WO2020246686A1 - Centrifugal pump directly connected to ultra-high speed permanent magnet motor - Google Patents

Centrifugal pump directly connected to ultra-high speed permanent magnet motor Download PDF

Info

Publication number
WO2020246686A1
WO2020246686A1 PCT/KR2020/001710 KR2020001710W WO2020246686A1 WO 2020246686 A1 WO2020246686 A1 WO 2020246686A1 KR 2020001710 W KR2020001710 W KR 2020001710W WO 2020246686 A1 WO2020246686 A1 WO 2020246686A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor housing
rotor part
fixed
casing
rotor
Prior art date
Application number
PCT/KR2020/001710
Other languages
French (fr)
Korean (ko)
Inventor
하기영
Original Assignee
(주) 동양화공기계
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 동양화공기계 filed Critical (주) 동양화공기계
Publication of WO2020246686A1 publication Critical patent/WO2020246686A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0606Canned motor pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/445Fluid-guiding means, e.g. diffusers especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/5806Cooling the drive system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • H02K9/06Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium with fans or impellers driven by the machine shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/50Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/201Heat transfer, e.g. cooling by impingement of a fluid

Definitions

  • the present invention relates to a centrifugal pump that transfers fluid by imparting pressure energy to a fluid by centrifugal force caused by rotation of an impeller.
  • Centrifugal pumps are the core equipment of refinery and petrochemical plants used to transfer working fluids such as hydrocarbons, basic raw materials, and synthetic raw materials to the reaction process.
  • a high pressure high head
  • the transfer pressure of the injected fuel must be much higher than the pressure inside the reaction tank.
  • An object of the present invention is to provide a centrifugal pump that can reduce vibration and noise while improving efficiency.
  • the centrifugal pump according to the present invention for achieving the above object includes a motor, an upper bearing mechanism, a lower bearing mechanism, an impeller, a casing, and a stuffing box.
  • the motor is extended upward from the motor housing and the intermediate rotor part and the intermediate rotor part arranged in the center of the motor housing with the permanent magnet mounted, and from the upper rotor part and the intermediate rotor part drawn out through the upper draw-out hole of the motor housing.
  • a rotor extending downwardly and having a lower rotor portion drawn out through a lower lead-out hole of the motor housing, and a stator disposed around the outer circumference of the intermediate rotor portion in a coil wound state and fixed to an inner wall of the motor housing.
  • the upper bearing mechanism is mounted in the upper withdrawal hole of the motor housing to support the rotation of the upper rotor part.
  • the lower bearing mechanism is mounted in the lower take-out hole of the motor housing to support the rotation of the lower rotor part.
  • the impeller is fixed on the same shaft at the lower end of the lower rotor part.
  • the casing is disposed to be spaced downward from the motor housing, discharges through a fluid passage through a fluid inlet, and discharges through a fluid outlet, and receives an impeller through a fluid passage through an upper opening.
  • the shaft sealing device is disposed between the motor housing and the casing to maintain airtightness between the upper opening of the casing and the lower rotor portion.
  • the rotor of the motor is directly connected to the impeller without an increase gear, and the rotational force of the motor is transmitted to the impeller, compared to adopting a speed increase gear, it is possible to improve efficiency by increasing the power density and reduce the volume in the vertical direction. Vibration and noise can be reduced by implementing it in a compact structure.
  • FIG. 1 is a longitudinal sectional view of a centrifugal pump according to an embodiment of the present invention.
  • FIG. 2 is a longitudinal sectional view showing an extract of the upper region of FIG. 1.
  • FIG. 3 is a longitudinal cross-sectional view showing an extract of the lower region of FIG. 1.
  • 5 is a plan view of the casing.
  • FIG. 6 is a perspective view of a circulation fan.
  • FIG. 7 is a perspective view of a cooling fan.
  • FIG. 8 is a cross-sectional view of the centrifugal pump shown in FIG. 1.
  • FIG. 9 is a cross-sectional view for explaining the operation of the circulation fan and the cooling fan.
  • FIG. 1 is a longitudinal sectional view of a centrifugal pump according to an embodiment of the present invention.
  • FIG. 2 is a longitudinal sectional view showing an extract of the upper region of FIG. 1.
  • 3 is a longitudinal cross-sectional view showing an extract of the lower region of FIG. 1.
  • 4 is a plan view of the impeller. 5 is a plan view of the casing.
  • the centrifugal pump includes a motor 100, an upper bearing mechanism 200, a lower bearing mechanism 300, an impeller 400, and It includes a casing 500, and a stuffing box 600.
  • the motor 100 includes a motor housing 110, a rotor 120, and a stator 130.
  • the motor housing 110 may include a housing body 111, an upper housing cover 112, and a lower housing cover 115.
  • the housing body 111 has an inner space, and the upper and lower sides are opened.
  • the upper housing cover 112 is fixed around the upper opening by bolting or the like while covering the upper opening of the housing body 111.
  • the upper housing cover 112 has an upper withdrawal hole through which the upper rotor part 122 is withdrawn.
  • the upper housing cover 112 may be configured in a form in which the inner cover part 113 and the outer cover part 114 are stacked up and down and fixed by bolting or the like.
  • a fan accommodation space 112a for accommodating a circulation fan 700 to be described later may be formed between the inner cover part 113 and the outer cover part 114.
  • the inner cover 113 includes air intakes 113a for inhaling air from the inner space of the housing body 111 to the fan receiving space 112a, and the inner space of the housing body 111 from the fan receiving space 112a. It has air outlets (113b) to discharge the air.
  • the air intakes 113a may be located adjacent to the outer periphery of the upper rotor part 122, and the air outlets 113b may be located adjacent to the inner wall of the housing body 111.
  • the lower housing cover 115 is fixed around the lower opening by bolting or the like while covering the lower opening of the housing body 111.
  • the lower housing cover 115 has a lower withdrawal hole through which the lower rotor part 123 is withdrawn.
  • the rotor 120 includes an intermediate rotor portion 121, an upper rotor portion 122 and a lower rotor portion 123.
  • the intermediate rotor unit 121 is disposed in the center of the motor housing 110 with a permanent magnet mounted thereon.
  • the intermediate rotor unit 121 may have a constant outer diameter and may embed a permanent magnet.
  • the upper rotor part 122 extends upward from the intermediate rotor part 121 and is drawn out through the upper withdrawal hole of the motor housing 110.
  • the upper rotor part 122 may be formed in a form in which the outer diameter gradually decreases toward the upper side.
  • the lower rotor part 123 extends downward from the intermediate rotor part 121 and is drawn out through the lower withdrawal hole of the motor housing 110.
  • the lower rotor part 123 may be formed in a form in which the outer diameter gradually decreases toward the lower side.
  • the intermediate rotor portion 121, the upper rotor portion 122, and the lower rotor portion 123 are formed of separate members and are fitted together in the sleeve 124, thereby configuring an integrated rotor 120.
  • the intermediate rotor portion 121, the upper rotor portion 122, and the lower rotor portion 123 are manufactured as one member, so that an integrated rotor 120 may be configured.
  • the stator 130 is disposed around the outer circumference of the intermediate rotor unit 121 while the coil is wound, and is fixed to the inner wall of the motor housing 110. In a state in which a magnetic field is generated by the permanent magnet of the rotor 120, when current is supplied to the coil of the stator 130, the rotor 120 is rotatable by an electromagnetic force.
  • the stator 130 has teeth formed along the circumferential direction on the surface facing the rotor 120, and slots are formed between the teeth.
  • the coils can be installed to wind each tooth.
  • the stator 130 generates a rotating magnetic field for rotating the rotor when a current flows through the coil.
  • These motors 100 include the number of slots, turns per slot, winding diameter, slot area, number of parallel circuits, number of wires, space factor, phase resistance, synchronous inductance, counter electromotive force constant, permanent magnet diameter, rotor diameter, stator It can be configured with an ultra-high-speed permanent magnet motor of 12,000 rpm or more according to settings such as inner diameter, stator outer diameter, stator axial length, sleeve thickness, air gap, tooth thickness, and slot opening.
  • the upper bearing mechanism 200 is mounted in the upper withdrawal hole of the motor housing 110 to support the rotation of the upper rotor part 122.
  • the upper bearing mechanism 200 may include an upper bearing 210 and an upper bearing housing 220.
  • the upper bearing 210 supports rotation of the upper rotor part 122.
  • the upper bearing 210 may be formed of a rolling bearing.
  • the upper bearing housing 220 is fixed to the upper withdrawal hole of the motor housing 110 while being supported by surrounding the outer circumference of the upper bearing 210.
  • the upper bearing housing 220 may be formed in a form in which the upper part partially covers the outer cover part 114 with the lower part inserted into the upper withdrawal hole of the outer cover part 114.
  • the upper bearing housing 220 may be fixed to the outer cover portion 114 by bolting or the like.
  • the upper bearing 210 may be supplied with oil for lubrication through the upper oil passage 114a.
  • the upper oil passage 114a may be formed to supply oil from the inner boss 231 to the upper bearing 210 and to discharge oil falling by gravity to the outer cover portion 114.
  • the upper oil passage 114a may be supplied with oil by an oil jet method or by mixing and spraying air with oil.
  • the upper oil passage 114a may be sealed by a first oil seal 230 disposed above the upper bearing mechanism 200 and a second oil seal 240 disposed below the upper bearing mechanism 200.
  • the inner boss 231 may be fixed to the upper side of the outer cover part 114 by bolting or the like while penetrating the upper rotor part 122 through a hollow.
  • the first oil seal 230 is fixed to the hollow inner circumferential surface of the inner boss 231 and contacts the outer circumferential surface of the upper rotor part 122 to maintain airtightness between the inner boss 231 and the upper rotor part 122 I can.
  • the first oil seal 230 may be formed of a labyrinth seal.
  • Labyrinth seal is a type of seal that reduces the amount of leakage by receiving a pressure drop every time a fluid passes through narrow gaps several times.
  • the second oil seal 240 contacts the outer circumferential surface of the upper rotor part 122 while being fixed to the inner circumferential surface of the upper withdrawal hole of the inner cover part 113, so that between the inner cover part 113 and the upper rotor part 122 Can keep the confidentiality of.
  • the second oil seal 240 may be formed of a labyrinth seal.
  • the lower bearing mechanism 300 is mounted in the lower withdrawal hole of the motor housing 110 to support the rotation of the lower rotor part 123.
  • the lower bearing mechanism 300 may include lower bearings 310 and lower bearing housings 320.
  • the lower bearings 310 are arranged in two rows up and down to support the rotation of the lower rotor part 123.
  • the lower bearing 310 may be formed of a rolling bearing.
  • the lower bearing housing 320 is fixed to the lower lead-out hole of the motor housing 110 while surrounding and supporting the lower bearings 310.
  • the lower bearing housing 320 may be fixed to the lower housing cover 115 by bolting or the like while being inserted into the lower lead-out hole of the lower housing cover 115.
  • the lower bearing 310 may be supplied with oil for lubrication through the lower oil passage 115a.
  • the lower oil passage 115a supplies oil from the upper portion of the lower housing cover 115 to the lower bearing 310 in the upper row, and the oil falling through the lower bearing 310 in the lower row by gravity is transferred to the lower housing cover 115 ) Can be formed to be discharged to the bottom of the.
  • the lower oil passage 115a may be supplied with oil by an oil jet method, or may be supplied with oil by mixing and spraying air with oil.
  • the lower oil passage 115a may be sealed by a third oil seal 330 disposed above the lower bearing mechanism 300 and a shaft sealing device 600 disposed below the lower bearing mechanism 300.
  • the third oil seal 330 is disposed above the bearings 310 in the upper row and contacts the outer circumferential surface of the lower rotor part 123 while being fixed to the lower housing cover 115, so that the lower housing cover 115 and Airtightness between the lower rotor parts 123 can be maintained.
  • the third oil seal 330 may be formed of a labyrinth seal.
  • the impeller 400 is fixed to the lower end of the lower rotor part 123 on the same axis. As the impeller 400 rotates together with the lower rotor part 123, the velocity energy by centrifugal force is applied to the sucked fluid.
  • the impeller 400 may have a structure in which the wings 402 are arranged in the same shape along the outer circumference of the hub 401.
  • the inducer 410 may be fixed to the lower side of the impeller 400 on the same axis.
  • the inducer 410 is disposed in front of the impeller 400 based on the suction direction of the fluid and rotates together with the lower rotor part 123, thereby preventing cavitation.
  • the inducer 410 may have a structure in which the wings 412 are formed in a spiral direction on the outer peripheral surface of the hub 411.
  • the inducer 410 includes a first inducer coupling portion 413 extending upward from the hub 411 and a second inducer coupling portion 414 extending upward from the first inducer coupling portion 413.
  • the first inducer coupling portion 413 is coupled in a state through the hub 401 of the impeller 400 in a buried key manner, thereby preventing a relative rotational slip between the inducer 410 and the impeller 400. Can be prevented.
  • the second inducer coupling portion 414 may be screwed into a lower screw groove of the lower rotor portion 123 by forming a screw tab on the outer periphery.
  • the screw coupling direction of the second inducer coupling part 414 and the lower rotor part 123 is set in a direction opposite to the rotational direction of the lower rotor part 123, so that the second inducer coupling part 414 and the lower rotor The part 123 may be prevented from loosening when the lower rotor part 123 is rotated.
  • a shroud 420 may be fixed to the fluid passage 530 of the casing 500 with the inducer 410 surrounding the outer circumference.
  • the shroud 420 has a hollow of a certain inner diameter.
  • the shroud 420 may be formed in a form in which the lower part has a certain outer diameter, and the outer diameter is expanded in two stages as the upper part goes upward.
  • the casing 500 has a two-stage jaw for seating the upper portion of the shroud 420 in two stages around the pumping space 531.
  • the shroud 420 may be mounted in two stages around the pumping space 531 of the casing 500 and may be fixed by bolting or the like.
  • the casing 500 is disposed to be spaced apart downward from the motor housing 110.
  • the casing 500 is discharged through the fluid passage 530 through the fluid inlet 510 and the fluid outlet 520, and accommodates the impeller 400 through the fluid passage 530 through the upper opening.
  • the casing 500 may have a fluid inlet 510 and a fluid outlet 520 formed on an outer surface thereof, and a fluid passage 530 is formed in a spiral shape therein to be connected to the fluid inlet 510 and the fluid outlet 520 . That is, the casing 500 may be formed of a volute casing.
  • the casing 500 may have a flange formed around each of the fluid inlet 510 and the fluid outlet 520.
  • the casing 500 has a pumping space 531 accommodating the impeller 400 and the inducer 410 through an upper opening in the middle of the fluid passage 530.
  • a fluid passage 530 between the outlet of the impeller 400 and the fluid outlet 520 may be formed as a diffuser.
  • the diffuser converts the velocity energy of water applied by the impeller 400 into the pressure energy of water.
  • the shaft sealing device 600 is disposed between the motor housing 110 and the casing 500 to maintain airtightness between the upper opening of the casing 500 and the lower rotor part 123.
  • the shaft sealing device 600 has a structure in which the seal 610 is mounted on the seal housing 620.
  • the seal housing 620 is disposed between the motor housing 110 and the casing 600 while penetrating the lower rotor part 123 through the hollow.
  • the seal housing 620 is fixed to the motor housing 110 and the casing 500 by bolting or the like.
  • the seal housing 620 covers the upper opening of the casing 500 with the lower part passing through the lower rotor part 123.
  • the seal housing 620 may be formed in a form in which the outer diameter decreases in multiple stages toward the lower side.
  • the casing 500 may be formed in a shape having a jaw for seating the seal housing 620 in multiple stages around the upper opening. Therefore, the casing 500 and the seal housing 620 can be maintained in a stably coupled state.
  • Seal 610 contacts the outer circumferential surface of the lower rotor part 123 while being fixed to the hollow inner circumferential surface of the seal housing 620, thereby maintaining airtightness between the seal housing 620 and the lower rotor part 123.
  • Seal 610 may be made of a mechanical seal (mechanical seal).
  • a mechanical seal is a surface-contact type seal that consists of two perturbation surfaces perpendicular to the rotation axis, one side rotates with the rotation axis, and continuously maintains the sealing of the rotation axis by the tension of the spring or the pressure of the fluid.
  • lubrication of the seal surface is achieved by a self-formed fluid film (0.025 ⁇ 0.25 ⁇ m).
  • the circulation fan 700 is fixed to the upper rotor part 122 on the same axis while being disposed inside the motor housing 110 and rotates, thereby circulating the air inside the motor housing 110.
  • the cooling fan 800 is disposed on the outside of the motor housing 110 and is fixed to the upper rotor part 122 on the same axis and rotates, ambient air may be sent to the outer wall of the motor housing 110.
  • the motor 100 When the centrifugal pump transfers a fluid such as gas or steam that may cause an explosion or fire, the motor 100 is made of an explosion-proof motor and has a closed structure in which the inflow of external cooling air is blocked. When the motor 100 is driven, heat is generated from the permanent magnet of the rotor 120 and the coil of the stator 130 to increase the internal temperature. When the inside of the motor 100 is excessively overheated, a problem such as burning of the motor 100 may occur. Therefore, the temperature of the permanent magnet inside the motor 100 needs to be maintained at a set temperature, for example, 140° C. or less.
  • the circulation fan 700 alleviates the temperature imbalance inside the motor 100, and the cooling fan 800 sets the internal temperature of the motor 100 by removing heat inside the motor 100 to the outside. Allows you to lower it below the temperature.
  • the circulation fan 700 may be formed of a centrifugal type that sucks air from the center and sends it in the circumferential direction.
  • the circulation fan 700 is formed in a form in which the blades 720 are arranged in the same shape along the circumferential direction on the hollow disk 710.
  • the cooling fan 800 may be of an axial flow type that transports air in the same direction as the axial direction.
  • the cooling fan 800 has a structure in which the blades 820 are arranged in the same shape along the outer circumference of the hub 810.
  • the blades 820 of the cooling fan 800 are set to suck air from the upper part and send it to the lower part when the upper rotor part 122 rotates.
  • the motor 100 may include a top cap 116 accommodating the cooling fan 800.
  • the top cap 116 has an inner space and has an opening formed at the lower side.
  • the top cap 116 is fixed to the upper housing cover 112 around the lower opening by bolting or the like in a state in which the cooling fan 800 is accommodated in the inner space.
  • the top cap 116 may have air intake ports 116a that suck air in the upper side.
  • the upper housing cover 112 may have air outlets 112b for discharging air in the top cap 116 at a portion adjacent to the top cap 116.
  • the air outlets 112b may be formed to discharge air in the top cap 116 and guide it to the outer surface of the housing body 111.
  • the housing body 111 may be formed by protruding radiating fins 111a from the outer surface.
  • the radiating fins 111a may be arranged at regular intervals along the outer periphery of the housing body 111.
  • Each of the heat dissipation fins 111a may be formed in a form extending in a predetermined cross-sectional area along the vertical direction of the housing body 111.
  • the radiating fins 111a expand the cooling surface of the housing body 111 in contact with air, thereby increasing the heat dissipation performance of the housing body 111 by air cooling.
  • the circulation fan 700 and the cooling fan 800 rotate together with the upper rotor part 122 of the rotor 120.
  • the circulation fan 700 sucks air from the inner space of the housing body 111 through the air inlet 113a of the inner cover 113 adjacent to the outer circumference of the upper rotor part 122, and then in the circumferential direction. And discharged to the inner space of the housing body 111 through the air outlets 113b of the inner cover 113 adjacent to the inner wall of the housing body 111. Accordingly, the air in the housing body 111 is circulated by the circulation fan 700 to alleviate the temperature imbalance inside the motor 100.
  • the cooling fan 800 sucks in through the air intake openings 116a of the top cap 116 and then discharges it in the axial direction and discharges it through the air outlets 112b of the upper housing cover 112.
  • the exhausted air flows along the outer surface of the housing body 111 and cools through heat exchange, thereby removing heat from the inside of the motor 100 to the outside. Accordingly, the cooling fan 800 can lower the internal temperature of the motor 100 together with the circulation fan 700 to a set temperature or less.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Power Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

The present invention relates to a centrifugal pump directly connected to an ultra-high speed permanent magnet motor. The motor comprises: a motor housing; a rotor having an intermediate rotor part, arranged in the center of a motor housing, with permanent magnets mounted thereon, an upper rotor part extending upward from the intermediate rotor part and drawn out through an upper draw-out hole of the motor housing, and a lower rotor part extending downward from the intermediate rotor part and drawn out through a lower draw-out hole of the motor housing; and a stator arranged around the outer circumference of the intermediate rotor part, with a coil wound therearound, and fixed to an inner wall of the motor housing. An impeller is fixed to the bottom end of the lower rotor part on the same shaft. A casing discharges, through a fluid outlet, fluid passing through a fluid passage from a fluid inlet, and receives the impeller in the fluid passage through an upper opening. A stuffing box is arranged between the motor housing and the casing so as to maintain airtightness between the upper opening of the casing and the lower rotor part.

Description

초고속 영구자석 모터와 직결된 원심펌프Centrifugal pump directly connected to ultra-high-speed permanent magnet motor
본 발명은 임펠러의 회전에 의한 원심력으로 유체에 압력 에너지를 부여해서 유체를 이송하는 원심펌프에 관한 기술이다.The present invention relates to a centrifugal pump that transfers fluid by imparting pressure energy to a fluid by centrifugal force caused by rotation of an impeller.
원심펌프는 탄화수소, 기초원료, 합성원료 등과 같은 작동유체를 반응공정으로 이송하기 위해 사용되는 정유·석유화학 플랜트의 핵심 장비이다. 반응공정에서 고압력(고양정)이 필요한데, 그 이유는 고압상태의 반응조 내부로 기초·중간연료를 주입하기 위해서는 반응조 내부압력에 비해 주입연료의 이송압력이 훨씬 높아야 하기 때문이다.Centrifugal pumps are the core equipment of refinery and petrochemical plants used to transfer working fluids such as hydrocarbons, basic raw materials, and synthetic raw materials to the reaction process. In the reaction process, a high pressure (high head) is required, because in order to inject the basic and intermediate fuel into the reaction tank under high pressure, the transfer pressure of the injected fuel must be much higher than the pressure inside the reaction tank.
특히, 반응공정 특성상 순차적인 반응을 일으키기 위해서는 소유량의 원료 주입이 필요하며, 이를 위해 기존의 고유량·고압력 다단 방식 원심펌프를 적용할 경우 원료를 바이패스시키는 양이 많아져 생산 및 기기 운용 측면에서 매우 비효율적이다. 따라서, 대부분의 정유·석유화학 공정에서는 소유량·고압력 조건을 만족시키기 위해 소유량·고압력 방식 원심펌프를 적용하고 있다.In particular, due to the nature of the reaction process, it is necessary to inject a small amount of raw material to cause a sequential reaction. For this purpose, when the existing high flow and high pressure multi-stage centrifugal pump is applied, the amount of bypassing the raw material increases in terms of production and equipment operation. It is very inefficient. Therefore, in most oil refining and petrochemical processes, a low flow and high pressure centrifugal pump is applied to satisfy the low flow and high pressure conditions.
종래에 따른 원심펌프는 유도전동기로 증속기어를 구동시켜 고속 회전을 발생시키도록 구성된 예가 있는데, 증속기어의 채용으로 인해 출력 밀도가 낮아 효율이 낮고, 수직 방향으로 체적이 크기 때문에 진동 및 소음 문제가 빈번히 발생한다.There is an example of a conventional centrifugal pump configured to generate a high-speed rotation by driving an increase gear with an induction motor, but due to the adoption of the speed increase gear, the efficiency is low due to the low power density, and the problem of vibration and noise is large because the volume in the vertical direction is large. Occurs frequently.
본 발명의 과제는 효율을 향상시킴과 아울러 진동 및 소음을 줄일 수 있는 원심펌프를 제공함에 있다.An object of the present invention is to provide a centrifugal pump that can reduce vibration and noise while improving efficiency.
상기의 과제를 달성하기 위한 본 발명에 따른 원심펌프는 모터와, 상측 베어링 기구와, 하측 베어링 기구와, 임펠러(impeller)와, 케이싱, 및 축봉장치(stuffing box)를 포함한다. 모터는 모터 하우징과, 영구자석을 장착한 상태로 모터 하우징의 중앙에 배치된 중간 로터부와 중간 로터부로부터 상측으로 연장되어 모터 하우징의 상측 인출홀을 통해 인출된 상측 로터부와 중간 로터부로부터 하측으로 연장되어 모터 하우징의 하측 인출홀을 통해 인출된 하측 로터부를 구비하는 로터와, 코일을 감은 상태로 중간 로터부의 바깥 둘레에 배치되어 모터 하우징의 내벽에 고정된 스테이터를 포함한다. 상측 베어링기구는 모터 하우징의 상측 인출홀에 장착되어 상측 로터부의 회전을 지지한다. 하측 베어링기구는 모터 하우징의 하측 인출홀에 장착되어 하측 로터부의 회전을 지지한다. 임펠러는 하측 로터부의 하단에 동일 축상으로 고정된다. 케이싱은 모터 하우징으로부터 하방으로 이격되어 배치되며, 유체 흡입구를 통해 유체 통로를 거쳐 유체 배출구를 통해 배출하며, 상측 개구를 통해 유체 통로로 임펠러를 수용한다. 축봉장치는 모터 하우징과 케이싱 사이에 배치되어 케이싱의 상측 개구와 하측 로터부 사이의 기밀을 유지한다.The centrifugal pump according to the present invention for achieving the above object includes a motor, an upper bearing mechanism, a lower bearing mechanism, an impeller, a casing, and a stuffing box. The motor is extended upward from the motor housing and the intermediate rotor part and the intermediate rotor part arranged in the center of the motor housing with the permanent magnet mounted, and from the upper rotor part and the intermediate rotor part drawn out through the upper draw-out hole of the motor housing. A rotor extending downwardly and having a lower rotor portion drawn out through a lower lead-out hole of the motor housing, and a stator disposed around the outer circumference of the intermediate rotor portion in a coil wound state and fixed to an inner wall of the motor housing. The upper bearing mechanism is mounted in the upper withdrawal hole of the motor housing to support the rotation of the upper rotor part. The lower bearing mechanism is mounted in the lower take-out hole of the motor housing to support the rotation of the lower rotor part. The impeller is fixed on the same shaft at the lower end of the lower rotor part. The casing is disposed to be spaced downward from the motor housing, discharges through a fluid passage through a fluid inlet, and discharges through a fluid outlet, and receives an impeller through a fluid passage through an upper opening. The shaft sealing device is disposed between the motor housing and the casing to maintain airtightness between the upper opening of the casing and the lower rotor portion.
본 발명에 따르면, 모터의 로터를 증속기어 없이 임펠러에 직결시켜 모터의 회전력을 임펠러에 전달하므로, 증속기어를 채용하는 것에 비해, 출력 밀도를 높여 효율을 향상시킬 수 있고, 수직 방향으로 체적을 줄여 콤팩트한 구조로 구현함에 따라 진동 및 소음을 줄일 수 있다.According to the present invention, since the rotor of the motor is directly connected to the impeller without an increase gear, and the rotational force of the motor is transmitted to the impeller, compared to adopting a speed increase gear, it is possible to improve efficiency by increasing the power density and reduce the volume in the vertical direction. Vibration and noise can be reduced by implementing it in a compact structure.
도 1은 본 발명의 일 실시예에 따른 원심펌프에 대한 종단면도이다.1 is a longitudinal sectional view of a centrifugal pump according to an embodiment of the present invention.
도 2는 도 1의 상측 영역을 발췌하여 도시한 종단면도이다.FIG. 2 is a longitudinal sectional view showing an extract of the upper region of FIG. 1.
도 3은 도 1의 하측 영역을 발췌하여 도시한 종단면도이다.3 is a longitudinal cross-sectional view showing an extract of the lower region of FIG. 1.
도 4는 임펠러에 대한 평면도이다.4 is a plan view of the impeller.
도 5는 케이싱에 대한 평면도이다.5 is a plan view of the casing.
도 6은 순환팬에 대한 사시도이다.6 is a perspective view of a circulation fan.
도 7은 냉각팬에 대한 사시도이다.7 is a perspective view of a cooling fan.
도 8은 도 1에 도시된 원심펌프에 대한 횡단면도이다.8 is a cross-sectional view of the centrifugal pump shown in FIG. 1.
도 9는 순환팬과 냉각팬의 작용을 설명하기 위한 단면도이다.9 is a cross-sectional view for explaining the operation of the circulation fan and the cooling fan.
본 발명에 대해 첨부된 도면을 참조하여 상세히 설명하면 다음과 같다. 여기서, 동일한 구성에 대해서는 동일부호를 사용하며, 반복되는 설명, 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략한다. 본 발명의 실시형태는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다. 따라서, 도면에서의 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있다.The present invention will be described in detail with reference to the accompanying drawings as follows. Here, the same reference numerals are used for the same configuration, and repeated descriptions and detailed descriptions of known functions and configurations that may unnecessarily obscure the subject matter of the present invention will be omitted. Embodiments of the present invention are provided to more completely describe the present invention to those with average knowledge in the art. Accordingly, the shapes and sizes of elements in the drawings may be exaggerated for clearer explanation.
도 1은 본 발명의 일 실시예에 따른 원심펌프에 대한 종단면도이다. 도 2는 도 1의 상측 영역을 발췌하여 도시한 종단면도이다. 도 3은 도 1의 하측 영역을 발췌하여 도시한 종단면도이다. 도 4는 임펠러에 대한 평면도이다. 도 5는 케이싱에 대한 평면도이다.1 is a longitudinal sectional view of a centrifugal pump according to an embodiment of the present invention. FIG. 2 is a longitudinal sectional view showing an extract of the upper region of FIG. 1. 3 is a longitudinal cross-sectional view showing an extract of the lower region of FIG. 1. 4 is a plan view of the impeller. 5 is a plan view of the casing.
도 1 내지 도 5를 참조하면, 본 발명의 일 실시예에 따른 원심펌프는 모터(100)와, 상측 베어링 기구(200)와, 하측 베어링 기구(300)와, 임펠러(impeller, 400)와, 케이싱(500), 및 축봉장치(stuffing box, 600)를 포함한다.1 to 5, the centrifugal pump according to an embodiment of the present invention includes a motor 100, an upper bearing mechanism 200, a lower bearing mechanism 300, an impeller 400, and It includes a casing 500, and a stuffing box 600.
모터(100)는 모터 하우징(110)과, 로터(rotor, 120), 및 스테이터(stator, 130)를 포함한다. 모터 하우징(110)은 하우징 몸체(111)와, 상측 하우징 커버(112)와, 하측 하우징 커버(115)를 구비할 수 있다. 하우징 몸체(111)는 내부공간을 가지며, 상측과 하측이 개구된 형태로 이루어진다.The motor 100 includes a motor housing 110, a rotor 120, and a stator 130. The motor housing 110 may include a housing body 111, an upper housing cover 112, and a lower housing cover 115. The housing body 111 has an inner space, and the upper and lower sides are opened.
상측 하우징 커버(112)는 하우징 몸체(111)의 상측 개구를 덮은 상태로 상측 개구 주변에 볼팅 등에 의해 고정된다. 상측 하우징 커버(112)는 상측 로터부(122)를 인출시키는 상측 인출홀을 갖는다.The upper housing cover 112 is fixed around the upper opening by bolting or the like while covering the upper opening of the housing body 111. The upper housing cover 112 has an upper withdrawal hole through which the upper rotor part 122 is withdrawn.
상측 하우징 커버(112)는 이너 커버부(113)와 아우터 커버부(114)가 상하로 적층되어 볼팅 등에 의해 고정된 형태로 구성될 수 있다. 이너 커버부(113)와 아우터 커버부(114)의 사이에는 후술할 순환팬(700)을 수용하는 팬 수용공간(112a)이 형성될 수 있다.The upper housing cover 112 may be configured in a form in which the inner cover part 113 and the outer cover part 114 are stacked up and down and fixed by bolting or the like. A fan accommodation space 112a for accommodating a circulation fan 700 to be described later may be formed between the inner cover part 113 and the outer cover part 114.
이너 커버부(113)는 하우징 몸체(111)의 내부공간으로부터 팬 수용공간(112a)으로 공기를 흡입하는 공기 흡입구(113a)들과, 팬 수용공간(112a)으로부터 하우징 몸체(111)의 내부공간으로 공기를 배출하는 공기 배출구(113b)들을 갖는다. 공기 흡입구(113a)들은 상측 로터부(122)의 외주에 인접해서 위치되고, 공기 배출구(113b)들은 하우징 몸체(111)의 내벽에 인접해서 위치될 수 있다.The inner cover 113 includes air intakes 113a for inhaling air from the inner space of the housing body 111 to the fan receiving space 112a, and the inner space of the housing body 111 from the fan receiving space 112a. It has air outlets (113b) to discharge the air. The air intakes 113a may be located adjacent to the outer periphery of the upper rotor part 122, and the air outlets 113b may be located adjacent to the inner wall of the housing body 111.
하측 하우징 커버(115)는 하우징 몸체(111)의 하측 개구를 덮은 상태로 하측 개구 주변에 볼팅 등에 의해 고정된다. 하측 하우징 커버(115)는 하측 로터부(123)를 인출시키는 하측 인출홀을 갖는다.The lower housing cover 115 is fixed around the lower opening by bolting or the like while covering the lower opening of the housing body 111. The lower housing cover 115 has a lower withdrawal hole through which the lower rotor part 123 is withdrawn.
로터(120)는 중간 로터부(121)와 상측 로터부(122)와 하측 로터부(123)를 구비한다. 중간 로터부(121)는 영구자석을 장착한 상태로 모터 하우징(110)의 중앙에 배치된다. 중간 로터부(121)는 일정한 외경을 갖고 영구자석을 매립할 수 있다.The rotor 120 includes an intermediate rotor portion 121, an upper rotor portion 122 and a lower rotor portion 123. The intermediate rotor unit 121 is disposed in the center of the motor housing 110 with a permanent magnet mounted thereon. The intermediate rotor unit 121 may have a constant outer diameter and may embed a permanent magnet.
상측 로터부(122)는 중간 로터부(121)로부터 상측으로 연장되어 모터 하우징(110)의 상측 인출홀을 통해 인출된다. 상측 로터부(122)는 상측으로 갈수록 외경이 단계적으로 작아지는 형태로 이루어질 수 있다.The upper rotor part 122 extends upward from the intermediate rotor part 121 and is drawn out through the upper withdrawal hole of the motor housing 110. The upper rotor part 122 may be formed in a form in which the outer diameter gradually decreases toward the upper side.
하측 로터부(123)는 중간 로터부(121)로부터 하측으로 연장되어 모터 하우징(110)의 하측 인출홀을 통해 인출된다. 하측 로터부(123)는 하측으로 갈수록 외경이 단계적으로 작아지는 형태로 이루어질 수 있다.The lower rotor part 123 extends downward from the intermediate rotor part 121 and is drawn out through the lower withdrawal hole of the motor housing 110. The lower rotor part 123 may be formed in a form in which the outer diameter gradually decreases toward the lower side.
중간 로터부(121)와 상측 로터부(122)와 하측 로터부(123)는 각각 별개의 부재로 이루어져 슬리브(124)에 함께 끼움 결합됨으로써, 일체화된 로터(120)를 구성할 수 있다. 물론, 중간 로터부(121)와 상측 로터부(122)와 하측 로터부(123)는 하나의 부재로 제조됨으로써, 일체화된 로터(120)를 구성할 수도 있다.The intermediate rotor portion 121, the upper rotor portion 122, and the lower rotor portion 123 are formed of separate members and are fitted together in the sleeve 124, thereby configuring an integrated rotor 120. Of course, the intermediate rotor portion 121, the upper rotor portion 122, and the lower rotor portion 123 are manufactured as one member, so that an integrated rotor 120 may be configured.
스테이터(130)는 코일을 감은 상태로 중간 로터부(121)의 바깥 둘레에 배치되어 모터 하우징(110)의 내벽에 고정된다. 로터(120)의 영구자석에 의해 자기장이 만들어진 상태에서, 스테이터(130)의 코일에 전류가 공급되면, 전자기적인 힘에 의해 로터(120)가 회전 가능하게 된다.The stator 130 is disposed around the outer circumference of the intermediate rotor unit 121 while the coil is wound, and is fixed to the inner wall of the motor housing 110. In a state in which a magnetic field is generated by the permanent magnet of the rotor 120, when current is supplied to the coil of the stator 130, the rotor 120 is rotatable by an electromagnetic force.
스테이터(130)는 로터(120)를 향한 면에 원주 방향을 따라 티스(teeth)이 형성되며, 티스 사이에 슬롯들이 형성된다. 코일은 티스를 각각 감도록 설치될 수 있다. 스테이터(130)는 코일에 전류가 흐르면 로터의 회전을 위한 회전자계(rotating magnetic field)를 발생시킨다.The stator 130 has teeth formed along the circumferential direction on the surface facing the rotor 120, and slots are formed between the teeth. The coils can be installed to wind each tooth. The stator 130 generates a rotating magnetic field for rotating the rotor when a current flows through the coil.
이러한 모터(100)는 슬롯 개수, 슬롯당 턴수, 권선직경, 슬롯면적, 병렬회로수, 소선개수, 점적률(space factor), 상저항, 동기 인덕턴스, 역기전력 상수, 영구자석 직경, 로터 직경, 스테이터 내경, 스테이터 외경, 스테이터 축방향 길이, 슬리브 두께, 공극, 티스 두께, 슬롯 오프닝 등의 설정에 따라 12,000rpm 이상의 초고속 영구자석 모터로 구성될 수 있다.These motors 100 include the number of slots, turns per slot, winding diameter, slot area, number of parallel circuits, number of wires, space factor, phase resistance, synchronous inductance, counter electromotive force constant, permanent magnet diameter, rotor diameter, stator It can be configured with an ultra-high-speed permanent magnet motor of 12,000 rpm or more according to settings such as inner diameter, stator outer diameter, stator axial length, sleeve thickness, air gap, tooth thickness, and slot opening.
상측 베어링기구(200)는 모터 하우징(110)의 상측 인출홀에 장착되어 상측 로터부(122)의 회전을 지지한다. 상측 베어링기구(200)는 상측 베어링(210)과 상측 베어링 하우징(220)을 포함할 수 있다. 상측 베어링(210)은 상측 로터부(122)의 회전을 지지한다. 상측 베어링(210)은 구름 베어링으로 이루어질 수 있다.The upper bearing mechanism 200 is mounted in the upper withdrawal hole of the motor housing 110 to support the rotation of the upper rotor part 122. The upper bearing mechanism 200 may include an upper bearing 210 and an upper bearing housing 220. The upper bearing 210 supports rotation of the upper rotor part 122. The upper bearing 210 may be formed of a rolling bearing.
상측 베어링 하우징(220)은 상측 베어링(210)의 바깥 둘레를 감싸서 지지한 상태로 모터 하우징(110)의 상측 인출홀에 고정된다. 상측 베어링 하우징(220)은 하측 부위가 아우터 커버부(114)의 상측 인출홀에 끼워진 상태로 상측 부위가 아우터 커버부(114)를 일부 덮는 형태로 이루어질 수 있다. 상측 베어링 하우징(220)은 볼팅 등에 의해 아우터 커버부(114)에 고정될 수 있다.The upper bearing housing 220 is fixed to the upper withdrawal hole of the motor housing 110 while being supported by surrounding the outer circumference of the upper bearing 210. The upper bearing housing 220 may be formed in a form in which the upper part partially covers the outer cover part 114 with the lower part inserted into the upper withdrawal hole of the outer cover part 114. The upper bearing housing 220 may be fixed to the outer cover portion 114 by bolting or the like.
상측 베어링(210)은 상측 오일유로(114a)을 통해 윤활을 위한 오일을 공급받을 수 있다. 상측 오일유로(114a)는 이너 보스(231)로부터 상측 베어링(210)으로 오일을 공급하고, 중력에 의해 낙하하는 오일을 아우터 커버부(114)로 배출시키도록 형성될 수 있다. 상측 오일유로(114a)는 오일젯 방식에 의해 오일을 공급받거나, 오일에 공기를 혼합해서 분사하는 방식에 의해 오일을 공급받을 수 있다.The upper bearing 210 may be supplied with oil for lubrication through the upper oil passage 114a. The upper oil passage 114a may be formed to supply oil from the inner boss 231 to the upper bearing 210 and to discharge oil falling by gravity to the outer cover portion 114. The upper oil passage 114a may be supplied with oil by an oil jet method or by mixing and spraying air with oil.
상측 오일유로(114a)는 상측 베어링기구(200)의 상측에 배치된 제1 오일시일(230)과, 상측 베어링기구(200)의 하측에 배치된 제2 오일시일(240)에 의해 실링될 수 있다. 이너 보스(231)가 상측 로터부(122)를 중공을 통해 관통시킨 상태로 아우터 커버부(114)의 상측에 볼팅 등에 의해 고정될 수 있다. 제1 오일시일(230)은 이너 보스(231)의 중공 내주면에 고정된 상태로 상측 로터부(122)의 외주면에 접촉됨으로써, 이너 보스(231)와 상측 로터부(122) 사이의 기밀을 유지할 수 있다.The upper oil passage 114a may be sealed by a first oil seal 230 disposed above the upper bearing mechanism 200 and a second oil seal 240 disposed below the upper bearing mechanism 200. have. The inner boss 231 may be fixed to the upper side of the outer cover part 114 by bolting or the like while penetrating the upper rotor part 122 through a hollow. The first oil seal 230 is fixed to the hollow inner circumferential surface of the inner boss 231 and contacts the outer circumferential surface of the upper rotor part 122 to maintain airtightness between the inner boss 231 and the upper rotor part 122 I can.
아우터 보스(232)가 상측 로터부(122)를 중공을 통해 관통시킨 상태로 이너 보스(231)의 상측에 볼팅 등에 의해 고정됨으로써, 제1 오일시일(230)의 상방 이탈을 방지할 수 있다. 제1 오일시일(230)은 래비린스 시일(Labyrinth seal)로 이루어질 수 있다. 래비린스 시일은 유체가 좁은 틈들을 여러 번 지날 때마다 압력 강하를 받음으로써 누설량을 줄여주는 형태의 시일이다.Since the outer boss 232 penetrates the upper rotor part 122 through the hollow and is fixed to the upper side of the inner boss 231 by bolting, it is possible to prevent the first oil seal 230 from being separated from the upper side. The first oil seal 230 may be formed of a labyrinth seal. Labyrinth seal is a type of seal that reduces the amount of leakage by receiving a pressure drop every time a fluid passes through narrow gaps several times.
제2 오일시일(240)은 이너 커버부(113)의 상측 인출홀의 내주면에 고정된 상태로 상측 로터부(122)의 외주면에 접촉됨으로써, 이너 커버부(113)와 상측 로터부(122) 사이의 기밀을 유지할 수 있다. 제2 오일시일(240)은 래비린스 시일로 이루어질 수 있다.The second oil seal 240 contacts the outer circumferential surface of the upper rotor part 122 while being fixed to the inner circumferential surface of the upper withdrawal hole of the inner cover part 113, so that between the inner cover part 113 and the upper rotor part 122 Can keep the confidentiality of. The second oil seal 240 may be formed of a labyrinth seal.
하측 베어링기구(300)는 모터 하우징(110)의 하측 인출홀에 장착되어 하측 로터부(123)의 회전을 지지한다. 하측 베어링기구(300)는 하측 베어링(310)들과 하측 베어링 하우징(320)을 포함할 수 있다. 하측 베어링(310)들은 상하로 2열로 배치되어 하측 로터부(123)의 회전을 지지한다. 하측 베어링(310)은 구름 베어링으로 이루어질 수 있다.The lower bearing mechanism 300 is mounted in the lower withdrawal hole of the motor housing 110 to support the rotation of the lower rotor part 123. The lower bearing mechanism 300 may include lower bearings 310 and lower bearing housings 320. The lower bearings 310 are arranged in two rows up and down to support the rotation of the lower rotor part 123. The lower bearing 310 may be formed of a rolling bearing.
하측 베어링 하우징(320)은 하측 베어링(310)들의 바깥 둘레를 감싸서 지지한 상태로 모터 하우징(110)의 하측 인출홀에 고정된다. 하측 베어링 하우징(320)은 하측 하우징 커버(115)의 하측 인출홀에 끼워진 상태로 볼팅 등에 의해 하측 하우징 커버(115)에 고정될 수 있다.The lower bearing housing 320 is fixed to the lower lead-out hole of the motor housing 110 while surrounding and supporting the lower bearings 310. The lower bearing housing 320 may be fixed to the lower housing cover 115 by bolting or the like while being inserted into the lower lead-out hole of the lower housing cover 115.
하측 베어링(310)은 하측 오일유로(115a)을 통해 윤활을 위한 오일을 공급받을 수 있다. 하측 오일유로(115a)는 하측 하우징 커버(115)의 상부로부터 상측열의 하측 베어링(310)으로 오일을 공급하고, 중력에 의해 하측열의 하측 베어링(310)을 거쳐 낙하하는 오일을 하측 하우징 커버(115)의 하부로 배출시키도록 형성될 수 있다. 하측 오일유로(115a)는 오일젯 방식에 의해 오일을 공급받거나, 오일에 공기를 혼합해서 분사하는 방식에 의해 오일을 공급받을 수 있다.The lower bearing 310 may be supplied with oil for lubrication through the lower oil passage 115a. The lower oil passage 115a supplies oil from the upper portion of the lower housing cover 115 to the lower bearing 310 in the upper row, and the oil falling through the lower bearing 310 in the lower row by gravity is transferred to the lower housing cover 115 ) Can be formed to be discharged to the bottom of the. The lower oil passage 115a may be supplied with oil by an oil jet method, or may be supplied with oil by mixing and spraying air with oil.
하측 오일유로(115a)는 하측 베어링기구(300)의 상측에 배치된 제3 오일시일(330)과, 하측 베어링기구(300)의 하측에 배치된 축봉장치(600)에 의해 실링될 수 있다. 제3 오일시일(330)은 상측열의 베어링(310)보다 상측에서 배치되고, 하측 하우징 커버(115)에 고정된 상태로 하측 로터부(123)의 외주면에 접촉됨으로써, 하측 하우징 커버(115)와 하측 로터부(123) 사이의 기밀을 유지할 수 있다. 제3 오일시일(330)은 래비린스 시일로 이루어질 수 있다.The lower oil passage 115a may be sealed by a third oil seal 330 disposed above the lower bearing mechanism 300 and a shaft sealing device 600 disposed below the lower bearing mechanism 300. The third oil seal 330 is disposed above the bearings 310 in the upper row and contacts the outer circumferential surface of the lower rotor part 123 while being fixed to the lower housing cover 115, so that the lower housing cover 115 and Airtightness between the lower rotor parts 123 can be maintained. The third oil seal 330 may be formed of a labyrinth seal.
임펠러(400)는 하측 로터부(123)의 하단에 동일 축상으로 고정된다. 임펠러(400)는 하측 로터부(123)와 함께 회전함에 따라 흡입된 유체에 원심력에 의한 속도에너지를 가한다. 임펠러(400)는 날개(402)들이 허브(401)의 외주를 따라 동일 형상으로 배열된 구조로 이루어질 수 있다.The impeller 400 is fixed to the lower end of the lower rotor part 123 on the same axis. As the impeller 400 rotates together with the lower rotor part 123, the velocity energy by centrifugal force is applied to the sucked fluid. The impeller 400 may have a structure in which the wings 402 are arranged in the same shape along the outer circumference of the hub 401.
인듀서(inducer, 410)가 임펠러(400)의 하측에 동일 축상으로 고정될 수 있다. 인듀서(410)는 유체의 흡입 방향을 기준으로 임펠러(400)의 앞에 배치되어 하측 로터부(123)와 함께 회전함으로써, 캐비테이션(cavitation)을 방지할 수 있게 한다. 인듀서(410)는 날개(412)가 허브(411)의 외주면에 나선 방향으로 형성된 구조로 이루어질 수 있다.The inducer 410 may be fixed to the lower side of the impeller 400 on the same axis. The inducer 410 is disposed in front of the impeller 400 based on the suction direction of the fluid and rotates together with the lower rotor part 123, thereby preventing cavitation. The inducer 410 may have a structure in which the wings 412 are formed in a spiral direction on the outer peripheral surface of the hub 411.
인듀서(410)는 허브(411)로부터 상측으로 연장된 제1 인듀서 결합부(413)와, 제1 인듀서 결합부(413)로부터 상측으로 연장된 제2 인듀서 결합부(414)를 포함할 수 있다. 제1 인듀서 결합부(413)는 임펠러(400)의 허브(401)를 관통한 상태로 묻힘 키(sunk key) 방식으로 결합됨으로써, 인듀서(410)와 임펠러(400) 간에 상대적 회전 미끄럼을 방지할 수 있다.The inducer 410 includes a first inducer coupling portion 413 extending upward from the hub 411 and a second inducer coupling portion 414 extending upward from the first inducer coupling portion 413. Can include. The first inducer coupling portion 413 is coupled in a state through the hub 401 of the impeller 400 in a buried key manner, thereby preventing a relative rotational slip between the inducer 410 and the impeller 400. Can be prevented.
제2 인듀서 결합부(414)는 외주에 나사탭이 형성되어 하측 로터부(123)의 하단 나사홈에 나사 결합될 수 있다. 제2 인듀서 결합부(414)와 하측 로터부(123)의 나사 결합 방향은 하측 로터부(123)의 회전 방향과 반대되는 방향으로 설정됨으로써, 제2 인듀서 결합부(414)와 하측 로터부(123)는 하측 로터부(123)의 회전시 풀림 방지될 수 있다.The second inducer coupling portion 414 may be screwed into a lower screw groove of the lower rotor portion 123 by forming a screw tab on the outer periphery. The screw coupling direction of the second inducer coupling part 414 and the lower rotor part 123 is set in a direction opposite to the rotational direction of the lower rotor part 123, so that the second inducer coupling part 414 and the lower rotor The part 123 may be prevented from loosening when the lower rotor part 123 is rotated.
슈라우드(shroud, 420)가 인듀서(410)를 바깥 둘레를 둘러싼 상태로 케이싱(500)의 유체 통로(530)에 고정될 수 있다. 슈라우드(420)는 일정 내경의 중공을 갖는다. 슈라우드(420)는 하측 부위가 일정 외경을 가지며, 상측 부위가 상방으로 갈수록 2단으로 외경이 확장되는 형태로 이루어질 수 있다. 케이싱(500)은 펌핑 공간(531) 주변에 슈라우드(420)의 상측 부위를 2단으로 안착시키는 2단 턱을 갖는다. 슈라우드(420)는 케이싱(500)의 펌핑 공간(531) 주변에 2단으로 안착된 상태로 볼팅 등에 의해 고정될 수 있다.A shroud 420 may be fixed to the fluid passage 530 of the casing 500 with the inducer 410 surrounding the outer circumference. The shroud 420 has a hollow of a certain inner diameter. The shroud 420 may be formed in a form in which the lower part has a certain outer diameter, and the outer diameter is expanded in two stages as the upper part goes upward. The casing 500 has a two-stage jaw for seating the upper portion of the shroud 420 in two stages around the pumping space 531. The shroud 420 may be mounted in two stages around the pumping space 531 of the casing 500 and may be fixed by bolting or the like.
케이싱(500)은 모터 하우징(110)으로부터 하방으로 이격되어 배치된다. 케이싱(500)은 유체 흡입구(510)를 통해 유체 통로(530)를 거쳐 유체 배출구(520)를 통해 배출하며, 상측 개구를 통해 유체 통로(530)로 임펠러(400)를 수용한다. 케이싱(500)은 바깥 면에 유체 흡입구(510)와 유체 배출구(520)가 형성되고, 내부에 유체 통로(530)가 나선형으로 형성되어 유체 흡입구(510)와 유체 배출구(520)와 연결될 수 있다. 즉, 케이싱(500)은 볼류트 케이싱(volute casing)으로 이루어질 수 있다. 케이싱(500)은 유체 흡입구(510)와 유체 배출구(520)의 각 주변에 플랜지가 형성될 수 있다.The casing 500 is disposed to be spaced apart downward from the motor housing 110. The casing 500 is discharged through the fluid passage 530 through the fluid inlet 510 and the fluid outlet 520, and accommodates the impeller 400 through the fluid passage 530 through the upper opening. The casing 500 may have a fluid inlet 510 and a fluid outlet 520 formed on an outer surface thereof, and a fluid passage 530 is formed in a spiral shape therein to be connected to the fluid inlet 510 and the fluid outlet 520 . That is, the casing 500 may be formed of a volute casing. The casing 500 may have a flange formed around each of the fluid inlet 510 and the fluid outlet 520.
케이싱(500)은 유체 통로(530)의 중간에 상측 개구를 통해 임펠러(400)와 인듀서(410)를 수용하는 펌핑 공간(531)을 갖는다. 케이싱(500)은 임펠러(400)의 출구와 유체 배출구(520) 사이의 유체 통로(530)가 디퓨저로 이루어질 수 있다. 디퓨저는 임펠러(400)에 의해 가해진 물의 속도에너지를 물의 압력에너지로 변환한다.The casing 500 has a pumping space 531 accommodating the impeller 400 and the inducer 410 through an upper opening in the middle of the fluid passage 530. In the casing 500, a fluid passage 530 between the outlet of the impeller 400 and the fluid outlet 520 may be formed as a diffuser. The diffuser converts the velocity energy of water applied by the impeller 400 into the pressure energy of water.
축봉장치(600)는 모터 하우징(110)과 케이싱(500) 사이에 배치되어 케이싱(500)의 상측 개구와 하측 로터부(123) 사이의 기밀을 유지한다. 축봉장치(600)는 시일 하우징(620)에 시일(610)이 장착된 구조로 이루어진다. 시일 하우징(620)은 하측 로터부(123)를 중공을 통해 관통시킨 상태로 모터 하우징(110)과 케이싱(600) 사이에 배치된다. 시일 하우징(620)은 모터 하우징(110)과 케이싱(500)에 볼팅 등에 의해 고정된다. 시일 하우징(620)은 하부가 하측 로터부(123)를 관통시킨 상태로 케이싱(500)의 상측 개구를 덮는다.The shaft sealing device 600 is disposed between the motor housing 110 and the casing 500 to maintain airtightness between the upper opening of the casing 500 and the lower rotor part 123. The shaft sealing device 600 has a structure in which the seal 610 is mounted on the seal housing 620. The seal housing 620 is disposed between the motor housing 110 and the casing 600 while penetrating the lower rotor part 123 through the hollow. The seal housing 620 is fixed to the motor housing 110 and the casing 500 by bolting or the like. The seal housing 620 covers the upper opening of the casing 500 with the lower part passing through the lower rotor part 123.
시일 하우징(620)은 하측으로 갈수록 외경이 다단으로 작아지는 형태로 이루어질 수 있다. 케이싱(500)은 상측 개구 주변이 시일 하우징(620)을 다단으로 안착시키는 턱을 갖는 형태로 이루어질 수 있다. 따라서, 케이싱(500)과 시일 하우징(620)은 안정되게 결합된 상태로 유지될 수 있다.The seal housing 620 may be formed in a form in which the outer diameter decreases in multiple stages toward the lower side. The casing 500 may be formed in a shape having a jaw for seating the seal housing 620 in multiple stages around the upper opening. Therefore, the casing 500 and the seal housing 620 can be maintained in a stably coupled state.
시일(610)은 시일 하우징(620)의 중공 내주면에 고정된 상태로 하측 로터부(123)의 외주면에 접촉됨으로써, 시일 하우징(620)과 하측 로터부(123) 사이의 기밀을 유지할 수 있다. 시일(610)은 미케니컬 시일(mechanical seal)로 이루어질 수 있다. 미케니컬 시일은 회전축에 수직된 2개의 섭동면으로 구성되어 한 면이 회전축과 함께 회전하며 스프링의 장력 또는 유체의 압력으로 회전축의 밀봉을 지속적으로 유지하는 면 접촉식 시일이다. 미케니컬 시일은 시일 면의 윤활은 자체적으로 형성되는 유체막(0.025~0.25㎛)에 의해 이루어진다.The seal 610 contacts the outer circumferential surface of the lower rotor part 123 while being fixed to the hollow inner circumferential surface of the seal housing 620, thereby maintaining airtightness between the seal housing 620 and the lower rotor part 123. Seal 610 may be made of a mechanical seal (mechanical seal). A mechanical seal is a surface-contact type seal that consists of two perturbation surfaces perpendicular to the rotation axis, one side rotates with the rotation axis, and continuously maintains the sealing of the rotation axis by the tension of the spring or the pressure of the fluid. In mechanical seals, lubrication of the seal surface is achieved by a self-formed fluid film (0.025~0.25㎛).
전술한 원심펌프에 의하면, 모터(100)의 로터(120)를 증속기어 없이 임펠러(400)에 직결시켜 모터의 회전력을 임펠러(400)에 전달하므로, 증속기어를 채용하는 것에 비해, 출력 밀도를 높여 효율을 향상시킬 수 있고, 수직 방향으로 체적을 줄여 콤팩트한 구조로 구현함에 따라 진동 및 소음을 줄일 수 있다.According to the above-described centrifugal pump, since the rotor 120 of the motor 100 is directly connected to the impeller 400 without an increase gear, the rotational force of the motor is transmitted to the impeller 400, so that the power density is increased compared to employing an increase gear. By increasing the efficiency, it is possible to improve the efficiency, and by implementing a compact structure by reducing the volume in the vertical direction, vibration and noise can be reduced.
한편, 순환팬(700)이 모터 하우징(110)의 내측에 배치된 상태로 상측 로터부(122)에 동일 축상으로 고정되어 회전함에 따라 모터 하우징(110)의 내부 공기를 순환시킬 수 있다. 냉각팬(800)이 모터 하우징(110)의 외측에 배치된 상태로 상측 로터부(122)에 동일 축상으로 고정되어 회전함에 따라 주변 공기를 모터 하우징(110)의 외벽 쪽으로 송출할 수 있다.Meanwhile, the circulation fan 700 is fixed to the upper rotor part 122 on the same axis while being disposed inside the motor housing 110 and rotates, thereby circulating the air inside the motor housing 110. As the cooling fan 800 is disposed on the outside of the motor housing 110 and is fixed to the upper rotor part 122 on the same axis and rotates, ambient air may be sent to the outer wall of the motor housing 110.
원심펌프가 폭발이나 화재를 유발할 수 있는 가스나 증기 등과 같은 유체를 이송하는 경우, 모터(100)는 방폭형 모터로 이루어져 외부 냉각공기의 내부 유입이 차단된 밀폐형 구조를 갖게 된다. 모터(100)는 구동시 로터(120)의 영구자석과 스테이터(130)의 코일에서 열이 발생되어 내부 온도가 상승하게 된다. 모터(100) 내부가 지나치게 과열되면, 모터(100)가 소손되는 등의 문제를 일으키게 된다. 따라서, 모터(100) 내부의 영구자석 온도는 설정 온도, 예컨대 140℃ 이하로 유지될 필요가 있다.When the centrifugal pump transfers a fluid such as gas or steam that may cause an explosion or fire, the motor 100 is made of an explosion-proof motor and has a closed structure in which the inflow of external cooling air is blocked. When the motor 100 is driven, heat is generated from the permanent magnet of the rotor 120 and the coil of the stator 130 to increase the internal temperature. When the inside of the motor 100 is excessively overheated, a problem such as burning of the motor 100 may occur. Therefore, the temperature of the permanent magnet inside the motor 100 needs to be maintained at a set temperature, for example, 140° C. or less.
이러한 상황에서, 순환팬(700)은 모터(100) 내부의 온도 불균형을 완화시키고, 냉각팬(800)은 모터(100) 내부의 열을 외부로 빼냄으로써, 모터(100)의 내부 온도를 설정 온도 이하로 낮출 수 있게 한다.In this situation, the circulation fan 700 alleviates the temperature imbalance inside the motor 100, and the cooling fan 800 sets the internal temperature of the motor 100 by removing heat inside the motor 100 to the outside. Allows you to lower it below the temperature.
도 6에 도시된 바와 같이, 순환팬(700)은 중앙쪽으로부터 공기를 흡입해서 원주 방향으로 송출하는 원심형으로 이루어질 수 있다. 순환팬(700)은 날개(720)들이 중공 원판(710) 상에 원주 방향을 따라 동일 형상으로 배열된 형태로 이루어진다.As shown in FIG. 6, the circulation fan 700 may be formed of a centrifugal type that sucks air from the center and sends it in the circumferential direction. The circulation fan 700 is formed in a form in which the blades 720 are arranged in the same shape along the circumferential direction on the hollow disk 710.
도 7에 도시된 바와 같이, 냉각팬(800)은 공기를 축방향과 같은 방향으로 이송시키는 축류형으로 이루어질 수 있다. 냉각팬(800)은 날개(820)들이 허브(810)의 외주를 따라 동일 형상으로 배열된 구조로 이루어진다. 냉각팬(800)의 날개(820)들은 상측 로터부(122)의 회전시 상부로부터 공기를 흡입해서 하부로 송출하도록 설정된다.As shown in FIG. 7, the cooling fan 800 may be of an axial flow type that transports air in the same direction as the axial direction. The cooling fan 800 has a structure in which the blades 820 are arranged in the same shape along the outer circumference of the hub 810. The blades 820 of the cooling fan 800 are set to suck air from the upper part and send it to the lower part when the upper rotor part 122 rotates.
다시 도 1 및 도 2를 참조하면, 모터(100)는 냉각팬(800)을 수용하는 탑캡(top cap, 116)을 구비할 수 있다. 탑캡(116)은 내부 공간을 갖고 하측에 개구가 형성된 형태로 이루어진다. 탑캡(116)은 내부공간에 냉각팬(800)을 수용한 상태로 하측 개구 주변에 상측 하우징 커버(112)에 볼팅 등에 의해 고정된다.Referring back to FIGS. 1 and 2, the motor 100 may include a top cap 116 accommodating the cooling fan 800. The top cap 116 has an inner space and has an opening formed at the lower side. The top cap 116 is fixed to the upper housing cover 112 around the lower opening by bolting or the like in a state in which the cooling fan 800 is accommodated in the inner space.
탑캡(116)은 상측에 공기를 흡입하는 공기 흡입구(116a)들이 형성될 수 있다. 상측 하우징 커버(112)는 탑캡(116)과 인접한 부위에 탑캡(116) 내의 공기를 배출시키는 공기 배출구(112b)들이 형성될 수 있다. 공기 배출구(112b)들은 탑캡(116) 내의 공기를 배출시켜 하우징 몸체(111)의 바깥 면으로 유도하도록 형성될 수 있다.The top cap 116 may have air intake ports 116a that suck air in the upper side. The upper housing cover 112 may have air outlets 112b for discharging air in the top cap 116 at a portion adjacent to the top cap 116. The air outlets 112b may be formed to discharge air in the top cap 116 and guide it to the outer surface of the housing body 111.
도 8에 도시된 바와 같이, 하우징 몸체(111)는 바깥 면에 방열핀(111a)들이 돌출되어 형성될 수 있다. 방열핀(111a)들은 하우징 몸체(111)의 외주를 따라 일정 간격으로 배열될 수 있다. 각각의 방열핀(111a)은 하우징 몸체(111)의 상하 방향을 따라 일정 단면적으로 길게 연장된 형태로 이루어질 수 있다. 방열핀(111a)들은 공기와 접촉하는 하우징 몸체(111)의 냉각 면을 확장함으로써, 공랭에 의한 하우징 몸체(111)의 방열 성능을 높일 수 있게 한다.As shown in FIG. 8, the housing body 111 may be formed by protruding radiating fins 111a from the outer surface. The radiating fins 111a may be arranged at regular intervals along the outer periphery of the housing body 111. Each of the heat dissipation fins 111a may be formed in a form extending in a predetermined cross-sectional area along the vertical direction of the housing body 111. The radiating fins 111a expand the cooling surface of the housing body 111 in contact with air, thereby increasing the heat dissipation performance of the housing body 111 by air cooling.
순환팬(700)과 냉각팬(800)의 작용에 대해, 도 9를 참조하여 설명하면 다음과 같다.The operation of the circulation fan 700 and the cooling fan 800 will be described with reference to FIG. 9 as follows.
모터(100)의 구동시 로터(120)가 회전하게 되면, 순환팬(700)과 냉각팬(800)은 로터(120)의 상측 로터부(122)와 함께 회전하게 된다. 이때, 순환팬(700)은 상측 로터부(122)의 외주에 인접한 이너 커버부(113)의 공기 흡입구(113a)들을 통해 하우징 몸체(111)의 내부공간으로부터 공기를 흡입한 후, 원주 방향으로 송출하여 하우징 몸체(111)의 내벽에 인접한 이너 커버부(113)의 공기 배출구(113b)들을 통해 하우징 몸체(111)의 내부공간으로 배출한다. 따라서, 하우징 몸체(111) 내의 공기는 순환팬(700)에 의해 순환함으로써 모터(100) 내부의 온도 불균형을 완화시킨다.When the rotor 120 rotates when the motor 100 is driven, the circulation fan 700 and the cooling fan 800 rotate together with the upper rotor part 122 of the rotor 120. At this time, the circulation fan 700 sucks air from the inner space of the housing body 111 through the air inlet 113a of the inner cover 113 adjacent to the outer circumference of the upper rotor part 122, and then in the circumferential direction. And discharged to the inner space of the housing body 111 through the air outlets 113b of the inner cover 113 adjacent to the inner wall of the housing body 111. Accordingly, the air in the housing body 111 is circulated by the circulation fan 700 to alleviate the temperature imbalance inside the motor 100.
이와 동시에, 냉각팬(800)은 탑캡(116)의 공기 흡입구(116a)들을 통해 흡입한 후, 축 방향으로 송출하여 상측 하우징 커버(112)의 공기 배출구(112b)들을 통해 배출한다. 배출된 공기는 하우징 몸체(111)의 바깥 면을 따라 흐르면서 열교환을 통해 냉각시킴으로써, 모터(100) 내부의 열을 외부로 빼낸다. 따라서, 냉각팬(800)은 순환팬(700)과 함께 모터(100)의 내부 온도를 설정 온도 이하로 낮출 수 있다.At the same time, the cooling fan 800 sucks in through the air intake openings 116a of the top cap 116 and then discharges it in the axial direction and discharges it through the air outlets 112b of the upper housing cover 112. The exhausted air flows along the outer surface of the housing body 111 and cools through heat exchange, thereby removing heat from the inside of the motor 100 to the outside. Accordingly, the cooling fan 800 can lower the internal temperature of the motor 100 together with the circulation fan 700 to a set temperature or less.
본 발명은 첨부된 도면에 도시된 일 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 수 있을 것이다. 따라서, 본 발명의 진정한 보호 범위는 첨부된 청구 범위에 의해서만 정해져야 할 것이다.The present invention has been described with reference to one embodiment shown in the accompanying drawings, but this is only illustrative, and those of ordinary skill in the art will understand that various modifications and other equivalent embodiments are possible therefrom. I will be able to. Accordingly, the true scope of protection of the present invention should be determined only by the appended claims.

Claims (4)

  1. 모터 하우징과, 영구자석을 장착한 상태로 상기 모터 하우징의 중앙에 배치된 중간 로터부와 상기 중간 로터부로부터 상측으로 연장되어 상기 모터 하우징의 상측 인출홀을 통해 인출된 상측 로터부와 상기 중간 로터부로부터 하측으로 연장되어 상기 모터 하우징의 하측 인출홀을 통해 인출된 하측 로터부를 구비하는 로터와, 코일을 감은 상태로 상기 중간 로터부의 바깥 둘레에 배치되어 상기 모터 하우징의 내벽에 고정된 스테이터를 포함하는 모터;The motor housing, the intermediate rotor part arranged in the center of the motor housing with a permanent magnet mounted, and the upper rotor part and the intermediate rotor extended upwardly from the intermediate rotor part and drawn out through the upper withdrawal hole of the motor housing A rotor extending downward from the part and having a lower rotor part drawn out through a lower drawing hole of the motor housing, and a stator disposed around the outer circumference of the intermediate rotor part in a coil wound state and fixed to the inner wall of the motor housing. Motor to do;
    상기 모터 하우징의 상측 인출홀에 장착되어 상기 상측 로터부의 회전을 지지하는 상측 베어링기구;An upper bearing mechanism mounted in an upper withdrawal hole of the motor housing to support rotation of the upper rotor portion;
    상기 모터 하우징의 하측 인출홀에 장착되어 상기 하측 로터부의 회전을 지지하는 하측 베어링기구;A lower bearing mechanism mounted in a lower withdrawal hole of the motor housing to support rotation of the lower rotor portion;
    상기 하측 로터부의 하단에 동일 축상으로 고정된 임펠러;An impeller fixed on the same axis at the lower end of the lower rotor part;
    상기 모터 하우징으로부터 하방으로 이격되어 배치되며, 유체 흡입구를 통해 유체 통로를 거쳐 유체 배출구를 통해 배출하며, 상측 개구를 통해 유체 통로로 상기 임펠러를 수용하는 케이싱; 및A casing disposed to be spaced downward from the motor housing, discharging through a fluid passage through a fluid inlet, and receiving the impeller through a fluid passage through an upper opening; And
    상기 모터 하우징과 케이싱 사이에 배치되어 상기 케이싱의 상측 개구와 하측 로터부 사이의 기밀을 유지하는 축봉장치;A shaft sealing device disposed between the motor housing and the casing to maintain airtightness between an upper opening and a lower rotor portion of the casing;
    를 포함하는 원심펌프.Centrifugal pump comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 임펠러의 하측에 동일 축상으로 고정된 인듀서와,An inducer fixed to the lower side of the impeller in the same axis,
    상기 인듀서를 바깥 둘레를 둘러싼 상태로 상기 케이싱의 유체 통로에 고정된 슈라우드를 포함하는 것을 특징으로 하는 원심펌프.And a shroud fixed to the fluid passage of the casing while surrounding the inducer around the outer periphery.
  3. 제1항에 있어서,The method of claim 1,
    상기 하측 베어링기구는,The lower bearing mechanism,
    상하로 2열로 배치되어 상기 하측 로터부의 회전을 지지하는 하측 베어링들과,Lower bearings arranged in two rows up and down to support rotation of the lower rotor part,
    상기 하측 베어링들의 바깥 둘레를 감싸서 지지한 상태로 상기 모터 하우징의 하측 인출홀에 고정되는 하측 베어링 하우징을 포함하는 것을 특징으로 하는 원심펌프.And a lower bearing housing fixed to a lower withdrawal hole of the motor housing while surrounding and supporting the outer peripheries of the lower bearings.
  4. 제1항에 있어서,The method of claim 1,
    상기 모터 하우징의 내측에 배치된 상태로 상기 상측 로터부에 동일 축상으로 고정되어 회전함에 따라 상기 모터 하우징의 내부 공기를 순환시키는 순환팬과,A circulation fan disposed inside the motor housing and fixed to the upper rotor part on the same axis to circulate the air inside the motor housing as it rotates,
    상기 모터 하우징의 외측에 배치된 상태로 상기 상측 로터부에 동일 축상으로 고정되어 회전함에 따라 주변 공기를 상기 모터 하우징의 외벽 쪽으로 송출하는 냉각팬을 포함하는 것을 특징으로 하는 원심펌프.And a cooling fan disposed on the outside of the motor housing and fixed to the upper rotor part in the same axial direction to rotate the surrounding air toward the outer wall of the motor housing.
PCT/KR2020/001710 2019-06-04 2020-02-06 Centrifugal pump directly connected to ultra-high speed permanent magnet motor WO2020246686A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190065839A KR102078042B1 (en) 2019-06-04 2019-06-04 Centrifugal pump directly connected to ultra-high speed permanent magnet motor
KR10-2019-0065839 2019-06-04

Publications (1)

Publication Number Publication Date
WO2020246686A1 true WO2020246686A1 (en) 2020-12-10

Family

ID=69670486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/001710 WO2020246686A1 (en) 2019-06-04 2020-02-06 Centrifugal pump directly connected to ultra-high speed permanent magnet motor

Country Status (2)

Country Link
KR (1) KR102078042B1 (en)
WO (1) WO2020246686A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114263618A (en) * 2021-12-27 2022-04-01 江苏维尔特泵业有限公司 Energy-saving heat dissipation type high-pressure hot water circulating pump
CN117013764A (en) * 2023-08-09 2023-11-07 上海风进电机有限公司 Explosion-proof motor convenient to maintain high-efficient heat conduction

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100232949A1 (en) * 2009-03-10 2010-09-16 Grundfos Management A/S Multi-stage centrifugal pump (axial face seal)
KR20130036405A (en) * 2011-10-04 2013-04-12 대우조선해양 주식회사 Fixed fluid offloading apparatus
KR20150061942A (en) * 2013-11-28 2015-06-05 포스코에너지 주식회사 Integral Hermetic Pump
JP2015146716A (en) * 2014-02-04 2015-08-13 株式会社酉島製作所 Pump and waterproof motor
KR20170013532A (en) * 2015-07-28 2017-02-07 주식회사 에이치티에프 A Centrifugal Pump

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100232949A1 (en) * 2009-03-10 2010-09-16 Grundfos Management A/S Multi-stage centrifugal pump (axial face seal)
KR20130036405A (en) * 2011-10-04 2013-04-12 대우조선해양 주식회사 Fixed fluid offloading apparatus
KR20150061942A (en) * 2013-11-28 2015-06-05 포스코에너지 주식회사 Integral Hermetic Pump
JP2015146716A (en) * 2014-02-04 2015-08-13 株式会社酉島製作所 Pump and waterproof motor
KR20170013532A (en) * 2015-07-28 2017-02-07 주식회사 에이치티에프 A Centrifugal Pump

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114263618A (en) * 2021-12-27 2022-04-01 江苏维尔特泵业有限公司 Energy-saving heat dissipation type high-pressure hot water circulating pump
CN114263618B (en) * 2021-12-27 2024-05-10 江苏维尔特泵业有限公司 Energy-saving heat-dissipation type high-pressure hot water circulating pump
CN117013764A (en) * 2023-08-09 2023-11-07 上海风进电机有限公司 Explosion-proof motor convenient to maintain high-efficient heat conduction
CN117013764B (en) * 2023-08-09 2024-05-07 上海风进电机有限公司 Explosion-proof motor convenient to maintain high-efficient heat conduction

Also Published As

Publication number Publication date
KR102078042B1 (en) 2020-02-17

Similar Documents

Publication Publication Date Title
JP4124525B2 (en) Centrifugal pump with integral axial field motor
WO2020246686A1 (en) Centrifugal pump directly connected to ultra-high speed permanent magnet motor
EP2310688B1 (en) Gas compressor magnetic coupler
US5028218A (en) Immersion pump assembly
US10415590B2 (en) Electric coolant pump
CN106687694A (en) Direct drive double turbo blower cooling structure
WO1995004218A1 (en) Pump with fluid bearing
WO2004070919A1 (en) Rotary machine cooling system
EP1200736B1 (en) Shaftless canned rotor inline pipe pump
JP4059416B2 (en) Integrated motor pump
KR20080063782A (en) Paddled rotor spaceblocks
WO2023097845A1 (en) Totally-enclosed self-ventilated motor cooling structure
MXPA02008138A (en) Method and apparatus for removing oil from water including monitoring of adsorbent saturation.
JP2009180151A (en) High-speed rotating equipment
KR101236884B1 (en) rising type underwater motor pump using a magnetic field
KR102063718B1 (en) Explosion proof motor with cooling function
CN216343036U (en) Magnetic suspension hydrogen circulating pump
CN113726097B (en) Electric machine
CN109477486A (en) Motor integrated-type fluid machinery
WO2013176404A1 (en) Turbo-blower apparatus
CN102654128B (en) Magnetic-suspension underwater electric pump
WO2013176405A1 (en) Turbo-blower apparatus
WO2014178475A1 (en) Blower
SE544730C2 (en) Electrical motor with an intrinsic cooling system
WO2018221766A1 (en) Fluid device having magnetic levitation impeller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20819254

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20819254

Country of ref document: EP

Kind code of ref document: A1