WO2020246664A1 - Nano-patterned thin film, photoelectric conversion device using same, and method for producing same - Google Patents

Nano-patterned thin film, photoelectric conversion device using same, and method for producing same Download PDF

Info

Publication number
WO2020246664A1
WO2020246664A1 PCT/KR2019/013808 KR2019013808W WO2020246664A1 WO 2020246664 A1 WO2020246664 A1 WO 2020246664A1 KR 2019013808 W KR2019013808 W KR 2019013808W WO 2020246664 A1 WO2020246664 A1 WO 2020246664A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer block
block
nano
thin film
patterned thin
Prior art date
Application number
PCT/KR2019/013808
Other languages
French (fr)
Korean (ko)
Inventor
박철민
정범진
한효원
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Publication of WO2020246664A1 publication Critical patent/WO2020246664A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0035Multiple processes, e.g. applying a further resist layer on an already in a previously step, processed pattern or textured surface
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2012Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image using liquid photohardening compositions, e.g. for the production of reliefs such as flexographic plates or stamps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K65/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element and at least one organic radiation-sensitive element, e.g. organic opto-couplers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L2031/0344Organic materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electronic device, and more particularly, to a nano-patterned thin film and a method of manufacturing the same.
  • Nano-patterning technology is a basic and essential technology used in various technical fields such as sensors, filters, memory devices that store information, and fuel cells, and has attracted attention from many researchers.
  • nano-patterning technology is important for manufacturing a uniform and defect-free device at low cost.
  • the nano patterning technology includes a top-down method or a bottom-up method of building up atoms.
  • the top-down method refers to a method of crushing, cutting, or destroying bulk materials by mechanical or chemical methods to sculpt nanostructures
  • the bottom-up method is a method of stacking nanostructures by controlling and manipulating atoms or molecules. .
  • the optical and chemical properties of the target material are deteriorated due to energy applied to the target material during the process, and the bottom-up method has a problem that is not suitable for fine pattern formation because the resolution of patterning is not high.
  • the problem to be solved by the present invention is to provide a nano-patterned thin film having a pattern of tens of nanoscale or less without deteriorating the optical, physical, or chemical properties of a target material based on a bottom-up method.
  • Another problem to be solved by the present invention is to provide a photoconversion device having high performance and high efficiency using the nano-patterned thin film.
  • Another problem to be solved by the present invention is to provide a method of manufacturing a nano-patterned thin film consisting of one step without going through a complicated process.
  • the nano-patterned thin film according to an embodiment for solving the above problems is provided with a block copolymer including a first polymer block and a second polymer block chemically bonded to the first polymer block, and the first polymer block And a fine filler disposed in a plurality of empty spaces in the matrix, wherein the first polymer block forms a first block pattern, the second polymer block forms a second block pattern, and the first block pattern And the second block pattern may be physically contacted at least in any part, and in another embodiment, the first polymer block and the fine filler may be coordinarily bonded by a Lewis acid-base reaction, and in another embodiment In, the first polymer block may act as a Lewis base, and the fine filler may act as a Lewis acid.
  • the first polymer block is polyvinylpyridine (PVPD), polyetheramine, polyvinyl acetate (PVAc), polymethyl methacrylate (PMMA), poly Vinylidene fluoride (polyvinylidene fluoride) or polyethylene glycol (polyethylene glycol)
  • the fine filler may include a compound of a perovskite structure, the perovskite teuneun CH 3 NH 3 PbCl 3, CH 3 NH 3 PbBr 3, CH 3 NH 3 PbI 3, NH 2 CHNH 2 PbI 3, NH 2 CHNH 2 PbBr 3, NH 2 CHNH 2 PbCl 3 or combinations thereof
  • the fine filler may include a conductive material, silicon, mineral oxide (quartz), or ink.
  • the first block pattern or the second block pattern may include a flat or vertically elongated pillar structure, a vertical lamellar structure, a vertical pillar network, or a combination thereof, and the first block
  • the average diameter of the pattern may be in the range of 40 nm to 80 nm, and in another embodiment, the size of the average diameter of the crystal of the fine filler may be in the range of 10 nm to 35 nm, and the second polymer block is the fine filler
  • the passivation layer may be oriented in a direction different from that to prevent external stimuli applied to the fine filler.
  • the second polymer block may be a hydrophobic polymer.
  • the photoelectric conversion device includes a block copolymer including a first polymer block and a second polymer block chemically bonded to the first polymer block, and the first polymer block and Lewis It is coordinated by an acid-base reaction, and includes a fine filler including perovskite, wherein the first polymer block forms a first block pattern, and the second polymer block is at least with the first polymer block.
  • a second block pattern that is physically contacted is formed, and the fine filler may include a nano-patterned thin film disposed in an area of the first block pattern.
  • the nano-patterned thin film is blue light It can absorb energy and emit it as green light energy.
  • the method of manufacturing a nano-patterned thin film according to an embodiment for solving the above problem is the step of providing a mixed solution including a solvent and a precursor dissolved in the solvent, a first polymer block, and a second polymer block, and the mixing Coating a solution on a substrate and coordinating the ions of the precursor with the first polymer block in the mixed solution by a Lewis acid-base reaction.
  • the solvent is removed and the precursors are crystallized to form a fine filler.
  • forming a block copolymer by reacting the first polymer block and the second polymer block to form a first block pattern and a second block pattern.
  • the fine filler A compound having a perovskite structure may be included, and in another embodiment, the molar ratio of the fine filler to the first polymer block may be in the range of 30% to 100%, and optionally, the block copolymer The molecular weight of the coalescence may be in the range of 80 kg mol -1 to 230 kg mol -1 .
  • the physical, chemical, or optical properties are obtained by disposing a fine filler having physical, chemical, or optical properties inside a nano pattern formed by a block copolymer having a self-assembly property. It is possible to provide a nano-patterned thin film that is amplified.
  • a photoelectric conversion device capable of adjusting a wavelength of emitted light energy by disposing a fine filler including a perovskite material in the nano baton.
  • FIG. 1A is a diagram showing the configuration of a nano-patterned thin film according to an embodiment of the present invention
  • FIG. 1B is a view showing a block copolymer formed by combining a first polymer block and a second polymer block according to an embodiment
  • 1C is a diagram illustrating a state in which a fine filler according to an exemplary embodiment is coordinated with a first polymer block.
  • FIG. 2A is a tapping-mode atomic force microscopy (TM-AFM) image taking a pattern shape according to a molar ratio of a fine filler to a second polymer block of nanopatterned thin films according to an embodiment of the present invention. And a diagram of the pattern shape, and FIG. 2B is a graph showing an ultraviolet-visible ray (UV-vis) absorption spectrum according to a molar ratio of a fine filler to a first polymer according to an exemplary embodiment.
  • T-AFM tapping-mode atomic force microscopy
  • Images a to c of FIG. 3 are tapping-mode atomic force microscopy (TM-AFM) images photographing the nanopatterns of the nano-patterned thin film 100 according to the molecular weight of the block copolymer, and graph d Is a graph showing the average diameter of the domain of the nano-pattern according to the molecular weight.
  • TM-AFM tapping-mode atomic force microscopy
  • FIG. 4A is a graph showing a photoluminescence spectrum of a nano-patterned thin film prepared by varying the molar ratio of a block copolymer to a fine filler according to an embodiment
  • FIG. 4B is a graph showing a different molar ratio of the block copolymer. It is a graph showing the maximum photoluminescence wavelength of the prepared nano-patterned thin film
  • FIG. 4C is a graph showing the photoluminescence intensity according to the presence or absence of a block copolymer
  • FIG. 5 is a flowchart illustrating a method of manufacturing a nano-patterned thin film according to an embodiment of the present invention.
  • first and second are used to describe various members, parts, regions, and/or parts, but these members, parts, regions, and/or parts should not be limited by these terms. Is self-explanatory. These terms are only used to distinguish one member, part, region or part from another region or part. Accordingly, a first member, part, region or part to be described below may refer to a second member, part, region or part without departing from the teachings of the present invention.
  • FIG. 1A is a view showing the configuration of a nano-patterned thin film 100 according to an embodiment of the present invention
  • FIG. 1B is a first polymer block 121 and a second polymer block 122 according to an embodiment.
  • FIG. 1C is a diagram illustrating a state in which the fine filler 110 according to an exemplary embodiment is coordinated with the first polymer block 121.
  • the nano-patterned thin film 100 may include a fine filler 110 and a block copolymer 120.
  • the block copolymer 120 is, as shown in FIG. 1A, the first block pattern BP1 and the second polymer block 122 formed by the first polymer block 121
  • the nano-pattern composed of the two block patterns BP2 may be formed, and the first block pattern BP1 and the second block pattern BP2 may be physically contacted at least in some portions.
  • the first polymer block 121 may provide a matrix including a plurality of empty spaces therein, and the fine filler 110 may be dispersed and disposed in the matrix.
  • the fine filler 110 may be combined with the first polymer block 121 by a physical or chemical reaction.
  • the fine filler 110 may not be combined with the first polymer block 121 and may be sandwiched between empty spaces of the matrix.
  • it may be arranged by an intermolecular force with the fine filler 110, for example, hydrogen bonding or dispersing force.
  • the first polymer block 121 and the fine filler 110 may be coordinarily bonded by a Lewis acid-base reaction, and a detailed description of the Lewis acid-base reaction will be described later.
  • the fine filler 110 may include methylammonium lead bromide perovskite (MAPbBr 3 ).
  • the four types of nano-patterned thin film 100 have nano-patterns according to sizes of different effective volume ratios of MAPbBr 3 (f MAPbBr3 ).
  • f MAPbBr3 methylammonium lead bromide perovskite
  • the fine filler 110 is coordinated with the first polymer block 121 by a Lewis acid-base reaction to form a first block pattern BP1. Can be placed within the area of.
  • the block copolymer 120 may include a first polymer block 121 and a second polymer block 122.
  • the first polymer block 121 and the second polymer block 122 may be chemically bonded, and for example, covalent bonds, ionic bonds, hydrogen bonds, or coordination bonds may be formed.
  • the above-described types of bonding are exemplary, and all types of chemical bonding capable of bonding polymers may be applicable.
  • the first polymer block 121 and the second polymer block 122 may include a monomer, an oligomer including two or more monomers of the same type, and an oligomer including several types of monomers.
  • the first polymer block 121 or the second polymer block 122 may be formed of two or more types of block polymers.
  • the block copolymer 120 may be a tri-block copolymer 120. Accordingly, it may be possible to manufacture the nano-patterned thin film 100 having more various block patterns.
  • the fine filler 110 is a Lewis acid-base reaction with the first polymer block 121 of the first polymer block 121 and the second polymer block 122 constituting the block copolymer 120
  • coordination bonds can be formed when a Lewis base provides an lone pair of electrons and a Lewis acid shares the lone pair provided by the Lewis base.
  • the fine filler 110 may act as a Lewis acid, and the fine filler 110 has an unshared electron pair, so that the fine filler 110 ), the first polymer block 121 may act as a Lewis acid.
  • the fine filler 110 is methylammonium lead halide perovskite (MAPbX 3 ) and the first polymer block 121 includes polyvinylpyridine
  • polyvinylpyridine The unshared electron pair of the nitrogen (N) atom of is transferred to the empty 6p orbital of the lead ion (Pb 2+ ) of the perovskite to form a coordination bond.
  • the fine filler 110 has a greater reactivity than the first polymer block 121 than the second polymer block 122, and thus a second block pattern BP2 formed by the block copolymer 120 It may have one block pattern BP1, and when the fine filler 110 is surrounded by the second polymer block 122, the fine filler 110 may be protected from external stimulation such as humidity or heat.
  • the first polymer block 121 is polyvinylpyridine (PVPD), polyetheramine, polyvinyl acetate (PVAc), polymethyl methacrylate (PMMA) , Polyvinylidene fluoride or polyethylene glycol may include at least one or more of.
  • PVPD polyvinylpyridine
  • PVAc polyvinyl acetate
  • PMMA polymethyl methacrylate
  • Polyvinylidene fluoride or polyethylene glycol may include at least one or more of.
  • Different types of polymer blocks form a microphase with self-assembly characteristics by mutual force. The microphase is affected by factors such as effective volume ratio (f), molecular weight or mutual gravitation factor between constituents.
  • the first polymer block 121 is not limited to the above-described materials, and may include all kinds of known materials capable of having self-assembly characteristics by being combined with the second polymer block 122.
  • the fine filler 110 may include a compound having a perovskite structure.
  • the perovskite teuneun CH 3 NH 3 PbCl 3, CH 3 NH 3 PbBr 3, CH 3 NH 3 PbI 3, NH 2 CHNH 2 PbI 3, NH 2 CHNH 2 PbBr 3, NH 2 CHNH 2 PbCl 3 or combinations thereof It may include at least any one of.
  • the above-described materials are only examples, and the present invention is not limited, and any organic-inorganic hybrid perovskite known to those skilled in the art can be applied.
  • the nano-patterned thin film 100 is a solar cell, an electroluminescent device, a transparent electrode film, a quantum dot display (QD-display) Or, it can be applied to a field such as an optical sensor.
  • the fine filler 110 may include a conductive material, polycrystalline silicon, mineral oxide (quartz), or ink.
  • the conductive material may include materials capable of forming an electrode of an electronic device or an electric circuit, such as platinum (Pt), copper (Cu), silver (Ag), or TiN (titanium nitride).
  • Pt platinum
  • Cu copper
  • Ag silver
  • TiN titanium nitride
  • the polycrystalline silicon is included as a fine filler, it is used for solar cells, semiconductors, and integrated circuit interconnects to improve integration.
  • ink for example, when including indium tin oxide (ITO) ink or silver flake ink, electronic components can be easily printed. have.
  • Materials that may be included in the fine filler are not limited to the above-described examples, and all target materials in all technical fields requiring nano patterning technology or nano printing technology may be included.
  • FIG. 2a is a tapping-mode atomic force microscope (tapping-mode atomic force) photographing a pattern shape according to the molar ratio of the fine filler 110 to the second polymer block 122 of the nano-patterned thin films 100 according to an embodiment of the present invention.
  • FIG. 2B is an ultraviolet ray-visible ray (UV-vis) absorption spectrum according to the molar ratio of the fine filler 110 to the first polymer according to an embodiment It is a graph showing
  • the first block pattern BP1 or the second block pattern BP2 may include a flat or vertically elongated column structure, a vertical lamella structure, a vertical column network structure, or a combination thereof. . Since the reactivity of the micro-filler 110 and the first polymer block 121 is greater than that of the micro-filler 110 and the second polymer block 122, the micro-filler 110 is interposed between the first polymer blocks 121 By mixing, the first block pattern BP1 may be formed. In another embodiment, the first block pattern BP1 and the second block pattern BP2 may vary according to the molar ratio of the microstructure to the first polymer block 121.
  • MAPbBr 3 methylammonium lead bromide perovskite
  • first polymer block 121 poly(2-vinylpyridine) (poly(2-vinylpyridine); P2VP)
  • MAPbBr 3 :P2VP may have a molar ratio of 0.3:1, 0.4:1, 0.5:1, 0.6:1, 0.7:1, and 1:1, and the molar ratios are 30 in images a to f of FIG. 2A, respectively. It is expressed as %, 40%, 50%, 60%, 70% and 100%.
  • the dark part of FIG. 2A may represent the first block pattern BP1 in which the fine filler 110 is disposed.
  • the brightness of the first block pattern BP1 and the second block pattern BP2 may vary depending on the material of the first polymer block 121, the second polymer block 122, and the fine filler 110. have.
  • the nano-pattern thin film 100 may have a nano-pattern in which a horizontally arranged column structure and a vertical column structure are mixed.
  • image c when the molar ratio is 50%, the nanopattern thin film 100 is more vivid than the nanopattern when the molar ratio is 40%, and includes a larger amount of horizontally arranged pillar structures. It can have a pattern.
  • image d when the molar ratio is 60%, a nano-pattern including a vertical lamellar structure may be formed in a larger area than the nano-pattern having the molar ratio of 50%.
  • the second polymer block 122 when the molar ratio is 70%, a nano pattern including a plurality of vertical pillar structures is formed.
  • the second polymer block 122 when the molar ratio is 100%, the second polymer block 122 It can be seen that the bright area composed of) is arranged between the dark areas in a vertical column structure to have a nano pattern having a vertical network structure.
  • the horizontally arranged pillar structures may be straight or curved, and may be continuous or at least partially disconnected.
  • a part of the pillar structures may be arranged in the same direction, so that a part may have a lamellar structure.
  • the effective volume fraction of the first block pattern BP1 in which the fine filler 110 is disposed among the entire block patterns varies depending on the amount of the fine filler 110. Because. In general, even when additives such as homopolymers, surfactants, or ionic salts are added to various types of block copolymers 120, the effective volume ratio may vary. In each image of FIG. 2A, when the effective volume ratio of the first block pattern BP1 including the fine filler 110 is 30%, it is 0.39. For 40%, 0.41, 50%, 0.43, 60%, 0.45, 70%, 0.47, and 100% were measured as 0.51. In addition, in the case of the nano pattern made of the block copolymer 120 that does not contain the fine filler 110, the effective volume ratio of the first block pattern BP1 was observed to be 0.32.
  • the results of the above-described experiment are not limited according to the material according to the exemplary embodiment, and various kinds of compounds may be used for the first polymer block 121, the second polymer block 122, and the micro filler 110.
  • the nanopatterns according to the effective volume ratio of the first block pattern BP1 and the second block pattern BP2 may be different, but as the ratio of the fine filler 110 increases, the vertical column structure is The tendency to change to the network of pillars may be the same.
  • the wavelength of light energy converted by the photoelectric effect may vary according to the nano-pattern. Accordingly, a target wavelength of the converted light energy may be determined, and an appropriate molar ratio of the fine filler 110 to reach the target wavelength may be determined.
  • the nanopattern may be controlled by controlling the self-assembly morphology of the block copolymer 120 by adjusting the thickness of the nanopatterned thin film 100.
  • various structures such as a nano pattern having a columnar structure perpendicular to the substrate, a nanopattern having a vertical columnar structure at the bottom and a lamella structure at the top, or a nanopattern having a periodic rule with a molecular axis oriented to one side. Can form a nano-pattern.
  • the thickness may be controlled by adjusting the amount of a solution coated when forming the nano-patterned thin film 100.
  • an organic field-effect transistor OFET
  • a high-performance transistor can be implemented by improving the hole movement speed.
  • the nano-patterned thin film 100 having a nano-pattern of a column structure or a network structure of a vertical column arranged in a direction perpendicular to the substrate may facilitate charge flow in the anode or cathode direction.
  • a conjugated polymer may be added to improve performance.
  • the thickness may be adjusted in the range of 80 nm to 360 nm.
  • the molar ratio of the fine filler 110 to the first polymer when the molar ratio of the fine filler 110 to the first polymer is less than 60%, UV-visible light absorption may not occur, and the molar ratio of the fine filler 110 The higher it is, the higher the absorption of ultraviolet-visible light may increase.
  • the absorption amount of light having a wavelength of about 520 nm or less may be high, and as the wavelength of light is shorter, the absorption amount may increase. This is because the absorption of light occurs by the fine filler 110 having a photoelectric effect such as perovskite.
  • Images a to c of FIG. 3 are tapping-mode atomic force microscopy (TM-AFM) images photographing the nanopatterns of the nano-patterned thin film 100 according to the molecular weight of the silver block copolymer 120.
  • Graph d is a graph showing the average diameter of the domains of the nano-pattern according to the molecular weight.
  • the fine filler 110 is methylammonium lead bromide perovskite (MAPbBr 3 ), and the first polymer has a block of poly(2-vinylpyridine) (poly(2-vinylpyridine) ; P2VP), and the second polymer may be polystyrene (PS), and the molar ratio of the fine filler 110 to the first polymer block 121 may be 60%.
  • MAbBr 3 methylammonium lead bromide perovskite
  • P2VP poly(2-vinylpyridine)
  • PS polystyrene
  • image a is 80 kg mol -1
  • image b is 164 kg mol -1
  • image a is a photograph of a nano-patterned thin film 100 including a block copolymer 120 of 230 kg mol -1 It is an image. It can be seen that as the molecular weight increases, the average diameter of the domains increases. In graph d, when the molecular weight is 80 kg mol -1 , the average diameter of the domain is 4.8 nm, when 164 kg mol -1 is 55.8 nm, and when 230 kg mol -1 is 73 nm, the average diameter was measured.
  • the molecular weight may be adjusted by combining the same or different types of polymers with the first polymer block 121 or the second polymer block 122.
  • the average diameter of the first block pattern BP1 may be in the range of 40 nm to 80 nm.
  • the average diameter means a distance between a plane or vertically elongated pillar structure, a vertical lamellar structure, a network structure of vertical pillars, or combinations thereof constituting the first block pattern BP1.
  • the average diameter is less than 40 nm, it is difficult to form a structure in which the second polymer block 122 properly surrounds the micro filler 110, and the micro filler 110 that may be included in the first polymer block 121 Since there is a limit in the amount or size of the nano-patterned thin film 100, it may be difficult to obtain electrical, chemical, and optical properties required for the nano-patterned thin film 100.
  • the average diameter exceeds 80 nm, a polymer having a very large molecular weight is required, and the effect of nano-patterning may be reduced by increasing the distance between the fine fillers 110.
  • the size of the average diameter of the crystal of the fine filler 110 may be in the range of 10 nm to 35 nm.
  • the amount of the block copolymer 120 is larger than the amount of the fine filler 110, the size of the crystal of the fine filler 110 may be reduced. Therefore, when the average diameter is less than 10 nm, the amount of the fine filler 110 such as perovskite is small, so that the effect of the nano-patterned thin film 100 may be reduced.
  • the fine filler 110 includes a material having a photoelectric effect, the smaller the crystal size of the fine filler 110, the shorter the wavelength of light absorbed by the material. Accordingly, in order to absorb high-energy light energy of a short wavelength, a fine filler 110 having a crystal having a fairly fine size is required, and it may be preferable that the size of the average diameter is 35 nm or less.
  • the second polymer block 122 is oriented in a different direction from the fine filler 110 to form a passivation layer that protects against external stimuli applied to the fine filler 110 can do.
  • the polymer blocks are arranged in opposite directions or Can be arranged at intervals.
  • the polymer blocks have a self-assembly property by having an arrangement that minimizes repulsion energy and interfacial energy.
  • the fine filler 110 reacts with the first polymer block 121 to be included therein, and the first block pattern BP1 and the second polymer block 122 formed by the first polymer block 121
  • the second block pattern BP2 formed by) is brought into physical contact at least in part, so that the second polymer blocks 122 surround the fine filler 110.
  • the fine filler 110 may be protected from external stimulation such as humidity or heat by a passivation layer formed by the second polymer block 122. Even under a heat treatment of about 150° C. and a humidity of about 70%, the nano-pattern and crystal structure of the nano-patterned thin film 100 may hardly be changed. On the other hand, crystals of pure fine fillers may destroy their chemical structure when exposed to the above conditions.
  • the fine filler 110 when the fine filler 110 is MAPbBr 3 perovskite, it may be converted into a PbBr 2 crystal.
  • the passivation layer can prevent water molecules from invading into the fine filler 110, prevent the components of the fine filler 110 from spreading out, and the fine filler 110 contains organic matter. In this case, sublimation of the organic matter may be prevented. Therefore, it is possible to implement a light conversion device having high durability and long life.
  • the second polymer block 122 may be a hydrophobic polymer. Since the second polymer block 122 contains a hydrophobic polymer, the possibility of reaction with the first polymer block 121 is low, so that the block copolymer 120 having self-assembly property can be manufactured, and from stimuli such as external humidity. It is possible to effectively protect the fine filler 110.
  • the second polymer block 122 is, for example, a polyester including polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT), polybutylene terephthalate (PBT), and polyethylene naphthalate (PEN); Polyalkylenes including polyethylene (PE) and polypropylene (PP); Vinyl polymers including polyvinyl chloride (PVC); Polyamide; Polyacetal; Polyacrylates including polymethyl methacrylate (PMMA); Polycarbonate; polystyrene; Polyurethane; Acrylonitrile-butadiene-styrene copolymer (ABS); Halogenated polyalkylene; It may include at least one or more of polyarylene oxide and polyarylene sulfide, which is exemplary and is not limited to the aforementioned materials.
  • PET polyethylene terephthalate
  • PTT polytrimethylene terephthalate
  • PBT polybutylene terephthalate
  • PEN polyethylene naphthalate
  • FIG. 4A is a graph showing a photoluminescence spectrum of a nano-patterned thin film 100 manufactured by varying the molar ratio of the block copolymer 120 to the fine filler 110 according to an embodiment
  • FIG. 4B is A graph showing the maximum light emission wavelength of the nano-patterned thin film 100 manufactured by varying the molar ratio of the block copolymer 120
  • FIG. 4C is a graph showing the intensity of light emission depending on the presence or absence of the block copolymer 120
  • 4D is a graph showing the light emission intensity over time according to the presence or absence of the block copolymer 120.
  • photoluminescence characteristics of the nano-patterned thin film 100 prepared by varying the molar ratio of the block copolymer 120 according to an exemplary embodiment were analyzed.
  • 0% it means that the block copolymer 120 is formed only with the fine filler 110 without the block copolymer 120.
  • the photoluminescence was analyzed by stimulation by light of 365 nm wavelength.
  • FIG. 4B compared to the photoluminescence of pure fine filler crystals, in the case of the nano-patterned thin film 100 including the block copolymer 120, the maximum photoluminescence wavelength is blue-shifted from 543 nm to 516 nm. You can see what's happening.
  • FIG. 4C it can be seen that in the case of the nano-patterned thin film 100, photoluminescence having an intensity greater than that of the pure fine filler crystal occurs. This is because the fine filler 110 is protected by the passivation layer formed by the second polymer of the block copolymer 120 and has a small crystal size by being contained in the block pattern formed by the block copolymer 120.
  • FIG. 4D it can be seen that it takes a longer time to emit light of the nano-patterned thin film 100 than to emit light of the pure fine filler crystal.
  • a light conversion device including the nano-patterned thin film 100 having the features according to the above-described disclosure may be provided.
  • the nano-patterned thin film 100 may include a block copolymer 120 and a fine filler 110, and the block copolymer 120 is a second polymer block chemically bonded to the first polymer block and the first polymer block 121
  • a polymer block 122 may be included, and the fine filler 110 is coordinated with the first polymer block 121 by a Lewis acid-base reaction, and the first polymer block 121 is a first block pattern BP1 ), and the second polymer block 122 forms a second block pattern BP2 that is in physical contact with the first polymer block 121 at least in part, and the fine filler 110 is a first block pattern It may be disposed in some areas of (BP1).
  • the photoelectric conversion device 200 may be manufactured using the nano-patterned thin film 100 according to another exemplary embodiment.
  • the photoconversion device including the nano-patterned thin film 100 can emit green light of about 513 nm, and provides a photoconversion device to a polymer light-emitting diode (PLED) that mainly emits blue light.
  • PLED polymer light-emitting diode
  • the photoelectric conversion device 200 that emits white light may be implemented.
  • a nano-patterned thin film 100 having a thickness of about 320 nm may be prepared, and the nano-patterned thin film 100 may have a molar ratio of the fine filler 110 to the block copolymer 120 of 100%.
  • Lobsite may be included in the fine filler 110.
  • an organic photoelectric conversion device 200 capable of color conversion may be implemented by attaching the nano-patterned thin film 100 to one surface of the PLED.
  • the photoelectric conversion device 200 may include a charge transfer layer, for example, the charge transfer layer is lithium fluoride (LiF) or poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) may be included. Blue light emitted from the PLED may be converted into green light having a wavelength of about 513 nm by the nano-patterned thin film 100.
  • the photoelectric conversion device 200 may implement a cool-white emitting device by mixing blue light emitted from a PLED and green light converted from the blue light by the nano-patterned thin film 100.
  • a cool-white emitting device by mixing blue light emitted from a PLED and green light converted from the blue light by the nano-patterned thin film 100.
  • blue light having a wavelength in the range of 420 nm to 470 nm may be absorbed, converted into green light having a wavelength in the range of 500 nm to 560 nm, and then emitted.
  • FIG. 5 is a flowchart illustrating a method of manufacturing a nano-patterned thin film 100 according to an embodiment of the present invention.
  • a mixed solution including a solvent and a precursor dissolved in the solvent, the first polymer block 121 and the second polymer block 122 may be provided (S100).
  • the solvent may contain dimethylformamide (DMF, dimethylformamide), illustratively, toluene, chloroform, or benzene, preferably the first polymer block 121 or 2
  • DMF dimethylformamide
  • the solvent may contain dimethylformamide (DMF, dimethylformamide), illustratively, toluene, chloroform, or benzene, preferably the first polymer block 121 or 2
  • DMF dimethylformamide
  • the solvent may contain dimethylformamide (DMF, dimethylformamide), illustratively, toluene, chloroform, or benzene, preferably the first polymer block 121 or 2
  • It may be a solvent having a high reactivity selectively with respect to the polymer block 122, and the present invention is not limited to the above examples.
  • the precursor may be a part of the elements constituting the fine filler 110, a molecule to which the elements are bonded, an ion in which the elements and molecules are oxidized or reduced, or an ionic state of the fine filler 110.
  • the fine filler 110 is methylammonium lead bromide perovskite (MAPbBr 3 )
  • the precursor may be methylammonium bromide (MABr) and lead bromide (PbBr 2 ). have.
  • the mixed solution may be coated on the substrate (S200).
  • the mixed solution may be coated by a spin coating method, and illustratively, may include at least one of a spin-casting method, a drop casting method, an inkjet method, and a printing method, and formed coating
  • a post-treatment process for the object can be included.
  • the coating process any known technique capable of thinly applying a predetermined solution may be used.
  • the substrate is silicon oxide, gold (Au) or 3-aminopropyl triethoxysilane (APTES) and/or 3-glycidoxypropyl trimethoxysilane It may contain silicon treated with (3-(glycidyloxypropyl)trimethoxysilane; GPTES).
  • the nano-patterned thin film 100 may be formed regardless of the type of the substrate, the type of the substrate is not limited to a specific substrate.
  • the orientation of the nano-pattern may be changed due to the interaction between the materials constituting the substrate and the constituent elements of the nano-patterned thin film 100, so that a blocking layer blocking the interaction with the substrate is provided. It may be added or a process of neutralizing the substrate may be added.
  • pretreatment of patterning on the substrate may be performed to form a predetermined target nano pattern.
  • the ions of the precursor may be coordinated with the first polymer block 121 in the mixed solution by a Lewis acid-base reaction (S300).
  • the precursor is preferentially coordinated with the first polymer block 121 over the second polymer block 122.
  • the first polymer block 121 is P2VP
  • a non-shared electron pair of nitrogen of pyridine may move to an empty 6p orbital of lead ions of PbBr 2 in the precursor to form a coordination bond.
  • the fine filler 110 forms a pattern together and may be included in the first block region.
  • the block pattern BP1 and the second block pattern BP2 may be formed (S400).
  • the solvent may be evaporated and may be removed by, for example, a vacuum dryer, distillation or heating.
  • the precursor is crystallized into a fine filler 110, and then, as the block copolymer 120 is self-assembled, the first polymer block 121 forms the first block pattern BP1, and the second The polymer block 122 may form the second block pattern BP2.
  • the manufacturing method of the above-described nano-patterned thin film 100 is quick and easy by coating a mixed solution in which the components of the nano-patterned thin film 100 are dissolved and evaporating the solvent of the solution.
  • the nano-patterned thin film 100 can be manufactured. Therefore, it can be used in various fields of manufacturing technology that requires efficiency, such as semiconductors, electronic devices, optical sensors, or solar cells.
  • a top-down method that involves mechanical or chemical destruction of bulk materials may not be used. Accordingly, it is possible to prevent a problem of deteriorating physical properties of a material such as photoelectric effect and conductivity, which are problems of the top-down method.
  • the molar ratio of the precursor to the block copolymer 120 may be 40% to 100%.
  • the molar ratio of the precursor may be the whole fine filler 110 as one unit.
  • MABr and PbBr 2 can be combined and viewed as one unit.
  • range of the molar ratio of the precursor refer to the foregoing disclosure.
  • the molecular weight of the block copolymer 120 may be in the range of 80 kg mol -1 to 230 kg mol -1 .
  • the molecular weight can be controlled by adjusting the molecular weight of each of the first polymer block 121 and the second polymer block 122 dissolved in the mixed solvent. For example, the number of polymer units to be polymerized to form the first polymer block 121 may be adjusted. If the molecular weight is less than 80 kg mol -1 , the first polymer block 121 and the second polymer block 122 may not form a certain nano pattern, and if it exceeds 230 kg mol -1 , the polymer The solubility of the blocks may decrease, and it may take a long time to form the block pattern.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The present invention relates to a nano-patterned thin film. A nano-patterned thin film according to an embodiment of the present invention includes: a block copolymer including a first polymer block, and a second polymer block chemically bonded to the first polymer block; and a fine filler disposed in a plurality of empty spaces in a matrix provided by the first polymer block, wherein the first polymer block forms a first block pattern, the second polymer block forms a second block pattern, and at least some portions of the first block pattern and the second block pattern may be in physical contact.

Description

나노 패턴 박막, 이를 이용한 광전 변환 소자 및 이의 제조 방법Nano-patterned thin film, photoelectric conversion device using the same, and manufacturing method thereof
본 발명은 전자 소자에 관한 것으로서, 더욱 상세하게는, 나노 패턴 박막 및 이의 제조 방법에 관한 것이다.The present invention relates to an electronic device, and more particularly, to a nano-patterned thin film and a method of manufacturing the same.
나노 패터닝 기술은 센서, 필터, 정보를 저장하는 기억 소자, 및 연료전지와 같은 다양한 기술분야에 이용되는 기초적이고 필수적인 기술로 많은 연구자들의 관심을 받고 있다. 또한, 태양 전지, 발광 소자, 및 광 검출 소자와 같은 광학적 기술을 이용하는 분야에서도 저비용으로 균일하고 결함(defect) 없는 소자의 제조를 위한 나노 패터닝 기술이 중요하다. Nano-patterning technology is a basic and essential technology used in various technical fields such as sensors, filters, memory devices that store information, and fuel cells, and has attracted attention from many researchers. In addition, in the field of using optical technologies such as solar cells, light emitting devices, and photodetecting devices, nano-patterning technology is important for manufacturing a uniform and defect-free device at low cost.
상기 나노 패터닝 기술에는 탑다운(top-down)방식 또는 원자를 빌드업(build-up)하는 바텀업(bottom-up)방식이 존재한다. 상기 탑다운 방식은 기계적 또는 화학적인 방법으로 벌크 재료들을 분쇄, 절단 또는 파괴하여 나노 구조체를 조각하는 방식을 의미하며, 상기 바텀업 방식은 원자 또는 분자들을 제어 및 조작하여 나노 구조체를 쌓아 올리는 방식이다. 공정 상 대상 물질에 가해지는 에너지에 의하여 상기 대상 물질의 광학적 및 화학적 특성이 열화되는 문제가 있으며, 상기 바텀업 방식은 패터닝의 해상도가 높지 않아 미세 패턴 형성에는 적절하지 않은 문제를 갖는다.The nano patterning technology includes a top-down method or a bottom-up method of building up atoms. The top-down method refers to a method of crushing, cutting, or destroying bulk materials by mechanical or chemical methods to sculpt nanostructures, and the bottom-up method is a method of stacking nanostructures by controlling and manipulating atoms or molecules. . There is a problem in that the optical and chemical properties of the target material are deteriorated due to energy applied to the target material during the process, and the bottom-up method has a problem that is not suitable for fine pattern formation because the resolution of patterning is not high.
본 발명이 해결하고자 하는 과제는 바텀업 방식에 기초하여 대상 물질의 광학적, 물리학적 또는 화학적 물성을 열화시키지 않고 수십 나노 스케일 이하의 패턴을 갖는 나노 패턴 박막을 제공하는 것이다.The problem to be solved by the present invention is to provide a nano-patterned thin film having a pattern of tens of nanoscale or less without deteriorating the optical, physical, or chemical properties of a target material based on a bottom-up method.
본 발명이 해결하고자 하는 또 다른 과제는 상기 나노 패턴 박막을 이용하여 고성능 및 높은 효율을 갖는 광 변환 소자를 제공하는 것이다.Another problem to be solved by the present invention is to provide a photoconversion device having high performance and high efficiency using the nano-patterned thin film.
또한, 본 발명이 해결하고자 하는 다른 과제는, 복잡한 공정을 거치지 않고 하나의 단계로 이루어진 나노 패턴 박막의 제조 방법을 제공하는 것이다.In addition, another problem to be solved by the present invention is to provide a method of manufacturing a nano-patterned thin film consisting of one step without going through a complicated process.
상기의 과제를 해결하기 위한 일 실시예에 따른 나노 패턴 박막은,ㅠ제 1 고분자 블록 및 상기 제 1 고분자 블록과 화학적으로 결합되는 제 2 고분자 블록을 포함하는 블록 공중합체 및 상기 제 1 고분자 블록이 제공하는 매트릭스 내의 복수의 빈 공간들에 배치된 미세 충전제를 포함하며, 상기 제 1 고분자 블록은 제 1 블록 패턴을 형성하고, 상기 제 2 고분자 블록은 제 2 블록 패턴을 형성하며, 상기 제 1 블록 패턴과 상기 제 2 블록 패턴은 적어도 어느 일부에서 물리적으로 접촉될 수 있고, 다른 실시예에서, 상기 제 1 고분자 블록과 상기 미세 충전제는 루이스 산-염기 반응에 의하여 배위 결합될 수 있으며, 또 다른 실시예에서, 상기 제 1 고분자 블록은 루이스 염기로 작용하고, 상기 미세 충전제는 루이스 산으로 작용할 수 있다.The nano-patterned thin film according to an embodiment for solving the above problems is provided with a block copolymer including a first polymer block and a second polymer block chemically bonded to the first polymer block, and the first polymer block And a fine filler disposed in a plurality of empty spaces in the matrix, wherein the first polymer block forms a first block pattern, the second polymer block forms a second block pattern, and the first block pattern And the second block pattern may be physically contacted at least in any part, and in another embodiment, the first polymer block and the fine filler may be coordinarily bonded by a Lewis acid-base reaction, and in another embodiment In, the first polymer block may act as a Lewis base, and the fine filler may act as a Lewis acid.
일 실시예에서, 상기 제 1 고분자 블록은 폴리비닐피리딘(polyvinylpyridine; PVPD), 폴리에테르아민(polyetheramine), 폴리비닐아세테이트(polyvinyl acetate; PVAc), 폴리메틸메타크릴레이트(polymethyl methacrylate; PMMA), 폴리비닐리덴 플로라이드(polyvinylidene fluoride) 또는 폴리에틸렌글라이콜(polyethylene glycol) 중 적어도 어느 하나 이상을 포함할 수 있고, 다른 실시예에서, 상기 미세 충전제는 페로브스카이트 구조의 화합물을 포함할 수 있으며, 상기 페로브스카이트는 CH3NH3PbCl3, CH3NH3PbBr3, CH3NH3PbI3, NH2CHNH2PbI3, NH2CHNH2PbBr3, NH2CHNH2PbCl3 또는 이들의 화합물 중 적어도 어느 하나를 포함할 수 있고, 또 다른 실시예에서, 상기 미세 충전제는 도전성 물질, 실리콘, 미네랄 산화물(quartz) 또는 잉크를 포함할 수 있다.In one embodiment, the first polymer block is polyvinylpyridine (PVPD), polyetheramine, polyvinyl acetate (PVAc), polymethyl methacrylate (PMMA), poly Vinylidene fluoride (polyvinylidene fluoride) or polyethylene glycol (polyethylene glycol) may include at least any one or more, in another embodiment, the fine filler may include a compound of a perovskite structure, the perovskite teuneun CH 3 NH 3 PbCl 3, CH 3 NH 3 PbBr 3, CH 3 NH 3 PbI 3, NH 2 CHNH 2 PbI 3, NH 2 CHNH 2 PbBr 3, NH 2 CHNH 2 PbCl 3 or combinations thereof It may include at least one of, and in another embodiment, the fine filler may include a conductive material, silicon, mineral oxide (quartz), or ink.
일 실시예에서, 상기 제 1 블록 패턴 또는 상기 제 2 블록 패턴은, 평면 또는 수직으로 신장된 기둥 구조, 수직 라멜라 구조, 수직 기둥의 망상구조 또는 이들의 조합을 포함할 수 있고, 상기 제 1 블록 패턴의 평균 지름은 40 nm 내지 80 nm 범위 내일 수 있으며, 다른 실시예에서, 상기 미세 충전제의 결정의 평균 지름의 크기는 10 nm 내지 35 nm 범위 내일 수 있고, 상기 제 2 고분자 블록은 상기 미세 충전제와 다른 방향으로 배향되어 상기 미세 충전제에 가해지는 외부 자극을 방어하는 패시베이션 층을 형성할 수 있으며, 또 다른 실시예에서, 상기 제 2 고분자 블록은 소수성 고분자일 수 있다.In one embodiment, the first block pattern or the second block pattern may include a flat or vertically elongated pillar structure, a vertical lamellar structure, a vertical pillar network, or a combination thereof, and the first block The average diameter of the pattern may be in the range of 40 nm to 80 nm, and in another embodiment, the size of the average diameter of the crystal of the fine filler may be in the range of 10 nm to 35 nm, and the second polymer block is the fine filler The passivation layer may be oriented in a direction different from that to prevent external stimuli applied to the fine filler. In another embodiment, the second polymer block may be a hydrophobic polymer.
상기의 과제를 해결하기 위한 일 실시예에 따른 광전 변환 소자는, 제 1 고분자 블록 및 상기 제 1 고분자 블록과 화학적으로 결합된 제 2 고분자 블록을 포함하는 블록 공중합체 및 상기 제 1 고분자 블록과 루이스 산-염기 반응에 의하여 배위 결합되며, 페로브스카이트를 포함하는 미세 충전제를 포함하며, 상기 제 1 고분자 블록은 제 1 블록 패턴을 형성하고, 상기 제 2 고분자 블록은 상기 제 1 고분자 블록과 적어도 어느 일부에서 물리적으로 접촉되는 제 2 블록 패턴을 형성하며, 상기 미세 충전제는 상기 제 1 블록 패턴의 영역에 배치된 나노 패턴 박막을 포함할 수 있고, 다른 실시예에서, 상기 나노 패턴 박막은 청색 광 에너지를 흡수하여 녹색 광 에너지로 방출할 수 있다.The photoelectric conversion device according to an embodiment for solving the above problems includes a block copolymer including a first polymer block and a second polymer block chemically bonded to the first polymer block, and the first polymer block and Lewis It is coordinated by an acid-base reaction, and includes a fine filler including perovskite, wherein the first polymer block forms a first block pattern, and the second polymer block is at least with the first polymer block. In some embodiments, a second block pattern that is physically contacted is formed, and the fine filler may include a nano-patterned thin film disposed in an area of the first block pattern. In another embodiment, the nano-patterned thin film is blue light It can absorb energy and emit it as green light energy.
상기의 과제를 해결하기 위한 일 실시예에 따른 나노 패턴 박막의 제조 방법은, 용매 및 상기 용매에 용해된 전구체, 제 1 고분자 블록 및 제 2 고분자 블록을 포함하는 혼합 용액이 제공되는 단계, 상기 혼합 용액이 기판 상에 코팅되는 단계 및 상기 전구체의 이온이 상기 혼합 용액 내에서 상기 제 1 고분자 블록과 루이스 산-염기 반응에 의하여 배위 결합되는 단계, 상기 용매가 제거되고 상기 전구체들이 결정화되어 미세 충전제를 형성하고, 상기 제 1 고분자 블록 및 제 2 고분자 블록이 반응하여 블록 공중합체를 형성하여 제 1 블록 패턴 및 제 2 블록 패턴이 형성되는 단계를 포함할 수 있으며, 다른 실시예에서, 상기 미세 충전제는 페로브스카이트 구조의 화합물을 포함할 수 있으며, 또 다른 실시예에서, 상기 제 1 고분자 블록에 대한 상기 미세 충전제의 몰 비율은 30 % 내지 100 %의 범위 내일 수 있고, 선택적으로, 상기 블록 공중합체의 분자량은 80 kg mol-1 내지 230 kg mol-1의 범위 내일 수 있다.The method of manufacturing a nano-patterned thin film according to an embodiment for solving the above problem is the step of providing a mixed solution including a solvent and a precursor dissolved in the solvent, a first polymer block, and a second polymer block, and the mixing Coating a solution on a substrate and coordinating the ions of the precursor with the first polymer block in the mixed solution by a Lewis acid-base reaction. The solvent is removed and the precursors are crystallized to form a fine filler. And forming a block copolymer by reacting the first polymer block and the second polymer block to form a first block pattern and a second block pattern. In another embodiment, the fine filler A compound having a perovskite structure may be included, and in another embodiment, the molar ratio of the fine filler to the first polymer block may be in the range of 30% to 100%, and optionally, the block copolymer The molecular weight of the coalescence may be in the range of 80 kg mol -1 to 230 kg mol -1 .
본 발명의 일 실시예에 따르면, 자기 조립(self assembly) 특성을 가지는 블록 공중합체에 의하여 형성되는 나노 패턴 내부에 물리적, 화학적 또는 광학적 특성을 가지는 미세 충전제를 배치시킴으로써 상기 물리적, 화학적 또는 광학적 특성이 증폭되는 나노 패턴 박막을 제공할 수 있다.According to an embodiment of the present invention, the physical, chemical, or optical properties are obtained by disposing a fine filler having physical, chemical, or optical properties inside a nano pattern formed by a block copolymer having a self-assembly property. It is possible to provide a nano-patterned thin film that is amplified.
본 발명의 다른 실시예에 따르면, 상기 나노 배턴 내부에 페로브스카이트 물질을 포함하는 미세 충전제를 배치시킴으로써 방출되는 광 에너지의 파장 조절이 가능한 광전 변환 소자를 제공할 수 있다.According to another embodiment of the present invention, it is possible to provide a photoelectric conversion device capable of adjusting a wavelength of emitted light energy by disposing a fine filler including a perovskite material in the nano baton.
본 발명의 또 다른 실시예에 따르면, 용액을 코팅 후 증발시키는 원-스텝(one-step) 공정을 수행함으로써 신속하고 용이한 나노 패턴 박막의 제조 방법을 제공할 수 있다.According to another embodiment of the present invention, it is possible to provide a rapid and easy method of manufacturing a nano-patterned thin film by performing a one-step process of evaporating after coating a solution.
도 1a는 본 발명의 일 실시예에 따른 나노 패턴 박막의 구성을 나타내는 도면이고, 도 1b는 일 실시예에 따른 제 1 고분자 블록과 제 2 고분자 블록이 결합되어 형성된 블록 공중합체를 나타내는 도면이며, 도 1c는 일 실시예에 따른 미세 충전제가 제 1 고분자 블록과 배위 결합하는 모습을 나타내는 도면이다.1A is a diagram showing the configuration of a nano-patterned thin film according to an embodiment of the present invention, and FIG. 1B is a view showing a block copolymer formed by combining a first polymer block and a second polymer block according to an embodiment, 1C is a diagram illustrating a state in which a fine filler according to an exemplary embodiment is coordinated with a first polymer block.
도 2a는 본 발명의 일 실시예에 따른 나노 패턴 박막들의 제 2 고분자 블록에 대한 미세 충전제의 몰 비율에 따른 패턴 모양을 찍은 태핑-모드 원자력 현미경(tapping-mode atomic force microscopy; TM-AFM) 이미지 및 상기 패턴 모양의 도면이며, 도 2b는 일 실시예에 따른 제 1 고분자에 대한 미세 충전제의 몰 비율에 따른 자외선-가시관선(UV-vis) 흡수 스펙트럼을 나타내는 그래프이다.2A is a tapping-mode atomic force microscopy (TM-AFM) image taking a pattern shape according to a molar ratio of a fine filler to a second polymer block of nanopatterned thin films according to an embodiment of the present invention. And a diagram of the pattern shape, and FIG. 2B is a graph showing an ultraviolet-visible ray (UV-vis) absorption spectrum according to a molar ratio of a fine filler to a first polymer according to an exemplary embodiment.
도 3의 이미지 a 내지 이미지 c는 블록 공중합체의 분자량에 따른 나노 패턴 박막(100)의 나노 패턴을 촬영한 태핑-모드 원자력 현미경(tapping-mode atomic force microscopy; TM-AFM) 이미지이며, 그래프 d는 상기 분자량에 따른 상기 나노 패턴의 도메인의 평균 지름을 나타낸 그래프이다. Images a to c of FIG. 3 are tapping-mode atomic force microscopy (TM-AFM) images photographing the nanopatterns of the nano-patterned thin film 100 according to the molecular weight of the block copolymer, and graph d Is a graph showing the average diameter of the domain of the nano-pattern according to the molecular weight.
도 4a는 일 실시예에 따라 미세 충전제에 대한 블록 공중합체의 몰 비율을 달리하여 제조된 나노 패턴 박막의 광발광(photoluminescence) 스펙트럼을 나타낸 그래프이고, 도4b는 블록 공중합체의 몰 비율을 달리하여 제조된 나노 패턴 박막의 최대 광발광 파장을 나타낸 그래프이고, 도 4c는 블록 공중합체의 유무에 따른 광발광의 세기를 나타낸 그래프이며, 도 4d는 시간에 따른 광발광 세기를 블록 공중합체의 유무에 따라 나타낸 그래프이다.4A is a graph showing a photoluminescence spectrum of a nano-patterned thin film prepared by varying the molar ratio of a block copolymer to a fine filler according to an embodiment, and FIG. 4B is a graph showing a different molar ratio of the block copolymer. It is a graph showing the maximum photoluminescence wavelength of the prepared nano-patterned thin film, FIG. 4C is a graph showing the photoluminescence intensity according to the presence or absence of a block copolymer, and FIG. It is a graph shown according to.
도 5는 본 발명의 일 실시예에 따른 나노 패턴 박막의 제조 방법을 나타내는 순서도이다.5 is a flowchart illustrating a method of manufacturing a nano-patterned thin film according to an embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
본 발명의 실시예들은 당해 기술 분야에서 통상의 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위하여 제공되는 것이며, 하기 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 오히려, 이들 실시예는 본 개시를 더욱 충실하고 완전하게 하고, 당업자에게 본 발명의 사상을 완전하게 전달하기 위하여 제공되는 것이다.The embodiments of the present invention are provided to more completely describe the present invention to those of ordinary skill in the art, and the following examples may be modified in various other forms, and the scope of the present invention is as follows. It is not limited to the examples. Rather, these embodiments are provided to make the present disclosure more faithful and complete, and to completely convey the spirit of the present invention to those skilled in the art.
또한, 도면에서 각 층의 두께나 크기는 설명의 편의 및 명확성을 위하여 과장된 것이며, 도면상에서 동일 부호는 동일한 요소를 지칭한다. 본 명세서에서 사용된 바와 같이, 용어 "및/또는"은 해당 열거된 항목 중 어느 하나 및 하나 이상의 모든 조합을 포함한다.In addition, the thickness or size of each layer in the drawings is exaggerated for convenience and clarity of description, and the same reference numerals refer to the same elements in the drawings. As used herein, the term "and/or" includes any and all combinations of one or more of the corresponding listed items.
본 명세서에서 사용된 용어는 특정 실시예를 설명하기 위하여 사용되며, 본 발명을 제한하기 위한 것이 아니다. 본 명세서에서 사용된 바와 같이, 단수 형태는 문맥상 다른 경우를 분명히 지적하는 것이 아니라면, 복수의 형태를 포함할 수 있다. 또한, 본 명세서에서 사용되는 경우 "포함한다(comprise)" 및/또는 "포함하는(comprising)"은 언급한 형상들, 숫자, 단계, 동작, 부재, 요소 및/또는 이들 그룹의 존재를 특정하는 것이며, 하나 이상의 다른 형상, 숫자, 동작, 부재, 요소 및/또는 그룹들의 존재 또는 부가를 배제하는 것이 아니다.The terms used in this specification are used to describe specific embodiments, and are not intended to limit the present invention. As used herein, the singular form may include the plural form unless the context clearly indicates another case. Further, as used herein, "comprise" and/or "comprising" specifies the presence of the mentioned shapes, numbers, steps, actions, members, elements and/or groups thereof. And does not exclude the presence or addition of one or more other shapes, numbers, actions, members, elements, and/or groups.
본 명세서에서 제 1, 제 2 등의 용어가 다양한 부재, 부품, 영역, 및/또는 부분들을 설명하기 위하여 사용되지만, 이들 부재, 부품, 영역, 및/또는 부분들은 이들 용어에 의해 한정되어서는 안됨은 자명하다. 이들 용어는 하나의 부재, 부품, 영역 또는 부분을 다른 영역 또는 부분과 구별하기 위하여만 사용된다. 따라서, 이하 상술할 제 1 부재, 부품, 영역 또는 부분은 본 발명의 가르침으로부터 벗어나지 않고서도 제 2 부재, 부품, 영역 또는 부분을 지칭할 수 있다.In the present specification, terms such as first and second are used to describe various members, parts, regions, and/or parts, but these members, parts, regions, and/or parts should not be limited by these terms. Is self-explanatory. These terms are only used to distinguish one member, part, region or part from another region or part. Accordingly, a first member, part, region or part to be described below may refer to a second member, part, region or part without departing from the teachings of the present invention.
이하, 본 발명의 실시예들은 본 발명의 이상적인 실시예들을 개략적으로 도시하는 도면들을 참조하여 설명된다. 도면들에 있어서, 예를 들면, 부재들의 크기와 형상은 설명의 편의와 명확성을 위하여 과장될 수 있으며, 실제 구현시, 도시된 형상의 변형들이 예상될 수 있다. 따라서, 본 발명의 실시예는 본 명세서에 도시된 부재 또는 영역의 특정 형상에 제한된 것으로 해석되어서는 아니 된다.Hereinafter, embodiments of the present invention will be described with reference to the drawings schematically showing ideal embodiments of the present invention. In the drawings, for example, the size and shape of members may be exaggerated for convenience and clarity of description, and in actual implementation, variations of the illustrated shape may be expected. Accordingly, embodiments of the present invention should not be construed as being limited to a specific shape of a member or region shown herein.
도 1a는 본 발명의 일 실시예에 따른 나노 패턴 박막(100)의 구성을 나타내는 도면이고, 도 1b는 일 실시예에 따른 제 1 고분자 블록(121)과 제 2 고분자 블록(122)이 결합되어 형성된 블록 공중합체(120)를 나타내는 도면이며, 도 1c는 일 실시예에 따른 미세 충전제(110)가 제 1 고분자 블록(121)과 배위 결합하는 모습을 나타내는 도면이다.1A is a view showing the configuration of a nano-patterned thin film 100 according to an embodiment of the present invention, and FIG. 1B is a first polymer block 121 and a second polymer block 122 according to an embodiment. A diagram showing the formed block copolymer 120, and FIG. 1C is a diagram illustrating a state in which the fine filler 110 according to an exemplary embodiment is coordinated with the first polymer block 121.
도 1a 및 도 1b를 참조하면, 일 실시예에 따른 나노 패턴 박막(100)은 미세 충전제(110) 및 블록 공중합체(120)를 포함할 수 있다. 일 실시예에서, 블록 공중합체(120)는, 도 1a에 도시된 것과 같이, 제 1 고분자 블록(121)이 구성하는 제 1 블록 패턴(BP1) 및 제 2 고분자 블록(122)이 형성하는 제 2 블록 패턴(BP2)로 구성된 나노 패턴을 가질 수 있고, 제 1 블록 패턴(BP1)과 제 2 블록 패턴(BP2)은 적어도 어느 일부에서 물리적으로 접촉될 수 있다. 1A and 1B, the nano-patterned thin film 100 according to an embodiment may include a fine filler 110 and a block copolymer 120. In one embodiment, the block copolymer 120 is, as shown in FIG. 1A, the first block pattern BP1 and the second polymer block 122 formed by the first polymer block 121 The nano-pattern composed of the two block patterns BP2 may be formed, and the first block pattern BP1 and the second block pattern BP2 may be physically contacted at least in some portions.
제 1 고분자 블록(121)은 내부에 복수의 빈 공간들을 포함하는 매트릭스를 제공할 수 있고, 미세 충전제(110)는 상기 매트릭스 내에 분산되어 배치될 수 있다. 미세 충전제(110)는 제 1 고분자 블록(121)과 물리적 또는 화학적 반응에 의하여 결합될 수 있다. 다른 실시예에서는 미세 충전제(110)가 제 1 고분자 블록(121)과 결합을 이루지 않고 상기 매트릭스의 빈 공간들의 사이에 끼어 있을 수 있다. 또는, 미세 충전제(110)와의 분자간의 힘, 예를 들면, 수소 결합 또는 분산력에 의하여 배열될 수도 있다. 또 다른 실시예에서는, 제 1 고분자 블록(121)과 미세 충전제(110)는 루이스 산-염기 반응에 의하여 배위 결합될 수 있으며, 상기 루이스 산-염기 반응에 대한 상세한 설명은 후술하기로 한다.The first polymer block 121 may provide a matrix including a plurality of empty spaces therein, and the fine filler 110 may be dispersed and disposed in the matrix. The fine filler 110 may be combined with the first polymer block 121 by a physical or chemical reaction. In another embodiment, the fine filler 110 may not be combined with the first polymer block 121 and may be sandwiched between empty spaces of the matrix. Alternatively, it may be arranged by an intermolecular force with the fine filler 110, for example, hydrogen bonding or dispersing force. In another embodiment, the first polymer block 121 and the fine filler 110 may be coordinarily bonded by a Lewis acid-base reaction, and a detailed description of the Lewis acid-base reaction will be described later.
도 1a의 좌측에는 다양한 실시예에 따른 4 종류의 나노 패턴 박막(100)이 도시되어 있다. 일 실시예에서, 미세 충전제(110)는 메틸암모늄 브롬화 납 페로브스카이트(methylammonium lead bromide perovskite; MAPbBr3)를 포함할 수 있다. 4 종류의 나노 패턴 박막(100)은, 서로 다른 MAPbBr3의 유효용적비(effective volume ratio; fMAPbBr3)의 크기에 따른 나노 패턴을 갖는다. 우측에는 나노 패턴 박막(100)의 일부를 확대한 도면이 도시되어 있으며, 미세 충전제(110)는 제 1 고분자 블록(121)과 루이스 산-염기 반응에 의하여 배위 결합되어 제 1 블록 패턴(BP1)의 영역 내에 배치될 수 있다.4 types of nano-patterned thin films 100 according to various embodiments are shown on the left side of FIG. 1A. In one embodiment, the fine filler 110 may include methylammonium lead bromide perovskite (MAPbBr 3 ). The four types of nano-patterned thin film 100 have nano-patterns according to sizes of different effective volume ratios of MAPbBr 3 (f MAPbBr3 ). On the right side, a partially enlarged view of the nano-patterned thin film 100 is shown, and the fine filler 110 is coordinated with the first polymer block 121 by a Lewis acid-base reaction to form a first block pattern BP1. Can be placed within the area of.
전술한 것과 같이, 일 실시예에 따른 블록 공중합체(120)는 제 1 고분자 블록(121) 및 제 2 고분자 블록(122)을 포함할 수 있다. 제 1 고분자 블록(121)과 제 2 고분자 블록(122)은 화학적으로 결합될 수 있으며, 예를 들어, 공유 결합, 이온 결합, 수소 결합 또는 배위 결합을 이룰 수 있다. 전술한 결합의 종류들은 예시적인 것이며, 고분자들의 결합이 가능한 모든 종류의 화학적 결합이 해당될 수 있다.As described above, the block copolymer 120 according to an embodiment may include a first polymer block 121 and a second polymer block 122. The first polymer block 121 and the second polymer block 122 may be chemically bonded, and for example, covalent bonds, ionic bonds, hydrogen bonds, or coordination bonds may be formed. The above-described types of bonding are exemplary, and all types of chemical bonding capable of bonding polymers may be applicable.
일 실시예에서, 제 1 고분자 블록(121) 및 제 2 고분자 블록(122)은 단량체, 2 개 이상의 동일한 종류의 단량체를 포함하는 올리고머, 여러 종류의 단량체를 포함하는 올리고머를 포함할 수 있다. 다른 실시예에서는, 제 1 고분자 블록(121) 또는 제 2 고분자 블록(122)이 2 종류 이상의 블록 고분자로 구성될 수 있다. 예를 들어, 제 1 고분자 블록(121)이 1-1 고분자 블록 및 1-2 고분자 블록의 결합에 의하여 이루어진 경우, 블록 공중합체(120)는 트라이 블록 공중합체(120)일 수 있다. 이에 따라, 더 다양한 블록 패턴을 갖는 나노 패턴 박막(100)의 제조가 가능할 수 있다.In one embodiment, the first polymer block 121 and the second polymer block 122 may include a monomer, an oligomer including two or more monomers of the same type, and an oligomer including several types of monomers. In another embodiment, the first polymer block 121 or the second polymer block 122 may be formed of two or more types of block polymers. For example, when the first polymer block 121 is formed by combining a 1-1 polymer block and a 1-2 polymer block, the block copolymer 120 may be a tri-block copolymer 120. Accordingly, it may be possible to manufacture the nano-patterned thin film 100 having more various block patterns.
일 실시예에서, 미세 충전제(110)는 블록 공중합체(120)를 구성하는 제 1 고분자 블록(121) 및 상기 제 2 고분자 블록(122) 중 제 1 고분자 블록(121)과 루이스 산-염기 반응에 의하여 배위 결합될 수 있다. 루이스 염기가 비공유 전자쌍을 제공하고, 루이스 산이 상기 루이스 염기가 제공한 비공유 전자쌍을 공유하는 경우 배위 결합이 형성될 수 있다. 다른 실시예에서, 제 1 고분자 블록(121)이 비공유 전자쌍을 가지고 루이스 염기로 작용하는 경우 미세 충전제(110)가 루이스 산으로 작용할 수 있으며, 미세 충전제(110)가 비공유 전자쌍을 가져 미세 충전제(110)로 작용하는 경우 제 1 고분자 블록(121)이 루이스 산을 작용할 수 있다. 예를 들어, 미세 충전제(110)가 메틸암모늄 할로겐화 납 페로브스카이트(methylammonium lead halide perovskite; MAPbX3)이고 제 1 고분자 블록(121)이 폴리비닐피리딘(polyvinylpyridine)을 포함하는 경우, 폴리비닐피리딘의 질소(N) 원자의 비공유 전자쌍이 페로브스카이트의 납 이온(Pb2+)의 빈 6p 오비탈로 이동하면서 배위 결합을 형성할 수 있다. 이 경우, 미세 충전제(110)는 제 2 고분자 블록(122)보다 제 1 고분자 블록(121)보다 큰 반응성을 가짐으로써 블록 공중합체(120)가 형성하는 제 2 블록 패턴(BP2)에 상응하는 제 1 블록 패턴(BP1)을 가질 수 있고, 미세 충전제(110)가 제 2 고분자 블록(122)에 둘러싸이는 경우 외부의 습도 또는 열과 같은 자극으로부터 미세 충전제(110)가 보호될 수 있다.In one embodiment, the fine filler 110 is a Lewis acid-base reaction with the first polymer block 121 of the first polymer block 121 and the second polymer block 122 constituting the block copolymer 120 By coordination can be combined. Coordination bonds can be formed when a Lewis base provides an lone pair of electrons and a Lewis acid shares the lone pair provided by the Lewis base. In another embodiment, when the first polymer block 121 has an unshared electron pair and acts as a Lewis base, the fine filler 110 may act as a Lewis acid, and the fine filler 110 has an unshared electron pair, so that the fine filler 110 ), the first polymer block 121 may act as a Lewis acid. For example, when the fine filler 110 is methylammonium lead halide perovskite (MAPbX 3 ) and the first polymer block 121 includes polyvinylpyridine, polyvinylpyridine The unshared electron pair of the nitrogen (N) atom of is transferred to the empty 6p orbital of the lead ion (Pb 2+ ) of the perovskite to form a coordination bond. In this case, the fine filler 110 has a greater reactivity than the first polymer block 121 than the second polymer block 122, and thus a second block pattern BP2 formed by the block copolymer 120 It may have one block pattern BP1, and when the fine filler 110 is surrounded by the second polymer block 122, the fine filler 110 may be protected from external stimulation such as humidity or heat.
일 실시예에서, 제 1 고분자 블록(121)은 폴리비닐피리딘(polyvinylpyridine; PVPD), 폴리에테르아민(polyetheramine), 폴리비닐아세테이트(polyvinyl acetate; PVAc), 폴리메틸메타크릴레이트(polymethyl methacrylate; PMMA), 폴리비닐리덴 플로라이드(polyvinylidene fluoride) 또는 폴리에틸렌글라이콜(polyethylene glycol) 중 적어도 어느 하나 이상을 포함할 수 있다. 다른 종류의 고분자 블록들은 상호간의 힘에 의하여 자기 조립(self assembly) 특성을 가지고 미세상(microphase)을 형성한다. 상기 미세상은 구성 성분간의 유효용적율(f), 분자량 또는 상호인력계수와 같은 요인들의 영향을 받는다. 이에 따라, 제 1 고분자 블록(121)은 전술한 물질들에 한정되지 않으며, 제 2 고분자 블록(122)과 결합하여 자기조립특성을 가질 수 있는 공지의 모든 종류의 물질들을 포함할 수 있다.In one embodiment, the first polymer block 121 is polyvinylpyridine (PVPD), polyetheramine, polyvinyl acetate (PVAc), polymethyl methacrylate (PMMA) , Polyvinylidene fluoride or polyethylene glycol may include at least one or more of. Different types of polymer blocks form a microphase with self-assembly characteristics by mutual force. The microphase is affected by factors such as effective volume ratio (f), molecular weight or mutual gravitation factor between constituents. Accordingly, the first polymer block 121 is not limited to the above-described materials, and may include all kinds of known materials capable of having self-assembly characteristics by being combined with the second polymer block 122.
일 실시예에서, 미세 충전제(110)는 페로브스카이트 구조의 화합물을 포함할 수 있다. 다른 실시예에서는. 상기 페로브스카이트는 CH3NH3PbCl3, CH3NH3PbBr3, CH3NH3PbI3, NH2CHNH2PbI3, NH2CHNH2PbBr3, NH2CHNH2PbCl3 또는 이들의 화합물 중 적어도 어느 하나를 포함할 수 있다. 전술한 물질들은 예시일 뿐이며, 본 발명을 한정하지 않고, 당업자에게 공지된 유-무기 하이브리드 페로브스카이트는 모두 적용될 수 있다. 상기 페로브스카이트의 광전 효과에 의하여 미세 충전제(110)가 페로브스카이트를 포함하는 경우, 나노 패턴 박막(100)은 태양 전지, 전기발광 소자, 투명전극 필름, 양자점 디스플레이(QD-display) 또는 광 센서와 같은 분야에 응용될 수 있다.In one embodiment, the fine filler 110 may include a compound having a perovskite structure. In another embodiment. The perovskite teuneun CH 3 NH 3 PbCl 3, CH 3 NH 3 PbBr 3, CH 3 NH 3 PbI 3, NH 2 CHNH 2 PbI 3, NH 2 CHNH 2 PbBr 3, NH 2 CHNH 2 PbCl 3 or combinations thereof It may include at least any one of. The above-described materials are only examples, and the present invention is not limited, and any organic-inorganic hybrid perovskite known to those skilled in the art can be applied. When the fine filler 110 contains perovskite due to the photoelectric effect of the perovskite, the nano-patterned thin film 100 is a solar cell, an electroluminescent device, a transparent electrode film, a quantum dot display (QD-display) Or, it can be applied to a field such as an optical sensor.
또 다른 실시예에서, 미세 충전제(110)는 도전성 물질, 다결정 실리콘, 미네랄 산화물(quartz) 또는 잉크를 포함할 수 있다. 상기 도전성 물질에는 백금(Pt), 구리(Cu), 은(Ag) 또는 TiN(티타늄 질화물)과 같이 전자 소자의 전극 또는 전기 회로를 형성할 수 있는 물질들이 포함될 수 있다. 상기 다결정 실리콘을 미세 충전재로 포함하는 경우 태양전지, 반도체, 집적 회로 도선(interconnect)에 이용되어 집적도를 향상시킬 수 있다. 또한, 미세 충전제(110)에 잉크를 포함하는 경우, 예를 들면, 인듐 주석 산화물(indium tin oxide; ITO) 잉크 또는 은 플레이크(silver flake) 잉크를 포함하는 경우, 전자 부품을 용이하게 인쇄할 수 있다. 미세 충전재에 포함될 수 있는 재료들은 전술한 예로 한정되지 않으며 나노 패터닝 기술 또는 나노 프린팅 기술이 요구되는 모든 기술 분야의 대상 물질들은 모두 포함될 수 있다.In another embodiment, the fine filler 110 may include a conductive material, polycrystalline silicon, mineral oxide (quartz), or ink. The conductive material may include materials capable of forming an electrode of an electronic device or an electric circuit, such as platinum (Pt), copper (Cu), silver (Ag), or TiN (titanium nitride). When the polycrystalline silicon is included as a fine filler, it is used for solar cells, semiconductors, and integrated circuit interconnects to improve integration. In addition, when ink is included in the fine filler 110, for example, when including indium tin oxide (ITO) ink or silver flake ink, electronic components can be easily printed. have. Materials that may be included in the fine filler are not limited to the above-described examples, and all target materials in all technical fields requiring nano patterning technology or nano printing technology may be included.
도 2a는 본 발명의 일 실시예에 따른 나노 패턴 박막(100)들의 제 2 고분자 블록(122)에 대한 미세 충전제(110)의 몰 비율에 따른 패턴 모양을 찍은 태핑 모드 원자력 현미경(tapping-mode atomic force microscopy; TM-AFM) 이미지 및 상기 패턴 모양의 도면이며, 도 2b는 일 실시예에 따른 제 1 고분자에 대한 미세 충전제(110)의 몰 비율에 따른 자외선-가시관선(UV-vis) 흡수 스펙트럼을 나타내는 그래프이다.Figure 2a is a tapping-mode atomic force microscope (tapping-mode atomic force) photographing a pattern shape according to the molar ratio of the fine filler 110 to the second polymer block 122 of the nano-patterned thin films 100 according to an embodiment of the present invention. force microscopy (TM-AFM) image and a diagram of the pattern shape, and FIG. 2B is an ultraviolet ray-visible ray (UV-vis) absorption spectrum according to the molar ratio of the fine filler 110 to the first polymer according to an embodiment It is a graph showing
일 실시예에서, 제 1 블록 패턴(BP1) 또는 상기 제 2 블록 패턴(BP2)은, 평면 또는 수직으로 신장된 기둥 구조, 수직 라멜라 구조, 수직 기둥의 망상구조 또는 이들의 조합을 포함할 수 있다. 미세 충전제(110)와 제 1 고분자 블록(121)의 반응성이 미세 충전제(110)와 제 2 고분자 블록(122)의 반응성보다 크기 때문에 미세 충전제(110)는 제 1 고분자 블록(121)들 사이에 혼입됨으로써 제 1 블록 패턴(BP1)을 형성할 수 있다. 다른 실시예에서, 제 1 블록 패턴(BP1) 및 제 2 블록 패턴(BP2)은 제 1 고분자 블록(121)에 대한 미세 구조체의 몰 비율에 따라 달라질 수 있다. 예를 들면, 미세 충전제(110)가 메틸암모늄 브롬화 납 페로브스카이트(MAPbBr3)고 제 1 고분자 블록(121)이 폴리(2-비닐피리딘)(poly(2-vinylpyridine); P2VP)인 경우, MAPbBr3:P2VP의 몰 비가 0.3:1, 0.4:1, 0.5:1, 0.6:1, 0.7:1 및 1:1일 수 있고, 상기 몰 비들은 도 2a의 이미지 a 내지 이미지 f에서 각각 30 %, 40 %, 50 %, 60 %, 70 % 및 100 %로 표시하였다. 도 2a의 어두운 부분은 미세 충전제(110)가 배치된 제 1 블록 패턴(BP1)을 나타낼 수 있다. 다른 실시예에서, 제 1 블록 패턴(BP1) 및 제 2 블록 패턴(BP2)의 밝기는 제 1 고분자 블록(121), 제 2 고분자 블록(122) 및 미세 충전제(110)의 물질에 따라 달라질 수 있다.In one embodiment, the first block pattern BP1 or the second block pattern BP2 may include a flat or vertically elongated column structure, a vertical lamella structure, a vertical column network structure, or a combination thereof. . Since the reactivity of the micro-filler 110 and the first polymer block 121 is greater than that of the micro-filler 110 and the second polymer block 122, the micro-filler 110 is interposed between the first polymer blocks 121 By mixing, the first block pattern BP1 may be formed. In another embodiment, the first block pattern BP1 and the second block pattern BP2 may vary according to the molar ratio of the microstructure to the first polymer block 121. For example, when the fine filler 110 is methylammonium lead bromide perovskite (MAPbBr 3 ) and the first polymer block 121 is poly(2-vinylpyridine) (poly(2-vinylpyridine); P2VP) , MAPbBr 3 :P2VP may have a molar ratio of 0.3:1, 0.4:1, 0.5:1, 0.6:1, 0.7:1, and 1:1, and the molar ratios are 30 in images a to f of FIG. 2A, respectively. It is expressed as %, 40%, 50%, 60%, 70% and 100%. The dark part of FIG. 2A may represent the first block pattern BP1 in which the fine filler 110 is disposed. In another embodiment, the brightness of the first block pattern BP1 and the second block pattern BP2 may vary depending on the material of the first polymer block 121, the second polymer block 122, and the fine filler 110. have.
도 2a의 이미지 b를 참조하면, 상기 몰 비가 40 %인 경우, 나노 패턴 박막(100)은 수평으로 배치된 기둥 구조 및 수직의 기둥 구조가 혼합된 나노 패턴을 가질 수 있다. 이미지 c를 참조하면, 상기 몰 비가 50 %인 경우, 나노 패턴 박막(100)은 상기 몰 비가 40 %인 경우의 나노 패턴보다 더 선명하고, 더 많은 양의 수평으로 배치된 기둥 구조를 포함하는 나노 패턴을 가질 수 있다. 이미지 d를 참조하면, 상기 몰 비가 60 %인 경우에는, 상기 몰 비가 50 %인 나노 패턴보다 더 많은 영역에 수직의 라멜라 구조를 포함하는 나노 패턴을 가질 수 있다. 이미지 e를 참조하면, 상기 몰 비가 70 %인 경우에는, 수직 방향의 기둥 구조를 다수 포함하는 나노 패턴을 가지며, 이미지 f를 참조하면, 상기 몰 비가 100 %인 경우에는, 제 2 고분자 블록(122)으로 구성되는 밝은 영역이 수직의 기둥 구조로 어두운 영역 사이에 배치되어 수직의 망상 구조를 갖는 나노 패턴을 가지는 것을 볼 수 있다. 상기 수평으로 배치된 기둥 구조들은 직선 형태 또는 곡선 형태일 수 있으며, 연속적이거나 적어도 어느 일부에서 단절된 형태일 수 있다. 또한, 상기 기둥 구조들은 일부분이 같은 방향으로 배열됨으로써 일 부분이 라멜라 구조를 가질 수 있다.Referring to image b of FIG. 2A, when the molar ratio is 40%, the nano-pattern thin film 100 may have a nano-pattern in which a horizontally arranged column structure and a vertical column structure are mixed. Referring to image c, when the molar ratio is 50%, the nanopattern thin film 100 is more vivid than the nanopattern when the molar ratio is 40%, and includes a larger amount of horizontally arranged pillar structures. It can have a pattern. Referring to image d, when the molar ratio is 60%, a nano-pattern including a vertical lamellar structure may be formed in a larger area than the nano-pattern having the molar ratio of 50%. Referring to image e, when the molar ratio is 70%, a nano pattern including a plurality of vertical pillar structures is formed. Referring to image f, when the molar ratio is 100%, the second polymer block 122 It can be seen that the bright area composed of) is arranged between the dark areas in a vertical column structure to have a nano pattern having a vertical network structure. The horizontally arranged pillar structures may be straight or curved, and may be continuous or at least partially disconnected. In addition, a part of the pillar structures may be arranged in the same direction, so that a part may have a lamellar structure.
상기 나노 패턴들이 상기 몰 비에 따라 달라지는 것은 전제 블록 패턴 중 미세 충전제(110)가 배치된 제 1 블록 패턴(BP1)의 유효용적비(effective volume fraction)가 미세 충전제(110)의 양에 따라 달라지기 때문이다. 일반적으로, 다양한 종류의 블록 공중합체(120)에 동종중합체(homopolymers), 계면활성제 또는 이온성 염과 같은 첨가제를 첨가하는 경우에도 유효용적비가 달라질 수 있다. 도 2a의 각 이미지에서 미세 충전제(110)를 포함하는 제 1 블록 패턴(BP1)의 유효용적비는 30 %인 경우 0.39. 40 %인 경우 0.41, 50 %인 경우 0.43, 60 %인 경우 0.45, 70 %인 경우 0.47, 100 %인 경우 0.51로 측정되었다. 또한, 미세 충전제(110)를 포함하지 않는 블록 공중합체(120)에 의한 나노 패턴의 경우 제 1 블록 패턴(BP1)의 유효용적비가 0.32로 관찰되었다.The fact that the nano-patterns vary according to the molar ratio is that the effective volume fraction of the first block pattern BP1 in which the fine filler 110 is disposed among the entire block patterns varies depending on the amount of the fine filler 110. Because. In general, even when additives such as homopolymers, surfactants, or ionic salts are added to various types of block copolymers 120, the effective volume ratio may vary. In each image of FIG. 2A, when the effective volume ratio of the first block pattern BP1 including the fine filler 110 is 30%, it is 0.39. For 40%, 0.41, 50%, 0.43, 60%, 0.45, 70%, 0.47, and 100% were measured as 0.51. In addition, in the case of the nano pattern made of the block copolymer 120 that does not contain the fine filler 110, the effective volume ratio of the first block pattern BP1 was observed to be 0.32.
전술한 실험의 결과는 일 실시예에 따른 물질에 따라 제한되지 않으며, 제 1 고분자 블록(121), 제 2 고분자 블록(122) 및 미세 충전제(110)에는 다양한 종류의 화합물이 사용될 수 있다. 상기 화합물의 종류에 따라 제 1 블록 패턴(BP1) 및 제 2 블록 패턴(BP2)의 유효용적비에 따른 나노 패턴은 상이할 수 있으나, 미세 충전제(110)의 비율이 높아질수록 수평의 기둥 구조에서 수직 기둥의 망상구조로 변화하는 경향성은 동일할 수 있다. 일 실시예에서, 나노 패턴은 나노 패턴 박막(100)이 광 변환 소자 또는 태양 전지에 사용되는 경우 광전 효과에 의하여 변환된 광 에너지의 파장은 상기 나노 패턴에 따라 달라질 수 있다. 따라서, 변환된 광 에너지의 타겟 파장을 정하고, 상기 타겟 파장에 도달하기 위하여 적절한 미세 충전제(110)의 몰 비를 정할 수 있다.The results of the above-described experiment are not limited according to the material according to the exemplary embodiment, and various kinds of compounds may be used for the first polymer block 121, the second polymer block 122, and the micro filler 110. Depending on the type of the compound, the nanopatterns according to the effective volume ratio of the first block pattern BP1 and the second block pattern BP2 may be different, but as the ratio of the fine filler 110 increases, the vertical column structure is The tendency to change to the network of pillars may be the same. In an embodiment, when the nano-patterned thin film 100 is used for a photo-conversion device or solar cell, the wavelength of light energy converted by the photoelectric effect may vary according to the nano-pattern. Accordingly, a target wavelength of the converted light energy may be determined, and an appropriate molar ratio of the fine filler 110 to reach the target wavelength may be determined.
일 실시예에서는, 나노 패턴 박막(100)의 두께를 조절하여 블록 공중합체(120)의 자기조립 모폴로지를 제어함으로써 상기 나노 패턴을 조절할 수 있다. 예를 들면, 기판에 수직한 기둥 구조를 갖는 나노 패턴, 하부에는 수직한 기둥 구조를 가지고 상부에는 라멜라 구조를 갖는 나노 패턴 또는 분자축이 한 측으로 배향되어 주기적인 규칙을 갖는 나노 패턴과 같이 다양한 구조의 나노 패턴을 형성할 수 있다. 다른 실시예에서, 상기 두께는 나노 패턴 박막(100) 형성 시 코팅되는 용액의 양을 조절하여 제어할 수 있다. In an embodiment, the nanopattern may be controlled by controlling the self-assembly morphology of the block copolymer 120 by adjusting the thickness of the nanopatterned thin film 100. For example, various structures such as a nano pattern having a columnar structure perpendicular to the substrate, a nanopattern having a vertical columnar structure at the bottom and a lamella structure at the top, or a nanopattern having a periodic rule with a molecular axis oriented to one side. Can form a nano-pattern. In another embodiment, the thickness may be controlled by adjusting the amount of a solution coated when forming the nano-patterned thin film 100.
나노 패턴 박막(100)의 상기 나노 패턴을 적절히 제어하여 유기 박막 트랜지스터(Organic field-effect transistor; OFET)을 제조하는 경우, 정공 이동 속도를 향상시킴으로써 고성능의 트랜지스터를 구현할 수 있다. 예를 들면, 기판에 수직한 방향으로 배열된 기둥 구조 또는 수직 기둥의 망상 구조의 나노 패턴을 갖는 나노 패턴 박막(100)은 양극 또는 음극 방향으로의 전하 흐름을 용이하게 할 수 있다. 또한, 상기 유기 박막 트랜지스터를 제작하는 경우 성능의 향상을 위하여 공액성 고분자(conjugated polymer)를 첨가할 수 있다. 다른 실시예에서 상기 두께는 80 nm 내지 360 nm의 범위로 조절될 수 있다.When an organic field-effect transistor (OFET) is manufactured by appropriately controlling the nano-pattern of the nano-patterned thin film 100, a high-performance transistor can be implemented by improving the hole movement speed. For example, the nano-patterned thin film 100 having a nano-pattern of a column structure or a network structure of a vertical column arranged in a direction perpendicular to the substrate may facilitate charge flow in the anode or cathode direction. In addition, when manufacturing the organic thin film transistor, a conjugated polymer may be added to improve performance. In another embodiment, the thickness may be adjusted in the range of 80 nm to 360 nm.
도 2b를 참조하면, 일 실시예에서는, 제 1 고분자에 대한 미세 충전제(110)의 몰 비율이 60 % 미만인 경우, 자외선-가시광선 흡수가 일어나지 않을 수 있고, 미세 충전제(110)의 몰 비율이 높아질수록 자외선-가시광선 흡수량이 증가할 수 있다. 다른 실시예에서는, 파장이 약 520 nm 이하인 광의 흡수량이 높을 수 있고, 광의 파장이 짧을수록 상기 흡수량이 증가할 수 있다. 이는, 광의 흡수가 페로브스카이트와 같은 광전 효과를 갖는 미세 충전제(110)에 의하여 일어나기 때문이다.Referring to Figure 2b, in one embodiment, when the molar ratio of the fine filler 110 to the first polymer is less than 60%, UV-visible light absorption may not occur, and the molar ratio of the fine filler 110 The higher it is, the higher the absorption of ultraviolet-visible light may increase. In another embodiment, the absorption amount of light having a wavelength of about 520 nm or less may be high, and as the wavelength of light is shorter, the absorption amount may increase. This is because the absorption of light occurs by the fine filler 110 having a photoelectric effect such as perovskite.
도 3의 이미지 a 내지 이미지 c는은 블록 공중합체(120)의 분자량에 따른 나노 패턴 박막(100)의 나노 패턴을 촬영한 태핑 모드 원자력 현미경(tapping-mode atomic force microscopy; TM-AFM) 이미지이며, 그래프 d는 상기 분자량에 따른 상기 나노 패턴의 도메인의 평균 지름을 나타낸 그래프이다. Images a to c of FIG. 3 are tapping-mode atomic force microscopy (TM-AFM) images photographing the nanopatterns of the nano-patterned thin film 100 according to the molecular weight of the silver block copolymer 120. , Graph d is a graph showing the average diameter of the domains of the nano-pattern according to the molecular weight.
일 실시예에서, 미세 충전제(110)는 메틸암모늄 브롬화 납 페로브스카이트 (Methylammonium lead bromide perovskite; MAPbBr3)이고, 제 1 고분자는 블록이 폴리(2-비닐피리딘)(poly(2-vinylpyridine); P2VP)이며, 제 2 고분자는 폴리스티렌(polystyrene; PS)일 수 있고, 제 1 고분자 블록(121)에 대한 미세 충전제(110)의 몰 비율은 60 %일 수 있다.In one embodiment, the fine filler 110 is methylammonium lead bromide perovskite (MAPbBr 3 ), and the first polymer has a block of poly(2-vinylpyridine) (poly(2-vinylpyridine) ; P2VP), and the second polymer may be polystyrene (PS), and the molar ratio of the fine filler 110 to the first polymer block 121 may be 60%.
도 3을 참조하면, 이미지 a는 80 kg mol-1, 이미지 b는 164 kg mol-1, 이미지 a는 230 kg mol-1의 블록 공중합체(120)를 포함하는 나노 패턴 박막(100)의 촬영 이미지이다. 상기 분자량이 증가할수록 상기 도메인의 평균 지름이 증가하는 것을 알 수 있다. 그래프 d에서, 상기 분자량이 80 kg mol-1인 경우 상기 도메인의 평균 지름이 4.8 nm, 164 kg mol-1인 경우 55.8 nm, 230 kg mol-1인 경우 73 nm로 측정되었다. 다른 실시예에서 상기 분자량은 제 1 고분자 블록(121) 또는 제 2 고분자 블록(122)에 동일 또는 상이한 종류의 고분자를 결합시켜 조절할 수 있다.3, image a is 80 kg mol -1 , image b is 164 kg mol -1 , image a is a photograph of a nano-patterned thin film 100 including a block copolymer 120 of 230 kg mol -1 It is an image. It can be seen that as the molecular weight increases, the average diameter of the domains increases. In graph d, when the molecular weight is 80 kg mol -1 , the average diameter of the domain is 4.8 nm, when 164 kg mol -1 is 55.8 nm, and when 230 kg mol -1 is 73 nm, the average diameter was measured. In another embodiment, the molecular weight may be adjusted by combining the same or different types of polymers with the first polymer block 121 or the second polymer block 122.
일 실시예에서, 제 1 블록 패턴(BP1)의 평균 지름은 40 nm 내지 80 nm 범위 내일 수 있다. 상기 평균 지름은 제 1 블록 패턴(BP1)을 구성하는 평면 또는 수직으로 신장된 기둥 구조, 수직 라멜라 구조, 수직 기둥의 망상구조 또는 이들의 조합들 사이의 거리를 의미한다. 상기 평균 지름이 40 nm 미만인 경우, 제 2 고분자 블록(122)이 미세 충전제(110)를 적절히 둘러싸고 있는 구조를 형성하기 힘들며, 제 1 고분자 블록(121)에 내부에 포함될 수 있는 미세 충전제(110)의 양 또는 크기에 한계가 있어 나노 패턴 박막(100)에 요구되는 전기적, 화학적 및 광학적 특성을 얻기 어려울 수 있다. 또한, 상기 평균 지름이 80 nm를 초과하는 경우, 매우 큰 분자량의 고분자가 요구되며, 미세 충전제(110) 상호간의 간격이 멀어짐으로써 나노 패터닝의 효과가 감소될수 있다.In one embodiment, the average diameter of the first block pattern BP1 may be in the range of 40 nm to 80 nm. The average diameter means a distance between a plane or vertically elongated pillar structure, a vertical lamellar structure, a network structure of vertical pillars, or combinations thereof constituting the first block pattern BP1. When the average diameter is less than 40 nm, it is difficult to form a structure in which the second polymer block 122 properly surrounds the micro filler 110, and the micro filler 110 that may be included in the first polymer block 121 Since there is a limit in the amount or size of the nano-patterned thin film 100, it may be difficult to obtain electrical, chemical, and optical properties required for the nano-patterned thin film 100. In addition, when the average diameter exceeds 80 nm, a polymer having a very large molecular weight is required, and the effect of nano-patterning may be reduced by increasing the distance between the fine fillers 110.
다른 실시예에서, 미세 충전제(110)의 결정의 평균 지름의 크기는 10 nm 내지 35 nm 범위 내일 수 있다. 미세 충전제(110)의 양에 비하여 블록 공중합체(120)의 양이 많은 경우에는 미세 충전제(110)의 결정의 크기가 작아질 수 있다. 따라서, 상기 평균 지름이 10 nm 미만인 경우에는 페로브스카이트와 같은 미세 충전제(110)의 양이 작아 나노 패턴 박막(100)의 효과가 감소할 수 있다. 또한, 미세 충전제(110)가 광전 효과를 갖는 물질을 포함하는 경우, 미세 충전제(110)의 결정의 크기가 작아질수록 상기 물질이 흡수하는 빛의 파장이 짧아진다. 따라서, 짧은 파장의 고에너지의 광 에너지를 흡수하기 위해서는 상당히 미세한 크기의 결정을 갖는 미세 충전제(110)가 요구되며, 상기 평균 지름의 크기가 35 nm 이하인 것이 바람직할 수 있다.In another embodiment, the size of the average diameter of the crystal of the fine filler 110 may be in the range of 10 nm to 35 nm. When the amount of the block copolymer 120 is larger than the amount of the fine filler 110, the size of the crystal of the fine filler 110 may be reduced. Therefore, when the average diameter is less than 10 nm, the amount of the fine filler 110 such as perovskite is small, so that the effect of the nano-patterned thin film 100 may be reduced. Further, when the fine filler 110 includes a material having a photoelectric effect, the smaller the crystal size of the fine filler 110, the shorter the wavelength of light absorbed by the material. Accordingly, in order to absorb high-energy light energy of a short wavelength, a fine filler 110 having a crystal having a fairly fine size is required, and it may be preferable that the size of the average diameter is 35 nm or less.
다시 도 1a를 참조하면, 일 실시예에서, 제 2 고분자 블록(122)은 상기 미세 충전제(110)와 다른 방향으로 배향되어 상기 미세 충전제(110)에 가해지는 외부 자극을 방어하는 패시베이션 층을 형성할 수 있다. 예를 들면, 제 1 고분자 블록(121)과 제 2 고분자 블록(122)의 결합의 종류, 상기 고분자 블록들 각각의 부피, 반발력과 같은 요인들에 따라서 상기 고분자 블록들이 반대 방향으로 배열되거나 소정의 사이각을 두고 배열될 수 있다. 상기 고분자 블록들은 반발 에너지 및 계면 에너지를 최소화하는 배열을 가짐으로써 자기 조립 성질을 갖는다.Referring back to FIG. 1A, in one embodiment, the second polymer block 122 is oriented in a different direction from the fine filler 110 to form a passivation layer that protects against external stimuli applied to the fine filler 110 can do. For example, depending on factors such as the type of bonding between the first polymer block 121 and the second polymer block 122, the volume of each of the polymer blocks, and the repulsive force, the polymer blocks are arranged in opposite directions or Can be arranged at intervals. The polymer blocks have a self-assembly property by having an arrangement that minimizes repulsion energy and interfacial energy.
일 실시예에서, 미세 충전제(110)가 제 1 고분자 블록(121)과 반응하여 내부에 포함되고, 제 1 고분자 블록(121)이 형성하는 제 1 블록 패턴(BP1)과 제 2 고분자 블록(122)이 형성하는 제 2 블록 패턴(BP2)이 적어도 일부에서 물리적으로 접촉하게 됨으로써 제 2 고분자 블록(122)들은 미세 충전제(110)를 둘러싸게 된다. 외부의 습도 또는 열과 같은 자극으로부터 미세 충전제(110)는 제 2 고분자 블록(122)이 형성하는 패시베이션 층에 의하여 보호될 수 있다. 약 150 ℃의 열처리 및 약 70 %의 습도 조건에서도 나노 패턴 박막(100)의 나노 패턴 및 결정 구조는 거의 변하지 않을 수 있다. 반면에, 순수한 미세 충전제의 결정은 상기 조건에 노출되면, 화학 구조가 파괴될 수 있다. 예를 들면, 미세 충전제(110)가 MAPbBr3 페로브스카이트인 경우 PbBr2 결정으로 바뀔 수 있다. 또한, 패시베이션 층은 미세 충전제(110)로 물 분자가 침입하는 것을 막을 수 있고, 미세 충전제(110)의 구성 성분들이 외부로 확산되어 나가는 것을 방지할 수 있으며, 미세 충전제(110)가 유기물을 포함하는 경우에는 상기 유기물의 승화를 방지할 수도 있다. 따라서, 높은 내구성, 긴 수명을 갖는 광 변환 소자의 구현이 가능하다.In one embodiment, the fine filler 110 reacts with the first polymer block 121 to be included therein, and the first block pattern BP1 and the second polymer block 122 formed by the first polymer block 121 The second block pattern BP2 formed by) is brought into physical contact at least in part, so that the second polymer blocks 122 surround the fine filler 110. The fine filler 110 may be protected from external stimulation such as humidity or heat by a passivation layer formed by the second polymer block 122. Even under a heat treatment of about 150° C. and a humidity of about 70%, the nano-pattern and crystal structure of the nano-patterned thin film 100 may hardly be changed. On the other hand, crystals of pure fine fillers may destroy their chemical structure when exposed to the above conditions. For example, when the fine filler 110 is MAPbBr 3 perovskite, it may be converted into a PbBr 2 crystal. In addition, the passivation layer can prevent water molecules from invading into the fine filler 110, prevent the components of the fine filler 110 from spreading out, and the fine filler 110 contains organic matter. In this case, sublimation of the organic matter may be prevented. Therefore, it is possible to implement a light conversion device having high durability and long life.
다른 실시예에서, 제 2 고분자 블록(122)은 소수성 고분자일 수 있다. 제 2 고분자 블록(122)이 소수성 고분자를 포함함으로써 제 1 고분자 블록(121)과의 반응 가능성이 낮아 자기 조립 성질을 가지는 블록 공중합체(120)의 제조가 가능하고, 외부의 습도와 같은 자극으로부터 미세 충전제(110)를 효과적으로 보호할 수 있다. 제 2 고분자 블록(122)은, 예를 들면, 폴리에틸렌 테레프탈레이트(PET), 폴리트리메틸렌 테레프탈레이트(PTT), 폴리부틸렌 테레프탈레이트(PBT) 및 폴리에틸렌 나프탈레이트(PEN)를 포함하는 폴리에스테르; 폴리에틸렌(PE) 및 폴리프로필렌(PP)을 포함하는 폴리알킬렌; 폴리비닐 클로라이드(PVC)를 포함하는 비닐폴리머; 폴리아미드; 폴리아세탈; 폴리메틸 메타크릴레이트(PMMA)를 포함하는 폴리아크릴레이트; 폴리카보네이트; 폴리스티렌; 폴리우레탄; 아크릴로니트릴-부타디엔-스티렌 코폴리머 (ABS); 할로겐화 폴리알킬렌; 폴리아릴렌 산화물 및 폴리아릴렌 설피드 중 적어도 하나 이상을 포함할 수 있으며, 이는 예시적인 것이고 전술한 물질들에 제한되지 않는다. In another embodiment, the second polymer block 122 may be a hydrophobic polymer. Since the second polymer block 122 contains a hydrophobic polymer, the possibility of reaction with the first polymer block 121 is low, so that the block copolymer 120 having self-assembly property can be manufactured, and from stimuli such as external humidity. It is possible to effectively protect the fine filler 110. The second polymer block 122 is, for example, a polyester including polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT), polybutylene terephthalate (PBT), and polyethylene naphthalate (PEN); Polyalkylenes including polyethylene (PE) and polypropylene (PP); Vinyl polymers including polyvinyl chloride (PVC); Polyamide; Polyacetal; Polyacrylates including polymethyl methacrylate (PMMA); Polycarbonate; polystyrene; Polyurethane; Acrylonitrile-butadiene-styrene copolymer (ABS); Halogenated polyalkylene; It may include at least one or more of polyarylene oxide and polyarylene sulfide, which is exemplary and is not limited to the aforementioned materials.
도 4a는 일 실시예에 따라 미세 충전제(110)에 대한 블록 공중합체(120)의 몰 비율을 달리하여 제조된 나노 패턴 박막(100)의 광발광(photoluminescence) 스펙트럼을 나타낸 그래프이고, 도4b는 블록 공중합체(120)의 몰 비율을 달리하여 제조된 나노 패턴 박막(100)의 최대 광발광 파장을 나타낸 그래프이고, 도 4c는 블록 공중합체(120)의 유무에 따른 광발광의 세기를 나타낸 그래프이며, 도 4d는 시간에 따른 광발광 세기를 블록 공중합체(120)의 유무에 따라 나타낸 그래프이다.4A is a graph showing a photoluminescence spectrum of a nano-patterned thin film 100 manufactured by varying the molar ratio of the block copolymer 120 to the fine filler 110 according to an embodiment, and FIG. 4B is A graph showing the maximum light emission wavelength of the nano-patterned thin film 100 manufactured by varying the molar ratio of the block copolymer 120, and FIG. 4C is a graph showing the intensity of light emission depending on the presence or absence of the block copolymer 120 4D is a graph showing the light emission intensity over time according to the presence or absence of the block copolymer 120.
도 4a 및 도 4b를 참조하면, 일 실시예에 따라 블록 공중합체(120)의 몰 비율을 달리하여 제조된 나노 패턴 박막(100)의 광발광 특성을 분석하였다. 예를 들어, 0 %인 경우, 블록 공중합체(120)가 없이 미세 충전제(110)로만 구성된 것을 의미한다. 상기 광발광은 365 nm 파장의 광에 의하여 자극시켜 분석되었다. 도 4b에서, 순수한 미세 충전제 결정의 광발광에 비하여 블록 공중합체(120)를 포함하는 나노 패턴 박막(100)의 경우, 최대 광발광 파장이 543 nm에서 516 nm로 청색 전이(blue-shifted)가 일어나는 것을 알 수 있다. 이는 미세 충전제(110)의 결정의 크기가 작아짐으로써 결정 왜곡이 일어나기 때문이다. 도 4c를 참조하면, 나노 패턴 박막(100)의 경우 상기 순수한 미세 충전제 결정의 광발광보다 큰 세기의 광발광이 일어나는 것을 알 수 있다. 이는, 블록 공중합체(120)의 제 2 고분자가 형성하는 패시베이션 층에 의해 미세 충전제(110)가 보호되고, 블록 공중합체(120)가 형성하는 블록 패턴에 내포됨으로써 작은 결정 크기를 가지기 때문이다. 도 4d에서는, 상기 순수한 미세 충전제 결정의 광발광보다 나노 패턴 박막(100)의 광발광에 오랜 시간이 소요되는 것을 알 수 있다. 이는, 상기 순수한 미세 충전제 결정의 경우 미세 충전제(110) 표면의 트랩 장소(trap site)에 캐리어가 트랩되기 때문이며, 나노 패턴 박막(100)의 경우에는 패시베이션 층에 의하여 캐리어의 트랩이 방지되기 때문이다. 상기 표면에서 트랩되는 캐리어는 광발광을 일으키지 않으며, 나노 패턴 박막(100)은 상기 트랩을 방지하기 때문에 광발광의 세기를 증가시킬 수 있다. 4A and 4B, photoluminescence characteristics of the nano-patterned thin film 100 prepared by varying the molar ratio of the block copolymer 120 according to an exemplary embodiment were analyzed. For example, in the case of 0%, it means that the block copolymer 120 is formed only with the fine filler 110 without the block copolymer 120. The photoluminescence was analyzed by stimulation by light of 365 nm wavelength. In FIG. 4B, compared to the photoluminescence of pure fine filler crystals, in the case of the nano-patterned thin film 100 including the block copolymer 120, the maximum photoluminescence wavelength is blue-shifted from 543 nm to 516 nm. You can see what's happening. This is because crystal distortion occurs as the size of the crystal of the fine filler 110 decreases. Referring to FIG. 4C, it can be seen that in the case of the nano-patterned thin film 100, photoluminescence having an intensity greater than that of the pure fine filler crystal occurs. This is because the fine filler 110 is protected by the passivation layer formed by the second polymer of the block copolymer 120 and has a small crystal size by being contained in the block pattern formed by the block copolymer 120. In FIG. 4D, it can be seen that it takes a longer time to emit light of the nano-patterned thin film 100 than to emit light of the pure fine filler crystal. This is because in the case of the pure fine filler crystal, carriers are trapped at a trap site on the surface of the fine filler 110, and in the case of the nano-patterned thin film 100, trapping of the carrier is prevented by the passivation layer. . Carriers trapped on the surface do not cause photoluminescence, and the nano-patterned thin film 100 prevents the trapping, thereby increasing the intensity of photoluminescence.
본 발명의 일 실시예에서는 전술한 개시 사항에 의한 특징들을 갖는 나노 패턴 박막(100)을 포함하는 광 변환 소자가 제공될 수 있다. 나노 패턴 박막(100)은 블록 공중합체(120) 및 미세 충전제(110)를 포함할 수 있고, 블록 공중합체(120)는 1 고분자 블록 및 제 1 고분자 블록(121)과 화학적으로 결합된 제 2 고분자 블록(122)을 포함할 수 있으며, 미세 충전제(110)는 제 1 고분자 블록(121)과 루이스 산-염기 반응에 의하여 배위 결합되고, 제 1 고분자 블록(121)은 제 1 블록 패턴(BP1)을 형성하고, 제 2 고분자 블록(122)은 제 1 고분자 블록(121)과 적어도 어느 일부에서 물리적으로 접촉되는 제 2 블록 패턴(BP2)을 형성하며, 미세 충전제(110)는 제 1 블록 패턴(BP1)의 일부 영역에 배치될 수 있다.In an embodiment of the present invention, a light conversion device including the nano-patterned thin film 100 having the features according to the above-described disclosure may be provided. The nano-patterned thin film 100 may include a block copolymer 120 and a fine filler 110, and the block copolymer 120 is a second polymer block chemically bonded to the first polymer block and the first polymer block 121 A polymer block 122 may be included, and the fine filler 110 is coordinated with the first polymer block 121 by a Lewis acid-base reaction, and the first polymer block 121 is a first block pattern BP1 ), and the second polymer block 122 forms a second block pattern BP2 that is in physical contact with the first polymer block 121 at least in part, and the fine filler 110 is a first block pattern It may be disposed in some areas of (BP1).
다른 실시예에 따른 나노 패턴 박막(100)을 이용하여 광전 변환 소자(200)를 제조할 수 있다. 나노 패턴 박막(100)을 포함하는 광 변환 소자는 약 513 nm의 녹색 광을 방출할 수 있고, 주로 청색 광을 방출하는 고분자 광방출 다이오드(polymer light-emitting diode; PLED)에 광 변환 소자를 제공하여 백색 광을 방출하는 광전 변환 소자(200)를 구현 수 있다. 예를 들면, 약 320 nm 두께의 나노 패턴 박막(100)을 제조하고, 나노 패턴 박막(100)은 블록 공중합체(120)에 대한 미세 충전제(110)의 몰 비율이 100 %일 수 있고, 페로브스카이트가 미세 충전제(110)에 포함될 수 있다. 다른 실시예에서, 나노 패턴 박막(100)을 상기 PLED 일면에 부착하여 색 변환 가능한 유기 광전 변환 소자(200)의 구현이 가능하다. 또 다른 실시예에서, 광전 변환 소자(200)는 전하 전달 층을 포함할 수 있고, 예를 들면, 상기 전하 전달 층은 리튬 플루오르화물(LiF) 또는 poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT:PSS)를 포함할 수 있다. PLED에서 방출된 청색 광은 나노 패턴 박막(100)에 의하여 파장이 약 513 nm인 녹색 광으로 변환될 수 있다. 일 실시예에 따른 광전 변환 소자(200)는 PLED에서 방출된 청색 광과 나노 패턴 박막(100)에 의하여 상기 청색 광이 변환된 녹색 광을 혼합하여 백색 광 방출(cool-white emitting) 소자를 구현할 수 있다. 예를 들면, 파장이 420 nm 내지 470 nm의 범위 내인 청색 광을 흡수하여 파장이 500 nm 내지 560 nm의 범위 내인 녹색 광으로 변환하여 방출할 수 있다.The photoelectric conversion device 200 may be manufactured using the nano-patterned thin film 100 according to another exemplary embodiment. The photoconversion device including the nano-patterned thin film 100 can emit green light of about 513 nm, and provides a photoconversion device to a polymer light-emitting diode (PLED) that mainly emits blue light. Thus, the photoelectric conversion device 200 that emits white light may be implemented. For example, a nano-patterned thin film 100 having a thickness of about 320 nm may be prepared, and the nano-patterned thin film 100 may have a molar ratio of the fine filler 110 to the block copolymer 120 of 100%. Lobsite may be included in the fine filler 110. In another embodiment, an organic photoelectric conversion device 200 capable of color conversion may be implemented by attaching the nano-patterned thin film 100 to one surface of the PLED. In another embodiment, the photoelectric conversion device 200 may include a charge transfer layer, for example, the charge transfer layer is lithium fluoride (LiF) or poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) may be included. Blue light emitted from the PLED may be converted into green light having a wavelength of about 513 nm by the nano-patterned thin film 100. The photoelectric conversion device 200 according to an embodiment may implement a cool-white emitting device by mixing blue light emitted from a PLED and green light converted from the blue light by the nano-patterned thin film 100. I can. For example, blue light having a wavelength in the range of 420 nm to 470 nm may be absorbed, converted into green light having a wavelength in the range of 500 nm to 560 nm, and then emitted.
도 5는 본 발명의 일 실시예에 따른 나노 패턴 박막(100)의 제조 방법을 나타내는 순서도이다.5 is a flowchart illustrating a method of manufacturing a nano-patterned thin film 100 according to an embodiment of the present invention.
일 실시예에서, 용매 및 상기 용매에 용해된 전구체, 제 1 고분자 블록(121) 및 제 2 고분자 블록(122)을 포함하는 혼합 용액이 제공될 수 있다(S100). 상기 혼합 용액의 구성 성분들에 대하여 전술한 개시 사항들이 참조될 수 있다. 상기 용매는 일 실시예에서, 디메틸포름아마이드(DMF, dimethylformamide)를 포함할 수 있으며, 예시적으로는, 톨루엔, 클로로포름, 또는 벤젠이 포함될 수 있으며, 바람직하게는 제 1 고분자 블록(121) 또는 제 2 고분자 블록(122)에 대하여 선택적으로 반응성이 큰 용매일 수 있으며, 본 발명은 전술한 예들로 한정되지 않는다.In one embodiment, a mixed solution including a solvent and a precursor dissolved in the solvent, the first polymer block 121 and the second polymer block 122 may be provided (S100). The foregoing disclosures may be referred to for the constituents of the mixed solution. In one embodiment, the solvent may contain dimethylformamide (DMF, dimethylformamide), illustratively, toluene, chloroform, or benzene, preferably the first polymer block 121 or 2 It may be a solvent having a high reactivity selectively with respect to the polymer block 122, and the present invention is not limited to the above examples.
전구체는 미세 충전제(110)를 구성하는 원소들의 일부, 상기 원소들이 결합된 분자, 상기 원소 및 분자들이 산화 또는 환원된 이온 또는 미세 충전제(110)의 이온 상태일 수 있다. 예를 들면, 미세 충전제(110)가 메틸암모늄 브롬화 납 페로브스카이트(Methylammonium lead bromide perovskite; MAPbBr3)인 경우, 상기 전구체는 메틸암모늄 브롬화물(MABr) 및 납 브롬화물(PbBr2)일 수 있다. The precursor may be a part of the elements constituting the fine filler 110, a molecule to which the elements are bonded, an ion in which the elements and molecules are oxidized or reduced, or an ionic state of the fine filler 110. For example, when the fine filler 110 is methylammonium lead bromide perovskite (MAPbBr 3 ), the precursor may be methylammonium bromide (MABr) and lead bromide (PbBr 2 ). have.
이후, 상기 혼합 용액이 기판 상에 코팅될 수 있다(S200). 다른 실시예에서, 상기 혼합 용액은 스핀 코팅법에 의하여 코팅될 수 있고, 예시적으로는, 스핀-캐스팅법, 드랍 캐스팅법, 잉크젯법 및 인쇄법 중 적어도 하나 이상을 포함할 수 있으며, 형성된 코팅된 대상물에 대한 후처리 공정을 포함시킬 수 있다. 코팅 공정은 소정의 용액을 얇게 도포할 수 있는 모든 공지된 기술이 사용될 수 있다.Thereafter, the mixed solution may be coated on the substrate (S200). In another embodiment, the mixed solution may be coated by a spin coating method, and illustratively, may include at least one of a spin-casting method, a drop casting method, an inkjet method, and a printing method, and formed coating A post-treatment process for the object can be included. As the coating process, any known technique capable of thinly applying a predetermined solution may be used.
또 다른 실시예에서, 상기 기판은 실리콘 산화물, 금(Au) 또는 3-아미노프로필 트리에톨시실란(with 3-(aminopropyl)triethoxysilane; APTES) 및/또는 3-글리시독시프로필트리메톡시실란(3-(glycidyloxypropyl)trimethoxysilane; GPTES)으로 처리된 실리콘을 포함할 수 있다. 나노 패턴 박막(100)은 상기 기판의 종류에 관계없이 형성될 수 있으므로, 상기 기판의 종류는 특정 기판으로 제한되지 않는다. 또 다른 실시예에서는, 상기 기판을 구성하는 물질들과 나노 패턴 박막(100)의 구성 요소들간의 상호 작용에 의하여 나노 패턴의 배향이 변화될 수 있으므로 상기 기판과의 상호작용을 차단하는 차단 층이 추가되거나 상기 기판을 중성화시키는 공정이 추가될 수 있다. 선택적으로는, 소정의 타겟 나노 패턴을 형성하기 위하여 기판 상에 패터닝하는 전처리를 수행할 수 있다.In another embodiment, the substrate is silicon oxide, gold (Au) or 3-aminopropyl triethoxysilane (APTES) and/or 3-glycidoxypropyl trimethoxysilane It may contain silicon treated with (3-(glycidyloxypropyl)trimethoxysilane; GPTES). Since the nano-patterned thin film 100 may be formed regardless of the type of the substrate, the type of the substrate is not limited to a specific substrate. In another embodiment, the orientation of the nano-pattern may be changed due to the interaction between the materials constituting the substrate and the constituent elements of the nano-patterned thin film 100, so that a blocking layer blocking the interaction with the substrate is provided. It may be added or a process of neutralizing the substrate may be added. Optionally, pretreatment of patterning on the substrate may be performed to form a predetermined target nano pattern.
이후, 전구체의 이온이 혼합 용액 내에서 제 1 고분자 블록(121)과 루이스 산-염기 반응에 의하여 배위 결합될 수 있다(S300). 전구체는 제 2 고분자 블록(122)보다 우선적으로 제 1 고분자 블록(121)과 배위 결합한다. 예를 들어, 제 1 고분자 블록(121)이 P2VP인 경우, 피리딘(Pyridine)의 질소의 비공유 전자쌍이 상기 전구체 중 PbBr2의 납 이온의 빈 6p 오비탈로 이동하여 배위 결합을 형성할 수 있다. 전구체가 제 1 고분자 블록(121)과 우선 결합함으로써 이후 블록 공중합체(120)가 자기 조립되는 경우에 미세 충전제(110)가 함께 패턴을 형성하며 제 1 블록 영역 내부에 포함될 수 있다.Thereafter, the ions of the precursor may be coordinated with the first polymer block 121 in the mixed solution by a Lewis acid-base reaction (S300). The precursor is preferentially coordinated with the first polymer block 121 over the second polymer block 122. For example, when the first polymer block 121 is P2VP, a non-shared electron pair of nitrogen of pyridine may move to an empty 6p orbital of lead ions of PbBr 2 in the precursor to form a coordination bond. When the precursor is first combined with the first polymer block 121 and then the block copolymer 120 is self-assembled, the fine filler 110 forms a pattern together and may be included in the first block region.
이후, 용매를 제거하여 상기 전구체들이 결정화되어 미세 충전제(110)를 형성하고, 상기 제 1 고분자 블록(121) 및 제 2 고분자 블록(122)이 반응하여 블록 공중합체(120)를 형성하여 제 1 블록 패턴(BP1) 및 제 2 블록 패턴(BP2)을 형성할 수 있다(S400). 상기 용매는 증발될 수 있고, 예를 들면, 감압 건조기, 증류 또는 가열에 의하여 제거될 수 있다. 상기 용매가 증발되면서 전구체는 미세 충전제(110)로 결정화되고, 이어서, 블록 공중합체(120)가 자기-조립되면서 제 1 고분자 블록(121)이 제 1 블록 패턴(BP1)을 형성하고, 제 2 고분자 블록(122)이 제 2 블록 패턴(BP2)을 형성할 수 있다. Thereafter, the precursors are crystallized by removing the solvent to form a fine filler 110, and the first polymer block 121 and the second polymer block 122 react to form a block copolymer 120 to form a first The block pattern BP1 and the second block pattern BP2 may be formed (S400). The solvent may be evaporated and may be removed by, for example, a vacuum dryer, distillation or heating. As the solvent evaporates, the precursor is crystallized into a fine filler 110, and then, as the block copolymer 120 is self-assembled, the first polymer block 121 forms the first block pattern BP1, and the second The polymer block 122 may form the second block pattern BP2.
전술한 나노 패턴 박막(100)의 제조 방법은 나노 패턴 박막(100)의 구성 요소이 용해된 혼합 용액을 코팅하고, 상기 용액의 용매를 증발시키는 원-스텝(one-step) 공정에 의하여 신속하고 용이하게 나노 패턴 박막(100)을 제조할 수 있다. 따라서, 반도체, 전자 소자, 광 센서 또는 태양전지와 같은 효율성이 요구되는 제조업 기술 분야에 다양하게 활용될 수 있다. 또한, 블록 공중합체(120)의 자기 조립 특성을 이용하여 나노 패터닝을 수행함으로써, 기계적 또는 화학적인 벌크 재료들의 파괴를 수반하는 탑-다운 방식을 이용하지 않을 수 있다. 따라서, 탑-다운 방식의 문제점인 광전 효과, 전도성과 같은 재료의 물성을 열화시키는 문제점을 방지할 수 있다.The manufacturing method of the above-described nano-patterned thin film 100 is quick and easy by coating a mixed solution in which the components of the nano-patterned thin film 100 are dissolved and evaporating the solvent of the solution. Thus, the nano-patterned thin film 100 can be manufactured. Therefore, it can be used in various fields of manufacturing technology that requires efficiency, such as semiconductors, electronic devices, optical sensors, or solar cells. In addition, by performing nano-patterning using the self-assembly property of the block copolymer 120, a top-down method that involves mechanical or chemical destruction of bulk materials may not be used. Accordingly, it is possible to prevent a problem of deteriorating physical properties of a material such as photoelectric effect and conductivity, which are problems of the top-down method.
일 실시예에서, 상기 블록 공중합체(120)에 대한 상기 전구체의 몰 비율은 40 % 내지 100 %일 수 있다. 상기 전구체의 몰 비율은 미세 충전제(110) 전체를 한 단위로 할 수 있다. 예를 들면, MAPbBr3의 경우 MABr와 PbBr2를 합하여 한 단위로 볼 수 있다. 상기 전구체의 몰 비율의 범위에 대한 설명은 전술한 개시 사항을 참조할 수 있다.In one embodiment, the molar ratio of the precursor to the block copolymer 120 may be 40% to 100%. The molar ratio of the precursor may be the whole fine filler 110 as one unit. For example, in the case of MAPbBr 3 , MABr and PbBr 2 can be combined and viewed as one unit. For a description of the range of the molar ratio of the precursor, refer to the foregoing disclosure.
다른 실시예에서, 블록 공중합체(120)의 분자량은 80 kg mol-1 내지 230 kg mol-1의 범위 내일 수 있다. 상기 분자량은 상기 혼합 용매에 용해되는 제 1 고분자 블록(121) 및 제 2 고분자 블록(122) 각각의 분자량을 조절함으로써 제어 가능하다. 예를 들면, 제 1 고분자 블록(121)을 형성하기 위하여 중합되는 고분자 단위체의 개수를 조절할 수 있다. 상기 분자량이 80 kg mol-1 미만인 경우에는 제 1 고분자 블록(121) 및 제 2 고분자 블록(122)이 일정한 나노 패턴을 형성하지 못할 수 있고, 230 kg mol-1을 초과하는 경우에는, 상기 고분자 블록들의 용해도가 저하될 수 있고, 블록 패턴을 형성하는데 시간이 오래 소요될 수 있다. In another embodiment, the molecular weight of the block copolymer 120 may be in the range of 80 kg mol -1 to 230 kg mol -1 . The molecular weight can be controlled by adjusting the molecular weight of each of the first polymer block 121 and the second polymer block 122 dissolved in the mixed solvent. For example, the number of polymer units to be polymerized to form the first polymer block 121 may be adjusted. If the molecular weight is less than 80 kg mol -1 , the first polymer block 121 and the second polymer block 122 may not form a certain nano pattern, and if it exceeds 230 kg mol -1 , the polymer The solubility of the blocks may decrease, and it may take a long time to form the block pattern.
이상에서 설명한 본 발명이 전술한 실시예 및 첨부된 도면에 한정되지 않으며, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러가지 치환, 변형 및 변경이 가능하다는 것은, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어 명백할 것이다.The present invention described above is not limited to the above-described embodiments and the accompanying drawings, and that various substitutions, modifications, and changes are possible within the scope of the technical spirit of the present invention. It will be obvious to those who have knowledge.

Claims (18)

  1. 제 1 고분자 블록 및 상기 제 1 고분자 블록과 화학적으로 결합되는 제 2 고분자 블록을 포함하는 블록 공중합체; 및A block copolymer comprising a first polymer block and a second polymer block chemically bonded to the first polymer block; And
    상기 제 1 고분자 블록이 제공하는 매트릭스 내의 복수의 빈 공간들에 배치된 미세 충전제를 포함하며,Including a fine filler disposed in a plurality of empty spaces in the matrix provided by the first polymer block,
    상기 제 1 고분자 블록은 제 1 블록 패턴을 형성하고, 상기 제 2 고분자 블록은 제 2 블록 패턴을 형성하며, 상기 제 1 블록 패턴과 상기 제 2 블록 패턴은 적어도 어느 일부에서 물리적으로 접촉된 나노 패턴 박막.The first polymer block forms a first block pattern, the second polymer block forms a second block pattern, and the first block pattern and the second block pattern are at least partially in physical contact with nano-patterns pellicle.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 제 1 고분자 블록과 상기 미세 충전제는 루이스 산-염기 반응에 의하여 배위 결합된 나노 패턴 박막.The first polymer block and the fine filler is a nano-patterned thin film coordinated by a Lewis acid-base reaction.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 제 1 고분자 블록은 루이스 염기로 작용하고, 상기 미세 충전제는 루이스 산으로 작용하는 나노 패턴 박막.The first polymer block acts as a Lewis base, and the fine filler acts as a Lewis acid.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 제 1 고분자 블록은 폴리비닐피리딘(polyvinylpyridine; PVPD), 폴리에테르아민(polyetheramine), 폴리비닐아세테이트(polyvinyl acetate; PVAc), 폴리메틸메타크릴레이트(polymethyl methacrylate; PMMA), 폴리비닐리덴 플로라이드(polyvinylidene fluoride) 또는 폴리에틸렌글라이콜(polyethylene glycol) 중 적어도 어느 하나 이상을 포함하는 나노 패턴 박막.The first polymer block is polyvinylpyridine (PVPD), polyetheramine, polyvinyl acetate (PVAc), polymethyl methacrylate (PMMA), polyvinylidene fluoride ( Polyvinylidene fluoride) or polyethylene glycol (polyethylene glycol) a nano-patterned thin film containing at least one or more.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 미세 충전제는 페로브스카이트 구조의 화합물을 포함하는 나노 패턴 박막.The fine filler is a nano-patterned thin film comprising a compound having a perovskite structure.
  6. 제 4 항에 있어서,The method of claim 4,
    상기 페로브스카이트는 CH3NH3PbCl3, CH3NH3PbBr3, CH3NH3PbI3, NH2CHNH2PbI3, NH2CHNH2PbBr3, NH2CHNH2PbCl3 또는 이들의 화합물 중 적어도 어느 하나를 포함하는 나노 패턴 박막.The perovskite teuneun CH 3 NH 3 PbCl 3, CH 3 NH 3 PbBr 3, CH 3 NH 3 PbI 3, NH 2 CHNH 2 PbI 3, NH 2 CHNH 2 PbBr 3, NH 2 CHNH 2 PbCl 3 or combinations thereof Nano-patterned thin film comprising at least any one of.
  7. 제 1 항에 있어서,The method of claim 1,
    상기 미세 충전제는 도전성 물질, 실리콘, 미네랄 산화물(quartz) 또는 잉크를 포함하는 나노 패턴 박막.The fine filler is a nano-patterned thin film including a conductive material, silicon, mineral oxide (quartz) or ink.
  8. 제 1 항에 있어서,The method of claim 1,
    상기 제 1 블록 패턴 또는 상기 제 2 블록 패턴은, 평면 또는 수직으로 신장된 기둥 구조, 수직 라멜라 구조, 수직 기둥의 망상구조 또는 이들의 조합을 포함하는 나노 패턴 박막.The first block pattern or the second block pattern is a nano-patterned thin film including a flat or vertically elongated pillar structure, a vertical lamellar structure, a network structure of vertical pillars, or a combination thereof.
  9. 제 1 항에 있어서,The method of claim 1,
    상기 제 1 블록 패턴의 평균 지름은 40 nm 내지 80 nm 범위 내인 나노 패턴 박막.The average diameter of the first block pattern is in the range of 40 nm to 80 nm nano-patterned thin film.
  10. 제 1 항에 있어서,The method of claim 1,
    상기 미세 충전제의 결정의 평균 지름의 크기는 10 nm 내지 35 nm 범위 내인 나노 패턴 박막.The size of the average diameter of the crystal of the fine filler is in the range of 10 nm to 35 nm nano-patterned thin film.
  11. 제 1 항에 있어서,The method of claim 1,
    상기 제 2 고분자 블록은 상기 미세 충전제와 다른 방향으로 배향되어 상기 미세 충전제에 가해지는 외부 자극을 방어하는 패시베이션 층을 형성하는 나노 패턴 박막.The second polymer block is oriented in a direction different from that of the fine filler to form a passivation layer for preventing external stimuli applied to the fine filler.
  12. 제 1 항에 있어서,The method of claim 1,
    상기 제 2 고분자 블록은 소수성 고분자인 나노 패턴 박막.The second polymer block is a nano-patterned thin film of a hydrophobic polymer.
  13. 제 1 고분자 블록 및 상기 제 1 고분자 블록과 화학적으로 결합된 제 2 고분자 블록을 포함하는 블록 공중합체; 및A block copolymer comprising a first polymer block and a second polymer block chemically bonded to the first polymer block; And
    상기 제 1 고분자 블록과 루이스 산-염기 반응에 의하여 배위 결합되며, 페로브스카이트를 포함하는 미세 충전제를 포함하며,The first polymer block and the Lewis acid-base reaction coordination bonded, and includes a fine filler containing perovskite,
    상기 제 1 고분자 블록은 제 1 블록 패턴을 형성하고, 상기 제 2 고분자 블록은 상기 제 1 고분자 블록과 적어도 어느 일부에서 물리적으로 접촉되는 제 2 블록 패턴을 형성하며, 상기 미세 충전제는 상기 제 1 블록 패턴의 영역에 배치된 나노 패턴 박막을 포함하는 광전 변환 소자.The first polymer block forms a first block pattern, the second polymer block forms a second block pattern that is in physical contact with the first polymer block at least in part, and the fine filler is the first block A photoelectric conversion device comprising a nano-patterned thin film disposed in a pattern area.
  14. 제 13 항에 있어서,The method of claim 13,
    상기 나노 패턴 박막은 청색 광 에너지를 흡수하여 녹색 광 에너지로 방출하는 광 변환 소자.The nano-patterned thin film absorbs blue light energy and emits it as green light energy.
  15. 용매 및 상기 용매에 용해된 전구체, 제 1 고분자 블록 및 제 2 고분자 블록을 포함하는 혼합 용액이 제공되는 단계;Providing a mixed solution including a solvent and a precursor dissolved in the solvent, a first polymer block, and a second polymer block;
    상기 혼합 용액이 기판 상에 코팅되는 단계; 및Coating the mixed solution on a substrate; And
    상기 전구체의 이온이 상기 혼합 용액 내에서 상기 제 1 고분자 블록과 루이스 산-염기 반응에 의하여 배위 결합되는 단계;Coordinating the ions of the precursor with the first polymer block by a Lewis acid-base reaction in the mixed solution;
    상기 용매가 제거되고 상기 전구체들이 결정화되어 미세 충전제를 형성하고, 상기 제 1 고분자 블록 및 제 2 고분자 블록이 반응하여 블록 공중합체를 형성하여 제 1 블록 패턴 및 제 2 블록 패턴이 형성되는 단계를 포함하는 나노 패턴 박막의 제조 방법.The solvent is removed and the precursors are crystallized to form a fine filler, and the first polymer block and the second polymer block react to form a block copolymer, thereby forming a first block pattern and a second block pattern. Method of manufacturing a nano-patterned thin film.
  16. 제 15 항에 있어서,The method of claim 15,
    상기 미세 충전제는 페로브스카이트 구조의 화합물을 포함하는 나노 패턴 박막의 제조 방법.The fine filler is a method of manufacturing a nano-patterned thin film comprising a compound having a perovskite structure.
  17. 제 15 항에 있어서,The method of claim 15,
    상기 제 1 고분자 블록에 대한 상기 미세 충전제의 몰 비율은 30 % 내지 100 %의 범위 내인 나노 패턴 박막의 제조 방법.The method of manufacturing a nano-patterned thin film in which the molar ratio of the fine filler to the first polymer block is in the range of 30% to 100%.
  18. 제 15 항에 있어서,The method of claim 15,
    상기 블록 공중합체의 분자량은 80 kg mol-1 내지 230 kg mol-1의 범위 내인 나노 패턴 박막의 제조 방법.The molecular weight of the block copolymer is in the range of 80 kg mol -1 to 230 kg mol -1 Method for producing a nano-patterned thin film.
PCT/KR2019/013808 2019-06-04 2019-10-21 Nano-patterned thin film, photoelectric conversion device using same, and method for producing same WO2020246664A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190065981A KR102087542B1 (en) 2019-06-04 2019-06-04 Nano-patterned thin film, photoconversion device using the same and method of fabricating the same
KR10-2019-0065981 2019-06-04

Publications (1)

Publication Number Publication Date
WO2020246664A1 true WO2020246664A1 (en) 2020-12-10

Family

ID=70732619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/013808 WO2020246664A1 (en) 2019-06-04 2019-10-21 Nano-patterned thin film, photoelectric conversion device using same, and method for producing same

Country Status (2)

Country Link
KR (1) KR102087542B1 (en)
WO (1) WO2020246664A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090001371A (en) * 2007-06-29 2009-01-08 삼성전자주식회사 Method for nano-patterning block copolymers and method for manufacturing polarizer using the same
KR101224290B1 (en) * 2011-02-11 2013-01-21 한국과학기술원 Method for manufacturing block copolymer using graphene film and block copolymer manufactured by the same
KR20160055089A (en) * 2014-11-06 2016-05-17 포항공과대학교 산학협력단 Perovskite nanocrystal particle emitters having gradient-alloy structure, method of manufacturing the same and electroluminescence devices using the same
KR101755983B1 (en) * 2016-02-12 2017-07-10 포항공과대학교 산학협력단 Metal halide perovskite light emitting device and method for manufacturing the same
KR20180006941A (en) * 2015-05-14 2018-01-19 베이징 인스티튜트 오브 테크놀로지 Composite light emitting material of perovskite and polymer, production method and use

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101872895B1 (en) * 2012-03-05 2018-06-29 동우 화인켐 주식회사 Absorbing polarizer and method of preparing thereof
KR20170025249A (en) * 2015-08-28 2017-03-08 부산대학교 산학협력단 Organic photovoltaic cell and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090001371A (en) * 2007-06-29 2009-01-08 삼성전자주식회사 Method for nano-patterning block copolymers and method for manufacturing polarizer using the same
KR101224290B1 (en) * 2011-02-11 2013-01-21 한국과학기술원 Method for manufacturing block copolymer using graphene film and block copolymer manufactured by the same
KR20160055089A (en) * 2014-11-06 2016-05-17 포항공과대학교 산학협력단 Perovskite nanocrystal particle emitters having gradient-alloy structure, method of manufacturing the same and electroluminescence devices using the same
KR20180006941A (en) * 2015-05-14 2018-01-19 베이징 인스티튜트 오브 테크놀로지 Composite light emitting material of perovskite and polymer, production method and use
KR101755983B1 (en) * 2016-02-12 2017-07-10 포항공과대학교 산학협력단 Metal halide perovskite light emitting device and method for manufacturing the same

Also Published As

Publication number Publication date
KR102087542B1 (en) 2020-05-04

Similar Documents

Publication Publication Date Title
DE60312861T2 (en) BUFFER LAYERS FOR ORGANIC ELECTROLUMINESCENZING DEVICES AND METHOD FOR THE PRODUCTION THEREOF AND THEIR USE
CN102983230B (en) Method of manufacturing quantum dot layer, transfer method, and quantum dot optoelectronic device
US7326653B2 (en) Method of preparation of organic optoelectronic and electronic devices and devices thereby obtained
US20190312204A1 (en) Film of quantum dot, method for patterning the same and quantum dot light emitting device using the same
CN103460424B (en) Active matrix dilution source electrode realizes vertical organic light-emitting transistor
US9006769B2 (en) Organic electroluminescence element
Zhang et al. Hydrofluoroethers as orthogonal solvents for all-solution processed perovskite quantum-dot light-emitting diodes
TWI375483B (en) Organic material with a region including a guest material and organic electronic devices incorporating the same
JP2018504787A (en) Electroluminescent device
Ko et al. Direct photolithographic patterning of colloidal quantum dots enabled by UV-crosslinkable and hole-transporting polymer ligands
JP2009533809A (en) Electrical device and method for manufacturing the same
CN101384963A (en) A method of patterning a thin film
JP5798108B2 (en) Organic electroluminescence device and manufacturing method
CN107210134A (en) Bilayer and three interfacial layers in perovskite material device
TW200541385A (en) Printing of organic electronic devices
KR20080063807A (en) Neutralized anode buffer layers to improve processing and performances of organic electronic devices
US10164193B2 (en) Organic light-emitting device
TWI259018B (en) Deposition of conducting polymers
Vohra et al. Nanostructured Light-Emitting Polymer Thin Films and Devices Fabricated by the Environment-Friendly Push-Coating Technique
US20150129847A1 (en) Method for producing conductive substrate, conductive substrate, and organic electronic element
WO2020246664A1 (en) Nano-patterned thin film, photoelectric conversion device using same, and method for producing same
TWI605071B (en) Organic light emissive device
CN113889587B (en) Light-emitting substrate, preparation method thereof and light-emitting device
Mathur et al. Copolymer Mediated Engineering of Halide Perovskites and Associated Devices: Current State and Future
Nakajima et al. Electroluminescence from Alq3-Containing Electron-Beam Resists for Light-Emitting Organic Nanometer-Scale Devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19931602

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19931602

Country of ref document: EP

Kind code of ref document: A1