WO2020246781A1 - Method for micronizing soft living tissue, and soft living tissue particulate graft produced thereby - Google Patents

Method for micronizing soft living tissue, and soft living tissue particulate graft produced thereby Download PDF

Info

Publication number
WO2020246781A1
WO2020246781A1 PCT/KR2020/007174 KR2020007174W WO2020246781A1 WO 2020246781 A1 WO2020246781 A1 WO 2020246781A1 KR 2020007174 W KR2020007174 W KR 2020007174W WO 2020246781 A1 WO2020246781 A1 WO 2020246781A1
Authority
WO
WIPO (PCT)
Prior art keywords
soft
biological tissue
tissue
living tissue
micronizing
Prior art date
Application number
PCT/KR2020/007174
Other languages
French (fr)
Korean (ko)
Inventor
임동진
Original Assignee
(주)카스 인 바이오
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)카스 인 바이오 filed Critical (주)카스 인 바이오
Publication of WO2020246781A1 publication Critical patent/WO2020246781A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3683Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix subjected to a specific treatment prior to implantation, e.g. decellularising, demineralising, grinding, cellular disruption/non-collagenous protein removal, anti-calcification, crosslinking, supercritical fluid extraction, enzyme treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3604Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the human or animal origin of the biological material, e.g. hair, fascia, fish scales, silk, shellac, pericardium, pleura, renal tissue, amniotic membrane, parenchymal tissue, fetal tissue, muscle tissue, fat tissue, enamel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3683Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix subjected to a specific treatment prior to implantation, e.g. decellularising, demineralising, grinding, cellular disruption/non-collagenous protein removal, anti-calcification, crosslinking, supercritical fluid extraction, enzyme treatment
    • A61L27/3687Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix subjected to a specific treatment prior to implantation, e.g. decellularising, demineralising, grinding, cellular disruption/non-collagenous protein removal, anti-calcification, crosslinking, supercritical fluid extraction, enzyme treatment characterised by the use of chemical agents in the treatment, e.g. specific enzymes, detergents, capping agents, crosslinkers, anticalcification agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3683Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix subjected to a specific treatment prior to implantation, e.g. decellularising, demineralising, grinding, cellular disruption/non-collagenous protein removal, anti-calcification, crosslinking, supercritical fluid extraction, enzyme treatment
    • A61L27/3691Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix subjected to a specific treatment prior to implantation, e.g. decellularising, demineralising, grinding, cellular disruption/non-collagenous protein removal, anti-calcification, crosslinking, supercritical fluid extraction, enzyme treatment characterised by physical conditions of the treatment, e.g. applying a compressive force to the composition, pressure cycles, ultrasonic/sonication or microwave treatment, lyophilisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C18/00Disintegrating by knives or other cutting or tearing members which chop material into fragments
    • B02C18/06Disintegrating by knives or other cutting or tearing members which chop material into fragments with rotating knives
    • B02C18/08Disintegrating by knives or other cutting or tearing members which chop material into fragments with rotating knives within vertical containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C18/00Disintegrating by knives or other cutting or tearing members which chop material into fragments
    • B02C18/06Disintegrating by knives or other cutting or tearing members which chop material into fragments with rotating knives
    • B02C18/16Details
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/06Flowable or injectable implant compositions

Definitions

  • the present invention crushes soft biological tissues such as placenta, anionic membrane, chorionic membrane, umbilical cord, and cartilage separated from humans or animals It relates to a method of converting, and the pulverized soft biological tissue fine particles are usefully used as a material for a biological tissue graft.
  • Various biological tissues can be isolated from humans or animals.
  • the separated biological tissues can be used as a medical material or a pharmaceutical material through a series of processes.
  • the separated biological tissue may be used as an allograft, preferably an allograft, for tissue repair and wound healing.
  • the living tissue graft can be used as an injectable graft or a patchable graft.
  • Biological tissues such as bone and cartilage can generally be obtained from a carcass.
  • biological tissues such as placenta, amniotic membrane, chorion, and umbilical cord can be obtained after natural delivery or cesarean section of a pregnant woman.
  • the placenta is an organ that connects the fetus with the mother's uterus, and supplies oxygen and various nutrients to the fetus.
  • the placenta also produces hormones necessary for the fetus and is known to synthesize various factors necessary for immunity.
  • the placenta has long been used as a graft for repairing human tissues or healing wounds.
  • the placenta is composed of an umbilical cord and an amniotic sac, and the amniotic sac is composed of an aminiotic membrane, a chorionic membrane, and a maternal decidua. Between the amnion and the chorionic membrane is an intermediate layer, called a "spongy layer".
  • the amniotic membrane is a thin membrane surrounding the fetus at the innermost part of the placenta, and the amniotic fluid is filled inside the amniotic membrane.
  • the amniotic membrane consists of a single epithelium layer and extracellular matrix (ECM), and the extracellular matrix is again reticular fibers (or basement membrane), a thick compact layer and fibroblasts. It consists of a fibroblast layer.
  • the chorionic membrane is composed of reticular fibers, a basement membrane, and a trophoblast.
  • amniotic and chorionic membranes contain various growth factors, cytokines, collagen, and cell-adhesive proteins, as well as stem cells.
  • Growth factors include, for example, epidermal growth factor (EGF), fibroblast growth factor (FGF), transforming growth factor Beta (TGF-b), nerve growth factor (nerve growth factor). factor, NGF), hepatic growth factor (HGF), and vascular endothelial growth factor (VEGF).
  • EGF epidermal growth factor
  • FGF fibroblast growth factor
  • TGF-b transforming growth factor Beta
  • nerve growth factor nerve growth factor
  • nerve growth factor nerve growth factor
  • NGF nerve growth factor
  • HGF hepatic growth factor
  • VEGF vascular endothelial growth factor
  • Cytokines are, for example, interleukin (IL)-1 ⁇ , IL-1 ⁇ , IL-6, IL-8, IL-10, metalloproteinase tissue inhibitors (TIMP)-1, TIMP-2, TIMP-3, TIMP- 4th place.
  • IL interleukin
  • TIMP-2 TIMP-2
  • TIMP-3 TIMP- 4th place.
  • Collagen is, for example, collagen type I, type III, type IV, type V, and type VII.
  • Cell-adhesive proteins are, for example, fibronectin, laminin, fibrillin, nidogen, proteoglycan, glycosaminoglycan, and the like.
  • Mesenchymal stem cells are known to exist in large amounts in the epithelial cell layer of the amnion and the feeder cell layer of the chorion.
  • tissue or membrane derived from the placenta has been used as a substrate for wound recovery such as diabetic foot ulcers.
  • a variety of placenta products are commercially available for wound treatment. For example, there are products such as:
  • AmnioBand ® Membrane (MTF Biologics, USA) is a dehydrated (dried) allograft derived from the human placenta and consists of the amniotic membrane and chorionic membrane.
  • Biovance ® (Alliqua BioMedical, USA) is a decellularized and dehydrated human amniotic membrane allograft.
  • Epifix ® (MiMedx Group, Inc., USA) is a dehydrated human amniotic/chorionic allograft (dHACM) used to treat diabetic foot ulcers.
  • EpiFix ® Micronized Amniotic Membrane is a micronized dHACM that can be applied to deep wounds of cartilage, bones and muscles.
  • Grafix ® (Osiris Therapeutics, Inc., USA) is a cryopreserved placenta-derived membrane composed of an extracellular matrix.
  • Grafts for these wound repairs generally do not need to be micronized.
  • the placenta-derived tissue graft may be administered into the human body by surgical incision or non-incision.
  • surgical incision an incision is made at the site of the procedure and the graft is inserted and then sutured. This surgical incision causes another scar.
  • Non-incisional surgery can be performed using an injection-type graft.
  • a tissue graft is injected into the human body, such as muscles, cartilage, and ligaments through a syringe.
  • the micronization of the tissue graft is essential, and the size of the microparticles is very important.
  • the fine particles of the graft should be sufficiently smaller than the inner diameter of the needle, and the larger the diameter of the needle, the more painful the patient will be, and may cause side effects such as skin injury or tissue destruction.
  • the size of the graft microparticles suitable for injection is at least 1000 ⁇ m or less, preferably 500 ⁇ m or less, more preferably 300 ⁇ m or less.
  • Placenta-derived grafts for injection that are commercially available include, for example, the following products.
  • AmnioFix ® Injectable (MiMedx Group, Inc., USA) is a micronized dHACM graft used to treat knee arthritis, orthopedic soft tissue, tendon injuries and tendonitis.
  • the product is a dehydrated powder formulation of an allogeneic tissue graft, and the shelf life is at least 5 years at room temperature.
  • ReNu ® and NuCel ® are cryopreserved bioactive suspension grafts containing amniotic membrane and amniotic fluid.
  • the product is used to treat degenerative diseases such as knee osteoarthritis, joint and tendon injuries.
  • Clarix ® Flo and Clarix ® Injectable are lyophilized micro human placenta allografts consisting of an amniotic membrane and umbilical cord.
  • Soft biological tissues such as placenta, amnion, chorion, umbilical cord, and cartilage must be micronized in order to be used as an injection.
  • U.S. Patent No. 9,943,551 discloses a method of pulverizing placental tissue, amnion tissue, and chorionic tissue to a microscopic size in order to make an injection composition, and the pulverizer discloses a Retsch TM MM400 ball mill and a Retsch TM Cryomill.
  • a sample and a milling ball are placed in a milling cup, the cover of the milling cup is closed, and the milling cup is inserted into a cup holder.
  • the milling cup vibrates (reciprocates) at high speed, and the sample is effectively crushed by a strong impact due to the inertia of the ball.
  • Soft biological tissues such as amnion and chorion must be almost completely dehydrated (dried) before performing a ball mill. Otherwise, it will be barked rather than crushed and the desired shape of the fine particles cannot be obtained. Since dehydration refers to a non-viable environment, cells in living tissues are destroyed or killed.
  • FIG. 2 shows a representative model of cryomill Retsch TM Cryomill.
  • the cryomyl is a structure in which a liquid nitrogen circulation system is installed in a conventional ball mill (vibration mill). Liquid nitrogen is supplied to the outside of the milling cup, and the sample is rapidly frozen and hardened for grinding. Cryomyl quickly cools the sample to -196°C for effective pulverization, so cells in living tissues, particularly stem cells, are almost killed.
  • cryomyl or ball mill is useful for micronizing soft biological tissues, but since it is crushed like a large mortar by ball strike, there is a fatal problem in cell survival of micronized biological tissues.
  • An object of the present invention is to provide a micro-pulverization method that minimizes cell destruction of living tissue.
  • Another object of the present invention is to provide a method for preparing a biological tissue graft having a high content of active ingredients per unit volume.
  • Another object of the present invention is to provide a method for pulverizing biological tissues, which has a simpler pulverization method, high production time efficiency, and low production cost compared to the prior art.
  • the present invention comprises the steps of slicing soft living tissue isolated from humans or animals using a cutting tool; And it provides a method for micronizing a soft biological tissue comprising the step of pulverizing the shredded soft biological tissue together with a solid biocompatible material in a rotor mill equipped with a sieve (sieve).
  • the biocompatible material may be a biocompatible polymer or sugar.
  • the biocompatible polymer is not limited, but serum albumin, hyaluronic acid, starch, gelatin, chitosan, collagen, alginic acid, pectin, carrageenan, chondroitin (sulfate), dextran (sulfate), Polylysine, carboxymethyl titine, fibrin, agarose, pullulan, cellulose, polyvinylpyrrolidone (PVP), polyethylene glycol (PEG), polyvinyl alcohol (PVA), hydroxypropylcellulose (HPC), Hydroxyethylcellulose (HEC), hydroxypropylmethylcellulose (HPMC), sodium carboxymethylcellulose, polyalcohol, gum arabic, alginate, cyclodextrin, dextrin, palatinite, polylactic acid, polyglycolic acid (polyglycolic acid), polyethylene oxide, polyacrylic acid, polyacrylamide, polymethacrylic acid, and may include one or more polymer materials selected from the group consisting of polymaleic
  • the saccharide is not limited, but the group consisting of glucose, fructose, starch, trehalose, glucose, maltose, lactose, lactulose, fructose, turanose, melitose, melesitos, dextran, sorbitol, xylitol It may contain one or more saccharides selected from.
  • the biocompatible material may be serum albumin.
  • the biocompatible material may further include an active ingredient required for survival or growth of cells.
  • the active ingredients required for survival or growth of the cells are DMEM (Dulbecco's Modified Eagle Media), MEM (Minimum Essential Media), RPMI 1640, Iscove's Modified Dulbecco's Media, Defined Keratinocyte-SFM (without BPE), Keratinocyte-D. -MEM, AmnioMAX-II Complete Culture media, AmnioMAX-C100 Complete Culture media, Plasmalyate-148 and Plasmalyte-A may be selected from the group consisting of.
  • DMEM Dulbecco's Modified Eagle Media
  • MEM Minimum Essential Media
  • RPMI 1640 Iscove's Modified Dulbecco's Media
  • Keratinocyte-SFM without BPE
  • Keratinocyte-D. -MEM Keratinocyte-D. -MEM
  • AmnioMAX-II Complete Culture media AmnioMAX-C100 Complete Culture media
  • the soft biological tissue of the present invention may be selected from the group consisting of amniotic membrane, chorionic membrane, placenta, umbilical cord, and cartilage.
  • the average diameter of the pulverized soft biological tissue may be 500 ⁇ m or less.
  • the rotor mill may be provided with a plurality of blades (multi-tooth, multi-blade), and may include a rotating circular rotor and a sieve mounted on the outside thereof.
  • the present invention provides a biological tissue fine particle graft comprising the prepared biological tissue fine particles.
  • the biological tissue microparticle graft may be obtained by freezing micronized soft biological tissue.
  • the biological tissue particulate graft may be used as an injection after freezing and thawing.
  • the biological tissue pulverized by the method of the present invention has significantly higher cell viability than conventional ball mill and cryomill pulverization, so that a biological tissue graft can be provided.
  • the pulverization method according to the present invention has a low cost and very high production efficiency compared to the prior art.
  • FIG. 3A is a diagram showing a general configuration of a laboratory rotor mill
  • FIG. 3B is a diagram showing the configuration of a rotor mill separated.
  • FIG 4 (a) is a phase diagram showing the gelation area according to the concentration and temperature of serum albumin used as a grinding aid, (b) is a gelation form of 20% (w/v) bovine serum-derived albumin and human serum albumin It is a picture showing.
  • Figure 5 shows the gelled form of albumin and cell culture medium mixture
  • A (Figure 5A) is essential amino acids (AA)
  • B ( Figure 5B) is vitamins (VITA)
  • C ( Figure 5C) is non-essential Amino acids (NAA) are added.
  • A is essential amino acids (AA)
  • B is vitamins (VITA)
  • C is a non-essential amino acid (NAA) is added, and glutathione in these mixtures The concentration is 10mM.
  • A is a grinding aid prepared with only 20% (w/v) albumin
  • B is an essential amino acid (5 ⁇ ), a non-essential amino acid (5 ⁇ ), and a vitamin (1 ⁇ ). It shows a grinding aid prepared with 20% (w/v) albumin contained.
  • FIG. 8A is a micrograph of an amniotic membrane tissue pulverized with a conventional cryomill
  • B is a microscopic picture of amnion tissue pulverized according to Example 4.
  • ECM 10 is a scanning electron microscope image showing the appearance of the extracellular matrix (ECM) of the amniotic membrane tissue pulverized according to Example 4 (magnification: 10000 times).
  • FIG. 11 is a photograph showing the results of treatment with the Alamar Blue reagent of the amnion graft according to the present invention.
  • FIG. 12 is a graph showing the results of measuring cell metabolic activity of the amniotic membrane graft according to the present invention using a fluorescence photometer.
  • FIG. 13 is a graph showing the effect of promoting the growth of human fibroblasts of the amniotic membrane graft prepared according to the present invention.
  • living tissue refers to a viable tissue including living cells or viable cells.
  • soft in "soft biological tissue” used in the present invention is a soft tissue or material isolated from humans or animals, and includes, for example, placenta, amniotic membrane, chorion, umbilical cord, cartilage, skin, and ligaments.
  • fine-particleization means pulverizing a soft biological tissue to a size of 1000 microns or less.
  • biocompatible material used in the present invention means a material that is not harmful to cells or tissues constituting a cartilage tissue graft.
  • solid form is used as a meaning including a hard form as well as a gel form.
  • the "pulverization agent or grinding agent" used in the present invention is a material added to effectively grind soft biological tissues in a rotor mill.
  • the "purging agent" used in the present invention is a material that pushes the soft biological tissue pulverized in the rotor mill to effectively exit the pores of the ring sieve.
  • the present inventors have made various attempts to effectively micronize soft biological tissues such as amniotic membrane, chorionic membrane, placenta, and umbilical cord while improving the cell viability of micronized soft biological tissue.
  • the inventors of the present invention confirmed that when crushing conventional ball mills, vibration mills, cryo mills used for crushing the amniotic membrane and chorionic membranes, cells are destroyed as these living tissues are previously dehydrated (dried) or rapidly frozen, and almost all cells are killed after fine particles I did.
  • the present inventors pulverized the soft biological tissue by putting a solid biocompatible material together as a pulverization agent or a purging agent, and surprisingly, the pulverization was smoothly performed, and the crushed tissue was smooth. It was confirmed that it passed through a sieve. In addition, it was found that the cell viability of the pulverized tissue is increased when a pulverization aid is used by adding components capable of inducing cell protection and activity to such a biocompatible material.
  • the biocompatible material used as a grinding aid or purging agent in the present invention is not limited, but, for example, a biocompatible low molecule, a biocompatible polymer may be used, and a natural polymer, a synthetic polymer, or a recombinant polymer may be used.
  • the placenta is obtained after spontaneous delivery or cesarean section surgery with the informed consent of the pregnant woman.
  • pregnant women are pre-tested for HIV-1, HIV-2, HTLV-1, hepatitis B virus and syphilis virus using conventional serological tests. .
  • the above test items are exemplary, and more serum tests may be performed if necessary.
  • the placenta can be used for the graft of the present invention only if the pregnant woman's blood is serologically negative.
  • Placenta meeting the above criteria is placed in a sterile plastic bag, stored in an ice bucket, and transferred to the laboratory as soon as possible. The following procedure is performed in aseptic conditions routinely used for tissue culture. The sterile plastic bag containing the placenta is checked and stored in the refrigerator until ready for further processing.
  • Blood and clots remaining in the placenta can be removed using saline.
  • the amniotic and chorionic membranes from the placenta can be carefully separated by hand.
  • the separated amniotic membrane and chorionic membrane may be pulverized individually or in combination with a rotor mill to be described later.
  • the layer of epithelial cells of the amnion may be micronized without being removed.
  • the epithelial cell layer of the amnion can be physically or chemically removed by known techniques.
  • the epithelial cell layer may be removed using a cell scraper, or nonionic surfactants such as Triton X-100, Triton X-114, NP-40, Brij-40, and Tween-80, ionic surfactants, or nucleases. Can be removed.
  • the amniotic membrane is washed with physiological saline or PBS added with antibiotics.
  • Streptomycin Streptomycin
  • gentamicin Gentamicin
  • penicillin polymycin B
  • Polymixin B Polymixin B
  • bacitracin Bacitracin
  • a mixture thereof, etc. are used as antibiotics, but all antibiotics known in the art can be used. have.
  • the soft biological tissue is cut (minced) into small size using a cutting tool.
  • the cutting tool is irrelevant as long as it can cut living tissue, but a knife or scissors can be used mainly.
  • a knife for slicing living tissue for example, a rotating knife (rolling knife), a round knife, a straight knife, a mincer knife, etc. can be used, and these knives are arranged at regular intervals.
  • a knife may be used.
  • the living tissue may be shredded by an electric grinder equipped with a knife blade such as a household electric mixer.
  • the soft biological tissue can be shredded in a grid pattern.
  • the soft living tissue can be shredded into amorphous shape using a cutting tool.
  • the size of the fragmented biological tissue is not limited, but may be 1 to 10 mm in diameter, 2 to 9 mm, 3 to 8 mm, 4 to 7 mm, and 5 to 6 mm.
  • the rotor mill grinder is a device that grinds materials with centrifugal force and shear force generated by the rotation of the rotor.
  • FIG. 3A is a diagram showing a general configuration of a laboratory rotor mill
  • FIG. 3B is a diagram showing the configuration of a rotor mill separated.
  • the rotor mill includes a body 1 and a cover 2.
  • a rotor 3 is provided at a central position of the main body 2, and a circular body 4 surrounds the rotor 3.
  • the rotor 3 is rotated at high speed by a motor, and the circular body 4 is fixed to the outside of the rotor 3.
  • the rotor 3 may be a rotor having a multi-tooth 5.
  • the blades 5 of the rotor may be arranged vertically on the circumference of the rotor at regular intervals from each other.
  • the blade 5 of the rotor may have a triangular shape of a stainless steel bar or a titanium bar.
  • the number of blades 5 of the rotor may be 4, 6, 8, 12, or 24, but is not limited thereto. In general, as the number of rotor blades 5 increases, the size of the pulverized fine particles decreases.
  • a number of micropores are formed on the surface of the circular body 4.
  • the shape of the micropores may be a round hole or a trapezoidal hole, but is not limited thereto.
  • the size of the micropores is not limited, but may be less than 1.00 mm, less than 0.75 mm, less than 0.50 mm, or less than 0.25 mm.
  • the size of the micropores of the prototype may be appropriately selected according to the size of the fine particles of the soft living tissue.
  • the shredded soft biological tissue may be pre-positioned on the center of the rotor.
  • the shredded soft biological tissue may be supplied to the center of the rotor through the inlet 7 of the rotor mill.
  • the soft biological tissue shredded by the centrifugal force generated by the high-speed rotation of the rotor is moved toward the circular body (4), and is torn by the shear force between the blade (5) and the circular body (4) of the rotor. It is ground, ground and micronized.
  • the micronized soft biological tissue passes through the micropores formed in the circular body 4 and is collected in an external collection container.
  • Rotor mills are for example Retsch ® ZM 200 (Retsch GmbH, Germany), Retsch ® ZM 100 (Retsch GmbH, Germany), Retsch ® ZM 1000 (Retsch GmbH, Germany), Retsch ® TWISTER (Retsch GmbH, Germany), Retsch ® SR300 (Retsch GmbH, Germany), Fritsch ® Pulverisette14 (Fritsch GmbH, Germany), Glatt Rotor Sieve GSE may be used, but are not limited thereto.
  • the grinding aid or purging agent may be a solid or gel biocompatible material.
  • the solid form may be a hard formulation, or may be a soft formulation like jelly.
  • the biocompatible material may be prepared by itself or in a solid form or a gel form by mixing a solution such as water or a medium.
  • the biocompatible material may be manufactured by cutting with a knife or making a tablet in a mold. If necessary, a biocompatible adhesive may be added to the biocompatible material.
  • the biocompatible material may include ingredients that are not harmful in the human body.
  • the biocompatible material is not limited, but may be a component used for medical purposes, a component used as an excipient for a drug, or a component used for a medical device.
  • the biocompatible material may be a low-molecular material or a high-molecular material as long as it is maintained in a solid form or a gel form.
  • the polymer material natural polymers, recombinant polymers, and synthetic polymers can be used.
  • the biocompatible material is not limited, but serum albumin, hyaluronic acid, starch, gelatin, chitosan, collagen, alginic acid, pectin, carrageenan, chondroitin (sulfate), dextran (Sulfate), polylysine, carboxymethyl titine, fibrin, agarose, pullulan, cellulose, polyvinylpyrrolidone (PVP), polyethylene glycol (PEG), polyvinyl alcohol (PVA), hydroxypropylcellulose (HPC), hydroxyethylcellulose (HEC), hydroxypropylmethylcellulose (HPMC), sodium carboxymethylcellulose, polyalcohol, gum arabic, alginate, cyclodextrin, dextrin, palatinite, polylactic acid , Polyglycolic acid, polyethylene oxide, polyacrylic acid, polyacrylamide, polymethacrylic acid, and polymeric materials such as polymaleic acid may be used.
  • PVP polyvinylpyrrolidone
  • the biocompatible material is not limited, but glucose, fructose, starch, trehalose, glucose, maltose, lactose, lactulose, fructose, turanose, melitose, melesitos, dextran, sorbitol, It may be a sugar such as xylitol.
  • the starch used in the grinding aid may be pharmaceutical starch or pregelatinized starch, and may be included in whole or in part.
  • PGS grade pregelatinized starch such as Cargill's C ⁇ PharmGelTM can be used.
  • the biocompatible material may be water-soluble. At this time, after grinding with a rotor mill, the biocompatible material is dissolved in an aqueous solution, so it can be easily removed through a filter.
  • the biocompatible polymer may be a biodegradable polymer.
  • the grinding aid or purging agent may contain an active ingredient required for survival or growth of cells.
  • the active ingredient may be a culture medium for cell growth.
  • the culture medium is not limited, but DMEM (Dulbecco's Modified Eagle Media), MEM (Minimum Essential Media), RPMI 1640, IMDM (Iscove's Modified Dulbecco's Media), Defined Keratinocyte-SFM (without BPE), Keratinocyte-SFN (with BPE) ), KnockOut D-MEM, AmnioMAX-II Complete Medium and AmnioMAX-C100 Complete Medium, Plasmalyate-148, Plasmalyte-A, and the like may be used.
  • the active ingredient may be amniotic fluid or amniotic fluid-derived ingredients.
  • the biocompatible material may be in a solid form or a gel form, and the size is not limited, but the average diameter is 1 to 8 mm, preferably 2 to 7 mm, more preferably 3 to 6 mm. It may be, even more preferably 4 ⁇ 5mm.
  • the solid biocompatible material may be prepared by using a pill tablet. If necessary, purified water may be added.
  • the biocompatible material when the biocompatible material is a sugar such as glucose or sucrose, it may be mixed with purified water and then put in a mold and dried.
  • the solid biocompatible material may be prepared by crosslinking by adding a crosslinking agent in a liquid phase.
  • a crosslinking agent glutaraldehyde may be used, but the present invention is not limited thereto, and a known crosslinking agent may be used.
  • the solid biocompatible material may be dissolved in an aqueous solution, mixed with an excipient such as starch, and dried.
  • the grinding aid or purging agent is divided into roles, and the grinding aid and purging agent may be the same. That is, the grinding aid can be a purging agent, and the purging agent can be a grinding aid. In one aspect, the purging agent may be a biocompatible material described in the aforementioned grinding aid.
  • the grinding aid or purging agent When the rotor mill is operated, the grinding aid or purging agent is crushed between the rotor blade and the circular sieve by centrifugal and shear forces.
  • a grinding aid or purging agent not only helps the pulverization of soft living tissues, but also serves to push the pulverized living tissues out of the prototype body (purging agent).
  • the grinding aid serves to buffer the impact generated by the shear of the rotor mill to prevent or reduce damage or destruction of cells including tissues.
  • the operation sequence of the rotor mill is as follows.
  • the cover 2 of the rotor mill is opened, and a labyrinth disc 8 is inserted on the body of the rotor mill.
  • a rotor (3) equipped with a multi-blade is mounted on the central axis of the motor, a collection container (cassette) (6) is mounted, and then a circular sieve (4) is mounted.
  • the shredded soft living tissue is placed in the center of the rotor (3), and the grinding aid is placed in a position slightly away from the center of the rotor. Operate after closing the cover of the rotor mill.
  • the rotational speed and operating time of the rotor mill can be preset.
  • the rotor mill is not limited, but rotates at high speeds of 1,000-18,000 rpm. Meanwhile, when a separate purging agent is injected through the rotor mill inlet during operation of the rotor mill, the pulverized soft biological tissue is completely pushed out of the circular body.
  • the pulverized biological tissue remaining in the prototype can be collected using a washing solution or a culture medium, and the pulverized biological tissue can then be obtained by filtration or centrifugation.
  • the obtained biological tissue microparticles can be stabilized in a culture medium or a stabilizing solution.
  • antioxidants such as N-acetyl cysteine (NAC) may be further added to the culture medium or stabilization solution.
  • the micronized soft biological tissue of the present invention may include living cells, for example, mesenchymal stem cells, epithelial cells, amnion-derived fibroblasts, and the like.
  • the micronized soft biological tissue including the living cells may be cryopreserved.
  • Cryoprotective agents can be added to prevent cell damage while freezing the cells.
  • cryoprotectants There are two types of cryoprotectants: cell-permeable cryoprotectants and non-permeable cryoprotectants.
  • Cell-permeable cryoprotectants are low-molecular substances capable of penetrating cell membranes, and play a role of inhibiting the formation of ice cubes upon freezing by substituting water inside cells through the cell membrane.
  • the impermeable cryoprotectant is mainly a polymer material, and serves to inhibit the formation of ice crystals outside the cell.
  • DMSO dimethyl sulfoxide
  • EG ethylene glycol
  • Gly glycerol
  • MeOH methanol
  • PG propylene glycol
  • Non-permeable cryoprotectants include lactose, dextran 40, dextran 70, fructooligosaccharide, isomaltooligosaccharide, galactooligosaccharide, and penta.
  • Isomaltose pentaisomaltose
  • trehalose trehalose
  • sucrose sucrose
  • raffinose raffinose
  • d-mannitol mannito
  • the cell permeable cryoprotectant and the impermeable cryoprotectant may be used alone or in combination.
  • concentration of the cryoprotectant is not limited, but may be 5 to 40% (v/v).
  • a mixture of 3-5% DMSO and 9% dextran 70 may be used.
  • the cryopreservation method of living tissue can be performed according to a cryopreservation protocol known in the art.
  • the soft biological tissue microparticle graft of the present invention may be used in the form of an injection after melting, and is mainly used for orthopedic treatment such as knee osteoarthritis, soft tissue damage, ligament damage, and tendon damage. I can.
  • Bovine serum albumin BSA
  • HSA human serum albumin
  • (a) is a phase diagram showing the gelation area according to the concentration and temperature of serum albumin used as a grinding aid, and (b) is a gelation of 20% (w/v) bovine serum-derived albumin and human serum albumin. Show the form.
  • Example 2 Gelation of albumin + cell culture medium mixture (preparation of a grinding aid)
  • the albumin solution and the cell culture medium were mixed to perform gelation of albumin.
  • Cell culture medium is MEM amino acid solution (50 ⁇ : 50 times concentrate) containing essential amino acids (L-Arginine, L-Cystine, L-Histidine, L-Isoleucine), and non-essential amino acids (L-Alanine, L-Asparagine).
  • L-Aspartic acid containing MEM non-essential amino acid solution (100 ⁇ : 100 times concentrate)
  • vitamins containing MEM vitamin solution 100 ⁇ : 100 times concentrate
  • the albumin concentration was adjusted to a concentration of 20% (w/v) with respect to the total mixture, and the concentration of amino acids and vitamins was diluted with respect to the total mixture. For example, if 400 ⁇ l of 25% (w/v) albumin solution and 100 ⁇ l of amino acids (100 ⁇ ) are mixed, a total of 500 ⁇ l is obtained, while albumin is diluted to 20% (w/v) and amino acids are 20 times (20). ⁇ ).
  • Figure 5 shows the gelled form of albumin and cell culture medium mixture
  • A (Figure 5A) is essential amino acids (AA)
  • B ( Figure 5B) is vitamins (VITA)
  • C ( Figure 5C) is non-essential Amino acids (NAA) are added.
  • both albumin and cell culture medium mixtures were gelled, and in the case of non-essential amino acids, when 10 times or more was added, a translucent or milky albumin gel was formed.
  • a 20% (w/v) human serum albumin solution, pregelatinized starch, and the cell culture medium mentioned in Example 2 were mixed to prepare a partial starch paste.
  • Figure 6 shows the form of the albumin starch paste
  • A (Figure 6A) is essential amino acids (AA)
  • B ( Figure 6B) is vitamins (VITA)
  • C ( Figure 6C) is non-essential amino acids (NAA) Is added.
  • albumin and albumin starch paste were all prepared in a milky gel form.
  • Triton X was treated, and then the epithelial cell layer of the amniotic membrane was removed using a cell scraper.
  • amniotic membrane was washed with PBS or physiological saline to which 1% streptomycin/penicillin antibiotic was added, and then stabilized in DMEM medium.
  • the amnion was shredded into a size of about 4mm ⁇ 4mm using a rolling multi-blade.
  • the albumin gel prepared in the same manner as in Examples 1 and 2 was cut into cubes and used as a grinding aid.
  • A is a grinding aid prepared with only 20% (w/v) albumin
  • B is an essential amino acid (5 ⁇ ), a non-essential amino acid (5 ⁇ ), and a vitamin (1 ⁇ ). It shows a grinding aid prepared with 20% (w/v) albumin contained.
  • a 6-bladed rotor and a ring sieve having a diameter of 0.25 mm were mounted on a rotor mill (retsch zm 200).
  • the pulverized amnion adhered to the collection container and sieve of the rotor mill was washed with DMEM medium to collect the pulverized amnion, and stabilized at room temperature for 1 hour.
  • Example 4 by observing the tissue with the amniotic membrane and the amniotic membrane tissue ground to a conventional keurioh mill (Retsch Cryomill TM) milling according to the microscope naeteotda receive the results in Figs. 8 and 9 (Scale Bar: 200 ⁇ m) .
  • FIG. 8A is a micrograph of a conventional amnion tissue pulverized with a cryomill
  • B is a micrograph of a pulverized amnion tissue according to Example 1.
  • FIG. 8B it can be seen that the cells in the amniotic membrane tissue crushed with conventional cryomyl are all destroyed, whereas the amniotic membrane tissue according to Example 4 survives.
  • FIG. 9 is another micrograph of the amniotic membrane tissue pulverized according to Example 4. As shown in Figure 9, it can be seen that the size of the micronized amniotic membrane tissue according to the present invention is about 500 ⁇ m or less.
  • ECM extracellular matrix
  • Each amniotic membrane graft prepared according to the present invention was branched into a 24-well plate, incubated in 20% serum high-concentration glucose DMEM medium (1 ml) for 12 hours, and a recovery period was held for 12 hours.
  • FIG. 11 shows Alamar Blue reagent-treated amniotic membrane grafts, where "Fresh Amniotic Tissue” represents unground amniotic membrane grafts, and "Processed Amniotic Tissues” represents amniotic membrane grafts pulverized according to the present invention.
  • the fluorescence intensity of the well plate was measured using a fluorescence photometer to measure cell metabolic activity, and the results are shown in FIG. 12 (Ex: 560 nm; Em: 590 nm).
  • the amniotic membrane graft according to the present invention has a lower cell metabolic activity compared to the uncrushed amnion tissue, but it means that the cell survival is possible even after pulverization.
  • a grinding aid made of 20% (w/v) albumin containing essential amino acids (5 ⁇ ), non-essential amino acids (5 ⁇ ) and vitamins (1 ⁇ ) has the highest cellular metabolism activity compared to other grinding aids. Can be seen.
  • a mixed solution of the amniotic membrane graft and serum-free medium 1:1 (w/w) according to the present invention was prepared, a serum-free medium was prepared as a negative control, and a 10% FBS medium was prepared as a positive control.
  • Human fibroblasts (Detroit 562) were mixed with 1 ml of serum-free medium, and 3 wells were inoculated into well plates of a total of 3 groups at 5 ⁇ 10 5 per well, and the cells were attached for 24 hours. After mounting a culture plate insert having a 3 ⁇ m pore (cell culture plate insert), the amnion graft mixture solution, the negative control group, and the positive control group according to the present invention were respectively added to the culture plate inserts and cultured for 24 hours.
  • the MTT reagent was dissolved in PBS (phosphate-buffered saline) at a concentration of 5 mg/mL, treated with 100 ⁇ l each in a cultured 24-well plate, and stored at 37°C for 1 hour, and the amount of MTT formazan produced at 540 nm absorbance was measured. By quantification, the cell activity of all cells was analyzed.
  • PBS phosphate-buffered saline
  • FIG. 13 is a graph showing the effect of promoting the growth of human fibroblasts of the amniotic membrane graft prepared according to the present invention.
  • amniotic membrane graft Provided Amniotic Tissues
  • the amniotic membrane graft showed a high MTT activity (activity) compared to the negative and positive control groups, which included an active ingredient that helps cell growth in the amniotic membrane graft according to the present invention. It means being
  • the present invention crushes soft biological tissues such as placenta, anionic membrane, chorionic membrane, umbilical cord, and cartilage separated from humans or animals It relates to a method of converting, and the pulverized soft biological tissue fine particles are usefully used as a material for a biological tissue graft.

Abstract

The present invention provides a method for micronizing soft living tissue, the method comprising: a step in which soft living tissue isolated from a human or animal is sliced using a cutting tool; and a step for grinding the sliced soft living tissue together with a solid biocompatible material in a rotor mill equipped with a sieve.

Description

연질 생체 조직을 미립자화하는 방법 및 이의 방법으로 제조된 연질 생체 조직 미립자 이식편Method for micronizing soft living tissue and soft living tissue microscopic graft prepared by the method
본 발명은 사람이나 동물로부터 분리된 태반(placenta), 양막(anionic membrane), 융모막(chorionic membrane), 제대(umbilical cord), 연골(cartilage)과 같은 연질 생체 조직(soft biological tissue)을 분쇄하여 미립자화하는 방법에 관한 것이고, 상기 분쇄된 연질 생체 조직 미립자는 생체 조직 이식편(biological tissue graft)의 재료로 유용하게 이용된다.The present invention crushes soft biological tissues such as placenta, anionic membrane, chorionic membrane, umbilical cord, and cartilage separated from humans or animals It relates to a method of converting, and the pulverized soft biological tissue fine particles are usefully used as a material for a biological tissue graft.
사람이나 동물로부터 다양한 생체 조직들이 분리될 수 있다. 분리된 생체 조직들은 일련의 공정을 통해 의료적 재료 또는 약학적 재료로 이용될 수 있다.Various biological tissues can be isolated from humans or animals. The separated biological tissues can be used as a medical material or a pharmaceutical material through a series of processes.
분리된 생체 조직은 인체의 조직 수복, 상처 치유를 위한 이식편, 바람직하게는 동종이식편(allograft)으로 이용될 수 있다. 생체 조직 이식편은 주사가능한 이식편 또는 패치가능한 이식편으로 이용될 수 있다.The separated biological tissue may be used as an allograft, preferably an allograft, for tissue repair and wound healing. The living tissue graft can be used as an injectable graft or a patchable graft.
뼈, 연골과 같은 생체 조직은 일반적으로 사체로부터 얻어질 수 있다. 한편, 태반, 양막, 융모막, 제대와 같은 생체 조직은 임신부의 자연 분만 또는 제왕절개 후에 얻어질 수 있다.Biological tissues such as bone and cartilage can generally be obtained from a carcass. On the other hand, biological tissues such as placenta, amniotic membrane, chorion, and umbilical cord can be obtained after natural delivery or cesarean section of a pregnant woman.
태반은 태아와 모체의 자궁을 연결하는 기관으로, 태아에게 산소 및 각종 영양소를 공급한다. 태반은 또한 태아에 필요한 호르몬을 생성하고, 면역에 필요한 각종 인자들을 합성하는 것으로 알려져 있다.The placenta is an organ that connects the fetus with the mother's uterus, and supplies oxygen and various nutrients to the fetus. The placenta also produces hormones necessary for the fetus and is known to synthesize various factors necessary for immunity.
태반은 오래전부터 인체의 조직을 수복하거나 상처를 치유하기 위한 이식편으로 이용되어 왔다.The placenta has long been used as a graft for repairing human tissues or healing wounds.
태반은 제대(umbilical cord)와 양막낭(amniotic sac)으로 이루어지고, 양막낭은 양막(aminiotic membrane), 융모막(chorionic membrane)과 탈락막(maternal decidua)으로 이루어진다. 양막과 융모막 사이에는 소위 "스폰지 층(spongy layer)"이라 불리우는 중간 조직층(intermediate layer)이 존재한다.The placenta is composed of an umbilical cord and an amniotic sac, and the amniotic sac is composed of an aminiotic membrane, a chorionic membrane, and a maternal decidua. Between the amnion and the chorionic membrane is an intermediate layer, called a "spongy layer".
양막은 태반의 가장 안쪽에서 태아를 둘러싸고 있는 얇은 막이고, 양막 안쪽에는 양수(amnionic fluid)가 차 있다. 양막은 단일 상피 세포층(epithelium layer)과 세포외기질(Extracellular Matrix, ECM)로 이루어지고, 세포외기질은 다시 망상 섬유층(reticular fibers)(또는 기저막), 두껍고 조밀한 층(compact layer) 및 섬유아세포층(fibroblast layer)로 이루어져 있다.The amniotic membrane is a thin membrane surrounding the fetus at the innermost part of the placenta, and the amniotic fluid is filled inside the amniotic membrane. The amniotic membrane consists of a single epithelium layer and extracellular matrix (ECM), and the extracellular matrix is again reticular fibers (or basement membrane), a thick compact layer and fibroblasts. It consists of a fibroblast layer.
융모막은 망상 섬유층(reticular fibers), 기저막(basement membrane) 및 영양세포층(trophoblast)으로 이루어져 있다.The chorionic membrane is composed of reticular fibers, a basement membrane, and a trophoblast.
양막과 융모막에는 다양한 성장인자, 사이토카인, 콜라겐, 세포-접착 단백질 뿐 아니라 줄기세포가 포함되어 있다.The amniotic and chorionic membranes contain various growth factors, cytokines, collagen, and cell-adhesive proteins, as well as stem cells.
성장인자는 예컨데, 표피세포 성장인자(epidermal growth factor, EGF), 섬유아세포 성장인자(fibroblast growth factor, FGF), 전환 성장인자 베타(transforming growth factor Beta, TGF-b), 신경 성장인자(nerve growth factor, NGF), 간장 성장인자(hepatic growth factor, HGF), 혈관내피 성장인자(vascular endothelial growth factor, VEGF) 등이다.Growth factors include, for example, epidermal growth factor (EGF), fibroblast growth factor (FGF), transforming growth factor Beta (TGF-b), nerve growth factor (nerve growth factor). factor, NGF), hepatic growth factor (HGF), and vascular endothelial growth factor (VEGF).
사이토카인은 예컨데, 인터류킨(IL)-1α, IL-1β, IL-6, IL-8, IL-10, 금속단백분해효소 조직억제제(TIMP)-1, TIMP-2, TIMP-3, TIMP-4 등이다.Cytokines are, for example, interleukin (IL)-1α, IL-1β, IL-6, IL-8, IL-10, metalloproteinase tissue inhibitors (TIMP)-1, TIMP-2, TIMP-3, TIMP- 4th place.
콜라겐은 예컨데, 콜라겐 제Ⅰ형, 제Ⅲ형, 제IV형, 제V형 및 제VII형 등이다.Collagen is, for example, collagen type I, type III, type IV, type V, and type VII.
세포-접착 단백질은 예컨데, 피브로넥틴(fibronectin), 라미닌(laminin), 피브릴린(fibrillin), 니도젠(nidogen), 프로테오글리칸(proteoglycan), 글리코사미노글리칸(glycosaminoglycan) 등이다.Cell-adhesive proteins are, for example, fibronectin, laminin, fibrillin, nidogen, proteoglycan, glycosaminoglycan, and the like.
중간엽 줄기세포는 양막의 상피세포층, 융모막의 영양세포층에 다량 존재하는 것으로 알려져 있다.Mesenchymal stem cells are known to exist in large amounts in the epithelial cell layer of the amnion and the feeder cell layer of the chorion.
이러한 태반에서 유래한 조직 또는 막(membrane)은 당뇨성 족부궤양(diabetic foot ulcers)과 같은 창상 회복의 기재로 이용되어 왔다. 창상 치료를 위한 다양한 태반 제품이 상업적으로 이용되고 있다. 예를 들어 다음과 같은 제품이 있다.The tissue or membrane derived from the placenta has been used as a substrate for wound recovery such as diabetic foot ulcers. A variety of placenta products are commercially available for wound treatment. For example, there are products such as:
AmnioBand® Membrane(MTF Biologics, 미국)는 인간 태반에서 유래한 탈수화(건조)된 동종이식편이고, 양막과 융모막으로 구성된다.AmnioBand ® Membrane (MTF Biologics, USA) is a dehydrated (dried) allograft derived from the human placenta and consists of the amniotic membrane and chorionic membrane.
Biovance® (Alliqua BioMedical, USA)는 탈세포화되고 탈수화된 인간 양막 동종이식편이다.Biovance ® (Alliqua BioMedical, USA) is a decellularized and dehydrated human amniotic membrane allograft.
Epifix® (MiMedx Group, Inc., USA)는 탈수화된 인간 양막/융모막 동종이식편(dHACM)으로, 당뇨성 족부궤양 치료에 이용된다.Epifix ® (MiMedx Group, Inc., USA) is a dehydrated human amniotic/chorionic allograft (dHACM) used to treat diabetic foot ulcers.
EpiFix® Micronized Amniotic Membrane은 미립자화된 dHACM로서, 연골, 뼈, 근육의 깊은 상처에 적용될 수 있다.EpiFix ® Micronized Amniotic Membrane is a micronized dHACM that can be applied to deep wounds of cartilage, bones and muscles.
Grafix® (Osiris Therapeutics, Inc., USA)는 동결보존된 태반 유래 멤브레인으로, 세포외기질로 이루어져 있다.Grafix ® (Osiris Therapeutics, Inc., USA) is a cryopreserved placenta-derived membrane composed of an extracellular matrix.
이러한 창상 회복을 위한 이식편은 일반적으로 미립자화될 필요는 없다.Grafts for these wound repairs generally do not need to be micronized.
다른 한편, 태반 유래 조직 이식편은 외과적 절개술 또는 비절개술의 방법으로 인체 내에 투여될 수 있다. 외과적 절개술은 시술 부위를 절개하고 이식편을 삽입 후 봉합하는 것으로, 이러한 외과적 절개술은 또 다른 흉터를 발생시킨다.On the other hand, the placenta-derived tissue graft may be administered into the human body by surgical incision or non-incision. In the surgical incision, an incision is made at the site of the procedure and the graft is inserted and then sutured. This surgical incision causes another scar.
비절개술은 주사제 형태의 이식편을 이용하여 수행될 수 있다. 다시 말해, 조직 이식편을 주사기를 통하여 인체 내, 예컨데, 근육, 연골, 인대에 주입하는 것이다. 이러한 주사제에서 조직 이식편의 미립자화는 필수적이고, 미립자의 크기는 매우 중요하다. 이식편의 미립자는 주사바늘의 내경보다 충분히 작아야 하며, 주사바늘의 직경이 클수록 환자는 더 고통을 받게 되며, 또 따른 피부 상처나 조직 파괴와 같은 부작용을 발생시킬 수 있다. 주사제에 적합한 이식편 미립자의 크기는 적어도 1000㎛ 이하이고, 바람직하게는 500㎛ 이하, 더욱 바람직하게는 300㎛ 이하이다.Non-incisional surgery can be performed using an injection-type graft. In other words, a tissue graft is injected into the human body, such as muscles, cartilage, and ligaments through a syringe. In such injections, the micronization of the tissue graft is essential, and the size of the microparticles is very important. The fine particles of the graft should be sufficiently smaller than the inner diameter of the needle, and the larger the diameter of the needle, the more painful the patient will be, and may cause side effects such as skin injury or tissue destruction. The size of the graft microparticles suitable for injection is at least 1000 µm or less, preferably 500 µm or less, more preferably 300 µm or less.
상업적으로 이용되고 있는 주사용 태반 유래 이식편은 예를 들어 다음과 같은 제품이 있다.Placenta-derived grafts for injection that are commercially available include, for example, the following products.
AmnioFix® Injectable(MiMedx Group, Inc., USA)은 마이크로화된 dHACM 이식편으로 무릎 관절염, 정형외과적 연조직, 힘줄 부상, 힘줄염 등의 치료에 이용된다. 상기 제품은 동종조직 이식편의 탈수화된 파우더 제형으로, 유통기한은 실온에서 5년 이상이다.AmnioFix ® Injectable (MiMedx Group, Inc., USA) is a micronized dHACM graft used to treat knee arthritis, orthopedic soft tissue, tendon injuries and tendonitis. The product is a dehydrated powder formulation of an allogeneic tissue graft, and the shelf life is at least 5 years at room temperature.
ReNu®와 NuCel®(NuTech Medical, Inc., USA)는 동결보존된 생체활성 현탁 이식편으로서, 양막과 양수를 포함한다. 상기 제품은 무릎 골관절염, 관절 및 힘줄 부상과 같은 퇴행성 질환를 치료에 이용된다.ReNu ® and NuCel ® (NuTech Medical, Inc., USA) are cryopreserved bioactive suspension grafts containing amniotic membrane and amniotic fluid. The product is used to treat degenerative diseases such as knee osteoarthritis, joint and tendon injuries.
Clarix® Flo 과 Clarix® Injectable (Amniox Medical, Inc., USA)은 양막과 탯줄로 이루어진 동결건조된 마이크로 인간태반 동종이식편이다.Clarix ® Flo and Clarix ® Injectable (Amniox Medical, Inc., USA) are lyophilized micro human placenta allografts consisting of an amniotic membrane and umbilical cord.
태반, 양막, 융모막, 탯줄, 연골과 같은 연질 생체 조직은 주사제로 이용되기 위하여는 마이크로 크기로 미립자화되어야 한다.Soft biological tissues such as placenta, amnion, chorion, umbilical cord, and cartilage must be micronized in order to be used as an injection.
미국 특허 제9,943,551호는 주사제 조성물로 만들기 위하여 태반 조직, 양막 조직, 융모막 조직을 마이크로 크기로 분쇄하는 방법을 개시하고 있는 데, 분쇄기는 RetschTM MM400 볼밀과 RetschTM Cryomill을 개시하고 있다.U.S. Patent No. 9,943,551 discloses a method of pulverizing placental tissue, amnion tissue, and chorionic tissue to a microscopic size in order to make an injection composition, and the pulverizer discloses a Retsch TM MM400 ball mill and a Retsch TM Cryomill.
도 1은 실험실용 볼밀(진동밀)의 대표 모델인 RetschTM MM400의 사진이다.1 is a photograph of Retsch TM MM400, a representative model of a laboratory ball mill (vibration mill).
도 1을 참조하면, 일반적인 실험실용 볼밀은 시료와 밀링 볼(ball)을 밀링 컵(milling cup)에 넣고 밀링 컵의 커버를 닫은 다음, 밀링 컵은 컵 홀더(cup holder)에 삽입된다. 볼밀의 작동시, 밀링 컵은 고속으로 진동(왕복운동)되며, 볼의 관성에 의한 강한 충격으로 시료는 효과적으로 분쇄된다. 양막, 융모막과 같은 연질 생체 조직은 볼밀 수행 전에 거의 완전히 탈수(건조)되어야 한다. 그렇지 않으면 분쇄보다는 짖이겨져 원하는 모양의 미립자가 얻어질 수 없다. 탈수는 비생존(non-viable) 환경을 의미하므로, 생체 조직의 세포는 파괴되거나 사멸하게 된다.Referring to FIG. 1, in a general laboratory ball mill, a sample and a milling ball are placed in a milling cup, the cover of the milling cup is closed, and the milling cup is inserted into a cup holder. When the ball mill is operated, the milling cup vibrates (reciprocates) at high speed, and the sample is effectively crushed by a strong impact due to the inertia of the ball. Soft biological tissues such as amnion and chorion must be almost completely dehydrated (dried) before performing a ball mill. Otherwise, it will be barked rather than crushed and the desired shape of the fine particles cannot be obtained. Since dehydration refers to a non-viable environment, cells in living tissues are destroyed or killed.
도 2는 크리오밀(cryomill)의 대표 모델인 RetschTM Cryomill을 보여준다. 도 2에 보이는 바와 같이, 크리오밀은 종래 볼밀(진동밀)에 액체질소 순환 시스템이 장착된 구조이다. 액체질소는 밀링 컵의 외부에 공급되어, 시료를 급속 냉동시켜 분쇄에 적합하도록 경화시킨다. 크리오밀은 효과적인 분쇄를 위하여 시료를 -196℃까지 빠르게 냉각시키므로, 생체 조직 내 세포, 특히 줄기세포는 거의 사멸하게 된다.Figure 2 shows a representative model of cryomill Retsch TM Cryomill. As shown in Fig. 2, the cryomyl is a structure in which a liquid nitrogen circulation system is installed in a conventional ball mill (vibration mill). Liquid nitrogen is supplied to the outside of the milling cup, and the sample is rapidly frozen and hardened for grinding. Cryomyl quickly cools the sample to -196°C for effective pulverization, so cells in living tissues, particularly stem cells, are almost killed.
현재, 태반, 양막, 융모막과 같은 연질 생체 조직의 미립자화는 모두 크리오밀 또는 볼밀을 이용하여 수행되고 있다. 이러한 크리오밀 또는 볼밀은 연질 생체 조직을 미립자화하는 데는 유용하나, 볼 타격에 의해 마치 절구(large mortar)와 같이 분쇄되므로 미립자화된 생체 조직의 세포 생존에는 치명적인 문제점이 있다.Currently, micronization of soft biological tissues such as placenta, amnion, and chorion is all performed using cryomyl or ball mill. Such cryomyl or ball mill is useful for micronizing soft biological tissues, but since it is crushed like a large mortar by ball strike, there is a fatal problem in cell survival of micronized biological tissues.
본 발명의 목적은 생체 조직의 세포 파괴를 최소화시키는 마이크로 분쇄 방법을 제공하는 것이다.An object of the present invention is to provide a micro-pulverization method that minimizes cell destruction of living tissue.
본 발명의 또 다른 목적은 단위부피당 유효성분 함량이 높은 생체 조직 이식편을 제조하는 방법을 제공하는 것이다.Another object of the present invention is to provide a method for preparing a biological tissue graft having a high content of active ingredients per unit volume.
본 발명의 또 다른 목적은 종래 기술에 비해 분쇄 방법이 간단하고, 생산시간 효율이 높고, 생산비용이 저렴한 생체 조직 분쇄 방법을 제공하는 것이다.Another object of the present invention is to provide a method for pulverizing biological tissues, which has a simpler pulverization method, high production time efficiency, and low production cost compared to the prior art.
본 발명은 커팅 도구를 이용하여 인간 또는 동물로부터 분리된 연질 생체 조직을 세절하는 단계; 및 상기 세절된 연질 생체 조직을 고체형태의 생체적합성 재료와 함께 체(sieve)가 구비된 로터 밀(rotor mill)에 넣고 분쇄하는 단계를 포함하는, 연질 생체 조직을 미립자화하는 방법을 제공한다.The present invention comprises the steps of slicing soft living tissue isolated from humans or animals using a cutting tool; And it provides a method for micronizing a soft biological tissue comprising the step of pulverizing the shredded soft biological tissue together with a solid biocompatible material in a rotor mill equipped with a sieve (sieve).
일 양태에서, 상기 생체적합성 재료는 생체적합성 고분자 또는 당류가 이용될 수 있다.In one aspect, the biocompatible material may be a biocompatible polymer or sugar.
상기 생체적합성 고분자는 제한되지는 않으나, 혈청 알부민, 히알루론산, 녹말, 젤라틴(gelatin), 키토산(chitosan), 콜라겐(collagen), 알긴산, 펙틴, 카라기난, 콘드로이틴(설페이트), 덱스트란(설페이트), 폴리라이신(polylysine), 카르복시메틸티틴, 피브린, 아가로스, 풀루란, 셀룰로오스, 폴리비닐피롤리돈(PVP), 폴리에틸렌글리콜(PEG), 폴리비닐알콜(PVA), 히드록시프로필셀룰로스(HPC), 히드록시에틸셀룰로스(HEC), 히드록시프로필메틸셀룰로스(HPMC), 나트륨카르복시메틸셀룰로스, 폴리알콜, 아라비아검, 알기네이트, 시클로덱스트린, 덱스트린, 팔라티니트, 폴리락트산(polylactic acid), 폴리글리콜산(polyglycolic acid), 폴리에틸렌옥사이드, 폴리아크릴산, 폴리아크릴아마이드, 폴리메타아크릴산 및 폴리말레인산으로 이루어진 군에서 선택되는 1종 이상의 고분자 재료를 포함할 수 있다.The biocompatible polymer is not limited, but serum albumin, hyaluronic acid, starch, gelatin, chitosan, collagen, alginic acid, pectin, carrageenan, chondroitin (sulfate), dextran (sulfate), Polylysine, carboxymethyl titine, fibrin, agarose, pullulan, cellulose, polyvinylpyrrolidone (PVP), polyethylene glycol (PEG), polyvinyl alcohol (PVA), hydroxypropylcellulose (HPC), Hydroxyethylcellulose (HEC), hydroxypropylmethylcellulose (HPMC), sodium carboxymethylcellulose, polyalcohol, gum arabic, alginate, cyclodextrin, dextrin, palatinite, polylactic acid, polyglycolic acid (polyglycolic acid), polyethylene oxide, polyacrylic acid, polyacrylamide, polymethacrylic acid, and may include one or more polymer materials selected from the group consisting of polymaleic acid.
상기 당류는 제한되지는 않으나, 포도당, 과당, 녹말, 트레할로스, 글루코스, 말토스, 락토스, 락툴로스, 프럭토스, 투라노스, 멜리토스, 멜레지토스, 덱스트란, 소르비톨, 크실리톨으로 이루어진 군에서 선택되는 1종 이상의 당류를 포함할 수 있다.The saccharide is not limited, but the group consisting of glucose, fructose, starch, trehalose, glucose, maltose, lactose, lactulose, fructose, turanose, melitose, melesitos, dextran, sorbitol, xylitol It may contain one or more saccharides selected from.
일 양태에서, 상기 생체적합성 재료는 혈청 알부민이 이용될 수 있다.In one aspect, the biocompatible material may be serum albumin.
일 양태에서, 상기 생체적합성 재료는 세포의 생존 또는 성장에 필요한 유효성분을 더 포함할 수 있다.In one aspect, the biocompatible material may further include an active ingredient required for survival or growth of cells.
일 양태에서, 상기 세포의 생존 또는 성장에 필요한 유효성분은 DMEM (Dulbecco's Modified Eagle Media), MEM (Minimum Essential Media), RPMI 1640, Iscove's Modified Dulbecco's Media, Defined Keratinocyte-SFM (without BPE), Keratinocyte-D-MEM, AmnioMAX-II Complete Culture media, AmnioMAX-C100 Complete Culture media, Plasmalyate-148 및 Plasmalyte-A으로 이루어진 군에서 선택될 수 있다.In one embodiment, the active ingredients required for survival or growth of the cells are DMEM (Dulbecco's Modified Eagle Media), MEM (Minimum Essential Media), RPMI 1640, Iscove's Modified Dulbecco's Media, Defined Keratinocyte-SFM (without BPE), Keratinocyte-D. -MEM, AmnioMAX-II Complete Culture media, AmnioMAX-C100 Complete Culture media, Plasmalyate-148 and Plasmalyte-A may be selected from the group consisting of.
일 양태에서, 본 발명의 연질 생체 조직은 양막(amniotic membrane), 융모막(chorionic membrane), 태반(placenta), 탯줄(umbilical cord) 및 연골로 이루어진 군에서 선택될 수 있다.In one aspect, the soft biological tissue of the present invention may be selected from the group consisting of amniotic membrane, chorionic membrane, placenta, umbilical cord, and cartilage.
일 양태에서, 상기 분쇄된 연질 생체 조직의 평균 직경은 500 ㎛ 이하일 수 있다.In one aspect, the average diameter of the pulverized soft biological tissue may be 500 μm or less.
일 양태에서, 상기 로터 밀은 다수의 날(multi-tooth, multi-blade)이 구비되고, 회전하는 원형 로터와 그 외부에 장착된 체(sieve)를 포함하는 것일 수 있다.In one aspect, the rotor mill may be provided with a plurality of blades (multi-tooth, multi-blade), and may include a rotating circular rotor and a sieve mounted on the outside thereof.
한편, 본 발명은 상기 제조된 생체 조직 미립자를 포함하는 생체 조직 미립자 이식편을 제공한다.On the other hand, the present invention provides a biological tissue fine particle graft comprising the prepared biological tissue fine particles.
일 양태에서, 상기 생체 조직 미립자 이식편은 미립자화된 연질 생체 조직을 동결하여 이루어지는 것일 수 있다.In one aspect, the biological tissue microparticle graft may be obtained by freezing micronized soft biological tissue.
일 양태에서, 상기 생체 조직 미립자 이식편은 동결 융해 후 주사제로 이용될 수 있다.In one aspect, the biological tissue particulate graft may be used as an injection after freezing and thawing.
본 발명의 방법으로 분쇄된 생체 조직은 종래의 볼밀(ball mill), 크리오밀(cryomill) 분쇄에 비해 세포 생존력이 현저히 높아 생체 조직 이식편을 제공할 수 있다.The biological tissue pulverized by the method of the present invention has significantly higher cell viability than conventional ball mill and cryomill pulverization, so that a biological tissue graft can be provided.
또한, 본 발명에 따른 분쇄법은 종래 기술에 비해 비용이 저렴하고, 생산 효율이 매우 높다.In addition, the pulverization method according to the present invention has a low cost and very high production efficiency compared to the prior art.
도 1은 실험실용 볼밀(진동밀)의 대표 모델인 RetschTM MM400의 사진이다.1 is a photograph of Retsch TM MM400, a representative model of a laboratory ball mill (vibration mill).
도 2는 실험실용 크리오밀의 대표 모델인 RetschTM cryomill의 사진이다.2 is a photograph of Retsch TM cryomill, a representative model of laboratory cryomill.
도 3a는 실험실용 로터 밀의 일반적인 구성을 나타낸 도이고, 도 3b는 로터 밀의 구성을 분리한 도이다.3A is a diagram showing a general configuration of a laboratory rotor mill, and FIG. 3B is a diagram showing the configuration of a rotor mill separated.
도 4에서 (a)는 분쇄보조제로 이용된 혈청 알부민의 농도 및 온도에 따른 겔화 영역을 나타내는 상 다이어그램이고, (b)는 20% (w/v) 소혈청 유래 알부민과 인간 혈청 알부민의 겔화 형태를 나타내는 사진이다.In Figure 4 (a) is a phase diagram showing the gelation area according to the concentration and temperature of serum albumin used as a grinding aid, (b) is a gelation form of 20% (w/v) bovine serum-derived albumin and human serum albumin It is a picture showing.
도 5는 알부민과 세포배양 배지 혼합액의 겔화된 형태를 나타내는 것으로, A(도 5A)는 필수아미노산류(AA), B(도 5B)는 비타민류(VITA), C(도 5C)는 비필수아미노산류(NAA)이 첨가된 것이다.Figure 5 shows the gelled form of albumin and cell culture medium mixture, A (Figure 5A) is essential amino acids (AA), B (Figure 5B) is vitamins (VITA), C (Figure 5C) is non-essential Amino acids (NAA) are added.
도 6은 알부민, 세포배양 배지 및 글루타치온 혼합액의 겔화된 형태를 나타6 shows a gelled form of albumin, cell culture medium and glutathione mixture
내는 것으로, A(도 6A)는 필수아미노산류(AA), B(도 6B)는 비타민류(VITA), C(도 6C)는 비필수아미노산류(NAA)이 첨가된 것이고, 이들 혼합액의 글루타치온 농도는 10mM이다.A (Fig. 6A) is essential amino acids (AA), B (Fig. 6B) is vitamins (VITA), C (Fig. 6C) is a non-essential amino acid (NAA) is added, and glutathione in these mixtures The concentration is 10mM.
도 7에서 A(도 7A)는 20% (w/v) 알부민 만으로 제조된 분쇄보조제, B(도 7B)는 필수아미노산(5×), 비필수아미노산(5×) 및 비타민(1×)가 함유된 20% (w/v) 알부민으로 제조된 분쇄보조제를 나타낸다.In FIG. 7, A (FIG. 7A) is a grinding aid prepared with only 20% (w/v) albumin, B (FIG. 7B) is an essential amino acid (5×), a non-essential amino acid (5×), and a vitamin (1×). It shows a grinding aid prepared with 20% (w/v) albumin contained.
도 8에서 A(도8A)는 종래 크리오밀(Cryomill)로 분쇄된 양막 조직의 현미경 사진이고, B(도 8B)는 실시예 4에 따라 분쇄된 양막조직의 현미경 사진이다.In FIG. 8, A (FIG. 8A) is a micrograph of an amniotic membrane tissue pulverized with a conventional cryomill, and B (FIG. 8B) is a microscopic picture of amnion tissue pulverized according to Example 4.
도 9는 실시예 4에 따라 분쇄된 양막조직의 또 다른 현미경 사진이다.9 is another micrograph of the amniotic membrane tissue pulverized according to Example 4.
도 10은 실시예 4에 따라 분쇄된 양막 조직의 세포외 기질 (ECM; extracellular matrix)의 모습을 보여주는 주사식 전자현미경 사진이다(배율: 10000 배).10 is a scanning electron microscope image showing the appearance of the extracellular matrix (ECM) of the amniotic membrane tissue pulverized according to Example 4 (magnification: 10000 times).
도 11은 본 발명에 따른 양막 이식편의 Alamar Blue 시약 처리 결과를 나타내는 사진이다.11 is a photograph showing the results of treatment with the Alamar Blue reagent of the amnion graft according to the present invention.
도 12는 형광광도계를 이용하여 본 발명에 따른 양막 이식편의 세포 대사 활동도를 측정한 결과를 나타내는 그래프이다.12 is a graph showing the results of measuring cell metabolic activity of the amniotic membrane graft according to the present invention using a fluorescence photometer.
도 13은 본 발명에 따라 제조된 양막 이식편의 인간 섬유 아세포의 생장 촉진 효과를 나타내는 그래프이다.13 is a graph showing the effect of promoting the growth of human fibroblasts of the amniotic membrane graft prepared according to the present invention.
본 발명에서 사용되는 "생체 조직"은 살아있는 세포 또는 생존 가능한 세포를 포함하는 생존 가능한 조직을 의미한다.As used in the present invention, "living tissue" refers to a viable tissue including living cells or viable cells.
본 발명에서 사용되는 "연질 생체 조직"에서 용어 "연질"은 인간 또는 동물에서 분리된 부드러운 조직 또는 물질로서, 예를 들어, 태반, 양막, 융모막, 제대, 연골, 피부, 인대를 포함한다.The term "soft" in "soft biological tissue" used in the present invention is a soft tissue or material isolated from humans or animals, and includes, for example, placenta, amniotic membrane, chorion, umbilical cord, cartilage, skin, and ligaments.
본 발명에서 사용되는 "미립자화"는 연질 생체 조직을 1000 마이크로 크기 이하로 분쇄하는 것을 의미한다.As used in the present invention, "fine-particleization" means pulverizing a soft biological tissue to a size of 1000 microns or less.
본 발명에서 사용되는 "생체적합성 재료"는 연골 조직 이식편을 구성하는 세포나 조직에 해롭지 않은 재료를 의미한다.The "biocompatible material" used in the present invention means a material that is not harmful to cells or tissues constituting a cartilage tissue graft.
본 발명에서 사용되는 "고체형태의 생체적합성 재료"에서 "고체형태"는 딱딱한 형태는 물론이거니와 젤 형태를 포함하는 의미로 사용된다.In the "solid form of a biocompatible material" used in the present invention, "solid form" is used as a meaning including a hard form as well as a gel form.
본 발명에서 사용되는 "분쇄보조제(pulverization agent or grinding agent)"는 연질 생체 조직이 로터 밀에서 효과적으로 분쇄되도록 하기 위하여 첨가하는 재료이다.The "pulverization agent or grinding agent" used in the present invention is a material added to effectively grind soft biological tissues in a rotor mill.
본 발명에서 사용되는 "퍼칭제(purging agent)"는 로터 밀 내에서 분쇄된 연질 생체 조직이 원형 체(ring sieve)의 미세공(pores)을 효과적으로 빠져나도록 밀어주는 재료이다.The "purging agent" used in the present invention is a material that pushes the soft biological tissue pulverized in the rotor mill to effectively exit the pores of the ring sieve.
본 발명자는 미립자화된 연질 생체 조직의 세포 생존력을 향상시키면서, 양막, 융모막, 태반, 제대 등과 같은 연성 생물 조직을 효과적으로 미립자화하려는 다양한 시도를 하였다.The present inventors have made various attempts to effectively micronize soft biological tissues such as amniotic membrane, chorionic membrane, placenta, and umbilical cord while improving the cell viability of micronized soft biological tissue.
본 발명자는 양막, 융모막의 분쇄에 사용되는 종래 볼밀, 진동밀, 크리오밀 분쇄시 이들 생체 조직이 미리 탈수(건조)되거나 급속 냉동됨에 따라 세포가 파괴되어 미립자 후 거의 모든 세포가 사멸되는 점을 확인하였다. 이러한 볼밀, 진동밀, 크리오밀의 문제점을 해결하기 위하여, 조직의 탈수 또는 급속 냉동없이 로터 밀(rotor mill)을 이용하여 양막과 같은 연질 생체 조직을 분쇄하는 시도를 하였다. 그러나 이러한 생체 조직은 부드러우면서도 질긴 성질로 인해 로터 밀로는 효과적으로 분쇄되지 않았으며, 분쇄되더라도 로터 밀의 체(sieve)의 원하는 크기(마이크로 크기)의 미세공을 쉽게 통과하지 못하였다.The inventors of the present invention confirmed that when crushing conventional ball mills, vibration mills, cryo mills used for crushing the amniotic membrane and chorionic membranes, cells are destroyed as these living tissues are previously dehydrated (dried) or rapidly frozen, and almost all cells are killed after fine particles I did. In order to solve the problems of these ball mills, vibration mills, and cryo mills, an attempt has been made to crush soft biological tissues such as amniotic membranes using a rotor mill without dehydration or quick freezing of the tissues. However, these biological tissues were not effectively pulverized with a rotor mill due to their soft and tough properties, and even if pulverized, they could not easily pass through the micro-pores of the desired size (micro size) of the sieve of the rotor mill.
이에 본 발명자는 고체 형태의 생체적합성 재료를 분쇄보조제(pulverization agent or grinding agent) 또는 퍼징제(purging agent)로 함께 넣어 연질 생체 조직의 분쇄를 실시한 결과 놀랍게도 분쇄가 원활히 이루어지고, 분쇄된 조직이 원활히 체(sieve)를 통과하는 것을 확인하였다. 또한, 이러한 생체적합성 재료에 세포의 보호 및 활성을 유도할 수 있는 성분들을 첨가하여 분쇄보조제를 이용하면 분쇄된 조직의 세포 생존율이 증대되는 것을 발견하였다.Accordingly, the present inventors pulverized the soft biological tissue by putting a solid biocompatible material together as a pulverization agent or a purging agent, and surprisingly, the pulverization was smoothly performed, and the crushed tissue was smooth. It was confirmed that it passed through a sieve. In addition, it was found that the cell viability of the pulverized tissue is increased when a pulverization aid is used by adding components capable of inducing cell protection and activity to such a biocompatible material.
본 발명에서 분쇄보조제 또는 퍼징제로 이용되는 생체적합성 재료는 제한되지는 않으나, 예를 들어 생체적합성 저분자, 생체적합성 고분자가 이용될 수 있고, 천연고분자, 합성고분자 또는 재조합 고분자가 이용될 수 있다.The biocompatible material used as a grinding aid or purging agent in the present invention is not limited, but, for example, a biocompatible low molecule, a biocompatible polymer may be used, and a natural polymer, a synthetic polymer, or a recombinant polymer may be used.
이하, 미세 크기의 생체 조직 이식편을 제조하는 다양한 방법을 상세히 설명한다.Hereinafter, various methods of manufacturing micro-sized biological tissue grafts will be described in detail.
태반의 준비Preparation of the placenta
태반은 임신부의 사전 동의 하에 자연 분만 또는 제왕절개 수술 후에 얻어진다. 태반에 잠재적으로 혈액을 전염시킬 수 있는 질병을 예방하기 위해 임신부는 기존의 혈청 검사를 이용하여 HIV-1, HIV-2, HTLV-1, B형 간염 바이러스 및 매독 바이러스에 대한 사전 검사를 실시한다. 상기 검사 항목은 예시적인 것으로 필요에 따라서는 더욱 많은 혈청 검사가 이루어질 수 있다. 임신부의 혈액이 혈청학적 음성인 경우에만 태반이 본 발명의 이식편에 이용될 수 있다.The placenta is obtained after spontaneous delivery or cesarean section surgery with the informed consent of the pregnant woman. To prevent potentially blood-transmitting diseases to the placenta, pregnant women are pre-tested for HIV-1, HIV-2, HTLV-1, hepatitis B virus and syphilis virus using conventional serological tests. . The above test items are exemplary, and more serum tests may be performed if necessary. The placenta can be used for the graft of the present invention only if the pregnant woman's blood is serologically negative.
상기 기준을 충족하는 태반은 멸균 비닐팩에 넣어져 얼음통에 저장된 상태로 가능한 빨리 실험실로 옮겨진다. 다음 절차는 조직 배양에 일상적으로 사용되는 무균 조건에서 수행된다. 태반이 들어있는 멸균 비닐팩을 확인한 다음 추가 처리 준비가 완료될 때까지 냉장고에 보관된다.Placenta meeting the above criteria is placed in a sterile plastic bag, stored in an ice bucket, and transferred to the laboratory as soon as possible. The following procedure is performed in aseptic conditions routinely used for tissue culture. The sterile plastic bag containing the placenta is checked and stored in the refrigerator until ready for further processing.
태반에 남아있는 혈액, 혈전은 식염수를 사용하여 제거될 수 있다. 태반으로부터 양막과 융모막은 조심스럽게 손으로 분리될 수 있다. 분리된 양막과 융모막은 단독으로 또는 조합하여 후술하는 로터 밀로 분쇄될 수 있다.Blood and clots remaining in the placenta can be removed using saline. The amniotic and chorionic membranes from the placenta can be carefully separated by hand. The separated amniotic membrane and chorionic membrane may be pulverized individually or in combination with a rotor mill to be described later.
일 양태에서, 양막의 상피세포층은 제거되지 않고 미립자화될 수 있다. 다른 양태에서, 양막의 상피세포층은 공지된 기술에 의해 물리적 또는 화학적으로 제거 될 수 있다. 이때 상피세포층은 세포 스크레이퍼를 사용하여 제거되거나, 트리톤 X-100, 트리톤 X-114, NP-40, Brij-40, Tween-80와 같은 비이온성 계면 활성제, 이온성 계면활성제 또는 핵산분해효소를 이용하여 제거될 수 있다.In one aspect, the layer of epithelial cells of the amnion may be micronized without being removed. In other embodiments, the epithelial cell layer of the amnion can be physically or chemically removed by known techniques. At this time, the epithelial cell layer may be removed using a cell scraper, or nonionic surfactants such as Triton X-100, Triton X-114, NP-40, Brij-40, and Tween-80, ionic surfactants, or nucleases. Can be removed.
양막은 항생제가 첨가된 생리식염수 또는 PBS로 세척한다. 항생제로는 스트렙토마이신(Streptomycin), 젠타마이신(Gentamicin), 페니실린, 폴리마이신B(Polymixin B), 바시트라신(Bacitracin) 또는 이들의 혼합물 등이 이용되나 당해 분야에서 공지된 모든 항생제가 이용될 수 있다.The amniotic membrane is washed with physiological saline or PBS added with antibiotics. Streptomycin (Streptomycin), gentamicin (Gentamicin), penicillin, polymycin B (Polymixin B), bacitracin (Bacitracin), or a mixture thereof, etc. are used as antibiotics, but all antibiotics known in the art can be used. have.
상술한 태반의 수득, 양막과 융모막의 분리, 세척 과정은 당해 분야의 공지된 방법, 예를 들어 미국특허 제8,357,403호, 미국특허 제9,943,551호에 기술된 방법을 통해 실시될 수 있다.The above-described process of obtaining the placenta, separation of the amnion from the chorion membrane, and washing may be performed by a method known in the art, for example, a method described in US Patent Nos. 8,357,403 and 9,943,551.
연질 생체 조직의 세절(cutting)Cutting of soft living tissue
후술하는 로터 밀을 이용하여 연질 생체 조직을 분쇄하기에 앞서, 연질 생체 조직은 절단 도구를 이용하여 작은 크기로 절단(세절)된다. 절단 도구는 생체 조직을 세절할 수 있는 것이면 상관없으나 주로 칼 또는 가위가 이용될 수 있다.Before pulverizing the soft biological tissue using a rotor mill to be described later, the soft biological tissue is cut (minced) into small size using a cutting tool. The cutting tool is irrelevant as long as it can cut living tissue, but a knife or scissors can be used mainly.
생체 조직을 세절하기 위한 칼로는 예컨데, 회전하는 칼(롤링 나이프), 둥근 형태의 칼, 직선 형태의 칼, 민서 나이프(mincer nife) 등이 이용될 수 있으며, 이들 칼날은 일정 간격으로 배열된 다중 칼이 이용될 수도 있다. 또한, 상기 생체 조직은 가정용 전기믹서와 같은 칼날이 장착된 전기분쇄기로 세절되는 것도 가능하다.As a knife for slicing living tissue, for example, a rotating knife (rolling knife), a round knife, a straight knife, a mincer knife, etc. can be used, and these knives are arranged at regular intervals. A knife may be used. In addition, the living tissue may be shredded by an electric grinder equipped with a knife blade such as a household electric mixer.
하나의 양태에서, 연질 생체 조직은 격자 패턴으로 세절될 수 있다. 다른 측면에서, 연질 생체 조직은 절단 도구를 이용하여 무정형으로 세절될 수 있다.In one embodiment, the soft biological tissue can be shredded in a grid pattern. In another aspect, the soft living tissue can be shredded into amorphous shape using a cutting tool.
세절된 생체 조직의 크기는 제한되지는 않으나, 직경 1 ~ 10 mm, 2 ~ 9 mm, 3 ~ 8 mm, 4 ~ 7 mm, 5 ~ 6 mm 일 수 있다.The size of the fragmented biological tissue is not limited, but may be 1 to 10 mm in diameter, 2 to 9 mm, 3 to 8 mm, 4 to 7 mm, and 5 to 6 mm.
로터 밀을 이용한 연질 생체 조직의 미립자화Micronization of soft living tissues using a rotor mill
로터 밀 분쇄기는 원심력과 로터의 회전에 의해 생성되는 전단력으로 재료를 분쇄하는 장치이다.The rotor mill grinder is a device that grinds materials with centrifugal force and shear force generated by the rotation of the rotor.
도 3a는 실험실용 로터 밀의 일반적인 구성을 나타낸 도이고, 도 3b는 로터 밀의 구성을 분리한 도이다.3A is a diagram showing a general configuration of a laboratory rotor mill, and FIG. 3B is a diagram showing the configuration of a rotor mill separated.
도 3a 및 도 3b를 참조하면, 로터 밀은 본체(1)와 커버(2)를 포함한다. 본체(2)의 중심 위치에는 로터(3)가 구비되고, 원형 체(4)가 로터(3) 주변을 감싸하고 있다. 로터(3)와 원형 체(4) 사이에 전단 갭(shear gap)이 존재한다. 로터(3)는 모터에 의해 고속으로 회전되고, 원형 체(4)는 로터(3)의 외측에 고정되어 있다.3A and 3B, the rotor mill includes a body 1 and a cover 2. A rotor 3 is provided at a central position of the main body 2, and a circular body 4 surrounds the rotor 3. There is a shear gap between the rotor 3 and the circular body 4. The rotor 3 is rotated at high speed by a motor, and the circular body 4 is fixed to the outside of the rotor 3.
로터(3)는 다중 날(multi-tooth)(5)을 가진 로터일 수 있다. 로터의 날(5)은 서로 일정한 간격으로, 로터의 원주 상에 수직으로 배열될 수 있다. 일 양태에서 로터의 날(5)은 스테인레스 스틸 바 또는 티타늄 바의 삼각형 모양일 수 있다. 로터의 날(5)의 개수는 4개, 6개, 8개, 12개, 24개일 수 있으나, 이에 한정되는 것은 아니다. 일반적으로 로터의 날(5)의 개수가 많을수록 분쇄된 미립자의 크기는 작아진다.The rotor 3 may be a rotor having a multi-tooth 5. The blades 5 of the rotor may be arranged vertically on the circumference of the rotor at regular intervals from each other. In one aspect, the blade 5 of the rotor may have a triangular shape of a stainless steel bar or a titanium bar. The number of blades 5 of the rotor may be 4, 6, 8, 12, or 24, but is not limited thereto. In general, as the number of rotor blades 5 increases, the size of the pulverized fine particles decreases.
원형 체(4)의 표면 상에는 다수의 미세공이 형성되어 있다. 미세공의 형상은 둥근 구멍 또는 사다리꼴 구멍 일 수 있지만, 이에 한정되는 것은 아니다. 미세공의 크기는 제한되지 않지만, 1.00mm 미만, 0.75mm 미만, 0.50mm 미만, 또는 0.25mm 미만일 수 있다. 원형 체의 미세공 크기는 연질 생체 조직의 미립자 크기에 따라 적절하게 선택될 수 있다.A number of micropores are formed on the surface of the circular body 4. The shape of the micropores may be a round hole or a trapezoidal hole, but is not limited thereto. The size of the micropores is not limited, but may be less than 1.00 mm, less than 0.75 mm, less than 0.50 mm, or less than 0.25 mm. The size of the micropores of the prototype may be appropriately selected according to the size of the fine particles of the soft living tissue.
일 양태에서, 세절된 연질 생체 조직은 로터의 중심 상에 미리 배치될 수 있다. 다른 양태에서, 세절된 연질 생체 조직은 로터 밀의 투입구(7)를 통해 로터의 중심부로 공급될 수 있다. 로터 밀이 작동하기 시작하면 로터의 고속 회전에 의해 생성된 원심력에 의해 세절된 연질 생체 조직은 원형 체(4) 쪽으로 이동되고, 로터의 날(5)과 원형 체(4) 간의 전단력에 의해 찢어지고 갈아져 미립자화된다. 미립자화된 연질 생체 조직은 원형 체(4)에 형성된 미세공을 통과하여 외부 수집 용기에 수집된다.In one aspect, the shredded soft biological tissue may be pre-positioned on the center of the rotor. In another aspect, the shredded soft biological tissue may be supplied to the center of the rotor through the inlet 7 of the rotor mill. When the rotor mill starts to operate, the soft biological tissue shredded by the centrifugal force generated by the high-speed rotation of the rotor is moved toward the circular body (4), and is torn by the shear force between the blade (5) and the circular body (4) of the rotor. It is ground, ground and micronized. The micronized soft biological tissue passes through the micropores formed in the circular body 4 and is collected in an external collection container.
본 발명에서는 다양한 로터 밀이 이용될 수 있다. 로터 밀로는 예를 들어 Retsch® ZM 200 (Retsch GmbH, 독일), Retsch® ZM 100 (Retsch GmbH, 독일), Retsch® ZM 1000 (Retsch GmbH, 독일), Retsch® TWISTER (Retsch GmbH, 독일), Retsch® SR300 (Retsch GmbH, 독일), Fritsch® Pulverisette14 (Fritsch GmbH, 독일), Glatt Rotor Sieve GSE 이 이용될 수 있으나 이에 제한되지는 않는다.Various rotor mills can be used in the present invention. Rotor mills are for example Retsch ® ZM 200 (Retsch GmbH, Germany), Retsch ® ZM 100 (Retsch GmbH, Germany), Retsch ® ZM 1000 (Retsch GmbH, Germany), Retsch ® TWISTER (Retsch GmbH, Germany), Retsch ® SR300 (Retsch GmbH, Germany), Fritsch ® Pulverisette14 (Fritsch GmbH, Germany), Glatt Rotor Sieve GSE may be used, but are not limited thereto.
분쇄보조제 또는 퍼징제Grinding aid or purging agent
본 발명에서 분쇄보조제 또는 퍼징제는 고체 형태 또는 젤 형태의 생체적합성 재료가 이용될 수 있다. 본 발명에서 있어 고체 형태라 함은 딱딱한 제형일 수 있으며, 젤리처럼 말랑말랑한 제형일 수도 있다. 일 양태에서, 생체적합성 재료는 그 자체 또는 물, 배지와 같은 용액을 혼합하여 고체 형태 또는 젤 형태로 제조될 수 있다. 또한, 생체적합성 재료는 칼로 절단하거나, 틀에서 태블릿(tablet)화 하는 것으로 제조될 수도 있다. 생체적합성 재료에는 필요에 따라서는 생체적합성 접착제가 첨가될 수 있다.In the present invention, the grinding aid or purging agent may be a solid or gel biocompatible material. In the present invention, the solid form may be a hard formulation, or may be a soft formulation like jelly. In one aspect, the biocompatible material may be prepared by itself or in a solid form or a gel form by mixing a solution such as water or a medium. In addition, the biocompatible material may be manufactured by cutting with a knife or making a tablet in a mold. If necessary, a biocompatible adhesive may be added to the biocompatible material.
일 양태에서, 상기 생체적합성 재료는 인체 내에서 유해하지 않은 성분이 이용될 수 있다.In one aspect, the biocompatible material may include ingredients that are not harmful in the human body.
일 양태에서, 상기 생체적합성 재료는 제한되지는 않으나, 의료적 용도로 이용되는 성분, 약제의 부형제로 이용되는 성분, 의료기기에 이용되는 성분일 수 있다.In one aspect, the biocompatible material is not limited, but may be a component used for medical purposes, a component used as an excipient for a drug, or a component used for a medical device.
일 양태에서, 상기 생체적합성 재료는 고체 형태 또는 젤 형태의 유지하는 한, 저분자 재료 또는 고분자 재료일 수 있다. 고분자 재료는 천연 고분자, 재조합 고분자, 합성 고분자가 이용될 수 있다.In one aspect, the biocompatible material may be a low-molecular material or a high-molecular material as long as it is maintained in a solid form or a gel form. As the polymer material, natural polymers, recombinant polymers, and synthetic polymers can be used.
일 양태에서, 상기 생체적합성 재료는 제한되지는 않으나, 혈청 알부민, 히알루론산, 녹말, 젤라틴(gelatin), 키토산(chitosan), 콜라겐(collagen), 알긴산, 펙틴, 카라기난, 콘드로이틴(설페이트), 덱스트란(설페이트), 폴리라이신(polylysine), 카르복시메틸티틴, 피브린, 아가로스, 풀루란, 셀룰로오스, 폴리비닐피롤리돈(PVP), 폴리에틸렌글리콜(PEG), 폴리비닐알콜(PVA), 히드록시프로필셀룰로스(HPC), 히드록시에틸셀룰로스(HEC), 히드록시프로필메틸셀룰로스(HPMC), 나트륨카르복시메틸셀룰로스, 폴리알콜, 아라비아검, 알기네이트, 시클로덱스트린, 덱스트린, 팔라티니트, 폴리락트산(polylactic acid), 폴리글리콜산(polyglycolic acid), 폴리에틸렌옥사이드, 폴리아크릴산, 폴리아크릴아마이드, 폴리메타아크릴산 및 폴리말레인산과 같은 고분자 재료가 이용될 수 있다.In one embodiment, the biocompatible material is not limited, but serum albumin, hyaluronic acid, starch, gelatin, chitosan, collagen, alginic acid, pectin, carrageenan, chondroitin (sulfate), dextran (Sulfate), polylysine, carboxymethyl titine, fibrin, agarose, pullulan, cellulose, polyvinylpyrrolidone (PVP), polyethylene glycol (PEG), polyvinyl alcohol (PVA), hydroxypropylcellulose (HPC), hydroxyethylcellulose (HEC), hydroxypropylmethylcellulose (HPMC), sodium carboxymethylcellulose, polyalcohol, gum arabic, alginate, cyclodextrin, dextrin, palatinite, polylactic acid , Polyglycolic acid, polyethylene oxide, polyacrylic acid, polyacrylamide, polymethacrylic acid, and polymeric materials such as polymaleic acid may be used.
다른 양태에서, 상기 생체적합성 재료는 제한되지는 않으나, 포도당, 과당, 녹말, 트레할로스, 글루코스, 말토스, 락토스, 락툴로스, 프럭토스, 투라노스, 멜리토스, 멜레지토스, 덱스트란, 소르비톨, 크실리톨과 같은 당류일 수 있다.In another embodiment, the biocompatible material is not limited, but glucose, fructose, starch, trehalose, glucose, maltose, lactose, lactulose, fructose, turanose, melitose, melesitos, dextran, sorbitol, It may be a sugar such as xylitol.
일 양태에서, 상기 분쇄보조제에 이용되는 녹말은 제약용 녹말 또는 선겔화된 녹말(pregelatinized starch)일 수 있으며, 전체 또는 부분적으로 포함할 수 있다. 예를 들면. Cargill 사의 C☆PharmGel™ 와 같은 PGS grade 선겔화 녹말을 사용할 수 있다.In one aspect, the starch used in the grinding aid may be pharmaceutical starch or pregelatinized starch, and may be included in whole or in part. For example. PGS grade pregelatinized starch such as Cargill's C☆PharmGel™ can be used.
일 양태에서, 상기 생체적합성 재료는 수용성일 수 있다. 이때 로터 밀로 분쇄후, 생체적합성 재료는 수용액에 용해되므로 필터를 통해 쉽게 제거될 수 있다.In one aspect, the biocompatible material may be water-soluble. At this time, after grinding with a rotor mill, the biocompatible material is dissolved in an aqueous solution, so it can be easily removed through a filter.
일 양태에서, 상기 생체적합성 고분자는 생분해성 고분자일 수 있다.In one aspect, the biocompatible polymer may be a biodegradable polymer.
한편, 상기 분쇄보조제 또는 퍼징제는 세포의 생존이나 성장에 필요한 유효성분을 포함할 수 있다. 일 양태에서, 상기 유효성분은 세포성장을 위한 배양 배지일 수 있다. 상기 배양 배지는 제한되지는 않으나, DMEM(Dulbecco's Modified Eagle Media), MEM(Minimum Essential Media), RPMI 1640, IMDM(Iscove's Modified Dulbecco's Media), Defined Keratinocyte-SFM(without BPE), Keratinocyte-SFN(with BPE), KnockOut D-MEM, AmnioMAX-II Complete Medium 및 AmnioMAX-C100 Complete Medium, Plasmalyate-148, Plasmalyte-A 등이 이용될 수 있다.On the other hand, the grinding aid or purging agent may contain an active ingredient required for survival or growth of cells. In one aspect, the active ingredient may be a culture medium for cell growth. The culture medium is not limited, but DMEM (Dulbecco's Modified Eagle Media), MEM (Minimum Essential Media), RPMI 1640, IMDM (Iscove's Modified Dulbecco's Media), Defined Keratinocyte-SFM (without BPE), Keratinocyte-SFN (with BPE) ), KnockOut D-MEM, AmnioMAX-II Complete Medium and AmnioMAX-C100 Complete Medium, Plasmalyate-148, Plasmalyte-A, and the like may be used.
다른 한편, 상기 유효성분은 양수(amniotic fluid) 또는 양수유래 성분일 수 있다.On the other hand, the active ingredient may be amniotic fluid or amniotic fluid-derived ingredients.
일 양태에서, 상기 생체적합성 재료는 고체 형태 또는 젤 형태의 덩어리 형태일 수 있으며, 그 크기가 제한되지는 않으나, 평균 직경은 1 ~ 8mm, 바람직하게는 2 ~ 7mm, 더욱 바람직하게는 3 ~ 6mm, 더더욱 바람직하게는 4 ~ 5mm 일 수 있다.In one aspect, the biocompatible material may be in a solid form or a gel form, and the size is not limited, but the average diameter is 1 to 8 mm, preferably 2 to 7 mm, more preferably 3 to 6 mm. It may be, even more preferably 4 ~ 5mm.
일 양태에서, 상기 고체형태의 생체적합성 재료는 알약 테블릿하는 방법으로 제조될 수 있다. 필요에 따라서는 정제수가 첨가될 수 있다.In one aspect, the solid biocompatible material may be prepared by using a pill tablet. If necessary, purified water may be added.
일 양태에서, 생체적합성 재료가 포도당, 수크로스와 같은 당류인 경우 정제수와 혼합한 후 성형틀에서 넣고 건조시켜 제조될 수 있다.In one aspect, when the biocompatible material is a sugar such as glucose or sucrose, it may be mixed with purified water and then put in a mold and dried.
또 다른 양태에서, 상기 고체형태의 생체적합성 재료는 액상에서 가교제를 첨가하여 가교시켜 제조될 수도 있다. 가교제로는 글루타알데히드(glutaraldehyde)가 이용될 수 있으나, 이에 제한되지 않고, 공지된 가교제가 이용될 수 있다.In another embodiment, the solid biocompatible material may be prepared by crosslinking by adding a crosslinking agent in a liquid phase. As the crosslinking agent, glutaraldehyde may be used, but the present invention is not limited thereto, and a known crosslinking agent may be used.
또 다른 양태에서, 상기 고체 형태의 생체적합성 재료는 수용액에 용해된 후, 녹말과 같은 부형제와 혼합하고 건조하는 것으로 제조될 수 있다.In another embodiment, the solid biocompatible material may be dissolved in an aqueous solution, mixed with an excipient such as starch, and dried.
본 발명에 있어 상기 분쇄보조제 또는 퍼징제는 역할 상으로 구분한 것으로서, 상기 분쇄보조제와 퍼징제는 동일한 것일 수 있다. 즉, 분쇄보조제가 퍼징제가 될 수 있고, 퍼징제가 분쇄보조제가 될 수 있다. 일 양태에서 퍼징제는 전술한 분쇄보조제에서 설명한 생체적합성 재료일 수 있다.In the present invention, the grinding aid or purging agent is divided into roles, and the grinding aid and purging agent may be the same. That is, the grinding aid can be a purging agent, and the purging agent can be a grinding aid. In one aspect, the purging agent may be a biocompatible material described in the aforementioned grinding aid.
로터 밀이 작동할 때, 상기 분쇄보조제 또는 퍼징제는 원심력 및 전단력에 의해 로터 날과 원형 체 사이에서 분쇄된다. 분쇄보조제 또는 퍼징제는 연질 생체 조직의 분쇄를 도울 뿐 아니라 분쇄된 생체 조직이 원형 체 밖으로 빠져나가도록 밀어주는 역할을 한다(purging agent). 또한 상기 분쇄보조제는 로터 밀의 전단(shear)에 의해 발생하는 충격을 완충하는 역할을 하여 조직을 포함한 세포가 손상, 파괴되는 것을 방지하거나 감소시키는 역할을 한다.When the rotor mill is operated, the grinding aid or purging agent is crushed between the rotor blade and the circular sieve by centrifugal and shear forces. A grinding aid or purging agent not only helps the pulverization of soft living tissues, but also serves to push the pulverized living tissues out of the prototype body (purging agent). In addition, the grinding aid serves to buffer the impact generated by the shear of the rotor mill to prevent or reduce damage or destruction of cells including tissues.
로터 밀의 작동 순서는 다음과 같다.The operation sequence of the rotor mill is as follows.
도 3a 및 도3b를 참조하면, 로터 밀의 커버 (2)를 열고, 로터 밀의 본체 상에 라비린스 디스크(labyrinth disc)(8)를 삽입한다. 그런 다음 모터의 중심 축에 다중날이 구비된 로터(3)를 장착하고 수집 용기(카세트)(6)를 장착한 다음, 원형 체(4)를 장착한다. 세절된 연질 생체 조직을 로터(3) 중앙에 안치하고, 분쇄보조제는 로터 중심에서 약간 떨어진 위치에 안치한다. 로터 밀의 커버를 닫은 후 작동시킨다.3A and 3B, the cover 2 of the rotor mill is opened, and a labyrinth disc 8 is inserted on the body of the rotor mill. Then, a rotor (3) equipped with a multi-blade is mounted on the central axis of the motor, a collection container (cassette) (6) is mounted, and then a circular sieve (4) is mounted. The shredded soft living tissue is placed in the center of the rotor (3), and the grinding aid is placed in a position slightly away from the center of the rotor. Operate after closing the cover of the rotor mill.
로터 밀의 회전 속도와 작동 시간은 미리 설정될 수 있다.The rotational speed and operating time of the rotor mill can be preset.
로터 밀은 제한되지 않지만 1,000-18,000 rpm의 고속으로 회전한다. 한편, 로터 밀의 작동 중에는 별도의 상기 퍼징제를 로터 밀 투입구를 통해 투입하면, 분쇄된 연질 생체 조직은 원형 체 밖으로 완전히 밀려 나오게 된다.The rotor mill is not limited, but rotates at high speeds of 1,000-18,000 rpm. Meanwhile, when a separate purging agent is injected through the rotor mill inlet during operation of the rotor mill, the pulverized soft biological tissue is completely pushed out of the circular body.
분쇄된 생체 조직의 대부분은 수집 용기(6)에 수집되고 일부는 원형 체(4)의 외부 표면에 남게 된다. 원형 체에 남아있는 분쇄된 생체 조직은 세척 용액 또는 배양 배지를 사용하여 수집될 수 있으며, 그 후 분쇄된 생물학적 조직은 여과 또는 원심 분리에 의해 수득될 수 있다. 수득된 생체 조직 미립자는 배양 배지 또는 안정화 용액 중에서 안정화 될 수있다. 분쇄된 생물학적 조직을 안정화시키기 위해, N-아세틸 시스테인(NAC)과 같은 항산화제가 배양 배지 또는 안정화 용액에 더 첨가 될 수 있다.Most of the pulverized biological tissue is collected in the collection container 6 and a part remains on the outer surface of the circular body 4. The pulverized biological tissue remaining in the prototype can be collected using a washing solution or a culture medium, and the pulverized biological tissue can then be obtained by filtration or centrifugation. The obtained biological tissue microparticles can be stabilized in a culture medium or a stabilizing solution. To stabilize the pulverized biological tissue, antioxidants such as N-acetyl cysteine (NAC) may be further added to the culture medium or stabilization solution.
동결 보존Cryopreservation
본 발명의 미립자화된 연질 생체 조직은 살아 있는 세포, 예를 들어, 중간엽 줄기 세포, 상피 세포, 양막 유래의 섬유 아세포 등을 포함할 수 있다.The micronized soft biological tissue of the present invention may include living cells, for example, mesenchymal stem cells, epithelial cells, amnion-derived fibroblasts, and the like.
상기 살아 있는 세포를 포함하는 미립자화된 연질 생체 조직은 동결 보존될 수 있다.The micronized soft biological tissue including the living cells may be cryopreserved.
동결보호제(Cryoprotective agents)는 세포를 동결시키는 동안 세포 손상을 방지하기 위해 추가될 수 있다. 동결보호제는 세포 투과성 동결보호제와 비투과성 동결 방지제의 두 가지 종류가 있다. 세포 투과성 동결보호제는 세포막을 투과할 수있는 저분자 물질로서, 세포막을 통해 세포 내부의 물을 치환하여 동결시 얼음 조각 결정의 형성을 억제하는 역할을 한다. 비투과성 동결보호제는 주로 고분자 물질이며, 세포 외부에서 얼음 결정의 형성을 억제하는 역할을 한다.Cryoprotective agents can be added to prevent cell damage while freezing the cells. There are two types of cryoprotectants: cell-permeable cryoprotectants and non-permeable cryoprotectants. Cell-permeable cryoprotectants are low-molecular substances capable of penetrating cell membranes, and play a role of inhibiting the formation of ice cubes upon freezing by substituting water inside cells through the cell membrane. The impermeable cryoprotectant is mainly a polymer material, and serves to inhibit the formation of ice crystals outside the cell.
세포 투과성 동결보호제로는 디메틸술폭시드(DMSO), 에틸렌글리콜(EG), 글리세롤(Gly), 메탄올(MeOH), 프로필렌글리콜(PG) 등을 사용할 수 있으나 이에 한정되지는 않는다.As the cell permeable cryoprotectant, dimethyl sulfoxide (DMSO), ethylene glycol (EG), glycerol (Gly), methanol (MeOH), propylene glycol (PG), and the like may be used, but are not limited thereto.
비투과성 동결보호제로는 락토오스(lactose), 덱스트란(dextran) 40, 덱스트란 70, 프럭토올리고사카라이드(fructooligosaccharide), 이소말토올리고사카라이드(isomaltooligosaccharide), 갈락토올리고사카라이드(galactooligosaccharide), 펜타이소말토오스(pentaisomaltose), 트레할로스(trehalose), 수크로스(sucrose), 라피노오스(raffinose), d-만니톨(mannito) 등이 이용될 수 있으나 이에 한정되지는 않는다.Non-permeable cryoprotectants include lactose, dextran 40, dextran 70, fructooligosaccharide, isomaltooligosaccharide, galactooligosaccharide, and penta. Isomaltose (pentaisomaltose), trehalose (trehalose), sucrose (sucrose), raffinose (raffinose), d-mannitol (mannito), etc. may be used, but is not limited thereto.
세포 투과성 동결보호제와 비투과성 동결보호제는 단독으로 또는 조합하여 사용할 수 있다. 동결보호제의 농도는 제한되지 않지만, 5~40%(v/v)일 수 있다. 일 양태에서, 3~5% DMSO 및 9% 덱스트란 70의 혼합물이 사용될 수 있다. 생체 조직의 동결보존 방법은 당업계에 공지된 저온 보존 프로토콜에 따라 수행될 수 있다.The cell permeable cryoprotectant and the impermeable cryoprotectant may be used alone or in combination. The concentration of the cryoprotectant is not limited, but may be 5 to 40% (v/v). In one aspect, a mixture of 3-5% DMSO and 9% dextran 70 may be used. The cryopreservation method of living tissue can be performed according to a cryopreservation protocol known in the art.
본 발명의 연질 생체 조직 미립자 이식편은 융해 후 주사제 형태로 이용될 수 있으며, 무릎 골관절염, 연조직(soft tissue) 손상, 인대(ligament) 손상, 힘줄(tendon) 손상 등의 정형외과적 치료에 주로 이용될 수 있다.The soft biological tissue microparticle graft of the present invention may be used in the form of an injection after melting, and is mainly used for orthopedic treatment such as knee osteoarthritis, soft tissue damage, ligament damage, and tendon damage. I can.
실시예 1: 알부민 용액의 겔화(분쇄보조제 제조) Example 1: Gelation of albumin solution (preparation of grinding aid)
고체형태의 분쇄보조제를 제조하기 위하여, 알부민의 겔화 실험을 시행하였다.In order to prepare a solid grinding aid, an experiment on gelation of albumin was conducted.
소혈청 유래 알부민(bovine serum albumin, BSA), 인간혈청 알부민(human serum albumin, HSA)을 각각 초순수에 녹여 pH 7.0, 농도 10%, 12%, 14%, 16%, 18%, 20% (w/v)인 용액을 각각 제조한 후 알부민 농도 및 온도변화에 따른 겔화를 관찰하였다.Bovine serum albumin (BSA) and human serum albumin (HSA) are dissolved in ultrapure water, respectively, at pH 7.0, concentration 10%, 12%, 14%, 16%, 18%, 20% (w After preparing each solution of /v), gelation was observed according to the albumin concentration and temperature change.
도 4에서 (a)는 분쇄보조제로 이용된 혈청 알부민의 농도 및 온도에 따른 겔화 영역을 나타내는 상 다이어그램이고, (b)는 20% (w/v) 소혈청 유래 알부민과 인간 혈청 알부민의 겔화된 형태를 보여준다.In Figure 4, (a) is a phase diagram showing the gelation area according to the concentration and temperature of serum albumin used as a grinding aid, and (b) is a gelation of 20% (w/v) bovine serum-derived albumin and human serum albumin. Show the form.
본 실험을 통해서 알부민은 알부민의 농도가 증가함에 따라 겔화 온도는 낮아지고, 10% 이상의 농도에서 겔화될 수 있는 것으로 나타났다.Through this experiment, it was shown that the gelation temperature of albumin decreased as the concentration of albumin increased, and gelation was possible at a concentration of 10% or more.
실시예 2: 알부민+세포배양 배지 혼합액의 겔화(분쇄보조제 제조) Example 2: Gelation of albumin + cell culture medium mixture (preparation of a grinding aid)
알부민 용액과 세포배양 배지를 혼합하여 알부민의 겔화를 실시하였다.The albumin solution and the cell culture medium were mixed to perform gelation of albumin.
세포배양 배지는 필수아미노산(L-Arginine, L-Cystine, L-Histidine, L-Isoleucine)이 함유된 MEM amino acid solution(50×:50배 농축액), 비필수아미노산(L-Alanine, L-Asparagine, L-Aspartic acid)이 함유된 MEM non-essential amino acid solution(100×: 100배 농축액) , 비타민류가 함유된 MEM vitamin solution(100×: 100배 농축액)를 이용하였다. 여기서 "×"는 세포배양 배지에 들어가는 성분을 기준으로 해당 배수만큼 농축된 것으로 일반적으로 희석하여 이용된다.Cell culture medium is MEM amino acid solution (50×: 50 times concentrate) containing essential amino acids (L-Arginine, L-Cystine, L-Histidine, L-Isoleucine), and non-essential amino acids (L-Alanine, L-Asparagine). , L-Aspartic acid) containing MEM non-essential amino acid solution (100×: 100 times concentrate), vitamins containing MEM vitamin solution (100×: 100 times concentrate) was used. Here, "x" is concentrated by the corresponding multiple based on the components that enter the cell culture medium, and is generally used after being diluted.
25% (w/v) 혈청 알부민과 상기 MEM solution 등을 혼합하여 알부민의 농도는 전체 혼합액에 대하여 20% (w/v) 농도로 맞추고, 아미노산, 비타민의 농도는 전체 혼합액에 대하여 희석되었다. 예를들어, 25% (w/v)알부민 용액 400 ㎕와 아미노산(100×) 100 ㎕을 섞으면 총 500 ㎕의 용액이 되면서 알부민은 20% (w/v)로 희석되면서 아미노산은 20배(20×)로 희석된다.By mixing 25% (w/v) serum albumin and the MEM solution, the albumin concentration was adjusted to a concentration of 20% (w/v) with respect to the total mixture, and the concentration of amino acids and vitamins was diluted with respect to the total mixture. For example, if 400 µl of 25% (w/v) albumin solution and 100 µl of amino acids (100×) are mixed, a total of 500 µl is obtained, while albumin is diluted to 20% (w/v) and amino acids are 20 times (20). ×).
도 5는 알부민과 세포배양 배지 혼합액의 겔화된 형태를 나타내는 것으로, A(도 5A)는 필수아미노산류(AA), B(도 5B)는 비타민류(VITA), C(도 5C)는 비필수아미노산류(NAA)이 첨가된 것이다.Figure 5 shows the gelled form of albumin and cell culture medium mixture, A (Figure 5A) is essential amino acids (AA), B (Figure 5B) is vitamins (VITA), C (Figure 5C) is non-essential Amino acids (NAA) are added.
도 5에 보이는 바와 같이 알부민과 세포배양 배지 혼합액은 모두 겔화되었으며, 비필수아미노산류의 경우 10배 이상을 첨가하는 경우 반투명 혹은 유백색의 알부민 겔이 형성되었다.As shown in FIG. 5, both albumin and cell culture medium mixtures were gelled, and in the case of non-essential amino acids, when 10 times or more was added, a translucent or milky albumin gel was formed.
실시예 3: 알부민 녹말 페이스트 제조(분쇄보조제 제조) Example 3: Preparation of albumin starch paste (preparation of grinding aid)
20% (w/v) 인간 혈청 알부민 용액, 선겔화 녹말(pregelatinized starch), 실시예 2에서 언급된 세포 배양 배지를 혼합하여 일부민 녹말 페이스트를 제조하였다.A 20% (w/v) human serum albumin solution, pregelatinized starch, and the cell culture medium mentioned in Example 2 were mixed to prepare a partial starch paste.
도 6은 알부민 녹말 페이스트의 형태를 나타내는 것으로, A(도 6A)는 필수아미노산류(AA), B(도 6B)는 비타민류(VITA), C(도 6C)는 비필수아미노산류(NAA)이 첨가된 것이다.Figure 6 shows the form of the albumin starch paste, A (Figure 6A) is essential amino acids (AA), B (Figure 6B) is vitamins (VITA), C (Figure 6C) is non-essential amino acids (NAA) Is added.
도 6에 보이는 바와 같이, 알부민, 알부민 녹말 페이스트는 모두 유백색의 겔 형태로 제조되었다.As shown in FIG. 6, albumin and albumin starch paste were all prepared in a milky gel form.
실시예 4: 연질 생체 조직의 미립자화Example 4: Micronization of soft living tissue
임산부의 동의하에 수득한 태반으로부터 양막을 분리한 다음, 트리톤 X를 처리한 후 셀 스크래퍼(cell scrapper)를 이용하여 양막의 상피세포층을 제거하였다.After separating the amniotic membrane from the placenta obtained with the consent of the pregnant woman, Triton X was treated, and then the epithelial cell layer of the amniotic membrane was removed using a cell scraper.
상기 양막을 1% 스트렙토마이신/페니실린 항생제가 첨가된 PBS 또는 생리식염수로 세척한 다음, DMEM 배지에서 안정화시켰다.The amniotic membrane was washed with PBS or physiological saline to which 1% streptomycin/penicillin antibiotic was added, and then stabilized in DMEM medium.
상기 양막을 롤링 멀티-블레이드를 이용하여 약 4mm×4mm의 크기로 세절하였다.The amnion was shredded into a size of about 4mm×4mm using a rolling multi-blade.
상기 실시예 1 및 2과 같은 방법으로 제조된 알부민 겔을 큐브형태로 절단하여 분쇄보조제로 이용하였다.The albumin gel prepared in the same manner as in Examples 1 and 2 was cut into cubes and used as a grinding aid.
도 7에서 A(도 7A)는 20% (w/v) 알부민 만으로 제조된 분쇄보조제, B(도 7B)는 필수아미노산(5×), 비필수아미노산(5×) 및 비타민(1×)가 함유된 20% (w/v) 알부민으로 제조된 분쇄보조제를 나타낸다.In FIG. 7, A (FIG. 7A) is a grinding aid prepared with only 20% (w/v) albumin, B (FIG. 7B) is an essential amino acid (5×), a non-essential amino acid (5×), and a vitamin (1×). It shows a grinding aid prepared with 20% (w/v) albumin contained.
로터 밀(retsch zm 200)에 6날 로터 및 직경 0.25mm의 미세공을 가지는 원형 체(ring sieve)를 장착하였다. A 6-bladed rotor and a ring sieve having a diameter of 0.25 mm were mounted on a rotor mill (retsch zm 200).
상기 로터의 내부 주변으로 여러 개의 분쇄보조제를 안치하고, 로터의 중심부에는 세절된 양막을 안치하였다.Several grinding aids were placed around the inside of the rotor, and a shredded amnion was placed in the center of the rotor.
로터 밀을 3000 rpm의 속도로 회전시키면서 별도의 분쇄보조제를 로터 밀의 투입구로 투입하여 로터 내에서 분쇄된 양막을 체(sieve) 밖으로 밀어내었다.While rotating the rotor mill at a speed of 3000 rpm, a separate grinding aid was introduced into the inlet of the rotor mill, and the amniotic membrane crushed in the rotor was pushed out of the sieve.
로터 밀의 수집용기와 체(sieve)에 붙어 있는 분쇄된 양막을 DMEM 배지로 씻어 양막 분쇄물을 수집하고, 실온에서 1시간 동안 안정화시켰다.The pulverized amnion adhered to the collection container and sieve of the rotor mill was washed with DMEM medium to collect the pulverized amnion, and stabilized at room temperature for 1 hour.
실험예 1: 연질 생체 조직의 미립자화Experimental Example 1: Micronization of soft living tissue
상기 실시예 4에 따라 분쇄된 양막 조직과 종래 크리오밀(RetschTM Cryomill)로 분쇄된 양막 조직을 현미경으로 관찰하여 그 결과를 도 8 및 도 9에 나타냈었다(Scale Bar : 200 μm).Example 4 by observing the tissue with the amniotic membrane and the amniotic membrane tissue ground to a conventional keurioh mill (Retsch Cryomill TM) milling according to the microscope naeteotda receive the results in Figs. 8 and 9 (Scale Bar: 200 μm) .
도 8에서 A(도8A)는 종래 크리오밀(Cryomill)로 분쇄된 양막조직의 현미경 사진이고, B(도 8B)는 실시예 1에 따른 분쇄된 양막조직의 현미경 사진이다. 도 8에 보이는 바와 같이, 종래 크리오밀로 분쇄된 양막조직은 세포가 모두 파괴된 반면, 실시예 4에 따른 양막 조직은 세포가 생존하는 것을 알 수 있다.In FIG. 8, A (FIG. 8A) is a micrograph of a conventional amnion tissue pulverized with a cryomill, and B (FIG. 8B) is a micrograph of a pulverized amnion tissue according to Example 1. In FIG. As shown in Figure 8, it can be seen that the cells in the amniotic membrane tissue crushed with conventional cryomyl are all destroyed, whereas the amniotic membrane tissue according to Example 4 survives.
도 9는 실시예 4에 따라 분쇄된 양막조직의 또 다른 현미경 사진이다. 도 9는 보이는 바와 같이, 본 발명에 따른 미립자화된 양막 조직의 크기는 약 500 ㎛ 이하인 것을 알 수 있다.9 is another micrograph of the amniotic membrane tissue pulverized according to Example 4. As shown in Figure 9, it can be seen that the size of the micronized amniotic membrane tissue according to the present invention is about 500 μm or less.
도 10은 실시예 4에 따라 분쇄된 양막 조직의 세포외 기질(ECM; extracellular matrix)의 모습을 보여주는 주사식 전자현미경 사진이다(배율: 10000 배). 도 10에 보이는 바와 같이, 망상 섬유층(reticular fibers)이 그대로 보존되는 것을 알 수 있다.10 is a scanning electron microscope image showing the appearance of the extracellular matrix (ECM) of the amniotic membrane tissue pulverized according to Example 4 (magnification: 10000 times). As shown in FIG. 10, it can be seen that the reticular fibers are preserved as they are.
실험예 2: 미립자화된 양막 이식편의 세포 대사 활성도 측정Experimental Example 2: Measurement of cell metabolic activity of micronized amniotic membrane graft
실시예 4에 따라 미립자화된 양막 이식편의 세포 대사 활성도를 측정하였다.Cellular metabolic activity of micronized amniotic membrane grafts was measured according to Example 4.
본 발명에 따라 제조된 양막 이식편들을 각각 24-웰 플레이트에 분지하고, 20% 혈청 고농도 글루코즈 DMEM 배지(1㎖)에 12시간 동안 배양하고, 12시간 동안 회복기(recovery period)를 가졌다.Each amniotic membrane graft prepared according to the present invention was branched into a 24-well plate, incubated in 20% serum high-concentration glucose DMEM medium (1 ml) for 12 hours, and a recovery period was held for 12 hours.
웰 플레이트에 100 ㎕의 Alamar Blue 시약을 첨가한 후 3시간 동안 추가 배양을 실시하였다. 도 11은 Alamar Blue 시약 처리된 양막 이식편을 나타내는 것으로, "Fresh Amniotic Tissue"는 분쇄하지 않은 양막 이식편, "Processed Amniotic Tissues"는 본 발명에 따라 분쇄된 양막 이식편을 나타낸다.After adding 100 µl of Alamar Blue reagent to the well plate, further incubation was performed for 3 hours. FIG. 11 shows Alamar Blue reagent-treated amniotic membrane grafts, where "Fresh Amniotic Tissue" represents unground amniotic membrane grafts, and "Processed Amniotic Tissues" represents amniotic membrane grafts pulverized according to the present invention.
형광광도계를 이용하여 웰 플레이트의 형광 세기를 측정하여 세포 대사 활동도를 측정하여 그 결과를 도 12에 나타내었다(Ex: 560 nm; Em: 590 nm).The fluorescence intensity of the well plate was measured using a fluorescence photometer to measure cell metabolic activity, and the results are shown in FIG. 12 (Ex: 560 nm; Em: 590 nm).
도 12에 보이는 바와 같이, 본 발명에 따른 양막 이식편은 분쇄하지 않은 양막 조직에 비해 세포 대사 활성도는 낮으나, 분쇄후에도 세포 생존이 가능함을 의미한다. 특히, 필수아미노산(5×), 비필수아미노산(5×) 및 비타민(1×)가 함유된 20% (w/v) 알부민으로 제조된 분쇄보조제가 다른 분쇄보조제에 비교해 세포 대사 활성도가 가장 높음을 알 수 있다.As shown in FIG. 12, the amniotic membrane graft according to the present invention has a lower cell metabolic activity compared to the uncrushed amnion tissue, but it means that the cell survival is possible even after pulverization. In particular, a grinding aid made of 20% (w/v) albumin containing essential amino acids (5×), non-essential amino acids (5×) and vitamins (1×) has the highest cellular metabolism activity compared to other grinding aids. Can be seen.
실험예 3: 미립자화된 양막 이식편의 인간 섬유아세포(Detroit 562) 성장 촉진Experimental Example 3: Promoting growth of human fibroblasts (Detroit 562) of micronized amniotic membrane graft
본 발명에 따른 양막 이식편과 무혈청 배지 1:1 (w/w) 혼합용액 300 ㎕를 준비하고, 음성대조군으로는 무혈청 배지를, 양성대조군으로는 10% FBS 배지를 준비하였다.300 µl of a mixed solution of the amniotic membrane graft and serum-free medium 1:1 (w/w) according to the present invention was prepared, a serum-free medium was prepared as a negative control, and a 10% FBS medium was prepared as a positive control.
인간 섬유아세포(Detroit 562)를 무혈청 배지 1㎖과 혼합하여 3웰을 1개 군으로 하여 총 3개 군의 웰플레이트에 웰당 5×105 개로 접종하고 24시간 동안 세포를 부착시켰다. 3 ㎛ 세공(pore)을 가지는 배양플레이트 인서트(cell culture plate insert)를 장착한 다음, 본 발명에 따른 양막 이식편 혼합용액, 음성대조군, 양성대조군을 각각 배양플레이트 인서트 안에 투입한 후 24시간 배양하였다.Human fibroblasts (Detroit 562) were mixed with 1 ml of serum-free medium, and 3 wells were inoculated into well plates of a total of 3 groups at 5×10 5 per well, and the cells were attached for 24 hours. After mounting a culture plate insert having a 3 μm pore (cell culture plate insert), the amnion graft mixture solution, the negative control group, and the positive control group according to the present invention were respectively added to the culture plate inserts and cultured for 24 hours.
MTT 시약을 PBS(phosphate-buffered saline)에 5mg/mL의 농도로 녹인 후 배양된 24-웰 플레이트에 100 ㎕씩 처리한 다음, 37℃에서 1시간 보관 후 540nm 흡광도에서 생성된 MTT formazan의 양을 정량하여 전체 세포의 세포활성도를 분석하였다.The MTT reagent was dissolved in PBS (phosphate-buffered saline) at a concentration of 5 mg/mL, treated with 100 µl each in a cultured 24-well plate, and stored at 37°C for 1 hour, and the amount of MTT formazan produced at 540 nm absorbance was measured. By quantification, the cell activity of all cells was analyzed.
도 13은 본 발명에 따라 제조된 양막 이식편의 인간 섬유 아세포의 생장 촉진 효과를 나타내는 그래프이다.13 is a graph showing the effect of promoting the growth of human fibroblasts of the amniotic membrane graft prepared according to the present invention.
도 13에 보이는 바와 같이, 본 발명에 따른 양막 이식편(Processed Amniotic Tissues)는 음성대조군과 양성대조군와 비교해 높은 MTT 활성도(activity)를 보여주었으며, 이는 본 발명에 따른 양막 이식편에는 세포성장을 돕는 유효성분이 포함되어 있음을 의미한다.As shown in Figure 13, the amniotic membrane graft (Processed Amniotic Tissues) according to the present invention showed a high MTT activity (activity) compared to the negative and positive control groups, which included an active ingredient that helps cell growth in the amniotic membrane graft according to the present invention. It means being
본 발명은 사람이나 동물로부터 분리된 태반(placenta), 양막(anionic membrane), 융모막(chorionic membrane), 제대(umbilical cord), 연골(cartilage)과 같은 연질 생체 조직(soft biological tissue)을 분쇄하여 미립자화하는 방법에 관한 것이고, 상기 분쇄된 연질 생체 조직 미립자는 생체 조직 이식편(biological tissue graft)의 재료로 유용하게 이용된다.The present invention crushes soft biological tissues such as placenta, anionic membrane, chorionic membrane, umbilical cord, and cartilage separated from humans or animals It relates to a method of converting, and the pulverized soft biological tissue fine particles are usefully used as a material for a biological tissue graft.

Claims (12)

  1. 커팅 도구를 이용하여 인간 또는 동물로부터 분리된 연질 생체 조직을 세절하는 단계; 및Slicing the soft living tissue isolated from humans or animals using a cutting tool; And
    상기 세절된 연질 생체 조직을 고체형태의 생체적합성 재료와 함께 체(sieve)가 구비된 로터 밀(rotor mill)에 넣고 분쇄하는 단계를 포함하는,Comprising the step of placing the shredded soft biological tissue together with a solid biocompatible material in a rotor mill equipped with a sieve and grinding,
    연질 생체 조직을 미립자화하는 방법.A method of micronizing soft living tissue.
  2. 제1항에 있어서,The method of claim 1,
    상기 생체적합성 재료는 생체적합성 고분자 또는 당류인 것을 특징으로 하는, 연질 생체 조직을 미립자화하는 방법.The biocompatible material is a biocompatible polymer or sugar, characterized in that, the method for micronizing soft living tissue.
  3. 제2항에 있어서,The method of claim 2,
    상기 생체적합성 고분자는 혈청 알부민, 히알루론산, 녹말, 젤라틴(gelatin), 키토산(chitosan), 콜라겐(collagen), 알긴산, 펙틴, 카라기난, 콘드로이틴(설페이트), 덱스트란(설페이트), 폴리라이신(polylysine), 카르복시메틸티틴, 피브린, 아가로스, 풀루란, 셀룰로오스, 폴리비닐피롤리돈(PVP), 폴리에틸렌글리콜(PEG), 폴리비닐알콜(PVA), 히드록시프로필셀룰로스(HPC), 히드록시에틸셀룰로스(HEC), 히드록시프로필메틸셀룰로스(HPMC), 나트륨카르복시메틸셀룰로스, 폴리알콜, 아라비아검, 알기네이트, 시클로덱스트린, 덱스트린, 팔라티니트, 폴리락트산(polylactic acid), 폴리글리콜산(polyglycolic acid), 폴리에틸렌옥사이드, 폴리아크릴산, 폴리아크릴아마이드, 폴리메타아크릴산 및 폴리말레인산으로 이루어진 군에서 선택되는 1종 이상의 고분자 재료를 포함하는 것을 특징으로 하는, 연질 생체 조직을 미립자화하는 방법.The biocompatible polymers are serum albumin, hyaluronic acid, starch, gelatin, chitosan, collagen, alginic acid, pectin, carrageenan, chondroitin (sulfate), dextran (sulfate), polylysine. , Carboxymethyl titine, fibrin, agarose, pullulan, cellulose, polyvinylpyrrolidone (PVP), polyethylene glycol (PEG), polyvinyl alcohol (PVA), hydroxypropylcellulose (HPC), hydroxyethylcellulose ( HEC), hydroxypropylmethylcellulose (HPMC), sodium carboxymethylcellulose, polyalcohol, gum arabic, alginate, cyclodextrin, dextrin, palatinite, polylactic acid, polyglycolic acid, Polyethylene oxide, polyacrylic acid, polyacrylamide, polymethacrylic acid and polymaleic acid, characterized in that it comprises at least one polymer material selected from the group consisting of, a method for micronizing a soft living tissue.
  4. 제2항에 있어서According to claim 2
    상기 당류는 포도당, 과당, 녹말, 트레할로스, 글루코스, 말토스, 락토스, 락툴로스, 프럭토스, 투라노스, 멜리토스, 멜레지토스, 덱스트란, 소르비톨, 크실리톨으로 이루어진 군에서 선택되는 1종 이상의 당류를 포함하는 것을 특징으로 하는, 연질 생체 조직을 미립자화하는 방법.The saccharide is one selected from the group consisting of glucose, fructose, starch, trehalose, glucose, maltose, lactose, lactulose, fructose, turanose, melitose, melesitos, dextran, sorbitol, and xylitol A method for micronizing a soft biological tissue, characterized in that it contains the above saccharides.
  5. 제1항에 있어서,The method of claim 1,
    상기 생체적합성 재료는 세포의 생존 또는 성장에 필요한 유효성분을 더 포함하는 것을 특징으로 하는, 연질 생체 조직을 미립자화하는 방법.The biocompatible material further comprises an active ingredient required for survival or growth of cells.
  6. 제5항에 있어서,The method of claim 5,
    상기 세포의 생존 또는 성장에 필요한 유효성분은 DMEM (Dulbecco's Modified Eagle Media), MEM (Minimum Essential Media), RPMI 1640, Iscove's Modified Dulbecco's Media, Defined Keratinocyte-SFM (without BPE), Keratinocyte-D-MEM, AmnioMAX-II Complete Culture media, AmnioMAX-C100 Complete Culture media, Plasmalyate-148 및 Plasmalyte-A으로 이루어진 군에서 선택되는 것을 특징으로 하는, 연질 생체 조직을 미립자화하는 방법.Active ingredients required for the survival or growth of the cells are DMEM (Dulbecco's Modified Eagle Media), MEM (Minimum Essential Media), RPMI 1640, Iscove's Modified Dulbecco's Media, Defined Keratinocyte-SFM (without BPE), Keratinocyte-D-MEM, AmnioMAX. -II Complete Culture media, AmnioMAX-C100 Complete Culture media, Plasmalyate-148 and Plasmalyte-A, characterized in that selected from the group consisting of, a method for micronizing soft living tissue.
  7. 제1항에 있어서,The method of claim 1,
    상기 생체 조직은 양막(amniotic membrane), 융모막(chorionic membrane), 태반(placenta), 탯줄(umbilical cord) 및 연골로 이루어진 군에서 선택되는 1종 이상인, 연질 생체 조직을 미립자화하는 방법.The biological tissue is one or more selected from the group consisting of amniotic membrane, chorionic membrane, placenta, umbilical cord, and cartilage.
  8. 제1항에 있어서,The method of claim 1,
    상기 분쇄된 생체 조직의 평균 직경은 500 ㎛ 이하인, 연질 생체 조직을 미립자화하는 방법.The average diameter of the pulverized biological tissue is 500 μm or less, the method of micronizing soft biological tissue.
  9. 제1항에 있어서,The method of claim 1,
    상기 로터 밀은 다수의 날(blade)이 구비되고, 회전하는 원형 로터와 그 외부에 장착된 체(sieve)를 포함하는 것인, 연질 생체 조직을 미립자화하는 방법.The rotor mill is provided with a plurality of blades, and includes a rotating circular rotor and a sieve mounted on the outside thereof.
  10. 제1항에서 제조된 생체 조직 미립자를 포함하는 생체 조직 미립자 이식편.A biological tissue fine particle graft comprising the biological tissue fine particles prepared in claim 1.
  11. 제10항에 있어서,The method of claim 10,
    상기 생체 조직 미립자 이식편은 미립자화된 연질 생체 조직을 동결하여 이루어지는 것인, 생체 조직 미립자 이식편.The biological tissue particulate graft is obtained by freezing the particulate soft biological tissue.
  12. 제11항에 있어서,The method of claim 11,
    상기 생체 조직 미립자 이식편은 동결 융해 후 주사제로 이용되는 것인, 생체 조직 이식편.The biological tissue microparticle graft is to be used as an injection after freezing and thawing, a biological tissue graft.
PCT/KR2020/007174 2019-06-02 2020-06-02 Method for micronizing soft living tissue, and soft living tissue particulate graft produced thereby WO2020246781A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20190065035 2019-06-02
KR10-2019-0065035 2019-06-02

Publications (1)

Publication Number Publication Date
WO2020246781A1 true WO2020246781A1 (en) 2020-12-10

Family

ID=73653007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/007174 WO2020246781A1 (en) 2019-06-02 2020-06-02 Method for micronizing soft living tissue, and soft living tissue particulate graft produced thereby

Country Status (2)

Country Link
KR (1) KR102487903B1 (en)
WO (1) WO2020246781A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006043578A (en) * 2004-08-04 2006-02-16 Nagao System:Kk Planetary ball mill
US20150132851A1 (en) * 2011-11-08 2015-05-14 Auxocell Laboratories, Inc. Systems and methods for processing cells
JP2017529152A (en) * 2014-08-28 2017-10-05 ミメディクス グループ インコーポレイテッド Tissue graft reinforced with collagen
JP2018503103A (en) * 2014-12-15 2018-02-01 ヒューマン ブレイン ウェイブ エス.アール.エル. Biological material decomposition apparatus and corresponding manufacturing method, and cell suspension and tissue micrograft preparation method
WO2018064975A1 (en) * 2016-10-04 2018-04-12 Transwell Biotech Co., Ltd. Compositions and methods for maintaining cell viability

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2947908A1 (en) * 1979-11-28 1981-06-04 Frigocyt Labor Dr. Gosch & Sohn GmbH, 2000 Hamburg Pathogen-free foetal cell preparations prodn. - from aseptically obtd. foetal organs by shock freezing in liq. nitrogen and homogenising in Ringer soln.
EP3744336A1 (en) * 2011-02-14 2020-12-02 MiMedx Group, Inc. Micronized placental tissue compositions and methods for making and using the same
US20220213430A1 (en) * 2019-04-24 2022-07-07 Viadigm Llc Methods of tissue processing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006043578A (en) * 2004-08-04 2006-02-16 Nagao System:Kk Planetary ball mill
US20150132851A1 (en) * 2011-11-08 2015-05-14 Auxocell Laboratories, Inc. Systems and methods for processing cells
JP2017529152A (en) * 2014-08-28 2017-10-05 ミメディクス グループ インコーポレイテッド Tissue graft reinforced with collagen
JP2018503103A (en) * 2014-12-15 2018-02-01 ヒューマン ブレイン ウェイブ エス.アール.エル. Biological material decomposition apparatus and corresponding manufacturing method, and cell suspension and tissue micrograft preparation method
WO2018064975A1 (en) * 2016-10-04 2018-04-12 Transwell Biotech Co., Ltd. Compositions and methods for maintaining cell viability

Also Published As

Publication number Publication date
KR102487903B1 (en) 2023-01-12
KR20200138682A (en) 2020-12-10

Similar Documents

Publication Publication Date Title
WO2010044577A2 (en) Method for manufacturing a porous three-dimensional support using powder from animal tissue, and porous three-dimensional support manufactured by same
EP2254608B1 (en) Compartmental extract compositions for tissue engineering
JP5226914B2 (en) Granular acellular tissue matrix
US11135163B2 (en) Peptide hydrogel properties and its applications
Bari et al. Association of silk sericin and platelet lysate: Premises for the formulation of wound healing active medications
US20040191226A1 (en) Method for repair of body wall
US20190134099A1 (en) Human tissue derived compositions and uses thereof
US20040187877A1 (en) Method for repair of liver tissue
US20120115222A1 (en) Composition and method for maintenance, differentiation, and proliferation of stem cells
US20120027732A1 (en) Thermoreversible collagen
EP3672607A1 (en) Composition comprising wharton's jelly, method for preparing same and uses thereof
EA037396B1 (en) Modified collagen
CN109157676A (en) A kind of preparation method for remolding compound bio amnion
WO2020246781A1 (en) Method for micronizing soft living tissue, and soft living tissue particulate graft produced thereby
WO2017074093A1 (en) Wound dressing material comprising fibrillated acellular dermis matrix and biodegradable polymer, and preparation method therefor
US20220218868A1 (en) Novel polysaccharide-based hydrogel scaffolds for wound care
WO2021125373A1 (en) Medical composition comprising adipose tissue-derived extracellular matrix and method for preparing same
KR102123903B1 (en) Composition of exosome nano carriers containing differentiation factors and methods of thereof
WO2021177503A1 (en) Composition using cartilage component-based bio-ink to construct structure for purpose of microtia treatment, and preparation method therefor
ITVR990082A1 (en) BIOARTIFICIAL SUBSTRATE FOR THE REALIZATION OF FABRICS AND ORGANIANIMALS, IN PARTICULAR HUMAN.
RU2452527C1 (en) Method of cartilage hyaline neogenesis accompanying early destructive diseases
WO2023085453A1 (en) Method for producing ultra-fine acellular dermal matrix derived from animal skin
WO2013002553A2 (en) Method for proliferating chondrocytes for use in meniscal cartilage transplantation
WO2021117915A1 (en) Scaffold using adipose tissue-derived extracellular matrix, and method for producing same
Nandikolmath et al. Preparation of bio-bandage from human platelet lysate admixed with sericin polymer for efficient wound healing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20818600

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29.04.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20818600

Country of ref document: EP

Kind code of ref document: A1