribute information carried in the data, and calls the attribute information through the interface of the second platform according to the first preset matching relationship between the attribute information and the second platform.
  • a second platform to enable the second platform to process the request. For example, if the first platform receives the attribute information A in the request sent by the front end, the requested data is called A data.
  • the A data is processed by the second platform B, and the first platform passes all The interface of the second platform B calls the second platform B so that the second platform B processes the request A data.
  • the server in order to improve the efficiency of the server for data query and calculation, especially when dealing with big data processing, the server generally adopts distributed deployment and asynchronous calls to process multiple requests in parallel, thereby improving the processing efficiency of multiple requests.
  • the background server uses RabbitMQ technology to asynchronously call the interface of the second platform after receiving the front-end request.
  • the second platform calculates the data and informs the calculation result through the first platform.
  • the server includes the first platform JAVA platform and the second platform Python platform.
  • the server adopts distributed deployment and asynchronous call through the first platform and the second platform.
  • the first platform JAVA platform makes full use of the characteristics of JAVA cross-platform use, mainly for scheduling, and the second platform Python platform uses Python, making full use of Python’s query and calculation efficiency features to improve the server’s data query and calculation effectiveness.
  • the first platform calls the second platform according to the attribute information of the data so that the second platform can process the request, using RabbitMQ technology to asynchronously call the Python interface to achieve
  • the first platform JAVA is used to schedule the second platform Python platform.
  • the Python platform calculates the data and informs the calculation results, and realizes the asynchronous processing of the data.
  • the query and calculation efficiency of the Python platform is very high.
  • the efficiency of data processing can be improved, so that the JAVA platform of the first platform can connect the two parts by calling the Python platform of the second platform to provide the data service function of the server.
  • the server adopts the distributed deployment method of the first platform and the second platform to migrate the big data query and calculation part of the intelligent investment research system to the Python platform, and provide external interfaces, and the JAVA platform is responsible Call the corresponding interface, and combine the Docker-client API to dynamically operate the Python service deployed on the Docker container. Even if the business logic of the Python service changes, there is no need to redeploy the JAVA program, effectively improving the big data query and calculation in the intelligent investment research system Efficiency, improve system performance and improve data processing efficiency.
  • the second platform is called through the interface of the second platform to make the second platform
  • the method further includes: the first platform judging whether the request is processed by the second platform according to the first preset matching relationship between the attribute information and the second platform; and If the judgment result is that the request is processed by the second platform, the first platform invokes the second platform through the interface of the second platform to enable the second platform to process the request.
  • the first platform determines that the data request is processed by the second platform based on the first preset matching relationship between the attribute information and the second platform, the first platform invokes the data request through the interface of the second platform The second platform enables the second platform to process the request. If it is determined that the request is not processed by the second platform, the first platform does not call the second platform, and the call failure may be returned to the front end .
  • the first platform may determine whether the first preset matching relationship exists according to the attribute information of the data to determine whether the data request is processed by the second platform, if the first platform determines that the first platform exists according to the attribute information of the data The preset matching relationship determines that the attribute information satisfies the first preset matching relationship with the second platform, and the first platform calls the second platform to process the data. If the first platform determines that the data does not exist according to the attribute information of the data The first preset matching relationship determines that the attribute information does not satisfy the first preset matching relationship with the second platform, the first platform does not call the second platform to process data, and the call failure is returned.
  • the JAVA platform of the first platform determines whether the request is processed by the Python platform of the second platform according to the attribute information of the data.
  • the attribute information of the data is combined with the preset matching relationship, and it is determined that the request is processed by the second platform Python platform.
  • the first platform calls the second platform through the interface of the second platform so that the second platform can process the request. It is determined that the request is not processed by the second platform.
  • the first platform does not call the second platform, and directly returns the processing result. By avoiding the direct call of the second platform, the efficiency of the server for processing data can be further improved.
  • the first platform can directly call the second platform according to the first preset matching relationship between the attribute information and the second platform
  • the first platform may not perform the step of determining whether it is processed by the second platform. If the second platform is a platform in the preset platform set, the first platform needs to determine the data according to the attribute information of the data The request is processed by which platform in the platform set, for example, it is determined whether the request is processed by the second platform. If the second platform is a set containing multiple sub-platforms, the first platform needs to determine which sub-platform of the second platform is to process the data request based on the attribute information of the data, so that the corresponding The data processing part is processed.
  • the calls between the two platforms are carried out through the interface preset by the platform.
  • the JAVA platform of the first platform calls the interface of the Python platform of the second platform.
  • Commonly used communication protocols include HTTPS protocol, TCP/IP protocol, IPX/SPX protocol, NetBEUI protocol, etc.; 3) Request method, mainly including push PUSH and PULL pull two methods, from the perspective of security In terms of angle, these two methods are relatively high.
  • the Java platform of the first platform can call the corresponding Docker-client in the Python platform of the second platform through the unified JAVA interface according to the requirements through the respective Python interfaces of the Docker-client.
  • the first platform receives a processing result of the request returned by the second platform.
  • the second platform receives the call of the first platform, processes the request according to the call of the first platform, and returns the processing result of the request to the first platform, and the first platform receives the return from the second platform The processing result of the request.
  • the Python platform receives the call of the JAVA platform
  • the Python platform processes the request according to the call of the JAVA platform, and returns the processing result of the request to the JAVA platform
  • the JAVA platform receives the Python platform The returned processing result of the request.
  • the first platform sends the processing result to the front end so that the front end displays the processing result.
  • the first platform receives the processing result returned by the second platform, and sends the processing result to the front end so that the front end displays the processing result of the request.
  • the JAVA platform receives the processing result of the Python platform and sends The processing results are sent to the front-end to display the data processing results on the front-end, which can make full use of the cross-platform features of the JAVA platform, and make full use of the higher query and calculation efficiency of the Python platform, thereby effectively improving the efficiency of big data query and calculation and improving the system performance.
  • a distributed deployment method is adopted to divide the server into a first platform and a second platform.
  • the first platform and the second platform are different types of platforms, and the method includes: The first platform receives a request sent by the front end, and the request carries attribute information of the data requested; the first platform calls the second platform according to the attribute information, and the first platform is responsible for calling the corresponding interface of the second platform
  • the services of the second platform are dynamically operated to enable the second platform to process the request.
  • the second platform is responsible for big data query and data calculation and provides external interfaces; the first platform receives the return from the second platform The processing result of the request; the first platform sends the processing result to the front-end so that the front-end displays the processing result.
  • the second platform is a platform in a preset platform set, wherein the platform set includes multiple platforms of different types.
  • the platform collection refers to the collection formed by the platform.
  • the platform set includes a first Python platform, a C language platform, and a second Python platform.
  • the second platform is included in the platform set, and the platform set includes at least one platform.
  • the second platform is a platform in a preset platform set, which means that the second platform is included in the platform set, and the second platform is one of multiple platforms.
  • the first platform receives a request sent by the front end, and the request carries attribute information of the data requested, and the first platform calls a platform set formed by multiple platforms such as the second platform according to the attribute information One of the platforms, such as the second platform, so that a platform in the set of platforms, such as the second platform, processes the request, and the first platform receives the processing of the request returned by a platform in the set of platforms
  • the first platform receives the processing result of the request returned by the second platform, and the first platform sends the processing result to the front end so that the front end displays the processing result.
  • the second platform is any platform in a set of preset platforms, or the second platform is a platform corresponding to the data requested in advance set in the set of preset platforms. If the second platform is any platform in the preset platform set, the first platform distributes the processing of the requested data to the lighter-loaded platform for processing according to the load of each platform in the platform set, so that The load balance of each platform shortens the processing process from the processing time.
  • Figure 3 is a schematic diagram of another application scenario of the cross-platform data processing method provided by an embodiment of the application. As shown in Figure 3, the platform set includes the first Python platform, the C language platform, and the first Python platform.
  • the first platform calls the first Python platform, the C language platform, or the second Python platform according to the attribute information to process the request, for example, the first platform calls the first Python platform to make
  • the first Python platform processes the request
  • the first platform may also call the C language platform according to the attribute information to enable the C language platform to process the request
  • the first platform may call the second platform according to the attribute information
  • a Python platform is used to enable the second Python platform to process the request, especially the big data processing system, using an asynchronous call method.
  • the second platform is a platform corresponding to the data requested in advance in the preset platform set, each platform is matched with the processed data in advance, and after the first platform recognizes the data according to the attribute information, the requested data
  • the processing is allocated to the corresponding platform for processing, which can shorten the allocation time of data processing from the perspective of scheduling and improve the efficiency of data processing.
  • the first platform recognizes the requested data A, and pre-sets the data A from the platform collection After identifying data A, the A data is directly distributed to the B platform in the platform set for processing.
  • the first platform calls the second platform through the interface of the second platform according to the first preset matching relationship between the attribute information and the second platform to make the second platform
  • the step of the platform processing the request includes: the first platform uses the second preset matching relationship between the attribute information and the sub-platform included in the second platform through the interface of the corresponding sub-platform in the second platform Invoke a sub-platform in the second platform to enable the corresponding sub-platform in the second platform to process the request.
  • the second preset matching relationship refers to the matching relationship between the data request and the sub-platform included in the second platform of data processing, and may also be referred to as the sub-platform included in the second platform of data request and data processing.
  • the sub-platform included in the second platform of data request and data processing corresponds to which sub-platform of the designated second platform processes the data requested by the front-end to return the data processing result to the front-end.
  • the pre-designated requested E data is processed by the B1 sub-platform, E and B1 Meet the preset matching relationship between E and B1, which can also be called the corresponding relationship between E and B1.
  • the second platform may be a separate platform, the second platform may be a platform in a preset platform set, and further, the second platform may also be a platform set that includes multiple sub-platforms to further adopt distributed deployment ,
  • the above three forms can be combined, for example, please continue to refer to Figure 3,
  • Figure 3 is a schematic diagram of one of the structural forms.
  • the second platform includes multiple sub-platforms, it can be determined according to the attribute information of the data which sub-platform of the second platform is to process the request.
  • the first platform determines which sub-platform of the second platform processes the requested data , That is, according to the second preset matching relationship between the attribute information and the sub-platform contained in the second platform, the first platform invokes the second platform through the interface of the corresponding sub-platform in the second platform.
  • the sub-platform in the platform enables the corresponding sub-platform in the second platform to process the request.
  • Figure 1 For example, please continue to refer to Figure 1.
  • a data corresponds to the Docker client corresponding to the sub-platform Python interface 1 encapsulated by Docker1 in the second platform Python platform
  • B data corresponds to the Docker client corresponding to the sub-platform Python interface 2 encapsulated by Docker2
  • C corresponds to the Docker client corresponding to the sub-platform Python interface 3 encapsulated by Docker3.
  • the first platform receives the request carrying the attribute information of A to call the Docker client corresponding to the sub-platform Python interface 1 encapsulated in the second platform Python platform.
  • the first platform receives the request carrying B attribute information to call the Docker client corresponding to the sub-platform Python interface 2 corresponding to the Docker2 package in the second platform Python platform.
  • the second platform Python platform also adopts a distributed combination.
  • the second platform Python platform is divided into multiple sub-platforms according to preset conditions, and each sub-platform uses an independent Docker-client client
  • each Docker-client receives the call of the unified interface of the first platform JAVA platform through their corresponding interface, so as to realize the dynamic operation of the Python interface based on the Docker engine and Docker-client API through the unified interface of the first platform JAVA. So as to realize the call to each Docker-client API, where API, English is Application Programming Interface, application programming interface.
  • different business scenarios call different Python interfaces, and different business scenarios are based on the same JAVA interface, but the specific JAVA business implementation classes are different.
  • a financial investment data processing system is based on different business scenarios such as factor net worth, risk analysis, and recent style preferences of the business, but they are all based on a certain JAVA interface.
  • the JAVA platform of the first platform is based on the requested data.
  • the attribute information calls the sub-platform Python interface 1, the sub-platform Python interface 2 or the sub-platform Python interface 3 in the second platform Python platform, so that the corresponding sub-platform processes the request task.
  • the first platform and the second platform are two different platforms .
  • the JAVA platform of the first platform receives the processing results of the sub-platforms in the second platform Python, and sends the processing results to the front end so that the front end displays the data processing results.
  • the asynchronous call method is adopted. Through the multi-level distributed system, it can be further passed through parallel To further improve the efficiency of data processing. Or, please continue to refer to Figure 3.
  • the JAVA platform of the first platform calls the sub-platform Python interface 1 or the sub-platform Python interface 2 in the second platform Python platform according to the attribute information of the requested data, or calls the sub-platform Python interface 2 in the third platform C language platform. Platform C interface 1 or sub-platform C interface 2, or call sub-platform Python interface 6 or sub-platform Python interface 7 in the fourth platform Python platform, etc.
  • the first platform invokes the second preset matching relationship between the attribute information and the sub-platform included in the second platform through the interface of the corresponding sub-platform in the second platform.
  • the sub-platform in the second platform further includes: the second platform is set as multiple sub-platforms according to preset conditions, and the preset Conditions include business scenarios.
  • the second platform also adopts distributed combination.
  • the second platform is divided into multiple sub-platforms according to preset conditions, and each sub-platform realizes relatively independent data processing functions.
  • the second platform Python platform adopts distributed The combination is divided into multiple sub-platforms according to preset conditions. Since the second platform Python platform also adopts a distributed combination, the second platform Python platform is divided into multiple sub-platforms according to preset conditions.
  • Each sub-platform implements independent functions with independent Docker-client clients, and each Docker-client uses its own
  • the corresponding interface receives the call of the unified interface of the first platform JAVA, and realizes the dynamic operation of the Python interface based on the Docker engine and Docker-client API through the unified interface of the first platform JAVA, so as to realize the call of each Docker-client API.
  • different business scenarios call different Python interfaces, and different business scenarios jointly implement the same JAVA interface, but the specific JAVA business implementation classes are different.
  • the factor net value, risk analysis, and recent style preference business scenarios in the system are different, but they all implement a certain JAVA interface.
  • Figure 1 to divide the second platform Python platform into sub-platform Python interface 1, sub-platform Python interface 2 and sub-platform Python interface 3 according to preset conditions, so that the corresponding sub-platform can process request tasks.
  • the method before the step of receiving the request sent by the front-end by the first platform, the method further includes: encapsulating each sub-platform included in the first platform and the second platform with their corresponding Docker engines. .
  • first platform and the second platform respectively use a Docker engine to encapsulate their own functions to maintain their independence.
  • the first platform and the second platform may not use the Docker engine, the use of Docker engine for packaging can make each part independent. Even if the business logic in the Docker engine changes, there is no need to redeploy other parts of Docker.
  • the engine is convenient for the development, maintenance and operation of each part. It adopts asynchronous call mode, and through a multi-level distributed system, requests can be processed in parallel to further improve the efficiency of data processing. For example, please continue to refer to Figure 3.
  • the JAVA platform of the first platform since the JAVA platform of the first platform has only one platform, the JAVA platform of the first platform uses Docker0 encapsulation, and the sub-platform Python interface 1 in the second platform Python platform uses Docker1 package, sub-platform Python interface 2 uses Docker2 package, the third platform C language platform sub-platform C interface 1 uses Docker4 package, sub-platform C interface 2 uses Docker5 package, the fourth platform Python platform sub-platform Python interface 6 Use Docker6 package, the sub-platform Python interface 7 uses Docker7 package.
  • each sub-platform implements independent functions with independent Docker-client clients, and each Docker-client receives calls from the unified interface of the first platform JAVA platform through their corresponding interfaces to pass the first platform JAVA's unified interface is based on the Docker engine and Docker-client API to dynamically operate the Python interface, so as to realize the call to each Docker-client API.
  • Figure 3 the Docker engine and Docker-client API to dynamically operate the Python interface
  • the JAVA platform of the first platform calls the sub-platform Python interface 1 or the sub-platform Python interface 2 in the second platform Python platform according to the attribute information of the requested data, or calls the sub-platform C in the third platform C language platform Interface 1 or sub-platform C interface 2, or call sub-platform Python interface 6 or sub-platform Python interface 7 in the fourth platform Python platform, etc.
  • each sub-platform in the first platform and the second platform is encapsulated with its corresponding Docker engine to achieve Their independence facilitates the maintenance and update of each sub-platform.
  • the first platform is a JAVA platform
  • the second platform is a Python platform.
  • the server includes a first platform and a second platform.
  • the first platform is a JAVA platform for making corresponding calls based on requested data
  • the second platform is a Python platform based on the Docker engine that also adopts distributed deployment.
  • the Python platform follows Different business scenarios are packaged into multiple Docker-clients.
  • the JAVA platform of the first platform calls the corresponding Docker-client through the Python interface of each Docker-client through the unified JAVA interface according to the requested data, so as to realize the JAVA platform of the first platform to call the corresponding Docker-client, thereby realizing data through the Docker-client
  • the query and calculation functions can make full use of the cross-platform features of the JAVA platform, and make full use of the higher query and calculation efficiency of the Python platform, thereby effectively improving the big data query and calculation efficiency in the intelligent investment research system, and improving the system performance
  • cross-platform-based data processing methods described in the above embodiments can recombine the technical features contained in different embodiments as needed to obtain a combined implementation plan, but they are all required by this application. Within the scope of protection.
  • FIG. 4 is a schematic block diagram of a cross-platform-based data processing apparatus provided by an embodiment of the application.
  • an embodiment of the present application also provides a cross-platform-based data processing device.
  • the cross-platform-based data processing device includes a unit for executing the above-mentioned cross-platform-based data processing method.
  • the device can be configured in computer equipment such as a server.
  • the device includes a first platform and a second platform. Platforms, the first platform and the second platform are different types of platforms.
  • the cross-platform-based data processing device 400 includes a first receiving unit 401, a calling unit 402, a second receiving unit 403, and a sending unit 404.
  • the first receiving unit 401 is configured to receive the request sent by the front end by the first platform, and the request carries attribute information of the data requested to be obtained.
  • the calling unit 402 is configured to: according to the first preset matching relationship between the attribute information and the second platform, the first platform calls the second platform through the interface of the second platform to make the second platform The platform processes the request.
  • the second receiving unit 403 is configured to receive the processing result of the request returned by the second platform by the first platform.
  • the sending unit 404 is configured to send the processing result to the front end by the first platform so that the front end displays the processing result.
  • the second platform is a platform in a preset platform set, wherein the platform set includes multiple platforms of different types.
  • the invoking unit 402 is configured to pass the second preset matching relationship between the first platform and the sub-platform included in the second platform according to the attribute information
  • the interface of the corresponding sub-platform calls the sub-platform in the second platform to enable the corresponding sub-platform in the second platform to process the request.
  • the cross-platform-based data processing device 400 further includes: a dividing unit configured to set the second platform as multiple sub-platforms according to preset conditions, and the preset conditions include business scenarios.
  • the cross-platform-based data processing device 400 further includes: an encapsulation unit, configured to use the respective sub-platforms included in the first platform and the second platform to perform processing using their corresponding Docker engines. Package.
  • the calling unit 402 is configured to, according to the attribute information, the first platform invokes the corresponding interface of the sub-platform in the second platform to make the sub-platform of the second platform process the request.
  • the first platform is a JAVA platform
  • the second platform is a Python platform.
  • cross-platform-based data processing device and the specific implementation process of each unit may refer to the corresponding description in the foregoing method embodiment. For the convenience and conciseness of the description, I will not repeat them here.
  • the division and connection of the units in the cross-platform-based data processing device are only used for illustration.
  • the cross-platform-based data processing device can be divided into different units as needed, or Each unit in the cross-platform-based data processing device adopts different connection sequences and modes to complete all or part of the functions of the above-mentioned cross-platform-based data processing device.
  • the above-mentioned cross-platform-based data processing apparatus may be implemented in the form of a computer program, and the computer program may run on the computer device shown in FIG. 5.
  • FIG. 5 is a schematic block diagram of a computer device according to an embodiment of the present application.
  • the computer device 500 may be a computer device such as a desktop computer or a server, or may be a component or component in other devices.
  • the computer device 500 includes a processor 502, a memory, and a network interface 505 connected through a system bus 501, where the memory may include a non-volatile storage medium 503 and an internal memory 504.
  • the non-volatile storage medium 503 can store an operating system 5031 and a computer program 5032.
  • the processor 502 can execute the above-mentioned cross-platform-based data processing method.
  • the processor 502 is used to provide calculation and control capabilities to support the operation of the entire computer device 500.
  • the internal memory 504 provides an environment for the running of the computer program 5032 in the non-volatile storage medium 503.
  • the processor 502 can make the processor 502 execute a cross-platform-based data processing method.
  • the network interface 505 is used for network communication with other devices.
  • the specific computer device 500 may include more or fewer components than shown in the figure, or combine certain components, or have a different component arrangement.
  • the computer device may only include a memory and a processor. In such an embodiment, the structure and function of the memory and the processor are consistent with the embodiment shown in FIG. 5, and will not be repeated here.
  • the processor 502 is configured to run a computer program 5032 stored in a memory to implement the cross-platform-based data processing method in the embodiment of the present application.
  • the processor 502 may be a central processing unit (Central Processing Unit, CPU), and the processor 502 may also be other general-purpose processors, digital signal processors (Digital Signal Processors, DSPs), Application Specific Integrated Circuit (ASIC), Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor.
  • the embodiment of the present application also provides a computer-readable storage medium.
  • the computer-readable storage medium may be a non-volatile computer-readable storage medium, and the computer-readable storage medium stores a computer program.
  • the processor executes the processes described in the above embodiments. Steps based on a cross-platform data processing method.
  • the storage medium is a physical, non-transitory storage medium, such as a U disk, a mobile hard disk, a read-only memory (Read-Only Memory, ROM), a magnetic disk or an optical disk, and other physical storage that can store computer programs. medium.
  • a physical, non-transitory storage medium such as a U disk, a mobile hard disk, a read-only memory (Read-Only Memory, ROM), a magnetic disk or an optical disk, and other physical storage that can store computer programs. medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Stored Programmes (AREA)

Abstract

本申请实施例提供了一种基于跨平台的数据处理方法、装置、计算机设备及计算机可读存储介质。本申请实施例应用于服务器中,实现数据处理时,将服务器划分为第一平台和第二平台,第一平台和第二平台是不同类型的平台,方法包括:第一平台接收前端发送的请求,请求中携带有请求的数据的属性信息;第一平台根据属性信息与第二平台的第一预设匹配关系,通过第二平台的接口调用第二平台以使第二平台处理请求,第二平台负责大数据查询及数据计算并对外提供接口;第一平台接收第二平台返回的请求的处理结果;第一平台发送处理结果至前端以使前端显示处理结果。

Description

基于跨平台的数据处理方法、装置及计算机设备
本申请要求于2019年6月13日提交中国专利局、申请号为201910510833.5、申请名称为“基于跨平台的数据处理方法、装置及计算机设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及数据处理技术领域,尤其涉及一种基于跨平台的数据处理方法、装置、计算机设备及计算机可读存储介质。
背景技术
传统技术中,为了数据处理系统开发的便捷,一般会采用一种计算机编程语言进行数据处理系统的开发,比如,采用JAVA语言开发的数据处理系统,通常称为JAVA平台。但在大数据处理过程中,现有系统中涉及的数据量大,计算逻辑也非常复杂,使用JAVA平台查询数据并计算数据时耗时太长,严重影响系统性能,降低了数据处理的效率。
发明内容
本申请实施例提供了一种基于跨平台的数据处理方法、装置、计算机设备及计算机可读存储介质,能够解决传统技术中大数据处理效率不高的问题。
第一方面,本申请实施例提供了一种基于跨平台的数据处理方法,应用于服务器中,服务器包括第一平台和第二平台,所述第一平台和所述第二平台是不同类型的平台,所述方法包括:所述第一平台接收前端发送的请求,所述请求中携带有请求获取的数据的属性信息;所述第一平台根据所述属性信息与所述第二平台的第一预设匹配关系,通过所述第二平台的接口调用所述第二平台以使所述第二平台处理所述请求;所述第一平台接收所述第二平台返回的所述请求的处理结果;所述第一平台发送所述处理结果至所述前端以使所述前端显示所述处理结果。
第二方面,本申请实施例提供了一种基于跨平台的数据处理装置,应用于服务器中,服务器包括第一平台和第二平台,所述第一平台和所述第二平台是不同类型的平台,所述装置包括:第一接收单元,用于所述第一平台接收前端发送的请求,所述请求中携带有请求获取的数据的属性信息;调用单元,用于所述第一平台根据所述属性信息与所述第二平台的第一预设匹配关系,通过所述第二平台的接口调用所述第二平台以使所述第二平台处理所述请求;第二接收单元,用于所述第一平台接收所述第二平台返回的所述请求的处理结果;发送单元,用于所述第一平台发送所述处理结果至所述前端以使所述前端显示所述处理结果。
第三方面,本申请实施例还提供了一种计算机设备,其包括存储器及处理器,所述存储器上存储有计算机程序,所述处理器执行所述计算机程序时实现所述基于跨平台的数据处理方法的步骤。
第四方面,本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器执行所述基于跨平台的数据处理方法的步骤。
附图说明
为了更清楚地说明本申请实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本申请实施例提供的基于跨平台的数据处理方法的一个应用场景示意图;
图2为本申请实施例提供的基于跨平台的数据处理方法的一个示意性流程图;
图3为本申请实施例提供的基于跨平台的数据处理方法的另一个应用场景示意图;
图4为本申请实施例提供的基于跨平台的数据处理装置的示意性框图;以 及
图5为本申请实施例提供的计算机设备的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
请参阅图1,图1为本申请实施例提供的基于跨平台的数据处理方法的一个应用场景示意图。所述应用场景包括:(1)前端,又可以称为终端,是指和用户进行交互的计算机设备,接收用户输入的任务,根据任务发送请求以向服务器请求数据,并接收服务器返回的处理结果,将处理结果呈现给用户,前端可以为笔记本、台式机、智能手机等计算机设备。(2)服务器,为前端的任务提供服务,采取分布式部署,包括第一平台和第二平台,所述第一平台和所述第二平台是不同类型的平台,如图1中所示,第一平台可为用于根据请求进行对应调用的JAVA平台,第二平台可为基于Docker引擎也采取分布式部署的Python平台,Python平台按照不同业务场景进行封装成多个Docker客户端(即Docker-client),即第二平台Python平台中包括的Docker1封装的子平台Python接口1对应的Docker客户端、Docker2封装的子平台Python接口2对应的Docker客户端及Docker3封装的子平台Python接口3对应的Docker客户端。第一平台JAVA平台通过统一的JAVA接口根据请求数据通过每个Docker-client的Python接口调用对应的Docker-client封装的Python平台,以实现第一平台JAVA平台调用对应的Docker-client的Python平台,从而通过Docker-client的Python平台实现数据查询和计算功能以获得数据处理结果。
图1中的各个主体工作过程如下:所述第一平台接收前端发送的请求,所述请求中携带有请求获取的数据的属性信息;所述第一平台根据所述属性信息与所述第二平台的第一预设匹配关系,通过所述第二平台的接口调用所述第二平台以使所述第二平台处理所述请求;所述第一平台接收所述第二平台返回的 所述请求的处理结果;所述第一平台发送所述处理结果至所述前端以使所述前端显示所述处理结果。
需要说明的是,图1中仅仅示意出台式电脑作为前端,在实际操作过程中,前端的类型不限于图1中所示,所述前端还可以为智能手机、智能手表、笔记本电脑或者平板电脑等电子设备,上述基于跨平台的数据处理方法的应用场景仅仅用于说明本申请技术方案,并不用于限定本申请技术方案,上述连接关系还可以有其他形式。
请参阅图2,图2为本申请实施例提供的基于跨平台的数据处理方法的一个示意性流程图。该基于跨平台的数据处理方法应用于图1中的服务器中,以完成基于跨平台的数据处理方法的全部或者部分功能,其中,所述服务器包括第一平台和第二平台,所述第一平台具备擅长跨平台使用的特性,第一平台用于进行数据跨平台交互及进行不同主体间的调度,第二平台具备擅长数据查询及数据计算的特性,第二平台用于数据处理,由于第一平台和第二平台分别实现不同的功能以充分发挥各自的优势,所以所述第一平台和所述第二平台是不同类型的平台,如图2所示,该方法包括以下步骤S201-S204:
S201、所述第一平台接收前端发送的请求,所述请求中携带有请求获取的数据的属性信息。
其中,数据的属性信息包含数据名称、数据编码或者数据的数据标识等具有辨识性的信息。
具体地,前端进行数据处理的任务时,若涉及到大数据的处理,会向服务器发送请求,请求获取数据,所述请求中携带有需要获取数据的属性信息,所述第一平台接收前端发送的请求,如图1所示,第一平台可以为JAVA平台。另外,所述第一平台也可以采用PHP平台,PHP是Hypertext Preprocessor的缩写,是一种计算机脚本语言(英文为Script languages)。其中,前端页面可以使用WebSocket即时通讯技术和服务器之间进行全双工通信以实时接收最新数据,WebSocket是一种在单个TCP连接上进行全双工通信的协议,允许服务器端主动向前端推送数据。
S202、所述第一平台根据所述属性信息与所述第二平台的第一预设匹配关 系,通过所述第二平台的接口调用所述第二平台以使所述第二平台处理所述请求。
其中,所述第一预设匹配关系是指数据请求与数据处理的第二平台之间的匹配关系,又可以称为数据请求与数据处理的第二平台之间对应关系,也就是前端请求的数据由指定的哪部分来处理数据以向前端返回数据处理结果,比如,预先指定请求的A数据由B来处理,请求的C数据由D来处理,A与B之间满足预设匹配关系,C与D之间满足预设匹配关系。第二平台可以为Python平台,也可以为C语言平台等,第二平台根据第二平台需要处理的任务选择效果最佳的平台,比如,查询数据和计算数据可以选用Python平台,第二平台设置有对外的接口,外部通过接口调用第二平台,以实现数据请求的不同处理部分之间的协作,其中,软件类中的接口是指对协定进行定义的引用类型。
具体地,第一平台接收到数据请求后,获取数据中携带的属性信息,根据所述属性信息与所述第二平台的第一预设匹配关系,通过所述第二平台的接口调用所述第二平台以使所述第二平台处理所述请求。比如,若第一平台接收前端发送的请求中携带有属性信息A,称请求的数据为A数据,根据预先设置的匹配关系,比如,A数据由第二平台B来处理,第一平台通过所述第二平台B的接口调用所述第二平台B以使所述第二平台B处理所述请求A数据。
进一步地,为了提高服务器进行数据查询和计算的效率,尤其应对大数据处理时,服务器一般会采取分布式部署和异步方式进行调用,以并行处理多个请求,从而提高多个请求的处理效率。用户访问某个页面时,后台服务器接收到前端请求后采用RabbitMQ技术异步调用第二平台的接口,第二平台计算数据并通过第一平台告知计算结果。比如,如图1所示,为了提高服务器进行数据查询和计算的效率,服务器包括第一平台JAVA平台和第二平台Python平台,服务器通过第一平台和第二平台采取分布式部署和异步方式调用,第一平台JAVA平台充分使用JAVA跨平台使用的特性,主要起调度作用,第二平台Python平台使用Python,充分使用Python查询和计算效率很高的特性,以提高服务器对数据的查询和计算的效率。用户访问某个页面时,后台服务器中的JAVA平台接收到前端请求后,第一平台根据数据的属性信息调用第二平台以使第二平台 处理该请求,采用RabbitMQ技术异步调用Python接口,以实现通过第一平台JAVA调度第二平台Python平台,Python平台计算数据并告知计算结果,实现异步方式处理数据,由于Python平台的查询和计算效率很高。可以提高数据处理的效率,从而使第一平台JAVA平台通过调用第二平台Python平台使两部分衔接起来共同提供服务器的数据服务功能。比如,在智能投研系统中,服务器采用第一平台和第二平台的分布式部署方式,将智能投研系统中大数据查询及计算的部分迁移至Python平台,并对外提供接口,JAVA平台负责调用相应接口,同时结合Docker-client API动态操作部署在Docker容器上的Python服务,即使Python服务中业务逻辑发生变更,也不需要重新部署JAVA程序,有效提高智能投研系统中大数据查询及计算效率,提高系统性能,提高数据处理效率。
在一个实施例中,在所述第一平台根据所述属性信息与所述第二平台的第一预设匹配关系,通过所述第二平台的接口调用所述第二平台以使所述第二平台处理所述请求的步骤之前,还包括:所述第一平台根据所述属性信息与所述第二平台的第一预设匹配关系判断所述请求是否由所述第二平台处理;以及若判断结果为所述请求由所述第二平台处理,所述第一平台通过第二平台的接口调用所述第二平台以使所述第二平台处理所述请求。
具体地,若所述第一平台根据所述属性信息与所述第二平台的第一预设匹配关系判断该数据请求由第二平台进行处理,第一平台通过所述第二平台的接口调用所述第二平台以使所述第二平台处理所述请求,若判断所述请求不属于所述第二平台处理,所述第一平台不调用所述第二平台,可以向前端返回调用失败。第一平台可以根据该数据的属性信息判断是否存在所述第一预设匹配关系以判断该数据请求是否由第二平台进行处理,若第一平台根据该数据的属性信息判断存在所述第一预设匹配关系,判定所述属性信息满足与所述第二平台的第一预设匹配关系,第一平台调用第二平台处理数据,若第一平台根据该数据的属性信息判断不存在所述第一预设匹配关系,判定所述属性信息不满足与所述第二平台的第一预设匹配关系,第一平台不调用第二平台处理数据,返回调用失败。比如,用户访问某个页面时,后台服务器中的JAVA平台接收到前端请求后,第一平台JAVA平台根据数据的属性信息判断该请求是否由第二平台 Python平台处理,若第一平台JAVA平台根据数据的属性信息结合预先设置的匹配关系,判断该请求由第二平台Python平台处理,第一平台通过第二平台的接口调用第二平台以使第二平台处理该请求,若第一平台根据数据的属性信息判断该请求不属于第二平台处理,第一平台不调用第二平台,直接返回处理结果,通过避免直接调用第二平台,可以进一步提高服务器处理数据的效率。
需要说明的是,对于只有一个用于数据处理的第二平台的情形,所述第一平台根据所述属性信息与所述第二平台的第一预设匹配关系,直接调用第二平台即可,所述第一平台可以不进行判断是否由第二平台处理的步骤,若所述第二平台为预设平台集合中的一个平台,所述第一平台需要根据所述数据的属性信息判断数据请求由平台集合中的哪一个平台进行处理,比如判断所述请求是否由所述第二平台处理。若所述第二平台为包含多个子平台的集合,所述第一平台需要根据所述数据的属性信息判断数据请求由第二平台中的哪一个子平台进行处理,从而根据匹配关系由对应的数据处理部分进行处理。
进一步地,两个平台之间的调用是通过平台预设的接口进行的,比如,第一平台JAVA平台调用第二平台Python平台的接口,为了实现不同平台之间的调用,需要预先进行两个平台接口以下内容的约定:1)数据格式,一般在使用接口传输数据时通常会使用三种数据格式,例如JSON、XML或者YAML,预先约定第一平台和第二平台使用哪种数据格式;2)调用方式,也就是通讯协议,常用的通讯协议包括HTTPS协议、TCP/IP协议、IPX/SPX协议、NetBEUI协议等;3)请求方式,主要包括推PUSH和PULL拉两种方式,从安全性角度,这两种方式比较高。
通过以上三部分内容的预先设置,可以实现第一平台JAVA平台通过统一的JAVA接口按照需求分别通过Docker-client各自的Python接口调用第二平台Python平台中对应的Docker-client。
S203、所述第一平台接收所述第二平台返回的所述请求的处理结果。
具体地,第二平台接收第一平台的调用,根据所述第一平台的调用处理所述请求,并将所述请求的处理结果返回至第一平台,第一平台接收所述第二平台返回的所述请求的处理结果。比如,如图1所示,Python平台接收JAVA平台 的调用,Python平台根据所述JAVA平台的调用处理所述请求,并将所述请求的处理结果返回至JAVA平台,JAVA平台接收所述Python平台返回的所述请求的处理结果。
S204、所述第一平台发送所述处理结果至所述前端以使所述前端显示所述处理结果。
具体地,第一平台接收第二平台返回的处理结果,并将处理结果发送至前端以使前端显示请求的处理结果,比如,如图1所示,JAVA平台接收Python平台的处理结果,并将处理结果发送至前端以使前端显示数据处理结果,能够充分使用JAVA平台的跨平台特性,又能充分利用Python平台查询和计算效率较高的特性,从而有效提高大数据查询及计算效率,提高系统性能。
本申请实施例实现数据处理时,采用分布式部署方式,将服务器划分为第一平台和第二平台,所述第一平台和所述第二平台是不同类型的平台,所述方法包括:所述第一平台接收前端发送的请求,所述请求中携带有请求获取的数据的属性信息;所述第一平台根据所述属性信息调用第二平台,第一平台负责调用第二平台的相应接口动态操作第二平台的服务,以使所述第二平台处理所述请求,第二平台负责大数据查询及数据计算并对外提供接口;所述第一平台接收所述第二平台返回的所述请求的处理结果;所述第一平台发送所述处理结果至所述前端以使所述前端显示所述处理结果,通过将服务器进行分布式部署,将服务器中的调用部分和数据查询及计算部分使用不同的平台进行数据处理,能够有效提高大数据查询及计算的效率以提高系统性能,从而提高服务器进行数据处理的效率。
在一个实施例中,所述第二平台为预设平台集合中的一个平台,其中,所述平台集合包含多个不同类型的平台。
其中,平台集合是指平台形成的集合。请参阅图3,如图3所示,平台集合包括第一个Python平台、C语言平台及第二个Python平台,第二平台包含于平台集合中,平台集合中至少包含一个平台。
具体地,所述第二平台为预设平台集合中的一个平台,是指所述第二平台包含于平台集合中,所述第二平台为多个平台中的一个。所述第一平台接收前 端发送的请求,所述请求中携带有请求获取的数据的属性信息,所述第一平台根据所述属性信息调用由所述第二平台等多个平台形成的平台集合中的一个,比如第二平台,以使平台集合中的一个平台,比如所述第二平台处理所述请求,所述第一平台接收所述平台集合中的一个平台返回的所述请求的处理结果,比如所述第一平台接收所述第二平台返回的所述请求的处理结果,所述第一平台发送所述处理结果至所述前端以使所述前端显示所述处理结果。
所述第二平台为预设平台集合中的任一平台,或者所述第二平台为预设平台集合中预先设定的请求获取的数据的对应平台。若所述第二平台为预设平台集合中的任一平台,是第一平台根据平台集合中各个平台的负载,将请求获取的数据的处理分配到负载较轻的平台上进行处理,能够使各个平台的负载均衡,从处理的时间上缩短处理的过程。比如,请参阅图3,图3为本申请实施例提供的基于跨平台的数据处理方法的另一个应用场景示意图,如图3所示,平台集合包括第一个Python平台、C语言平台及第二个Python平台,所述第一平台根据所述属性信息调用第一个Python平台、C语言平台或者第二个Python平台以处理所述请求,比如,第一平台调用第一个Python平台以使所述第一个Python平台处理所述请求,第一平台也可以根据所述属性信息调用C语言平台以使所述C语言平台处理所述请求,或者第一平台根据所述属性信息调用第二个Python平台以使所述第二个Python平台处理所述请求,尤其是大数据处理系统,采用异步调用方式,通过由多个平台组成的平台集合的多层级的分布式系统,可以进一步通过异步方式并行处理多个请求,以进一步提高服务器处理数据的效率,尤其是在大数据处理的过程中,可以进一步提高数据处理效率。若所述第二平台为预设平台集合中预先设定请求获取的数据的对应平台,预先将各个平台和处理的数据进行匹配,第一平台根据属性信息识别出数据后,将请求获取的数据的处理分配到对应的平台上进行处理,能够从调度的角度缩短数据处理的分配时间,提高数据处理的效率,比如,第一平台识别出请求的数据A,预先设定A数据由平台集合中的B平台进行处理,识别出数据A后,直接将A数据分配至平台集合中的B平台进行处理。
在一个实施例中,所述第一平台根据所述属性信息与所述第二平台的第一 预设匹配关系,通过所述第二平台的接口调用所述第二平台以使所述第二平台处理所述请求的步骤包括:所述第一平台根据所述属性信息与所述第二平台中包含的子平台的第二预设匹配关系,通过所述第二平台中对应子平台的接口调用所述第二平台中的子平台以使所述第二平台中对应的子平台处理所述请求。
其中,所述第二预设匹配关系是指数据请求与数据处理的第二平台中包含的子平台之间的匹配关系,又可以称为数据请求与数据处理的第二平台中包含的子平台之间对应关系,也就是前端请求的数据由指定的第二平台中的哪个子平台处理数据以向前端返回数据处理结果,比如,预先指定请求的E数据由B1子平台来处理,E与B1之间满足预设匹配关系,也可以称为E与B1之间满足对应关系。第二平台既可以为一个单独的平台,所述第二平台可以为预设平台集合中的一个平台,进一步地,第二平台还可以为通过包含多个子平台以进一步采取分布式部署的平台集合,以上三种形式可以进行组合,比如,请继续参阅图3,图3为其中的一种结构形式示意图。
具体地,若第二平台包含多个子平台,可以根据该数据的属性信息判断该请求由第二平台中的哪个子平台进行处理。通过先建立数据和第二平台中各个子平台之间的第二预设匹配关系,根据所述第二预设匹配关系,第一平台判断请求的数据是由第二平台的哪个子平台进行处理的,也就是所述第一平台根据所述属性信息与所述第二平台中包含的子平台的第二预设匹配关系,通过所述第二平台中对应子平台的接口调用所述第二平台中的子平台以使所述第二平台中对应的子平台处理所述请求。比如,请继续参阅图1,A数据对应第二平台Python平台中的Docker1封装的子平台Python接口1对应的Docker客户端,B数据对应Docker2封装的子平台Python接口2对应的Docker客户端,C数据对应Docker3封装的子平台Python接口3对应的Docker客户端,第一平台接收到携带A属性信息的请求去调用对应第二平台Python平台中的Docker1封装的子平台Python接口1对应的Docker客户端,第一平台接收到携带B属性信息的请求去调用对应第二平台Python平台中的Docker2封装的子平台Python接口2对应的Docker客户端等。
进一步地,请继续参阅图1和图3,第二平台Python平台也采用分布式组 合,将第二平台Python平台按照预设条件划分为多个子平台,各个子平台以独立的Docker-client客户端实现各自独立的功能,各个Docker-client通过各自对应的接口接收第一平台JAVA平台的统一接口的调用,以通过第一平台JAVA的统一接口实现基于Docker引擎及Docker-client API动态操作Python接口,从而实现对各个Docker-client API的调用,其中,API,英文为Application Programming Interface,应用程序编程接口。比如,不同的业务场景调用不同的Python接口,不同的业务场景共同基于同一个JAVA接口,只是具体的JAVA业务实现类有所区别。比如一个金融投资数据处理系统中根据业务的因子净值、风险分析、近期风格偏好等业务场景不同,但是都基于某一个JAVA接口,比如,请继续参阅图1,第一平台JAVA平台根据请求数据的属性信息调用第二平台Python平台中的子平台Python接口1、子平台Python接口2或者子平台Python接口3,以使对应子平台处理请求任务,第一平台和第二平台是两个不同的平台。第一平台JAVA平台接收第二平台Python中的子平台的处理结果,并将处理结果发送至前端以使前端显示数据处理结果,采用异步调用方式,通过多层级的分布式系统,可以进一步通过并行方式处理请求,以进一步提高数据处理效率。或者,请继续参阅图3,第一平台JAVA平台根据请求数据的属性信息调用第二平台Python平台中的子平台Python接口1或者子平台Python接口2,或者调用第三平台C语言平台中的子平台C接口1或者子平台C接口2,或者调用第四平台Python平台中的子平台Python接口6或者子平台Python接口7等。
在一个实施例中,所述第一平台根据所述属性信息与所述第二平台中包含的子平台的第二预设匹配关系,通过所述第二平台中对应子平台的接口调用所述第二平台中的子平台以使所述第二平台中对应的子平台处理所述请求的步骤之前,还包括:所述第二平台按照预设条件被设置为多个子平台,所述预设条件包括业务场景。
具体地,第二平台也采用分布式组合,将所述第二平台按照预设条件划分为多个子平台,各个子平台实现相对独立的数据处理功能,比如,将第二平台Python平台采用分布式组合,按照预设条件划分为多个子平台。由于第二平台Python平台也采用分布式组合,将第二平台Python平台按照预设条件划分为多 个子平台,各个子平台以独立的Docker-client客户端实现独立的功能,各个Docker-client通过各自对应的接口接收第一平台JAVA的统一接口的调用,以通过第一平台JAVA的统一接口实现基于Docker引擎及Docker-client API动态操作Python接口,从而实现对各个Docker-client API的调用。比如,不同的业务场景调用不同的Python接口,不同的业务场景共同实现同一个JAVA接口,只是具体的JAVA业务实现类有所区别。比如系统中因子净值、风险分析、近期风格偏好业务场景不同,但是都实现某一个JAVA接口。请继续参阅图1,将第二平台Python平台根据预设条件划分为子平台Python接口1、子平台Python接口2及子平台Python接口3,以使对应子平台处理请求任务。
在一个实施例中,所述第一平台接收前端发送的请求的步骤之前,还包括:将所述第一平台和所述第二平台中包含的各个子平台分别使用各自对应的Docker引擎进行封装。
具体地,所述第一平台和所述第二平台分别使用Docker引擎封装自己的功能以保持各自的独立性。虽然所述第一平台和所述第二平台可以不使用Docker引擎,但使用Docker引擎进行封装可以使各部分具有独立性,即使Docker引擎中业务逻辑发生变更,也不需要重新部署其他部分的Docker引擎,便于各部分的开发和维护及运行,采用异步调用方式,通过多层级的分布式系统,可以进一步通过并行方式处理请求,以进一步提高数据处理效率。比如,请继续参阅图3,在本申请实施例中,由于所述第一平台JAVA平台只有一个平台,所以第一平台JAVA平台使用Docker0封装,第二平台Python平台中的子平台Python接口1使用Docker1封装,子平台Python接口2使用Docker2封装,第三平台C语言平台中的子平台C接口1使用Docker4封装,子平台C接口2使用Docker5封装,第四平台Python平台中的子平台Python接口6使用Docker6封装,子平台Python接口7使用Docker7封装。由于第一平台为JAVA平台,各个子平台以独立的Docker-client客户端实现独立的功能,各个Docker-client通过各自对应的接口接收第一平台JAVA平台的统一接口的调用,以通过第一平台JAVA的统一接口实现基于Docker引擎及Docker-client API动态操作Python接口,从而实现对各个Docker-client API的调用。请继续参阅图3,第一平台JAVA平台根 据请求数据的属性信息调用第二平台Python平台中的子平台Python接口1或者子平台Python接口2,或者调用第三平台C语言平台中的子平台C接口1或者子平台C接口2,或者调用第四平台Python平台中的子平台Python接口6或者子平台Python接口7等。
进一步地,若所述第一平台和所述第二平台分别包含多个子平台,将所述第一平台和所述第二平台中的各个子平台分别使用各自对应的Docker引擎进行封装,以实现各自的独立性,从而便于各个子平台的维护和更新。
在一个实施例中,所述第一平台为JAVA平台,所述第二平台为Python平台。
具体地,通过将服务器包括第一平台和第二平台,第一平台为用于根据请求数据进行对应调用的JAVA平台,第二平台为基于Docker引擎也采取分布式部署的Python平台,Python平台按照不同业务场景进行封装成多个Docker客户端(Docker-client)。第一平台JAVA平台通过统一的JAVA接口根据请求数据通过每个Docker-client的Python接口调用对应的Docker-client,以实现第一平台JAVA平台调用对应的Docker-client,从而通过Docker-client实现数据查询和计算功能,能够充分使用JAVA平台的跨平台特性,又能充分利用Python平台查询和计算效率较高的特性,从而有效提高智能投研系统中大数据查询及计算效率,提高系统性能
需要说明的是,上述各个实施例所述的基于跨平台的数据处理方法,可以根据需要将不同实施例中包含的技术特征重新进行组合,以获取组合后的实施方案,但都在本申请要求的保护范围之内。
请参阅图4,图4为本申请实施例提供的基于跨平台的数据处理装置的示意性框图。对应于上述基于跨平台的数据处理方法,本申请实施例还提供一种基于跨平台的数据处理装置。如图4所示,该基于跨平台的数据处理装置包括用于执行上述基于跨平台的数据处理方法的单元,该装置可以被配置于服务器等计算机设备中,该装置包括第一平台和第二平台,所述第一平台和所述第二平台是不同类型的平台。具体地,请参阅图4,该基于跨平台的数据处理装置400包括第一接收单元401、调用单元402、第二接收单元403及发送单元404。
其中,第一接收单元401,用于所述第一平台接收前端发送的请求,所述请求中携带有请求获取的数据的属性信息。调用单元402,用于所述第一平台根据所述属性信息与所述第二平台的第一预设匹配关系,通过所述第二平台的接口调用所述第二平台以使所述第二平台处理所述请求。第二接收单元403,用于所述第一平台接收所述第二平台返回的所述请求的处理结果。发送单元404,用于所述第一平台发送所述处理结果至所述前端以使所述前端显示所述处理结果。
在一个实施例中,所述第二平台为预设平台集合中的一个平台,其中,所述平台集合包含多个不同类型的平台。
在一个实施例中,所述调用单元402,用于所述第一平台根据所述属性信息与所述第二平台中包含的子平台的第二预设匹配关系,通过所述第二平台中对应子平台的接口调用所述第二平台中的子平台以使所述第二平台中对应的子平台处理所述请求。
在一个实施例中,所述基于跨平台的数据处理装置400还包括:划分单元,用于所述第二平台按照预设条件被设置为多个子平台,所述预设条件包括业务场景。
在一个实施例中,所述基于跨平台的数据处理装置400还包括:封装单元,用于将所述第一平台和所述第二平台中包含的各个子平台分别使用各自对应的Docker引擎进行封装。
在一个实施例中,所述调用单元402,用于所述第一平台根据所述属性信息通过调用所述第二平台中子平台的对应接口以使所述第二平台的子平台处理所述请求。
在一个实施例中,所述第一平台为JAVA平台,所述第二平台为Python平台。
需要说明的是,所属领域的技术人员可以清楚地了解到,上述基于跨平台的数据处理装置和各单元的具体实现过程,可以参考前述方法实施例中的相应描述,为了描述的方便和简洁,在此不再赘述。
同时,上述基于跨平台的数据处理装置中各个单元的划分和连接方式仅用于举例说明,在其它实施例中,可将基于跨平台的数据处理装置按照需要划分 为不同的单元,也可将基于跨平台的数据处理装置中各单元采取不同的连接顺序和方式,以完成上述基于跨平台的数据处理装置的全部或部分功能。
上述基于跨平台的数据处理装置可以实现为一种计算机程序的形式,该计算机程序可以在如图5所示的计算机设备上运行。
请参阅图5,图5是本申请实施例提供的一种计算机设备的示意性框图。该计算机设备500可以是台式机电脑或者服务器等计算机设备,也可以是其它设备中的组件或者部件。
参阅图5,该计算机设备500包括通过系统总线501连接的处理器502、存储器和网络接口505,其中,存储器可以包括非易失性存储介质503和内存储器504。该非易失性存储介质503可存储操作系统5031和计算机程序5032。该计算机程序5032被执行时,可使得处理器502执行一种上述基于跨平台的数据处理方法。
该处理器502用于提供计算和控制能力,以支撑整个计算机设备500的运行。
该内存储器504为非易失性存储介质503中的计算机程序5032的运行提供环境,该计算机程序5032被处理器502执行时,可使得处理器502执行一种上述基于跨平台的数据处理方法。
该网络接口505用于与其它设备进行网络通信。本领域技术人员可以理解,图5中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备500的限定,具体的计算机设备500可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。例如,在一些实施例中,计算机设备可以仅包括存储器及处理器,在这样的实施例中,存储器及处理器的结构及功能与图5所示实施例一致,在此不再赘述。
以该计算机设备为服务器为例,所述处理器502用于运行存储在存储器中的计算机程序5032,以实现本申请实施例的基于跨平台的数据处理方法。
应当理解,在本申请实施例中,处理器502可以是中央处理单元(Central Processing Unit,CPU),该处理器502还可以是其它通用处理器、数字信号处理 器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。其中,通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
本领域普通技术人员可以理解的是实现上述实施例的方法中的全部或部分流程,是可以通过计算机程序来完成,该计算机程序可存储于一计算机可读存储介质。该计算机程序被该计算机系统中的至少一个处理器执行,以实现上述基于跨平台的数据处理方法的实施例的步骤。
因此,本申请实施例还提供一种计算机可读存储介质。该计算机可读存储介质可以为非易失性的计算机可读存储介质,该计算机可读存储介质存储有计算机程序,该计算机程序被处理器执行时使处理器执行以上各实施例中所描述的基于跨平台的数据处理方法的步骤。
所述存储介质为实体的、非瞬时性的存储介质,例如可以是U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、磁碟或者光盘等各种可以存储计算机程序的实体存储介质。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
以上所述,仅为本申请的具体实施方式,但本申请明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (20)

  1. 一种基于跨平台的数据处理方法,应用于服务器中,所述服务器包括第一平台和第二平台,所述第一平台和所述第二平台是不同类型的平台,其中,所述方法包括:
    所述第一平台接收前端发送的请求,所述请求中携带有请求获取的数据的属性信息;
    所述第一平台根据所述属性信息与所述第二平台的第一预设匹配关系,通过所述第二平台的接口调用所述第二平台以使所述第二平台处理所述请求;
    所述第一平台接收所述第二平台返回的所述请求的处理结果;
    所述第一平台发送所述处理结果至所述前端以使所述前端显示所述处理结果。
  2. 根据权利要求1所述基于跨平台的数据处理方法,其中,所述第二平台为预设平台集合中的一个平台,其中,所述平台集合包含多个不同类型的平台。
  3. 根据权利要求1所述基于跨平台的数据处理方法,其中,所述第一平台根据所述属性信息与所述第二平台的第一预设匹配关系,通过所述第二平台的接口调用所述第二平台以使所述第二平台处理所述请求的步骤包括:
    所述第一平台根据所述属性信息与所述第二平台中包含的子平台的第二预设匹配关系,通过所述第二平台中对应子平台的接口调用所述第二平台中的子平台以使所述第二平台中对应的子平台处理所述请求。
  4. 根据权利要求3所述基于跨平台的数据处理方法,其中,所述第一平台根据所述属性信息与所述第二平台中包含的子平台的第二预设匹配关系,通过所述第二平台中对应子平台的接口调用所述第二平台中的子平台以使所述第二平台中对应的子平台处理所述请求的步骤之前,还包括:
    所述第二平台按照预设条件被设置为多个子平台,所述预设条件包括业务场景。
  5. 根据权利要求3所述基于跨平台的数据处理方法,其中,所述第一平台接收前端发送的请求的步骤之前,还包括:
    将所述第一平台和所述第二平台中包含的各个子平台分别使用各自对应的 Docker引擎进行封装。
  6. 根据权利要求1所述基于跨平台的数据处理方法,其中,所述第一平台为JAVA平台,所述第二平台为Python平台。
  7. 根据权利要求1所述基于跨平台的数据处理方法,其中,所述第一平台根据所述属性信息与所述第二平台的第一预设匹配关系,通过所述第二平台的接口调用所述第二平台以使所述第二平台处理所述请求的步骤之前,还包括:
    所述第一平台根据所述属性信息与所述第二平台的第一预设匹配关系判断所述请求是否由所述第二平台处理;
    若判断结果为所述请求由所述第二平台处理,所述第一平台通过第二平台的接口调用所述第二平台以使所述第二平台处理所述请求。
  8. 一种基于跨平台的数据处理装置,应用于服务器中,所述服务器包括第一平台和第二平台,所述第一平台和所述第二平台是不同类型的平台,其中,所述装置包括:
    第一接收单元,用于所述第一平台接收前端发送的请求,所述请求中携带有请求获取的数据的属性信息;
    调用单元,用于所述第一平台根据所述属性信息与所述第二平台的第一预设匹配关系,通过所述第二平台的接口调用所述第二平台以使所述第二平台处理所述请求;
    第二接收单元,用于所述第一平台接收所述第二平台返回的所述请求的处理结果;
    发送单元,用于所述第一平台发送所述处理结果至所述前端以使所述前端显示所述处理结果。
  9. 根据权利要求8所述基于跨平台的数据处理装置,其中,所述调用单元,用于所述第一平台根据所述属性信息与所述第二平台中包含的子平台的第二预设匹配关系,通过所述第二平台中对应子平台的接口调用所述第二平台中的子平台以使所述第二平台中对应的子平台处理所述请求。
  10. 根据权利要求9所述基于跨平台的数据处理装置,其中,所述基于跨平台的数据处理装置还包括:
    划分单元,用于所述第二平台按照预设条件被设置为多个子平台,所述预设条件包括业务场景。
  11. 一种计算机设备,其包括存储器以及与所述存储器相连的处理器;其中,所述存储器用于存储计算机程序;所述处理器用于运行所述存储器中存储的计算机程序,以执行如下步骤:
    所述第一平台接收前端发送的请求,所述请求中携带有请求获取的数据的属性信息;
    所述第一平台根据所述属性信息与所述第二平台的第一预设匹配关系,通过所述第二平台的接口调用所述第二平台以使所述第二平台处理所述请求;
    所述第一平台接收所述第二平台返回的所述请求的处理结果;
    所述第一平台发送所述处理结果至所述前端以使所述前端显示所述处理结果。
  12. 根据权利要求11所述计算机设备,其中,所述第二平台为预设平台集合中的一个平台,其中,所述平台集合包含多个不同类型的平台。
  13. 根据权利要求11所述计算机设备,其中,所述第一平台根据所述属性信息与所述第二平台的第一预设匹配关系,通过所述第二平台的接口调用所述第二平台以使所述第二平台处理所述请求的步骤包括:
    所述第一平台根据所述属性信息与所述第二平台中包含的子平台的第二预设匹配关系,通过所述第二平台中对应子平台的接口调用所述第二平台中的子平台以使所述第二平台中对应的子平台处理所述请求。
  14. 根据权利要求13所述计算机设备,其中,所述第一平台根据所述属性信息与所述第二平台中包含的子平台的第二预设匹配关系,通过所述第二平台中对应子平台的接口调用所述第二平台中的子平台以使所述第二平台中对应的子平台处理所述请求的步骤之前,还包括:
    所述第二平台按照预设条件被设置为多个子平台,所述预设条件包括业务场景。
  15. 根据权利要求13所述计算机设备,其中,所述第一平台接收前端发送的请求的步骤之前,还包括:
    将所述第一平台和所述第二平台中包含的各个子平台分别使用各自对应的Docker引擎进行封装。
  16. 根据权利要求11所述计算机设备,其中,所述第一平台为JAVA平台,所述第二平台为Python平台。
  17. 根据权利要求11所述计算机设备,其中,所述第一平台根据所述属性信息与所述第二平台的第一预设匹配关系,通过所述第二平台的接口调用所述第二平台以使所述第二平台处理所述请求的步骤之前,还包括:
    所述第一平台根据所述属性信息与所述第二平台的第一预设匹配关系判断所述请求是否由所述第二平台处理;
    若判断结果为所述请求由所述第二平台处理,所述第一平台通过第二平台的接口调用所述第二平台以使所述第二平台处理所述请求。
  18. 一种计算机可读存储介质,其中,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时可实现如下操作:
    所述第一平台接收前端发送的请求,所述请求中携带有请求获取的数据的属性信息;
    所述第一平台根据所述属性信息与所述第二平台的第一预设匹配关系,通过所述第二平台的接口调用所述第二平台以使所述第二平台处理所述请求;
    所述第一平台接收所述第二平台返回的所述请求的处理结果;
    所述第一平台发送所述处理结果至所述前端以使所述前端显示所述处理结果。
  19. 根据权利要求18所述计算机可读存储介质,其中,所述第一平台根据所述属性信息与所述第二平台的第一预设匹配关系,通过所述第二平台的接口调用所述第二平台以使所述第二平台处理所述请求的步骤包括:
    所述第一平台根据所述属性信息与所述第二平台中包含的子平台的第二预设匹配关系,通过所述第二平台中对应子平台的接口调用所述第二平台中的子平台以使所述第二平台中对应的子平台处理所述请求。
  20. 根据权利要求19所述计算机可读存储介质,其中,所述第一平台根据所述属性信息与所述第二平台中包含的子平台的第二预设匹配关系,通过所述 第二平台中对应子平台的接口调用所述第二平台中的子平台以使所述第二平台中对应的子平台处理所述请求的步骤之前,还包括:
    所述第二平台按照预设条件被设置为多个子平台,所述预设条件包括业务场景。
PCT/CN2019/103173 2019-06-13 2019-08-29 基于跨平台的数据处理方法、装置及计算机设备 WO2020248383A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910510833.5A CN110399231B (zh) 2019-06-13 2019-06-13 基于跨平台的数据处理方法、装置及计算机设备
CN201910510833.5 2019-06-13

Publications (1)

Publication Number Publication Date
WO2020248383A1 true WO2020248383A1 (zh) 2020-12-17

Family

ID=68324115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/103173 WO2020248383A1 (zh) 2019-06-13 2019-08-29 基于跨平台的数据处理方法、装置及计算机设备

Country Status (2)

Country Link
CN (1) CN110399231B (zh)
WO (1) WO2020248383A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113055348B (zh) * 2019-12-27 2022-11-22 深圳云天励飞技术有限公司 一种跨平台数据请求方法、装置及电子设备
CN111669426B (zh) * 2020-04-20 2021-12-07 河南芯盾网安科技发展有限公司 跨平台终端共用安全载体的方法和系统
CN111581071B (zh) * 2020-05-09 2023-12-19 北京百度网讯科技有限公司 数据处理方法、装置、设备以及存储介质
CN111966445B (zh) * 2020-06-30 2023-07-25 北京百度网讯科技有限公司 调用应用程序接口的处理方法和装置
CN113672402B (zh) * 2021-07-22 2024-06-04 杭州未名信科科技有限公司 一种基于Py4j服务的在线数据处理方法、装置、存储介质及终端
CN115550463A (zh) * 2022-09-16 2022-12-30 深圳市润腾智慧科技有限公司 一种跨云物联网平台数据处理方法、装置及相关设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101299709A (zh) * 2007-04-30 2008-11-05 深圳华飚科技有限公司 基于互联网的流式媒体服务器系统
CN104899020A (zh) * 2015-05-05 2015-09-09 北京航空航天大学 一种集成web技术的CFD程序开发方法
CN105376273A (zh) * 2014-08-20 2016-03-02 上海博科资讯股份有限公司 一种标准化云服务接口及方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1746844A (zh) * 2005-09-29 2006-03-15 浪潮电子信息产业股份有限公司 一种跨操作系统平台的机群系统监控和管理方法
US9021505B2 (en) * 2007-12-07 2015-04-28 Ca, Inc. Monitoring multi-platform transactions
US9400728B2 (en) * 2013-01-14 2016-07-26 Wal-Mart Stores, Inc. Cross platform workflow management
US9400731B1 (en) * 2014-04-23 2016-07-26 Amazon Technologies, Inc. Forecasting server behavior
US10146592B2 (en) * 2015-09-18 2018-12-04 Salesforce.Com, Inc. Managing resource allocation in a stream processing framework
CN109862101B (zh) * 2019-02-13 2021-12-17 中国银行股份有限公司 跨平台应用启动方法、装置、计算机设备和存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101299709A (zh) * 2007-04-30 2008-11-05 深圳华飚科技有限公司 基于互联网的流式媒体服务器系统
CN105376273A (zh) * 2014-08-20 2016-03-02 上海博科资讯股份有限公司 一种标准化云服务接口及方法
CN104899020A (zh) * 2015-05-05 2015-09-09 北京航空航天大学 一种集成web技术的CFD程序开发方法

Also Published As

Publication number Publication date
CN110399231B (zh) 2024-07-09
CN110399231A (zh) 2019-11-01

Similar Documents

Publication Publication Date Title
WO2020248383A1 (zh) 基于跨平台的数据处理方法、装置及计算机设备
CN111176626B (zh) 跨编程语言的代码调用方法及装置、介质、设备
US9760583B2 (en) Method for native program to inherit same transaction context when invoked by primary program running in separate environment
US20200285508A1 (en) Method and Apparatus for Assigning Computing Task
TWI658418B (zh) 金融資訊交換(fix)協議的業務實現方法、裝置及系統
CN113196238B (zh) 服务感知的无服务器云计算系统
US20190095200A1 (en) Compatibility method based on hybrid, adapter, operation device, system and computer-readable storage medium
US11321090B2 (en) Serializing and/or deserializing programs with serializable state
CN113849312A (zh) 数据处理任务的分配方法、装置、电子设备及存储介质
CN112596931B (zh) 一种跨进程通信方法、装置、电子设备及存储介质
CN112214334A (zh) 微服务调用方法、装置、电子设备及计算机可读存储介质
CN112835615A (zh) 软件开发工具包的插件化处理方法、装置及电子设备
CN115794262A (zh) 任务处理方法、装置、设备、存储介质以及程序产品
CN112905273A (zh) 一种服务调用方法和装置
CN113760318A (zh) 信息处理方法、装置、服务器及存储介质
CN113535419A (zh) 一种服务编排方法和装置
CN115599571A (zh) 一种数据处理方法、装置、电子设备及存储介质
CN111324395A (zh) 调用方法、装置和计算机可读存储介质
US10866765B2 (en) System and method for managing content using generic content management interface
CN113626001A (zh) 一种基于脚本的api动态编排方法及装置
CN115994022B (zh) 算法服务的调用方法、装置、电子设备和存储介质
CN114138507B (zh) Python程序服务化方法、装置及计算机可读存储介质
CN112835581B (zh) 端能力调用方法、装置、设备以及存储介质
CN113535187B (zh) 服务上线方法、服务更新方法及服务提供方法
CN117453206A (zh) 一种接口调用方法、装置、设备及介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19932941

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19932941

Country of ref document: EP

Kind code of ref document: A1