WO2020246423A1 - Flow passage switching valve, and fluid circulating system - Google Patents

Flow passage switching valve, and fluid circulating system Download PDF

Info

Publication number
WO2020246423A1
WO2020246423A1 PCT/JP2020/021583 JP2020021583W WO2020246423A1 WO 2020246423 A1 WO2020246423 A1 WO 2020246423A1 JP 2020021583 W JP2020021583 W JP 2020021583W WO 2020246423 A1 WO2020246423 A1 WO 2020246423A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
outflow
inflow
switching valve
cooling water
Prior art date
Application number
PCT/JP2020/021583
Other languages
French (fr)
Japanese (ja)
Inventor
牧原 正径
前田 隆宏
加藤 吉毅
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2020246423A1 publication Critical patent/WO2020246423A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/06Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements
    • F16K11/072Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members
    • F16K11/076Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members with sealing faces shaped as surfaces of solids of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a flow path switching valve and a fluid circulation system.
  • the fluid circulation system described in Patent Document 1 includes a heat medium flow path, a battery flow path, an in-vehicle device flow path, and an in-vehicle device bypass flow path.
  • the heat medium flow path is an annular flow path in which cooling water circulates.
  • the first pump, the chiller, the radiator, and the first flow path switching valve are arranged in this order with respect to the flow direction of the cooling water.
  • the battery flow path is provided so as to connect the first flow path switching valve and the downstream portion of the chiller in the heat medium flow path.
  • the chiller is a part that exchanges heat between the cooling water flowing through the heat medium flow path and the heat medium flowing through the refrigeration cycle mounted on the vehicle.
  • a battery mounted on the vehicle is arranged in the battery flow path.
  • the in-vehicle device flow path is provided so as to connect a portion of the heat medium flow path on the upstream side of the radiator and a portion on the downstream side thereof.
  • the second pump, the inverter, the charger, and the motor generator are arranged in this order in the in-vehicle device flow path.
  • the inverter, charger, and motor generator will be referred to as a PCU (Power Control Unit) system.
  • the in-vehicle device bypass flow path is provided so as to connect a portion of the in-vehicle device flow path on the upstream side of the second pump and a portion on the downstream side of the motor generator.
  • a second flow path switching valve is provided at a connection portion between the in-vehicle device flow path and the downstream portion of the in-vehicle device bypass flow path.
  • the first flow path switching valve is a three-way valve, and switches the cooling water flowing through the heat medium flow path between a state in which it flows through the battery flow path and a state in which it does not flow through the battery flow path.
  • the second flow path switching valve is also a three-way valve, and switches between a state in which the cooling water flowing through the in-vehicle device flow path flows through the in-vehicle device bypass flow path and a state in which the cooling water does not flow through the in-vehicle device bypass flow path.
  • the PCU system and the battery are cooled by the cooling water. Further, in the fluid circulation system described in Patent Document 1, the waste heat of the PCU system or the battery is absorbed by the cooling water through the switching operation of the first flow path switching valve and the second flow path switching valve, and then the cooling water is absorbed.
  • a flow path is formed to transfer the heat of the above to the heat medium of the refrigeration cycle via the chiller. By forming such a flow path, it is possible to use the waste heat of the PCU system or the battery as a heating source of the heat medium.
  • An object of the present disclosure is to provide a flow path switching valve and a fluid circulation system capable of switching a plurality of flow paths with a simple structure.
  • the flow path switching valve includes a main body portion and a switching portion.
  • the main body portion is formed so as to extend along a predetermined axis, and has an inflow portion that allows the fluid to flow in from the outside to the inside, and an outflow portion that allows the fluid to flow out from the inside to the outside.
  • the switching unit switches the connection state of the inflow unit and the outflow unit.
  • the main body portion has a plurality of flow path layers in which a single inflow portion and a single or a plurality of outflow portions are provided on the outer peripheral surface along a predetermined axis.
  • the switching unit simultaneously switches the connection state of the inflow portion and the outflow portion in each of the plurality of flow path layers.
  • the fluid circulation system is a fluid circulation system that circulates fluid to the first device, the second device, and the third device, and includes a flow path switching valve.
  • the first device is connected to the first inflow portion of the flow path switching valve.
  • the second device is connected to the second outflow portion of the flow path switching valve.
  • the third device is connected to the second inflow portion and the first outflow portion of the flow path switching valve.
  • the third outflow portion of the flow path switching valve is connected to the flow path connecting the second device and the third device.
  • connection state of the inflow part and the outflow part arranged in the plurality of flow path layers can be switched by the operation of one switching part, so that it is the same as or similar to the case of using a plurality of three-way valves. It is possible to switch the flow path of. Therefore, the structure can be simplified by using a flow path switching valve having the above configuration instead of the plurality of three-way valves.
  • FIG. 1 is a block diagram showing a schematic configuration of the fluid circulation system of the first embodiment.
  • FIG. 2 is a cross-sectional view showing a cross-sectional structure of a first flow path layer of the flow path switching valve of the first embodiment.
  • FIG. 3 is a cross-sectional view showing a cross-sectional structure of a second flow path layer of the flow path switching valve of the first embodiment.
  • FIG. 4 is a front view showing the front structure of the switching portion of the first embodiment.
  • FIG. 5 is a cross-sectional view showing a cross-sectional structure taken along the line VV of FIG.
  • FIG. 6 is a cross-sectional view showing a cross-sectional structure along the VI-VI line of FIG.
  • FIG. 7 (A) and 7 (B) are cross-sectional views showing an operation example of the flow path switching valve of the first embodiment.
  • 8 (A) and 8 (B) are cross-sectional views showing an operation example of the flow path switching valve of the first embodiment.
  • FIG. 9 is a block diagram showing an electrical configuration of the fluid circulation system of the first embodiment.
  • FIG. 10 is a block diagram showing an operation example of the fluid circulation system of the first embodiment.
  • FIG. 11 is a block diagram showing an operation example of the fluid circulation system of the first embodiment.
  • FIG. 12 is a cross-sectional view showing a cross-sectional structure of the first flow path layer of the flow path switching valve of the modified example of the first embodiment.
  • FIG. 13 is a cross-sectional view showing a cross-sectional structure of a second flow path layer of the flow path switching valve of the modified example of the first embodiment.
  • FIG. 14 is a perspective view showing a perspective structure of the switching portion of the second embodiment.
  • 15 (A) and 15 (B) are cross-sectional views showing an operation example of the flow path switching valve of the second embodiment.
  • 16 (A) and 16 (B) are cross-sectional views showing an operation example of the flow path switching valve of the second embodiment.
  • 17 (A) and 17 (B) are cross-sectional views showing an operation example of the flow path switching valve of the second embodiment.
  • the flow path switching valve 40 of the present embodiment shown in FIG. 1 is mounted on the vehicle.
  • the fluid circulation system 10 is a system that cools the PCU system 20 and the battery 21 of the vehicle with cooling water.
  • the PCU system refers to electrical equipment such as a transaxle, a motor generator, and an inverter circuit mounted on a vehicle.
  • the cooling water corresponds to the fluid.
  • the fluid circulation system 10 includes a first pump 11, a chiller 12, a radiator 13, a reserve tank 14, a flow control valve 15, a second pump 16, and an on-off valve 17. I have.
  • the first pump 11, the chiller 12, the flow path switching valve 40, the battery 21, the radiator 13, and the reserve tank 14 are provided in the flow path W10 formed in an annular shape.
  • the chiller 12 corresponds to the first device
  • the radiator 13 corresponds to the second device
  • the battery 21 corresponds to the third device.
  • the first pump 11 sucks the cooling water flowing through the annular flow path W10 and discharges it to the chiller 12 to circulate the cooling water in the annular flow path W10.
  • cooling is performed in the direction indicated by the arrow in the figure, that is, in the order of the first pump 11, the chiller 12, the flow path switching valve 40, the battery 21, the flow path switching valve 40, the radiator 13, and the reserve tank 14. Water is circulating.
  • the first pump 11 is an electric pump that is driven based on the electric power supplied from the battery 21.
  • the chiller 12 is a heat exchanger that exchanges heat between the heat medium that circulates in the heat pump cycle 18 mounted on the vehicle and the cooling water that flows in the annular flow path W10.
  • the heat pump cycle 18 is one of the components of the air conditioner of the vehicle, and cools or heats the air conditioner air by exchanging heat between the air conditioner air flowing in the air conditioner duct of the air conditioner and the heat medium. It is a system.
  • the air conditioner cools or heats the vehicle interior by blowing air-conditioned air cooled or heated through the heat pump cycle 18 into the vehicle interior through an air conditioning duct.
  • the flow paths W21 to W25 are connected to the flow path switching valve 40.
  • the flow path switching valve 40 is provided to switch the connection state of the flow paths W21 to W25. As shown in FIG. 2, the flow path switching valve 40 includes a main body portion 41 and a switching portion 42.
  • the main body 41 is formed in a bottomed cylindrical shape centered on the axis m, and is formed so as to extend along the axis m.
  • the internal space of the main body 41 forms an inner chamber 410.
  • the direction parallel to the axis m is referred to as the vertical direction. More specifically, in the direction parallel to the axis m, the direction from the portion of the main body 41 where the bottom is formed to the portion opposite to the bottom corresponds to the upward direction, and the opposite direction corresponds to the downward direction. Equivalent to.
  • FIG. 2 shows a cross-sectional structure orthogonal to the axis m of the portion below the intermediate portion of the flow path switching valve 40 in the direction along the axis m.
  • FIG. 3 shows a cross-sectional structure orthogonal to the axis m of the portion above the intermediate portion of the flow path switching valve 40 in the direction along the axis m.
  • the portion of the main body portion 41 shown in FIG. 2 is referred to as a first flow path layer 411
  • the portion of the main body portion 41 shown in FIG. 3 is referred to as a second flow path layer 412.
  • the main body 41 has two flow path layers 411 and 412 along the axis m.
  • an inflow portion 44a and an outflow portion 45b are provided on the outer peripheral surface of the first flow path layer 411 of the main body portion 41.
  • the inflow portion 44a and the outflow portion 45b are respectively arranged at positions shifted by 90 degrees in the circumferential direction about the axis m.
  • an inflow portion 44b and an outflow portion 45a and 45c are provided on the outer peripheral surface of the second flow path layer 412 of the main body portion 41.
  • the inflow portion 44b is arranged between the outflow portion 45a and the outflow portion 45c in the circumferential direction centered on the axis m.
  • the inflow portion 44b and the outflow portion 45a are arranged at positions displaced by 90 degrees in the circumferential direction about the axis m.
  • the inflow portion 44b and the outflow portion 45c are also arranged at positions displaced by 90 degrees in the circumferential direction about the axis m.
  • the inflow portion 44a shown in FIG. 2 and the outflow portion 45a shown in FIG. 3 are arranged so as to face each other in a direction parallel to the axis m.
  • the outflow portion 45b shown in FIG. 2 and the inflow portion 44b shown in FIG. 3 are also arranged so as to face each other in a direction parallel to the axis m. Cooling water flows into the inner chamber 410 of the main body 41 through the inflow portions 44a and 44b. The cooling water that has flowed into the inner chamber 410 is discharged from the outflow portions 45a to 45c to the outside of the main body portion 41.
  • the inflow portion 44a shown in FIG. 2 corresponds to the first inflow portion
  • the inflow portion 44b shown in FIG. 3 corresponds to the second inflow portion
  • the outflow portion 45b shown in FIG. 2 corresponds to the first outflow portion
  • the outflow portion 45a shown in FIG. 3 corresponds to the second outflow portion
  • the outflow portion 45c corresponds to the third outflow portion.
  • the switching portion 42 is formed in a columnar shape about the axis m.
  • the switching portion 42 is arranged so as to slidably contact the inner peripheral surface of the main body portion 41.
  • the switching unit 42 can rotate relative to the main body 41 about the axis m.
  • a first continuous passage 421 is formed in a portion of the switching portion 42 corresponding to the first flow path layer 411 of the main body portion 41.
  • the first communication passage 421 is formed so that the cross-sectional shape centered on the axis m is T-shaped, and has three openings on the outer peripheral surface of the switching portion 42. ing.
  • the first continuous passage 421 functions as a flow path for switching the connection state of the inflow portion 44a and the outflow portion 45b of the main body portion 41 as the switching portion 42 rotates about the axis m.
  • a second passage 422 is formed in a portion of the switching portion 42 corresponding to the second flow path layer 412 of the main body portion 41.
  • the second passage 422 is formed so that the cross-sectional shape centered on the axis m is L-shaped, and has two openings on the outer peripheral surface of the switching portion 42. ing.
  • the second continuous passage 422 functions as a flow path for switching the connection state of the inflow portion 44b and the outflow portions 45a and 45c of the main body portion 41 as the switching portion 42 rotates about the axis m.
  • a third passage 423 is further provided so as to straddle the first flow path layer 411 to the second flow path layer 412 of the main body portion 41. It is formed.
  • the third communication passage 423 corresponds to the communication portion.
  • the third communication passage 423 has inflow portions 44a, 44b and outflow portions 45a to 45c formed in the first flow path layer 411 and the second flow path layer 412 as the switching portion 42 rotates about the axis m. Of these, it functions as a flow path that communicates the inflow portion and the outflow portion that are arranged so as to face each other in the direction parallel to the axis m.
  • the third passage 423 connects the inflow portion 44a and the outflow portion 45a of the main body portion 41 and the inflow portion 44b and the outflow portion 45b as the switching portion 42 rotates. It is possible to switch between the state and the state.
  • the first passage 421, the second passage 422, and the third passage 423 are each formed as independent passages and are not communicated with each other.
  • the flow path switching valve 40 further includes an actuator device 43 for rotating the switching unit 42.
  • the actuator device 43 is integrally assembled with the main body 41 so as to close the opening at the upper end of the main body 41.
  • the actuator device 43 is composed of a motor or the like, and rotates the switching portion 42 by applying torque in the circumferential direction centered on the axis m to the shaft portion 424 formed on the upper surface of the switching portion 42. Let me.
  • the rotation positions of the first passage 421, the second passage 422, and the third passage 423 change with the rotation of the switching portion 42, so that the inflow portions 44a and 44b are connected to the outflow portions 45a to 45c.
  • the state changes.
  • the inflow unit 44a is connected to the outflow unit 45b through the first continuous passage 421 of the switching unit 42. Therefore, the cooling water flowing in from the inflow portion 44a is discharged from the outflow portion 45b. Further, the inflow portion 44b is connected to the outflow portion 45a through the second continuous passage 422. Therefore, the cooling water that has flowed in from the inflow section 44b is discharged from the outflow section 45a. Since only the outflow portion 45c is connected to the third passage 423 of the switching portion 42, the cooling water does not flow through the outflow portion 45c.
  • the inflow portion 44a is connected to the outflow portion 45b through the first continuous passage 421 of the switching portion 42. Therefore, the cooling water flowing in from the inflow portion 44a is discharged from the outflow portion 45b. Further, the inflow portion 44b is connected to the outflow portion 45c through the second continuous passage 422 of the switching portion 42. Therefore, the cooling water flowing in from the inflow portion 44b is discharged from the outflow portion 45c. Since the outflow portion 45a is blocked by the switching portion 42, the cooling water does not flow into the outflow portion 45a.
  • the inflow portion 44a is connected to the outflow portion 45a through the third continuous passage 423 of the switching portion 42. Therefore, the cooling water flowing in from the inflow portion 44a is discharged from the outflow portion 45a. Since the inflow portion 44b is blocked by the switching portion 42, the cooling water flowing into the inflow portion 44b does not flow into the outflow portions 45a to 45c. Further, since only the outflow portion 45b is connected to the first continuous passage 421 of the switching portion 42, the cooling water does not flow through the outflow portion 45b. Further, since only the outflow portion 45c is connected to the second continuous passage 422 of the switching portion 42, the cooling water does not flow through the outflow portion 45c.
  • the switching portion 42 is rotationally displaced as shown in FIGS. 2, 3, 7, and 8, so that the inflow portions 44a and 44b and the outflow portion 45a It is possible to change the connection state with ⁇ 45c.
  • the inflow portions 44a and 44b of the flow path switching valve 40 are connected to the flow paths W21 and W24 of the fluid circulation system 10, respectively.
  • the outflow portions 45a to 45c of the flow path switching valve 40 are connected to the flow paths W22, W23, and W25 of the fluid circulation system 10, respectively.
  • the flow path W21 is a part of the annular flow path W10 and is a flow path connecting the chiller 12 and the flow path switching valve 40.
  • the flow path W22 is also a part of the annular flow path W10, and is a flow path connecting the flow path switching valve 40 and the radiator 13.
  • the flow paths W23 and W24 are flow paths that connect the flow path switching valve 40 and the battery 21.
  • the flow path W23 is used as a flow path for supplying cooling water from the flow path switching valve 40 to the battery 21.
  • the flow path W24 is used as a flow path for returning the cooling water that has passed through the battery 21 to the flow path switching valve 40.
  • the flow path W25 is a flow path that connects the upstream portion of the first pump 11 in the annular flow path W10 and the flow path switching valve 40.
  • the flow path switching valve 40 changes the connection state between the inflow portions 44a and 44b and the outflow portions 45a to 45c as shown in FIGS. 2, 3, 7 and 8, so that the flow of the fluid circulation system 10 flows.
  • the connection state of the roads W21 to W25 is switched.
  • the radiator 13 is a part that exchanges heat between the cooling water flowing inside the radiator 13 and the outside air.
  • the cooling water discharged from the radiator 13 flows into the reserve tank 14.
  • the reserve tank 14 temporarily stores the cooling water discharged from the radiator 13.
  • the cooling water stored in the reserve tank 14 is sucked into the first pump 11.
  • the downstream portion of the reserve tank 14 in the annular flow path W10 is connected to the upstream side portion of the radiator 13 through the branch flow path W30.
  • a flow control valve 15, a second pump 16, and a PCU system 20 are arranged in the branch flow path W30.
  • the flow control valve 15 adjusts the flow rate of the cooling water flowing into the branch flow path W30 from the downstream portion of the reserve tank 14 in the annular flow path W10.
  • the second pump 16 sucks the cooling water flowing through the branch flow path W30 and discharges it to the PCU system 20 to circulate the cooling water through the branch flow path W30.
  • the cooling water circulates in the order of the flow control valve 15, the second pump 16, and the PCU system 20 from the downstream portion of the reserve tank 14 in the annular flow path W10.
  • the second pump 16 is an electric pump that is driven based on the electric power supplied from the battery 21.
  • the cooling water that has passed through the PCU system 20 is returned to the upstream portion of the radiator 13 in the annular flow path W10 through the branch flow path W30.
  • heat exchange is performed between the cooling water and the PCU system 20, so that the heat of the PCU system 20 is absorbed by the cooling water and the PCU system 20 is cooled. ..
  • the branch flow path W30 is provided with a bypass flow path W31 so as to connect a portion on the downstream side of the flow control valve 15 and a portion on the downstream side of the PCU system 20.
  • the bypass flow path W31 is provided with an on-off valve 17 for opening and closing the flow path W31.
  • the fluid circulation system 10 further includes an ECU (Electronic Control Unit) 30 for controlling its operation.
  • the ECU 30 is mainly composed of a microcomputer having a CPU, a storage device, and the like, and executes various controls of the fluid circulation system 10 by executing a program stored in the storage device.
  • a sensor group 31 for detecting various state quantities of the vehicle used for controlling the fluid circulation system 10 is connected to the ECU 30.
  • the sensor group 31 includes a temperature sensor that detects the temperature of the battery 21 and the PCU system 20.
  • the ECU 30 controls the operations of the first pump 11, the flow path switching valve 40, the flow control valve 15, the second pump 16, and the on-off valve 17 based on various state quantities detected by the sensor group 31.
  • the fluid circulation system 10 is operated in a plurality of operation modes.
  • the ECU 30 independently controls the PCU system 20 and the chiller 12 and the battery 21. First, the control of the former PCU system 20 will be described.
  • the ECU 30 cools and warms the PCU system 20 by changing the open / closed states of the flow control valve 15 and the on-off valve 17 based on the temperature of the PCU system 20 detected through the sensor group 31. Specifically, when the temperature of the PCU system 20 is equal to or higher than a predetermined temperature threshold value, the ECU 30 sets the on-off valve 17 to a closed state and sets the opening degree of the flow control valve 15 to a predetermined opening degree. To do. As a result, the cooling water that has flowed into the branch flow path W30 from the downstream portion of the reserve tank 14 in the annular flow path W10 is supplied to the PCU system 20 through the flow control valve 15 and the second pump 16. Therefore, the PCU system 20 is cooled by the cooling water.
  • the ECU 30 sets the on-off valve 17 to the open state and the flow control valve 15 to the closed state.
  • the cooling water discharged from the second pump 16 circulates in the branch flow path W30 and the bypass flow path W31 in a ring shape. Therefore, the cooling water that has passed through the PCU system 20 is returned to the PCU system 20 again through the branch flow path W30 and the bypass flow path W31, and absorbs the heat of the PCU system 20. Therefore, the cooling water circulating in the branch flow path W30 and the bypass flow path W31 is gradually heated. Therefore, the PCU system 20 is warmed up.
  • the ECU 30 adjusts the temperature of the PCU system 20 to the vicinity of the temperature threshold value by cooling and warming up the PCU system 20 through the opening / closing control of each of the flow control valve 15 and the on-off valve 17.
  • the ECU 30 switches the operation mode of the fluid circulation system 10 to any one of the first battery cooling mode, the second battery cooling mode, and the outside air heat absorption mode as the control for the chiller 12 and the battery 21.
  • the details of each mode are as follows.
  • the first battery cooling mode is a mode in which the battery 21 is cooled by using the cooling water cooled by the outside air. Specifically, when the first battery cooling mode is performed, the ECU 30 controls the actuator device 43 of the flow path switching valve 40 to determine the position of the switching portion 42 of the flow path switching valve 40 in FIGS. 2 and 2. Set to the position shown in 3. As a result, as shown in FIG. 1, the cooling water that has passed through the chiller 12 flows into the inflow portion 44a of the flow path switching valve 40 through the flow path W21, and then is discharged from the outflow portion 45b of the flow path switching valve 40. Is supplied to the battery 21 through the flow path W23.
  • the cooling water that has passed through the battery 21 flows into the inflow portion 44b of the flow path switching valve 40 through the flow path W24, is discharged from the outflow portion 45a of the flow path switching valve 40, and is discharged to the radiator 13 through the flow path W22. Be supplied. Since the cooling water does not flow in the outflow portion 45c in the flow path switching valve 40, the cooling water does not flow in the flow path W25.
  • a flow of cooling water as shown by an arrow in FIG. 1 is formed in the fluid circulation system 10. That is, the cooling water flows in the order of "first pump 11-> chiller 12-> flow path switching valve 40-> battery 21-> flow path switching valve 40-> radiator 13-> reserve tank 14-> first pump 11-> ##. .. Therefore, the cooling water cooled by the radiator 13 is supplied to the battery 21, so that the battery 21 is cooled.
  • the flow of the heat medium that circulates in the chiller 12 is not formed in the heat pump cycle 18. Therefore, the cooling water cooled by the radiator 13 is supplied to the battery 21 without exchanging heat with the heat medium of the heat pump cycle 18 when passing through the chiller 12.
  • the second battery cooling mode is a mode in which the battery 21 is cooled by using the cooling water cooled by the heat medium of the heat pump cycle 18.
  • the ECU 30 controls the actuator device 43 of the flow path switching valve 40 in the second battery cooling mode, so that the position of the switching portion 42 of the flow path switching valve 40 is shown in FIG. Set to the position where As a result, as shown in FIG. 10, the cooling water that has passed through the chiller 12 flows into the inflow portion 44a of the flow path switching valve 40 through the flow path W21, and then is discharged from the outflow portion 45b of the flow path switching valve 40. Is supplied to the battery 21 through the flow path W23.
  • the cooling water that has passed through the battery 21 flows into the inflow portion 44b of the flow path switching valve 40 through the flow path W24, and then is discharged from the outflow portion 45c of the flow path switching valve 40 to form the flow path W25 and the annular flow path. It is sucked into the first pump 11 through W10. Since the cooling water does not flow into the outflow portion 45a in the flow path switching valve 40, the cooling water does not flow in the flow path W22.
  • a flow path as shown by an arrow in FIG. 10 is formed. That is, the cooling water flows in the order of "first pump 11-> chiller 12-> flow path switching valve 40-> battery 21-> flow path switching valve 40-> first pump 11-> ".
  • the cooling water is cooled by heat exchange between the heat medium flowing through the heat pump cycle 18 and the cooling water flowing through the annular flow path W10.
  • the battery 21 is cooled by supplying the cooling water cooled in the chiller 12 to the battery 21.
  • the battery 21 is cooled by using the cooling water cooled in the chiller 12, in other words, using the cooling water cooled by the heat medium circulating in the heat pump cycle 18. Will be done.
  • A3 Outside air endothermic mode is a mode in which the heat medium of the heat pump cycle 18 is heated by utilizing the heat absorbed by the cooling water from the outside air.
  • the ECU 30 controls the actuator device 43 of the flow path switching valve 40 in the outside air endothermic mode to determine the position of the switching portion 42 of the flow path switching valve 40 as shown in FIG. Set to.
  • the cooling water that has passed through the chiller 12 flows into the inflow portion 44a of the flow path switching valve 40 through the flow path W21, and then is discharged from the outflow portion 45a of the flow path switching valve 40. Is supplied to the radiator 13 through the flow path W22.
  • the cooling water does not flow through the inflow portions 44b and the outflow portions 45b and 45c, so that the cooling water does not flow through the flow paths W23 to W25.
  • the flow path switching valve 40 By forming such a flow path by the flow path switching valve 40, the flow path as shown in FIG. 11 is formed in the fluid circulation system 10. That is, the cooling water flows in the order of "first pump 11-> chiller 12-> flow path switching valve 40-> radiator 13-> reserve tank 14-> first pump 11-> ". As a result, the cooling water that has absorbed the heat of the outside air in the radiator 13 is supplied to the chiller 12. In the chiller 12, heat exchange is performed between the cooling water supplied through the annular flow path W10 and the heat medium circulating in the heat pump cycle 18, so that the heat medium is heated by the heat of the cooling water. The heat pump cycle 18 heats the conditioned air by exchanging heat between the heat medium whose temperature has risen due to heating and the conditioned air flowing through the conditioned duct.
  • the cooling water heated by the radiator 13 is used, in other words, the cooling water heated by the outside air is used to heat the heat medium of the heat pump cycle 18.
  • the fluid circulation system 10 and the flow path switching valve 40 of the present embodiment described above the actions and effects shown in the following (1) and (2) can be obtained.
  • the switching unit 42 simultaneously switches the connection state of the inflow portion 44a and the outflow portion 45b in the first flow path layer 411 and the connection state of the inflow portion 44b and the outflow portions 45a and 45c in the second flow path layer 412.
  • the connection states of the inflow portions 44a and 44b and the outflow portions 45a to 45c arranged in the first flow path layer 411 and the second flow path layer 412 are switched by the operation of one switching unit 42. Therefore, it is possible to switch the same or similar flow path as in the case of using a plurality of three-way valves. Therefore, by using the flow path switching valve 40 having the configuration of the present embodiment instead of the plurality of three-way valves, the structure of the fluid circulation system 10 can be simplified.
  • the switching unit 42 has a third passage 423 that communicates the inflow portions 44a and 44b and the outflow portions 45a and 45b arranged in the different flow path layers 411 and 412, respectively. According to such a configuration, it is possible to form a flow path that straddles different flow path layers 411 and 412 by the third continuous passage 423, so that a more complicated flow path can be realized. ..
  • a notch 421a is formed in the switching portion 42 of the present modification as a flow path for communicating the inflow portion 44a and the outflow portion 45b in place of the first continuous passage 421. .. Further, as shown in FIG. 13, a notch 422a is formed in the switching portion 42 as a flow path for communicating the inflow portion 44b and the outflow portions 45a and 45c in place of the second continuous passage 422. ..
  • the flow path switching valve 40 of the present embodiment is different from the flow path switching valve 40 of the first embodiment in that the switching unit 42 shown in FIG. 14 is used instead of the switching unit 42 shown in FIG. different. As shown in FIG. 14, the switching portion 42 has disk portions 426a to 426c and partition portions 427 and 428.
  • the disk portions 426a to 426c are formed in a disk shape around the axis m.
  • the disk portions 426a to 426c are arranged in this order with a predetermined interval in a direction parallel to the axis m.
  • the gap formed between the disk portion 426a and the disk portion 426b is arranged in the first flow path layer 411 of the main body portion 41.
  • the gap formed between the disk portion 426b and the disk portion 426c is arranged in the second flow path layer 412 of the main body portion 41.
  • the partition portion 427 is composed of two plate-shaped members 427a and 427b connected in a substantially L-shape.
  • the plate-shaped members 427a and 427b are provided so as to penetrate the disk portion 426b and extend from the bottom surface of the disk portion 426a to the upper surface of the disk portion 426c.
  • the upper end portions of the plate-shaped members 427a and 427b are joined to the bottom surface of the disk portion 426a.
  • the lower ends of the plate-shaped members 427a and 427b are joined to the upper surface of the disk portion 426c.
  • the plate-shaped members 427a and 427b are arranged so as to extend from the axis m to the outer peripheral surfaces of the disk portions 426a and 426c, respectively.
  • the partition portion 428 has an end portion arranged on the axis m in the portion of the plate-shaped member 427b of the partition portion 427 arranged between the disk portion 426b and the disk portion 426c, and the outer circumference of the disk portion 426b and the disk portion 426c. It is a part formed so as to extend to the surface.
  • the space partitioned by the bottom surface of the disk portion 426a, the upper surface of the disk portion 426b, and the outer wall surface of the partition portion 427 constitutes the first continuous passage 421.
  • the bottom surface of the disk portion 426b, the upper surface of the disk portion 426c, the outer wall surface of the plate-shaped member 427b of the partition portion 427, and the space partitioned by the partition portion 428 constitute the second continuous passage 422. Further, a space partitioned by the bottom surface of the disk portion 426a, the upper surface of the disk portion 426c, and the inner wall surface of the partition portion 427 constitutes the third passage 423.
  • the bottom surface of the disk portion 426b, the upper surface of the disk portion 426c, the outer wall surface of the plate-shaped member 427a of the partition portion 427, and the space partitioned by the partition portion 428 are unused spaces S.
  • the actuator device 43 rotates the switching portion 42 by applying a torque in the circumferential direction centered on the axis m to the shaft portion 424 formed on the upper surface of the disk portion 426a.
  • the rotation positions of the first passage 421, the second passage 422, and the third passage 423 change with the rotation of the switching portion 42, so that the inflow portions 44a and 44b and the outflow portions 45a of the main body portion 41 change.
  • the connection state with the 45c changes.
  • the inflow portion 44a is connected to the outflow portion 45b through the first continuous passage 421. Therefore, the cooling water flowing in from the inflow portion 44a is discharged from the outflow portion 45b. Further, the inflow portion 44b is connected to the outflow portion 45a through the second continuous passage 422. Therefore, the cooling water that has flowed in from the inflow section 44b is discharged from the outflow section 45b. Since only the outflow portion 45c is connected to the third passage 423 of the switching portion 42, the cooling water does not flow through the outflow portion 45c.
  • the inflow portion 44a is connected to the outflow portion 45b through the first continuous passage 421. Therefore, the cooling water flowing in from the inflow portion 44a is discharged from the outflow portion 45b. Further, the inflow portion 44b is connected to the outflow portion 45c through the second continuous passage 422 of the switching portion 42. Therefore, the cooling water flowing in from the inflow portion 44b is discharged from the outflow portion 45c. Since the outflow portion 45a is connected to the unused space S, the cooling water does not flow into the outflow portion 45a.
  • the inflow portion 44a is connected to the outflow portion 45a through the third continuous passage 423. Therefore, the cooling water flowing in from the inflow portion 44a is discharged from the outflow portion 45a. Since the inflow portion 44b is connected to the unused space S, the cooling water flowing into the inflow portion 44b does not flow into the outflow portions 45a to 45c. Further, since only the outflow portion 45b is connected to the first continuous passage 421 of the switching portion 42, the cooling water does not flow through the outflow portion 45b. Further, since only the outflow portion 45c is connected to the second continuous passage 422 of the switching portion 42, the cooling water does not flow through the outflow portion 45c.
  • the switching portion 42 is rotationally displaced as shown in FIGS. 15 to 17, so that the inflow portions 44a and 44b are connected to the outflow portions 45a to 45c. It is possible to change.
  • the ECU 30 sets the position of the switching portion 42 of the flow path switching valve 40 to the position shown in FIG. As a result, the cooling water flows as shown by the arrow in FIG. 1, so that the battery 21 can be cooled by using the cooling water cooled by the radiator 13.
  • the ECU 30 sets the position of the switching portion 42 of the flow path switching valve 40 to the position shown in FIG. As a result, the cooling water flows as shown by the arrow in FIG. 10, so that the battery 21 can be cooled by using the cooling water cooled in the chiller 12.
  • the ECU 30 sets the position of the switching portion 42 of the flow path switching valve 40 to the position shown in FIG. As a result, the cooling water flows as shown by the arrow in FIG. 11, so that the heat medium of the heat pump cycle 18 can be heated by using the cooling water heated by the radiator 13.
  • the main body 41 of each embodiment is not limited to having two flow path layers 411 and 412, and may have three or more flow path layers along the axis m. Further, the flow path layer may be a portion of the main body 41 provided with a single inflow portion and a single or a plurality of outflow portions.
  • the fluid circulation system 10 may have a device different from the chiller 12, the radiator 13, the PCU system 20, and the battery 21 as a device arranged in the cooling water circulation path.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Valve Housings (AREA)
  • Multiple-Way Valves (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

This flow passage switching valve is provided with a main body portion (41), and a switching portion (42). The main body portion includes inflow portions (44a, 44b), and outflow portions (45a, 45b, 45c). The switching portion switches the state of connection of the inflow portions and the outflow portions. The main body portion has a plurality of flow passage layers (411, 412) in which the inflow portions and the outflow portions are provided. The switching portion switches the state of connection of the inflow portions and the outflow portions in each of the plurality of flow passage layers simultaneously.

Description

流路切替弁及び流体循環システムFlow switching valve and fluid circulation system 関連出願の相互参照Cross-reference of related applications
 本出願は、2019年6月7日に出願された日本国特許出願2019-106929号に基づくものであって、その優先権の利益を主張するものであり、その特許出願の全ての内容が、参照により本明細書に組み込まれる。 This application is based on Japanese Patent Application No. 2019-106929 filed on June 7, 2019, claiming the benefit of its priority, and the entire contents of the patent application Incorporated herein by reference.
 本開示は、流路切替弁及び流体循環システムに関する。 The present disclosure relates to a flow path switching valve and a fluid circulation system.
 従来、下記の特許文献1に記載の車両の流体循環システムがある。特許文献1に記載の流体循環システムは、熱媒体流路と、バッテリ流路と、車載機器流路と、車載機器バイパス流路とを備えている。熱媒体流路は、環状の流路であり、冷却水が循環している。熱媒体流路には、第1ポンプ、チラー、ラジエータ、及び第1流路切替弁が、冷却水の流れ方向に対して、この並び順で配置されている。バッテリ流路は、第1流路切替弁と、熱媒体流路におけるチラーの下流側の部分とを接続するように設けられている。チラーは、熱媒体流路を流れる冷却水と、車両に搭載される冷凍サイクルを流れる熱媒体との間で熱交換を行う部分である。バッテリ流路には、車両に搭載されるバッテリが配置されている。車載機器流路は、熱媒体流路におけるラジエータの上流側の部分とその下流側の部分とを接続するように設けられている。車載機器流路には、第2ポンプ、インバータ、チャージャ、及びモータジェネレータが、この並び順で配置されている。以下では、便宜上、インバータ、チャージャ、及びモータジェネレータをPCU(Power Control Unit)系と称する。車載機器バイパス流路は、車載機器流路における第2ポンプの上流側の部分とモータジェネレータの下流側の部分とを接続するように設けられている。車載機器流路と車載機器バイパス流路の下流側の部分との接続部分には第2流路切替弁が設けられている。 Conventionally, there is a vehicle fluid circulation system described in Patent Document 1 below. The fluid circulation system described in Patent Document 1 includes a heat medium flow path, a battery flow path, an in-vehicle device flow path, and an in-vehicle device bypass flow path. The heat medium flow path is an annular flow path in which cooling water circulates. In the heat medium flow path, the first pump, the chiller, the radiator, and the first flow path switching valve are arranged in this order with respect to the flow direction of the cooling water. The battery flow path is provided so as to connect the first flow path switching valve and the downstream portion of the chiller in the heat medium flow path. The chiller is a part that exchanges heat between the cooling water flowing through the heat medium flow path and the heat medium flowing through the refrigeration cycle mounted on the vehicle. A battery mounted on the vehicle is arranged in the battery flow path. The in-vehicle device flow path is provided so as to connect a portion of the heat medium flow path on the upstream side of the radiator and a portion on the downstream side thereof. The second pump, the inverter, the charger, and the motor generator are arranged in this order in the in-vehicle device flow path. Hereinafter, for convenience, the inverter, charger, and motor generator will be referred to as a PCU (Power Control Unit) system. The in-vehicle device bypass flow path is provided so as to connect a portion of the in-vehicle device flow path on the upstream side of the second pump and a portion on the downstream side of the motor generator. A second flow path switching valve is provided at a connection portion between the in-vehicle device flow path and the downstream portion of the in-vehicle device bypass flow path.
 第1流路切替弁は三方弁であり、熱媒体流路を流れる冷却水を、バッテリ流路に流す状態と、バッテリ流路に流さない状態とに切り替える。第2流路切替弁も同じく三方弁であり、車載機器流路を流れる冷却水を、車載機器バイパス流路に流す状態と、車載機器バイパス流路に流さない状態とに切り替える。 The first flow path switching valve is a three-way valve, and switches the cooling water flowing through the heat medium flow path between a state in which it flows through the battery flow path and a state in which it does not flow through the battery flow path. The second flow path switching valve is also a three-way valve, and switches between a state in which the cooling water flowing through the in-vehicle device flow path flows through the in-vehicle device bypass flow path and a state in which the cooling water does not flow through the in-vehicle device bypass flow path.
 特許文献1に記載の流体循環システムでは、冷却水によりPCU系やバッテリが冷却される。また、特許文献1に記載の流体循環システムでは、第1流路切替弁及び第2流路切替弁の切り替え動作を通じて、PCU系やバッテリの廃熱を冷却水に吸収した上で、その冷却水の熱を、チラーを介して冷凍サイクルの熱媒体に伝達する流路が形成される。このような流路が形成されることで、PCU系やバッテリの廃熱を、熱媒体の加熱源として用いることが可能となっている。 In the fluid circulation system described in Patent Document 1, the PCU system and the battery are cooled by the cooling water. Further, in the fluid circulation system described in Patent Document 1, the waste heat of the PCU system or the battery is absorbed by the cooling water through the switching operation of the first flow path switching valve and the second flow path switching valve, and then the cooling water is absorbed. A flow path is formed to transfer the heat of the above to the heat medium of the refrigeration cycle via the chiller. By forming such a flow path, it is possible to use the waste heat of the PCU system or the battery as a heating source of the heat medium.
特開2019-66049号公報JP-A-2019-66049
 特許文献1に記載される流体循環システムのように、複数の流路の切り替えを通じて冷却水の各種流れを実現しようとする場合には、三方弁等の流路を切り替えるための切替弁が複数必要となる場合がある。しかしながら、このような切替弁の個数が増加すると、流体循環システムとしての構造の複雑化が回避できないものとなる。 When trying to realize various flows of cooling water through switching of a plurality of flow paths as in the fluid circulation system described in Patent Document 1, a plurality of switching valves for switching the flow paths such as a three-way valve are required. May be. However, if the number of such switching valves increases, the structure of the fluid circulation system becomes complicated inevitably.
 なお、このような課題は、特許文献1に記載されるような流体循環システムに限らず、複数の流路の切り替えを行う必要のある各種の流体循環システムに共通する課題である。
 本開示の目的は、簡素な構造により複数の流路の切り替えを行うことが可能な流路切替弁及び流体循環システムを提供することにある。
It should be noted that such a problem is not limited to the fluid circulation system described in Patent Document 1, but is a problem common to various fluid circulation systems that need to switch a plurality of flow paths.
An object of the present disclosure is to provide a flow path switching valve and a fluid circulation system capable of switching a plurality of flow paths with a simple structure.
 本開示の一態様による流路切替弁は、本体部と、切替部と、を備える。本体部は、所定の軸線に沿って延びるように形成されるとともに、流体を外部から内部に流入させる流入部、及び流体を内部から外部に流出させる流出部を有する。切替部は、流入部及び流出部の接続状態を切り替える。本体部は、単数の流入部、及び単数又は複数の流出部が外周面に設けられる流路層を所定の軸線に沿って複数有している。切替部は、複数の流路層のそれぞれにおける流入部及び流出部の接続状態を同時に切り替える。 The flow path switching valve according to one aspect of the present disclosure includes a main body portion and a switching portion. The main body portion is formed so as to extend along a predetermined axis, and has an inflow portion that allows the fluid to flow in from the outside to the inside, and an outflow portion that allows the fluid to flow out from the inside to the outside. The switching unit switches the connection state of the inflow unit and the outflow unit. The main body portion has a plurality of flow path layers in which a single inflow portion and a single or a plurality of outflow portions are provided on the outer peripheral surface along a predetermined axis. The switching unit simultaneously switches the connection state of the inflow portion and the outflow portion in each of the plurality of flow path layers.
 また、本開示の一態様による流体循環システムは、第1機器、第2機器、及び第3機器に流体を循環させる流体循環システムであって、流路切替弁を備えている。第1機器は、流路切替弁の第1流入部に接続されている。第2機器は、流路切替弁の第2流出部に接続されている。第3機器は、流路切替弁の第2流入部及び第1流出部に接続されている。流路切替弁の第3流出部は、第2機器と第3機器とを接続する流路に接続されている。 Further, the fluid circulation system according to one aspect of the present disclosure is a fluid circulation system that circulates fluid to the first device, the second device, and the third device, and includes a flow path switching valve. The first device is connected to the first inflow portion of the flow path switching valve. The second device is connected to the second outflow portion of the flow path switching valve. The third device is connected to the second inflow portion and the first outflow portion of the flow path switching valve. The third outflow portion of the flow path switching valve is connected to the flow path connecting the second device and the third device.
 これらの構成によれば、複数の流路層にそれぞれ配置される流入部及び流出部の接続状態を一つの切替部の作動により切り替えることができるため、複数の三方弁を用いる場合と同一又は類似の流路の切り替えが可能となる。よって、複数の三方弁に代えて、上記の構成を有する流路切替弁を用いることにより、構造を簡素化することができる。 According to these configurations, the connection state of the inflow part and the outflow part arranged in the plurality of flow path layers can be switched by the operation of one switching part, so that it is the same as or similar to the case of using a plurality of three-way valves. It is possible to switch the flow path of. Therefore, the structure can be simplified by using a flow path switching valve having the above configuration instead of the plurality of three-way valves.
図1は、第1実施形態の流体循環システムの概略構成を示すブロック図である。FIG. 1 is a block diagram showing a schematic configuration of the fluid circulation system of the first embodiment. 図2は、第1実施形態の流路切替弁の第1流路層の断面構造を示す断面図である。FIG. 2 is a cross-sectional view showing a cross-sectional structure of a first flow path layer of the flow path switching valve of the first embodiment. 図3は、第1実施形態の流路切替弁の第2流路層の断面構造を示す断面図である。FIG. 3 is a cross-sectional view showing a cross-sectional structure of a second flow path layer of the flow path switching valve of the first embodiment. 図4は、第1実施形態の切替部の正面構造を示す正面図である。FIG. 4 is a front view showing the front structure of the switching portion of the first embodiment. 図5は、図4のV-V線に沿った断面構造を示す断面図である。FIG. 5 is a cross-sectional view showing a cross-sectional structure taken along the line VV of FIG. 図6は、図4のVI-VI線に沿った断面構造を示す断面図である。FIG. 6 is a cross-sectional view showing a cross-sectional structure along the VI-VI line of FIG. 図7(A),(B)は、第1実施形態の流路切替弁の動作例を示す断面図である。7 (A) and 7 (B) are cross-sectional views showing an operation example of the flow path switching valve of the first embodiment. 図8(A),(B)は、第1実施形態の流路切替弁の動作例を示す断面図である。8 (A) and 8 (B) are cross-sectional views showing an operation example of the flow path switching valve of the first embodiment. 図9は、第1実施形態の流体循環システムの電気的な構成を示すブロック図である。FIG. 9 is a block diagram showing an electrical configuration of the fluid circulation system of the first embodiment. 図10は、第1実施形態の流体循環システムの動作例を示すブロック図である。FIG. 10 is a block diagram showing an operation example of the fluid circulation system of the first embodiment. 図11は、第1実施形態の流体循環システムの動作例を示すブロック図である。FIG. 11 is a block diagram showing an operation example of the fluid circulation system of the first embodiment. 図12は、第1実施形態の変形例の流路切替弁の第1流路層の断面構造を示す断面図である。FIG. 12 is a cross-sectional view showing a cross-sectional structure of the first flow path layer of the flow path switching valve of the modified example of the first embodiment. 図13は、第1実施形態の変形例の流路切替弁の第2流路層の断面構造を示す断面図である。FIG. 13 is a cross-sectional view showing a cross-sectional structure of a second flow path layer of the flow path switching valve of the modified example of the first embodiment. 図14は、第2実施形態の切替部の斜視構造を示す斜視図である。FIG. 14 is a perspective view showing a perspective structure of the switching portion of the second embodiment. 図15(A),(B)は、第2実施形態の流路切替弁の動作例を示す断面図である。15 (A) and 15 (B) are cross-sectional views showing an operation example of the flow path switching valve of the second embodiment. 図16(A),(B)は、第2実施形態の流路切替弁の動作例を示す断面図である。16 (A) and 16 (B) are cross-sectional views showing an operation example of the flow path switching valve of the second embodiment. 図17(A),(B)は、第2実施形態の流路切替弁の動作例を示す断面図である。17 (A) and 17 (B) are cross-sectional views showing an operation example of the flow path switching valve of the second embodiment.
 以下、流路切替弁及び流体循環システムの実施形態について図面を参照しながら説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。
 <第1実施形態>
 はじめに、図1に示される第1実施形態の流体循環システム10及び流路切替弁40について説明する。
Hereinafter, embodiments of the flow path switching valve and the fluid circulation system will be described with reference to the drawings. In order to facilitate understanding of the description, the same components are designated by the same reference numerals as much as possible in each drawing, and duplicate description is omitted.
<First Embodiment>
First, the fluid circulation system 10 and the flow path switching valve 40 of the first embodiment shown in FIG. 1 will be described.
 図1に示される本実施形態の流路切替弁40は車両に搭載されている。流体循環システム10は、車両のPCU系20や電池21を冷却水により冷却するシステムである。PCU系とは、車両に搭載されるトランスアクスルやモータジェネレータ、インバータ回路等の電気機器を示す。本実施形態では、冷却水が流体に相当する。流体循環システム10は、流路切替弁40に加え、第1ポンプ11と、チラー12と、ラジエータ13と、リザーブタンク14と、流調弁15と、第2ポンプ16と、開閉弁17とを備えている。第1ポンプ11、チラー12、流路切替弁40、電池21、ラジエータ13、及びリザーブタンク14は、環状に形成された流路W10に設けられている。本実施形態では、チラー12が第1機器に相当し、ラジエータ13が第2機器に相当し、電池21が第3機器に相当する。 The flow path switching valve 40 of the present embodiment shown in FIG. 1 is mounted on the vehicle. The fluid circulation system 10 is a system that cools the PCU system 20 and the battery 21 of the vehicle with cooling water. The PCU system refers to electrical equipment such as a transaxle, a motor generator, and an inverter circuit mounted on a vehicle. In this embodiment, the cooling water corresponds to the fluid. In addition to the flow path switching valve 40, the fluid circulation system 10 includes a first pump 11, a chiller 12, a radiator 13, a reserve tank 14, a flow control valve 15, a second pump 16, and an on-off valve 17. I have. The first pump 11, the chiller 12, the flow path switching valve 40, the battery 21, the radiator 13, and the reserve tank 14 are provided in the flow path W10 formed in an annular shape. In the present embodiment, the chiller 12 corresponds to the first device, the radiator 13 corresponds to the second device, and the battery 21 corresponds to the third device.
 第1ポンプ11は、環状流路W10を流れる冷却水を吸入してチラー12に吐出することにより、冷却水を環状流路W10内で循環させる。環状流路W10では、図中に矢印で示される方向に、すなわち第1ポンプ11、チラー12、流路切替弁40、電池21、流路切替弁40、ラジエータ13、リザーブタンク14の順で冷却水が循環している。第1ポンプ11は、電池21から供給される電力に基づいて駆動する電動ポンプである。 The first pump 11 sucks the cooling water flowing through the annular flow path W10 and discharges it to the chiller 12 to circulate the cooling water in the annular flow path W10. In the annular flow path W10, cooling is performed in the direction indicated by the arrow in the figure, that is, in the order of the first pump 11, the chiller 12, the flow path switching valve 40, the battery 21, the flow path switching valve 40, the radiator 13, and the reserve tank 14. Water is circulating. The first pump 11 is an electric pump that is driven based on the electric power supplied from the battery 21.
 チラー12は、車両に搭載されるヒートポンプサイクル18を循環する熱媒体と、環状流路W10を流れる冷却水との間で熱交換を行う熱交換器である。ヒートポンプサイクル18は、車両の空調装置の構成要素の一つであって、空調装置の空調ダクト内を流れる空調空気と熱媒体との間で熱交換を行うことにより、空調空気を冷却又は加熱するシステムである。空調装置は、ヒートポンプサイクル18を通じて冷却又は加熱された空調空気を、空調ダクトを通じて車室内に送風することにより、車室内の冷房又は暖房を行う。 The chiller 12 is a heat exchanger that exchanges heat between the heat medium that circulates in the heat pump cycle 18 mounted on the vehicle and the cooling water that flows in the annular flow path W10. The heat pump cycle 18 is one of the components of the air conditioner of the vehicle, and cools or heats the air conditioner air by exchanging heat between the air conditioner air flowing in the air conditioner duct of the air conditioner and the heat medium. It is a system. The air conditioner cools or heats the vehicle interior by blowing air-conditioned air cooled or heated through the heat pump cycle 18 into the vehicle interior through an air conditioning duct.
 流路切替弁40には流路W21~W25が接続されている。流路切替弁40は流路W21~W25の接続状態を切り替えるために設けられている。
 図2に示されるように、流路切替弁40は、本体部41と、切替部42とを備えている。
The flow paths W21 to W25 are connected to the flow path switching valve 40. The flow path switching valve 40 is provided to switch the connection state of the flow paths W21 to W25.
As shown in FIG. 2, the flow path switching valve 40 includes a main body portion 41 and a switching portion 42.
 本体部41は、軸線mを中心に有底円筒状に形成されており、軸線mに沿って延びるように形成されている。本体部41の内部空間は内室410を形成している。以下では、便宜上、軸線mに平行な方向を上下方向と称する。より詳細には、軸線mに平行な方向のうち、本体部41において底部が形成されている部分から、底部とは逆の部分に向かう方向が上方向に相当し、その逆方向が下方向に相当する。 The main body 41 is formed in a bottomed cylindrical shape centered on the axis m, and is formed so as to extend along the axis m. The internal space of the main body 41 forms an inner chamber 410. Hereinafter, for convenience, the direction parallel to the axis m is referred to as the vertical direction. More specifically, in the direction parallel to the axis m, the direction from the portion of the main body 41 where the bottom is formed to the portion opposite to the bottom corresponds to the upward direction, and the opposite direction corresponds to the downward direction. Equivalent to.
 図2は、軸線mに沿った方向における流路切替弁40の中間部分よりも下方側の部分の軸線mに直交する断面構造を示したものである。図3は、軸線mに沿った方向における流路切替弁40の中間部分よりも上方側の部分の軸線mに直交する断面構造を示したものである。以下では、図2に示される本体部41の部位を第1流路層411と称し、図3に示される本体部41の部位を第2流路層412と称する。本体部41は、2つの流路層411,412を軸線mに沿って有している。 FIG. 2 shows a cross-sectional structure orthogonal to the axis m of the portion below the intermediate portion of the flow path switching valve 40 in the direction along the axis m. FIG. 3 shows a cross-sectional structure orthogonal to the axis m of the portion above the intermediate portion of the flow path switching valve 40 in the direction along the axis m. Hereinafter, the portion of the main body portion 41 shown in FIG. 2 is referred to as a first flow path layer 411, and the portion of the main body portion 41 shown in FIG. 3 is referred to as a second flow path layer 412. The main body 41 has two flow path layers 411 and 412 along the axis m.
 図2に示されるように、本体部41の第1流路層411の外周面には、流入部44a及び流出部45bが設けられている。流入部44a及び流出部45bは、軸線mを中心とする周方向において90度だけずれた位置にそれぞれ配置されている。図3に示されるように、本体部41の第2流路層412の外周面には、流入部44b、及び流出部45a,45cが設けられている。流入部44bは、軸線mを中心とする周方向において流出部45aと流出部45cとの間に配置されている。流入部44b及び流出部45aは、軸線mを中心とする周方向において90度だけずれた位置に配置されている。同様に、流入部44b及び流出部45cも、軸線mを中心とする周方向において90度だけずれた位置に配置されている。図2に示される流入部44a、及び図3に示される流出部45aは、軸線mに平行な方向において互いに対向するように配置されている。図2に示される流出部45b、及び図3に示される流入部44bも、軸線mに平行な方向において互いに対向するように配置されている。本体部41の内室410には流入部44a,44bを通じて冷却水が流入する。内室410に流入した冷却水は流出部45a~45cから本体部41の外部に排出される。 As shown in FIG. 2, an inflow portion 44a and an outflow portion 45b are provided on the outer peripheral surface of the first flow path layer 411 of the main body portion 41. The inflow portion 44a and the outflow portion 45b are respectively arranged at positions shifted by 90 degrees in the circumferential direction about the axis m. As shown in FIG. 3, an inflow portion 44b and an outflow portion 45a and 45c are provided on the outer peripheral surface of the second flow path layer 412 of the main body portion 41. The inflow portion 44b is arranged between the outflow portion 45a and the outflow portion 45c in the circumferential direction centered on the axis m. The inflow portion 44b and the outflow portion 45a are arranged at positions displaced by 90 degrees in the circumferential direction about the axis m. Similarly, the inflow portion 44b and the outflow portion 45c are also arranged at positions displaced by 90 degrees in the circumferential direction about the axis m. The inflow portion 44a shown in FIG. 2 and the outflow portion 45a shown in FIG. 3 are arranged so as to face each other in a direction parallel to the axis m. The outflow portion 45b shown in FIG. 2 and the inflow portion 44b shown in FIG. 3 are also arranged so as to face each other in a direction parallel to the axis m. Cooling water flows into the inner chamber 410 of the main body 41 through the inflow portions 44a and 44b. The cooling water that has flowed into the inner chamber 410 is discharged from the outflow portions 45a to 45c to the outside of the main body portion 41.
 なお、本実施形態では、図2に示される流入部44aが第1流入部に相当し、図3に示される流入部44bが第2流入部に相当する。また、図2に示される流出部45bが第1流出部に相当し、図3に示される流出部45aが第2流出部に相当し、流出部45cが第3流出部に相当する。 In the present embodiment, the inflow portion 44a shown in FIG. 2 corresponds to the first inflow portion, and the inflow portion 44b shown in FIG. 3 corresponds to the second inflow portion. Further, the outflow portion 45b shown in FIG. 2 corresponds to the first outflow portion, the outflow portion 45a shown in FIG. 3 corresponds to the second outflow portion, and the outflow portion 45c corresponds to the third outflow portion.
 図4に示されるように、切替部42は、軸線mを中心に円柱状に形成されている。切替部42は、本体部41の内周面に対して摺動可能に接触するように配置されている。切替部42は、本体部41に対して軸線mを中心に相対回転可能である。
 切替部42において本体部41の第1流路層411に対応する部分には、第1連通路421が形成されている。図5に示されるように、第1連通路421は、軸線mを中心とする断面形状がT字状をなすように形成されており、切替部42の外周面に3つの開口部を有している。第1連通路421は、軸線mを中心とした切替部42の回転に伴って本体部41の流入部44a及び流出部45bの接続状態を切り替える流路として機能する。
As shown in FIG. 4, the switching portion 42 is formed in a columnar shape about the axis m. The switching portion 42 is arranged so as to slidably contact the inner peripheral surface of the main body portion 41. The switching unit 42 can rotate relative to the main body 41 about the axis m.
A first continuous passage 421 is formed in a portion of the switching portion 42 corresponding to the first flow path layer 411 of the main body portion 41. As shown in FIG. 5, the first communication passage 421 is formed so that the cross-sectional shape centered on the axis m is T-shaped, and has three openings on the outer peripheral surface of the switching portion 42. ing. The first continuous passage 421 functions as a flow path for switching the connection state of the inflow portion 44a and the outflow portion 45b of the main body portion 41 as the switching portion 42 rotates about the axis m.
 図4に示されるように、切替部42において本体部41の第2流路層412に対応する部分には、第2連通路422が形成されている。図6に示されるように、第2連通路422は、軸線mを中心とする断面形状がL字状をなすように形成されており、切替部42の外周面に2つの開口部を有している。第2連通路422は、軸線mを中心とした切替部42の回転に伴って本体部41の流入部44b及び流出部45a,45cの接続状態を切り替える流路として機能する。 As shown in FIG. 4, a second passage 422 is formed in a portion of the switching portion 42 corresponding to the second flow path layer 412 of the main body portion 41. As shown in FIG. 6, the second passage 422 is formed so that the cross-sectional shape centered on the axis m is L-shaped, and has two openings on the outer peripheral surface of the switching portion 42. ing. The second continuous passage 422 functions as a flow path for switching the connection state of the inflow portion 44b and the outflow portions 45a and 45c of the main body portion 41 as the switching portion 42 rotates about the axis m.
 図4~図6に示されるように、切替部42の外周面には、本体部41の第1流路層411から第2流路層412に跨がるように第3連通路423が更に形成されている。本実施形態では、第3連通路423が連通部に相当する。第3連通路423は、軸線mを中心とする切替部42の回転に伴って、第1流路層411及び第2流路層412に形成される流入部44a,44b及び流出部45a~45cのうち、軸線mに平行な方向において対向して配置される流入部及び流出部を連通する流路として機能する。具体的には、第3連通路423は、切替部42の回転に伴って、本体部41の流入部44a及び流出部45aを接続している状態と、流入部44b及び流出部45bを接続している状態とを切り替えることが可能である。 As shown in FIGS. 4 to 6, on the outer peripheral surface of the switching portion 42, a third passage 423 is further provided so as to straddle the first flow path layer 411 to the second flow path layer 412 of the main body portion 41. It is formed. In the present embodiment, the third communication passage 423 corresponds to the communication portion. The third communication passage 423 has inflow portions 44a, 44b and outflow portions 45a to 45c formed in the first flow path layer 411 and the second flow path layer 412 as the switching portion 42 rotates about the axis m. Of these, it functions as a flow path that communicates the inflow portion and the outflow portion that are arranged so as to face each other in the direction parallel to the axis m. Specifically, the third passage 423 connects the inflow portion 44a and the outflow portion 45a of the main body portion 41 and the inflow portion 44b and the outflow portion 45b as the switching portion 42 rotates. It is possible to switch between the state and the state.
 なお、第1連通路421、第2連通路422、及び第3連通路423のそれぞれは独立した流路として形成されており、互いに連通されていない。
 図4に示されるように、流路切替弁40は、切替部42を回転させるためのアクチュエータ装置43を更に備えている。アクチュエータ装置43は、本体部41の上端の開口部を閉塞するように本体部41に一体的に組み付けられている。アクチュエータ装置43は、モータ等により構成されており、切替部42の上面に形成される軸部424に対して、軸線mを中心とする周方向のトルクを付与することにより、切替部42を回転させる。この切替部42の回転に伴って第1連通路421、第2連通路422、及び第3連通路423の回転位置が変化することにより、流入部44a,44bと流出部45a~45cとの接続状態が変化する。
The first passage 421, the second passage 422, and the third passage 423 are each formed as independent passages and are not communicated with each other.
As shown in FIG. 4, the flow path switching valve 40 further includes an actuator device 43 for rotating the switching unit 42. The actuator device 43 is integrally assembled with the main body 41 so as to close the opening at the upper end of the main body 41. The actuator device 43 is composed of a motor or the like, and rotates the switching portion 42 by applying torque in the circumferential direction centered on the axis m to the shaft portion 424 formed on the upper surface of the switching portion 42. Let me. The rotation positions of the first passage 421, the second passage 422, and the third passage 423 change with the rotation of the switching portion 42, so that the inflow portions 44a and 44b are connected to the outflow portions 45a to 45c. The state changes.
 具体的には、切替部42が図2及び図3に示される位置に配置されている場合、流入部44aは切替部42の第1連通路421を通じて流出部45bに接続されている。したがって、流入部44aから流入した冷却水は流出部45bから排出される。また、流入部44bは第2連通路422を通じて流出部45aに接続されている。したがって、流入部44bから流入した冷却水は流出部45aから排出される。なお、切替部42の第3連通路423には流出部45cのみが接続されているため、流出部45cには冷却水が流れない。 Specifically, when the switching unit 42 is arranged at the position shown in FIGS. 2 and 3, the inflow unit 44a is connected to the outflow unit 45b through the first continuous passage 421 of the switching unit 42. Therefore, the cooling water flowing in from the inflow portion 44a is discharged from the outflow portion 45b. Further, the inflow portion 44b is connected to the outflow portion 45a through the second continuous passage 422. Therefore, the cooling water that has flowed in from the inflow section 44b is discharged from the outflow section 45a. Since only the outflow portion 45c is connected to the third passage 423 of the switching portion 42, the cooling water does not flow through the outflow portion 45c.
 また、切替部42が、図7(A),(B)に示される位置に配置されている場合、流入部44aは切替部42の第1連通路421を通じて流出部45bに接続されている。したがって、流入部44aから流入した冷却水は流出部45bから排出される。また、流入部44bは切替部42の第2連通路422を通じて流出部45cに接続されている。したがって、流入部44bから流入した冷却水は流出部45cから排出される。なお、流出部45aは切替部42により閉塞されているため、流出部45aには冷却水が流れない。 Further, when the switching portion 42 is arranged at the position shown in FIGS. 7A and 7B, the inflow portion 44a is connected to the outflow portion 45b through the first continuous passage 421 of the switching portion 42. Therefore, the cooling water flowing in from the inflow portion 44a is discharged from the outflow portion 45b. Further, the inflow portion 44b is connected to the outflow portion 45c through the second continuous passage 422 of the switching portion 42. Therefore, the cooling water flowing in from the inflow portion 44b is discharged from the outflow portion 45c. Since the outflow portion 45a is blocked by the switching portion 42, the cooling water does not flow into the outflow portion 45a.
 さらに、切替部42が、図8(A),(B)に示される位置に配置されている場合、流入部44aは切替部42の第3連通路423を通じて流出部45aに接続されている。したがって、流入部44aから流入した冷却水は流出部45aから排出される。なお、流入部44bは切替部42により閉塞されているため、流入部44bに流入する冷却水は流出部45a~45cには流れない。また、切替部42の第1連通路421には流出部45bのみが接続されているため、流出部45bには冷却水が流れない。さらに、切替部42の第2連通路422には流出部45cのみが接続されているため、流出部45cには冷却水が流れない。 Further, when the switching portion 42 is arranged at the position shown in FIGS. 8A and 8B, the inflow portion 44a is connected to the outflow portion 45a through the third continuous passage 423 of the switching portion 42. Therefore, the cooling water flowing in from the inflow portion 44a is discharged from the outflow portion 45a. Since the inflow portion 44b is blocked by the switching portion 42, the cooling water flowing into the inflow portion 44b does not flow into the outflow portions 45a to 45c. Further, since only the outflow portion 45b is connected to the first continuous passage 421 of the switching portion 42, the cooling water does not flow through the outflow portion 45b. Further, since only the outflow portion 45c is connected to the second continuous passage 422 of the switching portion 42, the cooling water does not flow through the outflow portion 45c.
 このように、本実施形態の流路切替弁40では、切替部42が図2,図3,図7及び図8に示されるように回転変位することで、流入部44a,44bと流出部45a~45cとの接続状態を変化させることが可能となっている。
 図1に示されるように、流路切替弁40の流入部44a,44bは、流体循環システム10の流路W21,W24にそれぞれ接続されている。また、流路切替弁40の流出部45a~45cは、流体循環システム10の流路W22,W23,W25にそれぞれ接続されている。
As described above, in the flow path switching valve 40 of the present embodiment, the switching portion 42 is rotationally displaced as shown in FIGS. 2, 3, 7, and 8, so that the inflow portions 44a and 44b and the outflow portion 45a It is possible to change the connection state with ~ 45c.
As shown in FIG. 1, the inflow portions 44a and 44b of the flow path switching valve 40 are connected to the flow paths W21 and W24 of the fluid circulation system 10, respectively. Further, the outflow portions 45a to 45c of the flow path switching valve 40 are connected to the flow paths W22, W23, and W25 of the fluid circulation system 10, respectively.
 流路W21は環状流路W10の一部であって、チラー12と流路切替弁40とを接続する流路である。流路W22も環状流路W10の一部であって、流路切替弁40とラジエータ13とを接続する流路である。流路W23,W24は流路切替弁40と電池21とを接続する流路である。流路W23は、流路切替弁40から電池21に冷却水を供給する流路として用いられる。流路W24は、電池21を通過した冷却水を流路切替弁40に戻す流路として用いられる。流路W23を通じて供給される冷却水と電池21との間で熱交換が行われることにより電池21の熱が冷却水に吸収されて、電池21の冷却が行われる。流路W25は、環状流路W10における第1ポンプ11の上流側の部分と流路切替弁40とを接続する流路である。流路切替弁40は、図2,図3,図7及び図8に示されるように流入部44a,44bと流出部45a~45cとの接続状態を変化させることで、流体循環システム10の流路W21~W25の接続状態を切り替える。 The flow path W21 is a part of the annular flow path W10 and is a flow path connecting the chiller 12 and the flow path switching valve 40. The flow path W22 is also a part of the annular flow path W10, and is a flow path connecting the flow path switching valve 40 and the radiator 13. The flow paths W23 and W24 are flow paths that connect the flow path switching valve 40 and the battery 21. The flow path W23 is used as a flow path for supplying cooling water from the flow path switching valve 40 to the battery 21. The flow path W24 is used as a flow path for returning the cooling water that has passed through the battery 21 to the flow path switching valve 40. By exchanging heat between the cooling water supplied through the flow path W23 and the battery 21, the heat of the battery 21 is absorbed by the cooling water, and the battery 21 is cooled. The flow path W25 is a flow path that connects the upstream portion of the first pump 11 in the annular flow path W10 and the flow path switching valve 40. The flow path switching valve 40 changes the connection state between the inflow portions 44a and 44b and the outflow portions 45a to 45c as shown in FIGS. 2, 3, 7 and 8, so that the flow of the fluid circulation system 10 flows. The connection state of the roads W21 to W25 is switched.
 ラジエータ13は、その内部を流れる冷却水と外気との間で熱交換を行う部分である。ラジエータ13から吐出される冷却水はリザーブタンク14に流入する。リザーブタンク14は、ラジエータ13から吐出される冷却水を一時的に蓄える。リザーブタンク14に蓄えられている冷却水は第1ポンプ11に吸入される。 The radiator 13 is a part that exchanges heat between the cooling water flowing inside the radiator 13 and the outside air. The cooling water discharged from the radiator 13 flows into the reserve tank 14. The reserve tank 14 temporarily stores the cooling water discharged from the radiator 13. The cooling water stored in the reserve tank 14 is sucked into the first pump 11.
 環状流路W10におけるリザーブタンク14の下流側の部分は、分岐流路W30を通じて、ラジエータ13の上流側の部分に接続されている。分岐流路W30には、流調弁15、第2ポンプ16、及びPCU系20が配置されている。
 流調弁15は、環状流路W10におけるリザーブタンク14の下流側の部分から分岐流路W30に流入する冷却水の流量を調整する。
The downstream portion of the reserve tank 14 in the annular flow path W10 is connected to the upstream side portion of the radiator 13 through the branch flow path W30. A flow control valve 15, a second pump 16, and a PCU system 20 are arranged in the branch flow path W30.
The flow control valve 15 adjusts the flow rate of the cooling water flowing into the branch flow path W30 from the downstream portion of the reserve tank 14 in the annular flow path W10.
 第2ポンプ16は、分岐流路W30を流れる冷却水を吸入してPCU系20に吐出することにより、分岐流路W30に冷却水を循環させる。分岐流路W30では、環状流路W10におけるリザーブタンク14の下流側の部分から流調弁15、第2ポンプ16、PCU系20の順で冷却水が循環する。第2ポンプ16は、電池21から供給される電力に基づいて駆動する電動ポンプである。 The second pump 16 sucks the cooling water flowing through the branch flow path W30 and discharges it to the PCU system 20 to circulate the cooling water through the branch flow path W30. In the branch flow path W30, the cooling water circulates in the order of the flow control valve 15, the second pump 16, and the PCU system 20 from the downstream portion of the reserve tank 14 in the annular flow path W10. The second pump 16 is an electric pump that is driven based on the electric power supplied from the battery 21.
 PCU系20を通過した冷却水は、分岐流路W30を通じて、環状流路W10におけるラジエータ13の上流側の部分に戻される。冷却水がPCU系20を通過する際に、冷却水とPCU系20との間で熱交換が行われることによりPCU系20の熱が冷却水に吸収されて、PCU系20の冷却が行われる。 The cooling water that has passed through the PCU system 20 is returned to the upstream portion of the radiator 13 in the annular flow path W10 through the branch flow path W30. When the cooling water passes through the PCU system 20, heat exchange is performed between the cooling water and the PCU system 20, so that the heat of the PCU system 20 is absorbed by the cooling water and the PCU system 20 is cooled. ..
 分岐流路W30には、流調弁15の下流側の部分と、PCU系20の下流側の部分とを接続するようにバイパス流路W31が設けられている。バイパス流路W31には、当該流路W31を開閉するための開閉弁17が設けられている。
 図9に示されるように、流体循環システム10は、その動作を制御するためのECU(Electronic Control Unit)30を更に備えている。ECU30は、CPUや記憶装置等を有するマイクロコンピュータを中心に構成されており、記憶装置に記憶されたプログラムを実行することにより、流体循環システム10の各種制御を実行する。
The branch flow path W30 is provided with a bypass flow path W31 so as to connect a portion on the downstream side of the flow control valve 15 and a portion on the downstream side of the PCU system 20. The bypass flow path W31 is provided with an on-off valve 17 for opening and closing the flow path W31.
As shown in FIG. 9, the fluid circulation system 10 further includes an ECU (Electronic Control Unit) 30 for controlling its operation. The ECU 30 is mainly composed of a microcomputer having a CPU, a storage device, and the like, and executes various controls of the fluid circulation system 10 by executing a program stored in the storage device.
 ECU30には、流体循環システム10の制御に用いられる車両の各種状態量を検出するためのセンサ群31が接続されている。センサ群31には、電池21やPCU系20の温度を検出する温度センサ等が含まれている。ECU30は、センサ群31により検出される各種状態量に基づいて第1ポンプ11、流路切替弁40、流調弁15、第2ポンプ16、及び開閉弁17のそれぞれの動作を制御することにより、流体循環システム10を複数の運転モードで動作させる。 A sensor group 31 for detecting various state quantities of the vehicle used for controlling the fluid circulation system 10 is connected to the ECU 30. The sensor group 31 includes a temperature sensor that detects the temperature of the battery 21 and the PCU system 20. The ECU 30 controls the operations of the first pump 11, the flow path switching valve 40, the flow control valve 15, the second pump 16, and the on-off valve 17 based on various state quantities detected by the sensor group 31. , The fluid circulation system 10 is operated in a plurality of operation modes.
 次に、流体循環システム10の動作例について説明する。
 ECU30は、PCU系20に関する制御と、チラー12及び電池21に関する制御とをそれぞれ独立して行う。はじめに、前者のPCU系20に関する制御について説明する。
Next, an operation example of the fluid circulation system 10 will be described.
The ECU 30 independently controls the PCU system 20 and the chiller 12 and the battery 21. First, the control of the former PCU system 20 will be described.
 ECU30は、センサ群31を通じて検出されるPCU系20の温度に基づいて、流調弁15及び開閉弁17のそれぞれの開閉状態を変化させることにより、PCU系20の冷却及び暖機を行う。
 具体的には、ECU30は、PCU系20の温度が所定の温度閾値以上である場合には、開閉弁17を閉状態に設定するとともに、流調弁15の開度を所定の開度に設定する。これにより、環状流路W10におけるリザーブタンク14の下流側の部分から分岐流路W30に流入した冷却水は、流調弁15及び第2ポンプ16を通じてPCU系20に供給される。よって、PCU系20が冷却水により冷却される。
The ECU 30 cools and warms the PCU system 20 by changing the open / closed states of the flow control valve 15 and the on-off valve 17 based on the temperature of the PCU system 20 detected through the sensor group 31.
Specifically, when the temperature of the PCU system 20 is equal to or higher than a predetermined temperature threshold value, the ECU 30 sets the on-off valve 17 to a closed state and sets the opening degree of the flow control valve 15 to a predetermined opening degree. To do. As a result, the cooling water that has flowed into the branch flow path W30 from the downstream portion of the reserve tank 14 in the annular flow path W10 is supplied to the PCU system 20 through the flow control valve 15 and the second pump 16. Therefore, the PCU system 20 is cooled by the cooling water.
 一方、ECU30は、PCU系20の温度が所定の温度閾値未満である場合には、開閉弁17を開状態に設定するとともに、流調弁15を閉状態に設定する。これにより、第2ポンプ16から吐出される冷却水が分岐流路W30及びバイパス流路W31を環状に循環するようになる。したがって、PCU系20を通過した冷却水は、分岐流路W30及びバイパス流路W31を通じてPCU系20に再び戻されて、PCU系20の熱を吸収する。そのため、分岐流路W30及びバイパス流路W31を循環する冷却水が徐々に加熱される。よって、PCU系20が暖機される。 On the other hand, when the temperature of the PCU system 20 is less than a predetermined temperature threshold value, the ECU 30 sets the on-off valve 17 to the open state and the flow control valve 15 to the closed state. As a result, the cooling water discharged from the second pump 16 circulates in the branch flow path W30 and the bypass flow path W31 in a ring shape. Therefore, the cooling water that has passed through the PCU system 20 is returned to the PCU system 20 again through the branch flow path W30 and the bypass flow path W31, and absorbs the heat of the PCU system 20. Therefore, the cooling water circulating in the branch flow path W30 and the bypass flow path W31 is gradually heated. Therefore, the PCU system 20 is warmed up.
 このように、ECU30は、流調弁15及び開閉弁17のそれぞれの開閉制御を通じてPCU系20の冷却及び暖機を行うことで、PCU系20の温度を温度閾値近傍に調整する。
 次に、ECU30により実行されるチラー12及び電池21に関する制御について説明する。ECU30は、チラー12及び電池21に関する制御として、流体循環システム10の運転モードを、第1電池冷却モード、第2電池冷却モード、及び外気吸熱モードのいずれかに切り替える。各モードの詳細は以下の通りである。
In this way, the ECU 30 adjusts the temperature of the PCU system 20 to the vicinity of the temperature threshold value by cooling and warming up the PCU system 20 through the opening / closing control of each of the flow control valve 15 and the on-off valve 17.
Next, the control regarding the chiller 12 and the battery 21 executed by the ECU 30 will be described. The ECU 30 switches the operation mode of the fluid circulation system 10 to any one of the first battery cooling mode, the second battery cooling mode, and the outside air heat absorption mode as the control for the chiller 12 and the battery 21. The details of each mode are as follows.
 (a1)第1電池冷却モード
 第1電池冷却モードは、外気により冷却された冷却水を利用して電池21を冷却するモードである。
 具体的には、ECU30は、第1電池冷却モードの際には、流路切替弁40のアクチュエータ装置43を制御することにより、流路切替弁40の切替部42の位置を、図2及び図3に示される位置に設定する。これにより、図1に示されるように、チラー12を通過した冷却水は、流路W21を通じて流路切替弁40の流入部44aに流入した後、流路切替弁40の流出部45bから排出されて、流路W23を通じて電池21に供給される。また、電池21を通過した冷却水は、流路W24を通じて流路切替弁40の流入部44bに流入した後、流路切替弁40の流出部45aから排出されて、流路W22を通じてラジエータ13に供給される。なお、流路切替弁40では流出部45cに冷却水が流れないため、流路W25には冷却水が流れない。
(A1) First Battery Cooling Mode The first battery cooling mode is a mode in which the battery 21 is cooled by using the cooling water cooled by the outside air.
Specifically, when the first battery cooling mode is performed, the ECU 30 controls the actuator device 43 of the flow path switching valve 40 to determine the position of the switching portion 42 of the flow path switching valve 40 in FIGS. 2 and 2. Set to the position shown in 3. As a result, as shown in FIG. 1, the cooling water that has passed through the chiller 12 flows into the inflow portion 44a of the flow path switching valve 40 through the flow path W21, and then is discharged from the outflow portion 45b of the flow path switching valve 40. Is supplied to the battery 21 through the flow path W23. Further, the cooling water that has passed through the battery 21 flows into the inflow portion 44b of the flow path switching valve 40 through the flow path W24, is discharged from the outflow portion 45a of the flow path switching valve 40, and is discharged to the radiator 13 through the flow path W22. Be supplied. Since the cooling water does not flow in the outflow portion 45c in the flow path switching valve 40, the cooling water does not flow in the flow path W25.
 このような流路が流路切替弁40により形成されることで、流体循環システム10では、図1に矢印で示されるような冷却水の流れが形成される。すなわち、冷却水は、「第1ポンプ11→チラー12→流路切替弁40→電池21→流路切替弁40→ラジエータ13→リザーブタンク14→第1ポンプ11→・・・」の順で流れる。よって、ラジエータ13において冷却された冷却水が電池21に供給されることにより、電池21が冷却される。 By forming such a flow path by the flow path switching valve 40, a flow of cooling water as shown by an arrow in FIG. 1 is formed in the fluid circulation system 10. That is, the cooling water flows in the order of "first pump 11-> chiller 12-> flow path switching valve 40-> battery 21-> flow path switching valve 40-> radiator 13-> reserve tank 14-> first pump 11-> ...". .. Therefore, the cooling water cooled by the radiator 13 is supplied to the battery 21, so that the battery 21 is cooled.
 なお、図1に示される第1電池冷却モードでは、ヒートポンプサイクル18において、チラー12を循環するような熱媒体の流れが形成されていない。よって、ラジエータ13において冷却された冷却水は、チラー12を通過する際にヒートポンプサイクル18の熱媒体と熱交換を行うことなく、電池21に供給される。 In the first battery cooling mode shown in FIG. 1, the flow of the heat medium that circulates in the chiller 12 is not formed in the heat pump cycle 18. Therefore, the cooling water cooled by the radiator 13 is supplied to the battery 21 without exchanging heat with the heat medium of the heat pump cycle 18 when passing through the chiller 12.
 このように、第1電池冷却モードでは、ラジエータ13において冷却された冷却水を利用して、換言すれば外気により冷却された冷却水を利用して電池21の冷却が行われる。
 (a2)第2電池冷却モード
 第2電池冷却モードは、ヒートポンプサイクル18の熱媒体により冷却された冷却水を利用して電池21を冷却するモードである。
As described above, in the first battery cooling mode, the battery 21 is cooled by using the cooling water cooled by the radiator 13, in other words, by using the cooling water cooled by the outside air.
(A2) Second Battery Cooling Mode The second battery cooling mode is a mode in which the battery 21 is cooled by using the cooling water cooled by the heat medium of the heat pump cycle 18.
 具体的には、ECU30は、第2電池冷却モードの際には、流路切替弁40のアクチュエータ装置43を制御することにより、流路切替弁40の切替部42の位置を、図7に示される位置に設定する。これにより、図10に示されるように、チラー12を通過した冷却水は、流路W21を通じて流路切替弁40の流入部44aに流入した後、流路切替弁40の流出部45bから排出されて、流路W23を通じて電池21に供給される。また、電池21を通過した冷却水は、流路W24を通じて流路切替弁40の流入部44bに流入した後、流路切替弁40の流出部45cから排出されて、流路W25及び環状流路W10を通じて第1ポンプ11に吸入される。なお、流路切替弁40では流出部45aに冷却水が流れないため、流路W22には冷却水が流れない。 Specifically, the ECU 30 controls the actuator device 43 of the flow path switching valve 40 in the second battery cooling mode, so that the position of the switching portion 42 of the flow path switching valve 40 is shown in FIG. Set to the position where As a result, as shown in FIG. 10, the cooling water that has passed through the chiller 12 flows into the inflow portion 44a of the flow path switching valve 40 through the flow path W21, and then is discharged from the outflow portion 45b of the flow path switching valve 40. Is supplied to the battery 21 through the flow path W23. Further, the cooling water that has passed through the battery 21 flows into the inflow portion 44b of the flow path switching valve 40 through the flow path W24, and then is discharged from the outflow portion 45c of the flow path switching valve 40 to form the flow path W25 and the annular flow path. It is sucked into the first pump 11 through W10. Since the cooling water does not flow into the outflow portion 45a in the flow path switching valve 40, the cooling water does not flow in the flow path W22.
 このような流路が流路切替弁40により形成されることで、流体循環システム10では、図10に矢印で示されるような流路が形成される。すなわち、冷却水は、「第1ポンプ11→チラー12→流路切替弁40→電池21→流路切替弁40→第1ポンプ11→・・・」の順で流れる。この際、チラー12では、ヒートポンプサイクル18を流れる熱媒体と、環状流路W10を流れる冷却水との間で熱交換が行われることにより、冷却水が冷却される。このチラー12において冷却された冷却水が電池21に供給されることにより、電池21が冷却される。 By forming such a flow path by the flow path switching valve 40, in the fluid circulation system 10, a flow path as shown by an arrow in FIG. 10 is formed. That is, the cooling water flows in the order of "first pump 11-> chiller 12-> flow path switching valve 40-> battery 21-> flow path switching valve 40-> first pump 11-> ...". At this time, in the chiller 12, the cooling water is cooled by heat exchange between the heat medium flowing through the heat pump cycle 18 and the cooling water flowing through the annular flow path W10. The battery 21 is cooled by supplying the cooling water cooled in the chiller 12 to the battery 21.
 このように、第2電池冷却モードでは、チラー12において冷却された冷却水を利用して、換言すればヒートポンプサイクル18を循環する熱媒体により冷却された冷却水を利用して電池21の冷却が行われる。
 (a3)外気吸熱モード
 外気吸熱モードは、外気から冷却水が吸収した熱を利用してヒートポンプサイクル18の熱媒体を加熱するモードである。
As described above, in the second battery cooling mode, the battery 21 is cooled by using the cooling water cooled in the chiller 12, in other words, using the cooling water cooled by the heat medium circulating in the heat pump cycle 18. Will be done.
(A3) Outside air endothermic mode The outside air endothermic mode is a mode in which the heat medium of the heat pump cycle 18 is heated by utilizing the heat absorbed by the cooling water from the outside air.
 具体的には、ECU30は、外気吸熱モードの際には、流路切替弁40のアクチュエータ装置43を制御することにより、流路切替弁40の切替部42の位置を、図8に示される位置に設定する。これにより、図11に示されるように、チラー12を通過した冷却水は、流路W21を通じて流路切替弁40の流入部44aに流入した後、流路切替弁40の流出部45aから排出されて、流路W22を通じてラジエータ13に供給される。なお、流路切替弁40では流入部44b、流出部45b,45cに冷却水が流れないため、流路W23~W25には冷却水が流れない。 Specifically, the ECU 30 controls the actuator device 43 of the flow path switching valve 40 in the outside air endothermic mode to determine the position of the switching portion 42 of the flow path switching valve 40 as shown in FIG. Set to. As a result, as shown in FIG. 11, the cooling water that has passed through the chiller 12 flows into the inflow portion 44a of the flow path switching valve 40 through the flow path W21, and then is discharged from the outflow portion 45a of the flow path switching valve 40. Is supplied to the radiator 13 through the flow path W22. In the flow path switching valve 40, the cooling water does not flow through the inflow portions 44b and the outflow portions 45b and 45c, so that the cooling water does not flow through the flow paths W23 to W25.
 このような流路が流路切替弁40により形成されることで、流体循環システム10では、図11に示されるような流路が形成される。すなわち、冷却水は、「第1ポンプ11→チラー12→流路切替弁40→ラジエータ13→リザーブタンク14→第1ポンプ11→・・・」の順で流れる。これにより、ラジエータ13において外気の熱を吸収した冷却水がチラー12に供給される。チラー12では、環状流路W10を通じて供給される冷却水と、ヒートポンプサイクル18を循環する熱媒体との間で熱交換が行われることにより、冷却水の熱により熱媒体が加熱される。ヒートポンプサイクル18は、加熱されることにより温度が上昇した熱媒体と、空調ダクトを流れる空調空気との間で熱交換を行うことにより、空調空気を加熱する。 By forming such a flow path by the flow path switching valve 40, the flow path as shown in FIG. 11 is formed in the fluid circulation system 10. That is, the cooling water flows in the order of "first pump 11-> chiller 12-> flow path switching valve 40-> radiator 13-> reserve tank 14-> first pump 11-> ...". As a result, the cooling water that has absorbed the heat of the outside air in the radiator 13 is supplied to the chiller 12. In the chiller 12, heat exchange is performed between the cooling water supplied through the annular flow path W10 and the heat medium circulating in the heat pump cycle 18, so that the heat medium is heated by the heat of the cooling water. The heat pump cycle 18 heats the conditioned air by exchanging heat between the heat medium whose temperature has risen due to heating and the conditioned air flowing through the conditioned duct.
 このように、外気吸熱モードでは、ラジエータ13により加熱された冷却水を利用して、換言すれば外気により加熱された冷却水を利用してヒートポンプサイクル18の熱媒体の加熱が行われる。
 以上説明した本実施形態の流体循環システム10及び流路切替弁40によれば、以下の(1),(2)に示される作用及び効果を得ることができる。
As described above, in the outside air endothermic mode, the cooling water heated by the radiator 13 is used, in other words, the cooling water heated by the outside air is used to heat the heat medium of the heat pump cycle 18.
According to the fluid circulation system 10 and the flow path switching valve 40 of the present embodiment described above, the actions and effects shown in the following (1) and (2) can be obtained.
 (1)切替部42は、第1流路層411における流入部44a及び流出部45bの接続状態、並びに第2流路層412における流入部44b及び流出部45a,45cの接続状態を同時に切り替える。このような構成によれば、第1流路層411及び第2流路層412にそれぞれ配置される流入部44a,44b及び流出部45a~45cの接続状態を一つの切替部42の作動により切り替えることができるため、複数の三方弁を用いる場合と同一又は類似の流路の切り替えが可能となる。よって、複数の三方弁に代えて、本実施形態の構成を有する流路切替弁40を用いることにより、流体循環システム10としての構造の簡素化が可能となる。 (1) The switching unit 42 simultaneously switches the connection state of the inflow portion 44a and the outflow portion 45b in the first flow path layer 411 and the connection state of the inflow portion 44b and the outflow portions 45a and 45c in the second flow path layer 412. According to such a configuration, the connection states of the inflow portions 44a and 44b and the outflow portions 45a to 45c arranged in the first flow path layer 411 and the second flow path layer 412 are switched by the operation of one switching unit 42. Therefore, it is possible to switch the same or similar flow path as in the case of using a plurality of three-way valves. Therefore, by using the flow path switching valve 40 having the configuration of the present embodiment instead of the plurality of three-way valves, the structure of the fluid circulation system 10 can be simplified.
 (2)切替部42は、異なる流路層411,412のそれぞれに配置される流入部44a,44bと流出部45a,45bとを連通させる第3連通路423を有している。このような構成によれば、異なる流路層411,412を跨がるような流路を第3連通路423により形成することが可能となるため、より複雑な流路を実現することができる。 (2) The switching unit 42 has a third passage 423 that communicates the inflow portions 44a and 44b and the outflow portions 45a and 45b arranged in the different flow path layers 411 and 412, respectively. According to such a configuration, it is possible to form a flow path that straddles different flow path layers 411 and 412 by the third continuous passage 423, so that a more complicated flow path can be realized. ..
 (変形例)
 次に、第1実施形態の流体循環システム10及び流路切替弁40の第1変形例について説明する。
 図12に示されるように、本変形例の切替部42には、流入部44aと流出部45bとを連通する流路として、第1連通路421に代えて、切欠き421aが形成されている。また、図13に示されるように、切替部42には、流入部44bと流出部45a,45cとを連通する流路として、第2連通路422に代えて、切欠き422aが形成されている。
(Modification example)
Next, a first modification of the fluid circulation system 10 and the flow path switching valve 40 of the first embodiment will be described.
As shown in FIG. 12, a notch 421a is formed in the switching portion 42 of the present modification as a flow path for communicating the inflow portion 44a and the outflow portion 45b in place of the first continuous passage 421. .. Further, as shown in FIG. 13, a notch 422a is formed in the switching portion 42 as a flow path for communicating the inflow portion 44b and the outflow portions 45a and 45c in place of the second continuous passage 422. ..
 図12及び図13に示されるような構造を有する切替部42を用いた場合であっても、第1実施形態の流体循環システム10及び流路切替弁40と同一又は類似の作用及び効果を得ることができる。
 <第2実施形態>
 次に、第2実施形態の流体循環システム10及び流路切替弁40について説明する。
Even when the switching unit 42 having the structure as shown in FIGS. 12 and 13 is used, the same or similar operation and effect as those of the fluid circulation system 10 and the flow path switching valve 40 of the first embodiment can be obtained. be able to.
<Second Embodiment>
Next, the fluid circulation system 10 and the flow path switching valve 40 of the second embodiment will be described.
 本実施形態の流路切替弁40は、図4に示される切替部42に代えて、図14に示される切替部42が用いられている点で、第1実施形態の流路切替弁40と異なる。
 図14に示されるように、切替部42は、円盤部426a~426cと、仕切部427,428とを有している。
The flow path switching valve 40 of the present embodiment is different from the flow path switching valve 40 of the first embodiment in that the switching unit 42 shown in FIG. 14 is used instead of the switching unit 42 shown in FIG. different.
As shown in FIG. 14, the switching portion 42 has disk portions 426a to 426c and partition portions 427 and 428.
 円盤部426a~426cは、軸線mを中心に円盤状に形成されている。円盤部426a~426cは、この並び順で、軸線mに平行な方向において所定の間隔を有してそれぞれ配置されている。円盤部426a及び円盤部426bの間に形成される隙間は、本体部41の第1流路層411に配置されている。円盤部426b及び円盤部426cの間に形成される隙間は、本体部41の第2流路層412に配置されている。 The disk portions 426a to 426c are formed in a disk shape around the axis m. The disk portions 426a to 426c are arranged in this order with a predetermined interval in a direction parallel to the axis m. The gap formed between the disk portion 426a and the disk portion 426b is arranged in the first flow path layer 411 of the main body portion 41. The gap formed between the disk portion 426b and the disk portion 426c is arranged in the second flow path layer 412 of the main body portion 41.
 仕切部427は、略L字状に連結される2つの板状部材427a,427bにより構成されている。板状部材427a,427bは、円盤部426bを貫通して円盤部426aの底面から円盤部426cの上面まで延びるように設けられている。板状部材427a,427bのそれぞれの上端部は、円盤部426aの底面に接合されている。板状部材427a,427bのそれぞれの下端部は、円盤部426cの上面に接合されている。板状部材427a,427bは、軸線mから円盤部426a,426cのそれぞれの外周面まで延びるように配置されている。 The partition portion 427 is composed of two plate-shaped members 427a and 427b connected in a substantially L-shape. The plate-shaped members 427a and 427b are provided so as to penetrate the disk portion 426b and extend from the bottom surface of the disk portion 426a to the upper surface of the disk portion 426c. The upper end portions of the plate-shaped members 427a and 427b are joined to the bottom surface of the disk portion 426a. The lower ends of the plate-shaped members 427a and 427b are joined to the upper surface of the disk portion 426c. The plate-shaped members 427a and 427b are arranged so as to extend from the axis m to the outer peripheral surfaces of the disk portions 426a and 426c, respectively.
 仕切部428は、仕切部427の板状部材427bのうち、円盤部426b及び円盤部426cの間に配置される部分における軸線m上に配置される端部を円盤部426b及び円盤部426cの外周面まで延ばすように形成した部分である。
 以上のような構造を有する切替部42では、円盤部426aの底面、円盤部426bの上面、及び仕切部427の外壁面により区画される空間が第1連通路421を構成している。また、円盤部426bの底面、円盤部426cの上面、仕切部427の板状部材427bの外壁面、及び仕切部428により仕切られる空間が第2連通路422を構成している。さらに、円盤部426aの底面、円盤部426cの上面、及び仕切部427の内壁面により仕切られる空間が第3連通路423を構成している。
The partition portion 428 has an end portion arranged on the axis m in the portion of the plate-shaped member 427b of the partition portion 427 arranged between the disk portion 426b and the disk portion 426c, and the outer circumference of the disk portion 426b and the disk portion 426c. It is a part formed so as to extend to the surface.
In the switching portion 42 having the above structure, the space partitioned by the bottom surface of the disk portion 426a, the upper surface of the disk portion 426b, and the outer wall surface of the partition portion 427 constitutes the first continuous passage 421. Further, the bottom surface of the disk portion 426b, the upper surface of the disk portion 426c, the outer wall surface of the plate-shaped member 427b of the partition portion 427, and the space partitioned by the partition portion 428 constitute the second continuous passage 422. Further, a space partitioned by the bottom surface of the disk portion 426a, the upper surface of the disk portion 426c, and the inner wall surface of the partition portion 427 constitutes the third passage 423.
 なお、円盤部426bの底面、円盤部426cの上面、仕切部427の板状部材427aの外壁面、及び仕切部428により仕切られる空間は不使用空間Sとなっている。
 アクチュエータ装置43は、円盤部426aの上面に形成される軸部424に対して、軸線mを中心とする周方向のトルクを付与することにより、切替部42を回転させる。この切替部42の回転に伴って第1連通路421、第2連通路422、及び第3連通路423の回転位置が変化することにより、本体部41の流入部44a,44bと流出部45a~45cとの接続状態が変化する。
The bottom surface of the disk portion 426b, the upper surface of the disk portion 426c, the outer wall surface of the plate-shaped member 427a of the partition portion 427, and the space partitioned by the partition portion 428 are unused spaces S.
The actuator device 43 rotates the switching portion 42 by applying a torque in the circumferential direction centered on the axis m to the shaft portion 424 formed on the upper surface of the disk portion 426a. The rotation positions of the first passage 421, the second passage 422, and the third passage 423 change with the rotation of the switching portion 42, so that the inflow portions 44a and 44b and the outflow portions 45a of the main body portion 41 change. The connection state with the 45c changes.
 具体的には、切替部42が図15(A),(B)に示される位置に配置されている場合、流入部44aは第1連通路421を通じて流出部45bに接続されている。したがって、流入部44aから流入した冷却水は流出部45bから排出される。また、流入部44bは第2連通路422を通じて流出部45aに接続されている。したがって、流入部44bから流入した冷却水は流出部45bから排出される。なお、切替部42の第3連通路423には流出部45cのみが接続されているため、流出部45cには冷却水が流れない。 Specifically, when the switching portion 42 is arranged at the position shown in FIGS. 15A and 15B, the inflow portion 44a is connected to the outflow portion 45b through the first continuous passage 421. Therefore, the cooling water flowing in from the inflow portion 44a is discharged from the outflow portion 45b. Further, the inflow portion 44b is connected to the outflow portion 45a through the second continuous passage 422. Therefore, the cooling water that has flowed in from the inflow section 44b is discharged from the outflow section 45b. Since only the outflow portion 45c is connected to the third passage 423 of the switching portion 42, the cooling water does not flow through the outflow portion 45c.
 また、切替部42が、図16(A),(B)に示される位置に配置されている場合、流入部44aは第1連通路421を通じて流出部45bに接続されている。したがって、流入部44aから流入した冷却水は流出部45bから排出される。また、流入部44bは切替部42の第2連通路422を通じて流出部45cに接続されている。したがって、流入部44bから流入した冷却水は流出部45cから排出される。なお、流出部45aは不使用空間Sに接続されているため、流出部45aには冷却水が流れない。 Further, when the switching portion 42 is arranged at the position shown in FIGS. 16A and 16B, the inflow portion 44a is connected to the outflow portion 45b through the first continuous passage 421. Therefore, the cooling water flowing in from the inflow portion 44a is discharged from the outflow portion 45b. Further, the inflow portion 44b is connected to the outflow portion 45c through the second continuous passage 422 of the switching portion 42. Therefore, the cooling water flowing in from the inflow portion 44b is discharged from the outflow portion 45c. Since the outflow portion 45a is connected to the unused space S, the cooling water does not flow into the outflow portion 45a.
 さらに、切替部42が、図17(A),(B)に示される位置に配置されている場合、流入部44aは第3連通路423を通じて流出部45aに接続されている。したがって、流入部44aから流入した冷却水は流出部45aから排出される。なお、流入部44bは不使用空間Sに接続されているため、流入部44bに流入する冷却水は流出部45a~45cには流れない。また、切替部42の第1連通路421には流出部45bのみが接続されているため、流出部45bには冷却水が流れない。さらに、切替部42の第2連通路422には流出部45cのみが接続されているため、流出部45cには冷却水が流れない。 Further, when the switching portion 42 is arranged at the position shown in FIGS. 17A and 17B, the inflow portion 44a is connected to the outflow portion 45a through the third continuous passage 423. Therefore, the cooling water flowing in from the inflow portion 44a is discharged from the outflow portion 45a. Since the inflow portion 44b is connected to the unused space S, the cooling water flowing into the inflow portion 44b does not flow into the outflow portions 45a to 45c. Further, since only the outflow portion 45b is connected to the first continuous passage 421 of the switching portion 42, the cooling water does not flow through the outflow portion 45b. Further, since only the outflow portion 45c is connected to the second continuous passage 422 of the switching portion 42, the cooling water does not flow through the outflow portion 45c.
 このように、本実施形態の流路切替弁40では、切替部42が図15~図17に示されるように回転変位することで、流入部44a,44bと流出部45a~45cとの接続状態を変化させることが可能となっている。
 ECU30は、流体循環システム10を上記の第1電池冷却モードで動作させる場合には、流路切替弁40の切替部42の位置を、図15に示される位置に設定する。これにより、図1に矢印で示されるように冷却水が流れるようになるため、ラジエータ13において冷却された冷却水を利用して電池21を冷却することができる。
As described above, in the flow path switching valve 40 of the present embodiment, the switching portion 42 is rotationally displaced as shown in FIGS. 15 to 17, so that the inflow portions 44a and 44b are connected to the outflow portions 45a to 45c. It is possible to change.
When the fluid circulation system 10 is operated in the above-mentioned first battery cooling mode, the ECU 30 sets the position of the switching portion 42 of the flow path switching valve 40 to the position shown in FIG. As a result, the cooling water flows as shown by the arrow in FIG. 1, so that the battery 21 can be cooled by using the cooling water cooled by the radiator 13.
 また、ECU30は、流体循環システム10を上記の第2電池冷却モードで動作させる場合には、流路切替弁40の切替部42の位置を、図16に示される位置に設定する。これにより、図10に矢印で示されるように冷却水が流れるようになるため、チラー12において冷却された冷却水を利用して電池21を冷却することができる。 Further, when the fluid circulation system 10 is operated in the above-mentioned second battery cooling mode, the ECU 30 sets the position of the switching portion 42 of the flow path switching valve 40 to the position shown in FIG. As a result, the cooling water flows as shown by the arrow in FIG. 10, so that the battery 21 can be cooled by using the cooling water cooled in the chiller 12.
 さらに、ECU30は、流体循環システム10を上記の外気吸熱モードで動作させる場合には、流路切替弁40の切替部42の位置を、図17に示される位置に設定する。これにより、図11に矢印で示されるように冷却水が流れるようになるため、ラジエータ13により加熱された冷却水を利用してヒートポンプサイクル18の熱媒体を加熱することができる。 Further, when the fluid circulation system 10 is operated in the above-mentioned outside air endothermic mode, the ECU 30 sets the position of the switching portion 42 of the flow path switching valve 40 to the position shown in FIG. As a result, the cooling water flows as shown by the arrow in FIG. 11, so that the heat medium of the heat pump cycle 18 can be heated by using the cooling water heated by the radiator 13.
 このように、本実施形態の流体循環システム10及び流路切替弁40によれば、第1実施形態の流体循環システム10及び流路切替弁40と同一又は類似の作用及び効果を得ることができる。
 <他の実施形態>
 なお、上記各実施形態は、以下の形態にて実施することもできる。
As described above, according to the fluid circulation system 10 and the flow path switching valve 40 of the present embodiment, the same or similar actions and effects as those of the fluid circulation system 10 and the flow path switching valve 40 of the first embodiment can be obtained. ..
<Other embodiments>
In addition, each of the above-described embodiments can also be implemented in the following embodiments.
 ・各実施形態の本体部41は、2つの流路層411,412を有するものに限らず、3つ以上の流路層を軸線mに沿って有するものであってもよい。また、流路層は、本体部41において単数の流入部、及び単数又は複数の流出部が設けられる部分であればよい。
 ・流体循環システム10は、冷却水の循環路に配置される機器として、チラー12、ラジエータ13、PCU系20、及び電池21とは異なる機器を有するものであってもよい。
-The main body 41 of each embodiment is not limited to having two flow path layers 411 and 412, and may have three or more flow path layers along the axis m. Further, the flow path layer may be a portion of the main body 41 provided with a single inflow portion and a single or a plurality of outflow portions.
-The fluid circulation system 10 may have a device different from the chiller 12, the radiator 13, the PCU system 20, and the battery 21 as a device arranged in the cooling water circulation path.
 ・本開示は上記の具体例に限定されるものではない。上記の具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。前述した各具体例が備える各要素、及びその配置、条件、形状等は、例示したものに限定されるわけではなく適宜変更することができる。前述した各具体例が備える各要素は、技術的な矛盾が生じない限り、適宜組み合わせを変えることができる。 ・ This disclosure is not limited to the above specific examples. Specific examples described above with appropriate design changes by those skilled in the art are also included in the scope of the present disclosure as long as they have the features of the present disclosure. Each element included in each of the above-mentioned specific examples, and their arrangement, conditions, shape, and the like are not limited to those illustrated, and can be changed as appropriate. The combinations of the elements included in each of the above-mentioned specific examples can be appropriately changed as long as there is no technical contradiction.

Claims (7)

  1.  所定の軸線に沿って延びるように形成されるとともに、流体を外部から内部に流入させる流入部(44a,44b)、及び流体を内部から外部に流出させる流出部(45a,45b,45c)を有する本体部(41)と、
     前記流入部及び前記流出部の接続状態を切り替える切替部(42)と、を備え、
     前記本体部は、単数の前記流入部、及び単数又は複数の前記流出部が外周面に設けられる流路層(411,412)を前記所定の軸線に沿って複数有しており、
     前記切替部は、複数の前記流路層のそれぞれにおける前記流入部及び前記流出部の接続状態を同時に切り替える
     流路切替弁。
    It is formed so as to extend along a predetermined axis, and has an inflow portion (44a, 44b) that allows the fluid to flow in from the outside to the inside, and an outflow portion (45a, 45b, 45c) that allows the fluid to flow out from the inside to the outside. Main body (41) and
    A switching unit (42) for switching the connection state of the inflow unit and the outflow unit is provided.
    The main body portion has a plurality of flow path layers (411, 412) provided with a single inflow portion and a single or a plurality of the outflow portions on the outer peripheral surface along the predetermined axis.
    The switching section is a flow path switching valve that simultaneously switches the connection state of the inflow section and the outflow section in each of the plurality of flow path layers.
  2.  前記切替部は、異なる流路層にそれぞれ配置される前記流入部及び前記流出部を連通させる連通部(423)を有している
     請求項1に記載の流路切替弁。
    The flow path switching valve according to claim 1, wherein the switching portion has a communication portion (423) that communicates the inflow portion and the outflow portion, which are arranged in different flow path layers, respectively.
  3.  前記本体部は、複数の前記流路層として、第1流路層(411)及び第2流路層(412)を有し、
     前記第1流路層には、1つの前記流入部及び1つの前記流出部が設けられ、
     前記第2流路層には、前記流出部が少なくとも1つ設けられ、
     前記切替部は、
     前記第1流路層の前記流入部が前記第1流路層の前記流出部に接続されている状態と、
     前記第1流路層の前記流入部が前記連通部を介して前記第2流路層の前記流出部に接続されている状態と、を切り替え可能である
     請求項2に記載の流路切替弁。
    The main body has a first flow path layer (411) and a second flow path layer (412) as the plurality of flow path layers.
    The first flow path layer is provided with one inflow portion and one outflow portion.
    The second flow path layer is provided with at least one outflow portion.
    The switching unit is
    A state in which the inflow portion of the first flow path layer is connected to the outflow portion of the first flow path layer.
    The flow path switching valve according to claim 2, wherein the inflow portion of the first flow path layer can be switched between a state in which the inflow portion is connected to the outflow portion of the second flow path layer via the communication portion. ..
  4.  前記本体部は、複数の前記流路層として、第1流路層及び第2流路層を有し、
     前記第2流路層には、1つの前記流入部及び2つの前記流出部が設けられ、
     前記第1流路層には、前記流入部が設けられ、
     前記切替部は、
     前記第2流路層の前記流入部が前記第2流路層の一方の前記流出部に接続されている状態と、
     前記第2流路層の前記流入部が前記第2流路層の他方の前記流出部に接続されている状態と、
     前記第2流路層の2つの前記流出部のいずれか一方が前記連通部を介して前記第1流路層の前記流入部に接続されている状態と、を切り替え可能である
     請求項2に記載の流路切替弁。
    The main body has a first channel layer and a second channel layer as the plurality of channel layers.
    The second flow path layer is provided with one inflow portion and two outflow portions.
    The inflow portion is provided in the first flow path layer.
    The switching unit is
    A state in which the inflow portion of the second flow path layer is connected to one of the outflow portions of the second flow path layer.
    A state in which the inflow portion of the second flow path layer is connected to the other outflow portion of the second flow path layer.
    According to claim 2, it is possible to switch between a state in which one of the two outflow portions of the second flow path layer is connected to the inflow portion of the first flow path layer via the communication portion. The flow path switching valve described.
  5.  前記本体部は、
     前記流入部として、第1流入部及び第2流入部を有し、
     前記流出部として、第1流出部、第2流出部、及び第3流出部を有するとともに、
     複数の前記流路層として、前記第1流入部及び前記第1流出部が設けられる第1流路層と、前記第2流入部、前記第2流出部、及び前記第3流出部が設けられる第2流路層と、を有し、
     前記切替部は、
     前記第1流入部が前記第1流出部に接続され、且つ前記第2流入部が前記第2流出部に接続されている状態と、
     前記第1流入部が前記第1流出部に接続され、且つ前記第2流入部が前記第3流出部に接続されている状態と、
     前記第1流入部が前記連通部を介して前記第2流出部に接続されている状態と、を切り替え可能である
     請求項2に記載の流路切替弁。
    The main body
    As the inflow part, it has a first inflow part and a second inflow part.
    As the outflow part, it has a first outflow part, a second outflow part, and a third outflow part, and also
    As the plurality of flow path layers, a first flow path layer provided with the first inflow portion and the first outflow portion, the second inflow portion, the second outflow portion, and the third outflow portion are provided. It has a second flow path layer and
    The switching unit is
    A state in which the first inflow portion is connected to the first outflow portion and the second inflow portion is connected to the second outflow portion.
    A state in which the first inflow portion is connected to the first outflow portion and the second inflow portion is connected to the third outflow portion.
    The flow path switching valve according to claim 2, wherein the first inflow portion can be switched between a state in which the first inflow portion is connected to the second outflow portion via the communication portion.
  6.  第1機器(12)、第2機器(13)、及び第3機器(21)に流体を循環させる流体循環システムであって、
     請求項5に記載の流路切替弁を備え、
     前記第1機器は、前記流路切替弁の前記第1流入部に接続され、
     前記第2機器は、前記流路切替弁の前記第2流出部に接続され、
     前記第3機器は、前記流路切替弁の前記第2流入部及び前記第1流出部に接続され、
     前記流路切替弁の前記第3流出部は、前記第1機器と前記第2機器とを接続する流路に接続されている
     流体循環システム。
    A fluid circulation system that circulates fluid to the first device (12), the second device (13), and the third device (21).
    The flow path switching valve according to claim 5 is provided.
    The first device is connected to the first inflow portion of the flow path switching valve.
    The second device is connected to the second outflow portion of the flow path switching valve.
    The third device is connected to the second inflow portion and the first outflow portion of the flow path switching valve.
    The third outflow portion of the flow path switching valve is a fluid circulation system connected to a flow path connecting the first device and the second device.
  7.  前記第1機器は、車両に搭載されるヒートポンプサイクルを循環する熱媒体と前記流体との間で熱交換を行う熱交換器であり、
     前記第2機器は、車両に搭載されて、外気と前記流体との間で熱交換を行うラジエータであり、
     前記第3機器は、車両に搭載される電池である
     請求項6に記載の流体循環システム。
    The first device is a heat exchanger that exchanges heat between a heat medium that circulates in a heat pump cycle mounted on a vehicle and the fluid.
    The second device is a radiator mounted on a vehicle and exchanging heat between the outside air and the fluid.
    The fluid circulation system according to claim 6, wherein the third device is a battery mounted on a vehicle.
PCT/JP2020/021583 2019-06-07 2020-06-01 Flow passage switching valve, and fluid circulating system WO2020246423A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019106929A JP7354597B2 (en) 2019-06-07 2019-06-07 Flow path switching valve and fluid circulation system
JP2019-106929 2019-06-07

Publications (1)

Publication Number Publication Date
WO2020246423A1 true WO2020246423A1 (en) 2020-12-10

Family

ID=73652007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/021583 WO2020246423A1 (en) 2019-06-07 2020-06-01 Flow passage switching valve, and fluid circulating system

Country Status (2)

Country Link
JP (1) JP7354597B2 (en)
WO (1) WO2020246423A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022181026A1 (en) * 2021-02-25 2022-09-01 Ckd株式会社 Four-way valve, valve unit, temperature control system
GB2624864A (en) * 2022-11-29 2024-06-05 Jaguar Land Rover Ltd Electric vehicle thermal management

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS3625258Y1 (en) * 1959-07-30 1961-09-26
JP2013053724A (en) * 2011-09-06 2013-03-21 Nippon Soken Inc Selector valve and cooling device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS3625258Y1 (en) * 1959-07-30 1961-09-26
JP2013053724A (en) * 2011-09-06 2013-03-21 Nippon Soken Inc Selector valve and cooling device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022181026A1 (en) * 2021-02-25 2022-09-01 Ckd株式会社 Four-way valve, valve unit, temperature control system
JP7362685B2 (en) 2021-02-25 2023-10-17 Ckd株式会社 Four-way valve, valve unit, temperature control system
TWI820557B (en) * 2021-02-25 2023-11-01 日商Ckd股份有限公司 Four-way valve, valve unit, temperature control system
GB2624864A (en) * 2022-11-29 2024-06-05 Jaguar Land Rover Ltd Electric vehicle thermal management

Also Published As

Publication number Publication date
JP7354597B2 (en) 2023-10-03
JP2020200864A (en) 2020-12-17

Similar Documents

Publication Publication Date Title
JP2019023059A (en) Coolant circuit
JP4457958B2 (en) Air conditioner for vehicles
US10295228B2 (en) Magnetic heat pump device
US20180119828A1 (en) Control valve
WO2020246422A1 (en) Fluid circulation system
JP2019023059A5 (en)
JP2018536128A (en) Multiport valve with multiple operating modes
WO2020246423A1 (en) Flow passage switching valve, and fluid circulating system
CN114312205A (en) Thermal management system, control method of thermal management system and electric automobile
CN102729770A (en) Vehicle air conditioner
US20120222429A1 (en) Vehicle air conditioner
JP7024537B2 (en) Cooling system
WO2020246421A1 (en) Flow channel switching valve
JP7435268B2 (en) flow path switching valve
WO2020175262A1 (en) Flow path switching device
WO2020153060A1 (en) Temperature adjustment device
KR20210127435A (en) Integrated thermal management system
JP2019167943A (en) Control valve
JP2019027690A (en) Complex type heat exchanger
JP2008018840A (en) Vehicular temperature adjustment device
JP6558296B2 (en) Magnetic heat pump device
JP7153170B2 (en) COMPOSITE VALVE AND VEHICLE AIR CONDITIONER USING THE SAME
JP7468220B2 (en) Flow Switching Device
KR20210120593A (en) Integrated thermal management system
JP7404936B2 (en) thermal management system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20818107

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20818107

Country of ref document: EP

Kind code of ref document: A1