WO2020246524A1 - Method for designing column-beam joint, method for manufacturing column-beam joint, and column-beam joint structure - Google Patents
Method for designing column-beam joint, method for manufacturing column-beam joint, and column-beam joint structure Download PDFInfo
- Publication number
- WO2020246524A1 WO2020246524A1 PCT/JP2020/022018 JP2020022018W WO2020246524A1 WO 2020246524 A1 WO2020246524 A1 WO 2020246524A1 JP 2020022018 W JP2020022018 W JP 2020022018W WO 2020246524 A1 WO2020246524 A1 WO 2020246524A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- column
- joint
- steel beam
- concrete
- resistance element
- Prior art date
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/18—Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
- E04B1/30—Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts being composed of two or more materials; Composite steel and concrete constructions
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/38—Connections for building structures in general
- E04B1/58—Connections for building structures in general of bar-shaped building elements
Definitions
- This disclosure relates to a method for designing a beam-column joint, a method for manufacturing a beam-column joint, and a structure for a beam-column joint.
- Patent Document 1 discloses a column-beam joint structure in which a reinforced concrete column and a steel beam are joined.
- a recess is formed in the reinforced concrete column, the end portion of the steel beam is inserted and arranged in the formed recess, and concrete is filled.
- the degree of fixation of the steel beam is adjusted by adjusting the embedding length of the end portion of the steel beam in the concrete filled in the recess.
- the end of the steel beam is semi-rigidly joined to the reinforced concrete column, and the joint between the reinforced concrete column and the steel beam and the bending moment acting on the steel beam are adjusted. There is. Further, by adjusting the degree of fixation, the deflection at the center of the beam is reduced as compared with the case where the ends of the steel beam are pin-joined. That is, the rotational rigidity of the joint between the reinforced concrete column and the steel beam is adjusted.
- the joint portion between the column and the beam is also referred to as a “column-beam joint portion” or simply a “joint portion”.
- Patent Document 1 does not mention anything about the yield strength of the beam-column joint. Therefore, when the rotational rigidity of the column-beam joint is secured for the purpose of adjusting the deflection and the bending moment of the steel frame beam, the bearing capacity may be insufficient and Patent Document 1 may not be implemented.
- Patent Document 1 even when the embedding length of the end portion of the steel frame beam in concrete approaches zero, the degree of fixation does not approach zero. For this reason, the degree of fixation is overestimated or underestimated when Patent Document 1 is carried out beyond the range of the ratio of the embedded length to the beam length in the experiments and analyzes shown in Patent Document 1. There is a fear. Therefore, there is a concern that the deflection of each beam is underestimated or the moment acting on the joint is underestimated.
- the moment acting on the joint is calculated according to the load supported by the beam, the span of the beam, the flexural rigidity of the beam, and the rotational rigidity of the joint.
- the joint will be plasticized, the degree of fixation will be lower than the calculated value, the deflection of the beam will be larger than the calculated value, and there is a concern that the column will be damaged. is there.
- Patent Document 1 when Patent Document 1 is implemented, there is a possibility that a case that does not satisfy the required performance in design may be overlooked.
- the fixedness of the joint is adjusted by adjusting the embedding length, but in the actual design, the diameter of the column is determined by the required performance of the column and also by the diameter of the column. , The maximum length that a beam can be embedded is restricted. In particular, when a plurality of beams are embedded from two or more directions so that the beams intersect the concrete columns, the plurality of beams are arranged so that the beams do not overlap each other.
- the maximum length that can be embedded in concrete in a beam is severely restricted.
- the length of the beam of the embedded part needs to be the maximum length that can be adopted in construction, so the embedded length is adjusted. There is also the possibility that it cannot be done.
- Patent Document 1 includes the possibility that it cannot be actually implemented. Further, Patent Document 1 includes room for improvement from the viewpoint of accurately evaluating the rotational rigidity of the beam-column joint and imparting the required moment strength according to the rotational rigidity of the joint.
- a method for designing a column-beam joint a method for manufacturing a column-beam joint, and a column capable of satisfying the moment resistance while ensuring the rotational rigidity of the joint between the column and the beam. It is an object of the present invention to provide a beam joint structure.
- the method for designing a beam-column joint according to the present disclosure is provided for a concrete beam, a steel beam in which at least one end in the longitudinal direction is embedded in the concrete of the column in a semi-rigid joint state, and a steel beam. It is a method of designing a beam-beam joint having a resistance element that generates a reaction force against the rotation of the steel beam, and is a rotation resistance per unit rotation angle of the part of the steel beam inside the concrete at the beam-beam joint.
- a beam-beam joint includes a concrete beam and a steel beam in which at least one end in the longitudinal direction is embedded in the concrete of the column in a semi-rigid joint state. It is a method of designing a beam-column joint provided with a resistance element provided on a steel beam and generating a reaction force against the rotation of the steel beam, and is a unit rotation angle of a part of the steel beam inside concrete at the beam-beam joint. It is defined as rotational stiffness S j rotational resistance per the necessary moment capacity to act from steel beam in Column joints with the rotational stiffness S j the steel beam is set by the following process a and the load supporting calculate.
- At least one end in the longitudinal direction of a steel frame beam is provided with a resistance element designed by using the above-mentioned method for designing a column-beam joint. It is embedded inside the concrete in a semi-rigid joint state.
- the beam-column joint structure according to the present disclosure is provided on a concrete column, a steel beam in which at least one end in the longitudinal direction is embedded in the concrete of the column in a semi-rigid joint state, and a steel beam. It has a resistance element that generates a reaction force against the rotation of the steel beam, and the rotation resistance per unit rotation angle of the steel beam part inside the concrete at the beam-column joint is defined as the rotational rigidity Sj.
- the moment generated by the maximum resistance of the resistance element is defined as the maximum moment strength that can be resisted by the beam-beam joint
- the required moment strength that acts from the steel beam to the beam-beam joint is the steel beam.
- At least one of the distance between both ends of the steel beam and the cross-sectional shape of the steel beam is such that the required moment strength calculated using the load supported by and the rotational rigidity Sj does not exceed the maximum moment strength. It has been adjusted.
- other beam-column joint structures include a concrete column, a steel beam in which at least one end in the longitudinal direction is embedded in the concrete of the column in a semi-rigid joint state, and a steel beam. It has a resistance element that is provided in the above and generates a reaction force against the rotation of the steel beam, and the rotation resistance per unit rotation angle of the steel beam part inside the concrete at the column-beam joint is defined as the rotational rigidity Sj. Then, as the required moment strength acting on the beam-column joint from the steel beam, the required moment strength is set by using the load supported by the steel beam and the rotational rigidity Sj set by the following process B.
- a method for designing a column-beam joint, a method for manufacturing a column-beam joint, and a column-beam joint structure capable of satisfying the moment resistance while ensuring the rotational rigidity of the joint between the column and the beam. can be provided.
- FIG. 1 is a side view showing a model of a joint between a column and a beam.
- FIG. 2 is a side view showing a model of a joint between a column and a beam, and shows a section up to an inflection point in the length direction of the steel beam.
- FIG. 3 is a side view showing a model for calculating the rotational rigidity of the joint between the column and the beam, and is a bearing resistance at the interface between the concrete of the column and the upper and lower flanges in the portion of the steel beam embedded in the column concrete. The stress distribution of the reaction force is shown.
- FIG. 1 is a side view showing a model of a joint between a column and a beam.
- FIG. 2 is a side view showing a model of a joint between a column and a beam, and shows a section up to an inflection point in the length direction of the steel beam.
- FIG. 3 is a side view showing a model for calculating the rotational rigidity of the joint between the
- FIG. 4 is a perspective view schematically showing the bearing pressure resistance at the interface between the concrete of the column and the upper and lower flanges, and shows a state in which the reaction force due to the bearing pressure resistance has a linear stress gradient.
- FIG. 5 is a perspective view schematically showing the bearing pressure resistance at the interface between the concrete of the column and the upper and lower flanges, and shows a state in which the reaction force due to the bearing pressure resistance is a uniform stress.
- FIG. 6 is a side view showing a model for calculating the rotational rigidity of the joint between the column and the beam. The reaction force due to the bearing pressure resistance at the interface between the face bearing plate and the concrete of the column, and the pull-out resistance of the stud in the column.
- FIG. 7 is a perspective view for explaining the cone-shaped fracture of the concrete of the column due to the pulling out of the stud in the column when the stud in the column is installed as an additional member in the portion of the steel beam embedded in the concrete of the column.
- FIG. 8A is a side view showing a model for calculating the strength of the joint between the column and the beam, and is a vertical support of the interface between the column concrete and the upper and lower flanges in the portion of the steel beam embedded in the column concrete. It is a side view which shows typically the situation that the maximum reaction force by a pressure resistance acts on a steel beam.
- FIG. 8B is a side view showing a model for calculating the moment strength of the joint between the column and the beam, and is a bearing resistance at the interface between the concrete of the column and the upper and lower flanges in the portion of the steel beam embedded in the column concrete. It is a side view for demonstrating the actual stress distribution and conversion to a stress block when the maximum proof stress is applied.
- FIG. 9A is an explanatory diagram for explaining the effective bearing area and the maximum bearing stress distribution area, and shows the case where the entire projection surface is in the concrete.
- FIG. 9B is an explanatory diagram for explaining the effective bearing area and the maximum bearing stress distribution area, and shows a case where a part of the projection surface is outside the concrete.
- FIG. 9A is an explanatory diagram for explaining the effective bearing area and the maximum bearing stress distribution area, and shows the case where the entire projection surface is in the concrete.
- FIG. 9B is an explanatory diagram for explaining the effective bearing area and the maximum bearing stress distribution area, and shows a case where a part of
- FIG. 10A is a side view showing a model for calculating the moment strength of the joint between the column and the beam, in the horizontal direction of the portion of the steel beam embedded in the column concrete and the additional member provided at the peripheral edge thereof. It is a side view which shows the situation which the maximum reaction force by resistance acts on a steel beam. Additional members are face bearing plates, column studs and reinforcing bars in slabs.
- FIG. 10B is a side view showing a model for calculating the moment strength of the joint between the column and the beam, and shows the maximum stress distribution of the effective bearing area of the interface between the face bearing plate and the concrete of the column, the stud in the column.
- FIG. 11 is an explanatory diagram for explaining the effective bearing area and the maximum bearing stress distribution area at the interface between the face bearing plate and the concrete of the column.
- FIG. 12 is a diagram for explaining the relationship between the moment and the angle of rotation of the joint, and the rotational rigidity and the proof stress of the joint.
- FIG. 13A is a side view showing a model for calculating the rotational rigidity of the joint between the column and the beam, and shows the reaction force due to the bearing resistance at the interface between the portion of the steel beam embedded in the column concrete and the column concrete. It is a side view which shows the stress distribution.
- FIG. 11 is an explanatory diagram for explaining the effective bearing area and the maximum bearing stress distribution area at the interface between the face bearing plate and the concrete of the column.
- FIG. 12 is a diagram for explaining the relationship between the moment and the angle of rotation of the joint, and the rotational rigidity and the proof stress of the joint.
- FIG. 13A is a side view showing a model for calculating the rotational rigidity of the
- FIG. 13B is a side view showing a model for calculating the strength of the joint between the column and the beam, and is a bearing resistance at the interface between the concrete of the column and the upper and lower flanges in the portion of the column steel beam embedded in the column concrete. It is a side view which shows the effective region of the bearing pressure when the maximum reaction force by is acting on a steel beam, and the actual stress distribution and conversion to a stress block.
- FIG. 14 is a graph showing the moment-rotation angle relationship at the column face position of the joint portion, and the experimental results and the calculation results according to the present disclosure are shown together.
- FIG. 15 is a graph showing a comparison between the experimental results of the rotational rigidity of the joint with respect to the repeatedly acting load and the calculation results according to the present disclosure.
- FIG. 16 is a diagram showing a calculation result of the degree of fixation ⁇ rig according to the present disclosure.
- FIG. 17 is a diagram showing the ratio of the generated moments M j, Ed of the joint portion and the proof stress M j, Rd of the joint portion calculated by the present disclosure.
- FIGS. 1 and 2 The beam-column joint structure according to the embodiment of the present disclosure will be described with reference to FIGS. 1 and 2.
- the same parts and similar parts are designated by the same reference numerals or similar reference numerals.
- the relationship between the thickness and the plane dimension in the drawing, the ratio of the thickness of each device and each member, etc. are different from the actual ones. Therefore, the specific thickness and dimensions should be determined in consideration of the following explanation.
- the beam-column joint structure of the present embodiment is applied to the joint 14 between the column 10 and the beam 12.
- the vertical direction of the building is indicated by the arrow Z direction
- one side of the beam 12 extending direction and one horizontal direction of the building is indicated by the arrow X direction.
- the arrow Z direction is the vertical direction in FIG. 1
- the arrow X direction is the horizontal direction in FIG.
- the pillar 10 is formed in a substantially rectangular shape in a cross-sectional view cut along the horizontal direction of the building (a plane parallel to the XY plane).
- the column 10 is realized as a steel-framed reinforced concrete (SRC) column by arranging a reinforcing bar 16 (see FIG. 2) and a steel frame 18 inside the concrete 32.
- SRC steel-framed reinforced concrete
- the present disclosure can also be applied to a joint between a reinforced concrete (RC) column and a steel beam.
- H-shaped steel is used as the steel frame 18.
- the H-shaped steel is formed in an H-shaped cross section in a cross-sectional view cut along the horizontal direction of the building.
- a plurality of reinforcing bars 16 extending in the vertical direction of the building are provided as the main reinforcing bars 16A.
- reinforcing bars 16 surrounding the plurality of main bars 16A are provided as band bars 16B above, below, and sideways of the beam 12 in a plurality of steps in the vertical direction of the building.
- the four beams 12 are joined to the columns 10 at the same positions in the vertical direction of the building.
- the four beams 12 are arranged around the pillar 10 at a distance of 90 ° from each other when viewed from the upper side of the building. Since the configurations of the four beams 12 are the same as each other, in the following description, one beam 12 out of the four beams 12 will be exemplified.
- the beam 12 is a composite beam composed of a steel beam 20 and a reinforced concrete slab 22.
- the steel frame beam 20 is formed in an H-shaped cross section in a cross-sectional view cut in the vertical direction.
- the vertical direction is a direction orthogonal to the longitudinal direction of the beam 12. That is, the steel beam 20 is cut at a plane parallel to the YZ plane.
- the slab 22 extends horizontally at the upper part of the steel beam 20 and is integrated with the steel beam 20.
- the horizontal direction is parallel to the XY plane.
- the present disclosure can also be applied to a beam that is not integrated with the slab 22 (that is, a steel beam).
- the steel beam 20 has a rectangular plate-shaped upper flange 20A whose thickness direction is the vertical direction (that is, the Z direction) of the building, and the upper flange 20A on the lower side of the upper flange 20A. It is provided with a lower flange 20B that extends parallel to the 20A. Further, the steel beam 20 includes a web 20C. The web 20C connects the central portion of the upper flange 20A in the width direction and the central portion of the lower flange 20B in the width direction to each other in the vertical direction of the building.
- the width direction of the upper flange 20A and the lower flange 20B is one direction in the horizontal direction of the building and the Y direction orthogonal to the X direction.
- the web 20C is formed in a rectangular plate shape with the Y direction as the thickness direction.
- the “beam end portion 24” means a portion of the steel frame beam 20 embedded in the concrete 32 of the column 10. Further, in the steel frame beam 20, the beam end portion 24 of the steel frame beam 20 is embedded in the concrete 32 of the column 10. In the present embodiment, the steel beam 20 is joined to the column 10 in a semi-rigid joint state.
- the steel frame beam 20 is provided with an upper flange end 20Aa, a lower flange end 20Ba, and a web end 20Ca at the beam end 24, respectively.
- the upper flange end portion 20Aa refers to a region of the upper flange 20A embedded in the concrete 32 of the pillar 10.
- the lower flange end portion 20Ba refers to a region of the lower flange 20B embedded in the concrete 32 of the pillar 10.
- the web end 20Ca refers to a region of the web 20C embedded in the concrete 32 of the pillar 10.
- the upper flange end portion 20Aa is formed on the outer surface 24A of the upper flange 20A located on the + Z direction side in FIG. 1 and the inner surface 24B of the upper flange 20A located on the ⁇ Z direction side in FIG. It is in contact with the concrete 32.
- the lower flange end portion 20Ba is a pillar on each of the inner surface 24C of the lower flange 20B located on the + Z direction side in FIG. 1 and the outer surface 24D of the lower flange 20B located on the ⁇ Z direction side in FIG. It is in contact with 10 concretes 32.
- the web end portion 20Ca is in contact with the concrete 32 of the pillar 10 on each of the web surface on the + Y direction side and the web surface on the ⁇ Y direction side.
- the steel frame beam 20 of the present embodiment includes a plurality of studs 26 fixed to the upper flange 20A constituting the upper part of the steel frame beam 20.
- the plurality of studs 26 project from the upper flange 20A toward the upper side of the building, and are arranged so as to be spaced apart from each other along the longitudinal direction of the steel frame beam 20.
- FIG. 1 only the two studs 26A at the beam end 24 are illustrated by way of example.
- the stud 26A at the beam end portion 24 is an additional member that acts as a “resistance element” against rotation when the beam end portion 24 rotates about the rotation center 24E described later.
- the joint reinforcing bar 28 is included in the diameter of the column 10 along the longitudinal direction of the steel frame beam 20, along the upper end of the stud 26, and on the Y axis. Is provided so as to penetrate the pillar 10 in the X direction.
- a part of the joint reinforcing bars 28 and the stud 26B other than the portion located at the beam end 24 are embedded inside the slab 22.
- the stud 26B in the slab 22 connects the steel beam 20 and the slab 22.
- the joint reinforcing bar 28 is an additional member that acts as a "resistance element" against rotation when the beam end portion 24 rotates about the rotation center 24E.
- the steel frame beam 20 includes a face bearing plate 30 formed in a rectangular plate shape with the longitudinal direction of the steel frame beam 20 as the thickness direction.
- the two face bearing plates 30 are fixed at the same position in the longitudinal direction of the steel frame beam 20 on the + Y direction side and the ⁇ Y direction side with the web 20C in between, respectively.
- the dimension measured along the + Y direction of the face bearing plate 30 is the range in which the face bearing plate 30 does not protrude toward the + Y direction or the ⁇ Y direction from the area surrounded by the upper flange 20A, the lower flange 20B and the web 20C. It is set to the inside dimension. Further, in the state where the steel beam 20 is embedded in the concrete 32 of the column 10, the surface of the face bearing plate 30 opposite to the axial side of the column 10 is substantially the same surface as the outer surface of the column 10. It has become.
- the axial side of the pillar 10 is the right side in FIG. 1, and the side opposite to the axial side of the pillar 10 is the outer surface of the pillar 10.
- the inner surface 30A of the face bearing plate 30 located on the axial side of the pillar 10 is in contact with the concrete 32 of the pillar 10.
- the first axis 24F passing through the rotation center 24E and parallel to the Z direction and the second axis 24G passing through the rotation center 24E and parallel to the X direction are set. Further, of the inner surface 30A of the face bearing plate 30 when the beam end portion 24 rotates about the rotation center 24E, the portion in the ⁇ Z direction with the second shaft 24G sandwiched is the first inner surface 30Aa of the face bearing plate. Is defined as.
- the first inner surface 30Aa of the face bearing plate 30 serves as a "resistance element" against rotation when the beam end portion 24 arranged inside the concrete 32 of the column 10 in the steel frame beam 20 rotates about the rotation center 24E. It is an additional member that acts.
- the outer surface 24A of the upper flange end 20Aa acts as the upper flange end outer surface resistance element 24Aa and as a "resistance element” that resists the rotation of the beam end 24.
- the inner surface 24B of the upper flange end portion 20Aa acts as an upper flange end inner surface resistance element 24Ba as a "resistance element” that resists the rotation of the beam end portion 24.
- the inner surface 24C of the lower flange end portion 20Ba acts as a lower flange end inner surface resistance element 24Ca and a "resistance element” that resists the rotation of the beam end portion 24.
- the outer surface 24D of the lower flange end portion 20Ba acts as a lower flange end portion outer surface resistance element 24Da as a “resistance element” that resists the rotation of the beam end portion 24.
- the portion on the + X direction side from the first shaft 24F is set as the upper flange end portion outer surface resistance element 24Aa.
- the portion on the ⁇ X direction side of the first shaft 24F is set as the upper flange end inner surface resistance element 24Ba.
- the portion on the + X direction side from the first shaft 24F is set as the lower flange end portion inner surface resistance element 24Ca.
- the portion on the outer surface 24D of the lower flange end portion 20Ba is set as the lower flange end portion outer surface resistance element 24Da.
- the upper flange end outer surface resistance element 24Aa, the upper flange end inner surface resistance element 24Ba, the lower flange end inner surface resistance element 24Ca, and the lower flange end outer surface resistance element 24Da are inside the concrete 32 of the column 10 in the steel beam 20.
- the beam end portion 24 arranged in the above is rotated around the rotation center 24E, there are four “resistance elements” that generate a reaction force against the rotation.
- the stud 26A when the steel beam 20 rotates to the position of the steel beam 20a, the stud 26A, which is one of the additional members, is displaced in the ⁇ X direction on the left side in FIG. 1, depending on the amount of displacement. , Receives a reaction force from the concrete 32 of the pillar 10. That is, the stud 26A is a "resistance element" that generates a reaction force against the rotation when the beam end portion 24 arranged inside the concrete 32 of the column 10 in the steel frame beam 20 rotates around the rotation center 24E. Is.
- the first inner surface 30Aa of the face bearing plate 30 which is one of the additional members is displaced toward the + X direction on the right side in FIG. ..
- the displaced first inner surface 30Aa receives a reaction force from the concrete 32 of the pillar 10 and the opposing joint portion 14 on the + X direction side of the pillar 10 according to the amount of displacement. That is, the first inner surface 30Aa of the face bearing plate 30 has a reaction force that opposes the rotation when the beam end 24 arranged inside the concrete 32 of the column 10 in the steel beam 20 rotates about the rotation center 24E. It is a "resistance element" that causes
- the joint reinforcing bar 28 which is one of the additional members, is stretched and displaced in the ⁇ X direction on the left side in FIG.
- the displaced joint reinforcing bar 28 exerts a reaction force (in other words, tensile force) from the concrete 32 of the column 10 and the joint reinforcing bar 28 of the joint portion 14 on the opposite side existing in the + X direction according to the amount of displacement. receive. That is, the joint reinforcing bar 28 generates a reaction force against the rotation when the beam end portion 24 arranged inside the concrete 32 of the column 10 in the steel frame beam 20 rotates around the rotation center 24E. It is a resistance element.
- the reaction force of the resistance element i is defined as those represented by the product of the stiffness k i and the amount of deformation of the resistance element i.
- the elastic rotation center 24Ea When an axial force in the X direction as an external force acts on the beam, the elastic rotation center 24Ea also satisfies the balance between the axial force and the X-direction component of the reaction force of the resistance element i. Can be sought.
- the "elastic rotation center 24Ea” means the rotation center 24E in a state where the reaction force of the resistance element i and the external force are balanced.
- the elastic rotation center 24Ea is set as a point where the following two types of balance are simultaneously realized.
- the elastic rotation center 24Ea the upper flange end outer surface resistance element 24Aa, the upper flange end inner surface resistance element 24Ba, the lower flange end inner surface resistance element 24Ca, and the lower flange end outer surface resistance element 24Da.
- the sum of the reaction forces in the Z direction due to the bearing pressure acting on the concrete 32 of the column 10 is balanced with the shearing force acting on the joint due to the vertical load in the ⁇ Z direction acting on the steel beam 20.
- the vertical load is an external force.
- the sum of the reaction force in the X direction due to the bearing pressure acting from the concrete 32 of the column 10 and the reaction force of the joint reinforcing bar 28 with respect to the stud 26A is the sum of the reaction force of the joint reinforcing bar 28, which is the face bearing plate 30. It balances with the reaction force in the X direction due to the bearing pressure acting on the concrete 32 of the pillar 10 with respect to the first inner surface 30Aa of
- the distance between the action point of the representative displacement of the resistance element i and the elastic rotation center 24Ea is set as "x d, i ".
- the distances x d and i are not illustrated in FIGS. 1 to 17, but specific settings will be described in detail in FIGS. 6 and 2.31 which will appear later.
- the “representative displacement” will be explained later.
- the “representative displacement point of action” is the upper flange end outer surface resistance element 24Aa, the upper flange end inner surface resistance element 24Ba, the lower flange end inner surface resistance element 24Ca, and the lower flange end outer surface.
- the center point of each of the resistance elements 24Da in the X direction can be adopted.
- both ends are set as the "representative displacement action point" of the upper flange end outer surface resistance element 24Aa.
- a center point 100 mm away from the X direction can be adopted.
- the distance between the center of gravity of the reaction force of the resistance element i and the elastic rotation center 24Ea is set as "xl , i ". Then, in the present embodiment, the rotational rigidity of the joint portion 14 is calculated by the following equation 1.
- the "center of gravity of the reaction force" in the setting of the distances x l and i is the moment acting on the center of rotation by the distributed load w acting on the region s having a certain length or a certain area. It refers to the line of action of a virtual concentrated load p that gives an equivalent moment. However, for the virtual concentrated load p, the distance from the center of rotation to the action line is set, assuming that the distributed load w is the same as the value integrated in the region s.
- the joint reinforcing bar 28 as the resistance element i intersects the plane parallel to the XY plane at the position dr-shifted from the upper surface of the slab 22 in the ⁇ Z direction in the XZ plane shown in FIG.
- the line can be set as the center of gravity of the reaction force. According to Equation 1, for a joint portion of an arbitrary detail having a plurality of resistance elements, the characteristics of each resistance element and the rotational rigidity of the joint portion can be uniquely associated with each other.
- the distances x l and i will be specifically described later with reference to FIG. 1 and Equation 1.21.
- the rotational rigidity Sj of the joint can be obtained from the characteristics of each resistance element of the joint.
- the bending moment acting on the joint is uniquely determined from the obtained rotational rigidity of the joint, the bending rigidity of the beam, the span of the beam, and the load supported by the beam.
- the bending moment acting on this joint is defined as the required moment proof stress Mj, Ed of the joint. In order not to damage the joint, it is necessary that the required moment strengths Mj and Ed do not exceed the maximum moment strengths Mj and Rd possessed by the joint described later.
- each resistive element of the joint to adjust the rotational stiffness S j of the joint portion, by adjusting the span of the rotational stiffness S j and the beam joints, the joint
- the required moment proof stress Mj, Ed can be adjusted.
- the reaction force of the resistance element i is regarded as the maximum reaction force Fi, Rd that can be borne by the resistance element i.
- the moment strength of the joint portion 14 is expressed as " Mj, Rd ".
- an arbitrary rotation center 24E is assumed, and the distance between the assumed rotation center 24E and the action point of the reaction force is set as "x u, i ".
- " Mj, Rd” is calculated using the following equation 2 with the two variables, the X coordinate and the Y coordinate, which are the positions of the rotation center 24E.
- the moment strength of the joint portion 14 is set to be the same as the minimum value of the maximum moment strength Mj and Rd calculated by the following equation 2.
- one or more values of proof stress Mj and Rd are calculated by using two X-coordinates and Y-coordinates of the rotation center 24E as variables.
- the minimum value is selected from the calculated maximum moment proof stress Mj and Rd values. Therefore, as described above, the rotation center 24E can be arbitrarily assumed in the calculation.
- the maximum proof stress of each resistance element and the maximum proof stress of the joint can be uniquely associated with each other at the joint of any detail having a plurality of resistance elements.
- Equation 2 the rotation center 24E at the position where the values of the maximum moment proof stress Mj and Rd are minimized is defined as the "ultimate rotation center 24Eb". That is, in the process of calculation of Equation 2, the rotation center 24E shifts from the state of the "elastic rotation center 24Ea” to the state of the "ultimate rotation center 24Eb". Further, in the "ultimate rotation center 24Eb", the balance between the reaction force of the resistance element i and the external force is not always established.
- the steel frame beam 20 is joined to the column 10 in a semi-rigid joint state, and the cross-sectional dimensions of the additional member and the beam 12 including the resistance element. And, if the length of the beam 12 is set appropriately, it is possible to impart appropriate rotational rigidity and strength to the beam end portion 24.
- the beam-column joint is a joint 14 between the column 10 and the beam 12.
- the rotational rigidity S j (Nmm / rad) of the joint portion 14 is defined as the rotational resistance (N mm) per unit rotation angle (rad) of the beam end portion 24 at the joint portion 14, the rotational rigidity S j is defined. Is expressed by the following equation 1.1.
- M j in formula 1.1 is a rotational resistance of the beam-portion 24 (Nmm).
- ⁇ j in the equation 1.1 is the rotation angle (rad) of the beam end portion 24.
- the deformation state of the joint portion 14 includes the rigid body rotation of the beam end portion 24 of the steel frame beam 20 and the deformation of each resistance element that restrains (that is, opposes the rotation) the rotation of the steel frame beam 20.
- the amount of deformation ⁇ i (mm) of the resistance element i is expressed by the following equation 1.2, assuming that it is composed of.
- Equation 1.2 is the distance (mm) from the action line of the representative displacement of the resistance element i to the elastic rotation center of the beam end 24, that is, the action line of the representative displacement of the resistance element i. And the distance from the elastic rotation center of the portion of the steel beam arranged inside the concrete of the column.
- the representative displacement represents the displacement at the point of action of the reaction force when the reaction force of the resistance element acts on one point.
- the representative displacement is a uniform stress distribution equivalent to the value obtained by dividing the distributed reaction force by line integral or surface integral, respectively. Represents a virtual displacement at the center of action of a uniform stress distribution, assuming.
- Reaction force F i of the resistive element i can be calculated by the product of the amount of deformation of the resistance element i [delta] i and stiffness k i (N / mm), the formula 1.3 below.
- a reaction force F i in all of the resistive elements the distance x l from the center of gravity of the reaction force of the resistance element i to be described later to the elastic rotation center of the beam end 24, the sum of the product of i (mm), the joint It is obtained as the rotation resistance M j (N mm) and is represented by the following equation 1.4.
- the distances x l and i are the distances between the center of gravity of the reaction force of the resistance element i and the elastic center of rotation of the portion of the steel beam arranged inside the concrete of the column.
- Equation 1.5 is obtained.
- the resistance element in the joint portion 14 is an element that generates a reaction force against the rotation of the beam end portion 24 of the steel frame beam 20.
- the resistance elements as described above, the tensile resistance of the joint reinforcing bar 28 arranged in the concrete 32 of the slab 22 and the column 10, and the pulling out of the stud 26 in the joint 14 (inside the column).
- the resistance, the bearing resistance between the upper and lower surfaces of the upper and lower flanges 20A of the steel beam 20 and the upper and lower surfaces of the lower flange 20B and the concrete 32 of the column 10, and the bearing resistance between the face bearing plate 30 and the concrete 32 of the column 10 are set. it can.
- the tensile resistance of each joint reinforcing bar 28 arranged in the slab 22 and the concrete 32 of the column 10 the pull-out resistance of the stud 26 in the joint 14 (inside the column), and the steel frame.
- the bearing resistance with 32 was set as the main resistance element.
- the elastic rigidity of each resistance element will be described.
- the elastic rigidity with respect to the tensile resistance of the joint reinforcing bar 28 arranged in the slab 22 or the concrete 32, that is, the elastic rigidity kr (N / mm) of the joint reinforcing bar 28 is the elongation of the joint reinforcing bar 28.
- u r (mm) the tensile force T r (N), and, using the k slip, which will be described later, can be expressed by the formula 1.7 below. Note that in FIG. 1, the elongation u r of the joint reinforcement 28 is illustrated.
- a r (mm 2) the entire cross-sectional area of the joint reinforcement 28 within the effective width of the slab 22, the Young's modulus E r of the joint reinforcement 28, the stress of the reinforcing bars corresponding to the elongation u r sigma
- strain epsilon r and elongation u r is assumed to be constant irrespective of the position in the width direction. Therefore, Similarly, the effective length h r of the joint reinforcement 28, defines a constant length irrespective of the slab 22 widthwise position. This definition, elongation u r and strain epsilon r is associated with formula 1.10 or less.
- the distance between the studs 26 closest to the column 10 is determined. It is set to be equal to the effective length h r. Further, since a substantially symmetrical negative bending moment acts on both sides of the joint portion 14, the correction coefficient ⁇ is set to 0.5. As a result, the strain ⁇ r, calc of the joint reinforcing bar 28 calculated under the assumption of plane holding (Navier Hypothesis) and the experimental strain in the range where the moment-rotation angle relationship of the joint 14 shows elastic behavior. However, it was confirmed that they were almost the same. Based on this result, the effective length h r, of the stud 26 connecting the steel beams 20 and the slab 22 can be set as a distance between the closest to the pillar.
- K slip in the formula 1.16 is a reduction coefficient (0 ⁇ k slip ⁇ 1) of the rigidity of the joint reinforcing bar 28 in consideration of the deformation of the stud 26, and the slab 22 and the steel beam due to the deformation of the stud 26. The larger the relative deviation of 20, the smaller the value.
- the reduction coefficient k- slip is based on "Appendix A.2" of Public Document 1 "EN1994-1-1: 2004 Eurocode 4: Design of composite steel and concrete structures Part 1-1: General rules and rules for buildings”. It can be calculated by the formulas 1.17 to 1.20 of.
- l h is the length of the section (negative bending section) from the joint portion 14 to the inflection point in the length direction of the steel frame beam 20.
- N is the number of studs 26 (shear connectors) included in the concrete 32a of the slab 22 within l h.
- k sc is the shear rigidity (N / mm) per stud 26.
- h s is the distance from the center of action of the compressive force (compressive force due to the bearing pressure between the face bearing plate 30 and the concrete 32 of the column 10 described later) to the joint reinforcing bar 28 ( mm).
- d s is the distance from the junction reinforcement 28 to the center of gravity of the cross section of the steel beam 20 (mm).
- I a is the moment of inertia of area (mm 4 ) of the steel frame beam 20.
- E a is the Young's modulus of the steel beam 20 (N / mm 2).
- the distance from the center is expressed by the following equation 1.21.
- the length of the arm for calculating the moment resistance due to the reaction force that is, the distance between the center of gravity of the reaction force of the resistance element i and the elastic rotation center of the portion of the steel beam arranged inside the concrete of the column.
- x l and i are represented by the following equation 1.21.
- “x n ” in the equation 1.21 is between the elastic rotation center of the joint portion 14 and the surface of the slab 22 (that is, the upper surface of the slab 22 in FIG. 1). It is a component (mm) parallel to the vertical axis (Z axis) at the distance of.
- “d r” in the equation 1.21 is the center of the cross section of the joint reinforcement 28 (In the case of multi-layer reinforcement, their center of gravity) at a distance from to the surface of the slab 22, the vertical direction It is a component (mm) parallel to the axis (Z axis) of.
- the distance x d, i and the distance x l, i are equal.
- the elastic rigidity with respect to the pull-out resistance of the stud 26 in the joint portion 14 (inside the pillar), that is, the elastic rigidity k st (N / mm) with respect to the shear of the stud in the pillar is determined by the pull-out resistance T st (N) of the stud 26. It can be obtained based on the deviation u st (mm) of the stud 26.
- the pull-out resistance T st of the stud 26 is represented by the following formula 1.22, and the displacement ust of the stud 26 is represented by the following formula 1.23.
- T st in the formula 1.22 represents the pull-out resistance (N) of the stud 26 (see FIG. 1).
- ⁇ st in Equation 1.22 represents the diameter of the stud 26 (in the case of a headed stud, the diameter of the shaft portion (mm)) (see FIG. 1).
- n st in the formula 1.22 represents the number of studs 26 (see FIG. 1).
- ust in the formula 1.22 represents the deviation (mm) of the stud 26 (see FIG. 1).
- D s in the formula 1.23 represents the total thickness (mm) of the slab 22 including the deck (see FIG. 1).
- the formula 1.22 relating to the shear rigidity of the stud 26 is an empirical formula presented by Inoue et al. In the published document 2 “Ichiro Inoue: Current Status and Prospects of Headed Studs, Concrete Engineering, Vol. 34, No. 4, 1996.4”. Is. The shear rigidity of the stud 26 is given in proportion to the diameter of the stud 26.
- the coefficient "9.8" in equation 1.22 has a dimension of "N / mm 2 ".
- a value for calculating the displacement of the stud 26 in the column 10 that is, the distance between the action line of the representative displacement of the resistance element and the elastic rotation center of the portion of the steel beam arranged inside the concrete of the column.
- x d and i are represented by the following equation 1.25.
- the distances x l and i from the center are similarly expressed by the following equation 1.25.
- Equation 2.1 is the width (mm) of the effective bearing region.
- l eff in Equation 2.1 is the distance from the center of elastic rotation to the edge of the effective bearing region (the length of the effective bearing region (mm)).
- b eff ⁇ l eff in Equation 2.1 represents the effective bearing area (mm 2 ) of the concrete 32 (see FIG. 5).
- E c in formula 2.1 is a Young's modulus of the concrete (N / mm 2).
- ⁇ c in Equation 2.1 is, for example, a value that depends on the Poisson ratio in the publicly known document 4 “Lambe TW, Whitman RV: Soil Mechanics, MIT, John Wiley & Sons, Inc., New York, 1969”. is there. Further, “ ⁇ c " is, for example, the value of the following equation 2.2 in the publicly known document 5 "Martin Steenhuis et al .: Concrete in compression and base plate in bending, HERON Vol. 53, No. 1/2, 2008”. Will be disclosed as. Further, for " ⁇ c ", for example, a value calculated by the following equation 2.3 can be adopted in consideration of the rigidity reduction rate of 1.5 due to the filling property of the mortar between the steel material and the concrete.
- Equation 2.4 is the total reaction force due to the bearing pressure (value (N) obtained by integrating the reaction force in the effective bearing pressure region with the effective bearing pressure area). Further, “ ⁇ c ” in Equation 2.4 is the displacement (mm) of the bearing interface in the compression direction. If the uniform average bearing stress of the effective bearing area is set to ⁇ c (N / mm 2 ), Equation 2.4 can be further transformed into the form of Equation 2.5 below.
- Equation 2.5 the effective depths D c and eff can be defined by the following Equation 2.7, which does not depend on the magnitude of strain.
- the total reaction force P c2 (N) received by the bearing surface can be calculated by the following equation 2.8.
- P c2, t “ in FIG. 3 is the total reaction force on the upper flange side, and can be calculated by replacing “P c2 " in the following equation 2.8 with “P c2, t “.
- P c2, b “ in FIG. 3 is the total reaction force on the lower flange side, and similarly, “P c2 " in the following equation 2.8 is replaced with "P c2, b " for calculation. it can.
- Equation 2.8 is the reaction force distribution (N / mm 2 ) per unit area of concrete on the bearing surface.
- ⁇ c (y) in Equations 2.9 to 2.11 is the strain distribution of concrete on the bearing surface.
- ⁇ c (y) in the formulas 2.9 and 2.10 is the displacement distribution (mm) of the bearing surface in the compression direction.
- Equation 2.12 Substituting Equations 2.9 to 2.11 into Equation 2.8, the following Equation 2.12 holds.
- Equation 2.13 is the representative displacement (mm) of concrete on the bearing surface.
- Equation 2.16 is the displacement (mm) of the bearing surface in the compression direction at the distance for moment calculation.
- the equation 2.15 in a uniform bearing state can be applied by using the displacement calculated by the equation 2.16.
- the rigidity k c of the bearing surface can be evaluated from the equations 2.12 and 2.13 by the following equation 2.17, which is the same as the equation 2.1.
- the width b eff of the effective bearing capacity region, the reaction force due to bearing capacity as the edge of Bearing faces by bending a plate is set in consideration of being attenuated.
- the flange of the steel frame beam 20 (beam end 24) embedded inside the pillar 10 when concrete 32 is filled between the upper and lower flanges 20A and 20B, the upper and lower flanges 20A and 20B are bent. By assuming that it is restrained by the concrete 32, the entire widths of the upper and lower flanges 20A and 20B are considered to be effective.
- the distance x d, i between the line of action and the elastic rotation center of the portion of the steel beam arranged inside the concrete of the pillar is the effective bearing pressure from the elastic rotation center from equations 2.13 and 2.14. It is expressed by the following equation 2.18 using the distance l eff to the edge of the region.
- the length of the arm for calculating the moment resistance that is, the distance between the center of gravity of the reaction force of the resistance element and the elastic rotation center of the portion of the steel beam arranged inside the concrete of the column x l, i. Is expressed by the following equation 2.19 from equations 2.13 and 2.14 using the distance l eff from the center of elastic rotation to the edge of the effective bearing region.
- the length of the effective bearing region of the upper flange end outer surface resistance element 24Aa of the upper flange 20A is exemplified by “l eff, t ".
- the length of the effective bearing region of the upper flange end inner surface resistance element 24Ba of the upper flange 20A is exemplified by “l eff, b ".
- the length of the effective bearing region of the lower flange end inner surface resistance element 24Ca of the lower flange 20B is exemplified by “l eff, t ".
- the length of the effective bearing region of the lower flange end outer surface resistance element 24Da of the lower flange 20B is exemplified by “l eff, b “.
- the width of the effective bearing region is exemplified by " beff ".
- ⁇ M0 in Equation 2.21 is a reduction coefficient in consideration of the variation in the strength of the steel material.
- the value of the reduction coefficient ⁇ M0 is set here as “1.0”.
- Equation 2.21 the maximum bending moment of the cantilever is elastic limit bending. It is the back calculation of the beam length when the moment is reached. Further, considering the bending of the steel plate having the bearing surface of the T stub with the concrete, a model in which the T stub receives an evenly distributed load equal to the bearing strength of the concrete as a cantilever is assumed. That is, Equation 2.21 represents the length of the effective bearing region used in the calculation of the bearing strength.
- ⁇ in the formulas 2.23 and 2.24 is a ratio of the effective depth h eq to the length Cfl .
- ⁇ c in Equation 2.24 is used in the above-mentioned publicly known document 3 “EN1993-1-8: 2005 Eurocode 3: Design of steel structures Part 1-8: Design of joints, BSI, 2010” and the above-mentioned.
- the coefficient was set to ⁇ , and the following equation 2.25 was used. expressed.
- Equation 2.24 is expressed by the following Equation 2.26.
- Equation 2.27 the following Equation 2.27 holds.
- Equation 2.21 is used for strength calculation and rigidity calculation. It is said that it may be used for both. This is because the value of Equation 2.21 and the value of Equation 2.27 are obtained in the above-mentioned publicly known document 4 "Lambe TW, Whitman RV: Soil Mechanics, MIT, John Wiley & Sons, Inc., New York, 1969". , Because it is almost the same.
- the rigidity k c, fb (N / mm) and the reaction force P c, fb (N) of the bearing surface between the face bearing plate 30 and the concrete 32 are determined. It can be calculated by the following equations 2.28, 2.29 and 2.30.
- ⁇ c, fb " in equation 2.29 means the displacement of the face bearing plate 30.
- x c, fb " in the formula 2.30 means the distance between the face bearing plate 30 and the concrete 32.
- a value for calculating the representative displacement due to the bearing pressure between the face bearing plate 30 and the concrete 32 that is, the action line of the representative displacement of the resistance element i and the portion of the steel beam arranged inside the concrete of the pillar.
- the distances x d and i from the elastic rotation center are the thickness D s (mm) of the slab 22, the height H (mm) of the steel beam 20, and the thickness t f (thickness t f ) of the lower flange 20 B of the steel beam 20. It is expressed by the following equation 2.31 using mm) and the distance x n (mm) measured along the Z direction from the upper surface of the slab 22 to the center of elastic rotation.
- the length of the arm for calculating the moment resistance that is, the distance between the center of gravity of the reaction force of the resistance element and the elastic rotation center of the portion of the steel beam arranged inside the concrete of the column x l, i. Is also expressed by the following equation 2.31 which is the distance measured along the thickness of 20B.
- the deformed state of the joint portion 14 between the column 10 and the beam 12 is modeled by the rigid body rotation of the beam end portion 24 of the steel frame beam 20 which is a steel frame portion, and moment resistance is generated between steel and concrete.
- the calculation method of the elastic rigidity (that is, the rotational rigidity) of the bearing portion is described.
- the proof stress M j, Rd of the joint portion 14 is the product of the distance x u, i (mm) from the resistance element i to the rotation center of the beam end portion 24 and the maximum reaction force Fi, Rd (N) of the resistance element i. It is calculated by the following equation as the sum of. Further, in the present embodiment, the distance x u from resistive element i to the rotational center of the beam end 24, i is the distance x u from the center of gravity of the reaction force of the resistance element i to the rotational center of the beam end 24, i Is.
- Equation 3.1 it is set that each resistance element in the joint portion 14 has a load deformation relationship of perfect rigid plasticity. It is also assumed that all resistance elements are in a state (ie, mechanism) that produces a plastic flow. The moment resistance obtained by this assumption gives a value larger than the true collapse load as the upper bound. Therefore, for an arbitrary center of rotation, a calculation for obtaining the moment resistance is performed using Equation 3.1. Further, in the calculation, the rotation center that minimizes the collapse load is obtained as the ultimate rotation center. The moment resistance when the ultimate center of rotation is obtained is set as the moment proof stress of the joint portion 14 (that is, the maximum moment proof stress M j, Rd of the joint portion 14).
- the resistance elements in the joint portion 14 include the tensile resistance of the joint portion reinforcing bar 28 arranged in the slab 22, the pull-out resistance of the stud 26 in the joint portion 14, and the support between the face bearing plate 30 and the concrete 32 of the column 10.
- the pressure resistance, the bearing resistance between the upper flange 20A of the steel beam 20 and the concrete 32 of the column 10, and the bearing resistance between the lower flange 20B and the concrete 32 of the column 10 can be set.
- Other resistance elements include sliding resistance due to friction at the bolt joint connecting the web 20C of the steel beam 20 and the fin plate 36 of the column 10, shear deformation resistance of the bolt 34 due to bearing pressure, local deformation resistance of the bolt hole, and , The shear resistance of the fin plate 36 can be set.
- the proof stress Fi and Rd as the reaction force that causes the plastic flow are required, but among the above-mentioned resistance elements, the proof stress is relatively large and cannot be ignored in the calculation of the moment resistance.
- the proof stress of 20A and the concrete 32 of the pillar 10 and the proof stress of the lower flange 20B and the concrete 32 of the pillar 10 will be described.
- the moment resistance may be obtained by appropriately considering other resistance elements.
- the tensile strength fr, u may be used instead of the yield stress fr, y .
- the length of the arm for calculating the moment resistance due to the reaction force of the joint reinforcing bar 28 that is, the distance between the rotation center of the portion of the steel beam arranged inside the concrete of the column and the action line of the reaction force.
- x u and i are represented by the following equation 3.3.
- the distances x u and i are the distances from the center of gravity of the reaction force of the resistance element i to the center of rotation of the beam end portion 24.
- Equation 3.3 is a component (mm) of the distance between the center of rotation of the joint portion 14 and the surface of the slab 22 parallel to the vertical axis (Z axis).
- “ dr " in Equation 3.3 is from the center of the cross section of the joint reinforcing bar 28 (when the joint reinforcing bar 28 is a multi-layered reinforcing bar, the center of gravity of the multi-layered reinforcing bar) to the slab 22. It is a component (mm) of the distance to the surface parallel to the vertical axis (Z axis).
- the maximum yield strengths F st and Rd are the yield strength T st1 determined by the shear strength of the stud 26, the yield strength T st2 determined by the bearing strength of the concrete 32, and the yield strength T determined by the cone-shaped fracture of the concrete 32 of the pillar 10 on the front surface of the stud 26.
- the smaller value of st3 is adopted.
- Shear strength determined by the shear strength of the studs The shear strength T st1 (N) is the following equation 3. Using the number n st of the studs 26 and the shear strength q a1 (N) per stud 26. Given in 4.
- Equation 3.4 is the reduction coefficient.
- the value of the reduction factor phi 1 is herein set to "1.0".
- S ⁇ qa in Equation 3.4 is the shear strength (N / mm 2 ) of the stud 26.
- Sca is the cross-sectional area (mm 2 ) of the shaft portion of the stud 26.
- Shear strength proof stress T st2 (N) determined by the bearing strength of concrete is determined by using the number n st of the studs 26 and the bearing strength q a2 (N) of the concrete 32 per stud 26. , Given by Equation 3.5 below.
- phi 2 is the reduction factor of the concrete strength
- the value of the reduction factor phi 2 is herein set to "1.0”.
- F cd in the formula 3.5 is the compressive strength (N / mm 2 ) of the concrete 32 of the column 10.
- E c in the formula 3.5 is the Young's modulus (N / mm 2 ) of concrete. The values of and Young's modulus E c of compressive strength f cd, both the value of the material testing is used.
- C ⁇ t in the formula 3.6 is the tensile strength (N / mm 2 ) of the concrete 32 with respect to the cone fracture.
- c ⁇ t the following equation 3.7 given in Architectural Institute of Japan: Architectural Institute of Japan: Guidelines for Designing Various Synthetic Structures and Explanations, 2nd Edition, November 2010 is used.
- a qc in the formula 3.6 is the effective projected area (mm 2 ) of the cone-shaped fracture surface, and is obtained by the following formula 3.8.
- “C” in the formula 3.8 is the distance (mm) from the axis of the stud 26, which is the innermost part of the concrete 32 surface of the pillar 10, to the concrete 32 surface of the pillar 10 (see FIG. 7). Further, “s” in the formula 3.8 is the distance (mm) of the studs 26 in the same depth row (see FIG. 7). Further, “n r " in the equation 3.8 is the number of studs 26 in the same depth row (see FIG. 7).
- the length of the arm for calculating the moment resistance due to the reaction force of the stud 26 in the column 10 that is, the rotation center of the portion of the steel beam arranged inside the concrete of the column and the action line of the reaction force.
- the distances x u and i are expressed by the following equation 3.9.
- b eff " in the formula 3.10 represents the width (mm) of the effective bearing area of concrete.
- l eff " in the formula 3.10 represents the length (mm) of the effective bearing area of concrete.
- the width beff is the same as in the case of the calculated rigidity of the elastic rigidity.
- f jd in the formula 3.10 is the compressive strength of the concrete 32 with respect to the local bearing pressure, and is defined by the following formula 3.12.
- ⁇ c in Equation 3.12 is the yield strength addition coefficient with respect to the local bearing pressure.
- the yield strength premium coefficient ⁇ c is described in the above-mentioned publicly known document 7 “EN1992-1-1: 2004 Eurocode2: Design of concrete structures Part 1-1: General rules and rules for buildings” and publicly known document 8 “Architectural Institute of Japan: Reinforced concrete columns ⁇ Design and construction of steel beam mixed structure, 1st edition, 2001.1 ”.
- Known Document 7 it can be calculated by the following formula 3.13.
- Equation 3.12 is the local effective bearing area (mm 2 ).
- Ac1 ” in the equation 3.12 is the maximum bearing stress distribution area (mm 2 ).
- a projection plane having a similar shape with an effective bearing area A c0 and having the same normals at the center of the plane is assumed (see FIGS. 9A and 9B). If the outer portion from the edge of the concrete 32 in the projection plane is present, the minus the outer portion is set to the maximum bearing capacity stress distribution area A c1 (e.g. Model see Figure 9B).
- ⁇ j in Equation 3.12 is a reduction coefficient depending on the material of the bearing surface.
- the value of the reduction coefficient ⁇ j is set here as “1.0”.
- the value of the reduction coefficient ⁇ j can be set to, for example, “2/3”.
- the distances x u and i as the lengths of the arms for calculating the moment resistance due to the stress block are the distances l eff from the center of rotation to the line of action of the resultant force due to the bearing stress from the models of FIGS. 8A and 8B. Is expressed by the following equation 3.14.
- the length of the effective bearing region of the upper flange end outer surface resistance element 24Aa of the upper flange 20A is exemplified by “l eff, t ".
- the length of the effective bearing region of the lower flange end outer surface resistance element 24Da of the lower flange 20B is illustrated by “l eff, b “.
- the concrete 32 inside the upper and lower flanges 20A and 20B and the concrete 32 outside the upper and lower flanges 20A and 20B of the concrete 32 of the column 10 are kept integrated, and the inner side of the upper and lower flanges 20A and 20B also has bearing resistance. Has.
- the upper flange end inner surface resistance element 24Ba of the upper flange 20A and the lower flange end inner surface resistance element 24Ca of the lower flange 20B are set not to be considered in the derivation of the ultimate proof stress.
- the length corresponding to the distance x u, i is exemplified by "x u, ct " for the upper flange end outer surface resistance element 24Aa of the upper flange 20A.
- the length corresponding to the distance x u, i is exemplified by "x u, cb ".
- b eff " in the formula 3.15 is the width (mm) of the effective bearing surface of the concrete 32.
- l eff " in the formula 3.15 is the length (mm) of the effective bearing surface of the concrete 32.
- t fb in the formula 3.16 is the plate thickness (mm) of the face bearing plate 30.
- f jd in the formula 3.16 is the compressive strength (N / mm 2 ) of the concrete 32 with respect to the local bearing pressure.
- the compressive proof stress fjd is the same as that described by Equations 3.12 and 3.13.
- fy in the equation 3.16 is the yield stress (N / mm 2 ) of the face bearing plate 30.
- ⁇ M0 in the formula 3.16 is a reduction coefficient for considering the variation in the strength of the steel material, and the value of the reduction coefficient ⁇ M0 is set to "1.0" here. ..
- the projection plane shown in FIG. 11 is assumed. Further, the value of the reduction coefficient ⁇ j is set to “1.0”.
- the distances x u and i as the lengths of the arms for calculating the moment resistance due to the stress block are the distances l eff from the center of rotation to the line of action of the resultant force due to the bearing stress from the models of FIGS. 10A and 10B. Is expressed by the following equation 3.17.
- the moment strength of the joint portion 14 between the column 10 and the beam 12 can be determined.
- the desired moment strength can be set. That is, it can be adjusted so that the required moment proof stress M j, Ed or more.
- Example 1 Comparison of calculation results and experimental results
- a load is applied to the beam in the downward -Z direction in the vertical direction with respect to the beam-column joint of the embodiment shown in FIGS.
- the relationship between the rotation angle and the moment was obtained.
- the results of calculating the rotational rigidity and the moment strength of the joint using Equations 1 to 3.17 were compared with the experimental results.
- the relationship between the moment of the beam end 24 of the steel beam 20 and the angle of rotation at the joint 14 is the initial rotational rigidity Sj, ini (Nmm / rad) and the maximum moment according to the procedures of equations 1 to 3.17. It can be defined by a bilinear model by finding the yield strength M j and Rd (N mm). Here, the elastic limit is set to 2/3 times the maximum moment proof stress Mj and Rd . It is stipulated that when a moment exceeding the set elastic limit acts, the rotational rigidity is lower than the initial rotational rigidity Sj, ini .
- the secant rigidity S j (Nmm / rad) when the maximum moment proof stress M j, Rd (N mm) is established is a trilinear model defined by the value obtained by dividing S j, ini by the rigidity reduction rate ⁇ (> 1). It was assumed that it was defined in (see FIG. 12).
- the trilinear model When the trilinear model is applied, the acting moment of the joint is calculated with the rotational stiffness Sj and ini as the elastic rotational stiffness. Further, when a moment of 2/3 times or less of the maximum moment proof stress Mj and Rd acts, it can be carried out as it is.
- the acting moment of the joint is calculated with the rotational rigidity S j and ini as the elastic rotational rigidity, and when a moment exceeding 2/3 times the maximum moment bearing capacity M j and Rd acts, a new split line rigidity S j is added.
- the acting moment of the joint was calculated as the bullet rotation rigidity. If the calculated working moment is equal to or less than the maximum moment proof stress Mj, Rd , it is determined that it is feasible, that is, it is within the scope of the claims of the present disclosure. Further, when the calculated action moment exceeds the maximum moment proof stress Mj, Rd , it is determined that it is not feasible, that is, it is outside the scope of the claims of the present disclosure.
- the rotational rigidity S j, ini and the maximum moment proof stress M j, Rd , ⁇ are set by the following equations 4.1, 4.2, and 4.3.
- the deformation performance ⁇ cd shown in FIG. 12 is the minimum value (rad) of the rotation angles ⁇ cd and i when each resistance element reaches the limit of the amount of deformation.
- the rotation angle ⁇ j is solved.
- each parameter in the equation is the same as that described in Equations 1 to 3.17.
- Table 1 shows each parameter used for calculating the rigidity and proof stress of the reinforcing bar.
- Table 1 shows each parameter used for calculating the rigidity and proof stress of the reinforcing bar.
- each parameter in the equation is the same as that described in Equations 1 to 3.17.
- Table 2 shows the parameters used for calculating the rigidity and proof stress of the column studs.
- Table 2 shows the parameters used for calculating the rigidity and proof stress of the column studs.
- the conditions shown in Table 2 ( ⁇ st , n st , x n , D s , ⁇ 1 , s ⁇ qa , sc a, ⁇ 2 , f cd , E c , c, s, n r )
- To "k 2 , x d, 2 , F 2, Rd , x u, 2 , T st1 , T st2 , T st3 , c ⁇ t A qc " in equations 4.12 to 4.20. was calculated.
- the upper and lower flanges 20A and 20B maintain the integrity of the inner concrete 32 and the outer concrete 32 with respect to the initial rigidity, and the inner side of the upper and lower flanges 20A and 20B also has bearing resistance. based on. However, in the final state, the concrete 32 is destroyed by the twist between the rectangular portion surrounding the steel beam 20 and the outside thereof (that is, the upper and lower flanges 20A, 20B width direction ends), and the inside of the upper and lower flanges 20A, 20B is Based on the idea that it will not work as a resistance factor.
- the distance to (that is, the length of the arm) x u, c, i (mm) and the endurance F c, i, Rd (N) are set using the following equations 4.21 to 4.35. it can.
- Table 3 shows each parameter used for calculating the rigidity and proof stress due to the bearing resistance at the interface between the portion of the steel beam embedded in the column concrete and the column concrete.
- the values shown in Table 3 were used as each parameter in Equations 4.21 to 4.35.
- B f is the width (mm) of the upper and lower flanges 20A and 20B of the steel frame beam 20.
- tw is the plate thickness (mm) of the web 20C of the steel frame beam 20.
- t fb is the plate thickness (mm) of the face bearing plate 30.
- Lem is the embedded length (mm) of the column 10 of the steel frame beam 20 in the concrete 32.
- y n in the formulas 4.21 to 4.35 is parallel to the x-axis from the concrete 32 outer surface (face bearing plate 30 side) of the pillar 10 to the elastic rotation center that satisfies the balance of the elastic force. Horizontal distance (mm) in any direction. Further, “ yu, n “ is a horizontal distance (mm) from the outer surface of the concrete 32 of the pillar 10 to the ultimate rotation center. The outer surface of the concrete 32 of the pillar 10 is the surface on the face bearing plate 30 side.
- Example 1 (Elastic rigidity and yield strength against bearing pressure of face bearing plate and concrete)
- the distance from to the center of gravity of the supporting pressure (that is, the length of the arm) x u, c, fb (mm) and the endurance F c, fb, Rd (N) are given by the following equations 4.36 to 4. It was set using 43.
- each parameter in the equation is the same as that described in Equations 1 to 3.17.
- Table 4 shows each parameter used for calculating the rigidity and proof stress due to the bearing pressure between the face bearing plate and concrete.
- the experiment in Example 1 was carried out using the conditions shown in Table 4 (E c , B f , t w , t fb , f y , ⁇ M0 , ⁇ j , f cd, fb , A c0 , Ac1 ). From 4.36 to 4.43, "k c, fb , x d, c, fb , x l, c, fb , F c, fb, Rd " were calculated.
- the maximum moment capacity M j represents the position of the eventual rotation center to minimize Rd "x u, n", "y u , N "was calculated. Since the rigidity reduction rate ⁇ was about 3.0, which corresponded well with the rigidity after the non-linearization of the experiment, the value of the rigidity reduction rate ⁇ was set to “3.0” here.
- FIG. 14 shows a comparison between the experimental results and the trilinear by the evaluation model.
- the vertical axis in FIG. 14 is the moment of the joint, and the horizontal axis is the rotation angle of the joint.
- the solid line in FIG. 14 represents the history of the experimental results, and the dotted line represents the trilinear according to the evaluation model.
- the moment of the joint 14 in the experiment was defined by the face position of the concrete 32 of the column 10.
- the face position of the concrete 32 of the pillar 10 is the surface of the side surface of the concrete 32 of the pillar 10 orthogonal to the X-axis direction in FIG. 1 on the side opposite to the X-axis.
- FIG. 15 shows a comparison between the rotational rigidity of the unloading cycle and the evaluation model for repeated loading in the elastic range.
- the vertical axis in FIG. 15 is the rotational rigidity of the joint in the unloading cycle, and the horizontal axis is the number of cycles (that is, the number of repetitions).
- the plot points in FIG. 15 represent the experimental results, and the dotted lines represent the evaluation model.
- the rotational rigidity of the evaluation model can be evaluated by roughly evaluating the lower limit of the experiment. Table 5 shows specific numerical values in the above comparison results.
- Table 5 shows the experimental results of the rotational rigidity and the moment strength of the joint and the calculation results according to the present disclosure.
- the ultimate moment strength is 93% of the average value of the experiment.
- the rotational rigidity has an evaluation accuracy of 76 to 77%.
- the moment strength is a calculation result on the safety side that is not overestimated.
- the estimated value of the moment acting from the steel beam to the column by the load supported by the steel beam and the rotational rigidity Sj of the portion of the steel beam arranged inside the concrete of the column, and the column It is possible to accurately compare the maximum moment bearing capacity that the joint with the beam can withstand.
- the column-beam joint of the present disclosure it is possible to prevent significant irreversible deformation (that is, plasticization) from occurring at the joint between the columns and beams, and to stabilize the deflection of the steel beam and the soundness of the columns. Can be secured.
- Example 2 Further, in the second embodiment as well, the beam-column joint was designed and the rotational rigidity and the moment strength of the joint were evaluated. The evaluation of the rotational rigidity and the moment proof stress of the joint portion was performed based on the evaluation method of the rotational rigidity and the moment proof stress of the joint portion described in Example 1 above. An example of the present disclosure that satisfies the conditions of the present disclosure is shown as an example.
- the moments acting on the joint (required moment proof stress) M j, Ed estimated from the rotational rigidity Sj calculated according to the evaluation method of the present disclosure and the load supported by the steel beam are the maximum moment proof stress of the joint. (Holding moment proof stress) This is an example that does not exceed Mj and Rd .
- the present disclosures are shown as comparative examples.
- the moments M j and Ed acting on the joint estimated from the rotational rigidity S j calculated according to the evaluation method of the present disclosure and the load supported by the steel beam are equal to or greater than the maximum moment strength M j and Rd of the joint.
- the design conditions are the materials shown in Table 6, the load conditions shown in Table 7, the distance between both ends of the steel beam (that is, the beam length), and the control width in which the steel beam bears the load.
- Tables 8 to 11 No. 1 to No. 101 samples of 101 were designed.
- Table 8 No. 1 to No.
- the design conditions of 48 samples of 48 are shown, and in Table 9, No. 49-No.
- the design conditions for 53 samples of 101 are shown.
- Table 10 No. 1 to No.
- the design results of 48 samples of 48 are shown, and in Table 11, No. 49-No.
- the design results of 53 samples of 101 are shown.
- the moment generated in the joint when the elastic rotational rigidity of the joint is assumed is the joint.
- the case where the value (M j, Ed / M j, Rd ) divided by the moment strength possessed by the above exceeds 1.00 was set as a comparative example.
- the fixed load (SDL) in Table 7 is a load that always acts on the beam except for the own weight Sw of the structure.
- the variable load (LL) is the maximum load that is considered to act during the common period of the building except for the own weight Sw of the structure and the fixed load.
- the product of the fixed load, the variable load, the sum of the weights of the structure and the control width is set as the evenly distributed load w (see Tables 8 and 9).
- Lem in Tables 8 and 9 is the embedded length of the beam in the column concrete.
- D s represents the thickness of the floor slab.
- H, B f , t w , t f represent the height of the cross section of the steel frame beam, the width of the flange, the thickness of the web, and the thickness of the flange, respectively.
- I a represents the moment of inertia of area of the steel beam.
- t fb represents the plate thickness of the face bearing plate.
- the design conditions shown in Tables 6 and 7 were set to be invariant.
- the rotational rigidity S j of the joint, the maximum moment bearing capacity M j, Rd of the joint, and the moments M j, Ed generated at the joint are calculated using the joint design method proposed in the present disclosure. did.
- the embedding length Lem was set as the maximum embedding dimension limited by the diameter of the column and the steel frame of the column.
- the diameter ⁇ st of the stud is set to 19 mm.
- the embedding depth c from the surface of the column to the axis of the stud in the length direction of the steel beam was set to 150 mm.
- the number of studs was two, and the two studs were arranged in a row in the Y-axis direction.
- the distance between the two studs was unified to 100 mm.
- the plate thickness t fb of the face bearing plate was unified to 12 mm. No joint reinforcement was set.
- FIG. 16 is a graph in which data points are plotted for the design results shown in Tables 8, 9, 10 and 11.
- FIG. 17 is a graph in which data points are plotted for the design results shown in Tables 8, 9, 10 and 11.
- Ed ⁇ Maximum moment strength Mj, Rd ) of the joint in each design example is set.
- the moment strength of the joint is insufficient as in the comparative example, and the additional member, the span of the beam, If the cross-sectional shape and the like are not adjusted, there is a high possibility that the moment bearing capacity may be insufficient. Therefore, by using the beam-column joint design method according to the present embodiment and setting the bending moment ratios M j, Ed / M j, and Rd to 1.00 or less, the joint moments M j, The maximum moment proof stress Mj, Rd of the joint exceeds Ed , the occurrence of comparative examples is suppressed, and the design requirements can be satisfied as in the examples.
- the height of the cross section of the beam is 500 mm (beam) at the joint where the steel beam is simply embedded in the column concrete without having additional members.
- the length is about 1/24) or less and the embedded length ratio Lem / H is 0.4 or less, the moment bearing capacity of the joint is insufficient and it cannot be used as a beam-column joint ( No. 49, 50, 51).
- the additional members of 40 are an in-column stud and a face bearing plate. Therefore, No. Reference numeral 40 denotes a column-beam joint, which is an embodiment of the present disclosure.
- the degree of fixation ⁇ rig and the bending moment ratio change not only depending on the embedding length ratio Lem / H but also on the cross-sectional shape of the beam and the presence or absence of studs. That is, even when the embedded length ratio Lem / H is the same and the load conditions are the same, the moment strength of the joint satisfies the conditions of the present disclosure depending on the cross-sectional shape of the beam and the presence or absence of additional members such as studs. And there are cases where it is not satisfied.
- the rotational rigidity and the moment strength of the joint are adjusted mainly by the additional member of the steel frame beam.
- the rotational rigidity and moment resistance of the joint can be increased only by adjusting the distance between both ends of the steel beam (that is, the beam length) and by adjusting the cross-sectional shape of the beam end in the longitudinal direction of the steel beam. It may be adjusted.
- the additional member provided as the resistance element at least one of the arrangement, shape, size and number of the additional member is adjusted.
- the arrangement, shape, dimensions, or number of reinforcing bars and studs can be adjusted, and the position, shape, dimensions, or number of face bearing plates can be adjusted.
- the required moment proof stress and the maximum moment proof stress change and are adjusted depending on the presence or absence and amount of the additional member.
- the resistance element designed by the method of designing the column-beam joint of the present disclosure provided, at least one end of the steel beam in the longitudinal direction is semi-rigidly joined to the inside of the concrete of the column.
- the method for manufacturing a beam-column joint according to the present disclosure can be realized.
- the first aspect is A concrete column, a steel beam in which at least one end in the longitudinal direction is embedded in the concrete of the column in a semi-rigid joint state, and a reaction force provided on the steel beam to resist rotation of the steel beam.
- It is a method of designing a beam-column joint having a resistance element that causes The rotational resistance per unit rotation angle of the steel beam portion inside the concrete at the column-beam joint is defined as the rotational rigidity Sj .
- the required moment resistance acting from the steel beam to the column-beam joint is calculated.
- At least one of the distance between both ends of the steel beam and the cross-sectional shape of the steel beam so that the calculated required moment strength does not exceed the maximum moment strength that the column-beam joint can resist. To adjust, How to design a beam-column joint.
- the total number of the resistance elements is n, i is an arbitrary natural number of 1 or more and n or less, and the resistance elements are resistance elements i.
- the reaction force of the resistance element i is represented by the product of the stiffness k i and the amount of deformation of the resistive element i
- the center of rotation of the steel beam portion inside the concrete of the column is defined as a point at which the reaction force of the resistance element i and the external force are balanced.
- x d and i be the distances between the action line of the representative displacement of the resistance element i and the center of rotation.
- the distance between the center of gravity of the reaction force of the resistance element i and the center of rotation be x l, i .
- the rotational rigidity Sj is set based on the evaluation of the value obtained by the following equation 1.
- Aspect 3 is At least one of the distance between both ends of the steel beam and the cross-sectional shape of the steel beam is adjusted so that the required moment strength does not exceed the maximum moment strength that the column-beam joint can withstand. , The method for designing a beam-column joint according to aspect 2.
- Aspect 4 is The resistance element includes a portion of the steel beam inside the concrete and an additional member provided on the peripheral edge of the portion.
- the required moment proof stress or the maximum moment proof stress of the beam-column joint is set by adjusting at least one of the arrangement, shape and dimensions of the additional member.
- Aspect 5 is The maximum reaction force that can be borne by the resistance element i of the steel beam portion inside the concrete is set to Fi and Rd .
- the maximum moment strength of the beam-column joint is set to M j and Rd .
- Let x u and i be the distance between the center of rotation of the steel beam and the line of action of the reaction force. With the position of the center of rotation as a variable , the minimum values of Mj and Rd calculated using the following equation 2 are set in the maximum moment proof stress.
- the method for designing a beam-column joint according to any one of aspects 1 and 3 to 4.
- Aspect 6 is The embedding length ratio obtained by dividing the embedding length of one end of the steel beam into concrete by the beam of the steel beam is 0.6 or less.
- Aspect 7 is In a state where the resistance element designed by using the method for designing a column-beam joint according to any one of aspects 1 to 6 is provided, at least one end of the steel beam in the longitudinal direction of the column is provided. Embedded in concrete in a semi-rigid joint state, Manufacturing method of beam-column joints.
- the rotational resistance per unit rotation angle of the steel beam portion inside the concrete at the column-beam joint is defined as the rotational rigidity Sj, and the moment generated by the maximum yield strength that the resistance element can resist is the column-beam.
- the maximum moment strength that a joint can withstand As the required moment bearing force acting on the column-beam joint from the steel beam, the required moment bearing calculated using the load supported by the steel beam and the rotational rigidity Sj does not exceed the maximum moment bearing.
- at least one of the distance between both ends of the steel beam and the cross-sectional shape of the steel beam is adjusted. Beam-column joint structure.
- Aspect 9 is with concrete pillars A steel beam in which at least one end in the longitudinal direction is embedded in the concrete of the column in a semi-rigid joint state, and It has a resistance element provided on the steel beam and generating a reaction force against the rotation of the steel beam.
- the rotational resistance per unit rotation angle of the steel beam portion inside the concrete at the column-beam joint is defined as the rotational rigidity Sj
- the required moment resistance acting from the steel beam to the column-beam joint is defined as The required moment resistance is set using the load supported by the steel beam and the rotational rigidity Sj set by the following process B. Beam-column joint structure.
- the total number of the resistance elements is n, i is an arbitrary natural number of 1 or more and n or less, and the resistance elements are resistance elements i.
- the reaction force of the resistance element i is represented by the product of the stiffness k i and the amount of deformation of the resistive element i
- the center of rotation of the steel beam portion inside the concrete of the column is defined as a point at which the reaction force of the resistance element i and the external force are balanced.
- x d and i be the distances between the action line of the representative displacement of the resistance element i and the center of rotation.
- the distance between the center of gravity of the reaction force of the resistance element i and the center of rotation be x l, i .
- the rotational rigidity S j is set to a value that satisfies the following equation 3.
- Aspect 10 is At least one of the distance between both ends of the steel beam and the cross-sectional shape of the steel beam is adjusted so that the required moment strength does not exceed the maximum moment strength that the column-beam joint can withstand. ing, The beam-column joint structure according to aspect 9.
- Aspect 11 is At least one of the distance between both ends of the steel beam and the cross-sectional shape of the steel beam is adjusted so that the required moment strength does not exceed the maximum moment strength that the column-beam joint can withstand. ing, The beam-column joint structure according to aspect 8 or aspect 10.
- the resistance element includes a portion of the steel beam inside the concrete and an additional member provided on the peripheral edge of the portion.
- the required moment proof stress or the maximum moment proof stress of the beam-column joint is set by adjusting at least one of the arrangement, shape, and dimensions of the additional member.
- the column-beam joint structure according to any one of Aspect 8 and Aspect 10 to Aspect 11.
- Aspect 13 is The embedding length ratio obtained by dividing the embedding length of one end of the steel beam into concrete by the beam of the steel beam is 0.6 or less.
- the other aspect 1 is A column-beam joint structure having a concrete column and a steel beam having at least one end in the longitudinal direction arranged in the concrete of the column.
- the rotational resistance per unit rotation angle of the portion of the steel beam arranged inside the concrete of the column is the rotational rigidity Sj
- the load supported by the steel beam and the concrete of the column in the steel beam The force acting on the column from the steel beam is estimated by the rotational rigidity Sj of the portion arranged inside, and the force acting on the column from the steel beam is resisted by the concrete of the column.
- It has a resistance element that generates a reaction force against the rotation of the portion of the steel beam arranged inside the concrete of the column so as not to exceed the maximum strength that can be achieved.
- a column-beam joint structure in which the reaction force of the resistance element is adjusted at least by adjusting the distance between both ends of the steel beam and / or the cross-sectional shape of the steel beam.
- the resistance element includes a portion of the steel beam that is arranged inside the concrete of the column and an additional member provided at the peripheral edge thereof, and adjusts at least one of the arrangement, shape, and dimensions of the additional member.
- Another aspect 3 is When the total number of the resistance elements is n, i is an arbitrary natural number of 1 or more and n or less, and the resistance element provided on the steel beam is the resistance element i,
- the reaction force of the resistance element i is assumed to be expressed by the product of the stiffness k i and the amount of deformation of the resistive element i,
- the center of elastic rotation of the portion of the pillar arranged inside the concrete is defined as the point where the reaction force of the resistance element i and the external force are balanced.
- Let x d, i be the distance between the action line of the representative displacement of the resistance element i and the elastic rotation center of the portion of the steel beam beam arranged inside the concrete of the column.
- the distance between the center of gravity of the reaction force of the resistance element i and the elastic rotation center of the portion of the steel beam arranged inside the concrete of the column is defined as x l, i .
- Another aspect 4 is The maximum reaction force that the resistance element i can bear as the reaction force of the resistance element i of the portion of the steel beam arranged inside the concrete of the column is set to Fi and Rd .
- the proof stress of the joint is defined as M j and Rd .
- Let x u, i be the distance between the center of rotation of the portion of the steel beam arranged inside the concrete of the column and the line of action of the reaction force.
- M j and Rd are calculated using the following equation 2 with the position of the center of rotation as a variable, and the proof stress of the joint is set to the minimum value of M j and Rd calculated by the following equation 2.
- the column-beam joint structure according to any one of the other aspects 1 to 3.
- Another aspect 5 is A method for designing a column-beam joint having a concrete column and a steel beam having at least one end in the longitudinal direction arranged in the concrete of the column.
- the rotational resistance per unit rotation angle of the portion of the steel beam arranged inside the concrete of the column is the rotational rigidity Sj
- the load supported by the steel beam and the concrete of the column in the steel beam The force acting on the column from the steel beam is estimated by the rotational rigidity Sj of the portion arranged inside, and the force acting on the column from the steel beam is resisted by the concrete of the column.
- a resistance element is provided to generate a reaction force against the rotation of the portion of the steel beam arranged inside the concrete of the column so as not to exceed the maximum strength that can be achieved.
- a method for designing a column-beam joint in which the reaction force of the resistance element is adjusted at least by adjusting the distance between both ends of the steel beam and / or the cross-sectional shape of the steel beam.
- the resistance element includes a portion of the steel beam that is arranged inside the concrete of the column and an additional member provided at the peripheral edge thereof, and adjusts at least one of the arrangement, shape, and dimensions of the additional member.
- n i is an arbitrary natural number of 1 or more and n or less
- the resistance element provided on the steel beam is the resistance element i
- the reaction force of the resistance element i is assumed to be expressed by the product of the stiffness k i and the amount of deformation of the resistive element i
- the center of elastic rotation of the portion of the pillar arranged inside the concrete is defined as the point where the reaction force of the resistance element i and the external force are balanced.
- x d, i be the distance between the action line of the representative displacement of the resistance element i and the elastic rotation center of the portion of the steel beam beam arranged inside the concrete of the column.
- Another aspect 8 is The reaction force of the resistance element i of the portion of the steel beam arranged inside the concrete of the column is defined as the maximum reaction force Fi, Rd that can be borne by the resistance element i.
- the proof stress of the joint is defined as M j and Rd .
- x u, i be the distance between the center of rotation of the portion of the steel beam arranged inside the concrete of the column and the line of action of the reaction force.
- M j and Rd are calculated using the following equation 4, and the yield strength of the joint is the minimum value of M j and Rd calculated by the following equation 4.
- the load supported by the steel beam and the rotational rigidity Sj of the portion of the steel beam arranged inside the concrete of the column make the steel beam
- the estimated value of the moment acting on the column does not exceed the maximum moment bearing capacity that the joint between the column and the beam can resist.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Joining Of Building Structures In Genera (AREA)
Abstract
In this method for designing a column-beam joint: rotational rigidity is defined as the rotational resistance per unit rotation angle of a section of a steel beam inside concrete in a column-beam joint; the load supported by the steel beam and the rotational rigidity are used to calculate the required moment capacity acting on the column from the steel beam; and the distance between both ends of the steel beam and/or the cross-sectional shape of the steel beam is adjusted such that the calculated required moment capacity does not exceed the maximum moment capacity that can be resisted by the column-beam joint.
Description
本開示は、柱梁接合部の設計方法、柱梁接合部の製造方法及び柱梁接合部構造に関する。
This disclosure relates to a method for designing a beam-column joint, a method for manufacturing a beam-column joint, and a structure for a beam-column joint.
特開2016-142062号公報(特許文献1)には、鉄筋コンクリート柱と鉄骨梁とが接合された柱梁接合部構造が開示されている。特許文献1に記載された柱梁接合部構造では、鉄筋コンクリート柱に凹所が形成され、形成された凹所に鉄骨梁の端部が挿入配置されるとともに、コンクリートが充填されている。
Japanese Unexamined Patent Publication No. 2016-142062 (Patent Document 1) discloses a column-beam joint structure in which a reinforced concrete column and a steel beam are joined. In the column-beam joint structure described in Patent Document 1, a recess is formed in the reinforced concrete column, the end portion of the steel beam is inserted and arranged in the formed recess, and concrete is filled.
特許文献1に記載された柱梁接合部構造では、凹所に充填されたコンクリートへの鉄骨梁の端部の埋め込み長さを調節することで、鉄骨梁の固定度が調節されている。また、固定度が調節されることで、鉄骨梁の端部が鉄筋コンクリート柱に半剛接合されるとともに、鉄筋コンクリート柱と鉄骨梁との接合部、及び、鉄骨梁に作用する曲げモーメントが調節されている。また、固定度が調節されることで、鉄骨梁の端部がピン接合されている場合に比べて、梁中央のたわみが低減されている。すなわち、鉄筋コンクリート柱と鉄骨梁との接合部の回転剛性が、調節されている。以下、柱と梁との接合部を、「柱梁接合部」、又は単に「接合部」とも称する。
In the column-beam joint structure described in Patent Document 1, the degree of fixation of the steel beam is adjusted by adjusting the embedding length of the end portion of the steel beam in the concrete filled in the recess. In addition, by adjusting the degree of fixation, the end of the steel beam is semi-rigidly joined to the reinforced concrete column, and the joint between the reinforced concrete column and the steel beam and the bending moment acting on the steel beam are adjusted. There is. Further, by adjusting the degree of fixation, the deflection at the center of the beam is reduced as compared with the case where the ends of the steel beam are pin-joined. That is, the rotational rigidity of the joint between the reinforced concrete column and the steel beam is adjusted. Hereinafter, the joint portion between the column and the beam is also referred to as a “column-beam joint portion” or simply a “joint portion”.
しかし、特許文献1では、柱梁接合部の耐力については、何も言及されていない。そのため、たわみや鉄骨梁の曲げモーメントの調整を目的として、柱梁接合部の回転剛性を確保したときに、耐力が不足する場合が生じると共に、特許文献1を実施できない恐れが生じる。
However, Patent Document 1 does not mention anything about the yield strength of the beam-column joint. Therefore, when the rotational rigidity of the column-beam joint is secured for the purpose of adjusting the deflection and the bending moment of the steel frame beam, the bearing capacity may be insufficient and Patent Document 1 may not be implemented.
また、特許文献1では、コンクリートへの鉄骨梁の端部の埋め込み長さがゼロに近づく場合であっても、固定度はゼロに近づかない。このため、特許文献1中で示されている実験や解析における、埋め込み長さの梁せいに対する比の範囲を超えて、特許文献1が実施される際に、固定度を過大評価あるいは過少評価する恐れがある。このため、それぞれの梁のたわみを過小評価、あるいは接合部に作用するモーメントを過小評価する懸念が生じる。
Further, in Patent Document 1, even when the embedding length of the end portion of the steel frame beam in concrete approaches zero, the degree of fixation does not approach zero. For this reason, the degree of fixation is overestimated or underestimated when Patent Document 1 is carried out beyond the range of the ratio of the embedded length to the beam length in the experiments and analyzes shown in Patent Document 1. There is a fear. Therefore, there is a concern that the deflection of each beam is underestimated or the moment acting on the joint is underestimated.
接合部に作用するモーメントは、梁の支持する荷重、梁のスパン、梁の曲げ剛性、及び接合部の回転剛性に応じて計算される。しかし、作用するモーメントが接合部のモーメント耐力を上回る場合、接合部は塑性化して、固定度が計算値よりも低下し、梁のたわみが計算値よりも大きくなって、柱も損傷する懸念がある。このことは、特許文献1を実施した場合に、設計上の要求性能を満たさないケースが見落とされる可能性が存在することを意味する。
The moment acting on the joint is calculated according to the load supported by the beam, the span of the beam, the flexural rigidity of the beam, and the rotational rigidity of the joint. However, if the acting moment exceeds the moment strength of the joint, the joint will be plasticized, the degree of fixation will be lower than the calculated value, the deflection of the beam will be larger than the calculated value, and there is a concern that the column will be damaged. is there. This means that when Patent Document 1 is implemented, there is a possibility that a case that does not satisfy the required performance in design may be overlooked.
また、固定度は、鉄骨梁の両端の接合部間の距離、すなわち、梁の長さによっても変化するが、特許文献1では、この接合部間の距離による影響が、考慮されていない。
The degree of fixation also changes depending on the distance between the joints at both ends of the steel beam, that is, the length of the beam, but Patent Document 1 does not consider the influence of the distance between the joints.
さらに、特許文献1では、埋め込み長さを調節して接合部の固定度が調節されているが、実際の設計においては、柱の径は、柱の必要性能によって決められると共に、柱の径によって、梁を埋め込むことのできる最大の長さが制約される。特に、複数の梁が、コンクリート柱に対して梁が交差するように2つ以上の方向から埋め込まれる際には、複数の梁は、梁同士が重ならないように配置される。
Further, in Patent Document 1, the fixedness of the joint is adjusted by adjusting the embedding length, but in the actual design, the diameter of the column is determined by the required performance of the column and also by the diameter of the column. , The maximum length that a beam can be embedded is restricted. In particular, when a plurality of beams are embedded from two or more directions so that the beams intersect the concrete columns, the plurality of beams are arranged so that the beams do not overlap each other.
また、コンクリートの充填性と所定のかぶり厚とを確保する必要が生じる。このため、梁においてコンクリートに埋め込むことのできる最大の長さは、著しく制約される。この場合、接合部の回転剛性とモーメント耐力とを確保するためには、埋め込まれる部分の梁の長さは、施工上採用可能な最大の長さとされる必要があるため、埋め込み長さを調整することができない可能性も生じる。
In addition, it will be necessary to ensure the filling property of concrete and the predetermined cover thickness. For this reason, the maximum length that can be embedded in concrete in a beam is severely restricted. In this case, in order to secure the rotational rigidity and moment strength of the joint, the length of the beam of the embedded part needs to be the maximum length that can be adopted in construction, so the embedded length is adjusted. There is also the possibility that it cannot be done.
以上から、特許文献1の接合構造には、実際には実施できないという可能性が含まれている。さらに、特許文献1には、柱梁接合部の回転剛性を精度良く評価し、接合部の回転剛性に応じて必要なモーメント耐力を付与するという観点で、改善の余地が含まれている。
From the above, the joint structure of Patent Document 1 includes the possibility that it cannot be actually implemented. Further, Patent Document 1 includes room for improvement from the viewpoint of accurately evaluating the rotational rigidity of the beam-column joint and imparting the required moment strength according to the rotational rigidity of the joint.
本開示は、上記事実を考慮し、柱と梁との接合部の回転剛性を確保しつつモーメント耐力を満足させることができる、柱梁接合部の設計方法、柱梁接合部の製造方法及び柱梁接合部構造を提供することを目的とする。
In the present disclosure, in consideration of the above facts, a method for designing a column-beam joint, a method for manufacturing a column-beam joint, and a column capable of satisfying the moment resistance while ensuring the rotational rigidity of the joint between the column and the beam. It is an object of the present invention to provide a beam joint structure.
本開示に係る柱梁接合部の設計方法は、コンクリートの柱と、長手方向の少なくとも一端部が柱のコンクリートの内部に半剛接合状態で埋め込まれて配置された鉄骨梁と、鉄骨梁に設けられ鉄骨梁の回転に抗する反力を生じさせる抵抗要素とを有する柱梁接合部の設計方法であって、柱梁接合部におけるコンクリートの内部の鉄骨梁の部分の単位回転角当たりの回転抵抗を回転剛性Sjと定義し、鉄骨梁が支持する荷重と回転剛性Sjとを用いて鉄骨梁から柱梁接合部に作用する必要モーメント耐力を計算し、計算された必要モーメント耐力が柱梁接合部の抗することのできる最大モーメント耐力を超えないように、鉄骨梁の両端部の間の距離と鉄骨梁の断面形状とのうち少なくとも一方を調整する。
The method for designing a beam-column joint according to the present disclosure is provided for a concrete beam, a steel beam in which at least one end in the longitudinal direction is embedded in the concrete of the column in a semi-rigid joint state, and a steel beam. It is a method of designing a beam-beam joint having a resistance element that generates a reaction force against the rotation of the steel beam, and is a rotation resistance per unit rotation angle of the part of the steel beam inside the concrete at the beam-beam joint. was defined as the rotational stiffness S j, by using the rotational stiffness S j and load the steel beam supporting and calculate the required moment capacity to act from steel beam in Column joints, it is calculated required moment capacity Column Adjust at least one of the distance between both ends of the steel beam and the cross-sectional shape of the steel beam so that the maximum moment strength that the joint can resist is not exceeded.
また、本開示に係る他の柱梁接合部の設計方法は、コンクリートの柱と、長手方向の少なくとも一端部が柱のコンクリートの内部に半剛接合状態で埋め込まれて配置された鉄骨梁と、鉄骨梁に設けられ鉄骨梁の回転に抗する反力を生じさせる抵抗要素とを有する柱梁接合部の設計方法であって、柱梁接合部におけるコンクリートの内部の鉄骨梁の部分の単位回転角当たりの回転抵抗を回転剛性Sjと定義し、鉄骨梁が支持する荷重と以下のプロセスAによって設定された回転剛性Sjとを用いて鉄骨梁から柱梁接合部に作用する必要モーメント耐力を計算する。
<プロセスA>
抵抗要素の総数をn、iを1以上n以下の任意の自然数として、抵抗要素を抵抗要素iとし、抵抗要素iの反力が、抵抗要素iの剛性kiと変形量との積で表され、柱のコンクリートの内部の鉄骨梁の部分の回転中心を抵抗要素iの反力と外力とが釣り合う点とし、抵抗要素iの代表変位の作用線と回転中心との距離をxd,iとし、抵抗要素iの反力の重心と回転中心との距離をxl,iとし、回転剛性Sjを、以下の式1によって得られた値の評価に基づいて設定する。
Further, other methods for designing a beam-beam joint according to the present disclosure include a concrete beam and a steel beam in which at least one end in the longitudinal direction is embedded in the concrete of the column in a semi-rigid joint state. It is a method of designing a beam-column joint provided with a resistance element provided on a steel beam and generating a reaction force against the rotation of the steel beam, and is a unit rotation angle of a part of the steel beam inside concrete at the beam-beam joint. It is defined as rotational stiffness S j rotational resistance per the necessary moment capacity to act from steel beam in Column joints with the rotational stiffness S j the steel beam is set by the following process a and the load supporting calculate.
<Process A>
Table by the product of the total number of resistive elements n, as a natural number of 1 to n and i, the resistive element and resistive element i, the reaction force of the resistance element i is rigid k i and the amount of deformation of the resistance element i The center of rotation of the steel beam part inside the concrete of the pillar is set as the point where the reaction force of the resistance element i and the external force are balanced, and the distance between the action line of the representative displacement of the resistance element i and the center of rotation is x d, i. Let the distance between the center of gravity of the reaction force of the resistance element i and the center of rotation be x l, i , and the rotational rigidity S j be set based on the evaluation of the value obtained by the followingequation 1.
<プロセスA>
抵抗要素の総数をn、iを1以上n以下の任意の自然数として、抵抗要素を抵抗要素iとし、抵抗要素iの反力が、抵抗要素iの剛性kiと変形量との積で表され、柱のコンクリートの内部の鉄骨梁の部分の回転中心を抵抗要素iの反力と外力とが釣り合う点とし、抵抗要素iの代表変位の作用線と回転中心との距離をxd,iとし、抵抗要素iの反力の重心と回転中心との距離をxl,iとし、回転剛性Sjを、以下の式1によって得られた値の評価に基づいて設定する。
<Process A>
Table by the product of the total number of resistive elements n, as a natural number of 1 to n and i, the resistive element and resistive element i, the reaction force of the resistance element i is rigid k i and the amount of deformation of the resistance element i The center of rotation of the steel beam part inside the concrete of the pillar is set as the point where the reaction force of the resistance element i and the external force are balanced, and the distance between the action line of the representative displacement of the resistance element i and the center of rotation is x d, i. Let the distance between the center of gravity of the reaction force of the resistance element i and the center of rotation be x l, i , and the rotational rigidity S j be set based on the evaluation of the value obtained by the following
また、本開示に係る柱梁接合部の製造方法は、上記柱梁接合部の設計方法を用いて設計された抵抗要素が設けられた状態で、鉄骨梁の長手方向の少なくとも一端部を柱のコンクリートの内部に半剛接合状態で埋め込む。
Further, in the method for manufacturing a column-beam joint according to the present disclosure, at least one end in the longitudinal direction of a steel frame beam is provided with a resistance element designed by using the above-mentioned method for designing a column-beam joint. It is embedded inside the concrete in a semi-rigid joint state.
また、本開示に係る柱梁接合部構造は、コンクリートの柱と、長手方向の少なくとも一端部が柱のコンクリートの内部に半剛接合状態で埋め込まれて配置された鉄骨梁と、鉄骨梁に設けられ、鉄骨梁の回転に抗する反力を生じさせる抵抗要素とを有し、柱梁接合部におけるコンクリートの内部の鉄骨梁の部分の単位回転角当たりの回転抵抗を回転剛性Sjと定義し、抵抗要素の抗することのできる最大耐力によって生じるモーメントを柱梁接合部の抗することのできる最大モーメント耐力と定義したとき、鉄骨梁から柱梁接合部に作用する必要モーメント耐力として、鉄骨梁が支持する荷重と回転剛性Sjとを用いて計算された必要モーメント耐力が最大モーメント耐力を超えないように、鉄骨梁の両端部の間の距離と鉄骨梁の断面形状とのうち少なくとも一方が調整されている。
Further, the beam-column joint structure according to the present disclosure is provided on a concrete column, a steel beam in which at least one end in the longitudinal direction is embedded in the concrete of the column in a semi-rigid joint state, and a steel beam. It has a resistance element that generates a reaction force against the rotation of the steel beam, and the rotation resistance per unit rotation angle of the steel beam part inside the concrete at the beam-column joint is defined as the rotational rigidity Sj. When the moment generated by the maximum resistance of the resistance element is defined as the maximum moment strength that can be resisted by the beam-beam joint, the required moment strength that acts from the steel beam to the beam-beam joint is the steel beam. At least one of the distance between both ends of the steel beam and the cross-sectional shape of the steel beam is such that the required moment strength calculated using the load supported by and the rotational rigidity Sj does not exceed the maximum moment strength. It has been adjusted.
また、本開示に係る他の柱梁接合部構造は、コンクリートの柱と、長手方向の少なくとも一端部が柱のコンクリートの内部に半剛接合状態で埋め込まれて配置された鉄骨梁と、鉄骨梁に設けられ鉄骨梁の回転に抗する反力を生じさせる抵抗要素とを有し、柱梁接合部におけるコンクリートの内部の鉄骨梁の部分の単位回転角当たりの回転抵抗を回転剛性Sjと定義したとき、鉄骨梁から柱梁接合部に作用する必要モーメント耐力として、鉄骨梁が支持する荷重と以下のプロセスBによって設定された回転剛性Sjとを用いて必要モーメント耐力が設定されている。
<プロセスB>
抵抗要素の総数をn、iを1以上n以下の任意の自然数として、抵抗要素を抵抗要素iとし、抵抗要素iの反力が、抵抗要素iの剛性kiと変形量との積で表され、柱のコンクリートの内部の鉄骨梁の部分の回転中心を抵抗要素iの反力と外力とが釣り合う点とし、抵抗要素iの代表変位の作用線と回転中心との距離をxd,iとし、抵抗要素iの反力の重心と回転中心との距離をxl,iとし、回転剛性Sjが、以下の式3を満たす値に設定されている。
In addition, other beam-column joint structures according to the present disclosure include a concrete column, a steel beam in which at least one end in the longitudinal direction is embedded in the concrete of the column in a semi-rigid joint state, and a steel beam. It has a resistance element that is provided in the above and generates a reaction force against the rotation of the steel beam, and the rotation resistance per unit rotation angle of the steel beam part inside the concrete at the column-beam joint is defined as the rotational rigidity Sj. Then, as the required moment strength acting on the beam-column joint from the steel beam, the required moment strength is set by using the load supported by the steel beam and the rotational rigidity Sj set by the following process B.
<Process B>
Table by the product of the total number of resistive elements n, as a natural number of 1 to n and i, the resistive element and resistive element i, the reaction force of the resistance element i is rigid k i and the amount of deformation of the resistance element i The center of rotation of the steel beam part inside the concrete of the pillar is set as the point where the reaction force of the resistance element i and the external force are balanced, and the distance between the action line of the representative displacement of the resistance element i and the center of rotation is x d, i. The distance between the center of gravity of the reaction force of the resistance element i and the center of rotation is x l, i , and the rotational rigidity S j is set to a value satisfying the followingequation 3.
<プロセスB>
抵抗要素の総数をn、iを1以上n以下の任意の自然数として、抵抗要素を抵抗要素iとし、抵抗要素iの反力が、抵抗要素iの剛性kiと変形量との積で表され、柱のコンクリートの内部の鉄骨梁の部分の回転中心を抵抗要素iの反力と外力とが釣り合う点とし、抵抗要素iの代表変位の作用線と回転中心との距離をxd,iとし、抵抗要素iの反力の重心と回転中心との距離をxl,iとし、回転剛性Sjが、以下の式3を満たす値に設定されている。
<Process B>
Table by the product of the total number of resistive elements n, as a natural number of 1 to n and i, the resistive element and resistive element i, the reaction force of the resistance element i is rigid k i and the amount of deformation of the resistance element i The center of rotation of the steel beam part inside the concrete of the pillar is set as the point where the reaction force of the resistance element i and the external force are balanced, and the distance between the action line of the representative displacement of the resistance element i and the center of rotation is x d, i. The distance between the center of gravity of the reaction force of the resistance element i and the center of rotation is x l, i , and the rotational rigidity S j is set to a value satisfying the following
本開示によれば、柱と梁との接合部の回転剛性を確保しつつモーメント耐力を満足させることができる、柱梁接合部の設計方法、柱梁接合部の製造方法及び柱梁接合部構造を提供することができる。
According to the present disclosure, a method for designing a column-beam joint, a method for manufacturing a column-beam joint, and a column-beam joint structure capable of satisfying the moment resistance while ensuring the rotational rigidity of the joint between the column and the beam. Can be provided.
図1及び図2を用いて本開示の実施形態に係る柱梁接合部構造について説明する。以下の図面の記載において、同一の部分及び類似の部分には、同一の符号又は類似の符号を付している。但し、図面における厚みと平面寸法との関係、各装置や各部材の厚みの比率等は現実のものとは異なる。したがって、具体的な厚みや寸法は以下の説明を参酌して判定すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれている。
The beam-column joint structure according to the embodiment of the present disclosure will be described with reference to FIGS. 1 and 2. In the description of the drawings below, the same parts and similar parts are designated by the same reference numerals or similar reference numerals. However, the relationship between the thickness and the plane dimension in the drawing, the ratio of the thickness of each device and each member, etc. are different from the actual ones. Therefore, the specific thickness and dimensions should be determined in consideration of the following explanation. In addition, there are parts where the relationships and ratios of the dimensions of the drawings are different from each other.
図1及び図2に示されるように、本実施形態の柱梁接合部構造は、柱10と梁12との接合部14に適用されている。なお、建物の上下方向を矢印Z方向で示し、梁12が延在する方向の一方側かつ建物の水平方向の一方向を矢印X方向で示す。矢印Z方向は、図1中の上下方向であり、矢印X方向は、図1中の左右方向である。
As shown in FIGS. 1 and 2, the beam-column joint structure of the present embodiment is applied to the joint 14 between the column 10 and the beam 12. The vertical direction of the building is indicated by the arrow Z direction, and one side of the beam 12 extending direction and one horizontal direction of the building is indicated by the arrow X direction. The arrow Z direction is the vertical direction in FIG. 1, and the arrow X direction is the horizontal direction in FIG.
以下のXYZのそれぞれの方向の説明においては、互いに反対側に延びる一方向及び他方向との間では、「正(+)」「負(-)」の符号が逆転する。なお、例えば、図1中の上下方向において、上側の+Z方向と下側の-Z方向とを区別することなく、単に上下方向を全体的に説明する際には、「Z方向」のように「正(+)」「負(-)」の記号を付すことなく説明する。
In the following description of each direction of XYZ, the signs of "positive (+)" and "negative (-)" are reversed between one direction extending to the opposite side and the other direction. For example, in the vertical direction in FIG. 1, when the vertical direction is simply described as a whole without distinguishing between the upper + Z direction and the lower −Z direction, the term “Z direction” is used. The explanation will be given without adding the “positive (+)” and “negative (-)” symbols.
柱10は、建物の水平方向(XY平面に平行な面)に沿って切断した断面視で、略矩形状に形成されている。この柱10は、コンクリート32の内部に鉄筋16(図2参照)及び鉄骨18が配置されることで、鉄骨鉄筋コンクリート(SRC)造の柱として実現されている。なお、本開示は、鉄筋コンクリート(RC)造の柱と鉄骨梁との接合部にも適用することができる。
The pillar 10 is formed in a substantially rectangular shape in a cross-sectional view cut along the horizontal direction of the building (a plane parallel to the XY plane). The column 10 is realized as a steel-framed reinforced concrete (SRC) column by arranging a reinforcing bar 16 (see FIG. 2) and a steel frame 18 inside the concrete 32. The present disclosure can also be applied to a joint between a reinforced concrete (RC) column and a steel beam.
また、本実施形態では、H形鋼が、鉄骨18として用いられている。H形鋼は、建物の水平方向に沿って切断した断面視で、断面H字状に形成されている。さらに、本実施形態では、図2に示されるように、建物の上下方向に延びる複数の鉄筋16が、主筋16Aとして設けられている。また、梁12の上方、下方及び側方で、複数の主筋16Aを取り囲んだ鉄筋16が、建物の上下方向で複数段に亘って、帯筋16Bとして設けられている。
Further, in the present embodiment, H-shaped steel is used as the steel frame 18. The H-shaped steel is formed in an H-shaped cross section in a cross-sectional view cut along the horizontal direction of the building. Further, in the present embodiment, as shown in FIG. 2, a plurality of reinforcing bars 16 extending in the vertical direction of the building are provided as the main reinforcing bars 16A. Further, reinforcing bars 16 surrounding the plurality of main bars 16A are provided as band bars 16B above, below, and sideways of the beam 12 in a plurality of steps in the vertical direction of the building.
本実施形態では、4つの梁12が、建物の上下方向の同じ位置で柱10に接合されている。例えば、4つの梁12は、建物の上方側から見て、柱10の回りに、互いに90°の間隔をあけて配置されている。なお、4つの梁12の構成は、互いに同じであるため、以下の説明においては、4つの梁12のうち1つの梁12について、例示的に説明する。
In this embodiment, the four beams 12 are joined to the columns 10 at the same positions in the vertical direction of the building. For example, the four beams 12 are arranged around the pillar 10 at a distance of 90 ° from each other when viewed from the upper side of the building. Since the configurations of the four beams 12 are the same as each other, in the following description, one beam 12 out of the four beams 12 will be exemplified.
梁12は、鉄骨梁20と、鉄筋コンクリートのスラブ22と、を含んで構成された合成梁である。鉄骨梁20は、上下方向に切断した断面視で、断面H字状に形成されている。上下方向は、梁12の長手方向と直交する方向である。すなわち、鉄骨梁20は、YZ平面に平行な面で切断されている。スラブ22は、鉄骨梁20の上部において水平方向に広がり、かつ、当該鉄骨梁20と一体化されている。水平方向は、XY平面と平行である。なお、本開示は、スラブ22と一体化されていない梁(すなわち、鉄骨梁)にも適用することができる。
The beam 12 is a composite beam composed of a steel beam 20 and a reinforced concrete slab 22. The steel frame beam 20 is formed in an H-shaped cross section in a cross-sectional view cut in the vertical direction. The vertical direction is a direction orthogonal to the longitudinal direction of the beam 12. That is, the steel beam 20 is cut at a plane parallel to the YZ plane. The slab 22 extends horizontally at the upper part of the steel beam 20 and is integrated with the steel beam 20. The horizontal direction is parallel to the XY plane. The present disclosure can also be applied to a beam that is not integrated with the slab 22 (that is, a steel beam).
図1及び図2に示されるように、鉄骨梁20は、建物の上下方向(すなわち、Z方向)を厚み方向とする矩形板状の上フランジ20Aと、上フランジ20Aの下方側において当該上フランジ20Aと平行に広がる下フランジ20Bと、を備えている。また、鉄骨梁20は、ウェブ20Cを備えている。ウェブ20Cは、上フランジ20Aの幅方向の中央部及び下フランジ20Bの幅方向の中央部同士を建物の上下方向に繋いでいる。上フランジ20A及び下フランジ20Bにおける幅方向は、建物の水平方向の一方向であり、かつ、X方向と直交するY方向である。ウェブ20Cは、Y方向を厚み方向とする矩形板状に形成されている。
As shown in FIGS. 1 and 2, the steel beam 20 has a rectangular plate-shaped upper flange 20A whose thickness direction is the vertical direction (that is, the Z direction) of the building, and the upper flange 20A on the lower side of the upper flange 20A. It is provided with a lower flange 20B that extends parallel to the 20A. Further, the steel beam 20 includes a web 20C. The web 20C connects the central portion of the upper flange 20A in the width direction and the central portion of the lower flange 20B in the width direction to each other in the vertical direction of the building. The width direction of the upper flange 20A and the lower flange 20B is one direction in the horizontal direction of the building and the Y direction orthogonal to the X direction. The web 20C is formed in a rectangular plate shape with the Y direction as the thickness direction.
鉄骨梁20の長手方向の端部である梁端部24は、ボルト34等の締結部材及びフィンプレート36を介して、柱10の鉄骨18に接合されている。なお、「梁端部24」とは、鉄骨梁20において柱10のコンクリート32に埋め込まれている部分のことを意味する。また、鉄骨梁20は、鉄骨梁20の梁端部24が、柱10のコンクリート32内に埋め込まれている。本実施形態では、鉄骨梁20が、半剛接合状態で柱10に接合されている。
The beam end portion 24, which is the end portion in the longitudinal direction of the steel frame beam 20, is joined to the steel frame 18 of the column 10 via a fastening member such as a bolt 34 and a fin plate 36. The “beam end portion 24” means a portion of the steel frame beam 20 embedded in the concrete 32 of the column 10. Further, in the steel frame beam 20, the beam end portion 24 of the steel frame beam 20 is embedded in the concrete 32 of the column 10. In the present embodiment, the steel beam 20 is joined to the column 10 in a semi-rigid joint state.
鉄骨梁20は、梁端部24に、上フランジ端部20Aa、下フランジ端部20Ba及びウェブ端部20Caをそれぞれ備えている。上フランジ端部20Aaは、上フランジ20Aにおいて柱10のコンクリート32に埋め込まれた領域を指す。下フランジ端部20Baは、下フランジ20Bにおいて柱10のコンクリート32に埋め込まれた領域を指す。ウェブ端部20Caは、ウェブ20Cにおいて柱10のコンクリート32に埋め込まれた領域を指す。
The steel frame beam 20 is provided with an upper flange end 20Aa, a lower flange end 20Ba, and a web end 20Ca at the beam end 24, respectively. The upper flange end portion 20Aa refers to a region of the upper flange 20A embedded in the concrete 32 of the pillar 10. The lower flange end portion 20Ba refers to a region of the lower flange 20B embedded in the concrete 32 of the pillar 10. The web end 20Ca refers to a region of the web 20C embedded in the concrete 32 of the pillar 10.
上フランジ端部20Aaは、図1中の+Z方向側に位置する上フランジ20Aの外面24A、及び、図1中の-Z方向側に位置する上フランジ20Aの内面24Bのそれぞれにおいて、柱10のコンクリート32と接している。
The upper flange end portion 20Aa is formed on the outer surface 24A of the upper flange 20A located on the + Z direction side in FIG. 1 and the inner surface 24B of the upper flange 20A located on the −Z direction side in FIG. It is in contact with the concrete 32.
また、下フランジ端部20Baは、図1中の+Z方向側に位置する下フランジ20Bの内面24C、及び、図1中の-Z方向側に位置する下フランジ20Bの外面24Dのそれぞれにおいて、柱10のコンクリート32と接している。
Further, the lower flange end portion 20Ba is a pillar on each of the inner surface 24C of the lower flange 20B located on the + Z direction side in FIG. 1 and the outer surface 24D of the lower flange 20B located on the −Z direction side in FIG. It is in contact with 10 concretes 32.
また、ウェブ端部20Caは、図7に示すように、+Y方向側のウェブ面、及び、-Y方向側のウェブ面のそれぞれにおいて、柱10のコンクリート32と接している。
Further, as shown in FIG. 7, the web end portion 20Ca is in contact with the concrete 32 of the pillar 10 on each of the web surface on the + Y direction side and the web surface on the −Y direction side.
また、本実施形態の鉄骨梁20は、鉄骨梁20の上部を構成する上フランジ20Aに固定された、複数のスタッド26を備えている。複数のスタッド26は、上フランジ20Aから建物の上方側へ向けて突出しており、鉄骨梁20の長手方向に沿って、互いに間隔をあけて配置されている。なお、図1においては、梁端部24における2本のスタッド26Aのみが例示的に図示されている。梁端部24におけるスタッド26Aは、梁端部24が、後述する回転中心24Eを軸に回転する場合に、回転に対する「抵抗要素」として作用する付加部材である。
Further, the steel frame beam 20 of the present embodiment includes a plurality of studs 26 fixed to the upper flange 20A constituting the upper part of the steel frame beam 20. The plurality of studs 26 project from the upper flange 20A toward the upper side of the building, and are arranged so as to be spaced apart from each other along the longitudinal direction of the steel frame beam 20. In FIG. 1, only the two studs 26A at the beam end 24 are illustrated by way of example. The stud 26A at the beam end portion 24 is an additional member that acts as a “resistance element” against rotation when the beam end portion 24 rotates about the rotation center 24E described later.
また、本実施形態では、接合部補強筋28が、鉄骨梁20の長手方向に沿って、かつ、スタッド26の上端部に沿って、かつ、Y軸上で柱10の径に含まれるものについては柱10をX方向に貫通するように設けられている。配置されている接合部補強筋28及びスタッド26のうち、梁端部24に位置する部分以外の接合部補強筋28の一部及びスタッド26Bは、スラブ22の内部に埋設されている。なお、スラブ22内のスタッド26Bは、鉄骨梁20とスラブ22とをつないでいる。接合部補強筋28は、梁端部24が回転中心24Eを軸に回転する場合に、回転に対する「抵抗要素」として作用する付加部材である。
Further, in the present embodiment, the joint reinforcing bar 28 is included in the diameter of the column 10 along the longitudinal direction of the steel frame beam 20, along the upper end of the stud 26, and on the Y axis. Is provided so as to penetrate the pillar 10 in the X direction. Of the arranged joint reinforcing bars 28 and studs 26, a part of the joint reinforcing bars 28 and the stud 26B other than the portion located at the beam end 24 are embedded inside the slab 22. The stud 26B in the slab 22 connects the steel beam 20 and the slab 22. The joint reinforcing bar 28 is an additional member that acts as a "resistance element" against rotation when the beam end portion 24 rotates about the rotation center 24E.
さらに、鉄骨梁20は、鉄骨梁20の長手方向を厚み方向とする矩形板状に形成された、フェースベアリングプレート30を備えている。本実施形態では、2つのフェースベアリングプレート30が、鉄骨梁20の長手方向の同じ位置において、ウェブ20Cを挟んで+Y方向側及び-Y方向側に、それぞれ固定されている。
Further, the steel frame beam 20 includes a face bearing plate 30 formed in a rectangular plate shape with the longitudinal direction of the steel frame beam 20 as the thickness direction. In the present embodiment, the two face bearing plates 30 are fixed at the same position in the longitudinal direction of the steel frame beam 20 on the + Y direction side and the −Y direction side with the web 20C in between, respectively.
フェースベアリングプレート30の+Y方向に沿って測った寸法は、フェースベアリングプレート30が、上フランジ20A、下フランジ20B及びウェブ20Cに囲まれた領域から、+Y方向側又は-Y方向側へ突出しない範囲内の寸法に設定されている。また、鉄骨梁20が柱10のコンクリート32に埋め込まれた状態では、X方向においてフェースベアリングプレート30における柱10の軸心側とは反対側の面は、当該柱10の外面と略同一面となっている。柱10の軸心側は、図1における右側であり、柱10の軸心側と反対側は、柱10の外方側の面である。
The dimension measured along the + Y direction of the face bearing plate 30 is the range in which the face bearing plate 30 does not protrude toward the + Y direction or the −Y direction from the area surrounded by the upper flange 20A, the lower flange 20B and the web 20C. It is set to the inside dimension. Further, in the state where the steel beam 20 is embedded in the concrete 32 of the column 10, the surface of the face bearing plate 30 opposite to the axial side of the column 10 is substantially the same surface as the outer surface of the column 10. It has become. The axial side of the pillar 10 is the right side in FIG. 1, and the side opposite to the axial side of the pillar 10 is the outer surface of the pillar 10.
一方、柱10の軸心側に位置するフェースベアリングプレート30の内面30Aは、柱10のコンクリート32と接している。
On the other hand, the inner surface 30A of the face bearing plate 30 located on the axial side of the pillar 10 is in contact with the concrete 32 of the pillar 10.
図1に示すように、鉄骨梁20に-Z方向の鉛直荷重が作用した場合、鉄骨梁20は、XZ面内において、梁端部24の回転中心24Eを中心に、鉄骨梁20を図1中で反時計回りにφjだけ回転し、鉄骨梁20は、図1中の破線で示す鉄骨梁20aの位置に変位する。
As shown in FIG. 1, when a vertical load in the −Z direction is applied to the steel beam 20, the steel beam 20 is centered on the rotation center 24E of the beam end 24 in the XZ plane, and the steel beam 20 is shown in FIG. Inside, it rotates counterclockwise by φ j , and the steel beam 20 is displaced to the position of the steel beam 20a shown by the broken line in FIG.
ここで、回転中心24Eを通りZ方向に平行な第1軸24F、及び、回転中心24Eを通りX方向に平行な第2軸24Gを、それぞれ設定する。また、梁端部24が回転中心24Eを軸に回転したときの、フェースベアリングプレート30の内面30Aのうち、第2軸24Gを挟んで-Z方向の部分を、フェースベアリングプレートの第1内面30Aaと定義する。
Here, the first axis 24F passing through the rotation center 24E and parallel to the Z direction and the second axis 24G passing through the rotation center 24E and parallel to the X direction are set. Further, of the inner surface 30A of the face bearing plate 30 when the beam end portion 24 rotates about the rotation center 24E, the portion in the −Z direction with the second shaft 24G sandwiched is the first inner surface 30Aa of the face bearing plate. Is defined as.
鉄骨梁20が鉄骨梁20aの位置に向かって回転した場合、柱10のコンクリート32から支圧による反力が作用するため、フェースベアリングプレート30の第1内面30Aaによって、梁端部24の回転に対する回転抵抗が生じる。すなわち、フェースベアリングプレート30の第1内面30Aaは、鉄骨梁20における柱10のコンクリート32の内部に配置された梁端部24が回転中心24Eを軸に回転したとき、回転に対する「抵抗要素」として作用する付加部材である。
When the steel beam 20 rotates toward the position of the steel beam 20a, a reaction force due to bearing pressure acts from the concrete 32 of the column 10, so that the first inner surface 30Aa of the face bearing plate 30 with respect to the rotation of the beam end 24. Rotational resistance occurs. That is, the first inner surface 30Aa of the face bearing plate 30 serves as a "resistance element" against rotation when the beam end portion 24 arranged inside the concrete 32 of the column 10 in the steel frame beam 20 rotates about the rotation center 24E. It is an additional member that acts.
また、鉄骨梁20に-Z方向の鉛直荷重が作用して鉄骨梁20aが回転中心24Eを中心に回転したとき、柱10のコンクリート32から支圧による反力が作用する。このため、上フランジ端部20Aaにおける上フランジ20Aの外面24A及び内面24Bでは、梁端部24の回転に対する回転抵抗が生じる。また、下フランジ端部20Baにおける下フランジ20Bの内面24C及び外面24Dでも、梁端部24の回転に対する回転抵抗が生じる。
Further, when a vertical load in the −Z direction acts on the steel beam 20 and the steel beam 20a rotates about the rotation center 24E, a reaction force due to bearing pressure acts from the concrete 32 of the column 10. Therefore, on the outer surface 24A and the inner surface 24B of the upper flange 20A at the upper flange end portion 20Aa, rotational resistance with respect to the rotation of the beam end portion 24 occurs. Further, the inner surface 24C and the outer surface 24D of the lower flange 20B at the lower flange end 20Ba also generate rotational resistance with respect to the rotation of the beam end 24.
すなわち、上フランジ端部20Aaの外面24Aは、上フランジ端部外面抵抗要素24Aaとして、梁端部24の回転に抵抗する「抵抗要素」として働く。また、上フランジ端部20Aaの内面24Bは、上フランジ端部内面抵抗要素24Baとして、梁端部24の回転に抵抗する「抵抗要素」として働く。
That is, the outer surface 24A of the upper flange end 20Aa acts as the upper flange end outer surface resistance element 24Aa and as a "resistance element" that resists the rotation of the beam end 24. Further, the inner surface 24B of the upper flange end portion 20Aa acts as an upper flange end inner surface resistance element 24Ba as a "resistance element" that resists the rotation of the beam end portion 24.
また、下フランジ端部20Baの内面24Cは、下フランジ端部内面抵抗要素24Caとして、梁端部24の回転に抵抗する「抵抗要素」として働く。また、下フランジ端部20Baの外面24Dは、下フランジ端部外面抵抗要素24Daとして、梁端部24の回転に抵抗する「抵抗要素」として働く。
Further, the inner surface 24C of the lower flange end portion 20Ba acts as a lower flange end inner surface resistance element 24Ca and a "resistance element" that resists the rotation of the beam end portion 24. Further, the outer surface 24D of the lower flange end portion 20Ba acts as a lower flange end portion outer surface resistance element 24Da as a “resistance element” that resists the rotation of the beam end portion 24.
より詳しくは、上フランジ端部20Aaの外面24Aのうち、第1軸24Fより+X方向側の部分が、上フランジ端部外面抵抗要素24Aaと設定されている。また、上フランジ端部20Aaの内面24Bのうち、第1軸24Fより-X方向側の部分が、上フランジ端部内面抵抗要素24Baと設定されている。
More specifically, of the outer surface 24A of the upper flange end portion 20Aa, the portion on the + X direction side from the first shaft 24F is set as the upper flange end portion outer surface resistance element 24Aa. Further, of the inner surface 24B of the upper flange end portion 20Aa, the portion on the −X direction side of the first shaft 24F is set as the upper flange end inner surface resistance element 24Ba.
また、下フランジ端部20Baの内面24Cのうち、第1軸24Fより+X方向側の部分が、下フランジ端部内面抵抗要素24Caと設定されている。また、下フランジ端部20Baの外面24Dのうち、第1軸24Fより-X方向側の部分が、下フランジ端部外面抵抗要素24Daと設定されている。
Further, of the inner surface 24C of the lower flange end portion 20Ba, the portion on the + X direction side from the first shaft 24F is set as the lower flange end portion inner surface resistance element 24Ca. Further, of the outer surface 24D of the lower flange end portion 20Ba, the portion on the side in the −X direction from the first shaft 24F is set as the lower flange end portion outer surface resistance element 24Da.
上フランジ端部外面抵抗要素24Aa、上フランジ端部内面抵抗要素24Ba、下フランジ端部内面抵抗要素24Ca、及び、下フランジ端部外面抵抗要素24Daは、鉄骨梁20における柱10のコンクリート32の内部に配置された梁端部24が回転中心24Eを軸に回転したときに、回転に抗する反力を生じさせる4つの「抵抗要素」である。
The upper flange end outer surface resistance element 24Aa, the upper flange end inner surface resistance element 24Ba, the lower flange end inner surface resistance element 24Ca, and the lower flange end outer surface resistance element 24Da are inside the concrete 32 of the column 10 in the steel beam 20. When the beam end portion 24 arranged in the above is rotated around the rotation center 24E, there are four "resistance elements" that generate a reaction force against the rotation.
さらに、本実施形態では、鉄骨梁20が鉄骨梁20aの位置に回転すると、付加部材の一つであるスタッド26Aは、図1中で左側の-X方向に変位し、その変位量に応じて、柱10のコンクリート32から反力を受ける。すなわち、スタッド26Aは、鉄骨梁20における柱10のコンクリート32の内部に配置された梁端部24が回転中心24Eを軸に回転したときに、回転に抗する反力を生じさせる「抵抗要素」である。
Further, in the present embodiment, when the steel beam 20 rotates to the position of the steel beam 20a, the stud 26A, which is one of the additional members, is displaced in the −X direction on the left side in FIG. 1, depending on the amount of displacement. , Receives a reaction force from the concrete 32 of the pillar 10. That is, the stud 26A is a "resistance element" that generates a reaction force against the rotation when the beam end portion 24 arranged inside the concrete 32 of the column 10 in the steel frame beam 20 rotates around the rotation center 24E. Is.
また、本実施形態では、鉄骨梁20が鉄骨梁20aの位置に回転すると、付加部材の一つであるフェースベアリングプレート30の第1内面30Aaは、図1中で右側の+X方向側に変位する。変位した第1内面30Aaは、変位量に応じて、柱10のコンクリート32と、柱10を挟んで+X方向側の相対する接合部14とから、反力を受ける。すなわち、フェースベアリングプレート30の第1内面30Aaは、鉄骨梁20における柱10のコンクリート32の内部に配置された梁端部24が回転中心24Eを軸に回転したときに、回転に抗する反力を生じさせる「抵抗要素」である。
Further, in the present embodiment, when the steel frame beam 20 rotates to the position of the steel frame beam 20a, the first inner surface 30Aa of the face bearing plate 30 which is one of the additional members is displaced toward the + X direction on the right side in FIG. .. The displaced first inner surface 30Aa receives a reaction force from the concrete 32 of the pillar 10 and the opposing joint portion 14 on the + X direction side of the pillar 10 according to the amount of displacement. That is, the first inner surface 30Aa of the face bearing plate 30 has a reaction force that opposes the rotation when the beam end 24 arranged inside the concrete 32 of the column 10 in the steel beam 20 rotates about the rotation center 24E. It is a "resistance element" that causes
さらに、本実施形態では、鉄骨梁20が鉄骨梁20aの位置に回転すると、付加部材の一つである接合部補強筋28は、図1中で左側の-X方向に伸ばされて変位する。変位した接合部補強筋28は、変位量に応じて、柱10のコンクリート32と、+X方向に存在する反対側の接合部14の接合部補強筋28から反力(換言すると、引張力)を受ける。すなわち、接合部補強筋28は、鉄骨梁20における柱10のコンクリート32の内部に配置された梁端部24が回転中心24Eを軸に回転したときに、回転に抗する反力を生じさせる「抵抗要素」である。
Further, in the present embodiment, when the steel beam 20 rotates to the position of the steel beam 20a, the joint reinforcing bar 28, which is one of the additional members, is stretched and displaced in the −X direction on the left side in FIG. The displaced joint reinforcing bar 28 exerts a reaction force (in other words, tensile force) from the concrete 32 of the column 10 and the joint reinforcing bar 28 of the joint portion 14 on the opposite side existing in the + X direction according to the amount of displacement. receive. That is, the joint reinforcing bar 28 generates a reaction force against the rotation when the beam end portion 24 arranged inside the concrete 32 of the column 10 in the steel frame beam 20 rotates around the rotation center 24E. It is a resistance element.
以上のとおり、本実施形態では、上フランジ端部外面抵抗要素24Aa、上フランジ端部内面抵抗要素24Ba、下フランジ端部内面抵抗要素24Ca、下フランジ端部外面抵抗要素24Da、スタッド26A、フェースベアリングプレート30の第1内面30Aa、及び、接合部補強筋28の、7個の「抵抗要素」が、設定されている。このため、本実施形態では、抵抗要素の総数「n」は、n=7である。
As described above, in the present embodiment, the upper flange end outer surface resistance element 24Aa, the upper flange end inner surface resistance element 24Ba, the lower flange end inner surface resistance element 24Ca, the lower flange end outer surface resistance element 24Da, the stud 26A, and the face bearing. Seven "resistance elements" of the first inner surface 30Aa of the plate 30 and the joint reinforcing bar 28 are set. Therefore, in the present embodiment, the total number of resistance elements “n” is n = 7.
ここで、「i」を、1以上n以下の自然数と定義する。本実施形態の場合、抵抗要素1(i=1)は、上フランジ端部外面抵抗要素24Aaである。また、抵抗要素2(i=2)は、上フランジ端部内面抵抗要素24Baである。また、抵抗要素3(i=3)は、下フランジ端部内面抵抗要素24Caである。また、抵抗要素4(i=4)は、下フランジ端部外面抵抗要素24Daである。また、抵抗要素5(i=5)は、スタッド26Aである。また、抵抗要素6(i=6)は、フェースベアリングプレートの第1内面30Aaである。また、抵抗要素7(i=7)は、接合部補強筋28である。これらの抵抗要素を、総称して「抵抗要素i」と呼ぶ。
Here, "i" is defined as a natural number of 1 or more and n or less. In the case of this embodiment, the resistance element 1 (i = 1) is the upper flange end outer surface resistance element 24Aa. Further, the resistance element 2 (i = 2) is an upper flange end inner surface resistance element 24Ba. Further, the resistance element 3 (i = 3) is the lower flange end inner surface resistance element 24Ca. Further, the resistance element 4 (i = 4) is a lower flange end outer surface resistance element 24Da. Further, the resistance element 5 (i = 5) is a stud 26A. Further, the resistance element 6 (i = 6) is the first inner surface 30Aa of the face bearing plate. Further, the resistance element 7 (i = 7) is a joint reinforcing bar 28. These resistance elements are collectively referred to as "resistance element i".
また、本実施形態では、抵抗要素iの反力は、抵抗要素iの剛性kiと変形量との積で表されるものと定義する。また、柱10のコンクリート32の内部に配置された梁端部24の弾性回転中心24Eaは、抵抗要素iの反力をi=1~7についてその作用方向を考慮して累加した総和と、鉄骨梁20が支える-Z方向の鉛直荷重によって接合部に作用するせん断力(すなわち、外力)とが釣り合う点として、求めることができる。
Further, in this embodiment, the reaction force of the resistance element i is defined as those represented by the product of the stiffness k i and the amount of deformation of the resistance element i. Further, the elastic rotation center 24Ea of the beam end 24 arranged inside the concrete 32 of the column 10 is the sum of the reaction forces of the resistance element i accumulated for i = 1 to 7 in consideration of the action direction, and the steel frame. It can be obtained as a point at which the shearing force (that is, external force) acting on the joint portion due to the vertical load in the −Z direction supported by the beam 20 is balanced.
また、梁に外力としてのX方向の軸力が作用する場合は、軸力と、抵抗要素iの反力のX方向成分の総和とについても、力の釣り合いを満たすように、弾性回転中心24Eaを求めることができる。なお、「弾性回転中心24Ea」とは、抵抗要素iの反力と外力との釣り合いが成立している状態における回転中心24Eを意味する。
When an axial force in the X direction as an external force acts on the beam, the elastic rotation center 24Ea also satisfies the balance between the axial force and the X-direction component of the reaction force of the resistance element i. Can be sought. The "elastic rotation center 24Ea" means the rotation center 24E in a state where the reaction force of the resistance element i and the external force are balanced.
また、本実施形態では、弾性回転中心24Eaは、以下の2種類の釣り合いが同時に実現される点として設定されている。
Further, in the present embodiment, the elastic rotation center 24Ea is set as a point where the following two types of balance are simultaneously realized.
具体的には、まず、弾性回転中心24Eaでは、上フランジ端部外面抵抗要素24Aa、上フランジ端部内面抵抗要素24Ba、下フランジ端部内面抵抗要素24Ca、及び、下フランジ端部外面抵抗要素24Daに対して、柱10のコンクリート32から作用する支圧によるZ方向の反力の総和が、鉄骨梁20に作用する-Z方向の鉛直荷重によって接合部に作用するせん断力と釣り合う。鉛直荷重は、外力である。
Specifically, first, in the elastic rotation center 24Ea, the upper flange end outer surface resistance element 24Aa, the upper flange end inner surface resistance element 24Ba, the lower flange end inner surface resistance element 24Ca, and the lower flange end outer surface resistance element 24Da. On the other hand, the sum of the reaction forces in the Z direction due to the bearing pressure acting on the concrete 32 of the column 10 is balanced with the shearing force acting on the joint due to the vertical load in the −Z direction acting on the steel beam 20. The vertical load is an external force.
また、同時に、弾性回転中心24Eaでは、スタッド26Aに対して、柱10のコンクリート32から作用する支圧によるX方向の反力と、接合部補強筋28の反力の和が、フェースベアリングプレート30の第1内面30Aaに対して、柱10のコンクリート32から作用する支圧によるX方向の反力と釣り合う。
At the same time, at the elastic rotation center 24Ea, the sum of the reaction force in the X direction due to the bearing pressure acting from the concrete 32 of the column 10 and the reaction force of the joint reinforcing bar 28 with respect to the stud 26A is the sum of the reaction force of the joint reinforcing bar 28, which is the face bearing plate 30. It balances with the reaction force in the X direction due to the bearing pressure acting on the concrete 32 of the pillar 10 with respect to the first inner surface 30Aa of
また、抵抗要素iの代表変位の作用点と弾性回転中心24Eaとの距離を「xd,i」と設定する。距離xd,iは、図1~図17中に例示されていないが、具体的な設定については、後で登場する図6及び式2.31において、詳しく説明する。
Further, the distance between the action point of the representative displacement of the resistance element i and the elastic rotation center 24Ea is set as "x d, i ". The distances x d and i are not illustrated in FIGS. 1 to 17, but specific settings will be described in detail in FIGS. 6 and 2.31 which will appear later.
なお、「代表変位」については、後で説明する。また、「代表変位の作用点」としては、図示を省略するが、上フランジ端部外面抵抗要素24Aa、上フランジ端部内面抵抗要素24Ba、下フランジ端部内面抵抗要素24Ca、下フランジ端部外面抵抗要素24DaのそれぞれのX方向の中央点が採用できる。
The "representative displacement" will be explained later. Although not shown, the "representative displacement point of action" is the upper flange end outer surface resistance element 24Aa, the upper flange end inner surface resistance element 24Ba, the lower flange end inner surface resistance element 24Ca, and the lower flange end outer surface. The center point of each of the resistance elements 24Da in the X direction can be adopted.
例えば、図1中に例示された上フランジ端部外面抵抗要素24AaのX方向における全体の長さが200mmである場合、上フランジ端部外面抵抗要素24Aaの「代表変位の作用点」として、両端からX方向に100mm離れた中央点を採用できる。
For example, when the total length of the upper flange end outer surface resistance element 24Aa illustrated in FIG. 1 in the X direction is 200 mm, both ends are set as the "representative displacement action point" of the upper flange end outer surface resistance element 24Aa. A center point 100 mm away from the X direction can be adopted.
また、抵抗要素iの反力の重心と弾性回転中心24Eaとの距離を「xl,i」と設定する。そして、本実施形態では、接合部14の回転剛性は、以下の式1で計算される。
Further, the distance between the center of gravity of the reaction force of the resistance element i and the elastic rotation center 24Ea is set as "xl , i ". Then, in the present embodiment, the rotational rigidity of the joint portion 14 is calculated by the following equation 1.
ここで、距離xl,iの設定における「反力の重心」とは、ある一定の長さ又は一定の面積を持つ領域sに作用する分布荷重wによって、回転中心に対して作用するモーメントと等価なモーメントを与える仮想の集中荷重pの作用線を指す。ただし、仮想の集中荷重pについては、分布荷重wを領域sで積分した値と同じであると見做して、回転中心から作用線までの距離が設定される。例えば、抵抗要素iとしての接合部補強筋28については、図1に示すXZ平面内で、XY平面と並行な平面のうちスラブ22の上面よりーZ方向にdrシフトした位置の平面との交差線が、反力の重心として設定できる。式1により、複数の抵抗要素を有する任意のディテールの接合部について、各抵抗要素の特性と接合部の回転剛性とを、一義的に対応付けることができる。なお、距離xl,iについては、後で、図1及び式1.21を用いて具体的に説明する。
Here, the "center of gravity of the reaction force" in the setting of the distances x l and i is the moment acting on the center of rotation by the distributed load w acting on the region s having a certain length or a certain area. It refers to the line of action of a virtual concentrated load p that gives an equivalent moment. However, for the virtual concentrated load p, the distance from the center of rotation to the action line is set, assuming that the distributed load w is the same as the value integrated in the region s. For example, the joint reinforcing bar 28 as the resistance element i intersects the plane parallel to the XY plane at the position dr-shifted from the upper surface of the slab 22 in the −Z direction in the XZ plane shown in FIG. The line can be set as the center of gravity of the reaction force. According to Equation 1, for a joint portion of an arbitrary detail having a plurality of resistance elements, the characteristics of each resistance element and the rotational rigidity of the joint portion can be uniquely associated with each other. The distances x l and i will be specifically described later with reference to FIG. 1 and Equation 1.21.
以上の手順により、接合部の回転剛性Sjを接合部の各抵抗要素の特性から求めることができる。求めた接合部の回転剛性、梁の曲げ剛性、梁のスパン、梁の支持する荷重から、接合部に作用する曲げモーメントが一義的に決まる。この接合部に作用する曲げモーメントを接合部の必要モーメント耐力Mj,Edとする。接合部が損傷しないためには、必要モーメント耐力Mj,Edが後述の接合部の保有する最大モーメント耐力Mj,Rdを超えないようにする必要がある。ここで、梁の断面形状、接合部の各抵抗要素を調整することで、接合部の回転剛性Sjを調整でき、接合部の回転剛性Sjと梁のスパンを調整することで、接合部の必要モーメント耐力Mj,Edを調整することができる。
By the above procedure, the rotational rigidity Sj of the joint can be obtained from the characteristics of each resistance element of the joint. The bending moment acting on the joint is uniquely determined from the obtained rotational rigidity of the joint, the bending rigidity of the beam, the span of the beam, and the load supported by the beam. The bending moment acting on this joint is defined as the required moment proof stress Mj, Ed of the joint. In order not to damage the joint, it is necessary that the required moment strengths Mj and Ed do not exceed the maximum moment strengths Mj and Rd possessed by the joint described later. Here, by adjusting the beam cross-sectional shape, each resistive element of the joint, to adjust the rotational stiffness S j of the joint portion, by adjusting the span of the rotational stiffness S j and the beam joints, the joint The required moment proof stress Mj, Ed can be adjusted.
さらに、本実施形態では、抵抗要素iの反力を、抵抗要素iの負担しうる最大の反力Fi,Rdと見做す。また、接合部14のモーメント耐力を「Mj,Rd」と表す。また、任意の回転中心24Eを仮定し、仮定した回転中心24Eと反力の作用点との距離を「xu,i」と設定する。また、回転中心24Eの位置であるX座標とY座標との2つを変数として、以下の式2を用いて「Mj,Rd」を計算する。
Further, in the present embodiment, the reaction force of the resistance element i is regarded as the maximum reaction force Fi, Rd that can be borne by the resistance element i. Further, the moment strength of the joint portion 14 is expressed as " Mj, Rd ". Further, an arbitrary rotation center 24E is assumed, and the distance between the assumed rotation center 24E and the action point of the reaction force is set as "x u, i ". Further, " Mj, Rd " is calculated using the following equation 2 with the two variables, the X coordinate and the Y coordinate, which are the positions of the rotation center 24E.
そして、接合部14のモーメント耐力が、以下の式2で計算された最大モーメント耐力Mj,Rdの最小値と同じであるように設定されている。なお、式2の計算においては、回転中心24EのX座標及びY座標2つが変数として用いられることによって、耐力Mj,Rdの値が、1個以上算出される。そして、最終的に、算出された最大モーメント耐力Mj,Rdの値の中から最小値が選択される。このため、計算においては上記のとおり、回転中心24Eを任意に仮定できる。
Then, the moment strength of the joint portion 14 is set to be the same as the minimum value of the maximum moment strength Mj and Rd calculated by the following equation 2. In the calculation of Equation 2, one or more values of proof stress Mj and Rd are calculated by using two X-coordinates and Y-coordinates of the rotation center 24E as variables. Finally, the minimum value is selected from the calculated maximum moment proof stress Mj and Rd values. Therefore, as described above, the rotation center 24E can be arbitrarily assumed in the calculation.
式2により、複数の抵抗要素を有する任意のディテールの接合部について、各抵抗要素の最大耐力と接合部の最大モーメント耐力とを、一義的に対応付けることができる。
According to Equation 2, the maximum proof stress of each resistance element and the maximum proof stress of the joint can be uniquely associated with each other at the joint of any detail having a plurality of resistance elements.
なお、式2で最大モーメント耐力Mj,Rdの値が最小となるときの位置における回転中心24Eを「終局回転中心24Eb」と定義する。すなわち、式2の計算の過程において、回転中心24Eは、「弾性回転中心24Ea」の状態から「終局回転中心24Eb」の状態へと移行する。また、「終局回転中心24Eb」では、抵抗要素iの反力と外力との釣り合いが成立するとは限らない。
In Equation 2, the rotation center 24E at the position where the values of the maximum moment proof stress Mj and Rd are minimized is defined as the "ultimate rotation center 24Eb". That is, in the process of calculation of Equation 2, the rotation center 24E shifts from the state of the "elastic rotation center 24Ea" to the state of the "ultimate rotation center 24Eb". Further, in the "ultimate rotation center 24Eb", the balance between the reaction force of the resistance element i and the external force is not always established.
以上説明した柱10と梁12との接合部14のように、鉄骨梁20が半剛接合状態で柱10に接合されている構成であって、抵抗要素を含む付加部材、梁12の断面寸法、及び、梁12の長さが適切に設定されていれば、梁端部24に適度な回転剛性と耐力を付与することができる。次に、柱梁接合部の設計方法について説明する。柱梁接合部は、柱10と梁12との接合部14である。
Like the joint portion 14 between the column 10 and the beam 12 described above, the steel frame beam 20 is joined to the column 10 in a semi-rigid joint state, and the cross-sectional dimensions of the additional member and the beam 12 including the resistance element. And, if the length of the beam 12 is set appropriately, it is possible to impart appropriate rotational rigidity and strength to the beam end portion 24. Next, a method of designing the beam-column joint will be described. The beam-column joint is a joint 14 between the column 10 and the beam 12.
(接合部14の回転剛性の評価方法)
まず、接合部14の回転剛性を定量的に評価する方法について説明する。接合部14の回転剛性の評価に基づいて、鉄骨梁20の各部の寸法や付加部材等を設計できる。そして、設計された鉄骨梁20の各部の寸法や付加部材等を用いて接合部14が構成されることにより、接合部14の回転剛性を、所望の値に設定することができる。 (Evaluation method of rotational rigidity of joint portion 14)
First, a method for quantitatively evaluating the rotational rigidity of thejoint portion 14 will be described. Based on the evaluation of the rotational rigidity of the joint portion 14, the dimensions of each portion of the steel frame beam 20, additional members, and the like can be designed. Then, the rotational rigidity of the joint portion 14 can be set to a desired value by constructing the joint portion 14 using the dimensions of each portion of the designed steel frame beam 20, additional members, and the like.
まず、接合部14の回転剛性を定量的に評価する方法について説明する。接合部14の回転剛性の評価に基づいて、鉄骨梁20の各部の寸法や付加部材等を設計できる。そして、設計された鉄骨梁20の各部の寸法や付加部材等を用いて接合部14が構成されることにより、接合部14の回転剛性を、所望の値に設定することができる。 (Evaluation method of rotational rigidity of joint portion 14)
First, a method for quantitatively evaluating the rotational rigidity of the
ここで、接合部14の回転剛性Sj(Nmm/rad)を、接合部14における梁端部24の単位回転角(rad)あたりの回転抵抗(Nmm)であると定義すると、回転剛性Sjは、以下の式1.1で表される。なお、式1.1中の「Mj」は、梁端部24の回転抵抗(Nmm)である。また、式1.1中の「φj」は、梁端部24の回転角(rad)である。
Here, if the rotational rigidity S j (Nmm / rad) of the joint portion 14 is defined as the rotational resistance (N mm) per unit rotation angle (rad) of the beam end portion 24 at the joint portion 14, the rotational rigidity S j is defined. Is expressed by the following equation 1.1. Incidentally, "M j" in formula 1.1 is a rotational resistance of the beam-portion 24 (Nmm). Further, “φ j ” in the equation 1.1 is the rotation angle (rad) of the beam end portion 24.
図1に示すように、接合部14の変形状態は、鉄骨梁20の梁端部24の剛体回転と、鉄骨梁20の回転を拘束する(すなわち、回転に抗する)各抵抗要素の変形とで構成されるものと仮定すると、抵抗要素iの変形量δi(mm)は、以下の式1.2で表される。
As shown in FIG. 1, the deformation state of the joint portion 14 includes the rigid body rotation of the beam end portion 24 of the steel frame beam 20 and the deformation of each resistance element that restrains (that is, opposes the rotation) the rotation of the steel frame beam 20. The amount of deformation δ i (mm) of the resistance element i is expressed by the following equation 1.2, assuming that it is composed of.
式1.2中の「xd,i」は、抵抗要素iの代表変位の作用線から梁端部24の弾性回転中心までの距離(mm)、すなわち、抵抗要素iの代表変位の作用線と、鉄骨梁において柱のコンクリートの内部に配置された部分の前記弾性回転中心との距離である。ここで、代表変位は、抵抗要素の反力が1点に作用する場合は反力の作用点における変位を表す。また、抵抗要素の反力が線状や面状に応力として分布して作用する場合は、代表変位は、分布する反力をそれぞれ線積分又は面積分した値と等価となる一様な応力分布を仮定したときの、一様な応力分布の作用中心における仮想の変位を表す。
“X d, i ” in Equation 1.2 is the distance (mm) from the action line of the representative displacement of the resistance element i to the elastic rotation center of the beam end 24, that is, the action line of the representative displacement of the resistance element i. And the distance from the elastic rotation center of the portion of the steel beam arranged inside the concrete of the column. Here, the representative displacement represents the displacement at the point of action of the reaction force when the reaction force of the resistance element acts on one point. When the reaction force of the resistance element acts as a stress distributed linearly or planarly, the representative displacement is a uniform stress distribution equivalent to the value obtained by dividing the distributed reaction force by line integral or surface integral, respectively. Represents a virtual displacement at the center of action of a uniform stress distribution, assuming.
抵抗要素iの反力Fiは、抵抗要素iの変形量δiと剛性ki(N/mm)との積で計算でき、以下の式1.3で表される。
Reaction force F i of the resistive element i can be calculated by the product of the amount of deformation of the resistance element i [delta] i and stiffness k i (N / mm), the formula 1.3 below.
すべての抵抗要素における反力Fiと、後述する抵抗要素iの反力の重心から梁端部24の弾性回転中心までの距離xl,i(mm)との積の和が、接合部の回転抵抗Mj(Nmm)として求められ、以下の式1.4で表される。距離xl,iは、抵抗要素iの反力の重心と、鉄骨梁において柱のコンクリートの内部に配置された部分の前記弾性回転中心との距離である。
A reaction force F i in all of the resistive elements, the distance x l from the center of gravity of the reaction force of the resistance element i to be described later to the elastic rotation center of the beam end 24, the sum of the product of i (mm), the joint It is obtained as the rotation resistance M j (N mm) and is represented by the following equation 1.4. The distances x l and i are the distances between the center of gravity of the reaction force of the resistance element i and the elastic center of rotation of the portion of the steel beam arranged inside the concrete of the column.
また、式1.4に、式1.2及び式1.3を代入することによって、以下の式1.5を得る。
Further, by substituting Equation 1.2 and Equation 1.3 into Equation 1.4, the following Equation 1.5 is obtained.
また、式1.5と式1.1との関係から、以下の式1.6(すなわち、式1)が成立する。
Further, from the relationship between the formula 1.5 and the formula 1.1, the following formula 1.6 (that is, the formula 1) is established.
上記の方法で接合部14の回転剛性を求めるには、モデルにおける鉄骨梁20の梁端部24の剛体回転の弾性回転中心の位置を特定する必要がある。対象は弾性挙動であるので、任意の回転角に対して、接合部14の各抵抗要素は、線形の荷重変形関係を持つ可逆変形を生じると仮定する。そして、接合部14の内力Fiの和と外力との釣り合い条件から、弾性回転中心を求めることができる。外力としては、梁軸力N(N)及び梁せん断力V(N)のうち少なくとも一方を適用できる。
In order to obtain the rotational rigidity of the joint portion 14 by the above method, it is necessary to specify the position of the elastic rotation center of the rigid body rotation of the beam end portion 24 of the steel frame beam 20 in the model. Since the object is elastic, it is assumed that each resistance element of the joint 14 undergoes reversible deformation with a linear load deformation relationship for any angle of rotation. Then, the balance condition between the sum and the external force of the internal forces F i junction 14, it is possible to obtain the elastic rotation center. As the external force, at least one of the beam axial force N (N) and the beam shear force V (N) can be applied.
接合部14内の抵抗要素は、鉄骨梁20の梁端部24の回転に抗する反力を生じさせる要素である。具体的には、抵抗要素としては、前述したように、スラブ22や柱10のコンクリート32内に配置された接合部補強筋28の引張抵抗、接合部14内(柱内)のスタッド26の引き抜き抵抗、鉄骨梁20の上フランジ20Aの上下面及び下フランジ20Bの上下面と柱10のコンクリート32との支圧抵抗、及び、フェースベアリングプレート30と柱10のコンクリート32との支圧抵抗が設定できる。
The resistance element in the joint portion 14 is an element that generates a reaction force against the rotation of the beam end portion 24 of the steel frame beam 20. Specifically, as the resistance elements, as described above, the tensile resistance of the joint reinforcing bar 28 arranged in the concrete 32 of the slab 22 and the column 10, and the pulling out of the stud 26 in the joint 14 (inside the column). The resistance, the bearing resistance between the upper and lower surfaces of the upper and lower flanges 20A of the steel beam 20 and the upper and lower surfaces of the lower flange 20B and the concrete 32 of the column 10, and the bearing resistance between the face bearing plate 30 and the concrete 32 of the column 10 are set. it can.
その他、鉄骨梁20のウェブ20Cと柱10のフィンプレート36とを繋ぐボルト接合部の摩擦によるすべり抵抗、支圧によるボルト34のせん断変形抵抗、ボルト34が挿通されるボルト孔の局所変形抵抗、及び、フィンプレート36のせん断抵抗等も設定できる。本実施形態では、各抵抗要素について、弾性の荷重変形関係(弾性剛性)を仮定した。
In addition, slip resistance due to friction at the bolt joint connecting the web 20C of the steel beam 20 and the fin plate 36 of the column 10, shear deformation resistance of the bolt 34 due to bearing pressure, local deformation resistance of the bolt hole into which the bolt 34 is inserted, The shear resistance of the fin plate 36 and the like can also be set. In this embodiment, an elastic load-deformation relationship (elastic rigidity) is assumed for each resistance element.
本実施形態では、上記のうち、スラブ22内や柱10のコンクリート32内に配置されたそれぞれの接合部補強筋28の引張抵抗、接合部14内(柱内)のスタッド26の引き抜き抵抗、鉄骨梁20の上フランジ20Aの上下面と柱10のコンクリート32との支圧抵抗、下フランジ20Bの上下面と柱10のコンクリート32との支圧抵抗、及び、フェースベアリングプレート30と柱10のコンクリート32との支圧抵抗を、主要な抵抗要素として設定した。以下、各抵抗要素の弾性剛性についてそれぞれ説明する。
In the present embodiment, among the above, the tensile resistance of each joint reinforcing bar 28 arranged in the slab 22 and the concrete 32 of the column 10, the pull-out resistance of the stud 26 in the joint 14 (inside the column), and the steel frame. The bearing resistance between the upper and lower surfaces of the upper flange 20A of the beam 20 and the concrete 32 of the column 10, the bearing resistance between the upper and lower surfaces of the lower flange 20B and the concrete 32 of the column 10, and the concrete of the face bearing plate 30 and the column 10. The bearing resistance with 32 was set as the main resistance element. Hereinafter, the elastic rigidity of each resistance element will be described.
(接合部補強筋28の弾性剛性)
スラブ22内やコンクリート32内に配置された接合部補強筋28の引張抵抗についての弾性剛性、すなわち、接合部補強筋28の弾性剛性kr(N/mm)は、接合部補強筋28の伸びur(mm)、引張力Tr(N)、及び、後述するkslipを用いて、以下の式1.7で表現できる。なお、図1中には、接合部補強筋28の伸びurが例示されている。
(Elastic rigidity of joint reinforcing bar 28)
The elastic rigidity with respect to the tensile resistance of the joint reinforcingbar 28 arranged in the slab 22 or the concrete 32, that is, the elastic rigidity kr (N / mm) of the joint reinforcing bar 28 is the elongation of the joint reinforcing bar 28. u r (mm), the tensile force T r (N), and, using the k slip, which will be described later, can be expressed by the formula 1.7 below. Note that in FIG. 1, the elongation u r of the joint reinforcement 28 is illustrated.
スラブ22内やコンクリート32内に配置された接合部補強筋28の引張抵抗についての弾性剛性、すなわち、接合部補強筋28の弾性剛性kr(N/mm)は、接合部補強筋28の伸びur(mm)、引張力Tr(N)、及び、後述するkslipを用いて、以下の式1.7で表現できる。なお、図1中には、接合部補強筋28の伸びurが例示されている。
The elastic rigidity with respect to the tensile resistance of the joint reinforcing
また、スラブ22の有効幅内の接合部補強筋28の全断面積をar(mm2)、接合部補強筋28のヤング係数をEr、伸びurに対応する鉄筋の応力度をσr(N/mm2)、ひずみをεrとそれぞれ設定すると、さらに以下の式1.8及び式1.9が成り立つ。
Further, a r (mm 2) the entire cross-sectional area of the joint reinforcement 28 within the effective width of the slab 22, the Young's modulus E r of the joint reinforcement 28, the stress of the reinforcing bars corresponding to the elongation u r sigma When r (N / mm 2 ) and strain are set as ε r , respectively, the following equations 1.8 and 1.9 are further established.
ここで、接合部補強筋28の有効幅内では、ひずみεr及び伸びurは、幅方向の位置によらず一定であると仮定されている。このため、接合部補強筋28の有効長さhrについても同様に、スラブ22幅方向の位置によらず一定の長さを定義する。この定義によって、伸びur及びひずみεrは、以下の式1.10で対応づけられる。
Here, within the effective width of the joint reinforcement 28, strain epsilon r and elongation u r is assumed to be constant irrespective of the position in the width direction. Therefore, Similarly, the effective length h r of the joint reinforcement 28, defines a constant length irrespective of the slab 22 widthwise position. This definition, elongation u r and strain epsilon r is associated with formula 1.10 or less.
式1.10において、柱10の芯を中心とした有効長さhrの範囲では、接合部補強筋28のひずみが一様である、と仮定されている。式1.10中の「α」は、両側のモーメントに応じた接合部長さの補正係数である。
In formula 1.10, in the range of the effective length h r around the core of the pillar 10, the strain of the joint reinforcement 28 is assumed to be uniform, and. “Α” in the formula 1.10 is a correction coefficient of the joint length according to the moments on both sides.
補正係数αの値は、公知文献1「EN1994-1-1:2004 Eurocode 4: Design of composite steel and concrete structures Part 1-1: General rules and rules for buildings」の「Appendix A.2」に基づき、設定される。例えば、両側に対称の負曲げモーメント(Mj,Ed1=Mj,Ed2)が作用する場合、補正係数αの値は、0.5である。また、片側のモーメントがゼロの場合(Mj,Ed1>Mj,Ed2=0)、補正係数αの値は、3.6である。また、補正係数αの下限値として、0.5を採用すると共に、上限値として3.6を採用する。そして、両側のモーメント(Mj,Ed1>Mj,Ed2)の比に応じて、以下の式1.11~式1.15で、計算が行われる。
The value of the correction coefficient α is based on "Appendix A.2" of Public Document 1 "EN1994-1-1: 2004 Eurocode 4: Design of composite steel and concrete structures Part 1-1: General rules and rules for buildings". Set. For example, when a symmetrical negative bending moment (M j, Ed1 = M j, Ed2 ) acts on both sides, the value of the correction coefficient α is 0.5. When the moment on one side is zero (M j, Ed1 > M j, Ed2 = 0), the value of the correction coefficient α is 3.6. Further, 0.5 is adopted as the lower limit value of the correction coefficient α, and 3.6 is adopted as the upper limit value. Then, the calculation is performed by the following equations 1.11 to 1.15 according to the ratio of the moments on both sides (M j, Ed1 > M j, Ed2 ).
(ii)Mj,Ed2に対する補正係数α
ここで、モーメントは、負曲げの方向(すなわち、梁が上に凸になる方向)を正としている。 (Ii) Correction coefficient α for Mj and Ed2
Here, the moment is positive in the direction of negative bending (that is, the direction in which the beam becomes convex upward).
ここで、モーメントは、負曲げの方向(すなわち、梁が上に凸になる方向)を正としている。 (Ii) Correction coefficient α for Mj and Ed2
Here, the moment is positive in the direction of negative bending (that is, the direction in which the beam becomes convex upward).
図2に示されるように、接合部補強筋28のひずみの履歴において、接合部14を挟む両側の鉄骨梁20とスラブ22とをつなぐスタッド26のうち、最も柱10に近いもの同士の距離を有効長さhrと等しいものと設定する。また、接合部14を挟む両側は、ほぼ対称の負曲げモーメントが作用していることから、補正係数αを0.5と設定する。結果、平面保持の仮定(Navier Hypothesis)のもとで計算した接合部補強筋28のひずみεr,calcと、接合部14のモーメント-回転角関係が弾性挙動を示す範囲での実験のひずみとが、概ね一致することが確認された。この結果に基づき、有効長さhrは、鉄骨梁20とスラブ22とをつなぐスタッド26のうち、最も柱に近いもの同士の距離として設定できる。
As shown in FIG. 2, in the strain history of the joint reinforcing bar 28, among the studs 26 connecting the steel beams 20 and the slab 22 on both sides of the joint 14, the distance between the studs 26 closest to the column 10 is determined. It is set to be equal to the effective length h r. Further, since a substantially symmetrical negative bending moment acts on both sides of the joint portion 14, the correction coefficient α is set to 0.5. As a result, the strain ε r, calc of the joint reinforcing bar 28 calculated under the assumption of plane holding (Navier Hypothesis) and the experimental strain in the range where the moment-rotation angle relationship of the joint 14 shows elastic behavior. However, it was confirmed that they were almost the same. Based on this result, the effective length h r, of the stud 26 connecting the steel beams 20 and the slab 22 can be set as a distance between the closest to the pillar.
以上から、式1.7に式1.8~式1.10を代入して、弾性剛性krは、以下の式1.16で計算できる。
From the above, by substituting Expression 1.8 to Formula 1.10 Formula 1.7, the elastic stiffness k r, can be calculated by Equation 1.16 below.
式1.16中の「kslip」は、スタッド26の変形を考慮した接合部補強筋28の剛性の低減係数(0≦kslip≦1)であり、スタッド26の変形によるスラブ22と鉄骨梁20の相対ずれが大きいほど、小さい値となる。低減係数kslipは、公知文献1「EN1994-1-1:2004 Eurocode 4: Design of composite steel and concrete structures Part 1-1: General rules and rules for buildings」の「Appendix A.2」に基づき、以下の式1.17~式1.20で計算できる。
“K slip ” in the formula 1.16 is a reduction coefficient (0 ≦ k slip ≦ 1) of the rigidity of the joint reinforcing bar 28 in consideration of the deformation of the stud 26, and the slab 22 and the steel beam due to the deformation of the stud 26. The larger the relative deviation of 20, the smaller the value. The reduction coefficient k- slip is based on "Appendix A.2" of Public Document 1 "EN1994-1-1: 2004 Eurocode 4: Design of composite steel and concrete structures Part 1-1: General rules and rules for buildings". It can be calculated by the formulas 1.17 to 1.20 of.
ここで、式1.17~式1.20中において、「lh」は、接合部14から鉄骨梁20の長さ方向の反曲点までの区間(負曲げ区間)の長さである。また、「N」は、lh内のスラブ22のコンクリート32aに含まれるスタッド26(シアコネクタ)の数である。また、「ksc」は、スタッド26ひとつあたりのせん断剛性(N/mm)である。
Here, in the formulas 1.17 to 1.20, “l h ” is the length of the section (negative bending section) from the joint portion 14 to the inflection point in the length direction of the steel frame beam 20. Further, "N" is the number of studs 26 (shear connectors) included in the concrete 32a of the slab 22 within l h. Further, "k sc " is the shear rigidity (N / mm) per stud 26.
また、「hs」は補強筋の引張力と釣り合う圧縮力(後述のフェースベアリングプレート30と柱10のコンクリート32間の支圧による圧縮力)の作用中心から接合部補強筋28までの距離(mm)である。また、「ds」は、接合部補強筋28から鉄骨梁20の断面の重心までの距離(mm)である。また、「Ia」は、鉄骨梁20の断面二次モーメント(mm4)である。また、「Ea」は、鉄骨梁20のヤング係数(N/mm2)である。
Further, "h s " is the distance from the center of action of the compressive force (compressive force due to the bearing pressure between the face bearing plate 30 and the concrete 32 of the column 10 described later) to the joint reinforcing bar 28 ( mm). Further, "d s" is the distance from the junction reinforcement 28 to the center of gravity of the cross section of the steel beam 20 (mm). Further, “I a ” is the moment of inertia of area (mm 4 ) of the steel frame beam 20. Moreover, "E a" is the Young's modulus of the steel beam 20 (N / mm 2).
また、接合部補強筋28の変位を計算するための距離xd,i、すなわち、抵抗要素iの代表変位の作用線と、鉄骨梁において柱のコンクリートの内部に配置された部分の前記弾性回転中心との距離は、以下の式1.21で表される。また、反力によるモーメント抵抗を計算するための腕の長さ、すなわち、抵抗要素iの反力の重心と、鉄骨梁において柱のコンクリートの内部に配置された部分の前記弾性回転中心との距離xl,iは、同様に、以下の式1.21で表される。
Further, the distance x d, i for calculating the displacement of the joint reinforcing bar 28, that is, the action line of the representative displacement of the resistance element i, and the elastic rotation of the portion of the steel beam arranged inside the concrete of the column. The distance from the center is expressed by the following equation 1.21. Further, the length of the arm for calculating the moment resistance due to the reaction force, that is, the distance between the center of gravity of the reaction force of the resistance element i and the elastic rotation center of the portion of the steel beam arranged inside the concrete of the column. Similarly , x l and i are represented by the following equation 1.21.
ここで、図1に示されるように、式1.21中の「xn」は、接合部14の弾性回転中心とスラブ22の表面(すなわち、図1中のスラブ22の上面)との間の距離における、鉛直方向の軸(Z軸)と平行な成分(mm)である。また、式1.21中の「dr」は、接合部補強筋28の断面の中心(また、複層配筋の場合は、それらの重心)からスラブ22の表面までの距離における、鉛直方向の軸(Z軸)と平行な成分(mm)である。なお、式1.21から分かるように、本実施形態では、距離xd,iと距離xl,iとは等しい。
Here, as shown in FIG. 1, “x n ” in the equation 1.21 is between the elastic rotation center of the joint portion 14 and the surface of the slab 22 (that is, the upper surface of the slab 22 in FIG. 1). It is a component (mm) parallel to the vertical axis (Z axis) at the distance of. Further, "d r" in the equation 1.21 is the center of the cross section of the joint reinforcement 28 (In the case of multi-layer reinforcement, their center of gravity) at a distance from to the surface of the slab 22, the vertical direction It is a component (mm) parallel to the axis (Z axis) of. As can be seen from Equation 1.21, in the present embodiment, the distance x d, i and the distance x l, i are equal.
(柱内スタッドのせん断に対する弾性剛性)
接合部14内(柱内)のスタッド26の引き抜き抵抗についての弾性剛性、すなわち、柱内スタッドのせん断に対する弾性剛性kst(N/mm)は、スタッド26の引き抜き抵抗Tst(N)と、スタッド26のずれust(mm)とに基づいて求めることができる。スタッド26の引き抜き抵抗Tstは、下記の式1.22により表されると共に、スタッド26のずれustは、下記の式1.23により表される。
(Elastic rigidity against shear of studs in columns)
The elastic rigidity with respect to the pull-out resistance of thestud 26 in the joint portion 14 (inside the pillar), that is, the elastic rigidity k st (N / mm) with respect to the shear of the stud in the pillar is determined by the pull-out resistance T st (N) of the stud 26. It can be obtained based on the deviation u st (mm) of the stud 26. The pull-out resistance T st of the stud 26 is represented by the following formula 1.22, and the displacement ust of the stud 26 is represented by the following formula 1.23.
接合部14内(柱内)のスタッド26の引き抜き抵抗についての弾性剛性、すなわち、柱内スタッドのせん断に対する弾性剛性kst(N/mm)は、スタッド26の引き抜き抵抗Tst(N)と、スタッド26のずれust(mm)とに基づいて求めることができる。スタッド26の引き抜き抵抗Tstは、下記の式1.22により表されると共に、スタッド26のずれustは、下記の式1.23により表される。
The elastic rigidity with respect to the pull-out resistance of the
ここで、式1.22中の「Tst」は、スタッド26の引き抜き抵抗(N)を表す(図1参照)。また、式1.22中の「φst」は、スタッド26の径(頭付スタッドの場合は軸部の径(mm))を表す(図1参照)。また、式1.22中の「nst」は、スタッド26の本数を表す(図1参照)。また、式1.22中の「ust」は、スタッド26のずれ(mm)を表す(図1参照)。また、式1.23中の「Ds」は、デッキを含むスラブ22の全厚(mm)を表す(図1参照)。
Here, "T st " in the formula 1.22 represents the pull-out resistance (N) of the stud 26 (see FIG. 1). Further, “ φst ” in Equation 1.22 represents the diameter of the stud 26 (in the case of a headed stud, the diameter of the shaft portion (mm)) (see FIG. 1). Further, "n st " in the formula 1.22 represents the number of studs 26 (see FIG. 1). Further, “ ust ” in the formula 1.22 represents the deviation (mm) of the stud 26 (see FIG. 1). Further, “D s ” in the formula 1.23 represents the total thickness (mm) of the slab 22 including the deck (see FIG. 1).
スタッド26のせん断剛性に係る式1.22は、公知文献2「井上一朗:頭付きスタッドの現状と展望, コンクリート工学, Vol. 34, No. 4, 1996.4」で、井上らが示した実験式である。スタッド26のせん断剛性は、スタッド26の径に比例する形で与えられている。式1.22中の係数の「9.8」は、「N/mm2」の次元を有する。
The formula 1.22 relating to the shear rigidity of the stud 26 is an empirical formula presented by Inoue et al. In the published document 2 “Ichiro Inoue: Current Status and Prospects of Headed Studs, Concrete Engineering, Vol. 34, No. 4, 1996.4”. Is. The shear rigidity of the stud 26 is given in proportion to the diameter of the stud 26. The coefficient "9.8" in equation 1.22 has a dimension of "N / mm 2 ".
なお、式1.18及び式1.19に用いるせん断剛性kscとして、公知文献1「EN1994-1-1:2004 Eurocode 4: Design of composite steel and concrete structures Part 1-1: General rules and rules for buildings」の「Appendix A.3」に記載の値(φ19スタッドに対し100kN/mm)を用いてもよい。
As the shear modulus k sc used in Equations 1.18 and 1.19, Public Document 1 "EN1994-1-1: 2004 Eurocode 4: Design of composite steel and concrete structures Part 1-1: General rules and rules for The value described in "Appendix A.3" of "buildings" (100 kN / mm for φ19 stud) may be used.
式1.22から、柱10内のスタッド26のせん断による弾性剛性kst(N/mm)は、以下の式1.24で表される。
From equation 1.22, the elastic stiffness kst (N / mm) due to shearing of the stud 26 in the column 10 is expressed by the following equation 1.24.
また、柱10内のスタッド26の変位を計算するための値、すなわち、抵抗要素の代表変位の作用線と、鉄骨梁において柱のコンクリートの内部に配置された部分の前記弾性回転中心との距離xd,iは、以下の式1.25で表される。また、柱10内のスタッド26の反力によるモーメント抵抗を計算するための腕の長さ、すなわち、抵抗要素の反力の重心と、鉄骨梁において柱のコンクリートの内部に配置された前記弾性回転中心との距離xl,iは、同様に以下の式1.25で表される。
Further, a value for calculating the displacement of the stud 26 in the column 10, that is, the distance between the action line of the representative displacement of the resistance element and the elastic rotation center of the portion of the steel beam arranged inside the concrete of the column. x d and i are represented by the following equation 1.25. Further, the length of the arm for calculating the moment resistance due to the reaction force of the stud 26 in the column 10, that is, the center of gravity of the reaction force of the resistance element and the elastic rotation arranged inside the concrete of the column in the steel beam. The distances x l and i from the center are similarly expressed by the following equation 1.25.
(梁フランジ面とコンクリートの支圧による弾性剛性)
次に、鉄骨梁20の上フランジ20Aの上下面と柱10のコンクリート32との支圧抵抗についての弾性剛性、及び、下フランジ20Bの上下面と柱10のコンクリート32との支圧抵抗についての弾性剛性に関して説明する。すなわち、梁フランジ面とコンクリートの支圧による弾性剛性に関して説明する。 (Elastic rigidity due to bearing pressure between beam flange surface and concrete)
Next, regarding the elastic rigidity of the upper and lower surfaces of theupper flange 20A of the steel beam 20 and the concrete 32 of the column 10, and the bearing resistance of the upper and lower surfaces of the lower flange 20B and the concrete 32 of the column 10. The elastic rigidity will be described. That is, the elastic rigidity due to the bearing pressure of the beam flange surface and concrete will be described.
次に、鉄骨梁20の上フランジ20Aの上下面と柱10のコンクリート32との支圧抵抗についての弾性剛性、及び、下フランジ20Bの上下面と柱10のコンクリート32との支圧抵抗についての弾性剛性に関して説明する。すなわち、梁フランジ面とコンクリートの支圧による弾性剛性に関して説明する。 (Elastic rigidity due to bearing pressure between beam flange surface and concrete)
Next, regarding the elastic rigidity of the upper and lower surfaces of the
まず、鋼板とコンクリートとが一様な支圧応力下にあるときの、支圧面の反力と支圧面の圧縮方向の変位とについて、定式化を行う。
First, the reaction force of the bearing surface and the displacement of the bearing surface in the compression direction when the steel plate and concrete are under uniform bearing stress are formulated.
公知文献3「EN1993-1-8:2005 Eurocode 3: Design of steel structures Part 1-8: Design of joints, BSI, 2010」では、鋼板とコンクリートが一様な支圧応力下にあるときの、鋼板表面とコンクリートとの間の支圧による弾性剛性kc(N/mm)が、以下の式2.1で与えられている。
In Publicly known Document 3 "EN1993-1-8: 2005 Eurocode 3: Design of steel structures Part 1-8: Design of joints, BSI, 2010", a steel plate when the steel plate and concrete are under uniform bearing stress. The elastic rigidity k c (N / mm) due to the bearing pressure between the surface and the concrete is given by the following equation 2.1.
ここで、式2.1中の「beff」は、有効支圧領域の幅(mm)である。また、式2.1中の「leff」は、弾性回転中心から有効支圧領域の縁端までの距離(有効支圧領域の長さ(mm))である。また、式2.1中の「beff×leff」は、コンクリート32の有効支圧面積(mm2)を表わす(図5参照)。また、式2.1中の「Ec」は、コンクリートのヤング係数(N/mm2)である。
Here, “b eff ” in Equation 2.1 is the width (mm) of the effective bearing region. Further, “l eff ” in Equation 2.1 is the distance from the center of elastic rotation to the edge of the effective bearing region (the length of the effective bearing region (mm)). Further, “b eff × l eff ” in Equation 2.1 represents the effective bearing area (mm 2 ) of the concrete 32 (see FIG. 5). Moreover, "E c" in formula 2.1 is a Young's modulus of the concrete (N / mm 2).
式2.1中の「αc」は、例えば、公知文献4『Lambe T.W., Whitman R.V.: Soil Mechanics, MIT, John Wiley & Sons, Inc., New York, 1969』ではポワソン比に依存する値である。また、「αc」は、例えば、公知文献5『Martin Steenhuis他: Concrete in compression and base plate in bending, HERON Vol. 53, No. 1/2, 2008』では、以下の式2.2の値として開示される。また、「αc」は、例えば、鋼材とコンクリートとの間のモルタルの充填性による剛性低減率1.5を考慮して、以下の式2.3で算出される値を採用できる。
“Α c ” in Equation 2.1 is, for example, a value that depends on the Poisson ratio in the publicly known document 4 “Lambe TW, Whitman RV: Soil Mechanics, MIT, John Wiley & Sons, Inc., New York, 1969”. is there. Further, "α c " is, for example, the value of the following equation 2.2 in the publicly known document 5 "Martin Steenhuis et al .: Concrete in compression and base plate in bending, HERON Vol. 53, No. 1/2, 2008". Will be disclosed as. Further, for "α c ", for example, a value calculated by the following equation 2.3 can be adopted in consideration of the rigidity reduction rate of 1.5 due to the filling property of the mortar between the steel material and the concrete.
式2.3を、一般的なフックの式:P=kδの形に変形すると、以下の式2.4が成立する。
When Equation 2.3 is transformed into the general Hooke's equation: P = kδ, the following Equation 2.4 is established.
ここで、式2.4中の「Pcl」は、支圧による反力の合計(有効支圧領域における反力を有効支圧面積で積分した値(N))である。また、式2.4中の「δc」は、支圧界面の圧縮方向の変位(mm)である。有効支圧面積の一様な平均支圧応力をσc(N/mm2)と設定すると、式2.4は、次の式2.5の形にさらに変形できる。
Here, "P cl " in the equation 2.4 is the total reaction force due to the bearing pressure (value (N) obtained by integrating the reaction force in the effective bearing pressure region with the effective bearing pressure area). Further, “δ c ” in Equation 2.4 is the displacement (mm) of the bearing interface in the compression direction. If the uniform average bearing stress of the effective bearing area is set to σ c (N / mm 2 ), Equation 2.4 can be further transformed into the form of Equation 2.5 below.
支圧を受けるコンクリート32の半空間において、変位δcに対し、コンクリート32の実際のひずみは、コンクリート32の支圧面から無限遠でゼロとなる。これに対し、これと等価な有効深さDc,eff(mm)の範囲で一定のひずみが作用するものと仮定する。そして、以下の式2.6で、コンクリート32のひずみεc,effと変位δcとを対応付ける。
In the half space of the concrete 32 that receives the bearing pressure, the actual strain of the concrete 32 becomes zero at infinity from the bearing surface of the concrete 32 with respect to the displacement δ c . On the other hand, it is assumed that a constant strain acts in the range of effective depth D c, eff (mm) equivalent to this. Then, the strain ε c, eff of the concrete 32 and the displacement δ c are associated with each other by the following equation 2.6.
すると、式2.5と式2.6から、有効深さDc,effは、ひずみの大きさに依存しない以下の式2.7で定義できる。
Then, from Equation 2.5 and Equation 2.6, the effective depths D c and eff can be defined by the following Equation 2.7, which does not depend on the magnitude of strain.
さて、接合部14内の柱10のコンクリート32に埋め込まれた鉄骨梁20(梁端部24)とコンクリート32との支圧については、梁端部24の弾性回転中心からの距離が遠いほど、支圧による沈み込み(支圧界面の変位)が大きくなる。このため、前述の公知文献3「EN1993-1-8:2005 Eurocode 3: Design of steel structures Part 1-8: Design of joints, BSI, 2010の式を、そのまま用いることはできない。ここでは、図3及び図4のように支圧面が線形の応力勾配を持つ場合について、式2.1を利用した剛性の計算方法が導出される。
Regarding the bearing pressure between the steel beam 20 (beam end 24) embedded in the concrete 32 of the column 10 in the joint 14 and the concrete 32, the farther the distance from the elastic rotation center of the beam end 24 is, the more Subduction due to bearing pressure (displacement of bearing bearing interface) increases. Therefore, the formula of the above-mentioned publicly known document 3 “EN1993-1-8: 2005 Eurocode 3: Design of steel structures Part 1-8: Design of joints, BSI, 2010 cannot be used as it is. Here, FIG. 3 And, as shown in FIG. 4, when the bearing surface has a linear stress gradient, a method for calculating the rigidity using Eq. 2.1 is derived.
支圧界面が図3及び図4に示す変位分布を持つとき、支圧面が受ける反力の合計Pc2(N)は、以下の式2.8で計算できる。なお、図3中の「Pc2,t」は、上フランジ側の反力の合計であり、以下の式2.8中の「Pc2」を「Pc2,t」に置き換えて計算できる。また、図3中の「Pc2,b」は、下フランジ側の反力の合計であり、同様に以下の式2.8中の「Pc2」を「Pc2,b」に置き換えて計算できる。
When the bearing interface has the displacement distributions shown in FIGS. 3 and 4, the total reaction force P c2 (N) received by the bearing surface can be calculated by the following equation 2.8. Note that "P c2, t " in FIG. 3 is the total reaction force on the upper flange side, and can be calculated by replacing "P c2 " in the following equation 2.8 with "P c2, t ". Further, "P c2, b " in FIG. 3 is the total reaction force on the lower flange side, and similarly, "P c2 " in the following equation 2.8 is replaced with "P c2, b " for calculation. it can.
式2.8中の「σc(y)」は、支圧面におけるコンクリートの単位面積当たりの反力分布(N/mm2)である。
“Σ c (y)” in Equation 2.8 is the reaction force distribution (N / mm 2 ) per unit area of concrete on the bearing surface.
また、図4から、以下の式2.9~式2.11が成り立つと仮定する。
Further, from FIG. 4, it is assumed that the following equations 2.9 to 2.11.
ここで、式2.9~式2.11中の「εc(y)」は、支圧面におけるコンクリートのひずみ分布である。また、式2.9及び式2.10中の「δc(y)」は、支圧面の圧縮方向の変位分布(mm)である。
Here, "ε c (y)" in Equations 2.9 to 2.11 is the strain distribution of concrete on the bearing surface. Further, "δ c (y)" in the formulas 2.9 and 2.10 is the displacement distribution (mm) of the bearing surface in the compression direction.
式2.9~式2.11を式2.8に代入すると、以下の式2.12が成り立つ。
Substituting Equations 2.9 to 2.11 into Equation 2.8, the following Equation 2.12 holds.
式2.12による反力が式2.4による反力と等価であると仮定すると、以下の式2.13が成り立つ。
Assuming that the reaction force according to equation 2.12 is equivalent to the reaction force according to equation 2.4, the following equation 2.13 holds.
式2.13中の「δcP,eff」は、支圧面におけるコンクリートの代表変位(mm)である。
“Δ cP, eff ” in Equation 2.13 is the representative displacement (mm) of concrete on the bearing surface.
従って、支圧面が線形の応力勾配を持つ場合に対しても、式2.13で計算した変位を用いて、一様な支圧状態における式2.4を適用して、反力を求めることができる。
Therefore, even when the bearing surface has a linear stress gradient, the reaction force is obtained by applying Equation 2.4 in a uniform bearing state using the displacement calculated in Equation 2.13. Can be done.
次に、支圧面が線形の応力勾配を持つ場合の支圧反力によるモーメント(回転抵抗)Mc2(Nmm)は、以下の式2.14で計算できる。
Next, the moment (rotational resistance) Mc2 (Nmm) due to the bearing reaction force when the bearing surface has a linear stress gradient can be calculated by the following equation 2.14.
また、支圧面に一様な応力分布を仮定した場合のモーメント(回転抵抗)Mc1(Nmm)は、以下の式2.15で計算できる。
Further, the moment (rotational resistance) Mc1 (N mm) when a uniform stress distribution is assumed on the bearing surface can be calculated by the following equation 2.15.
式2.14によるモーメントが式2.15によるモーメントと等価であると仮定すると、以下の式2.16が成り立つ。
Assuming that the moment according to equation 2.14 is equivalent to the moment according to equation 2.15, the following equation 2.16 holds.
式2.16中の「δcM,eff」は、モーメント計算用の距離における支圧面の圧縮方向の変位(mm)である。
“Δ cM, eff ” in Equation 2.16 is the displacement (mm) of the bearing surface in the compression direction at the distance for moment calculation.
従って、支圧面が線形の応力勾配を持つ場合に対しても、式2.16で計算した変位を用いて、一様な支圧状態における式2.15を適用することができる。以上から、支圧面の剛性kcは、式2.12及び式2.13から、結局、式2.1と同じである以下の式2.17で評価できる。
Therefore, even when the bearing surface has a linear stress gradient, the equation 2.15 in a uniform bearing state can be applied by using the displacement calculated by the equation 2.16. From the above, the rigidity k c of the bearing surface can be evaluated from the equations 2.12 and 2.13 by the following equation 2.17, which is the same as the equation 2.1.
なお、有効支圧領域の幅beffは、板曲げによって支圧面の縁端ほど支圧による反力が減衰することを考慮して設定する。また、柱10の内部に埋め込まれた鉄骨梁20(梁端部24)のフランジについては、上下フランジ20A、20B間にコンクリート32が充填されている場合は、上下フランジ20A、20Bの板曲げがコンクリート32によって拘束されているものと仮定することによって、上下フランジ20A、20B全幅を有効と考える。
The width b eff of the effective bearing capacity region, the reaction force due to bearing capacity as the edge of Bearing faces by bending a plate is set in consideration of being attenuated. Regarding the flange of the steel frame beam 20 (beam end 24) embedded inside the pillar 10, when concrete 32 is filled between the upper and lower flanges 20A and 20B, the upper and lower flanges 20A and 20B are bent. By assuming that it is restrained by the concrete 32, the entire widths of the upper and lower flanges 20A and 20B are considered to be effective.
また、柱10の内部に埋め込まれた鉄骨梁20(梁端部24)の上下フランジ20A、20Bとコンクリート32との支圧による代表変位を計算するための値、すなわち、抵抗要素iの代表変位の作用線と、鉄骨梁において柱のコンクリートの内部に配置された部分の前記弾性回転中心との距離xd,iは、式2.13及び式2.14から、弾性回転中心から有効支圧領域の縁端までの距離leffを用いて以下の式2.18で表される。
Further, a value for calculating the representative displacement due to the bearing pressure between the upper and lower flanges 20A and 20B of the steel beam 20 (beam end 24) embedded in the column 10 and the concrete 32, that is, the representative displacement of the resistance element i. The distance x d, i between the line of action and the elastic rotation center of the portion of the steel beam arranged inside the concrete of the pillar is the effective bearing pressure from the elastic rotation center from equations 2.13 and 2.14. It is expressed by the following equation 2.18 using the distance l eff to the edge of the region.
また、モーメント抵抗を計算するための腕の長さ、すなわち、抵抗要素の反力の重心と、鉄骨梁において柱のコンクリートの内部に配置された部分の前記弾性回転中心との距離xl,iは、式2.13及び式2.14から、弾性回転中心から有効支圧領域の縁端までの距離leffを用いて以下の式2.19で表される。
Further, the length of the arm for calculating the moment resistance, that is, the distance between the center of gravity of the reaction force of the resistance element and the elastic rotation center of the portion of the steel beam arranged inside the concrete of the column x l, i. Is expressed by the following equation 2.19 from equations 2.13 and 2.14 using the distance l eff from the center of elastic rotation to the edge of the effective bearing region.
図3の場合、上フランジ20Aの上フランジ端部外面抵抗要素24Aaの有効支圧領域の長さは、「leff,t」で例示されている。また、上フランジ20Aの上フランジ端部内面抵抗要素24Baの有効支圧領域の長さは、「leff,b」で例示されている。また、下フランジ20Bの下フランジ端部内面抵抗要素24Caの有効支圧領域の長さは、「leff,t」で例示されている。また、下フランジ20Bの下フランジ端部外面抵抗要素24Daの有効支圧領域の長さは、「leff,b」で例示されている。また、有効支圧領域の幅は、いずれもbeff」で例示されている。
In the case of FIG. 3, the length of the effective bearing region of the upper flange end outer surface resistance element 24Aa of the upper flange 20A is exemplified by "l eff, t ". Further, the length of the effective bearing region of the upper flange end inner surface resistance element 24Ba of the upper flange 20A is exemplified by "l eff, b ". Further, the length of the effective bearing region of the lower flange end inner surface resistance element 24Ca of the lower flange 20B is exemplified by "l eff, t ". Further, the length of the effective bearing region of the lower flange end outer surface resistance element 24Da of the lower flange 20B is exemplified by "l eff, b ". In addition, the width of the effective bearing region is exemplified by " beff ".
(フェースベアリングプレートとコンクリートの支圧による弾性剛性)
次に、フェースベアリングプレート30と柱10のコンクリート32との支圧抵抗に関する弾性剛性について説明する。 (Elastic rigidity due to bearing pressure of face bearing plate and concrete)
Next, the elastic rigidity related to the bearing resistance between theface bearing plate 30 and the concrete 32 of the column 10 will be described.
次に、フェースベアリングプレート30と柱10のコンクリート32との支圧抵抗に関する弾性剛性について説明する。 (Elastic rigidity due to bearing pressure of face bearing plate and concrete)
Next, the elastic rigidity related to the bearing resistance between the
フェースベアリングプレート30については、支圧面の周辺の拘束条件が、適切に考慮される必要がある。ここでは、ウェブ20Cによるフェースベアリングプレート30の面外変形拘束は無視される。前述の公知文献3「EN1993-1-8:2005 Eurocode 3: Design of steel structures Part 1-8: Design of joints, BSI, 2010」を参考に、図6に示す通り、下フランジ20Bの軸線上に作用する圧縮力が、フェースベアリングプレート30の有効支圧領域を介してコンクリート32に伝達されるものと仮定する。
For the face bearing plate 30, it is necessary to properly consider the restraint conditions around the bearing surface. Here, the out-of-plane deformation restraint of the face bearing plate 30 by the web 20C is ignored. As shown in FIG. 6, on the axis of the lower flange 20B, referring to the above-mentioned publicly known document 3 “EN1993-1-8: 2005 Eurocode 3: Design of steel structures Part 1-8: Design of joints, BSI, 2010”. It is assumed that the compressive force acting is transmitted to the concrete 32 through the effective bearing area of the face bearing plate 30.
また、有効支圧領域の長さleff及び幅beffは、鉄骨梁20の下フランジ20Bの幅Bf(mm)、ウェブ20Cの厚みtw(mm)、フェースベアリングプレート30の板厚tfb(mm)、局所支圧に対するコンクリート32の圧縮耐力fjd(N/mm2)、及び、フェースベアリングプレート30の降伏応力fy(N/mm2)を用いて、以下の式2.20及び式2.21で計算される。
The length l eff and a width b eff of the effective bearing capacity region, the width B f of the lower flange 20B of the steel beam 20 (mm), the thickness of the web 20C t w (mm), thickness of the face bearing plate 30 t Using fb (mm), the compressive strength fjd (N / mm 2 ) of the concrete 32 against the local bearing pressure, and the yield stress fy (N / mm 2 ) of the face bearing plate 30, the following equation 2.20 And it is calculated by Equation 2.21.
式2.21中の「γM0」は、鋼材の強度のばらつきを考慮した低減係数である。低減係数γM0の値は、ここでは、「1.0」と設定される。
“Γ M0 ” in Equation 2.21 is a reduction coefficient in consideration of the variation in the strength of the steel material. The value of the reduction coefficient γ M0 is set here as “1.0”.
前述の公知文献4「Lambe T.W., Whitman R.V.: Soil Mechanics, MIT, John Wiley & Sons, Inc., New York, 1969」によると、式2.21は、片持梁の最大曲げモーメントが弾性限曲げモーメントに達するときの梁長さを逆算したものである。また、Tスタブのコンクリートとの支圧面を有する鋼板の曲げが考慮され、Tスタブが片持梁としてコンクリートの支圧強度と等しい等分布荷重を受けるモデルが仮定されている。すなわち、式2.21は、支圧強度の計算に用いる有効支圧領域の長さを表している。
According to the above-mentioned publicly known document 4 “Lambe TW, Whitman RV: Soil Mechanics, MIT, John Wiley & Sons, Inc., New York, 1969”, in Equation 2.21, the maximum bending moment of the cantilever is elastic limit bending. It is the back calculation of the beam length when the moment is reached. Further, considering the bending of the steel plate having the bearing surface of the T stub with the concrete, a model in which the T stub receives an evenly distributed load equal to the bearing strength of the concrete as a cantilever is assumed. That is, Equation 2.21 represents the length of the effective bearing region used in the calculation of the bearing strength.
一方で、前述の公知文献4「Lambe T.W., Whitman R.V.: Soil Mechanics, MIT, John Wiley & Sons, Inc., New York, 1969」においては、支圧面の剛性計算に用いる有効支圧領域の寸法について、鋼板の曲げ変形(正弦波形)を考慮した正味の支圧領域の長さCfl(mm)は、以下の式2.23で表される。また、長さCflと等価な一様な支圧変形状態に換算された有効支圧領域の長さCr(mm)=leffは、以下の式2.22で表される。また、支圧変形に対するひずみを定義する有効深さheq(mm)は、以下の式2.24で表される。
On the other hand, in the above-mentioned publicly known document 4 "Lambe TW, Whitman RV: Soil Mechanics, MIT, John Wiley & Sons, Inc., New York, 1969", the dimensions of the effective bearing region used for calculating the rigidity of the bearing surface are described. The length Cfl (mm) of the net bearing region in consideration of the bending deformation (sinusoidal waveform) of the steel sheet is expressed by the following equation 2.23. The length C fl and length of the effective pressure bearing area that is converted to an equivalent uniform bearing capacity deformed state C r (mm) = l eff can be expressed by equation 2.22 or less. The effective depth h eq (mm) that defines the strain for bearing deformation is expressed by the following equation 2.24.
ここで、式2.23及び式2.24中の「ξ」は、有効深さheqの長さCflに対する比である。さらに、式2.24中の「αc」は、前述の公知文献3「EN1993-1-8:2005 Eurocode 3: Design of steel structures Part 1-8: Design of joints, BSI, 2010」、及び前述の公知文献5「Martin Steenhuis他: Concrete in compression and base plate in bending, HERON Vol. 53, No. 1/2, 2008」を参考に、係数をαと設定して、以下の式2.25で表される。
Here, "ξ" in the formulas 2.23 and 2.24 is a ratio of the effective depth h eq to the length Cfl . Further, “α c ” in Equation 2.24 is used in the above-mentioned publicly known document 3 “EN1993-1-8: 2005 Eurocode 3: Design of steel structures Part 1-8: Design of joints, BSI, 2010” and the above-mentioned. In reference to the publicly known document 5 "Martin Steenhuis et al .: Concrete in compression and base plate in bending, HERON Vol. 53, No. 1/2, 2008", the coefficient was set to α, and the following equation 2.25 was used. expressed.
そして、式2.22に式2.23及び式2.26を代入すると、以下の式2.27が成り立つ。
Then, by substituting Equation 2.23 and Equation 2.26 into Equation 2.22, the following Equation 2.27 holds.
一方で、前述の公知文献3「EN1993-1-8:2005 Eurocode 3: Design of steel structures Part 1-8: Design of joints, BSI, 2010」では、式2.21は、強度計算及び剛性計算の双方に用いてもよいとされている。これは、前述の公知文献4「Lambe T.W., Whitman R.V.: Soil Mechanics, MIT, John Wiley & Sons, Inc., New York, 1969」において、式2.21の値と式2.27の値とが、ほぼ同じとなるためである。
On the other hand, in the above-mentioned publicly known document 3 "EN1993-1-8: 2005 Eurocode 3: Design of steel structures Part 1-8: Design of joints, BSI, 2010", Equation 2.21 is used for strength calculation and rigidity calculation. It is said that it may be used for both. This is because the value of Equation 2.21 and the value of Equation 2.27 are obtained in the above-mentioned publicly known document 4 "Lambe TW, Whitman RV: Soil Mechanics, MIT, John Wiley & Sons, Inc., New York, 1969". , Because it is almost the same.
以上から、式2.1及び式2.4と同様に、フェースベアリングプレート30とコンクリート32との支圧面の剛性kc,fb(N/mm)及び反力Pc,fb(N)は、以下の式2.28、式2.29及び式2.30で計算できる。
なお、式2.29中の「δc,fb」は、フェースベアリングプレート30の変位を意味する。
なお、式2.30中の「xc,fb」は、フェースベアリングプレート30とコンクリート32との距離を意味する。 From the above, similarly to the formulas 2.1 and 2.4, the rigidity k c, fb (N / mm) and the reaction force P c, fb (N) of the bearing surface between theface bearing plate 30 and the concrete 32 are determined. It can be calculated by the following equations 2.28, 2.29 and 2.30.
In addition, "δ c, fb " in equation 2.29 means the displacement of theface bearing plate 30.
In addition, "x c, fb " in the formula 2.30 means the distance between theface bearing plate 30 and the concrete 32.
なお、式2.29中の「δc,fb」は、フェースベアリングプレート30の変位を意味する。
なお、式2.30中の「xc,fb」は、フェースベアリングプレート30とコンクリート32との距離を意味する。 From the above, similarly to the formulas 2.1 and 2.4, the rigidity k c, fb (N / mm) and the reaction force P c, fb (N) of the bearing surface between the
In addition, "δ c, fb " in equation 2.29 means the displacement of the
In addition, "x c, fb " in the formula 2.30 means the distance between the
また、フェースベアリングプレート30とコンクリート32との支圧力による代表変位を計算するための値、すなわち、抵抗要素iの代表変位の作用線と、鉄骨梁において柱のコンクリートの内部に配置された部分の前記弾性回転中心との距離xd,iは、図6から、スラブ22の厚みDs(mm)、鉄骨梁20の高さH(mm)、鉄骨梁20の下フランジ20Bの厚みtf(mm)、及び、スラブ22の上面から弾性回転中心までのZ方向に沿って測った距離xn(mm)を用いて、以下の式2.31で表される。
Further, a value for calculating the representative displacement due to the bearing pressure between the face bearing plate 30 and the concrete 32, that is, the action line of the representative displacement of the resistance element i and the portion of the steel beam arranged inside the concrete of the pillar. From FIG. 6 , the distances x d and i from the elastic rotation center are the thickness D s (mm) of the slab 22, the height H (mm) of the steel beam 20, and the thickness t f (thickness t f ) of the lower flange 20 B of the steel beam 20. It is expressed by the following equation 2.31 using mm) and the distance x n (mm) measured along the Z direction from the upper surface of the slab 22 to the center of elastic rotation.
また、モーメント抵抗を計算するための腕の長さ、すなわち、抵抗要素の反力の重心と、鉄骨梁において柱のコンクリートの内部に配置された部分の前記弾性回転中心との距離xl,iも、同様に、20Bの厚み沿って測った距離以下の式2.31で表される。
Further, the length of the arm for calculating the moment resistance, that is, the distance between the center of gravity of the reaction force of the resistance element and the elastic rotation center of the portion of the steel beam arranged inside the concrete of the column x l, i. Is also expressed by the following equation 2.31 which is the distance measured along the thickness of 20B.
以上の説明では、柱10と梁12との接合部14の変形状態が、鉄骨部分である鉄骨梁20の梁端部24の剛体回転でモデル化され、モーメント抵抗を生じる、鋼とコンクリートとの支圧部に関する弾性剛性(すなわち、回転剛性)の計算方法が記された。
In the above description, the deformed state of the joint portion 14 between the column 10 and the beam 12 is modeled by the rigid body rotation of the beam end portion 24 of the steel frame beam 20 which is a steel frame portion, and moment resistance is generated between steel and concrete. The calculation method of the elastic rigidity (that is, the rotational rigidity) of the bearing portion is described.
(接合部14の耐力の評価方法)
次に、接合部14の耐力を評価することにより、柱梁接合部を設計する場合について説明する。接合部14の耐力Mj,Rdは、抵抗要素iから梁端部24の回転中心までの距離xu,i(mm)と、抵抗要素iの最大反力Fi,Rd(N)の積の和として、次式で求められる。また、本実施形態では、抵抗要素iから梁端部24の回転中心までの距離xu,iは、抵抗要素iの反力の重心から梁端部24の回転中心までの距離xu,iである。なお、柱10と梁12との接合部14の終局状態は、鉄骨梁20の梁端部24の剛体回転により、鉄骨梁20の梁端部24の回転を拘束する各抵抗要素の反力がすべて最大耐力に達していると仮定されている。
(Method of evaluating the yield strength of the joint portion 14)
Next, a case where a beam-column joint is designed by evaluating the proof stress of the joint 14 will be described. The proof stress M j, Rd of thejoint portion 14 is the product of the distance x u, i (mm) from the resistance element i to the rotation center of the beam end portion 24 and the maximum reaction force Fi, Rd (N) of the resistance element i. It is calculated by the following equation as the sum of. Further, in the present embodiment, the distance x u from resistive element i to the rotational center of the beam end 24, i is the distance x u from the center of gravity of the reaction force of the resistance element i to the rotational center of the beam end 24, i Is. In the final state of the joint portion 14 between the column 10 and the beam 12, the reaction force of each resistance element that restrains the rotation of the beam end portion 24 of the steel frame beam 20 due to the rigid body rotation of the beam end portion 24 of the steel frame beam 20 All are assumed to have reached maximum capacity.
次に、接合部14の耐力を評価することにより、柱梁接合部を設計する場合について説明する。接合部14の耐力Mj,Rdは、抵抗要素iから梁端部24の回転中心までの距離xu,i(mm)と、抵抗要素iの最大反力Fi,Rd(N)の積の和として、次式で求められる。また、本実施形態では、抵抗要素iから梁端部24の回転中心までの距離xu,iは、抵抗要素iの反力の重心から梁端部24の回転中心までの距離xu,iである。なお、柱10と梁12との接合部14の終局状態は、鉄骨梁20の梁端部24の剛体回転により、鉄骨梁20の梁端部24の回転を拘束する各抵抗要素の反力がすべて最大耐力に達していると仮定されている。
Next, a case where a beam-column joint is designed by evaluating the proof stress of the joint 14 will be described. The proof stress M j, Rd of the
式3.1では、接合部14内の各抵抗要素が完全剛塑性の荷重変形関係を有するものと設定されている。また、全ての抵抗要素が塑性流れを生じる状態(すなわち、メカニズム)であると仮定されている。この仮定によって求められるモーメント抵抗によって、真の崩壊荷重よりも大きい値が、上界として得られる。このため、任意の回転中心に対して、式3.1を用いてモーメント抵抗が求められる計算が実行される。また、その計算の中で、崩壊荷重を最小化する回転中心が、終局回転中心として求められる。終局回転中心が求められた時のモーメント抵抗が、接合部14のモーメント耐力(すなわち、接合部14の最大モーメント耐力Mj,Rd)として設定される。
In Equation 3.1, it is set that each resistance element in the joint portion 14 has a load deformation relationship of perfect rigid plasticity. It is also assumed that all resistance elements are in a state (ie, mechanism) that produces a plastic flow. The moment resistance obtained by this assumption gives a value larger than the true collapse load as the upper bound. Therefore, for an arbitrary center of rotation, a calculation for obtaining the moment resistance is performed using Equation 3.1. Further, in the calculation, the rotation center that minimizes the collapse load is obtained as the ultimate rotation center. The moment resistance when the ultimate center of rotation is obtained is set as the moment proof stress of the joint portion 14 (that is, the maximum moment proof stress M j, Rd of the joint portion 14).
接合部14内の抵抗要素としては、スラブ22内に配置された接合部補強筋28の引張抵抗、接合部14内のスタッド26の引き抜き抵抗、フェースベアリングプレート30と柱10のコンクリート32との支圧抵抗、鉄骨梁20の上フランジ20Aと柱10のコンクリート32との支圧抵抗、及び、下フランジ20Bと柱10のコンクリート32との支圧抵抗を設定できる。
The resistance elements in the joint portion 14 include the tensile resistance of the joint portion reinforcing bar 28 arranged in the slab 22, the pull-out resistance of the stud 26 in the joint portion 14, and the support between the face bearing plate 30 and the concrete 32 of the column 10. The pressure resistance, the bearing resistance between the upper flange 20A of the steel beam 20 and the concrete 32 of the column 10, and the bearing resistance between the lower flange 20B and the concrete 32 of the column 10 can be set.
その他、抵抗要素としては、鉄骨梁20のウェブ20Cと柱10のフィンプレート36とを繋ぐボルト接合部の摩擦によるすべり抵抗、支圧によるボルト34のせん断変形抵抗、ボルト孔の局所変形抵抗、及び、フィンプレート36のせん断抵抗を設定できる。
Other resistance elements include sliding resistance due to friction at the bolt joint connecting the web 20C of the steel beam 20 and the fin plate 36 of the column 10, shear deformation resistance of the bolt 34 due to bearing pressure, local deformation resistance of the bolt hole, and , The shear resistance of the fin plate 36 can be set.
各抵抗要素について、塑性流れを生じる反力としての耐力Fi,Rdが必要であるが、上述の各抵抗要素のうち、ここでは、相対的に耐力が大きくモーメント抵抗の計算上無視できないものとして、スラブ22内に配置された接合部補強筋28の引張抵抗、接合部14内のスタッド26の引き抜き抵抗、フェースベアリングプレート30と柱10のコンクリート32との支圧抵抗、鉄骨梁20の上フランジ20Aと柱10のコンクリート32との支圧抵抗、及び、下フランジ20Bと柱10のコンクリート32との支圧抵抗を考慮した各々の耐力について説明する。なお、他の抵抗要素についても適切に考慮してモーメント抵抗を求めてもよい。
For each resistance element, the proof stress Fi and Rd as the reaction force that causes the plastic flow are required, but among the above-mentioned resistance elements, the proof stress is relatively large and cannot be ignored in the calculation of the moment resistance. , Tension resistance of the joint reinforcing bar 28 arranged in the slab 22, pull-out resistance of the stud 26 in the joint 14, bearing pressure resistance between the face bearing plate 30 and the concrete 32 of the column 10, and the upper flange of the steel beam 20. The proof stress of 20A and the concrete 32 of the pillar 10 and the proof stress of the lower flange 20B and the concrete 32 of the pillar 10 will be described. The moment resistance may be obtained by appropriately considering other resistance elements.
(接合部補強筋の耐力)
図10Aに示すように、反力Fi,Rdに対応する、スラブ22内に配置された接合部補強筋28の引張抵抗についての耐力、すなわち接合部補強筋28の耐力Fr,Rd(N)は、スラブ22有効幅内の接合部補強筋28の総断面積ar(mm2)と降伏応力fr,y(N/mm2)とを用いて、以下の式3.2で表現できる。
(Strength of joint reinforcement)
As shown in FIG. 10A, the proof stress of the joint reinforcingbar 28 arranged in the slab 22 corresponding to the reaction forces Fi and Rd , that is, the proof stress of the joint reinforcing bar 28 Fr , Rd (N). ) Is expressed by the following equation 3.2 using the total cross-sectional area a r (mm 2 ) of the joint reinforcing bar 28 within the effective width of the slab 22 and the yield stress fr , y (N / mm 2 ). it can.
図10Aに示すように、反力Fi,Rdに対応する、スラブ22内に配置された接合部補強筋28の引張抵抗についての耐力、すなわち接合部補強筋28の耐力Fr,Rd(N)は、スラブ22有効幅内の接合部補強筋28の総断面積ar(mm2)と降伏応力fr,y(N/mm2)とを用いて、以下の式3.2で表現できる。
As shown in FIG. 10A, the proof stress of the joint reinforcing
または、降伏応力fr,yの代わりに、引張強さfr,uが用いられてもよい。
Alternatively, the tensile strength fr, u may be used instead of the yield stress fr, y .
また、接合部補強筋28の反力によるモーメント抵抗を計算するための腕の長さ、すなわち、鉄骨梁において柱のコンクリートの内部に配置された部分の回転中心と反力の作用線との距離xu,iは、以下の式3.3で表される。なお、距離xu,iは、抵抗要素iの反力の重心から梁端部24の回転中心までの距離である。
Further, the length of the arm for calculating the moment resistance due to the reaction force of the joint reinforcing bar 28, that is, the distance between the rotation center of the portion of the steel beam arranged inside the concrete of the column and the action line of the reaction force. x u and i are represented by the following equation 3.3. The distances x u and i are the distances from the center of gravity of the reaction force of the resistance element i to the center of rotation of the beam end portion 24.
式3.3中の「xu,n」は、接合部14の回転中心とスラブ22の表面との間の距離の、鉛直方向の軸(Z軸)と平行な成分(mm)である。また、式3.3中の「dr」は、接合部補強筋28の断面の中心(接合部補強筋28が複層配筋である場合は、複層配筋の重心)からスラブ22の表面までの距離の、鉛直方向の軸(Z軸)と平行な成分(mm)である。
“X u, n ” in Equation 3.3 is a component (mm) of the distance between the center of rotation of the joint portion 14 and the surface of the slab 22 parallel to the vertical axis (Z axis). Further, " dr " in Equation 3.3 is from the center of the cross section of the joint reinforcing bar 28 (when the joint reinforcing bar 28 is a multi-layered reinforcing bar, the center of gravity of the multi-layered reinforcing bar) to the slab 22. It is a component (mm) of the distance to the surface parallel to the vertical axis (Z axis).
(柱内のスタッドのせん断耐力)
次に、図10Aに示すように、反力Fi,Rdに対応する、接合部14内(柱内)のスタッド26の引き抜き抵抗についてのせん断耐力、すなわち、柱内のスタッド26の最大耐力Fst,Rd(N)を説明する。最大耐力Fst,Rd(N)については、公知文献6「日本建築学会: 各種合成構造設計指針・同解説, 第2版, 2010.11」の「第4編4.2節4.2」に記載されている頭付きアンカーボルトのせん断耐力の算定式が援用される。 (Shear strength of studs in columns)
Next, as shown in FIG. 10A, the shear strength with respect to the pull-out resistance of thestud 26 in the joint 14 (inside the column) corresponding to the reaction forces Fi and Rd , that is, the maximum proof stress F of the stud 26 in the column. st and Rd (N) will be described. The maximum yield strength F st, Rd (N) is described in "Volume 4, Section 4.2, 4.2" of Architectural Institute of Japan 6 "Architectural Institute of Japan: Guidelines for Designing Various Synthetic Structures and Explanations, 2nd Edition, 2010.11". The formula for calculating the shear strength of anchor bolts with anchor bolts is used.
次に、図10Aに示すように、反力Fi,Rdに対応する、接合部14内(柱内)のスタッド26の引き抜き抵抗についてのせん断耐力、すなわち、柱内のスタッド26の最大耐力Fst,Rd(N)を説明する。最大耐力Fst,Rd(N)については、公知文献6「日本建築学会: 各種合成構造設計指針・同解説, 第2版, 2010.11」の「第4編4.2節4.2」に記載されている頭付きアンカーボルトのせん断耐力の算定式が援用される。 (Shear strength of studs in columns)
Next, as shown in FIG. 10A, the shear strength with respect to the pull-out resistance of the
最大耐力Fst,Rdとしては、スタッド26のせん断強度により決まる耐力Tst1、コンクリート32の支圧強度により決まる耐力Tst2、スタッド26の前面の柱10のコンクリート32のコーン状破壊により決まる耐力Tst3のうちの、いずれか小さい値が採用される。
The maximum yield strengths F st and Rd are the yield strength T st1 determined by the shear strength of the stud 26, the yield strength T st2 determined by the bearing strength of the concrete 32, and the yield strength T determined by the cone-shaped fracture of the concrete 32 of the pillar 10 on the front surface of the stud 26. The smaller value of st3 is adopted.
(i)スタッドのせん断強度により決まるせん断耐力
耐力Tst1(N)は、スタッド26の本数nstと、スタッド26一本あたりのせん断耐力qa1(N)とを用いて、以下の式3.4で与えられる。
(I) Shear strength determined by the shear strength of the studs The shear strength T st1 (N) is the following equation 3. Using the number n st of the studs 26 and the shear strength q a1 (N) per stud 26. Given in 4.
耐力Tst1(N)は、スタッド26の本数nstと、スタッド26一本あたりのせん断耐力qa1(N)とを用いて、以下の式3.4で与えられる。
式3.4中の「φ1」は、低減係数である。低減係数φ1の値は、ここでは、「1.0」と設定される。式3.4中の「sσqa」は、スタッド26のせん断強度(N/mm2)である。せん断強度sσqaの値としては、材料試験の0.2%降伏耐力の1/31/2の値が用いられる。式3.4中の「sca」は、スタッド26の軸部の断面積(mm2)である。
“Φ 1 ” in Equation 3.4 is the reduction coefficient. The value of the reduction factor phi 1 is herein set to "1.0". “ S σ qa ” in Equation 3.4 is the shear strength (N / mm 2 ) of the stud 26. As the value of the shear strength s σ qa, a value of 1/3 1/2 of the 0.2% yield strength of the material test is used. “ Sca ” in Equation 3.4 is the cross-sectional area (mm 2 ) of the shaft portion of the stud 26.
(ii)コンクリートの支圧強度により決まるせん断耐力
耐力Tst2(N)は、スタッド26の本数nstと、スタッド26一本あたりのコンクリート32との支圧耐力qa2(N)とを用いて、以下の式3.5で与えられる。
(Ii) Shear strength proof stress T st2 (N) determined by the bearing strength of concrete is determined by using the number n st of the studs 26 and the bearing strength q a2 (N) of the concrete 32 per stud 26. , Given by Equation 3.5 below.
耐力Tst2(N)は、スタッド26の本数nstと、スタッド26一本あたりのコンクリート32との支圧耐力qa2(N)とを用いて、以下の式3.5で与えられる。
式3.5中の「φ2」は、コンクリート耐力の低減係数であり、低減係数φ2の値は、ここでは、「1.0」と設定される。式3.5中の「fcd」は、柱10のコンクリート32の圧縮強度(N/mm2)である。また、式3.5中の「Ec」は、コンクリートのヤング係数(N/mm2)である。圧縮強度fcdの値及びヤング係数Ecの値としては、ともに、材料試験の値が用いられる。
In Formula 3.5 "phi 2" is the reduction factor of the concrete strength, the value of the reduction factor phi 2 is herein set to "1.0". “F cd ” in the formula 3.5 is the compressive strength (N / mm 2 ) of the concrete 32 of the column 10. Further, "E c " in the formula 3.5 is the Young's modulus (N / mm 2 ) of concrete. The values of and Young's modulus E c of compressive strength f cd, both the value of the material testing is used.
(iii)柱コンクリートのコーン状破壊により決まるせん断耐力
耐力Tst3(N)は、コーン状破壊の耐力qa3(N)を用いて、以下の式3.6で与えられる。
(Iii) Shear strength proof stress T st3 (N) determined by the cone-shaped fracture of column concrete is given by the following equation 3.6 using the cone-shaped fracture strength q a3 (N).
耐力Tst3(N)は、コーン状破壊の耐力qa3(N)を用いて、以下の式3.6で与えられる。
式3.6中の「cσt」は、コーン状破壊に対するコンクリート32の引張強度(N/mm2)である。引張強度cσtの設定では、公知文献6「日本建築学会: 各種合成構造設計指針・同解説, 第2版, 2010.11」に与えられる以下の式3.7が用いられる。
“ C σ t ” in the formula 3.6 is the tensile strength (N / mm 2 ) of the concrete 32 with respect to the cone fracture. In setting the tensile strength c σ t , the following equation 3.7 given in Architectural Institute of Japan: Architectural Institute of Japan: Guidelines for Designing Various Synthetic Structures and Explanations, 2nd Edition, November 2010 is used.
式3.6中の「Aqc」は、コーン状破壊面の有効投影面積(mm2)であり、以下の式3.8で求められる。
“A qc ” in the formula 3.6 is the effective projected area (mm 2 ) of the cone-shaped fracture surface, and is obtained by the following formula 3.8.
式3.8中の「c」は、柱10のコンクリート32表面から最も奥にあるスタッド26の軸芯から、柱10のコンクリート32表面までの距離(mm)である(図7参照)。また、式3.8中の「s」は、同一深さの列にあるスタッド26の間隔(mm)である(図7参照)。また、式3.8中の「nr」は、同一深さの列にあるスタッド26の本数である(図7参照)。
“C” in the formula 3.8 is the distance (mm) from the axis of the stud 26, which is the innermost part of the concrete 32 surface of the pillar 10, to the concrete 32 surface of the pillar 10 (see FIG. 7). Further, "s" in the formula 3.8 is the distance (mm) of the studs 26 in the same depth row (see FIG. 7). Further, "n r " in the equation 3.8 is the number of studs 26 in the same depth row (see FIG. 7).
また、柱10内のスタッド26の反力によるモーメント抵抗を計算するための腕の長さ、すなわち、鉄骨梁において柱のコンクリートの内部に配置された部分の回転中心と反力の作用線との距離xu,iは、以下の式3.9で表される。
Further, the length of the arm for calculating the moment resistance due to the reaction force of the stud 26 in the column 10, that is, the rotation center of the portion of the steel beam arranged inside the concrete of the column and the action line of the reaction force. The distances x u and i are expressed by the following equation 3.9.
(梁フランジ面とコンクリートの支圧耐力)
次に、鉄骨梁20の上フランジ20A及び下フランジ20Bと柱10のコンクリート32との支圧抵抗についての支圧耐力、すなわち、梁フランジ面とコンクリートの支圧耐力Fc,Rd(N)について説明する。前述の公知文献3「EN1993-1-8:2005 Eurocode 3: Design of steel structures Part 1-8: Design of joints, BSI, 2010」では、ベースプレートとコンクリートとが一様な支圧状態下にあるとき、支圧耐力Fc,Rdは、以下の式3.10で与えられる。
(Beam flange surface and concrete bearing capacity)
Next, regarding the bearing capacity of theupper flange 20A and the lower flange 20B of the steel beam 20 and the concrete 32 of the column 10, that is, the bearing capacity Fc , Rd (N) of the beam flange surface and the concrete. explain. In the above-mentioned publicly known document 3 "EN1993-1-8: 2005 Eurocode 3: Design of steel structures Part 1-8: Design of joints, BSI, 2010", when the base plate and concrete are under uniform bearing pressure. , The bearing capacity F c, Rd is given by the following equation 3.10.
次に、鉄骨梁20の上フランジ20A及び下フランジ20Bと柱10のコンクリート32との支圧抵抗についての支圧耐力、すなわち、梁フランジ面とコンクリートの支圧耐力Fc,Rd(N)について説明する。前述の公知文献3「EN1993-1-8:2005 Eurocode 3: Design of steel structures Part 1-8: Design of joints, BSI, 2010」では、ベースプレートとコンクリートとが一様な支圧状態下にあるとき、支圧耐力Fc,Rdは、以下の式3.10で与えられる。
Next, regarding the bearing capacity of the
ここで、式3.10中の「beff」は、コンクリートの有効支圧領域の幅(mm)を表わす。また、式3.10中の「leff」は、コンクリートの有効支圧領域の長さ(mm)を表わす。幅beffは、弾性剛性の計算剛性の場合と同様、鉄骨梁20の上下フランジ20A、20Bと柱10のコンクリート32との支圧面においては、コンクリート32による上下フランジ20A、20Bの面外変形の拘束が考慮され、上下フランジ20A、20Bの全幅が採用される。
Here, "b eff " in the formula 3.10 represents the width (mm) of the effective bearing area of concrete. Further, "l eff " in the formula 3.10 represents the length (mm) of the effective bearing area of concrete. The width beff is the same as in the case of the calculated rigidity of the elastic rigidity. On the bearing surface between the upper and lower flanges 20A and 20B of the steel beam 20 and the concrete 32 of the pillar 10, the out-of-plane deformation of the upper and lower flanges 20A and 20B by the concrete 32. In consideration of restraint, the entire widths of the upper and lower flanges 20A and 20B are adopted.
また、長さleffは、前述の公知文献3「EN1993-1-8:2005 Eurocode 3: Design of steel structures Part 1-8: Design of joints, BSI, 2010」では、一様な支圧変形が仮定されているため、全支圧面の長さが用いられる(β=1)。
In addition, the length l eff has a uniform bearing deformation in the above-mentioned publicly known document 3 "EN1993-1-8: 2005 Eurocode 3: Design of steel structures Part 1-8: Design of joints, BSI, 2010". Since it is assumed, the length of the total bearing surface is used (β = 1).
一方、図8Aのような回転変形の場合は、応力勾配がある状態に対して、応力が一様な状態であるストレスブロックが仮定される。このため、低減係数βを用いて、図8A及び図8Bに示すように、長さleffは、実際の応力分布と等価な支圧面に換算される。一方、低減係数βは、例えば、公知文献7「EN1992-1-1:2004 Eurocode2: Design of concrete structures Part 1-1: General rules and rules for buildings」では、コンクリート32の圧縮強度fcdに応じた以下の式3.11で定められる。
On the other hand, in the case of rotational deformation as shown in FIG. 8A, a stress block in which the stress is in a uniform state is assumed with respect to a state in which there is a stress gradient. Therefore, using the reduction coefficient β, as shown in FIGS. 8A and 8B, the length l eff is converted into a bearing surface equivalent to the actual stress distribution. On the other hand, the reduction factor beta, for example, a known literature 7 "EN1992-1-1: 2004 Eurocode2: Design of concrete structures Part 1-1: General rules and rules for buildings " in, depending on the compression strength f cd concrete 32 It is defined by the following equation 3.11.
また、公知文献8「日本建築学会: 鉄筋コンクリート柱・鉄骨梁混合構造の設計と施工, 第1版, 2001.1」には、低減係数βは0.6~0.85の範囲であると記載されている。
Further, in the publicly known document 8 "Architectural Institute of Japan: Design and construction of reinforced concrete column / steel beam mixed structure, 1st edition, 2001.1", it is stated that the reduction coefficient β is in the range of 0.6 to 0.85. There is.
さらに、式3.10中の「fjd」は、局所支圧に対するコンクリート32の圧縮耐力であり、以下の式3.12で定義される。
Further, “f jd ” in the formula 3.10 is the compressive strength of the concrete 32 with respect to the local bearing pressure, and is defined by the following formula 3.12.
ここで、式3.12中の「λc」は、局所支圧に対する耐力割増係数である。耐力割増係数λcは、前述の公知文献7「EN1992-1-1:2004 Eurocode2: Design of concrete structures Part 1-1: General rules and rules for buildings」や公知文献8「日本建築学会: 鉄筋コンクリート柱・鉄骨梁混合構造の設計と施工, 第1版, 2001.1」に従い、求められる。例えば、公知文献7によると、以下の式3.13で計算できる。
Here, “λ c ” in Equation 3.12 is the yield strength addition coefficient with respect to the local bearing pressure. The yield strength premium coefficient λ c is described in the above-mentioned publicly known document 7 “EN1992-1-1: 2004 Eurocode2: Design of concrete structures Part 1-1: General rules and rules for buildings” and publicly known document 8 “Architectural Institute of Japan: Reinforced concrete columns ・Design and construction of steel beam mixed structure, 1st edition, 2001.1 ”. For example, according to Known Document 7, it can be calculated by the following formula 3.13.
ここで、式3.12中の「Ac0」は、局所の有効支圧面積(mm2)である。また、式3.12中の「Ac1」は、最大支圧応力分布面積(mm2)である。半空間においては、有効支圧面積Ac0の相似形、かつ、面中心の法線が一致するような投影面が仮定される(図9A及び図9B参照)。投影面においてコンクリート32のエッジから外側の部分が存在する場合は、外側の部分を減じたものを、最大支圧応力分布面積Ac1と設定する(例えば図9Bのモデル参照)。
Here, " Ac0 " in Equation 3.12 is the local effective bearing area (mm 2 ). Further, “ Ac1 ” in the equation 3.12 is the maximum bearing stress distribution area (mm 2 ). In the half-space, a projection plane having a similar shape with an effective bearing area A c0 and having the same normals at the center of the plane is assumed (see FIGS. 9A and 9B). If the outer portion from the edge of the concrete 32 in the projection plane is present, the minus the outer portion is set to the maximum bearing capacity stress distribution area A c1 (e.g. Model see Figure 9B).
式3.12中の「βj」は、支圧面の材料による低減係数である。低減係数βjの値は、ここでは、「1.0」と設定される。なお、敷きモルタル等が用いられる場合は、低減係数βjの値は、例えば「2/3」等と設定できる。
“Β j ” in Equation 3.12 is a reduction coefficient depending on the material of the bearing surface. The value of the reduction coefficient β j is set here as “1.0”. When a spread mortar or the like is used, the value of the reduction coefficient β j can be set to, for example, “2/3”.
また、ストレスブロックによるモーメント抵抗を計算するための腕の長さとしての距離xu,iは、図8A及び図8Bのモデルから、回転中心から支圧応力による合力の作用線までの距離leffを用いて、以下の式3.14で表される。
Further, the distances x u and i as the lengths of the arms for calculating the moment resistance due to the stress block are the distances l eff from the center of rotation to the line of action of the resultant force due to the bearing stress from the models of FIGS. 8A and 8B. Is expressed by the following equation 3.14.
図8A及び図8Bにおいては、上フランジ20Aの上フランジ端部外面抵抗要素24Aaの有効支圧領域の長さは、「leff,t」で例示されている。また、下フランジ20Bの下フランジ端部外面抵抗要素24Daの有効支圧領域の長さは「leff,b」で例示されている。また、上フランジ端部外面抵抗要素24Aaの有効支圧領域の幅、及び、下フランジ端部外面抵抗要素24Daの有効支圧領域の幅は、いずれも「beff」で例示されている。
In FIGS. 8A and 8B, the length of the effective bearing region of the upper flange end outer surface resistance element 24Aa of the upper flange 20A is exemplified by "l eff, t ". Further, the length of the effective bearing region of the lower flange end outer surface resistance element 24Da of the lower flange 20B is illustrated by "l eff, b ". The upper flange end outer surface resistance elements 24Aa of the effective Bearing region having a width, and the width of the effective Bearing region of the lower flange edge outer face resistance element 24Da, which are all exemplified in the "b eff".
初期剛性に対しては、柱10のコンクリート32のうち、上下フランジ20A、20B内方のコンクリート32とその外側のコンクリート32との一体性が保たれ、上下フランジ20A、20Bの内側も支圧抵抗を有する。
With respect to the initial rigidity, the concrete 32 inside the upper and lower flanges 20A and 20B and the concrete 32 outside the upper and lower flanges 20A and 20B of the concrete 32 of the column 10 are kept integrated, and the inner side of the upper and lower flanges 20A and 20B also has bearing resistance. Has.
しかし、終局耐力時においては、上フランジ20Aの上フランジ端部内面抵抗要素24Baと、下フランジ20Bの下フランジ端部内面抵抗要素24Caとは、終局耐力の導出に考慮しないことと設定される。
However, at the time of the ultimate proof stress, the upper flange end inner surface resistance element 24Ba of the upper flange 20A and the lower flange end inner surface resistance element 24Ca of the lower flange 20B are set not to be considered in the derivation of the ultimate proof stress.
これは、終局耐力時は、鉄骨梁20を包絡する矩形部分とこの矩形部分の外側との間のねじれによってコンクリート32が破壊され、柱10の上下フランジ20A、20B内方のコンクリート32との間の一体性を保つことができないとの考えに基づく。矩形部分の外側は、上下フランジ20A、20Bの幅方向端部である。また、上下フランジ20A、20Bの内側は抵抗要素として効かなくなるとの考えに基づく。
This is because the concrete 32 is destroyed by the twist between the rectangular portion surrounding the steel beam 20 and the outside of the rectangular portion at the time of the ultimate yield strength, and between the upper and lower flanges 20A and 20B of the column 10 and the concrete 32 inside. Based on the idea that it is not possible to maintain the unity of. The outside of the rectangular portion is the end portion in the width direction of the upper and lower flanges 20A and 20B. Further, it is based on the idea that the insides of the upper and lower flanges 20A and 20B are not effective as resistance elements.
図8A及び図8Bにおいて、距離xu,iに対応する長さは、上フランジ20Aの上フランジ端部外面抵抗要素24Aaについては「xu,ct」で例示されている。また、下フランジ20Bの下フランジ端部外面抵抗要素24Daついては、距離xu,iに対応する長さは、「xu,cb」で例示されている。
In FIGS. 8A and 8B, the length corresponding to the distance x u, i is exemplified by "x u, ct " for the upper flange end outer surface resistance element 24Aa of the upper flange 20A. Further, with respect to the lower flange end outer surface resistance element 24Da of the lower flange 20B, the length corresponding to the distance x u, i is exemplified by "x u, cb ".
同様に、図8A及び図8Bにおいて、反力Fi,Rdに対応する耐力は、上フランジ20Aの上フランジ端部外面抵抗要素24Aaについては「支圧耐力Fct,Rd」で例示された。また、下フランジ20Bの下フランジ端部外面抵抗要素24Daの支圧耐力については「Fcb,Rd」で例示されている。
Similarly, in FIGS. 8A and 8B, the reaction force F i, yield strength corresponding to Rd, for flange end outer face resistive elements 24Aa on the upper flange 20A is exemplified in "Bearing Strength F ct, Rd". Further, the bearing capacity of the lower flange end outer surface resistance element 24Da of the lower flange 20B is illustrated in "F cc , Rd ".
(フェースベアリングプレートと柱のコンクリートの支圧耐力)
次に、反力Fi,Rdに対応する、フェースベアリングプレート30と柱10のコンクリート32との支圧抵抗についての支圧耐力Fc,fb,Rd(N)を説明する。支圧耐力Fc,fb,Rdは、梁フランジ面とコンクリートの支圧耐力の場合と同様、前述の公知文献3「EN1993-1-8:2005 Eurocode 3: Design of steel structures Part 1-8: Design of joints, BSI, 2010」の以下の式3.15を用いて設定される。また、図10A及び図10Bに示すように、フェースベアリングプレート30とコンクリート32とが一様な支圧状態下にあると仮定されている。
(Concrete bearing capacity of face bearing plate and column)
Then, the reaction force F i, corresponding to Rd, Bearing Strength F c for Bearing resistance between the concrete 32 of theface bearing plate 30 and the bar 10, fb, explaining Rd (N). The bearing capacity F c, fb, and Rd are the same as in the case of the bearing capacity of the beam flange surface and concrete, as described in the above-mentioned publicly known document 3 "EN1993-1-8: 2005 Eurocode 3: Design of steel structures Part 1-8: It is set using the following equation 3.15 of "Design of joints, BSI, 2010". Further, as shown in FIGS. 10A and 10B, it is assumed that the face bearing plate 30 and the concrete 32 are under a uniform bearing pressure state.
次に、反力Fi,Rdに対応する、フェースベアリングプレート30と柱10のコンクリート32との支圧抵抗についての支圧耐力Fc,fb,Rd(N)を説明する。支圧耐力Fc,fb,Rdは、梁フランジ面とコンクリートの支圧耐力の場合と同様、前述の公知文献3「EN1993-1-8:2005 Eurocode 3: Design of steel structures Part 1-8: Design of joints, BSI, 2010」の以下の式3.15を用いて設定される。また、図10A及び図10Bに示すように、フェースベアリングプレート30とコンクリート32とが一様な支圧状態下にあると仮定されている。
Then, the reaction force F i, corresponding to Rd, Bearing Strength F c for Bearing resistance between the concrete 32 of the
ここで、式3.15中の「beff」は、コンクリート32の有効支圧面の幅(mm)である。また、式3.15中の「leff」は、コンクリート32の有効支圧面の長さ(mm)である。幅beffの設定では、弾性剛性の計算剛性と同様、上下フランジ20A、20Bと柱10のコンクリート32との支圧面においては、コンクリート32による上下フランジ20A、20Bの面外変形の拘束が考慮され、上下フランジ20A、20Bの全幅が採用される。
Here, "b eff " in the formula 3.15 is the width (mm) of the effective bearing surface of the concrete 32. Further, "l eff " in the formula 3.15 is the length (mm) of the effective bearing surface of the concrete 32. Setting the width b eff, as with computation rigidity of the elastic stiffness, the upper and lower flanges 20A, in Bearing surface between the concrete 32 and 20B and the bar 10, the vertical by concrete 32 flange 20A, restraint of out-of-plane deformation of the 20B taken into account , The entire width of the upper and lower flanges 20A and 20B is adopted.
長さleffは、前述の公知文献3「EN1993-1-8:2005 Eurocode 3: Design of steel structures Part 1-8: Design of joints, BSI, 2010」、及び、前述の公知文献5「Martin Steenhuis他: Concrete in compression and base plate in bending, HERON Vol. 53, No. 1/2, 2008」の以下の式3.16を用いて設定できる。
The length l eff is described in the above-mentioned public document 3 "EN1993-1-8: 2005 Eurocode 3: Design of steel structures Part 1-8: Design of joints, BSI, 2010" and the above-mentioned public document 5 "Martin Steenhuis". Others: Concrete in compression and base plate in bending, HERON Vol. 53, No. 1/2, 2008 ”can be set using the following equation 3.16.
ここで、式3.16中の「tfb」は、フェースベアリングプレート30の板厚(mm)である。また、式3.16中の「fjd」は、局所支圧に対するコンクリート32の圧縮耐力(N/mm2)である。圧縮耐力fjdは、式3.12、式3.13によって説明されたものと同様である。また、式3.16中の「fy」は、フェースベアリングプレート30の降伏応力(N/mm2)である。
Here, "t fb " in the formula 3.16 is the plate thickness (mm) of the face bearing plate 30. Further, “f jd ” in the formula 3.16 is the compressive strength (N / mm 2 ) of the concrete 32 with respect to the local bearing pressure. The compressive proof stress fjd is the same as that described by Equations 3.12 and 3.13. Further, “ fy ” in the equation 3.16 is the yield stress (N / mm 2 ) of the face bearing plate 30.
また、式3.16中の「γM0」は、鋼材の強度のばらつきを考慮するための低減係数であり、低減係数γM0の値は、ここでは、「1.0」と設定されている。式3.13中で説明した有効支圧面積Ac0(mm2)及び最大支圧応力分布面積Ac1(mm2)について、図11に示す投影面が仮定される。また、低減係数βjの値は、「1.0」と設定される。
Further, "γ M0 " in the formula 3.16 is a reduction coefficient for considering the variation in the strength of the steel material, and the value of the reduction coefficient γ M0 is set to "1.0" here. .. For the effective bearing area A c0 (mm 2 ) and the maximum bearing stress distribution area A c1 (mm 2 ) described in Equation 3.13, the projection plane shown in FIG. 11 is assumed. Further, the value of the reduction coefficient β j is set to “1.0”.
また、ストレスブロックによるモーメント抵抗を計算するための腕の長さとしての距離xu,iは、図10A及び図10Bのモデルから、回転中心から支圧応力による合力の作用線までの距離leffを用いて、以下の式3.17で表される。
Further, the distances x u and i as the lengths of the arms for calculating the moment resistance due to the stress block are the distances l eff from the center of rotation to the line of action of the resultant force due to the bearing stress from the models of FIGS. 10A and 10B. Is expressed by the following equation 3.17.
以上の説明では、接合部14の終局状態におけるモーメント耐力を、各抵抗要素の最大耐力の累加によって、上界から予測する方法が記された。この方法に基づいて鉄骨梁20の各部の寸法や、抵抗要素の数量(有無、ある場合は数量も)、位置を設定することで、柱10と梁12との接合部14のモーメント耐力を、所望のモーメント耐力に設定することができる。すなわち、必要モーメント耐力Mj,Ed以上となるように調整することができる。
In the above description, a method of predicting the moment proof stress of the joint portion 14 in the ultimate state from the upper bound by accumulating the maximum proof stress of each resistance element has been described. By setting the dimensions of each part of the steel beam 20 and the quantity (presence / absence, if any) and position of the resistance elements based on this method, the moment strength of the joint portion 14 between the column 10 and the beam 12 can be determined. The desired moment strength can be set. That is, it can be adjusted so that the required moment proof stress M j, Ed or more.
(実施例1)
(計算結果と実験結果の比較)
本開示の柱梁接合部の効果を確認するため、本開示図1及び図2に示す実施形態の柱梁接合部について、梁に鉛直方向下向きの-Z方向に荷重を作用させて、接合部の回転角とモーメントとの関係を取得した。そして、式1~式3.17を用いて接合部の回転剛性及びモーメント耐力を計算した結果と実験結果とを比較した。 (Example 1)
(Comparison of calculation results and experimental results)
In order to confirm the effect of the beam-column joint of the present disclosure, in order to confirm the effect of the beam-column joint of the present disclosure, a load is applied to the beam in the downward -Z direction in the vertical direction with respect to the beam-column joint of the embodiment shown in FIGS. The relationship between the rotation angle and the moment was obtained. Then, the results of calculating the rotational rigidity and the moment strength of thejoint using Equations 1 to 3.17 were compared with the experimental results.
(計算結果と実験結果の比較)
本開示の柱梁接合部の効果を確認するため、本開示図1及び図2に示す実施形態の柱梁接合部について、梁に鉛直方向下向きの-Z方向に荷重を作用させて、接合部の回転角とモーメントとの関係を取得した。そして、式1~式3.17を用いて接合部の回転剛性及びモーメント耐力を計算した結果と実験結果とを比較した。 (Example 1)
(Comparison of calculation results and experimental results)
In order to confirm the effect of the beam-column joint of the present disclosure, in order to confirm the effect of the beam-column joint of the present disclosure, a load is applied to the beam in the downward -Z direction in the vertical direction with respect to the beam-column joint of the embodiment shown in FIGS. The relationship between the rotation angle and the moment was obtained. Then, the results of calculating the rotational rigidity and the moment strength of the
接合部14における鉄骨梁20の梁端部24のモーメントと回転角との関係は、式1~式3.17の手順に則り、初期の回転剛性Sj,ini(Nmm/rad)及び最大モーメント耐力Mj,Rd(Nmm)を求めることで、バイリニアモデルで定義できる。ここでは、最大モーメント耐力Mj,Rdの2/3倍を弾性限と設定した。設定された弾性限を超えるモーメントが作用した場合は、初期の回転剛性Sj,iniよりも回転剛性が低下するものと規定した。
The relationship between the moment of the beam end 24 of the steel beam 20 and the angle of rotation at the joint 14 is the initial rotational rigidity Sj, ini (Nmm / rad) and the maximum moment according to the procedures of equations 1 to 3.17. It can be defined by a bilinear model by finding the yield strength M j and Rd (N mm). Here, the elastic limit is set to 2/3 times the maximum moment proof stress Mj and Rd . It is stipulated that when a moment exceeding the set elastic limit acts, the rotational rigidity is lower than the initial rotational rigidity Sj, ini .
また、最大モーメント耐力Mj,Rd(Nmm)が成立するときの割線剛性Sj(Nmm/rad)は、Sj,iniを剛性低減率η(>1)で除した値で定めたトリリニアモデルで定義されるものとした(図12参照)。トリリニアモデルが適用される場合は、回転剛性Sj,iniを弾性回転剛性として接合部の作用モーメントが計算される。また、最大モーメント耐力Mj,Rdの2/3倍以下のモーメントが作用した場合は、そのまま実施できるものとした。
Further, the secant rigidity S j (Nmm / rad) when the maximum moment proof stress M j, Rd (N mm) is established is a trilinear model defined by the value obtained by dividing S j, ini by the rigidity reduction rate η (> 1). It was assumed that it was defined in (see FIG. 12). When the trilinear model is applied, the acting moment of the joint is calculated with the rotational stiffness Sj and ini as the elastic rotational stiffness. Further, when a moment of 2/3 times or less of the maximum moment proof stress Mj and Rd acts, it can be carried out as it is.
そして、回転剛性Sj,iniを弾性回転剛性として接合部の作用モーメントを計算し、最大モーメント耐力Mj,Rdの2/3倍を超えるモーメントが作用した場合は、新たに割線剛性Sjを弾回転剛性として接合部の作用モーメントを計算した。計算された作用モーメントが最大モーメント耐力Mj,Rd以下であれば、実施可能、すなわち、本開示の請求の範囲内であると判断した。また、計算された作用モーメントが最大モーメント耐力Mj,Rdを超えた場合は、実施不可能、すなわち、本開示の請求の範囲外であると判断した。なお、回転剛性Sj,ini及び最大モーメント耐力Mj,Rd、ηは、以下の式4.1、式4.2及び式4.3によって設定される。
Then, the acting moment of the joint is calculated with the rotational rigidity S j and ini as the elastic rotational rigidity, and when a moment exceeding 2/3 times the maximum moment bearing capacity M j and Rd acts, a new split line rigidity S j is added. The acting moment of the joint was calculated as the bullet rotation rigidity. If the calculated working moment is equal to or less than the maximum moment proof stress Mj, Rd , it is determined that it is feasible, that is, it is within the scope of the claims of the present disclosure. Further, when the calculated action moment exceeds the maximum moment proof stress Mj, Rd , it is determined that it is not feasible, that is, it is outside the scope of the claims of the present disclosure. The rotational rigidity S j, ini and the maximum moment proof stress M j, Rd , η are set by the following equations 4.1, 4.2, and 4.3.
図12に記載の変形性能φcdは、各抵抗要素が変形量の限界に達するときの回転角φcd,iのうちの最小値(rad)である。終局回転中心から各抵抗要素までの距離xu,iと回転角φjとの積が各抵抗要素の変形量の限界δu,i(mm)と等しい場合において、回転角φjについて解くと、最小値の回転角φcd,iは、φcd,i=δu,i/xu,iによって求めることができる。
The deformation performance φ cd shown in FIG. 12 is the minimum value (rad) of the rotation angles φ cd and i when each resistance element reaches the limit of the amount of deformation. When the product of the distance x u, i from the ultimate rotation center to each resistance element and the rotation angle φ j is equal to the limit of the amount of deformation of each resistance element δ u, i (mm), the rotation angle φ j is solved. , The minimum rotation angle φ cd, i can be obtained by φ cd, i = δ u, i / x u, i .
(接合部補強筋の弾性剛性と耐力)
実施例1では、接合部補強筋28をi=1番目の抵抗要素と設定した場合、弾性剛性kr(N/mm)、弾性時の力の釣り合いを満たす弾性回転中心から鉄筋までの距離(腕の長さ)xr(=xd,1,xl,1(mm))、終局耐力時の回転中心から鉄筋までの距離(腕の長さ)xu,r(=xu,1(mm))、及び、耐力Fr,Rd(N)は、以下の式4.4~式4.11を用いて求めた。 (Elastic rigidity and yield strength of joint reinforcement)
In the first embodiment, when the joint reinforcingbar 28 is set as the i = first resistance element, the elastic rigidity kr (N / mm) and the distance from the elastic rotation center satisfying the balance of the elastic force ( Arm length) x r (= x d, 1 , x l, 1 (mm)), distance from the center of rotation to the reinforcing bar at the time of ultimate yield strength (arm length) x u, r (= x u, 1) (Mm)) and the proof stress Fr, Rd (N) were determined using the following formulas 4.4 to 4.11.
実施例1では、接合部補強筋28をi=1番目の抵抗要素と設定した場合、弾性剛性kr(N/mm)、弾性時の力の釣り合いを満たす弾性回転中心から鉄筋までの距離(腕の長さ)xr(=xd,1,xl,1(mm))、終局耐力時の回転中心から鉄筋までの距離(腕の長さ)xu,r(=xu,1(mm))、及び、耐力Fr,Rd(N)は、以下の式4.4~式4.11を用いて求めた。 (Elastic rigidity and yield strength of joint reinforcement)
In the first embodiment, when the joint reinforcing
式中の各パラメータの定義は、式1~式3.17で説明したものと同一である。また、下記の表1は、鉄筋の剛性及び耐力計算に用いる各パラメータを示す。実施例1における実験では、表1に示す条件(Er,ar,hr,α,N,ksc,hs,ds,lh,Ea,Ia,ξ,dr,fr,y,xn,xu,n)を用いて、式4.4~式4.11の「kr,kslip,Ksc,ν,ξ,xd,1,Fr,Rd,xu,1」が計算された。
The definition of each parameter in the equation is the same as that described in Equations 1 to 3.17. In addition, Table 1 below shows each parameter used for calculating the rigidity and proof stress of the reinforcing bar. In the experiment in Example 1, the conditions shown in Table 1 ( Er , a r , h r , α, N, k sc , h s , d s , l h , E a , I a , ξ, dr , f using r, y, x n, x u, a n), "k r of formula 4.4 to formula 4.11, k slip, K sc, ν, ξ, x d, 1, F r, Rd, x u, 1 ”was calculated.
(柱内のスタッドのせん断に対する弾性剛性と耐力)
実施例1では、柱10内のスタッド26をi=2番目の抵抗要素と設定した場合、せん断による弾性剛性kst(N/mm)、弾性時の力の釣り合いを満たす終局回転中心からスタッドの根元までの距離(すなわち、腕の長さ)xst(=xd,2,xl,2(mm))、終局耐力時の回転中心から鉄筋までの距離(すなわち、腕の長さ)xu,st(=xu,2(mm))、及び、耐力Fst,Rd(N)は、以下の式4.12~式4.20を用いて求めることができる。 (Elastic rigidity and yield strength against shear of studs in columns)
In the first embodiment, when thestud 26 in the column 10 is set as the i = second resistance element, the elastic rigidity kst (N / mm) due to shearing and the stud from the ultimate rotation center satisfying the balance of the force at the time of elasticity. Distance to root (ie, arm length) x st (= x d, 2 , x l, 2 (mm)), distance from center of rotation to reinforcing bar at ultimate strength (ie, arm length) x u, st (= x u, 2 (mm)) and proof stress F st, Rd (N) can be obtained by using the following formulas 4.12 to 4.20.
実施例1では、柱10内のスタッド26をi=2番目の抵抗要素と設定した場合、せん断による弾性剛性kst(N/mm)、弾性時の力の釣り合いを満たす終局回転中心からスタッドの根元までの距離(すなわち、腕の長さ)xst(=xd,2,xl,2(mm))、終局耐力時の回転中心から鉄筋までの距離(すなわち、腕の長さ)xu,st(=xu,2(mm))、及び、耐力Fst,Rd(N)は、以下の式4.12~式4.20を用いて求めることができる。 (Elastic rigidity and yield strength against shear of studs in columns)
In the first embodiment, when the
式中の各パラメータの定義は、式1~式3.17で説明したものと同一である。また、表2は、柱内スタッドの剛性及び耐力計算に用いる各パラメータを示す。実施例1における実験では、表2に示す条件(φst,nst,xn,Ds,φ1,sσqa,sca,φ2,fcd,Ec,c,s,nr)を用いて、式4.12~式4.20の「k2,xd,2,F2,Rd,xu,2,Tst1,Tst2,Tst3,cσt,Aqc」が計算された。
The definition of each parameter in the equation is the same as that described in Equations 1 to 3.17. Table 2 shows the parameters used for calculating the rigidity and proof stress of the column studs. In the experiment in Example 1, the conditions shown in Table 2 (φ st , n st , x n , D s , φ 1 , s σ qa , sc a, φ 2 , f cd , E c , c, s, n r ) To "k 2 , x d, 2 , F 2, Rd , x u, 2 , T st1 , T st2 , T st3 , c σ t , A qc " in equations 4.12 to 4.20. Was calculated.
(梁本体のフランジ面とコンクリートの支圧に対する弾性剛性と耐力)
図13A及び図13Bに示すように、実施例1では、初期剛性に対しては、上下フランジ20A、20Bの内外面の全4か所(すなわち、i=3, 4, 5, 6)で支圧抵抗が生じると仮定した。また、最大耐力に対しては、上下フランジ20A、20Bの外面のみの全2か所(すなわち、i=3, 6)で支圧抵抗が生じると仮定した。 (Elastic rigidity and yield strength against the bearing surface of the beam body and concrete)
As shown in FIGS. 13A and 13B, in the first embodiment, the initial rigidity is supported at all four locations (that is, i = 3, 4, 5, 6) on the inner and outer surfaces of the upper and lower flanges 20A and 20B. It was assumed that pressure resistance would occur. Further, for the maximum proof stress, it was assumed that bearing resistance occurs at all two places (that is, i = 3, 6) only on the outer surfaces of the upper and lower flanges 20A and 20B.
図13A及び図13Bに示すように、実施例1では、初期剛性に対しては、上下フランジ20A、20Bの内外面の全4か所(すなわち、i=3, 4, 5, 6)で支圧抵抗が生じると仮定した。また、最大耐力に対しては、上下フランジ20A、20Bの外面のみの全2か所(すなわち、i=3, 6)で支圧抵抗が生じると仮定した。 (Elastic rigidity and yield strength against the bearing surface of the beam body and concrete)
As shown in FIGS. 13A and 13B, in the first embodiment, the initial rigidity is supported at all four locations (that is, i = 3, 4, 5, 6) on the inner and outer surfaces of the upper and
これは、初期剛性に対しては、上下フランジ20A、20B内方のコンクリート32とその外側のコンクリート32との一体性が保たれ、上下フランジ20A、20Bの内側も支圧抵抗を有するとの考えに基づく。しかし、終局状態においては、鉄骨梁20を包絡する矩形部分とその外側(すなわち、上下フランジ20A、20B幅方向端部)の間のねじれによってコンクリート32が破壊し、上下フランジ20A、20Bの内側は抵抗要素として効かなくなるものとの考えに基づく。
It is considered that the upper and lower flanges 20A and 20B maintain the integrity of the inner concrete 32 and the outer concrete 32 with respect to the initial rigidity, and the inner side of the upper and lower flanges 20A and 20B also has bearing resistance. based on. However, in the final state, the concrete 32 is destroyed by the twist between the rectangular portion surrounding the steel beam 20 and the outside thereof (that is, the upper and lower flanges 20A, 20B width direction ends), and the inside of the upper and lower flanges 20A, 20B is Based on the idea that it will not work as a resistance factor.
上下フランジ20A、20B面とコンクリート32との支圧の弾性剛性kc(N/mm)、弾性時の抵抗要素iの支圧変位の代表点から回転中心までの距離xd,c,i(mm)、弾性時の力の釣り合いを満たす回転中心から支圧力の重心までの距離(すなわち、腕の長さ)xl,c,i(mm)、終局耐力時の回転中心から支圧力の重心までの距離(すなわち、腕の長さ)xu,c,i(mm)、及び、耐力Fc,i,Rd(N)は、以下の式4.21~式4.35を用いて設定できる。抵抗要素iは、上下フランジ20A、20Bの内外面からなる全4か所である(すなわち、i=3, 4, 5, 6)。
Elastic rigidity of the bearing pressure between the upper and lower flanges 20A and 20B and the concrete 32 k c (N / mm), the distance from the representative point of the bearing pressure displacement of the resistance element i during elasticity x d, c, i ( mm), the distance from the center of rotation to the center of gravity of the supporting pressure (that is, the length of the arm) x l, c, i (mm) that satisfies the balance of the force at the time of elasticity, the center of gravity of the supporting pressure from the center of rotation at the time of the ultimate endurance The distance to (that is, the length of the arm) x u, c, i (mm) and the endurance F c, i, Rd (N) are set using the following equations 4.21 to 4.35. it can. The resistance elements i are all four locations including the inner and outer surfaces of the upper and lower flanges 20A and 20B (that is, i = 3, 4, 5, 6).
また、表3は、鉄骨梁の柱コンクリートに埋め込まれた部分と柱コンクリートとの界面の支圧抵抗による剛性及び耐力計算に用いる各パラメータを示す。式4.21~式4.35中の各パラメータとして、表3に示す値が用いられた。
In addition, Table 3 shows each parameter used for calculating the rigidity and proof stress due to the bearing resistance at the interface between the portion of the steel beam embedded in the column concrete and the column concrete. The values shown in Table 3 were used as each parameter in Equations 4.21 to 4.35.
ここで、式4.21~式4.35中において、「Bf」は、鉄骨梁20の上下フランジ20A、20Bの幅(mm)である。また、「tw」は、鉄骨梁20のウェブ20Cの板厚(mm)である。また、「tfb」は、フェースベアリングプレート30の板厚(mm)である。また、「Lem」は、鉄骨梁20の柱10のコンクリート32への埋め込み長さ(mm)である。
Here, in the formulas 4.21 to 4.35, “B f ” is the width (mm) of the upper and lower flanges 20A and 20B of the steel frame beam 20. Further, " tw " is the plate thickness (mm) of the web 20C of the steel frame beam 20. Further, “t fb ” is the plate thickness (mm) of the face bearing plate 30. Further, " Lem " is the embedded length (mm) of the column 10 of the steel frame beam 20 in the concrete 32.
また、式4.21~式4.35中の「yn」は、柱10のコンクリート32外面(フェースベアリングプレート30側)から弾性時の力の釣り合いを満たす弾性回転中心までのx軸と平行な方向における水平距離(mm)である。また、「yu,n」は、柱10のコンクリート32の外面から終局回転中心までの水平距離(mm)である。柱10のコンクリート32の外面は、フェースベアリングプレート30側の面である。
Further, "y n " in the formulas 4.21 to 4.35 is parallel to the x-axis from the concrete 32 outer surface (face bearing plate 30 side) of the pillar 10 to the elastic rotation center that satisfies the balance of the elastic force. Horizontal distance (mm) in any direction. Further, " yu, n " is a horizontal distance (mm) from the outer surface of the concrete 32 of the pillar 10 to the ultimate rotation center. The outer surface of the concrete 32 of the pillar 10 is the surface on the face bearing plate 30 side.
(フェースベアリングプレートとコンクリートの支圧に対する弾性剛性と耐力)
実施例1では、ウェブ20Cによるフェースベアリングプレート30の面外変形拘束は無視した。また、下フランジ20Bの軸線上に作用する圧縮力が、フェースベアリングプレート30の有効支圧領域を介して面内で一様な支圧力としてコンクリート32に伝達されるものと設定した。また、フェースベアリングプレート30とコンクリート32の支圧を、i=7番目の抵抗要素と設定した。 (Elastic rigidity and yield strength against bearing pressure of face bearing plate and concrete)
In Example 1, the out-of-plane deformation restraint of theface bearing plate 30 by the web 20C was ignored. Further, it is set that the compressive force acting on the axis of the lower flange 20B is transmitted to the concrete 32 as a uniform bearing pressure in the plane through the effective bearing pressure region of the face bearing plate 30. Further, the bearing pressure of the face bearing plate 30 and the concrete 32 was set as the i = 7th resistance element.
実施例1では、ウェブ20Cによるフェースベアリングプレート30の面外変形拘束は無視した。また、下フランジ20Bの軸線上に作用する圧縮力が、フェースベアリングプレート30の有効支圧領域を介して面内で一様な支圧力としてコンクリート32に伝達されるものと設定した。また、フェースベアリングプレート30とコンクリート32の支圧を、i=7番目の抵抗要素と設定した。 (Elastic rigidity and yield strength against bearing pressure of face bearing plate and concrete)
In Example 1, the out-of-plane deformation restraint of the
また、弾性剛性kc,fb(N/mm)、弾性時の支圧領域の代表変位の作用線から弾性回転中心までの距離xd,c,fb(=xd,7(mm))、弾性時の力の釣り合いを満たす弾性回転中心から支圧力の重心までの距離(すなわち、腕の長さ)xl,c,fb(=xl,7(mm))、終局耐力時の回転中心から支圧力の重心までの距離(すなわち、腕の長さ)xu,c,fb(mm)、及び、耐力Fc,fb,Rd(N)は、以下の式4.36~式4.43を用いて設定した。
In addition, elastic rigidity k c, fb (N / mm), distance from the action line of the representative displacement of the bearing pressure region during elasticity to the center of elastic rotation x d, c, fb (= x d, 7 (mm)), The distance from the elastic center of rotation that satisfies the balance of force during elasticity to the center of gravity of the supporting pressure (that is, the length of the arm) x l, c, fb (= x l, 7 (mm)), the center of rotation during the ultimate endurance The distance from to the center of gravity of the supporting pressure (that is, the length of the arm) x u, c, fb (mm) and the endurance F c, fb, Rd (N) are given by the following equations 4.36 to 4. It was set using 43.
式中の各パラメータの定義は式1~式3.17で説明したものと同一である。また、表4は、フェースベアリングプレートとコンクリートとの支圧による剛性及び耐力計算に用いる各パラメータを示す。実施例1における実験は、表4に示す条件(Ec,Bf,tw,tfb,fy,γM0,βj,fcd、fb,Ac0,Ac1)を用いて、式4.36~式4.43から「kc,fb,xd,c,fb,xl,c,fb,Fc,fb,Rd」を計算した。
The definition of each parameter in the equation is the same as that described in Equations 1 to 3.17. In addition, Table 4 shows each parameter used for calculating the rigidity and proof stress due to the bearing pressure between the face bearing plate and concrete. The experiment in Example 1 was carried out using the conditions shown in Table 4 (E c , B f , t w , t fb , f y , γ M0 , β j , f cd, fb , A c0 , Ac1 ). From 4.36 to 4.43, "k c, fb , x d, c, fb , x l, c, fb , F c, fb, Rd " were calculated.
(実験と評価モデルの弾性剛性と耐力の比較)
実施例1では、弾性剛性については、鉛直方向及び水平方向の外力と内力のつり合い条件から、梁端部24の弾性回転中心の位置を示す「xn」、「yn」を求め、式4.1を用いて初期の回転剛性Sj,iniを求めた。 (Comparison of elastic rigidity and yield strength of experimental and evaluation models)
In the first embodiment, regarding the elastic rigidity, “x n ” and “y n ” indicating the positions of the elastic rotation centers of thebeam end portion 24 are obtained from the equilibrium conditions of the external force and the internal force in the vertical and horizontal directions, and the equation 4 The initial rotational stiffness Sj, ini was determined using .1.
実施例1では、弾性剛性については、鉛直方向及び水平方向の外力と内力のつり合い条件から、梁端部24の弾性回転中心の位置を示す「xn」、「yn」を求め、式4.1を用いて初期の回転剛性Sj,iniを求めた。 (Comparison of elastic rigidity and yield strength of experimental and evaluation models)
In the first embodiment, regarding the elastic rigidity, “x n ” and “y n ” indicating the positions of the elastic rotation centers of the
また、終局モーメント耐力については、全抵抗要素の単純累加強度と上界定理とから、最大モーメント耐力Mj,Rdを最小とする終局回転中心の位置を表す「xu,n」、「yu,n」を求めた。剛性低減率ηは、実験の非線形化後の剛性とよく対応するのは3.0程度であったので、ここでは、剛性低減率ηの値を「3.0」と設定した。
Further, for the ultimate moment capacity, and a simple cumulative strength and upper bound theorem total resistance element, the maximum moment capacity M j, represents the position of the eventual rotation center to minimize Rd "x u, n", "y u , N "was calculated. Since the rigidity reduction rate η was about 3.0, which corresponded well with the rigidity after the non-linearization of the experiment, the value of the rigidity reduction rate η was set to “3.0” here.
実験結果と評価モデルによるトリリニアを比較して図14に示す。図14における縦軸は、接合部のモーメントであると共に、横軸は、接合部の回転角である。また、図14中の実線は、実験結果の履歴を表すと共に、点線は、評価モデルによるトリリニアを表す。実験の接合部14のモーメントは、柱10のコンクリート32のフェース位置で定義した。柱10のコンクリート32のフェース位置は、図1においてX軸方向と直交する柱10のコンクリート32の側表面のうち、X軸と反対側の表面である。
FIG. 14 shows a comparison between the experimental results and the trilinear by the evaluation model. The vertical axis in FIG. 14 is the moment of the joint, and the horizontal axis is the rotation angle of the joint. The solid line in FIG. 14 represents the history of the experimental results, and the dotted line represents the trilinear according to the evaluation model. The moment of the joint 14 in the experiment was defined by the face position of the concrete 32 of the column 10. The face position of the concrete 32 of the pillar 10 is the surface of the side surface of the concrete 32 of the pillar 10 orthogonal to the X-axis direction in FIG. 1 on the side opposite to the X-axis.
図14を見ると、実験と評価モデルはよく一致していることがわかる。
Looking at FIG. 14, it can be seen that the experiment and the evaluation model are in good agreement.
弾性範囲での繰り返し載荷に対する除荷サイクルの回転剛性と評価モデルとの比較を、図15に示す。図15における縦軸は、除荷サイクルにおける接合部の回転剛性であると共に、横軸は、サイクル数(すなわち、繰り返し回数)である。また、図15中のプロット点は、実験結果を表すと共に、点線は、評価モデルを表す。評価モデルの回転剛性は、実験下限値を概ね評価できている。以上の比較結果における具体的な数値を、表5に示す。
FIG. 15 shows a comparison between the rotational rigidity of the unloading cycle and the evaluation model for repeated loading in the elastic range. The vertical axis in FIG. 15 is the rotational rigidity of the joint in the unloading cycle, and the horizontal axis is the number of cycles (that is, the number of repetitions). The plot points in FIG. 15 represent the experimental results, and the dotted lines represent the evaluation model. The rotational rigidity of the evaluation model can be evaluated by roughly evaluating the lower limit of the experiment. Table 5 shows specific numerical values in the above comparison results.
表5は、接合部の回転剛性及びモーメント耐力の実験結果と本開示による計算結果とを示す。実験の平均値に対し、終局モーメント耐力は、93%の評価精度である。また、回転剛性は、76~77%の評価精度である。モーメント耐力については、過大評価しない、安全側の計算結果である。
Table 5 shows the experimental results of the rotational rigidity and the moment strength of the joint and the calculation results according to the present disclosure. The ultimate moment strength is 93% of the average value of the experiment. The rotational rigidity has an evaluation accuracy of 76 to 77%. The moment strength is a calculation result on the safety side that is not overestimated.
また、回転剛性については、2割程度の評価誤差は接合部に作用するモーメントの評価誤差にはほぼ影響しない。このため、本開示における評価モデルは、実用上問題がない精度を有しているといえる。
Further, regarding the rotational rigidity, an evaluation error of about 20% has almost no effect on the evaluation error of the moment acting on the joint. Therefore, it can be said that the evaluation model in the present disclosure has accuracy that does not cause any problem in practical use.
以上より、本開示の柱梁接合部の設計方法によるトリリニアモデルは、弾性剛性及び最大モーメント耐力ともに、本実験結果と、よく対応した。従って、本開示に記載の計算方法を用いて、接合部の回転剛性Sj及び最大モーメント耐力Mj,Rdを精度よく評価できることが確認できた。
From the above, the trilinear model by the method of designing the beam-column joint of the present disclosure corresponds well with the results of this experiment in terms of both elastic rigidity and maximum moment resistance. Therefore, it was confirmed that the rotational rigidity Sj and the maximum moment proof stress Mj, Rd of the joint can be accurately evaluated by using the calculation method described in the present disclosure.
これにより、前記鉄骨梁が支持する荷重及び前記鉄骨梁における前記柱のコンクリートの内部に配置された部分の回転剛性Sjによって前記鉄骨梁から前記柱に作用するモーメントの推定値と、前記柱と梁との接合部が抗することのできる最大モーメント耐力とを、精度よく比較することができる。結果、本開示の柱梁接合部においては、柱と梁との接合部に顕著な不可逆変形(すなわち、塑性化)を生じることを防ぎ、前記鉄骨梁のたわみの安定性と前記柱の健全性を確保することが可能となる。
As a result, the estimated value of the moment acting from the steel beam to the column by the load supported by the steel beam and the rotational rigidity Sj of the portion of the steel beam arranged inside the concrete of the column, and the column It is possible to accurately compare the maximum moment bearing capacity that the joint with the beam can withstand. As a result, in the column-beam joint of the present disclosure, it is possible to prevent significant irreversible deformation (that is, plasticization) from occurring at the joint between the columns and beams, and to stabilize the deflection of the steel beam and the soundness of the columns. Can be secured.
(実施例2)
また、実施例2においても、柱梁接合部の設計を行い、接合部の回転剛性とモーメント耐力とを評価した。接合部の回転剛性とモーメント耐力との評価は、上記実施例1で説明した接合部の回転剛性とモーメント耐力の評価方法に基づいて行った。本開示の条件を満たす本開示例を、実施例として示す。実施例は、本開示の評価方法に従って計算した回転剛性Sjと鉄骨梁が支持する荷重から推定した、接合部に作用するモーメント(必要モーメント耐力)Mj,Edが、接合部の最大モーメント耐力(保有モーメント耐力)Mj,Rdを超えない例である。 (Example 2)
Further, in the second embodiment as well, the beam-column joint was designed and the rotational rigidity and the moment strength of the joint were evaluated. The evaluation of the rotational rigidity and the moment proof stress of the joint portion was performed based on the evaluation method of the rotational rigidity and the moment proof stress of the joint portion described in Example 1 above. An example of the present disclosure that satisfies the conditions of the present disclosure is shown as an example. In the embodiment, the moments acting on the joint (required moment proof stress) M j, Ed estimated from the rotational rigidity Sj calculated according to the evaluation method of the present disclosure and the load supported by the steel beam are the maximum moment proof stress of the joint. (Holding moment proof stress) This is an example that does not exceed Mj and Rd .
また、実施例2においても、柱梁接合部の設計を行い、接合部の回転剛性とモーメント耐力とを評価した。接合部の回転剛性とモーメント耐力との評価は、上記実施例1で説明した接合部の回転剛性とモーメント耐力の評価方法に基づいて行った。本開示の条件を満たす本開示例を、実施例として示す。実施例は、本開示の評価方法に従って計算した回転剛性Sjと鉄骨梁が支持する荷重から推定した、接合部に作用するモーメント(必要モーメント耐力)Mj,Edが、接合部の最大モーメント耐力(保有モーメント耐力)Mj,Rdを超えない例である。 (Example 2)
Further, in the second embodiment as well, the beam-column joint was designed and the rotational rigidity and the moment strength of the joint were evaluated. The evaluation of the rotational rigidity and the moment proof stress of the joint portion was performed based on the evaluation method of the rotational rigidity and the moment proof stress of the joint portion described in Example 1 above. An example of the present disclosure that satisfies the conditions of the present disclosure is shown as an example. In the embodiment, the moments acting on the joint (required moment proof stress) M j, Ed estimated from the rotational rigidity Sj calculated according to the evaluation method of the present disclosure and the load supported by the steel beam are the maximum moment proof stress of the joint. (Holding moment proof stress) This is an example that does not exceed Mj and Rd .
また、本開示の条件を満たさない例本開示を、比較例としてそれぞれ示す。比較例は、本開示の評価方法に従って計算した回転剛性Sjと鉄骨梁が支持する荷重から推定した、接合部に作用するモーメントMj,Edが、接合部の最大モーメント耐力Mj,Rd以上になる例である。
Examples of examples that do not satisfy the conditions of the present disclosure The present disclosures are shown as comparative examples. In the comparative example, the moments M j and Ed acting on the joint estimated from the rotational rigidity S j calculated according to the evaluation method of the present disclosure and the load supported by the steel beam are equal to or greater than the maximum moment strength M j and Rd of the joint. This is an example of
設計の条件は、表6に示す材料、表7に示す荷重条件、鉄骨梁の両端部の間の距離(すなわち、梁長さ)、及び、当該鉄骨梁が荷重を負担する支配幅である。設計の結果を表8、表9、表10及び表11に示す。表8~表11に示すように、No.1~No.101の101個の試料が設計された。なお、表8中では、No.1~No.48の48個の試料の設計条件が示されると共に、表9中では、No.49~No.101の53個の試料の設計条件が示されている。また、表10中では、No.1~No.48の48個の試料の設計結果が示されると共に、表11中では、No.49~No.101の53個の試料の設計結果が示されている。
The design conditions are the materials shown in Table 6, the load conditions shown in Table 7, the distance between both ends of the steel beam (that is, the beam length), and the control width in which the steel beam bears the load. The results of the design are shown in Table 8, Table 9, Table 10 and Table 11. As shown in Tables 8 to 11, No. 1 to No. 101 samples of 101 were designed. In Table 8, No. 1 to No. The design conditions of 48 samples of 48 are shown, and in Table 9, No. 49-No. The design conditions for 53 samples of 101 are shown. In addition, in Table 10, No. 1 to No. The design results of 48 samples of 48 are shown, and in Table 11, No. 49-No. The design results of 53 samples of 101 are shown.
なお、本実施例2では、接合部の最大(保有)モーメント耐力と必要モーメント耐力との比較を行った場合において、接合部の弾性回転剛性を仮定したときの接合部に発生するモーメントを接合部が保有するモーメント耐力で除した値(Mj,Ed/Mj,Rd)が、1.00超になった場合を比較例として設定した。
In the second embodiment, when the maximum (holding) moment proof stress of the joint and the required moment proof stress are compared, the moment generated in the joint when the elastic rotational rigidity of the joint is assumed is the joint. The case where the value (M j, Ed / M j, Rd ) divided by the moment strength possessed by the above exceeds 1.00 was set as a comparative example.
表7中の固定積載荷重(SDL)は、構造体の自重Swを除き、梁に常時作用する荷重である。また、変動荷重(LL)は、構造体の自重Sw及び固定積載荷重を除き建物の共用期間中に作用すると考えられる最大の荷重である。また、固定積載荷重、変動荷重、構造体の自重の和と支配幅との積を、等分布の積載荷重w(表8及び表9参照)と設定する。
The fixed load (SDL) in Table 7 is a load that always acts on the beam except for the own weight Sw of the structure. Further, the variable load (LL) is the maximum load that is considered to act during the common period of the building except for the own weight Sw of the structure and the fixed load. Further, the product of the fixed load, the variable load, the sum of the weights of the structure and the control width is set as the evenly distributed load w (see Tables 8 and 9).
また、表8及び表9中の「Lem」は、柱コンクリートに対する梁の埋め込み長さである。また、「Ds」は、床スラブの厚さを表す。また、「H、Bf、tw、tf」は、それぞれ、鉄骨梁の断面の高さ、フランジの幅、ウェブの板厚、フランジの板厚を表す。また、「Ia」は、鉄骨梁の断面2次モーメントを表す。また、「tfb」は、フェースベアリングプレートの板厚を表す。
Further, “ Lem ” in Tables 8 and 9 is the embedded length of the beam in the column concrete. Further, "D s " represents the thickness of the floor slab. Further, "H, B f , t w , t f " represent the height of the cross section of the steel frame beam, the width of the flange, the thickness of the web, and the thickness of the flange, respectively. Further, "I a " represents the moment of inertia of area of the steel beam. Further, "t fb " represents the plate thickness of the face bearing plate.
表6及び表7に示す設計条件は、不変と設定した。また、鉄骨梁の断面寸法(H、Bf、tw、tf)、柱コンクリートに対する梁の埋め込み長さLem、及び、付加部材(すなわち、柱内スタッドとフェースベアリングプレート)の有無を、パラメータとして、本開示で提案する接合部の設計方法を用いて、接合部の回転剛性Sj、接合部の最大モーメント耐力Mj,Rd、及び、接合部に発生するモーメントMj,Edを計算した。また、埋め込み長さLemは、柱の径及び柱の鉄骨によって制限される最大の埋め込み可能寸法と設定した。
The design conditions shown in Tables 6 and 7 were set to be invariant. The cross-sectional dimensions of the steel beam (H, B f, t w , t f), the embedded length of the beam relative to the pillar concrete L em, and the presence or absence of the additional member (i.e., columns in the stud and the face bearing plate), As parameters, the rotational rigidity S j of the joint, the maximum moment bearing capacity M j, Rd of the joint, and the moments M j, Ed generated at the joint are calculated using the joint design method proposed in the present disclosure. did. The embedding length Lem was set as the maximum embedding dimension limited by the diameter of the column and the steel frame of the column.
また、付加部材を設けるケースについては、スタッドの径φstは、19mmに設定した。また、鉄骨梁の長さ方向における柱の表面からスタッドの軸芯までの埋め込み深さcは、150mmに設定した。また、スタッドの本数は2本であり、2本のスタッドは、Y軸方向に1列で配置された。また、2本のスタッドの間隔は、100mmで統一した。また、フェースベアリングプレートの板厚tfbは、12mmで統一した。接合部補強筋は、無しと設定した。
Further, in the case where the additional member is provided, the diameter φ st of the stud is set to 19 mm. The embedding depth c from the surface of the column to the axis of the stud in the length direction of the steel beam was set to 150 mm. The number of studs was two, and the two studs were arranged in a row in the Y-axis direction. The distance between the two studs was unified to 100 mm. Further, the plate thickness t fb of the face bearing plate was unified to 12 mm. No joint reinforcement was set.
図16は、表8、表9、表10及び表11に示した設計の結果について、データ点がプロットされたグラフである。図16中では、横軸に埋め込み長さ比Lem/H(=埋め込み長さ÷梁せい)が、また、縦軸に固定度αrig(=各設計例において接合部に発生するモーメント÷接合部が剛接合の場合の接合部に発生するモーメント)が、それぞれ設定されている。
FIG. 16 is a graph in which data points are plotted for the design results shown in Tables 8, 9, 10 and 11. In FIG. 16, the horizontal axis is the embedded length ratio Lem / H (= embedded length ÷ beam length), and the vertical axis is the fixedness α rig (= moment generated at the joint in each design example ÷ joint). The moments generated at the joints when the parts are rigid joints) are set respectively.
また、図17は、表8、表9、表10及び表11に示した設計の結果について、データ点たプロットされたグラフである。図17中では、横軸に埋め込み長さ比Lem/H(=埋め込み長さ÷梁せい)が、また、縦軸に曲げモーメント比(=各設計例において接合部に発生するモーメントMj,Ed÷各設計例において接合部が有する最大モーメント耐力Mj,Rd)が、それぞれ設定されている。
Further, FIG. 17 is a graph in which data points are plotted for the design results shown in Tables 8, 9, 10 and 11. In FIG. 17, the horizontal axis is the embedded length ratio Lem / H (= embedded length ÷ beam length), and the vertical axis is the bending moment ratio (= moment M j, generated at the joint in each design example . Ed ÷ Maximum moment strength Mj, Rd ) of the joint in each design example is set.
図17中の本開示の実施例においては、曲げモーメント比Mj,Ed/Mj,Rdが1.00以下の場合は、接合部の回転剛性によって発生する接合部のモーメントMj,Edに対して、接合部の最大モーメント耐力Mj,Rdが上回っており、設計要件が満たされていることが示されている。なお、曲げモーメント比Mj,Ed/Mj,Rdが1.00以下の場合とは、鉄骨梁が支持する荷重と回転剛性Sjとを用いて計算された接合部のモーメントMj,Edが、接合部が抗することのできる最大モーメント耐力Mj,Rdを超えない状態を意味する。
In the embodiment of the present disclosure in FIG. 17, when the bending moment ratios M j, Ed / M j, Rd are 1.00 or less, the moments M j, Ed of the joint generated by the rotational rigidity of the joint are used. On the other hand, the maximum moment proof stress Mj and Rd of the joint are exceeded, indicating that the design requirements are satisfied. When the bending moment ratios M j, Ed / M j, Rd are 1.00 or less, the joint moments M j, Ed calculated using the load supported by the steel beam and the rotational rigidity S j. However, it means a state in which the maximum moment bearing capacity Mj, Rd that the joint can withstand is not exceeded.
一方、比較例において、曲げモーメント比が1.00を超える場合は、接合部の回転剛性によって発生する接合部のモーメントに対して、接合部のモーメント耐力が不十分であり、設計要件が満たされていないことを示している。
On the other hand, in the comparative example, when the bending moment ratio exceeds 1.00, the moment strength of the joint is insufficient with respect to the moment of the joint generated by the rotational rigidity of the joint, and the design requirement is satisfied. It shows that it is not.
また、図17に示すように、特に、埋め込み長さ比Lem/Hが0.6以下の場合、比較例のように接合部のモーメント耐力が不十分であり、付加部材、梁のスパン、断面形状等の調整が実施されないと、モーメント耐力が足りない場合が生じる可能性が高くなる。このため、本実施形態に係る柱梁接合部の設計方法を用いて、曲げモーメント比Mj,Ed/Mj,Rdが1.00以下に設定されることによって、接合部のモーメントMj,Edに対して接合部の最大モーメント耐力Mj,Rdが上回り、比較例の発生を抑え、実施例のように設計要件を満たすことが可能になる。
Further, as shown in FIG. 17, especially when the embedded length ratio Lem / H is 0.6 or less, the moment strength of the joint is insufficient as in the comparative example, and the additional member, the span of the beam, If the cross-sectional shape and the like are not adjusted, there is a high possibility that the moment bearing capacity may be insufficient. Therefore, by using the beam-column joint design method according to the present embodiment and setting the bending moment ratios M j, Ed / M j, and Rd to 1.00 or less, the joint moments M j, The maximum moment proof stress Mj, Rd of the joint exceeds Ed , the occurrence of comparative examples is suppressed, and the design requirements can be satisfied as in the examples.
更に、図17中で、埋め込み長さ比Lem/Hが0.5以下の領域では、接合部のモーメント耐力が不十分である比較例の発生確率が一層高くなる。このため、本実施形態は、埋め込み長さ比Lem/Hが0.5以下の領域において、より有利である。
Further, in FIG. 17, in the region where the embedding length ratio Lem / H is 0.5 or less, the probability of occurrence of a comparative example in which the moment strength of the joint is insufficient is further increased. Therefore, this embodiment is more advantageous in the region where the embedding length ratio Lem / H is 0.5 or less.
表8、表9、表10、表11及び図17に示すように、付加部材を有することなく、鉄骨梁が柱コンクリートに埋め込まれるだけの接合部は、梁の断面の高さが500mm(梁長さ12mの約1/24)以下の場合、埋め込み長さ比Lem/Hが0.4以下であると、接合部のモーメント耐力が不足し、柱梁接合部として採用することができない(No.49、50、51)。
As shown in Table 8, Table 9, Table 10, Table 11 and FIG. 17, the height of the cross section of the beam is 500 mm (beam) at the joint where the steel beam is simply embedded in the column concrete without having additional members. When the length is about 1/24) or less and the embedded length ratio Lem / H is 0.4 or less, the moment bearing capacity of the joint is insufficient and it cannot be used as a beam-column joint ( No. 49, 50, 51).
また、表8、表9、表10、表11中のNo.27、28、29及び図17に示すように、付加部材を有することなく、鉄骨梁が柱コンクリートに埋め込まれるだけの接合部は、梁の断面の高さが600mm以下の場合、埋め込み長さ比Lem/Hが0.33以下であると、接合部のモーメント耐力が不足し、柱梁接合部として採用することができない。梁の断面の高さ600mmは、梁の長さ12mの約1/20である。ただし、埋め込み長さ比Lem/Hが0.33のNo.29が比較例であるのに対し、鉄骨梁断面及び埋め込み長さが同じで、付加部材が設けられたNo.40は、付加部材を調整することより接合部のモーメント耐力が必要値を満たすこととなった。No.40の付加部材は、柱内スタッドとフェースベアリングプレートである。このため、No.40は、柱梁接合部として採用することが可能であり、本開示の実施例である。
In addition, No. in Table 8, Table 9, Table 10, and Table 11. As shown in 27, 28, 29 and FIG. 17, the joint portion in which the steel beam is only embedded in the column concrete without having an additional member has an embedding length ratio when the cross-sectional height of the beam is 600 mm or less. If Lem / H is 0.33 or less, the moment strength of the joint is insufficient and it cannot be used as a beam-column joint. The height of the cross section of the beam of 600 mm is about 1/20 of the length of the beam of 12 m. However, No. 1 having an embedding length ratio Lem / H of 0.33. No. 29 is a comparative example, whereas No. 29 has the same steel beam cross section and embedding length and is provided with an additional member. In No. 40, the moment strength of the joint portion satisfies the required value by adjusting the additional member. No. The additional members of 40 are an in-column stud and a face bearing plate. Therefore, No. Reference numeral 40 denotes a column-beam joint, which is an embodiment of the present disclosure.
また、図16及び図17から、固定度αrig及び曲げモーメント比は、埋め込み長さ比Lem/Hだけでなく、梁の断面形状やスタッドの有無によって変化することがわかる。すなわち、埋め込み長さ比Lem/Hが同じであると共に荷重の条件が同じ場合でも、梁の断面形状やスタッド等の付加部材の有無によって、接合部のモーメント耐力が本開示の条件を満たす場合と満たさない場合とが生じる。
Further, from FIGS. 16 and 17, it can be seen that the degree of fixation α rig and the bending moment ratio change not only depending on the embedding length ratio Lem / H but also on the cross-sectional shape of the beam and the presence or absence of studs. That is, even when the embedded length ratio Lem / H is the same and the load conditions are the same, the moment strength of the joint satisfies the conditions of the present disclosure depending on the cross-sectional shape of the beam and the presence or absence of additional members such as studs. And there are cases where it is not satisfied.
前記実施形態では、抵抗要素の総数nがn=7である例が示されたが、総数nの値については、付加部材等の数を調整して抵抗要素の数を増減させるなどして、適宜に設定することができる。例えば、前記実施形態において説明した柱梁接合部において、付加部材である鉄筋、スタッド及びフェースベアリングプレートを省略した場合には、抵抗要素の総数は、n=4となる。この場合、柱のコンクリートの内部に配置された鉄骨梁の梁端部の弾性回転中心を、抵抗要素iの反力をi=1~4について累加した総和と鉄骨梁に作用する-Z方向の鉛直荷重とが釣り合う点として、求めることができる。
In the above embodiment, an example is shown in which the total number n of the resistance elements is n = 7, but for the value of the total number n, the number of additional members and the like is adjusted to increase or decrease the number of resistance elements. It can be set as appropriate. For example, in the beam-column joint described in the above embodiment, when the reinforcing bars, studs, and face bearing plates as additional members are omitted, the total number of resistance elements is n = 4. In this case, the elastic rotation center of the beam end of the steel beam arranged inside the concrete of the column acts on the steel beam and the sum of the reaction forces of the resistance element i accumulated for i = 1 to 4 in the -Z direction. It can be obtained as a point that balances with the vertical load.
また、前記実施形態では、接合部の回転剛性とモーメント耐力とが、主に鉄骨梁の付加部材により調整されていた。しかし、鉄骨梁の両端部の間の距離(すなわち、梁長さ)の調整のみや、鉄骨梁における長手方向の梁端部の断面形状の調整のみによって、接合部の回転剛性とモーメント耐力とが調整されてもよい。
Further, in the above-described embodiment, the rotational rigidity and the moment strength of the joint are adjusted mainly by the additional member of the steel frame beam. However, the rotational rigidity and moment resistance of the joint can be increased only by adjusting the distance between both ends of the steel beam (that is, the beam length) and by adjusting the cross-sectional shape of the beam end in the longitudinal direction of the steel beam. It may be adjusted.
さらに、抵抗要素として設ける付加部材については、付加部材の配置、形状、寸法及び個数のうちの少なくとも1つが調整される。例えば、鉄筋及びスタッドのそれぞれの配置、形状、寸法、あるいは本数等を調整したり、フェースベアリングプレートの位置、形状、寸法、あるいは枚数を調整したりできる。付加部材の有無や量によって、必要モーメント耐力及び最大モーメント耐力は変化し、調整される。
Further, for the additional member provided as the resistance element, at least one of the arrangement, shape, size and number of the additional member is adjusted. For example, the arrangement, shape, dimensions, or number of reinforcing bars and studs can be adjusted, and the position, shape, dimensions, or number of face bearing plates can be adjusted. The required moment proof stress and the maximum moment proof stress change and are adjusted depending on the presence or absence and amount of the additional member.
また、上記のとおり、本開示の柱梁接合部の設計方法を用いて設計された抵抗要素が設けられた状態で、鉄骨梁の長手方向の少なくとも一端部を柱のコンクリートの内部に半剛接合状態で埋め込むことによって、本開示に係る柱梁接合部の製造方法を実現できる。以上、本開示の一実施形態について説明したが、本開示は、上記に限定されるものでなく、その主旨を逸脱しない範囲内において上記以外にも種々変形して実施することが可能であることは勿論である。
Further, as described above, with the resistance element designed by the method of designing the column-beam joint of the present disclosure provided, at least one end of the steel beam in the longitudinal direction is semi-rigidly joined to the inside of the concrete of the column. By embedding in a state, the method for manufacturing a beam-column joint according to the present disclosure can be realized. Although one embodiment of the present disclosure has been described above, the present disclosure is not limited to the above, and various modifications other than the above can be carried out within a range not deviating from the gist thereof. Of course.
10 柱
12 梁
16 鉄筋
18 鉄骨
20A 上フランジ(抵抗要素)
20B 下フランジ(抵抗要素)
26 スタッド(抵抗要素)
28 接合部補強筋(抵抗要素)
30 フェースベアリングプレート(抵抗要素)
32 コンクリート
32a スラブコンクリート
34 ボルト(抵抗要素)
36 フィンプレート(抵抗要素) 10Column 12 Beam 16 Reinforcing bar 18 Steel frame 20A Upper flange (resistance element)
20B lower flange (resistance element)
26 studs (resistive element)
28 Joint reinforcement (resistance element)
30 Face bearing plate (resistance element)
32 Concrete32a Slab Concrete 34 Bolt (Resistance Element)
36 fin plate (resistance element)
12 梁
16 鉄筋
18 鉄骨
20A 上フランジ(抵抗要素)
20B 下フランジ(抵抗要素)
26 スタッド(抵抗要素)
28 接合部補強筋(抵抗要素)
30 フェースベアリングプレート(抵抗要素)
32 コンクリート
32a スラブコンクリート
34 ボルト(抵抗要素)
36 フィンプレート(抵抗要素) 10
20B lower flange (resistance element)
26 studs (resistive element)
28 Joint reinforcement (resistance element)
30 Face bearing plate (resistance element)
32 Concrete
36 fin plate (resistance element)
≪付記≫
本明細書からは、以下の態様が概念化される。 ≪Additional notes≫
From this specification, the following aspects are conceptualized.
本明細書からは、以下の態様が概念化される。 ≪Additional notes≫
From this specification, the following aspects are conceptualized.
すなわち、態様1は、
コンクリートの柱と、長手方向の少なくとも一端部が前記柱のコンクリートの内部に半剛接合状態で埋め込まれて配置された鉄骨梁と、前記鉄骨梁に設けられ前記鉄骨梁の回転に抗する反力を生じさせる抵抗要素とを有する柱梁接合部の設計方法であって、
前記柱梁接合部における前記コンクリートの内部の前記鉄骨梁の部分の単位回転角当たりの回転抵抗を回転剛性Sjと定義し、
前記鉄骨梁が支持する荷重と前記回転剛性Sjとを用いて前記鉄骨梁から前記柱梁接合部に作用する必要モーメント耐力を計算し、
計算された前記必要モーメント耐力が前記柱梁接合部の抗することのできる最大モーメント耐力を超えないように、前記鉄骨梁の両端部の間の距離と前記鉄骨梁の断面形状とのうち少なくとも一方を調整する、
柱梁接合部の設計方法。 That is, the first aspect is
A concrete column, a steel beam in which at least one end in the longitudinal direction is embedded in the concrete of the column in a semi-rigid joint state, and a reaction force provided on the steel beam to resist rotation of the steel beam. It is a method of designing a beam-column joint having a resistance element that causes
The rotational resistance per unit rotation angle of the steel beam portion inside the concrete at the column-beam joint is defined as the rotational rigidity Sj .
Using the load supported by the steel beam and the rotational rigidity Sj , the required moment resistance acting from the steel beam to the column-beam joint is calculated.
At least one of the distance between both ends of the steel beam and the cross-sectional shape of the steel beam so that the calculated required moment strength does not exceed the maximum moment strength that the column-beam joint can resist. To adjust,
How to design a beam-column joint.
コンクリートの柱と、長手方向の少なくとも一端部が前記柱のコンクリートの内部に半剛接合状態で埋め込まれて配置された鉄骨梁と、前記鉄骨梁に設けられ前記鉄骨梁の回転に抗する反力を生じさせる抵抗要素とを有する柱梁接合部の設計方法であって、
前記柱梁接合部における前記コンクリートの内部の前記鉄骨梁の部分の単位回転角当たりの回転抵抗を回転剛性Sjと定義し、
前記鉄骨梁が支持する荷重と前記回転剛性Sjとを用いて前記鉄骨梁から前記柱梁接合部に作用する必要モーメント耐力を計算し、
計算された前記必要モーメント耐力が前記柱梁接合部の抗することのできる最大モーメント耐力を超えないように、前記鉄骨梁の両端部の間の距離と前記鉄骨梁の断面形状とのうち少なくとも一方を調整する、
柱梁接合部の設計方法。 That is, the first aspect is
A concrete column, a steel beam in which at least one end in the longitudinal direction is embedded in the concrete of the column in a semi-rigid joint state, and a reaction force provided on the steel beam to resist rotation of the steel beam. It is a method of designing a beam-column joint having a resistance element that causes
The rotational resistance per unit rotation angle of the steel beam portion inside the concrete at the column-beam joint is defined as the rotational rigidity Sj .
Using the load supported by the steel beam and the rotational rigidity Sj , the required moment resistance acting from the steel beam to the column-beam joint is calculated.
At least one of the distance between both ends of the steel beam and the cross-sectional shape of the steel beam so that the calculated required moment strength does not exceed the maximum moment strength that the column-beam joint can resist. To adjust,
How to design a beam-column joint.
態様2は、
コンクリートの柱と、長手方向の少なくとも一端部が前記柱のコンクリートの内部に半剛接合状態で埋め込まれて配置された鉄骨梁と、前記鉄骨梁に設けられ前記鉄骨梁の回転に抗する反力を生じさせる抵抗要素とを有する柱梁接合部の設計方法であって、
前記柱梁接合部における前記コンクリートの内部の前記鉄骨梁の部分の単位回転角当たりの回転抵抗を回転剛性Sjと定義し、
前記鉄骨梁が支持する荷重と以下のプロセスAによって設定された前記回転剛性Sjとを用いて前記鉄骨梁から前記柱梁接合部に作用する必要モーメント耐力を計算する、
柱梁接合部の設計方法。
<プロセスA>
前記抵抗要素の総数をn、iを1以上n以下の任意の自然数として、前記抵抗要素を抵抗要素iとし、
前記抵抗要素iの前記反力が、前記抵抗要素iの剛性kiと変形量との積で表され、
前記柱のコンクリートの内部の前記鉄骨梁の部分の回転中心を前記抵抗要素iの前記反力と外力とが釣り合う点とし、
前記抵抗要素iの代表変位の作用線と前記回転中心との距離をxd,iとし、
前記抵抗要素iの前記反力の重心と前記回転中心との距離をxl,iとし、
前記回転剛性Sjを、以下の式1によって得られた値の評価に基づいて設定する
Aspect 2 is
A concrete column, a steel beam in which at least one end in the longitudinal direction is embedded in the concrete of the column in a semi-rigid joint state, and a reaction force provided on the steel beam to resist rotation of the steel beam. It is a method of designing a beam-column joint having a resistance element that causes
The rotational resistance per unit rotation angle of the steel beam portion inside the concrete at the column-beam joint is defined as the rotational rigidity Sj .
Using the load supported by the steel beam and the rotational rigidity Sj set by the following process A, the required moment resistance acting from the steel beam to the column-beam joint is calculated.
How to design a beam-column joint.
<Process A>
The total number of the resistance elements is n, i is an arbitrary natural number of 1 or more and n or less, and the resistance elements are resistance elements i.
Wherein the reaction force of the resistance element i is represented by the product of the stiffness k i and the amount of deformation of the resistive element i,
The center of rotation of the steel beam portion inside the concrete of the column is defined as a point at which the reaction force of the resistance element i and the external force are balanced.
Let x d and i be the distances between the action line of the representative displacement of the resistance element i and the center of rotation.
Let the distance between the center of gravity of the reaction force of the resistance element i and the center of rotation be x l, i .
The rotational rigidity Sj is set based on the evaluation of the value obtained by thefollowing equation 1.
コンクリートの柱と、長手方向の少なくとも一端部が前記柱のコンクリートの内部に半剛接合状態で埋め込まれて配置された鉄骨梁と、前記鉄骨梁に設けられ前記鉄骨梁の回転に抗する反力を生じさせる抵抗要素とを有する柱梁接合部の設計方法であって、
前記柱梁接合部における前記コンクリートの内部の前記鉄骨梁の部分の単位回転角当たりの回転抵抗を回転剛性Sjと定義し、
前記鉄骨梁が支持する荷重と以下のプロセスAによって設定された前記回転剛性Sjとを用いて前記鉄骨梁から前記柱梁接合部に作用する必要モーメント耐力を計算する、
柱梁接合部の設計方法。
<プロセスA>
前記抵抗要素の総数をn、iを1以上n以下の任意の自然数として、前記抵抗要素を抵抗要素iとし、
前記抵抗要素iの前記反力が、前記抵抗要素iの剛性kiと変形量との積で表され、
前記柱のコンクリートの内部の前記鉄骨梁の部分の回転中心を前記抵抗要素iの前記反力と外力とが釣り合う点とし、
前記抵抗要素iの代表変位の作用線と前記回転中心との距離をxd,iとし、
前記抵抗要素iの前記反力の重心と前記回転中心との距離をxl,iとし、
前記回転剛性Sjを、以下の式1によって得られた値の評価に基づいて設定する
A concrete column, a steel beam in which at least one end in the longitudinal direction is embedded in the concrete of the column in a semi-rigid joint state, and a reaction force provided on the steel beam to resist rotation of the steel beam. It is a method of designing a beam-column joint having a resistance element that causes
The rotational resistance per unit rotation angle of the steel beam portion inside the concrete at the column-beam joint is defined as the rotational rigidity Sj .
Using the load supported by the steel beam and the rotational rigidity Sj set by the following process A, the required moment resistance acting from the steel beam to the column-beam joint is calculated.
How to design a beam-column joint.
<Process A>
The total number of the resistance elements is n, i is an arbitrary natural number of 1 or more and n or less, and the resistance elements are resistance elements i.
Wherein the reaction force of the resistance element i is represented by the product of the stiffness k i and the amount of deformation of the resistive element i,
The center of rotation of the steel beam portion inside the concrete of the column is defined as a point at which the reaction force of the resistance element i and the external force are balanced.
Let x d and i be the distances between the action line of the representative displacement of the resistance element i and the center of rotation.
Let the distance between the center of gravity of the reaction force of the resistance element i and the center of rotation be x l, i .
The rotational rigidity Sj is set based on the evaluation of the value obtained by the
態様3は、
前記必要モーメント耐力が前記柱梁接合部の抗することのできる最大モーメント耐力を超えないように、前記鉄骨梁の両端部の間の距離と前記鉄骨梁の断面形状とのうち少なくとも一方を調整する、
態様2に記載の柱梁接合部の設計方法。Aspect 3 is
At least one of the distance between both ends of the steel beam and the cross-sectional shape of the steel beam is adjusted so that the required moment strength does not exceed the maximum moment strength that the column-beam joint can withstand. ,
The method for designing a beam-column joint according toaspect 2.
前記必要モーメント耐力が前記柱梁接合部の抗することのできる最大モーメント耐力を超えないように、前記鉄骨梁の両端部の間の距離と前記鉄骨梁の断面形状とのうち少なくとも一方を調整する、
態様2に記載の柱梁接合部の設計方法。
At least one of the distance between both ends of the steel beam and the cross-sectional shape of the steel beam is adjusted so that the required moment strength does not exceed the maximum moment strength that the column-beam joint can withstand. ,
The method for designing a beam-column joint according to
態様4は、
前記抵抗要素は、前記コンクリートの内部の前記鉄骨梁の部分及び当該部分の周縁部に設けられた付加部材を含み、
前記付加部材の配置、形状及び寸法のうち少なくとも1つを調整することによって前記柱梁接合部の前記必要モーメント耐力または前記最大モーメント耐力を設定する、
態様1又は態様3に記載の柱梁接合部の設計方法。Aspect 4 is
The resistance element includes a portion of the steel beam inside the concrete and an additional member provided on the peripheral edge of the portion.
The required moment proof stress or the maximum moment proof stress of the beam-column joint is set by adjusting at least one of the arrangement, shape and dimensions of the additional member.
The method for designing a beam-column joint according to the first or third aspect.
前記抵抗要素は、前記コンクリートの内部の前記鉄骨梁の部分及び当該部分の周縁部に設けられた付加部材を含み、
前記付加部材の配置、形状及び寸法のうち少なくとも1つを調整することによって前記柱梁接合部の前記必要モーメント耐力または前記最大モーメント耐力を設定する、
態様1又は態様3に記載の柱梁接合部の設計方法。
The resistance element includes a portion of the steel beam inside the concrete and an additional member provided on the peripheral edge of the portion.
The required moment proof stress or the maximum moment proof stress of the beam-column joint is set by adjusting at least one of the arrangement, shape and dimensions of the additional member.
The method for designing a beam-column joint according to the first or third aspect.
態様5は、
前記コンクリートの内部の前記鉄骨梁の部分の抵抗要素iの負担しうる最大の反力をFi,Rdとし、
前記柱梁接合部の最大モーメント耐力をMj,Rdとし、
前記鉄骨梁の回転中心と前記反力の作用線との距離をxu,iとし、
前記回転中心の位置を変数として、以下の式2を用いて計算されたMj,Rdの最小値を前記最大モーメント耐力に設定する、
態様1、態様3~態様4のいずれかに記載の柱梁接合部の設計方法。
Aspect 5 is
The maximum reaction force that can be borne by the resistance element i of the steel beam portion inside the concrete is set to Fi and Rd .
The maximum moment strength of the beam-column joint is set to M j and Rd .
Let x u and i be the distance between the center of rotation of the steel beam and the line of action of the reaction force.
With the position of the center of rotation as a variable , the minimum values of Mj and Rd calculated using thefollowing equation 2 are set in the maximum moment proof stress.
The method for designing a beam-column joint according to any one of aspects 1 and 3 to 4.
前記コンクリートの内部の前記鉄骨梁の部分の抵抗要素iの負担しうる最大の反力をFi,Rdとし、
前記柱梁接合部の最大モーメント耐力をMj,Rdとし、
前記鉄骨梁の回転中心と前記反力の作用線との距離をxu,iとし、
前記回転中心の位置を変数として、以下の式2を用いて計算されたMj,Rdの最小値を前記最大モーメント耐力に設定する、
態様1、態様3~態様4のいずれかに記載の柱梁接合部の設計方法。
The maximum reaction force that can be borne by the resistance element i of the steel beam portion inside the concrete is set to Fi and Rd .
The maximum moment strength of the beam-column joint is set to M j and Rd .
Let x u and i be the distance between the center of rotation of the steel beam and the line of action of the reaction force.
With the position of the center of rotation as a variable , the minimum values of Mj and Rd calculated using the
The method for designing a beam-column joint according to any one of
態様6は、
前記鉄骨梁の一端部の前記柱のコンクリートへの埋め込み長さを前記鉄骨梁の梁せいで除した埋め込み長さ比が、0.6以下である、
態様1~態様5のいずれか一項に記載の柱梁接合部の設計方法。Aspect 6 is
The embedding length ratio obtained by dividing the embedding length of one end of the steel beam into concrete by the beam of the steel beam is 0.6 or less.
The method for designing a beam-column joint according to any one ofaspects 1 to 5.
前記鉄骨梁の一端部の前記柱のコンクリートへの埋め込み長さを前記鉄骨梁の梁せいで除した埋め込み長さ比が、0.6以下である、
態様1~態様5のいずれか一項に記載の柱梁接合部の設計方法。
The embedding length ratio obtained by dividing the embedding length of one end of the steel beam into concrete by the beam of the steel beam is 0.6 or less.
The method for designing a beam-column joint according to any one of
態様7は、
態様1~態様6のいずれか一項に記載の柱梁接合部の設計方法を用いて設計された前記抵抗要素が設けられた状態で、前記鉄骨梁の長手方向の少なくとも一端部を前記柱のコンクリートの内部に半剛接合状態で埋め込む、
柱梁接合部の製造方法。Aspect 7 is
In a state where the resistance element designed by using the method for designing a column-beam joint according to any one ofaspects 1 to 6 is provided, at least one end of the steel beam in the longitudinal direction of the column is provided. Embedded in concrete in a semi-rigid joint state,
Manufacturing method of beam-column joints.
態様1~態様6のいずれか一項に記載の柱梁接合部の設計方法を用いて設計された前記抵抗要素が設けられた状態で、前記鉄骨梁の長手方向の少なくとも一端部を前記柱のコンクリートの内部に半剛接合状態で埋め込む、
柱梁接合部の製造方法。
In a state where the resistance element designed by using the method for designing a column-beam joint according to any one of
Manufacturing method of beam-column joints.
態様8は、
コンクリートの柱と、
長手方向の少なくとも一端部が前記柱のコンクリートの内部に半剛接合状態で埋め込まれて配置された鉄骨梁と、
前記鉄骨梁に設けられ、前記鉄骨梁の回転に抗する反力を生じさせる抵抗要素とを有し、
柱梁接合部における前記コンクリートの内部の前記鉄骨梁の部分の単位回転角当たりの回転抵抗を回転剛性Sjと定義し、前記抵抗要素の抗することのできる最大耐力によって生じるモーメントを前記柱梁接合部の抗することのできる最大モーメント耐力と定義したとき、
前記鉄骨梁から前記柱梁接合部に作用する必要モーメント耐力として、前記鉄骨梁が支持する荷重と前記回転剛性Sjとを用いて計算された前記必要モーメント耐力が前記最大モーメント耐力を超えないように、前記鉄骨梁の両端部の間の距離と前記鉄骨梁の断面形状とのうち少なくとも一方が調整されている、
柱梁接合部構造。 Aspect 8 is
With concrete pillars
A steel beam in which at least one end in the longitudinal direction is embedded in the concrete of the column in a semi-rigid joint state, and
It has a resistance element provided on the steel beam and generating a reaction force against the rotation of the steel beam.
The rotational resistance per unit rotation angle of the steel beam portion inside the concrete at the column-beam joint is defined as the rotational rigidity Sj, and the moment generated by the maximum yield strength that the resistance element can resist is the column-beam. When defined as the maximum moment strength that a joint can withstand,
As the required moment bearing force acting on the column-beam joint from the steel beam, the required moment bearing calculated using the load supported by the steel beam and the rotational rigidity Sj does not exceed the maximum moment bearing. In addition, at least one of the distance between both ends of the steel beam and the cross-sectional shape of the steel beam is adjusted.
Beam-column joint structure.
コンクリートの柱と、
長手方向の少なくとも一端部が前記柱のコンクリートの内部に半剛接合状態で埋め込まれて配置された鉄骨梁と、
前記鉄骨梁に設けられ、前記鉄骨梁の回転に抗する反力を生じさせる抵抗要素とを有し、
柱梁接合部における前記コンクリートの内部の前記鉄骨梁の部分の単位回転角当たりの回転抵抗を回転剛性Sjと定義し、前記抵抗要素の抗することのできる最大耐力によって生じるモーメントを前記柱梁接合部の抗することのできる最大モーメント耐力と定義したとき、
前記鉄骨梁から前記柱梁接合部に作用する必要モーメント耐力として、前記鉄骨梁が支持する荷重と前記回転剛性Sjとを用いて計算された前記必要モーメント耐力が前記最大モーメント耐力を超えないように、前記鉄骨梁の両端部の間の距離と前記鉄骨梁の断面形状とのうち少なくとも一方が調整されている、
柱梁接合部構造。 Aspect 8 is
With concrete pillars
A steel beam in which at least one end in the longitudinal direction is embedded in the concrete of the column in a semi-rigid joint state, and
It has a resistance element provided on the steel beam and generating a reaction force against the rotation of the steel beam.
The rotational resistance per unit rotation angle of the steel beam portion inside the concrete at the column-beam joint is defined as the rotational rigidity Sj, and the moment generated by the maximum yield strength that the resistance element can resist is the column-beam. When defined as the maximum moment strength that a joint can withstand,
As the required moment bearing force acting on the column-beam joint from the steel beam, the required moment bearing calculated using the load supported by the steel beam and the rotational rigidity Sj does not exceed the maximum moment bearing. In addition, at least one of the distance between both ends of the steel beam and the cross-sectional shape of the steel beam is adjusted.
Beam-column joint structure.
態様9は、
コンクリートの柱と、
長手方向の少なくとも一端部が前記柱のコンクリートの内部に半剛接合状態で埋め込まれて配置された鉄骨梁と、
前記鉄骨梁に設けられ前記鉄骨梁の回転に抗する反力を生じさせる抵抗要素とを有し、
柱梁接合部における前記コンクリートの内部の前記鉄骨梁の部分の単位回転角当たりの回転抵抗を回転剛性Sjと定義したとき、前記鉄骨梁から前記柱梁接合部に作用する必要モーメント耐力として、前記鉄骨梁が支持する荷重と以下のプロセスBによって設定された前記回転剛性Sjとを用いて前記必要モーメント耐力が設定されている、
柱梁接合部構造。
<プロセスB>
前記抵抗要素の総数をn、iを1以上n以下の任意の自然数として、前記抵抗要素を抵抗要素iとし、
前記抵抗要素iの前記反力が、前記抵抗要素iの剛性kiと変形量との積で表され、
前記柱のコンクリートの内部の前記鉄骨梁の部分の回転中心を前記抵抗要素iの前記反力と外力とが釣り合う点とし、
前記抵抗要素iの代表変位の作用線と前記回転中心との距離をxd,iとし、
前記抵抗要素iの前記反力の重心と前記回転中心との距離をxl,iとし、
前記回転剛性Sjが、以下の式3を満たす値に設定されている
Aspect 9 is
With concrete pillars
A steel beam in which at least one end in the longitudinal direction is embedded in the concrete of the column in a semi-rigid joint state, and
It has a resistance element provided on the steel beam and generating a reaction force against the rotation of the steel beam.
When the rotational resistance per unit rotation angle of the steel beam portion inside the concrete at the column-beam joint is defined as the rotational rigidity Sj , the required moment resistance acting from the steel beam to the column-beam joint is defined as The required moment resistance is set using the load supported by the steel beam and the rotational rigidity Sj set by the following process B.
Beam-column joint structure.
<Process B>
The total number of the resistance elements is n, i is an arbitrary natural number of 1 or more and n or less, and the resistance elements are resistance elements i.
Wherein the reaction force of the resistance element i is represented by the product of the stiffness k i and the amount of deformation of the resistive element i,
The center of rotation of the steel beam portion inside the concrete of the column is defined as a point at which the reaction force of the resistance element i and the external force are balanced.
Let x d and i be the distances between the action line of the representative displacement of the resistance element i and the center of rotation.
Let the distance between the center of gravity of the reaction force of the resistance element i and the center of rotation be x l, i .
The rotational rigidity S j is set to a value that satisfies thefollowing equation 3.
コンクリートの柱と、
長手方向の少なくとも一端部が前記柱のコンクリートの内部に半剛接合状態で埋め込まれて配置された鉄骨梁と、
前記鉄骨梁に設けられ前記鉄骨梁の回転に抗する反力を生じさせる抵抗要素とを有し、
柱梁接合部における前記コンクリートの内部の前記鉄骨梁の部分の単位回転角当たりの回転抵抗を回転剛性Sjと定義したとき、前記鉄骨梁から前記柱梁接合部に作用する必要モーメント耐力として、前記鉄骨梁が支持する荷重と以下のプロセスBによって設定された前記回転剛性Sjとを用いて前記必要モーメント耐力が設定されている、
柱梁接合部構造。
<プロセスB>
前記抵抗要素の総数をn、iを1以上n以下の任意の自然数として、前記抵抗要素を抵抗要素iとし、
前記抵抗要素iの前記反力が、前記抵抗要素iの剛性kiと変形量との積で表され、
前記柱のコンクリートの内部の前記鉄骨梁の部分の回転中心を前記抵抗要素iの前記反力と外力とが釣り合う点とし、
前記抵抗要素iの代表変位の作用線と前記回転中心との距離をxd,iとし、
前記抵抗要素iの前記反力の重心と前記回転中心との距離をxl,iとし、
前記回転剛性Sjが、以下の式3を満たす値に設定されている
With concrete pillars
A steel beam in which at least one end in the longitudinal direction is embedded in the concrete of the column in a semi-rigid joint state, and
It has a resistance element provided on the steel beam and generating a reaction force against the rotation of the steel beam.
When the rotational resistance per unit rotation angle of the steel beam portion inside the concrete at the column-beam joint is defined as the rotational rigidity Sj , the required moment resistance acting from the steel beam to the column-beam joint is defined as The required moment resistance is set using the load supported by the steel beam and the rotational rigidity Sj set by the following process B.
Beam-column joint structure.
<Process B>
The total number of the resistance elements is n, i is an arbitrary natural number of 1 or more and n or less, and the resistance elements are resistance elements i.
Wherein the reaction force of the resistance element i is represented by the product of the stiffness k i and the amount of deformation of the resistive element i,
The center of rotation of the steel beam portion inside the concrete of the column is defined as a point at which the reaction force of the resistance element i and the external force are balanced.
Let x d and i be the distances between the action line of the representative displacement of the resistance element i and the center of rotation.
Let the distance between the center of gravity of the reaction force of the resistance element i and the center of rotation be x l, i .
The rotational rigidity S j is set to a value that satisfies the
態様10は、
前記必要モーメント耐力が前記柱梁接合部の抗することのできる最大モーメント耐力を超えないように、前記鉄骨梁の両端部の間の距離と前記鉄骨梁の断面形状とのうち少なくとも一方が調整されている、
態様9に記載の柱梁接合部構造。Aspect 10 is
At least one of the distance between both ends of the steel beam and the cross-sectional shape of the steel beam is adjusted so that the required moment strength does not exceed the maximum moment strength that the column-beam joint can withstand. ing,
The beam-column joint structure according to aspect 9.
前記必要モーメント耐力が前記柱梁接合部の抗することのできる最大モーメント耐力を超えないように、前記鉄骨梁の両端部の間の距離と前記鉄骨梁の断面形状とのうち少なくとも一方が調整されている、
態様9に記載の柱梁接合部構造。
At least one of the distance between both ends of the steel beam and the cross-sectional shape of the steel beam is adjusted so that the required moment strength does not exceed the maximum moment strength that the column-beam joint can withstand. ing,
The beam-column joint structure according to aspect 9.
態様11は、
前記必要モーメント耐力が前記柱梁接合部の抗することのできる最大モーメント耐力を超えないように、前記鉄骨梁の両端部の間の距離と前記鉄骨梁の断面形状とのうち少なくとも一方が調整されている、
態様8又は態様10に記載の柱梁接合部構造。 Aspect 11 is
At least one of the distance between both ends of the steel beam and the cross-sectional shape of the steel beam is adjusted so that the required moment strength does not exceed the maximum moment strength that the column-beam joint can withstand. ing,
The beam-column joint structure according to aspect 8 oraspect 10.
前記必要モーメント耐力が前記柱梁接合部の抗することのできる最大モーメント耐力を超えないように、前記鉄骨梁の両端部の間の距離と前記鉄骨梁の断面形状とのうち少なくとも一方が調整されている、
態様8又は態様10に記載の柱梁接合部構造。 Aspect 11 is
At least one of the distance between both ends of the steel beam and the cross-sectional shape of the steel beam is adjusted so that the required moment strength does not exceed the maximum moment strength that the column-beam joint can withstand. ing,
The beam-column joint structure according to aspect 8 or
態様12は、
前記抵抗要素は、前記コンクリートの内部の前記鉄骨梁の部分及び当該部分の周縁部に設けられた付加部材を含み、
前記付加部材の配置、形状及び寸法のうち少なくとも1つが調整されることによって前記柱梁接合部の前記必要モーメント耐力または前記最大モーメント耐力が設定されている、
態様8、態様10~態様11のいずれかに記載の柱梁接合部構造。
Aspect 12
The resistance element includes a portion of the steel beam inside the concrete and an additional member provided on the peripheral edge of the portion.
The required moment proof stress or the maximum moment proof stress of the beam-column joint is set by adjusting at least one of the arrangement, shape, and dimensions of the additional member.
The column-beam joint structure according to any one of Aspect 8 andAspect 10 to Aspect 11.
前記抵抗要素は、前記コンクリートの内部の前記鉄骨梁の部分及び当該部分の周縁部に設けられた付加部材を含み、
前記付加部材の配置、形状及び寸法のうち少なくとも1つが調整されることによって前記柱梁接合部の前記必要モーメント耐力または前記最大モーメント耐力が設定されている、
態様8、態様10~態様11のいずれかに記載の柱梁接合部構造。
The resistance element includes a portion of the steel beam inside the concrete and an additional member provided on the peripheral edge of the portion.
The required moment proof stress or the maximum moment proof stress of the beam-column joint is set by adjusting at least one of the arrangement, shape, and dimensions of the additional member.
The column-beam joint structure according to any one of Aspect 8 and
態様13は、
前記鉄骨梁の一端部の前記柱のコンクリートへの埋め込み長さを、前記鉄骨梁の梁せいで除した埋め込み長さ比が、0.6以下である、
態様8~態様12のいずれかに記載の柱梁接合部構造。 Aspect 13 is
The embedding length ratio obtained by dividing the embedding length of one end of the steel beam into concrete by the beam of the steel beam is 0.6 or less.
The beam-column joint structure according to any one of aspects 8 to 12.
前記鉄骨梁の一端部の前記柱のコンクリートへの埋め込み長さを、前記鉄骨梁の梁せいで除した埋め込み長さ比が、0.6以下である、
態様8~態様12のいずれかに記載の柱梁接合部構造。 Aspect 13 is
The embedding length ratio obtained by dividing the embedding length of one end of the steel beam into concrete by the beam of the steel beam is 0.6 or less.
The beam-column joint structure according to any one of aspects 8 to 12.
≪他の態様≫
また、本明細書からは、以下の他の態様が概念化される。 ≪Other aspects≫
Also, from this specification, the following other aspects are conceptualized.
また、本明細書からは、以下の他の態様が概念化される。 ≪Other aspects≫
Also, from this specification, the following other aspects are conceptualized.
すなわち、他の態様1は、
コンクリートの柱と、長手方向の少なくとも一端部が前記柱のコンクリート内に配置された鉄骨梁とを有する柱梁接合部構造であって、
前記鉄骨梁において前記柱のコンクリートの内部に配置された部分の単位回転角当たりの回転抵抗を回転剛性Sjとしたときに、前記鉄骨梁が支持する荷重及び前記鉄骨梁における前記柱のコンクリートの内部に配置された部分の回転剛性Sjによって前記鉄骨梁から前記柱に作用する力を推定し、前記鉄骨梁は、前記鉄骨梁から前記柱に作用する力が、前記柱のコンクリートが抗することのできる最大耐力を超えないように、前記鉄骨梁における前記柱のコンクリートの内部に配置された部分の回転に抗する反力を生じさせる抵抗要素を有していて、
前記抵抗要素の前記反力は、少なくとも、前記鉄骨梁の両端部の間の距離及び/又は前記鉄骨梁の断面形状を調整することにより調整されている柱梁接合部構造。 That is, theother aspect 1 is
A column-beam joint structure having a concrete column and a steel beam having at least one end in the longitudinal direction arranged in the concrete of the column.
When the rotational resistance per unit rotation angle of the portion of the steel beam arranged inside the concrete of the column is the rotational rigidity Sj , the load supported by the steel beam and the concrete of the column in the steel beam The force acting on the column from the steel beam is estimated by the rotational rigidity Sj of the portion arranged inside, and the force acting on the column from the steel beam is resisted by the concrete of the column. It has a resistance element that generates a reaction force against the rotation of the portion of the steel beam arranged inside the concrete of the column so as not to exceed the maximum strength that can be achieved.
A column-beam joint structure in which the reaction force of the resistance element is adjusted at least by adjusting the distance between both ends of the steel beam and / or the cross-sectional shape of the steel beam.
コンクリートの柱と、長手方向の少なくとも一端部が前記柱のコンクリート内に配置された鉄骨梁とを有する柱梁接合部構造であって、
前記鉄骨梁において前記柱のコンクリートの内部に配置された部分の単位回転角当たりの回転抵抗を回転剛性Sjとしたときに、前記鉄骨梁が支持する荷重及び前記鉄骨梁における前記柱のコンクリートの内部に配置された部分の回転剛性Sjによって前記鉄骨梁から前記柱に作用する力を推定し、前記鉄骨梁は、前記鉄骨梁から前記柱に作用する力が、前記柱のコンクリートが抗することのできる最大耐力を超えないように、前記鉄骨梁における前記柱のコンクリートの内部に配置された部分の回転に抗する反力を生じさせる抵抗要素を有していて、
前記抵抗要素の前記反力は、少なくとも、前記鉄骨梁の両端部の間の距離及び/又は前記鉄骨梁の断面形状を調整することにより調整されている柱梁接合部構造。 That is, the
A column-beam joint structure having a concrete column and a steel beam having at least one end in the longitudinal direction arranged in the concrete of the column.
When the rotational resistance per unit rotation angle of the portion of the steel beam arranged inside the concrete of the column is the rotational rigidity Sj , the load supported by the steel beam and the concrete of the column in the steel beam The force acting on the column from the steel beam is estimated by the rotational rigidity Sj of the portion arranged inside, and the force acting on the column from the steel beam is resisted by the concrete of the column. It has a resistance element that generates a reaction force against the rotation of the portion of the steel beam arranged inside the concrete of the column so as not to exceed the maximum strength that can be achieved.
A column-beam joint structure in which the reaction force of the resistance element is adjusted at least by adjusting the distance between both ends of the steel beam and / or the cross-sectional shape of the steel beam.
他の態様2は、
前記抵抗要素は、前記鉄骨梁における前記柱のコンクリートの内部に配置された部分及びその周縁部に設けられた付加部材を含み、前記付加部材の配置、形状、寸法のうちの少なくとも1つを調整することにより前記抵抗要素の前記反力が調整されている、他の態様1に記載の柱梁接合部構造。 Anotheraspect 2 is
The resistance element includes a portion of the steel beam that is arranged inside the concrete of the column and an additional member provided at the peripheral edge thereof, and adjusts at least one of the arrangement, shape, and dimensions of the additional member. The beam-column joint structure according to anotheraspect 1, wherein the reaction force of the resistance element is adjusted by the above.
前記抵抗要素は、前記鉄骨梁における前記柱のコンクリートの内部に配置された部分及びその周縁部に設けられた付加部材を含み、前記付加部材の配置、形状、寸法のうちの少なくとも1つを調整することにより前記抵抗要素の前記反力が調整されている、他の態様1に記載の柱梁接合部構造。 Another
The resistance element includes a portion of the steel beam that is arranged inside the concrete of the column and an additional member provided at the peripheral edge thereof, and adjusts at least one of the arrangement, shape, and dimensions of the additional member. The beam-column joint structure according to another
他の態様3は、
前記抵抗要素の総数をn、iを1以上n以下の任意の自然数として、前記鉄骨梁に設けられた前記抵抗要素を抵抗要素iとしたときに、
前記抵抗要素iの反力が、前記抵抗要素iの剛性kiと変形量との積で表されるものとし、
前記柱のコンクリートの内部に配置された部分の弾性回転中心を前記抵抗要素iの反力と外力が釣り合う点とし、
前記抵抗要素iの代表変位の作用線と、前記鉄骨梁において前記柱のコンクリートの内部に配置された部分の前記弾性回転中心との距離をxd,iとし、
前記抵抗要素iの反力の重心と、前記鉄骨梁において前記柱のコンクリートの内部に配置された部分の前記弾性回転中心との距離をxl,iとし、
以下の式1を満たす値に前記回転剛性Sjが設定されている他の態様1又は他の態様2に記載の柱梁接合部構造。
Another aspect 3 is
When the total number of the resistance elements is n, i is an arbitrary natural number of 1 or more and n or less, and the resistance element provided on the steel beam is the resistance element i,
The reaction force of the resistance element i is assumed to be expressed by the product of the stiffness k i and the amount of deformation of the resistive element i,
The center of elastic rotation of the portion of the pillar arranged inside the concrete is defined as the point where the reaction force of the resistance element i and the external force are balanced.
Let x d, i be the distance between the action line of the representative displacement of the resistance element i and the elastic rotation center of the portion of the steel beam beam arranged inside the concrete of the column.
The distance between the center of gravity of the reaction force of the resistance element i and the elastic rotation center of the portion of the steel beam arranged inside the concrete of the column is defined as x l, i .
The column-beam joint structure according to anotheraspect 1 or another aspect 2 in which the rotational rigidity Sj is set to a value satisfying the following equation 1.
前記抵抗要素の総数をn、iを1以上n以下の任意の自然数として、前記鉄骨梁に設けられた前記抵抗要素を抵抗要素iとしたときに、
前記抵抗要素iの反力が、前記抵抗要素iの剛性kiと変形量との積で表されるものとし、
前記柱のコンクリートの内部に配置された部分の弾性回転中心を前記抵抗要素iの反力と外力が釣り合う点とし、
前記抵抗要素iの代表変位の作用線と、前記鉄骨梁において前記柱のコンクリートの内部に配置された部分の前記弾性回転中心との距離をxd,iとし、
前記抵抗要素iの反力の重心と、前記鉄骨梁において前記柱のコンクリートの内部に配置された部分の前記弾性回転中心との距離をxl,iとし、
以下の式1を満たす値に前記回転剛性Sjが設定されている他の態様1又は他の態様2に記載の柱梁接合部構造。
When the total number of the resistance elements is n, i is an arbitrary natural number of 1 or more and n or less, and the resistance element provided on the steel beam is the resistance element i,
The reaction force of the resistance element i is assumed to be expressed by the product of the stiffness k i and the amount of deformation of the resistive element i,
The center of elastic rotation of the portion of the pillar arranged inside the concrete is defined as the point where the reaction force of the resistance element i and the external force are balanced.
Let x d, i be the distance between the action line of the representative displacement of the resistance element i and the elastic rotation center of the portion of the steel beam beam arranged inside the concrete of the column.
The distance between the center of gravity of the reaction force of the resistance element i and the elastic rotation center of the portion of the steel beam arranged inside the concrete of the column is defined as x l, i .
The column-beam joint structure according to another
他の態様4は、
前記鉄骨梁において前記柱のコンクリートの内部に配置された部分の前記抵抗要素iの反力を該抵抗要素iの負担しうる最大の反力をFi,Rdとし、
前記接合部の耐力をMj,Rdとし、
前記鉄骨梁において前記柱のコンクリートの内部に配置された部分の回転中心と前記反力の作用線との距離をxu,iとし、
前記回転中心の位置を変数として、以下の式2を用いてMj,Rdを計算し、前記接合部の耐力が以下の式2で計算されたMj,Rdの最小値に設定されている他の態様1乃至他の態様3のいずれかに記載の柱梁接合部構造。
Another aspect 4 is
The maximum reaction force that the resistance element i can bear as the reaction force of the resistance element i of the portion of the steel beam arranged inside the concrete of the column is set to Fi and Rd .
The proof stress of the joint is defined as M j and Rd .
Let x u, i be the distance between the center of rotation of the portion of the steel beam arranged inside the concrete of the column and the line of action of the reaction force.
M j and Rd are calculated using thefollowing equation 2 with the position of the center of rotation as a variable, and the proof stress of the joint is set to the minimum value of M j and Rd calculated by the following equation 2. The column-beam joint structure according to any one of the other aspects 1 to 3.
前記鉄骨梁において前記柱のコンクリートの内部に配置された部分の前記抵抗要素iの反力を該抵抗要素iの負担しうる最大の反力をFi,Rdとし、
前記接合部の耐力をMj,Rdとし、
前記鉄骨梁において前記柱のコンクリートの内部に配置された部分の回転中心と前記反力の作用線との距離をxu,iとし、
前記回転中心の位置を変数として、以下の式2を用いてMj,Rdを計算し、前記接合部の耐力が以下の式2で計算されたMj,Rdの最小値に設定されている他の態様1乃至他の態様3のいずれかに記載の柱梁接合部構造。
The maximum reaction force that the resistance element i can bear as the reaction force of the resistance element i of the portion of the steel beam arranged inside the concrete of the column is set to Fi and Rd .
The proof stress of the joint is defined as M j and Rd .
Let x u, i be the distance between the center of rotation of the portion of the steel beam arranged inside the concrete of the column and the line of action of the reaction force.
M j and Rd are calculated using the
他の態様5は、
コンクリートの柱と、長手方向の少なくとも一端部が前記柱のコンクリート内に配置された鉄骨梁とを有する柱梁接合部の設計方法であって、
前記鉄骨梁において前記柱のコンクリートの内部に配置された部分の単位回転角当たりの回転抵抗を回転剛性Sjとしたときに、前記鉄骨梁が支持する荷重及び前記鉄骨梁における前記柱のコンクリートの内部に配置された部分の回転剛性Sjによって前記鉄骨梁から前記柱に作用する力を推定し、前記鉄骨梁は、前記鉄骨梁から前記柱に作用する力が前記柱のコンクリートが抗することのできる最大耐力を超えないように、前記鉄骨梁における前記柱のコンクリートの内部に配置された部分の回転に抗する反力を生じさせる抵抗要素を設け、
前記抵抗要素の前記反力を、少なくとも、前記鉄骨梁の前記両端部の間の距離及び/又は前記鉄骨梁の断面形状を調整することにより調整する柱梁接合部の設計方法。 Anotheraspect 5 is
A method for designing a column-beam joint having a concrete column and a steel beam having at least one end in the longitudinal direction arranged in the concrete of the column.
When the rotational resistance per unit rotation angle of the portion of the steel beam arranged inside the concrete of the column is the rotational rigidity Sj , the load supported by the steel beam and the concrete of the column in the steel beam The force acting on the column from the steel beam is estimated by the rotational rigidity Sj of the portion arranged inside, and the force acting on the column from the steel beam is resisted by the concrete of the column. A resistance element is provided to generate a reaction force against the rotation of the portion of the steel beam arranged inside the concrete of the column so as not to exceed the maximum strength that can be achieved.
A method for designing a column-beam joint in which the reaction force of the resistance element is adjusted at least by adjusting the distance between both ends of the steel beam and / or the cross-sectional shape of the steel beam.
コンクリートの柱と、長手方向の少なくとも一端部が前記柱のコンクリート内に配置された鉄骨梁とを有する柱梁接合部の設計方法であって、
前記鉄骨梁において前記柱のコンクリートの内部に配置された部分の単位回転角当たりの回転抵抗を回転剛性Sjとしたときに、前記鉄骨梁が支持する荷重及び前記鉄骨梁における前記柱のコンクリートの内部に配置された部分の回転剛性Sjによって前記鉄骨梁から前記柱に作用する力を推定し、前記鉄骨梁は、前記鉄骨梁から前記柱に作用する力が前記柱のコンクリートが抗することのできる最大耐力を超えないように、前記鉄骨梁における前記柱のコンクリートの内部に配置された部分の回転に抗する反力を生じさせる抵抗要素を設け、
前記抵抗要素の前記反力を、少なくとも、前記鉄骨梁の前記両端部の間の距離及び/又は前記鉄骨梁の断面形状を調整することにより調整する柱梁接合部の設計方法。 Another
A method for designing a column-beam joint having a concrete column and a steel beam having at least one end in the longitudinal direction arranged in the concrete of the column.
When the rotational resistance per unit rotation angle of the portion of the steel beam arranged inside the concrete of the column is the rotational rigidity Sj , the load supported by the steel beam and the concrete of the column in the steel beam The force acting on the column from the steel beam is estimated by the rotational rigidity Sj of the portion arranged inside, and the force acting on the column from the steel beam is resisted by the concrete of the column. A resistance element is provided to generate a reaction force against the rotation of the portion of the steel beam arranged inside the concrete of the column so as not to exceed the maximum strength that can be achieved.
A method for designing a column-beam joint in which the reaction force of the resistance element is adjusted at least by adjusting the distance between both ends of the steel beam and / or the cross-sectional shape of the steel beam.
他の態様6は、
前記抵抗要素は、前記鉄骨梁における前記柱のコンクリートの内部に配置された部分及びその周縁部に設けられた付加部材を含み、前記付加部材の配置、形状、寸法のうちの少なくとも1つを調整することにより前記抵抗要素の前記反力を調整する他の態様5に記載の柱梁接合部の設計方法。 Anotheraspect 6 is
The resistance element includes a portion of the steel beam that is arranged inside the concrete of the column and an additional member provided at the peripheral edge thereof, and adjusts at least one of the arrangement, shape, and dimensions of the additional member. The method for designing a beam-column joint according to anotheraspect 5, wherein the reaction force of the resistance element is adjusted by the method.
前記抵抗要素は、前記鉄骨梁における前記柱のコンクリートの内部に配置された部分及びその周縁部に設けられた付加部材を含み、前記付加部材の配置、形状、寸法のうちの少なくとも1つを調整することにより前記抵抗要素の前記反力を調整する他の態様5に記載の柱梁接合部の設計方法。 Another
The resistance element includes a portion of the steel beam that is arranged inside the concrete of the column and an additional member provided at the peripheral edge thereof, and adjusts at least one of the arrangement, shape, and dimensions of the additional member. The method for designing a beam-column joint according to another
他の態様7は、前記抵抗要素の総数をn、iを1以上n以下の任意の自然数として、前記鉄骨梁に設けた前記抵抗要素を抵抗要素iとしたときに、
前記抵抗要素iの反力が、前記抵抗要素iの剛性kiと変形量との積で表されるものとし、
前記柱のコンクリートの内部に配置された部分の弾性回転中心を前記抵抗要素iの反力と外力が釣り合う点とし、
前記抵抗要素iの代表変位の作用線と、前記鉄骨梁において前記柱のコンクリートの内部に配置された部分の弾性回転中心との距離をxd,iとし、
前記抵抗要素iの反力の重心と、前記鉄骨梁において前記柱のコンクリートの内部に配置された部分の弾性回転中心との距離をxl,iとし、以下の式3によって得られた値によって前記接合部の回転剛性を評価する他の態様5又は他の態様6に記載の柱梁接合部の設計方法。
In another aspect 7, when the total number of the resistance elements is n, i is an arbitrary natural number of 1 or more and n or less, and the resistance element provided on the steel beam is the resistance element i,
The reaction force of the resistance element i is assumed to be expressed by the product of the stiffness k i and the amount of deformation of the resistive element i,
The center of elastic rotation of the portion of the pillar arranged inside the concrete is defined as the point where the reaction force of the resistance element i and the external force are balanced.
Let x d, i be the distance between the action line of the representative displacement of the resistance element i and the elastic rotation center of the portion of the steel beam beam arranged inside the concrete of the column.
Let the distance between the center of gravity of the reaction force of the resistance element i and the elastic rotation center of the portion of the steel beam arranged inside the concrete of the column be x l, i, and use the value obtained by thefollowing equation 3 The method for designing a beam-column joint according to another aspect 5 or another aspect 6 for evaluating the rotational rigidity of the joint.
前記抵抗要素iの反力が、前記抵抗要素iの剛性kiと変形量との積で表されるものとし、
前記柱のコンクリートの内部に配置された部分の弾性回転中心を前記抵抗要素iの反力と外力が釣り合う点とし、
前記抵抗要素iの代表変位の作用線と、前記鉄骨梁において前記柱のコンクリートの内部に配置された部分の弾性回転中心との距離をxd,iとし、
前記抵抗要素iの反力の重心と、前記鉄骨梁において前記柱のコンクリートの内部に配置された部分の弾性回転中心との距離をxl,iとし、以下の式3によって得られた値によって前記接合部の回転剛性を評価する他の態様5又は他の態様6に記載の柱梁接合部の設計方法。
The reaction force of the resistance element i is assumed to be expressed by the product of the stiffness k i and the amount of deformation of the resistive element i,
The center of elastic rotation of the portion of the pillar arranged inside the concrete is defined as the point where the reaction force of the resistance element i and the external force are balanced.
Let x d, i be the distance between the action line of the representative displacement of the resistance element i and the elastic rotation center of the portion of the steel beam beam arranged inside the concrete of the column.
Let the distance between the center of gravity of the reaction force of the resistance element i and the elastic rotation center of the portion of the steel beam arranged inside the concrete of the column be x l, i, and use the value obtained by the
他の態様8は、
前記鉄骨梁において前記柱のコンクリートの内部に配置された部分の前記抵抗要素iの反力を前記抵抗要素iの負担しうる最大の反力Fi,Rdとし、
前記接合部の耐力をMj,Rdとし、
前記鉄骨梁において前記柱のコンクリートの内部に配置された部分の回転中心と前記反力の作用線との距離をxu,iとし、
前記回転中心の位置を変数として、以下の式4を用いてMj,Rdを計算し、前記接合部の耐力が以下の式4で計算されたMj,Rdの最小値とされる他の態様5乃至他の態様7のいずれかに記載の柱梁接合部の設計方法。
Another aspect 8 is
The reaction force of the resistance element i of the portion of the steel beam arranged inside the concrete of the column is defined as the maximum reaction force Fi, Rd that can be borne by the resistance element i.
The proof stress of the joint is defined as M j and Rd .
Let x u, i be the distance between the center of rotation of the portion of the steel beam arranged inside the concrete of the column and the line of action of the reaction force.
Using the position of the center of rotation as a variable, M j and Rd are calculated using thefollowing equation 4, and the yield strength of the joint is the minimum value of M j and Rd calculated by the following equation 4. The method for designing a beam-column joint according to any one of aspects 5 to 7.
前記鉄骨梁において前記柱のコンクリートの内部に配置された部分の前記抵抗要素iの反力を前記抵抗要素iの負担しうる最大の反力Fi,Rdとし、
前記接合部の耐力をMj,Rdとし、
前記鉄骨梁において前記柱のコンクリートの内部に配置された部分の回転中心と前記反力の作用線との距離をxu,iとし、
前記回転中心の位置を変数として、以下の式4を用いてMj,Rdを計算し、前記接合部の耐力が以下の式4で計算されたMj,Rdの最小値とされる他の態様5乃至他の態様7のいずれかに記載の柱梁接合部の設計方法。
The reaction force of the resistance element i of the portion of the steel beam arranged inside the concrete of the column is defined as the maximum reaction force Fi, Rd that can be borne by the resistance element i.
The proof stress of the joint is defined as M j and Rd .
Let x u, i be the distance between the center of rotation of the portion of the steel beam arranged inside the concrete of the column and the line of action of the reaction force.
Using the position of the center of rotation as a variable, M j and Rd are calculated using the
上記の他の態様においては、以下の作用効果を奏する。
In the above other aspects, the following effects are exhibited.
他の態様に係る柱梁接合部構造及び柱梁接合部の設計方法によれば、鉄骨梁が支持する荷重及び鉄骨梁における柱のコンクリートの内部に配置された部分の回転剛性Sjによって鉄骨梁から柱に作用するモーメントの推定値が、柱と梁とのの接合部が抗することのできる最大モーメント耐力を超えない。これにより、柱と梁との接合部が顕著な不可逆変形(塑性化)を生じることを防ぎ、鉄骨梁のたわみの安定性と前記柱の健全性を確保して、必要性能を満足させることができる。
According to the beam-column joint structure and the design method of the beam-column joint according to the other aspects, the load supported by the steel beam and the rotational rigidity Sj of the portion of the steel beam arranged inside the concrete of the column make the steel beam The estimated value of the moment acting on the column does not exceed the maximum moment bearing capacity that the joint between the column and the beam can resist. As a result, it is possible to prevent the joint between the column and the beam from causing remarkable irreversible deformation (plasticization), ensure the stability of the deflection of the steel beam and the soundness of the column, and satisfy the required performance. it can.
2019年6月3日に出願した日本国特許出願2019-103652号の開示は、その全体が参照により本明細書に取り込まれる。
The disclosure of Japanese Patent Application No. 2019-103652 filed on June 3, 2019 is incorporated herein by reference in its entirety.
また、本明細書に記載されたすべての文献、特許出願及び技術規格は、個々の文献、特許出願及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
Also, all documents, patent applications and technical standards described herein are to the same extent as if it were specifically and individually stated that the individual documents, patent applications and technical standards would be incorporated by reference. Incorporated herein by reference.
Claims (13)
- コンクリートの柱と、長手方向の少なくとも一端部が前記柱のコンクリートの内部に半剛接合状態で埋め込まれて配置された鉄骨梁と、前記鉄骨梁に設けられ前記鉄骨梁の回転に抗する反力を生じさせる抵抗要素とを有する柱梁接合部の設計方法であって、
前記柱梁接合部における前記コンクリートの内部の前記鉄骨梁の部分の単位回転角当たりの回転抵抗を回転剛性Sjと定義し、
前記鉄骨梁が支持する荷重と前記回転剛性Sjとを用いて前記鉄骨梁から前記柱梁接合部に作用する必要モーメント耐力を計算し、
計算された前記必要モーメント耐力が前記柱梁接合部の抗することのできる最大モーメント耐力を超えないように、前記鉄骨梁の両端部の間の距離と前記鉄骨梁の断面形状とのうち少なくとも一方を調整する、
柱梁接合部の設計方法。 A concrete column, a steel beam in which at least one end in the longitudinal direction is embedded in the concrete of the column in a semi-rigid joint state, and a reaction force provided on the steel beam to resist rotation of the steel beam. It is a method of designing a beam-column joint having a resistance element that causes
The rotational resistance per unit rotation angle of the steel beam portion inside the concrete at the column-beam joint is defined as the rotational rigidity Sj .
Using the load supported by the steel beam and the rotational rigidity Sj , the required moment resistance acting from the steel beam to the column-beam joint is calculated.
At least one of the distance between both ends of the steel beam and the cross-sectional shape of the steel beam so that the calculated required moment strength does not exceed the maximum moment strength that the column-beam joint can resist. To adjust,
How to design a beam-column joint. - コンクリートの柱と、長手方向の少なくとも一端部が前記柱のコンクリートの内部に半剛接合状態で埋め込まれて配置された鉄骨梁と、前記鉄骨梁に設けられ前記鉄骨梁の回転に抗する反力を生じさせる抵抗要素とを有する柱梁接合部の設計方法であって、
前記柱梁接合部における前記コンクリートの内部の前記鉄骨梁の部分の単位回転角当たりの回転抵抗を回転剛性Sjと定義し、
前記鉄骨梁が支持する荷重と以下のプロセスAによって設定された前記回転剛性Sjとを用いて前記鉄骨梁から前記柱梁接合部に作用する必要モーメント耐力を計算する、
柱梁接合部の設計方法。
<プロセスA>
前記抵抗要素の総数をn、iを1以上n以下の任意の自然数として、前記抵抗要素を抵抗要素iとし、
前記抵抗要素iの前記反力が、前記抵抗要素iの剛性kiと変形量との積で表され、
前記柱のコンクリートの内部の前記鉄骨梁の部分の回転中心を前記抵抗要素iの前記反力と外力とが釣り合う点とし、
前記抵抗要素iの代表変位の作用線と前記回転中心との距離をxd,iとし、
前記抵抗要素iの前記反力の重心と前記回転中心との距離をxl,iとし、
前記回転剛性Sjを、以下の式1によって得られた値の評価に基づいて設定する
The rotational resistance per unit rotation angle of the steel beam portion inside the concrete at the column-beam joint is defined as the rotational rigidity Sj .
Using the load supported by the steel beam and the rotational rigidity Sj set by the following process A, the required moment resistance acting from the steel beam to the column-beam joint is calculated.
How to design a beam-column joint.
<Process A>
The total number of the resistance elements is n, i is an arbitrary natural number of 1 or more and n or less, and the resistance elements are resistance elements i.
Wherein the reaction force of the resistance element i is represented by the product of the stiffness k i and the amount of deformation of the resistive element i,
The center of rotation of the steel beam portion inside the concrete of the column is defined as a point at which the reaction force of the resistance element i and the external force are balanced.
Let x d and i be the distances between the action line of the representative displacement of the resistance element i and the center of rotation.
Let the distance between the center of gravity of the reaction force of the resistance element i and the center of rotation be x l, i .
The rotational rigidity Sj is set based on the evaluation of the value obtained by the following equation 1.
- 前記必要モーメント耐力が前記柱梁接合部の抗することのできる最大モーメント耐力を超えないように、前記鉄骨梁の両端部の間の距離と前記鉄骨梁の断面形状とのうち少なくとも一方を調整する、
請求項2に記載の柱梁接合部の設計方法。 At least one of the distance between both ends of the steel beam and the cross-sectional shape of the steel beam is adjusted so that the required moment strength does not exceed the maximum moment strength that the column-beam joint can withstand. ,
The method for designing a beam-column joint according to claim 2. - 前記抵抗要素は、前記コンクリートの内部の前記鉄骨梁の部分及び当該部分の周縁部に設けられた付加部材を含み、
前記付加部材の配置、形状及び寸法のうち少なくとも1つを調整することによって前記柱梁接合部の前記必要モーメント耐力または前記最大モーメント耐力を設定する、
請求項1又は請求項3に記載の柱梁接合部の設計方法。 The resistance element includes a portion of the steel beam inside the concrete and an additional member provided on the peripheral edge of the portion.
The required moment proof stress or the maximum moment proof stress of the beam-column joint is set by adjusting at least one of the arrangement, shape and dimensions of the additional member.
The method for designing a beam-column joint according to claim 1 or 3. - 前記コンクリートの内部の前記鉄骨梁の部分の抵抗要素iの負担しうる最大の反力をFi,Rdとし、
前記柱梁接合部の最大モーメント耐力をMj,Rdとし、
前記鉄骨梁の回転中心と前記反力の作用線との距離をxu,iとし、
前記回転中心の位置を変数として、以下の式2を用いて計算されたMj,Rdの最小値を前記最大モーメント耐力に設定する、
請求項1、請求項3~請求項4のいずれか一項に記載の柱梁接合部の設計方法。
The maximum moment strength of the beam-column joint is set to M j and Rd .
Let x u and i be the distance between the center of rotation of the steel beam and the line of action of the reaction force.
With the position of the center of rotation as a variable , the minimum values of Mj and Rd calculated using the following equation 2 are set in the maximum moment proof stress.
The method for designing a beam-column joint according to any one of claims 1 and 3 to 4.
- 前記鉄骨梁の一端部の前記柱のコンクリートへの埋め込み長さを、前記鉄骨梁の梁せいで除した埋め込み長さ比が、0.6以下である、
請求項1~請求項5のいずれか一項に記載の柱梁接合部の設計方法。 The embedding length ratio obtained by dividing the embedding length of one end of the steel beam into concrete by the beam of the steel beam is 0.6 or less.
The method for designing a beam-column joint according to any one of claims 1 to 5. - 請求項1~請求項6のいずれか一項に記載の柱梁接合部の設計方法を用いて設計された前記抵抗要素が設けられた状態で、前記鉄骨梁の長手方向の少なくとも一端部を前記柱のコンクリートの内部に半剛接合状態で埋め込む、
柱梁接合部の製造方法。 At least one end of the steel beam in the longitudinal direction is provided with the resistance element designed by using the method for designing a column-beam joint according to any one of claims 1 to 6. Embedded in the concrete of the column in a semi-rigid joint state,
Manufacturing method of beam-column joints. - コンクリートの柱と、
長手方向の少なくとも一端部が前記柱のコンクリートの内部に半剛接合状態で埋め込まれて配置された鉄骨梁と、
前記鉄骨梁に設けられ、前記鉄骨梁の回転に抗する反力を生じさせる抵抗要素とを有し、
柱梁接合部における前記コンクリートの内部の前記鉄骨梁の部分の単位回転角当たりの回転抵抗を回転剛性Sjと定義し、前記抵抗要素の抗することのできる最大耐力によって生じるモーメントを前記柱梁接合部の抗することのできる最大モーメント耐力と定義したとき、
前記鉄骨梁から前記柱梁接合部に作用する必要モーメント耐力として、前記鉄骨梁が支持する荷重と前記回転剛性Sjとを用いて計算された前記必要モーメント耐力が前記最大モーメント耐力を超えないように、前記鉄骨梁の両端部の間の距離と前記鉄骨梁の断面形状とのうち少なくとも一方が調整されている、
柱梁接合部構造。 With concrete pillars
A steel beam in which at least one end in the longitudinal direction is embedded in the concrete of the column in a semi-rigid joint state, and
It has a resistance element provided on the steel beam and generating a reaction force against the rotation of the steel beam.
The rotational resistance per unit rotation angle of the steel beam portion inside the concrete at the column-beam joint is defined as the rotational rigidity Sj, and the moment generated by the maximum yield strength that the resistance element can resist is the column-beam. When defined as the maximum moment strength that a joint can withstand,
As the required moment bearing force acting on the column-beam joint from the steel beam, the required moment bearing calculated using the load supported by the steel beam and the rotational rigidity Sj does not exceed the maximum moment bearing. In addition, at least one of the distance between both ends of the steel beam and the cross-sectional shape of the steel beam is adjusted.
Beam-column joint structure. - コンクリートの柱と、
長手方向の少なくとも一端部が前記柱のコンクリートの内部に半剛接合状態で埋め込まれて配置された鉄骨梁と、
前記鉄骨梁に設けられ前記鉄骨梁の回転に抗する反力を生じさせる抵抗要素とを有し、
柱梁接合部における前記コンクリートの内部の前記鉄骨梁の部分の単位回転角当たりの回転抵抗を回転剛性Sjと定義したとき、前記鉄骨梁から前記柱梁接合部に作用する必要モーメント耐力として、前記鉄骨梁が支持する荷重と以下のプロセスBによって設定された前記回転剛性Sjとを用いて前記必要モーメント耐力が設定されている、
柱梁接合部構造。
<プロセスB>
前記抵抗要素の総数をn、iを1以上n以下の任意の自然数として、前記抵抗要素を抵抗要素iとし、
前記抵抗要素iの前記反力が、前記抵抗要素iの剛性kiと変形量との積で表され、
前記柱のコンクリートの内部の前記鉄骨梁の部分の回転中心を前記抵抗要素iの前記反力と外力とが釣り合う点とし、
前記抵抗要素iの代表変位の作用線と前記回転中心との距離をxd,iとし、
前記抵抗要素iの前記反力の重心と前記回転中心との距離をxl,iとし、
前記回転剛性Sjが、以下の式3を満たす値に設定されている
A steel beam in which at least one end in the longitudinal direction is embedded in the concrete of the column in a semi-rigid joint state, and
It has a resistance element provided on the steel beam and generating a reaction force against the rotation of the steel beam.
When the rotational resistance per unit rotation angle of the steel beam portion inside the concrete at the column-beam joint is defined as the rotational rigidity Sj , the required moment resistance acting from the steel beam to the column-beam joint is defined as The required moment resistance is set using the load supported by the steel beam and the rotational rigidity Sj set by the following process B.
Beam-column joint structure.
<Process B>
The total number of the resistance elements is n, i is an arbitrary natural number of 1 or more and n or less, and the resistance elements are resistance elements i.
Wherein the reaction force of the resistance element i is represented by the product of the stiffness k i and the amount of deformation of the resistive element i,
The center of rotation of the steel beam portion inside the concrete of the column is defined as a point at which the reaction force of the resistance element i and the external force are balanced.
Let x d and i be the distances between the action line of the representative displacement of the resistance element i and the center of rotation.
Let the distance between the center of gravity of the reaction force of the resistance element i and the center of rotation be x l, i .
The rotational rigidity S j is set to a value that satisfies the following equation 3.
- 前記必要モーメント耐力が前記柱梁接合部の抗することのできる最大モーメント耐力を超えないように、前記鉄骨梁の両端部の間の距離と前記鉄骨梁の断面形状とのうち少なくとも一方が調整されている、
請求項9に記載の柱梁接合部構造。 At least one of the distance between both ends of the steel beam and the cross-sectional shape of the steel beam is adjusted so that the required moment strength does not exceed the maximum moment strength that the column-beam joint can withstand. ing,
The beam-column joint structure according to claim 9. - 前記抵抗要素は、前記コンクリートの内部の前記鉄骨梁の部分及び当該部分の周縁部に設けられた付加部材を含み、
前記付加部材の配置、形状及び寸法のうち少なくとも1つが調整されることによって前記柱梁接合部の前記必要モーメント耐力または前記最大モーメント耐力が設定されている、
請求項8又は請求項10に記載の柱梁接合部構造。 The resistance element includes a portion of the steel beam inside the concrete and an additional member provided on the peripheral edge of the portion.
The required moment proof stress or the maximum moment proof stress of the beam-column joint is set by adjusting at least one of the arrangement, shape, and dimensions of the additional member.
The beam-column joint structure according to claim 8 or 10. - 前記コンクリートの内部の前記鉄骨梁の部分の抵抗要素iの負担しうる最大の反力をFi,Rdとし、
前記柱梁接合部の最大モーメント耐力をMj,Rdとし、
前記鉄骨梁の回転中心と前記反力の作用線との距離をxu,iとし、
前記回転中心の位置を変数として、以下の式4を用いて計算されたMj,Rdの最小値が前記最大モーメント耐力に設定されている、
請求項8、請求項10~請求項11のいずれか一項に記載の柱梁接合部構造。
The maximum moment strength of the beam-column joint is set to M j and Rd .
Let x u and i be the distance between the center of rotation of the steel beam and the line of action of the reaction force.
With the position of the center of rotation as a variable, the minimum values of Mj and Rd calculated using the following equation 4 are set in the maximum moment proof stress.
The beam-column joint structure according to any one of claims 8 and 10 to 11.
- 前記鉄骨梁の一端部の前記柱のコンクリートへの埋め込み長さを、前記鉄骨梁の梁せいで除した埋め込み長さ比が、0.6以下である、
請求項8~請求項12のいずれか一項に記載の柱梁接合部構造。
The embedding length ratio obtained by dividing the embedding length of one end of the steel beam into concrete by the beam of the steel beam is 0.6 or less.
The beam-column joint structure according to any one of claims 8 to 12.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021524888A JP7074260B2 (en) | 2019-06-03 | 2020-06-03 | Design method of beam-column joint, manufacturing method of beam-column joint and structure of beam-column joint |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-103652 | 2019-06-03 | ||
JP2019103652 | 2019-06-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020246524A1 true WO2020246524A1 (en) | 2020-12-10 |
Family
ID=73652211
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/022018 WO2020246524A1 (en) | 2019-06-03 | 2020-06-03 | Method for designing column-beam joint, method for manufacturing column-beam joint, and column-beam joint structure |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7074260B2 (en) |
WO (1) | WO2020246524A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113323151A (en) * | 2021-06-17 | 2021-08-31 | 福建省坤亿建设集团有限公司 | Shock mitigation system based on room roof beam node |
CN115467534A (en) * | 2022-10-19 | 2022-12-13 | 中国建筑一局(集团)有限公司 | Method for constructing steel beams and floor slabs at positions of all-steel ultra-high-rise structure across post-cast strip in advance |
CN117454485A (en) * | 2023-10-31 | 2024-01-26 | 江汉大学 | Method for calculating bending-resistant bearing capacity of transverse joint of shield tunnel |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7393619B2 (en) * | 2019-06-03 | 2023-12-07 | 日本製鉄株式会社 | Column-beam joint structure and design method for column-beam joints |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009102878A (en) * | 2007-10-23 | 2009-05-14 | Takenaka Komuten Co Ltd | Beam-column connection structure |
JP2018009410A (en) * | 2016-07-15 | 2018-01-18 | 新日鐵住金株式会社 | Pillar beam joint structure |
-
2020
- 2020-06-03 JP JP2021524888A patent/JP7074260B2/en active Active
- 2020-06-03 WO PCT/JP2020/022018 patent/WO2020246524A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009102878A (en) * | 2007-10-23 | 2009-05-14 | Takenaka Komuten Co Ltd | Beam-column connection structure |
JP2018009410A (en) * | 2016-07-15 | 2018-01-18 | 新日鐵住金株式会社 | Pillar beam joint structure |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113323151A (en) * | 2021-06-17 | 2021-08-31 | 福建省坤亿建设集团有限公司 | Shock mitigation system based on room roof beam node |
CN113323151B (en) * | 2021-06-17 | 2022-04-12 | 福建省坤亿建设集团有限公司 | Shock mitigation system based on room roof beam node |
CN115467534A (en) * | 2022-10-19 | 2022-12-13 | 中国建筑一局(集团)有限公司 | Method for constructing steel beams and floor slabs at positions of all-steel ultra-high-rise structure across post-cast strip in advance |
CN115467534B (en) * | 2022-10-19 | 2023-07-28 | 中国建筑一局(集团)有限公司 | Advanced construction method for steel beam and floor slab at span post-pouring zone of all-steel super-high-rise structure |
CN117454485A (en) * | 2023-10-31 | 2024-01-26 | 江汉大学 | Method for calculating bending-resistant bearing capacity of transverse joint of shield tunnel |
CN117454485B (en) * | 2023-10-31 | 2024-04-19 | 江汉大学 | Method for calculating bending-resistant bearing capacity of transverse joint of shield tunnel |
Also Published As
Publication number | Publication date |
---|---|
JP7074260B2 (en) | 2022-05-24 |
JPWO2020246524A1 (en) | 2020-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020246524A1 (en) | Method for designing column-beam joint, method for manufacturing column-beam joint, and column-beam joint structure | |
Wang et al. | Experimental and numerical studies on hysteretic behavior of all-steel bamboo-shaped energy dissipaters | |
Constantinou et al. | LRFD-based analysis and design procedures for bridge bearings and seismic isolators | |
US10753096B2 (en) | Ductile chord connectors for use in concrete rods in structures | |
Chen et al. | Cyclic tests on high strength steel flange-plate beam-to-column joints | |
Lee et al. | Seismic retrofit of structures using steel honeycomb dampers | |
Constantinou et al. | Seismic isolation of bridges | |
Tsai et al. | Experimental and analytical investigations of steel panel dampers for seismic applications in steel moment frames | |
Kotulka | Analysis for a design guide on gusset plates used in special concentrically braced frames | |
Al-Rousan et al. | Impact of anchored CFRP on the torsional and bending behaviour of RC beams | |
Singhal et al. | Seismic response of precast reinforced concrete wall subjected to cyclic in-plane and constant out-of-plane loading | |
Jafari et al. | Determining the optimal layout of energy-dissipating mechanisms for hybrid self-centering walls | |
Smith et al. | Lateral performance of a Pres-Lam frame designed for gravity loads | |
Sultana et al. | Prediction of local seismic damage in steel moment resisting frames | |
Cheng et al. | Numerical studies of deep concrete coupling beams retrofitted with a laterally restrained steel plate | |
Islam et al. | Seismic stability of steel wide-flange columns in ductile moment-resisting frames: Out-of-plane response and design recommendations | |
Pehlivan et al. | Testing and analysis of different hold down devices for CFS construction | |
Motter | Large-scale testing of steel-reinforced concrete (SRC) coupling beams embedded into reinforced concrete structural walls | |
Dey | Seismic performance of composite plate shear walls | |
JP7393619B2 (en) | Column-beam joint structure and design method for column-beam joints | |
Craig et al. | Response modification applications for essential facilities | |
Gebreyohaness et al. | Assessment of the seismic performance of old riveted steel frame–RC wall buildings | |
Neal et al. | Steel plate shear walls with controlled infill tension fields | |
Hassan | Inelastic dynamic behavior and design of hybrid coupled wall systems | |
Khy et al. | Quantification of Different Sources of Over-Strength in Seismic Design of a Reinforced Concrete Tall Building |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20817850 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021524888 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20817850 Country of ref document: EP Kind code of ref document: A1 |