WO2020246370A1 - Pulse rate calculating method, pulse rate calculating device, and recording medium - Google Patents

Pulse rate calculating method, pulse rate calculating device, and recording medium Download PDF

Info

Publication number
WO2020246370A1
WO2020246370A1 PCT/JP2020/021210 JP2020021210W WO2020246370A1 WO 2020246370 A1 WO2020246370 A1 WO 2020246370A1 JP 2020021210 W JP2020021210 W JP 2020021210W WO 2020246370 A1 WO2020246370 A1 WO 2020246370A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse rate
pulse
rate calculation
peak
wave signal
Prior art date
Application number
PCT/JP2020/021210
Other languages
French (fr)
Japanese (ja)
Inventor
重樹 金井
佐藤 秀一
Original Assignee
Necソリューションイノベータ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necソリューションイノベータ株式会社 filed Critical Necソリューションイノベータ株式会社
Priority to JP2021524805A priority Critical patent/JP7160460B2/en
Publication of WO2020246370A1 publication Critical patent/WO2020246370A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/0245Detecting, measuring or recording pulse rate or heart rate by using sensing means generating electric signals, i.e. ECG signals

Definitions

  • the present invention relates to a pulse rate calculation method, a pulse rate calculation device, and a recording medium.
  • the pulse rate may be calculated by measuring the pulse using a wearable device worn on the body.
  • a wearable device worn on the body.
  • Patent Document 1 describes a pulsation detection device having a pulse wave sensor, a body motion sensor, a pulse wave signal filtering unit, and a filter coefficient setting unit. According to Patent Document 1, when the filter coefficient setting unit detects that the body movement change exceeds a predetermined threshold value based on the body movement signal, the filter coefficient setting unit sets the coefficient of the adaptive filter to a predetermined value. Further, the pulse wave signal filtering unit generates an adaptive filter based on the body motion signal to extract a noise signal in the pulse wave signal, and outputs a beat signal obtained by removing noise from the pulse wave signal.
  • the present invention solves the problem that it is difficult to reduce the influence of noise with a simple configuration regardless of the Fourier transform when calculating the pulse rate using a wearable device.
  • the purpose is to provide a number calculation device and a recording medium.
  • the pulse rate calculation method which is one embodiment of the present invention, in order to achieve such an object It is a pulse rate calculation method performed by a pulse rate calculation device that calculates the pulse rate based on the measured pulse wave signal.
  • a plurality of types of low-pass filters having different attenuation frequencies are applied to the pulse wave signal, and the pulse rate is calculated based on the applied result.
  • the pulse rate calculation device which is another embodiment of the present invention, is It is a pulse rate calculation device that calculates the pulse rate based on the measured pulse wave signal. It is configured to have a pulse rate calculation unit that applies a plurality of types of low-pass filters having different attenuation frequencies to the pulse wave signal and calculates the pulse rate based on the applied result.
  • the recording medium which is another form of this invention is For a pulse rate calculation device that calculates the pulse rate based on the measured pulse wave signal, A computer-readable program for realizing a pulse rate calculation unit that applies a plurality of types of low-pass filters having different attenuation frequencies to the pulse wave signal and calculates the pulse rate based on the applied result. It is a recording medium.
  • the present invention has a problem that it is difficult to reduce the influence of noise with a simple configuration regardless of the Fourier transform when calculating the pulse rate using a wearable device due to the configuration as described above. It is possible to provide a pulse rate calculation method, a pulse rate calculation device, and a recording medium to be solved.
  • FIG. 1st Embodiment of this invention It is a block diagram which shows an example of the structure of the wearable device in 1st Embodiment of this invention. It is a figure for demonstrating an example of the processing of a pulse wave sensor. It is a block diagram which shows an example of the structure of the processing part shown in FIG. It is a figure for demonstrating an example of the process which removes a baseline variation. It is a figure for demonstrating an example of the process which removes a baseline variation. It is a figure for demonstrating an example of the process of detecting a peak value. It is a figure for demonstrating an example of a peak interval used when detecting a peak value. It is a figure for demonstrating an example of feedback processing.
  • FIG. 1 is a block diagram showing an example of the configuration of the wearable device 100.
  • FIG. 2 is a diagram for explaining an example of processing of the pulse wave sensor 210.
  • FIG. 3 is a block diagram showing an example of the configuration of the processing unit 220.
  • 4 and 5 are diagrams for explaining an example of the process of removing the baseline fluctuation.
  • FIG. 6 is a diagram for explaining an example of processing for detecting a peak value.
  • FIG. 7 is a diagram for explaining an example of the peak interval used when detecting the peak value.
  • FIG. 8 is a diagram for explaining an example of feedback processing.
  • FIG. 9 is a flowchart showing an example of the operation of the processing unit 220.
  • FIG. 10 is a flowchart showing an example of an operation when performing a process of detecting a peak value.
  • FIG. 11 is a flowchart showing an example of an operation when performing a process of calculating the pulse rate.
  • FIG. 12 is a flowchart showing an example of an operation when performing feedback processing.
  • the wearable device 100 that calculates the pulse rate, which is the number of pulses per minute, will be described using the pulse wave signal acquired by the pulse wave sensor 210.
  • a high-pass filter HPF: High-pass filter
  • LPS Low-pass filter
  • the wearable device 100 detects the peak of the pulse based on the result of applying the two types of low-pass filters. After that, the wearable device 100 calculates the pulse rate from the peak interval obtained based on the peak detection result.
  • the wearable device 100 is a wristwatch-type information processing device that is worn on the body to measure a pulse wave signal.
  • FIG. 1 shows an example of the configuration of the wearable device 100.
  • the wearable device 100 includes a sensor board 200 including a pulse wave sensor 210 and a processing unit 220.
  • the pulse wave sensor 210 is, for example, a photoelectric sensor.
  • FIG. 2 shows an example of measurement by the pulse wave sensor 210.
  • the pulse wave sensor 210 irradiates the body with the light of a green LED. Then, the pulse wave sensor 210 measures the pulse wave signal by measuring the light reflected from the body wearing the wearable device 100.
  • the pulse wave sensor 210 is configured so that the pulse wave signal can be measured by using the photoelectric capacitance pulse wave method (PPG: Photoplethysmography).
  • PPG Photoplethysmography
  • a sampling rate of a pulse wave signal indicating the number of measurements per second is required to be about 25 Hz for heart rate variability analysis used for evaluation of autonomic nervous function. Therefore, it is desirable that the sampling rate of the pulse wave signal in this embodiment is 25 Hz or more.
  • the processing unit 220 is an information processing unit (pulse rate calculation device) such as a microcomputer that calculates the pulse rate based on the pulse wave signal measured by the pulse wave sensor 210.
  • FIG. 3 shows an example of the configuration of the processing unit 220.
  • the processing unit 220 includes, for example, a baseline fluctuation removing unit 221, a peak detecting unit 222, a pulse rate calculation unit 223, and a feedback unit 224.
  • each of the above-mentioned processing units can be realized by various logic circuits and hardware such as a peak detection circuit for peak detection and a pulse rate estimation circuit for calculating and feeding back the pulse rate.
  • Each of the above-mentioned processing units may be realized, for example, by executing a program stored in the storage device by an arithmetic unit such as a CPU (Central Processing Unit).
  • a CPU Central Processing Unit
  • the baseline fluctuation removing unit 221 applies a high-pass filter to the pulse wave signal measured by the pulse wave sensor 210. As a result, the baseline fluctuation removing unit 221 removes the baseline fluctuation from the pulse wave signal measured by the pulse wave sensor 210.
  • the baseline fluctuation removing unit 221 applies, for example, a predetermined high-pass filter such as 0.5 Hz.
  • the baseline of the pulse wave signal can be aligned to 0 to be in a flat state.
  • the frequency value attenuated by the baseline fluctuation removing unit 221 may be configured to be appropriately changeable according to the type of signal and the like. That is, the high-pass filter used by the baseline fluctuation removing unit 221 is not limited to the 0.5 Hz high-pass filter.
  • the peak detection unit 222 applies two types of low-pass filters having different attenuation frequencies, and then detects the peak of the pulse based on the applied result.
  • the peak detection unit 222 copies the pulse wave signal from which the baseline fluctuation has been removed by the baseline fluctuation removing unit 221 into two. Then, the peak detection unit 222 applies a 3 Hz low-pass filter to one of the two copied files, and applies a 10 Hz low-pass filter to the other of the two copied files.
  • the peak detection unit 222 detects a peak existing in the estimation range described later from the pulse wave signal to which a 3 Hz low-pass filter is applied. Further, when a peak does not exist in the estimated range in the pulse wave signal to which the 3 Hz low-pass filter is applied, the peak detection unit 222 has a peak existing in the same estimated range from the pulse wave signal to which the 10 Hz low-pass filter is applied. Is detected. In this way, the peak detection unit 222 detects the peak by using the pulse wave signal to which the 3 Hz low-pass filter is applied and the pulse wave signal to which the 10 Hz low-pass filter is applied. The peak detection unit 222 may detect the peak by using a known method such as detecting a change in the slope of the tangent line of the pulse wave signal.
  • the peak detection unit 222 sets an estimation range that is a range for estimating the next peak based on the pulse rate (for estimation) which is a reference value. For example, the peak detection unit 222 calculates the peak interval from the previous peak to the next peak when a predetermined value is added to the pulse rate (for estimation). In addition, the peak detection unit 222 calculates the peak interval when a predetermined value is subtracted from the pulse rate (for estimation). Then, the peak detection unit 222 sets the estimation range between the peak interval when a predetermined value is added to the pulse rate (for estimation) and the peak interval when a predetermined value is subtracted from the pulse rate (for estimation). Set.
  • the peak detection unit 222 can calculate a reference value from the pulse rate (for estimation).
  • the reference value is a value indicating the peak interval when the pulse rate (for estimation) is used.
  • the peak interval is represented by the number of sampled data
  • the peak interval is (sampling rate [Hz]) / (value added or subtracted from the pulse rate (for estimation) as necessary) x 60. It can be calculated in [seconds]. For example, it is assumed that the value to be added is 30 bpm and the value to be subtracted is 25 bpm, and the initial value of 80 bpm is used as the pulse rate (for estimation). Further, it is assumed that the sampling rate is 110 Hz.
  • the peak detection unit 222 can be configured to adopt a peak closer to the above-mentioned reference value among the plurality of detected peaks.
  • the peak detection unit 222 determines that peak detection is not possible. Then, the peak detection unit 222 can be treated as if the peak exists at the position of the reference value, for example.
  • FIG. 7 shows an example of the peak detection process by the peak detection unit 222.
  • the peak detection unit 222 detects a peak existing within the estimation range from the previous peak by using a pulse wave signal to which a 3 Hz low-pass filter is applied.
  • the peak detection unit 222 does not confirm the pulse wave signal to which the 10 Hz low-pass filter is applied.
  • the peak detection unit 222 uses the pulse wave signal to which the 10 Hz low-pass filter is applied and peaks within the same estimated range. Is detected. Further, when the peak does not exist in the estimation range even in the pulse wave signal to which the 10 Hz low-pass filter is applied, the peak detection unit 222 treats it as if the peak exists at the position of the reference value. For example, by repeating the above processing, as shown in FIG. 7, the peak detection unit 222 has a peak based on a pulse wave signal to which a 3 Hz low-pass filter is applied and a pulse wave signal to which a 10 Hz low-pass filter is applied. Is detected.
  • the initial value of the pulse rate (for estimation), the value to be added, and the value to be subtracted may be values other than those illustrated.
  • the pulse rate (for estimation) will be appropriately changed by the feedback process described later. That is, the pulse rate (for estimation), which is a reference value, is appropriately changed based on the calculation result of the pulse rate.
  • the value of the frequency attenuated by the peak detection unit 222 may be configured to be appropriately changeable according to the type of signal and the like. That is, the low-pass filter used by the peak detection unit 222 is not limited to the low-pass filter of 3 Hz or 10 Hz.
  • the pulse rate calculation unit 223 calculates the pulse rate based on the peak detected by the peak detection unit 222. For example, the pulse rate calculation unit 223 calculates the pulse rate from the peak interval between the previous peak and the peak detected by the peak detection unit 222.
  • the pulse rate calculation unit 223 calculates a new pulse rate. It may be configured to adopt the pulse rate calculated last time without performing.
  • the feedback unit 224 performs feedback processing based on the pulse rate calculated by the pulse rate calculation unit 223. For example, the feedback unit 224 changes the pulse rate (for estimation) used when setting the estimation range based on the pulse rate calculated by the pulse rate calculation unit 223.
  • the pulse rate calculated by the pulse rate calculation unit 223 is larger than the value obtained by adding a predetermined value to the pulse rate calculated last time, or the pulse rate calculated by the pulse rate calculation unit 223 is calculated last time. Check if it is smaller than the value obtained by subtracting the predetermined value from the pulse rate. Then, when the pulse rate calculated by the pulse rate calculation unit 223 is larger than the value obtained by adding a predetermined value to the previously calculated pulse rate, the feedback unit 224 adds a predetermined value to the pulse rate (for estimation). Use a new pulse rate (for estimation). If the pulse rate calculated by the pulse rate calculation unit 223 is smaller than the previously calculated pulse rate minus a predetermined value, the feedback unit 224 subtracts a predetermined value from the pulse rate (for estimation). Use a new pulse rate (for estimation).
  • FIG. 8 shows an example of feedback processing by the feedback unit 224 described above.
  • the feedback unit 224 sets the pulse rate (for estimation). Add 3 bpm, which is a predetermined value, to obtain a new pulse rate (for estimation). If the pulse rate calculated by the pulse rate calculation unit 223 is smaller than the value obtained by subtracting the predetermined value of 5 bpm from the previously calculated pulse rate, the feedback unit 224 uses a predetermined value from the pulse rate (for estimation). Subtract a certain 3 bpm to obtain a new pulse rate (for estimation).
  • the pulse rate calculated by the pulse rate calculation unit 223 is equal to or greater than the value obtained by subtracting the predetermined value of 5 bpm from the previously calculated pulse rate and equal to or less than the value obtained by adding the predetermined value of 5 bpm to the previously calculated pulse rate, feedback is provided.
  • the previous pulse rate (for estimation) can be used as it is as a new pulse rate (for estimation).
  • the feedback unit 224 performs feedback processing on the pulse rate (for estimation) used when setting the estimation range based on the pulse rate calculated by the pulse rate calculation unit 223.
  • the feedback unit 224 may be configured to perform feedback processing by a method other than the above-exemplified method, such as using the pulse rate calculated by the pulse rate calculation unit 223 as the pulse rate (for estimation).
  • the baseline fluctuation removing unit 221 applies a high-pass filter to the pulse wave signal measured by the pulse wave sensor 210. As a result, the baseline fluctuation removing unit 221 removes the baseline fluctuation from the pulse wave signal measured by the pulse wave sensor 210 (step S101).
  • the peak detection unit 222 applies two types of low-pass filters having different attenuation frequencies (step S202). For example, the peak detection unit 222 copies the pulse wave signal from which the baseline fluctuation has been removed by the baseline fluctuation removing unit 221 into two. Then, the peak detection unit 222 applies a 3 Hz low-pass filter to one of the two copied files, and applies a 10 Hz low-pass filter to the other of the two copied files.
  • the peak detection unit 222 detects a peak by using a pulse wave signal to which a 3 Hz low-pass filter is applied and a pulse wave signal to which a 10 Hz low-pass filter is applied (step S103). For example, the peak detection unit 222 first attempts to detect a peak existing within the estimation range from the previous peak by using a pulse wave signal to which a 3 Hz low-pass filter is applied. Further, in the pulse wave signal to which the 3 Hz low-pass filter is applied, when the next peak does not exist within the estimation range from the previous peak, the peak detection unit 222 uses the pulse wave signal to which the 10 Hz low-pass filter is applied. Attempts to detect peaks that are within the estimated range from the previous peak.
  • the pulse rate calculation unit 223 calculates the pulse rate from the peak interval between the previous peak and the peak detected by the peak detection unit 222 (step S104). For example, the pulse rate calculation unit 223 calculates the pulse rate by calculating (sampling rate [Hz]) / (peak interval) ⁇ 60 [seconds].
  • the feedback unit 224 performs feedback processing based on the pulse rate calculated by the pulse rate calculation unit 223 (step S105). For example, the feedback unit 224 changes the pulse rate (for estimation) used when setting the estimation range based on the pulse rate calculated by the pulse rate calculation unit 223.
  • the processing unit 220 calculates the pulse rate in real time by repeating each process of detecting the peak using the estimation range, calculating the pulse rate according to the peak interval, and feedback processing for changing the pulse rate (for estimation). Perform processing. Subsequently, the process of step S103 will be described in more detail with reference to FIG.
  • the peak detection unit 222 detects a peak existing in the estimation range from the pulse wave signal to which the 3 Hz low-pass filter is applied (step S201).
  • step S202 When a peak exists within the estimation range in the pulse wave signal to which the 3 Hz low-pass filter is applied (step S202, Yes), the peak detection unit 222 ends the peak detection. On the other hand, when there is no peak in the estimation range (step S202, No), the peak detection unit 222 detects a peak existing in the same estimation range from the pulse wave signal to which the 10 Hz low-pass filter is applied (step). S203).
  • the peak detection unit 222 ends the peak detection.
  • the peak detection unit 222 determines that the peak cannot be detected (step S205).
  • the peak detection unit 222 can be configured to treat, for example, as if a peak exists at the position of the reference value.
  • step S104 will be described in more detail with reference to FIG.
  • the pulse rate calculation unit 223 when the peak is detected by the peak detection unit 222 (step S301, Yes), the pulse rate calculation unit 223 has a peak between the previous peak and the peak detected by the peak detection unit 222.
  • the interval is calculated (step S302). For example, the pulse rate calculation unit 223 calculates the peak interval by measuring the number of sampling data between peaks.
  • the pulse rate calculation unit 223 calculates the pulse rate using the calculated peak interval. For example, the pulse rate calculation unit 223 calculates the pulse rate by calculating (sampling rate [Hz]) / (peak interval) ⁇ 60 [seconds] (step S303).
  • the pulse rate calculation unit 223 adopts the previously calculated pulse rate (step S304).
  • step S105 will be described in more detail with reference to FIG.
  • the feedback unit 224 determines the pulse rate ( Add 3 bpm, which is a predetermined value, to (for estimation) (step S402). Then, the feedback unit 204 sets a value obtained by adding 3 bpm, which is a predetermined value, to the pulse rate (for estimation) as a new pulse rate (for estimation) (step S406).
  • the feedback unit 224 is calculated by the pulse rate calculation unit 223. It is confirmed whether or not the pulse rate is smaller than the value obtained by subtracting the predetermined value of 5 bpm from the previously calculated pulse rate.
  • the feedback unit 224 is predetermined from the pulse rate (for estimation).
  • the obtained value of 3 bpm is subtracted (step S404).
  • the feedback unit 204 sets a value obtained by subtracting 3 bpm, which is a predetermined value, from the pulse rate (for estimation) as a new pulse rate (for estimation) (step S406).
  • step S403 when the pulse rate calculated by the pulse rate calculation unit 223 is equal to or greater than the value obtained by subtracting the predetermined value of 5 bpm from the previously calculated pulse rate (step S403, No), the feedback unit 224 uses the previous pulse rate (estimated). (For step S405) is set as it is as a new pulse rate (for estimation) (step S406).
  • the processing unit 220 has a peak detection unit 222 and a pulse rate calculation unit 223.
  • the peak detection unit 222 can detect the peak of the pulse based on the result of applying two types of low-pass filters.
  • the pulse rate calculation unit 223 can calculate the pulse rate based on the peak detected by the peak detection unit 222 using two types of low-pass filters. As a result, it becomes possible to detect the peak more reliably, and it becomes possible to calculate the pulse rate more accurately. That is, according to the above configuration, it is possible to accurately calculate the pulse rate by reducing the influence of noise by a simple configuration without using a body motion sensor or the like and without using a Fourier transform. ..
  • the peak detection unit 222 is configured to detect the peak based on the estimation range. With such a configuration, it is possible to detect peaks with higher accuracy. Further, the estimation range is configured to be set based on the pulse rate (for estimation) updated by the feedback processing by the feedback unit 224. With such a configuration, it is possible to detect peaks with higher accuracy.
  • the peak detection unit 222 applies two types of low-pass filters.
  • the number of low-pass filters applied by the peak detection unit 222 is not limited to two types.
  • the peak detection unit 222 may be configured to detect a peak by applying a plurality of types of low-pass filters.
  • the feedback processing by the feedback unit 224 does not necessarily have to be performed every time.
  • the pulse rate calculation device 30 is an information processing device (or circuit device) that calculates the pulse rate based on the measured pulse wave signal. Referring to FIG. 13, the pulse rate calculation device 30 includes, for example, a pulse rate calculation unit 31.
  • the above-mentioned processing unit can be realized by hardware such as a logic circuit, for example.
  • the processing unit described above may be realized, for example, by executing a program stored in the storage device by an arithmetic unit such as a CPU.
  • the pulse rate calculation unit 31 acquires the pulse wave signal, it applies it to the acquired pulse wave signal of a plurality of types of low-pass filters having different attenuation frequencies. Then, the pulse rate calculation unit 31 calculates the pulse rate based on the applied result.
  • the pulse rate calculation device 30 has a pulse rate calculation unit 31.
  • the pulse rate calculation unit 31 can calculate the pulse rate based on the result of applying a plurality of types of low-pass filters having different attenuation frequencies to the pulse wave signal. As a result, it becomes possible to detect the peak more reliably, and it becomes possible to calculate the pulse rate more accurately. This makes it possible to reduce the influence of noise with a simple configuration and calculate the pulse rate with high accuracy without using the Fourier transform.
  • the pulse rate calculation device 30 described above can be realized by incorporating a predetermined program into the pulse rate calculation device 30.
  • the program according to another embodiment of the present invention uses a pulse rate calculation device 30 that calculates the pulse rate based on the acquired pulse wave signal, and uses a plurality of types of low-pass filters having different attenuation frequencies as the pulse wave signal. It is a program for realizing the pulse rate calculation unit 31 that applies and calculates the pulse rate based on the applied result.
  • the pulse rate calculation method executed by the pulse rate calculation device 30 described above is a pulse rate calculation method performed by the pulse rate calculation device that calculates the pulse rate based on the acquired pulse wave signal, and is a pulse rate calculation method of the frequency to be attenuated. This is a method in which a plurality of different types of low-pass filters are applied to a pulse wave signal, and the pulse rate is calculated based on the applied result.
  • Appendix 1 It is a pulse rate calculation method performed by a pulse rate calculation device that calculates the pulse rate based on the acquired pulse wave signal. A pulse rate calculation method in which a plurality of types of low-pass filters having different frequencies to be attenuated are applied to the pulse wave signal, and the pulse rate is calculated based on the applied result.
  • Appendix 2 The pulse rate calculation method described in Appendix 1 A pulse rate calculation method that calculates the pulse rate based on the peak of the pulse detected based on the results of applying multiple types of low-pass filters.
  • Appendix 3 The pulse rate calculation method described in Appendix 2, A pulse rate calculation method in which an estimation range is set based on a reference value and a peak of a pulse within the estimation range is detected from the previous peak.
  • a pulse rate calculation method for confirming whether or not a pulse peak exists in the estimated range in the result of applying another low-pass filter when the pulse peak does not exist in the estimated range in the result of applying a certain low-pass filter (Appendix 7) The pulse rate calculation method according to any one of Supplementary note 2 to Supplementary note 6. A pulse rate calculation method that calculates the pulse rate based on the peak interval between the detected pulse peak and the previous pulse peak. (Appendix 8) The pulse rate calculation method according to any one of Supplementary note 1 to Supplementary note 7. A pulse rate calculation method in which a predetermined high-pass filter is applied to the pulse wave signal, and then a plurality of types of low-pass filters having different attenuation frequencies are applied.
  • Appendix 9 It is a pulse rate calculation device that calculates the pulse rate based on the acquired pulse wave signal.
  • a pulse rate calculation device having a pulse rate calculation unit that applies a plurality of types of low-pass filters having different attenuation frequencies to the pulse wave signal and calculates the pulse rate based on the applied result.
  • Appendix 10 In the pulse rate calculation device that calculates the pulse rate based on the acquired pulse wave signal, A program for realizing a pulse rate calculation unit that applies a plurality of types of low-pass filters having different attenuation frequencies to the pulse wave signal and calculates the pulse rate based on the applied result.
  • the programs described in each of the above embodiments and appendices may be stored in a storage device or recorded in a computer-readable recording medium.
  • the recording medium is a portable medium such as a flexible disk, an optical disk, a magneto-optical disk, and a semiconductor memory.
  • Pulse rate calculation unit 100 Wearable device 200 Sensor board 210 Pulse wave sensor 220 Processing unit 221 Baseline fluctuation removal unit 222 Peak detection unit 223 Pulse rate calculation unit 224 Feedback unit 30 Pulse rate calculation device 31 Pulse rate calculation unit

Abstract

In this pulse rate calculating method carried out by a pulse rate calculating device which calculates a pulse rate on the basis of a measured pulse wave signal, a plurality of types of low pass filters having different attenuation frequencies are applied to the pulse wave signal, and the pulse rate is calculated on the basis of the results of said application.

Description

[規則37.2に基づきISAが決定した発明の名称] 脈拍数算出方法、脈拍数算出装置、記録媒体[Name of invention determined by ISA based on Rule 37.2.] Pulse rate calculation method, pulse rate calculation device, recording medium
 本発明は、脈拍数算出方法、脈拍数算出装置、記録媒体に関する。 The present invention relates to a pulse rate calculation method, a pulse rate calculation device, and a recording medium.
 身体に装着したウェアラブルデバイスを用いて脈拍を測定することにより脈拍数を算出することがある。このようなウェアラブルデバイスを用いた測定を行う場合、体動などによる外乱ノイズが問題となることが知られている。 The pulse rate may be calculated by measuring the pulse using a wearable device worn on the body. When measuring using such a wearable device, it is known that disturbance noise due to body movement or the like becomes a problem.
 上記のようなノイズに対する技術として、例えば、特許文献1がある。特許文献1には、脈波センサと体動センサと脈波信号フィルタリング部とフィルタ係数設定部とを有する拍動検出装置が記載されている。特許文献1によると、フィルタ係数設定部は、体動信号に基づいて体動変化が所定の閾値を超えて増大したことを検出すると、適応フィルタの係数を所定値に設定する。また、脈波信号フィルタリング部は、体動信号に基づいて適応フィルタを生成して脈波信号中のノイズ信号を抽出するとともに、脈波信号からノイズを除去した拍動信号を出力する。 As a technique for noise as described above, for example, there is Patent Document 1. Patent Document 1 describes a pulsation detection device having a pulse wave sensor, a body motion sensor, a pulse wave signal filtering unit, and a filter coefficient setting unit. According to Patent Document 1, when the filter coefficient setting unit detects that the body movement change exceeds a predetermined threshold value based on the body movement signal, the filter coefficient setting unit sets the coefficient of the adaptive filter to a predetermined value. Further, the pulse wave signal filtering unit generates an adaptive filter based on the body motion signal to extract a noise signal in the pulse wave signal, and outputs a beat signal obtained by removing noise from the pulse wave signal.
特開2010-172645号公報JP-A-2010-172645
 特許文献1に記載されている技術の場合、ノイズを除去するためには、脈波センサの他に体動センサを有することが必要になる。そのため、体動センサを有さない場合にノイズを除去することができず、容易な構成でノイズの影響を低減させることが難しい、という課題が生じていた。 In the case of the technique described in Patent Document 1, it is necessary to have a body motion sensor in addition to the pulse wave sensor in order to remove noise. Therefore, there has been a problem that noise cannot be removed when the body motion sensor is not provided, and it is difficult to reduce the influence of noise with a simple configuration.
 また、体動等の外乱ノイズを含んだ脈波信号から脈拍数を推定する方法としては、高速フーリエ変換等による周波数領域でノイズ除去する方法などもある。しかしながら、フーリエ変換において時間分解能と周波数分解能はトレードオフである。そのため、フーリエ変換を行う場合、心拍変動解析に必要な時間分解能を保持しつつ、精度よく脈拍数を推定するための周波数分解能を得ることは難しかった。なお、自律神経機能の評価等に用いられる心拍変動解析には、例えば、脈波信号のサンプリングレートが約25Hz程度必要だという報告がある。 In addition, as a method of estimating the pulse rate from a pulse wave signal containing disturbance noise such as body movement, there is also a method of removing noise in the frequency domain by a fast Fourier transform or the like. However, there is a trade-off between time resolution and frequency resolution in the Fourier transform. Therefore, when performing the Fourier transform, it is difficult to obtain the frequency resolution for accurately estimating the pulse rate while maintaining the time resolution required for the heart rate variability analysis. It has been reported that, for example, a pulse wave signal sampling rate of about 25 Hz is required for heart rate variability analysis used for evaluation of autonomic nerve function.
 このように、ウェアラブルデバイスを用いて脈拍数を算出する際に、フーリエ変換に依らず、容易な構成でノイズの影響を低減させることが難しい、という課題が生じていた。そこで、本発明は、ウェアラブルデバイスを用いて脈拍数を算出する際に、フーリエ変換に依らず、容易な構成でノイズの影響を低減させることが難しい、という課題を解決する脈拍数算出方法、脈拍数算出装置、記録媒体を提供することにある。 As described above, when calculating the pulse rate using a wearable device, there has been a problem that it is difficult to reduce the influence of noise with a simple configuration regardless of the Fourier transform. Therefore, the present invention solves the problem that it is difficult to reduce the influence of noise with a simple configuration regardless of the Fourier transform when calculating the pulse rate using a wearable device. The purpose is to provide a number calculation device and a recording medium.
 かかる目的を達成するため本発明の一形態である脈拍数算出方法は、
 測定した脈波信号に基づいて脈拍数を算出する脈拍数算出装置が行う脈拍数算出方法であって、
 減衰させる周波数の異なる複数種類のローパスフィルタを前記脈波信号に適用して、適用した結果に基づいて脈拍数を算出する
 という構成をとる。
The pulse rate calculation method, which is one embodiment of the present invention, in order to achieve such an object
It is a pulse rate calculation method performed by a pulse rate calculation device that calculates the pulse rate based on the measured pulse wave signal.
A plurality of types of low-pass filters having different attenuation frequencies are applied to the pulse wave signal, and the pulse rate is calculated based on the applied result.
 また、本発明の他の形態である脈拍数算出装置は、
 測定した脈波信号に基づいて脈拍数を算出する脈拍数算出装置であって、
 減衰させる周波数の異なる複数種類のローパスフィルタを前記脈波信号に適用して、適用した結果に基づいて脈拍数を算出する脈拍数算出部を有する
 という構成をとる。
Further, the pulse rate calculation device, which is another embodiment of the present invention, is
It is a pulse rate calculation device that calculates the pulse rate based on the measured pulse wave signal.
It is configured to have a pulse rate calculation unit that applies a plurality of types of low-pass filters having different attenuation frequencies to the pulse wave signal and calculates the pulse rate based on the applied result.
 また、本発明の他の形態である記録媒体は、
 測定した脈波信号に基づいて脈拍数を算出する脈拍数算出装置に、
 減衰させる周波数の異なる複数種類のローパスフィルタを前記脈波信号に適用して、適用した結果に基づいて脈拍数を算出する脈拍数算出部を実現するためのプログラムを記録した、コンピュータが読み取り可能な記録媒体である。
Moreover, the recording medium which is another form of this invention is
For a pulse rate calculation device that calculates the pulse rate based on the measured pulse wave signal,
A computer-readable program for realizing a pulse rate calculation unit that applies a plurality of types of low-pass filters having different attenuation frequencies to the pulse wave signal and calculates the pulse rate based on the applied result. It is a recording medium.
 本発明は、以上のように構成されることにより、ウェアラブルデバイスを用いて脈拍数を算出する際に、フーリエ変換に依らず、容易な構成でノイズの影響を低減させることが難しい、という課題を解決する脈拍数算出方法、脈拍数算出装置、記録媒体を提供することが可能となる。 The present invention has a problem that it is difficult to reduce the influence of noise with a simple configuration regardless of the Fourier transform when calculating the pulse rate using a wearable device due to the configuration as described above. It is possible to provide a pulse rate calculation method, a pulse rate calculation device, and a recording medium to be solved.
本発明の第1の実施形態におけるウェアラブルデバイスの構成の一例を示すブロック図である。It is a block diagram which shows an example of the structure of the wearable device in 1st Embodiment of this invention. 脈波センサの処理の一例を説明するための図である。It is a figure for demonstrating an example of the processing of a pulse wave sensor. 図1で示す処理部の構成の一例を示すブロック図である。It is a block diagram which shows an example of the structure of the processing part shown in FIG. 基線変動を除去する処理の一例を説明するための図である。It is a figure for demonstrating an example of the process which removes a baseline variation. 基線変動を除去する処理の一例を説明するための図である。It is a figure for demonstrating an example of the process which removes a baseline variation. ピーク値を検出する処理の一例を説明するための図である。It is a figure for demonstrating an example of the process of detecting a peak value. ピーク値を検出する際に用いるピーク間隔の一例を説明するための図である。It is a figure for demonstrating an example of a peak interval used when detecting a peak value. フィードバック処理の一例を説明するための図である。It is a figure for demonstrating an example of feedback processing. 本発明の第1の実施形態における処理部の動作の一例を示すフローチャートである。It is a flowchart which shows an example of the operation of the processing part in 1st Embodiment of this invention. ピーク値を検出する処理を行う際の動作の一例を示すフローチャートである。It is a flowchart which shows an example of the operation at the time of performing the process of detecting a peak value. 脈拍数を算出する処理を行う際の動作の一例を示すフローチャートである。It is a flowchart which shows an example of the operation at the time of performing the process of calculating a pulse rate. フィードバック処理を行う際の動作の一例を示すフローチャートである。It is a flowchart which shows an example of the operation at the time of performing feedback processing. 本発明の第2の実施形態における脈拍数算出装置の構成の一例を示すブロック図である。It is a block diagram which shows an example of the structure of the pulse rate calculation apparatus in the 2nd Embodiment of this invention.
[第1の実施形態]
 本発明の第1の実施形態を図1から図12までを参照して説明する。図1は、ウェアラブルデバイス100の構成の一例を示すブロック図である。図2は、脈波センサ210の処理の一例を説明するための図である。図3は、処理部220の構成の一例を示すブロック図である。図4、図5は、基線変動を除去する処理の一例を説明するための図である。図6は、ピーク値を検出する処理の一例を説明するための図である。図7は、ピーク値を検出する際に用いるピーク間隔の一例を説明するための図である。図8は、フィードバック処理の一例を説明するための図である。図9は、処理部220の動作の一例を示すフローチャートである。図10は、ピーク値を検出する処理を行う際の動作の一例を示すフローチャートである。図11は、脈拍数を算出する処理を行う際の動作の一例を示すフローチャートである。図12は、フィードバック処理を行う際の動作の一例を示すフローチャートである。
[First Embodiment]
The first embodiment of the present invention will be described with reference to FIGS. 1 to 12. FIG. 1 is a block diagram showing an example of the configuration of the wearable device 100. FIG. 2 is a diagram for explaining an example of processing of the pulse wave sensor 210. FIG. 3 is a block diagram showing an example of the configuration of the processing unit 220. 4 and 5 are diagrams for explaining an example of the process of removing the baseline fluctuation. FIG. 6 is a diagram for explaining an example of processing for detecting a peak value. FIG. 7 is a diagram for explaining an example of the peak interval used when detecting the peak value. FIG. 8 is a diagram for explaining an example of feedback processing. FIG. 9 is a flowchart showing an example of the operation of the processing unit 220. FIG. 10 is a flowchart showing an example of an operation when performing a process of detecting a peak value. FIG. 11 is a flowchart showing an example of an operation when performing a process of calculating the pulse rate. FIG. 12 is a flowchart showing an example of an operation when performing feedback processing.
 本発明の第1の実施形態においては、脈波センサ210により取得した脈波信号を用いて、1分あたりの脈拍の数である脈拍数を算出するウェアラブルデバイス100について説明する。後述するように、本実施形態におけるウェアラブルデバイス100では、取得した脈波信号にハイパスフィルタ(HPF:High-pass filter)を適用して基線変動を除去した後、減衰させる周波数の異なる2種類のローパスフィルタ(LPS:Low-pass filter)を適用する。そして、ウェアラブルデバイス100は、2種類のローパスフィルタを適用した結果に基づいて脈拍のピークを検出する。その後、ウェアラブルデバイス100は、ピークの検出結果に基づいて求められるピーク間隔から脈拍数を算出する。 In the first embodiment of the present invention, the wearable device 100 that calculates the pulse rate, which is the number of pulses per minute, will be described using the pulse wave signal acquired by the pulse wave sensor 210. As will be described later, in the wearable device 100 of the present embodiment, a high-pass filter (HPF: High-pass filter) is applied to the acquired pulse wave signal to remove the baseline fluctuation, and then two types of low-pass filters having different frequencies to be attenuated are applied. Apply a filter (LPS: Low-pass filter). Then, the wearable device 100 detects the peak of the pulse based on the result of applying the two types of low-pass filters. After that, the wearable device 100 calculates the pulse rate from the peak interval obtained based on the peak detection result.
 ウェアラブルデバイス100は、身体に装着して脈波信号を測定する、腕時計型などの情報処理装置である。図1は、ウェアラブルデバイス100の構成の一例を示している。図1を参照すると、ウェアラブルデバイス100には、脈波センサ210と処理部220とを含むセンサボード200が内蔵されている。 The wearable device 100 is a wristwatch-type information processing device that is worn on the body to measure a pulse wave signal. FIG. 1 shows an example of the configuration of the wearable device 100. Referring to FIG. 1, the wearable device 100 includes a sensor board 200 including a pulse wave sensor 210 and a processing unit 220.
 脈波センサ210は、例えば、光電式のセンサである。図2は、脈波センサ210による測定の一例を示している。図2で示すように、例えば、脈波センサ210は、緑色のLEDの光を身体に向けて照射する。そして、脈波センサ210は、ウェアラブルデバイス100を装着した身体から反射した光を計測することで、脈波信号を測定する。例えば、以上のように、脈波センサ210は、光電容量脈波方式(PPG:Photoplethysmography)を用いて脈波信号を測定可能なよう構成されている。 The pulse wave sensor 210 is, for example, a photoelectric sensor. FIG. 2 shows an example of measurement by the pulse wave sensor 210. As shown in FIG. 2, for example, the pulse wave sensor 210 irradiates the body with the light of a green LED. Then, the pulse wave sensor 210 measures the pulse wave signal by measuring the light reflected from the body wearing the wearable device 100. For example, as described above, the pulse wave sensor 210 is configured so that the pulse wave signal can be measured by using the photoelectric capacitance pulse wave method (PPG: Photoplethysmography).
 なお、自律神経機能評価などに用いられる心拍変動解析には、1秒当たりの測定回数を示す脈波信号のサンプリングレートが約25Hz程度必要であるという報告がある。そのため、本実施形態における脈波信号のサンプリングレートは、25Hz以上あることが望ましい。 It has been reported that a sampling rate of a pulse wave signal indicating the number of measurements per second is required to be about 25 Hz for heart rate variability analysis used for evaluation of autonomic nervous function. Therefore, it is desirable that the sampling rate of the pulse wave signal in this embodiment is 25 Hz or more.
 処理部220は、脈波センサ210が測定した脈波信号に基づいて脈拍数を算出するマイコンなどの情報処理部(脈拍数算出装置)である。図3は、処理部220の構成の一例を示している。図3を参照すると、処理部220は、例えば、基線変動除去部221とピーク検出部222と脈拍数算出部223とフィードバック部224とを有している。 The processing unit 220 is an information processing unit (pulse rate calculation device) such as a microcomputer that calculates the pulse rate based on the pulse wave signal measured by the pulse wave sensor 210. FIG. 3 shows an example of the configuration of the processing unit 220. Referring to FIG. 3, the processing unit 220 includes, for example, a baseline fluctuation removing unit 221, a peak detecting unit 222, a pulse rate calculation unit 223, and a feedback unit 224.
 例えば、上述した各処理部は、ピーク検出を行うピーク検出回路や脈拍数を算出してフィードバックを行う脈拍数推定回路などの各種論理回路、ハードウェアにより実現することが出来る。上述した各処理部は、例えば、記憶装置に格納されたプログラムをCPU(Central Processing Unit)などの演算装置が実行することにより実現されても構わない。 For example, each of the above-mentioned processing units can be realized by various logic circuits and hardware such as a peak detection circuit for peak detection and a pulse rate estimation circuit for calculating and feeding back the pulse rate. Each of the above-mentioned processing units may be realized, for example, by executing a program stored in the storage device by an arithmetic unit such as a CPU (Central Processing Unit).
 基線変動除去部221は、脈波センサ210が測定した脈波信号にハイパスフィルタを適用する。これにより、基線変動除去部221は、脈波センサ210が測定した脈波信号から基線変動を除去する。 The baseline fluctuation removing unit 221 applies a high-pass filter to the pulse wave signal measured by the pulse wave sensor 210. As a result, the baseline fluctuation removing unit 221 removes the baseline fluctuation from the pulse wave signal measured by the pulse wave sensor 210.
 例えば、図4で示すように、脈波センサ210が測定した脈波信号では、ウェアラブルデバイス100を装着した装着者が動いていることなどにより、基線が揺らいでいることがある。そこで、基線変動除去部221は、例えば、予め定められた0.5Hzなどのハイパスフィルタを適用する。これにより、図5で示すように、脈波信号の基線を0に揃えたフラットな状態にすることが出来る。 For example, as shown in FIG. 4, in the pulse wave signal measured by the pulse wave sensor 210, the baseline may be shaken due to the movement of the wearer wearing the wearable device 100 or the like. Therefore, the baseline fluctuation removing unit 221 applies, for example, a predetermined high-pass filter such as 0.5 Hz. As a result, as shown in FIG. 5, the baseline of the pulse wave signal can be aligned to 0 to be in a flat state.
 なお、基線変動除去部221が減衰させる周波数の値は、信号の種類などに応じて適宜変更可能なよう構成して構わない。つまり、基線変動除去部221が用いるハイパスフィルタは、0.5Hzのハイパスフィルタに限定されない。 The frequency value attenuated by the baseline fluctuation removing unit 221 may be configured to be appropriately changeable according to the type of signal and the like. That is, the high-pass filter used by the baseline fluctuation removing unit 221 is not limited to the 0.5 Hz high-pass filter.
 ピーク検出部222は、減衰させる周波数の異なる2種類のローパスフィルタを適用した後、適用した結果に基づいて脈拍のピークを検出する。 The peak detection unit 222 applies two types of low-pass filters having different attenuation frequencies, and then detects the peak of the pulse based on the applied result.
 例えば、ピーク検出部222は、基線変動除去部221により基線変動を除去した脈波信号を2つにコピーする。そして、ピーク検出部222は、コピーした2つのうちの一方に3Hzのローパスフィルタを適用するとともに、コピーした2つのうちの他方に10Hzのローパスフィルタを適用する。 For example, the peak detection unit 222 copies the pulse wave signal from which the baseline fluctuation has been removed by the baseline fluctuation removing unit 221 into two. Then, the peak detection unit 222 applies a 3 Hz low-pass filter to one of the two copied files, and applies a 10 Hz low-pass filter to the other of the two copied files.
 ピーク検出部222は、3Hzのローパスフィルタを適用した脈波信号から後述する推定範囲内に存在するピークを検出する。また、3Hzのローパスフィルタを適用した脈波信号において推定範囲内にピークが存在しない場合、ピーク検出部222は、10Hzのローパスフィルタを適用した脈波信号から、同様の推定範囲内に存在するピークを検出する。このように、ピーク検出部222は、3Hzのローパスフィルタを適用した脈波信号と10Hzのローパスフィルタを適用した脈波信号とを用いて、ピークを検出する。なお、ピーク検出部222によるピークの検出は、脈波信号の接線の傾きの変化を検出するなど既知の方法を用いて行って構わない。 The peak detection unit 222 detects a peak existing in the estimation range described later from the pulse wave signal to which a 3 Hz low-pass filter is applied. Further, when a peak does not exist in the estimated range in the pulse wave signal to which the 3 Hz low-pass filter is applied, the peak detection unit 222 has a peak existing in the same estimated range from the pulse wave signal to which the 10 Hz low-pass filter is applied. Is detected. In this way, the peak detection unit 222 detects the peak by using the pulse wave signal to which the 3 Hz low-pass filter is applied and the pulse wave signal to which the 10 Hz low-pass filter is applied. The peak detection unit 222 may detect the peak by using a known method such as detecting a change in the slope of the tangent line of the pulse wave signal.
 ここで、図6を参照して、推定範囲について詳細に説明する。図6は、推定範囲について説明するための図である。図6を参照すると、ピーク検出部222は、基準となる値である脈拍数(推定用)に基づいて、次のピークを推定する範囲となる推定範囲を設定する。例えば、ピーク検出部222は、脈拍数(推定用)に所定の値を加算した場合の、前回のピークから次のピークまでのピーク間隔を算出する。また、ピーク検出部222は、脈拍数(推定用)から所定の値を減算した場合のピーク間隔を算出する。そして、ピーク検出部222は、脈拍数(推定用)に所定の値を加算した場合のピーク間隔と脈拍数(推定用)から所定の値を減算した場合のピーク間隔との間を推定範囲として設定する。 Here, the estimated range will be described in detail with reference to FIG. FIG. 6 is a diagram for explaining the estimation range. With reference to FIG. 6, the peak detection unit 222 sets an estimation range that is a range for estimating the next peak based on the pulse rate (for estimation) which is a reference value. For example, the peak detection unit 222 calculates the peak interval from the previous peak to the next peak when a predetermined value is added to the pulse rate (for estimation). In addition, the peak detection unit 222 calculates the peak interval when a predetermined value is subtracted from the pulse rate (for estimation). Then, the peak detection unit 222 sets the estimation range between the peak interval when a predetermined value is added to the pulse rate (for estimation) and the peak interval when a predetermined value is subtracted from the pulse rate (for estimation). Set.
 また、ピーク検出部222は、脈拍数(推定用)から基準値を算出することが出来る。基準値は、脈拍数(推定用)である場合のピーク間隔を示す値である。 In addition, the peak detection unit 222 can calculate a reference value from the pulse rate (for estimation). The reference value is a value indicating the peak interval when the pulse rate (for estimation) is used.
 例えば、ピーク間隔をサンプリングしたデータの数で表すものとすると、ピーク間隔は、(サンプリングレート[Hz])/(脈拍数(推定用)に必要に応じて加算、または、減算した値)×60[秒]で求めることが出来る。例えば、加算する値が30bpm、減算する値が25bpmとして予め定められており、脈拍数(推定用)として初期値である80bpmを用いるとする。また、サンプリングレートが110Hzであるとする。この場合、ピーク検出部222は、110/(80+30)×60=60を算出するとともに、110/(80-25)×60=120を算出する。そして、ピーク検出部222は、前回のピークからサンプルデータの数が60~120の間を推定範囲として設定する。また、ピーク検出部222は、基準値として、110/80×60=82.5を算出することが出来る。 For example, if the peak interval is represented by the number of sampled data, the peak interval is (sampling rate [Hz]) / (value added or subtracted from the pulse rate (for estimation) as necessary) x 60. It can be calculated in [seconds]. For example, it is assumed that the value to be added is 30 bpm and the value to be subtracted is 25 bpm, and the initial value of 80 bpm is used as the pulse rate (for estimation). Further, it is assumed that the sampling rate is 110 Hz. In this case, the peak detection unit 222 calculates 110 / (80 + 30) × 60 = 60 and 110 / (80-25) × 60 = 120. Then, the peak detection unit 222 sets the number of sample data between 60 and 120 as the estimation range from the previous peak. Further, the peak detection unit 222 can calculate 110/80 × 60 = 82.5 as a reference value.
 なお、ノイズなどの影響により、推定範囲内に複数のピークが検出される場合がある。この場合、ピーク検出部222は、検出された複数のピークのうち、上述した基準値により近いピークを採用するよう構成することが出来る。 Note that multiple peaks may be detected within the estimated range due to the effects of noise and the like. In this case, the peak detection unit 222 can be configured to adopt a peak closer to the above-mentioned reference value among the plurality of detected peaks.
 また、10Hzのローパスフィルタを適用した脈波信号において、推定範囲内にピークが存在しない場合もある。この場合、ピーク検出部222は、ピーク検出不可と判断する。そして、ピーク検出部222は、例えば、基準値の位置にピークが存在するものとして扱うことが出来る。 In addition, in the pulse wave signal to which a 10 Hz low-pass filter is applied, there may be no peak within the estimated range. In this case, the peak detection unit 222 determines that peak detection is not possible. Then, the peak detection unit 222 can be treated as if the peak exists at the position of the reference value, for example.
 以上をまとめると、例えば、図7で示すようになる。図7は、ピーク検出部222によるピーク検出処理の一例を示している。図7を参照すると、ピーク検出部222は、3Hzのローパスフィルタを適用した脈波信号を用いて、前回のピークから推定範囲内に存在するピークを検出する。3Hzのローパスフィルタを適用した脈波信号において、推定範囲内にピークが存在する場合、ピーク検出部222は、10Hzのローパスフィルタを適用した脈波信号の確認を行わない。また、3Hzのローパスフィルタを適用した脈波信号において推定範囲内にピークを検出できない場合、ピーク検出部222は、10Hzのローパスフィルタを適用した脈波信号を用いて、同様の推定範囲内のピークを検出する。また、10Hzのローパスフィルタを適用した脈波信号においても推定範囲内にピークが存在しない場合、ピーク検出部222は、基準値の位置にピークが存在するものとして扱う。例えば、以上のような処理を繰り返すことにより、ピーク検出部222は、図7で示すように、3Hzのローパスフィルタを適用した脈波信号と10Hzのローパスフィルタを適用した脈波信号とに基づくピークの検出を行う。 The above can be summarized, for example, as shown in FIG. FIG. 7 shows an example of the peak detection process by the peak detection unit 222. Referring to FIG. 7, the peak detection unit 222 detects a peak existing within the estimation range from the previous peak by using a pulse wave signal to which a 3 Hz low-pass filter is applied. When a peak exists within the estimation range in the pulse wave signal to which the 3 Hz low-pass filter is applied, the peak detection unit 222 does not confirm the pulse wave signal to which the 10 Hz low-pass filter is applied. If a peak cannot be detected within the estimated range in the pulse wave signal to which the 3 Hz low-pass filter is applied, the peak detection unit 222 uses the pulse wave signal to which the 10 Hz low-pass filter is applied and peaks within the same estimated range. Is detected. Further, when the peak does not exist in the estimation range even in the pulse wave signal to which the 10 Hz low-pass filter is applied, the peak detection unit 222 treats it as if the peak exists at the position of the reference value. For example, by repeating the above processing, as shown in FIG. 7, the peak detection unit 222 has a peak based on a pulse wave signal to which a 3 Hz low-pass filter is applied and a pulse wave signal to which a 10 Hz low-pass filter is applied. Is detected.
 なお、脈拍数(推定用)の初期値、加算する値、減算する値は、それぞれ例示した以外の値であっても構わない。また、脈拍数(推定用)は後述するフィードバック処理により適宜変更されることになる。つまり、基準となる値である脈拍数(推定用)は、脈拍数の算出結果に基づいて適宜変更される。 Note that the initial value of the pulse rate (for estimation), the value to be added, and the value to be subtracted may be values other than those illustrated. In addition, the pulse rate (for estimation) will be appropriately changed by the feedback process described later. That is, the pulse rate (for estimation), which is a reference value, is appropriately changed based on the calculation result of the pulse rate.
 また、ピーク検出部222が減衰させる周波数の値は、信号の種類などに応じて適宜変更可能なよう構成して構わない。つまり、ピーク検出部222が用いるローパスフィルタは、3Hzや10Hzのローパスフィルタに限定されない。 Further, the value of the frequency attenuated by the peak detection unit 222 may be configured to be appropriately changeable according to the type of signal and the like. That is, the low-pass filter used by the peak detection unit 222 is not limited to the low-pass filter of 3 Hz or 10 Hz.
 脈拍数算出部223は、ピーク検出部222が検出したピークに基づいて脈拍数を算出する。例えば、脈拍数算出部223は、前回のピークとピーク検出部222が検出したピークとの間のピーク間隔から、脈拍数を算出する。 The pulse rate calculation unit 223 calculates the pulse rate based on the peak detected by the peak detection unit 222. For example, the pulse rate calculation unit 223 calculates the pulse rate from the peak interval between the previous peak and the peak detected by the peak detection unit 222.
 例えば、脈拍数算出部223は、前回のピークとピーク検出部222が検出したピークとの間のサンプリングデータの個数を計測することで、ピーク間隔を算出する。そして、脈拍数算出部223は、算出したピーク間隔に基づいて脈拍数を算出する。具体的には、例えば、脈拍数算出部223は、(サンプリングレート[Hz])/(ピーク間隔)×60[秒]を計算することで、脈拍数を算出する。例えば、サンプリングレートが110Hz、ピーク間隔が110であるとすると、脈拍数算出部223は、110/110×60=60を脈拍数として算出する。 For example, the pulse rate calculation unit 223 calculates the peak interval by measuring the number of sampling data between the previous peak and the peak detected by the peak detection unit 222. Then, the pulse rate calculation unit 223 calculates the pulse rate based on the calculated peak interval. Specifically, for example, the pulse rate calculation unit 223 calculates the pulse rate by calculating (sampling rate [Hz]) / (peak interval) × 60 [seconds]. For example, assuming that the sampling rate is 110 Hz and the peak interval is 110, the pulse rate calculation unit 223 calculates 110/110 × 60 = 60 as the pulse rate.
 なお、3Hzのローパスフィルタを適用した脈波信号と10Hzのローパスフィルタを適用した脈波信号のいずれにおいても推定範囲内にピークが存在しない場合、脈拍数算出部223は、新たな脈拍数の算出を行わず、前回算出した脈拍数を採用するよう構成しても構わない。 If there is no peak within the estimation range in either the pulse wave signal to which the 3 Hz low-pass filter is applied or the pulse wave signal to which the 10 Hz low-pass filter is applied, the pulse rate calculation unit 223 calculates a new pulse rate. It may be configured to adopt the pulse rate calculated last time without performing.
 フィードバック部224は、脈拍数算出部223が算出した脈拍数に基づくフィードバック処理を行う。例えば、フィードバック部224は、脈拍数算出部223が算出した脈拍数に基づいて、推定範囲を設定する際に用いた脈拍数(推定用)の変更を行う。 The feedback unit 224 performs feedback processing based on the pulse rate calculated by the pulse rate calculation unit 223. For example, the feedback unit 224 changes the pulse rate (for estimation) used when setting the estimation range based on the pulse rate calculated by the pulse rate calculation unit 223.
 例えば、フィードバック部224は、脈拍数算出部223が算出した脈拍数が前回算出した脈拍数に所定値を加算した値より大きいか、又は、脈拍数算出部223が算出した脈拍数が前回算出した脈拍数から所定値を減算した値より小さいか、確認する。そして、脈拍数算出部223が算出した脈拍数が前回算出した脈拍数に所定値を加算した値より大きい場合、フィードバック部224は、脈拍数(推定用)に予め定められた値を加算して新たな脈拍数(推定用)とする。また、脈拍数算出部223が算出した脈拍数が前回算出した脈拍数から所定値を減算した値より小さい場合、フィードバック部224は、脈拍数(推定用)から予め定められた値を減算して新たな脈拍数(推定用)とする。 For example, in the feedback unit 224, the pulse rate calculated by the pulse rate calculation unit 223 is larger than the value obtained by adding a predetermined value to the pulse rate calculated last time, or the pulse rate calculated by the pulse rate calculation unit 223 is calculated last time. Check if it is smaller than the value obtained by subtracting the predetermined value from the pulse rate. Then, when the pulse rate calculated by the pulse rate calculation unit 223 is larger than the value obtained by adding a predetermined value to the previously calculated pulse rate, the feedback unit 224 adds a predetermined value to the pulse rate (for estimation). Use a new pulse rate (for estimation). If the pulse rate calculated by the pulse rate calculation unit 223 is smaller than the previously calculated pulse rate minus a predetermined value, the feedback unit 224 subtracts a predetermined value from the pulse rate (for estimation). Use a new pulse rate (for estimation).
 図8は、上述したフィードバック部224によるフィードバック処理の一例を示している。図8を参照すると、例えば、脈拍数算出部223が算出した脈拍数が前回算出した脈拍数に所定値である5bpmを加算した値より大きい場合、フィードバック部224は、脈拍数(推定用)に予め定められた値である3bpmを加算して新たな脈拍数(推定用)とする。また、脈拍数算出部223が算出した脈拍数が前回算出した脈拍数から所定値である5bpmを減算した値より小さい場合、フィードバック部224は、脈拍数(推定用)から予め定められた値である3bpmを減算して新たな脈拍数(推定用)とする。なお、脈拍数算出部223が算出した脈拍数が前回算出した脈拍数から所定値である5bpmを減算した値以上前回算出した脈拍数に所定値である5bpmを加算した値以下である場合、フィードバック部224は、前回の脈拍数(推定用)をそのまま新たな脈拍数(推定用)とすることが出来る。 FIG. 8 shows an example of feedback processing by the feedback unit 224 described above. With reference to FIG. 8, for example, when the pulse rate calculated by the pulse rate calculation unit 223 is larger than the value obtained by adding the predetermined value of 5 bpm to the previously calculated pulse rate, the feedback unit 224 sets the pulse rate (for estimation). Add 3 bpm, which is a predetermined value, to obtain a new pulse rate (for estimation). If the pulse rate calculated by the pulse rate calculation unit 223 is smaller than the value obtained by subtracting the predetermined value of 5 bpm from the previously calculated pulse rate, the feedback unit 224 uses a predetermined value from the pulse rate (for estimation). Subtract a certain 3 bpm to obtain a new pulse rate (for estimation). If the pulse rate calculated by the pulse rate calculation unit 223 is equal to or greater than the value obtained by subtracting the predetermined value of 5 bpm from the previously calculated pulse rate and equal to or less than the value obtained by adding the predetermined value of 5 bpm to the previously calculated pulse rate, feedback is provided. In the part 224, the previous pulse rate (for estimation) can be used as it is as a new pulse rate (for estimation).
 例えば、以上のように、フィードバック部224は、脈拍数算出部223が算出した脈拍数に基づいて、推定範囲を設定する際に用いる脈拍数(推定用)に対するフィードバック処理を行う。なお、フィードバック部224は、脈拍数算出部223が算出した脈拍数を脈拍数(推定用)とするなど、上記例示した以外の方法でフィードバック処理を行うよう構成しても構わない。 For example, as described above, the feedback unit 224 performs feedback processing on the pulse rate (for estimation) used when setting the estimation range based on the pulse rate calculated by the pulse rate calculation unit 223. The feedback unit 224 may be configured to perform feedback processing by a method other than the above-exemplified method, such as using the pulse rate calculated by the pulse rate calculation unit 223 as the pulse rate (for estimation).
 なお、上述した各種所定値、予め定められた値は、それぞれ例示である。フィードバック部224がフィードバック処理を行う際に用いる値は、例示した以外のものであっても構わない。 Note that the various predetermined values and predetermined values described above are examples. The value used by the feedback unit 224 when performing the feedback processing may be other than those illustrated.
 以上が、処理部220の構成の一例である。続いて、図9から図12までを参照して、処理部220の動作の一例について説明する。まず、図9を参照して、処理部220が脈拍数を算出する際の全体の動作の流れについて説明する。 The above is an example of the configuration of the processing unit 220. Subsequently, an example of the operation of the processing unit 220 will be described with reference to FIGS. 9 to 12. First, with reference to FIG. 9, the flow of the entire operation when the processing unit 220 calculates the pulse rate will be described.
 図9を参照すると、基線変動除去部221は、脈波センサ210が測定した脈波信号にハイパスフィルタを適用する。これにより、基線変動除去部221は、脈波センサ210が測定した脈波信号から基線変動を除去する(ステップS101)。 With reference to FIG. 9, the baseline fluctuation removing unit 221 applies a high-pass filter to the pulse wave signal measured by the pulse wave sensor 210. As a result, the baseline fluctuation removing unit 221 removes the baseline fluctuation from the pulse wave signal measured by the pulse wave sensor 210 (step S101).
 ピーク検出部222は、減衰させる周波数の異なる2種類のローパスフィルタを適用する(ステップS202)。例えば、ピーク検出部222は、基線変動除去部221により基線変動を除去した脈波信号を2つにコピーする。そして、ピーク検出部222は、コピーした2つのうちの一方に3Hzのローパスフィルタを適用するとともに、コピーした2つのうちの他方に10Hzのローパスフィルタを適用する。 The peak detection unit 222 applies two types of low-pass filters having different attenuation frequencies (step S202). For example, the peak detection unit 222 copies the pulse wave signal from which the baseline fluctuation has been removed by the baseline fluctuation removing unit 221 into two. Then, the peak detection unit 222 applies a 3 Hz low-pass filter to one of the two copied files, and applies a 10 Hz low-pass filter to the other of the two copied files.
 ピーク検出部222は、3Hzのローパスフィルタを適用した脈波信号と10Hzのローパスフィルタを適用した脈波信号とを用いて、ピークを検出する(ステップS103)。例えば、ピーク検出部222は、まず、3Hzのローパスフィルタを適用した脈波信号を用いて、前回のピークから推定範囲内に存在するピークを検出しようとする。また、3Hzのローパスフィルタを適用した脈波信号において、前回のピークから推定範囲内に次のピークが存在しない場合、ピーク検出部222は、10Hzのローパスフィルタを適用した脈波信号を用いて、前回のピークから推定範囲内に存在するピークを検出しようとする。 The peak detection unit 222 detects a peak by using a pulse wave signal to which a 3 Hz low-pass filter is applied and a pulse wave signal to which a 10 Hz low-pass filter is applied (step S103). For example, the peak detection unit 222 first attempts to detect a peak existing within the estimation range from the previous peak by using a pulse wave signal to which a 3 Hz low-pass filter is applied. Further, in the pulse wave signal to which the 3 Hz low-pass filter is applied, when the next peak does not exist within the estimation range from the previous peak, the peak detection unit 222 uses the pulse wave signal to which the 10 Hz low-pass filter is applied. Attempts to detect peaks that are within the estimated range from the previous peak.
 脈拍数算出部223は、前回のピークとピーク検出部222が検出したピークとの間のピーク間隔から、脈拍数を算出する(ステップS104)。例えば、脈拍数算出部223は、(サンプリングレート[Hz])/(ピーク間隔)×60[秒]を計算することで、脈拍数を算出する。 The pulse rate calculation unit 223 calculates the pulse rate from the peak interval between the previous peak and the peak detected by the peak detection unit 222 (step S104). For example, the pulse rate calculation unit 223 calculates the pulse rate by calculating (sampling rate [Hz]) / (peak interval) × 60 [seconds].
 フィードバック部224は、脈拍数算出部223が算出した脈拍数に基づくフィードバック処理を行う(ステップS105)。例えば、フィードバック部224は、脈拍数算出部223が算出した脈拍数に基づいて、推定範囲を設定する際に用いた脈拍数(推定用)の変更を行う。 The feedback unit 224 performs feedback processing based on the pulse rate calculated by the pulse rate calculation unit 223 (step S105). For example, the feedback unit 224 changes the pulse rate (for estimation) used when setting the estimation range based on the pulse rate calculated by the pulse rate calculation unit 223.
 処理部220は、推定範囲を用いたピークの検出、ピーク間隔に応じた脈拍数の算出、脈拍数(推定用)を変更するフィードバック処理、の各処理を繰り返すことで、リアルタイムで脈拍数の算出処理を行う。続いて、図10を参照して、ステップS103の処理についてより詳細に説明する。 The processing unit 220 calculates the pulse rate in real time by repeating each process of detecting the peak using the estimation range, calculating the pulse rate according to the peak interval, and feedback processing for changing the pulse rate (for estimation). Perform processing. Subsequently, the process of step S103 will be described in more detail with reference to FIG.
 図10を参照すると、ピーク検出部222は、3Hzのローパスフィルタを適用した脈波信号から推定範囲内に存在するピークを検出する(ステップS201)。 With reference to FIG. 10, the peak detection unit 222 detects a peak existing in the estimation range from the pulse wave signal to which the 3 Hz low-pass filter is applied (step S201).
 3Hzのローパスフィルタを適用した脈波信号において、推定範囲内にピークが存在する場合(ステップS202、Yes)、ピーク検出部222は、ピークの検出を終了する。一方、推定範囲内にピークが存在しない場合(ステップS202、No)、ピーク検出部222は、10Hzのローパスフィルタを適用した脈波信号から、同様の推定範囲内に存在するピークを検出する(ステップS203)。 When a peak exists within the estimation range in the pulse wave signal to which the 3 Hz low-pass filter is applied (step S202, Yes), the peak detection unit 222 ends the peak detection. On the other hand, when there is no peak in the estimation range (step S202, No), the peak detection unit 222 detects a peak existing in the same estimation range from the pulse wave signal to which the 10 Hz low-pass filter is applied (step). S203).
 10Hzのローパスフィルタを適用した脈波信号において推定範囲内にピークが存在する場合(ステップS204、Yes)、ピーク検出部222は、ピークの検出を終了する。一方、推定範囲内にピークが存在しない場合(ステップS204、No)、ピーク検出部222は、ピーク検出不可と判断する(ステップS205)。この場合、ピーク検出部222は、例えば、基準値の位置にピークが存在するものとして扱うよう構成することが出来る。 When a peak exists within the estimated range in the pulse wave signal to which the 10 Hz low-pass filter is applied (step S204, Yes), the peak detection unit 222 ends the peak detection. On the other hand, when the peak does not exist within the estimation range (step S204, No), the peak detection unit 222 determines that the peak cannot be detected (step S205). In this case, the peak detection unit 222 can be configured to treat, for example, as if a peak exists at the position of the reference value.
 続いて、図11を参照して、ステップS104の処理についてより詳細に説明する。 Subsequently, the process of step S104 will be described in more detail with reference to FIG.
 図11を参照すると、ピーク検出部222によりピークの検出が出来ていた場合(ステップS301、Yes)、脈拍数算出部223は、前回のピークとピーク検出部222が検出したピークとの間のピーク間隔を算出する(ステップS302)。例えば、脈拍数算出部223は、ピーク間のサンプリングデータの個数を計測することで、ピーク間隔を算出する。 With reference to FIG. 11, when the peak is detected by the peak detection unit 222 (step S301, Yes), the pulse rate calculation unit 223 has a peak between the previous peak and the peak detected by the peak detection unit 222. The interval is calculated (step S302). For example, the pulse rate calculation unit 223 calculates the peak interval by measuring the number of sampling data between peaks.
 脈拍数算出部223は、算出したピーク間隔を用いて、脈拍数を算出する。例えば、脈拍数算出部223は、(サンプリングレート[Hz])/(ピーク間隔)×60[秒]を計算することで、脈拍数を算出する(ステップS303)。 The pulse rate calculation unit 223 calculates the pulse rate using the calculated peak interval. For example, the pulse rate calculation unit 223 calculates the pulse rate by calculating (sampling rate [Hz]) / (peak interval) × 60 [seconds] (step S303).
 一方、ピーク検出部222によるピークの検出が出来ていなかった場合(ステップS301、No)、脈拍数算出部223は、前回算出した脈拍数を採用する(ステップS304)。 On the other hand, when the peak cannot be detected by the peak detection unit 222 (step S301, No), the pulse rate calculation unit 223 adopts the previously calculated pulse rate (step S304).
 続いて、図12を参照して、ステップS105の処理についてより詳細に説明する。 Subsequently, the process of step S105 will be described in more detail with reference to FIG.
 図12を参照すると、脈拍数算出部223が算出した脈拍数が前回算出した脈拍数に所定値である5bpmを加算した値より大きい場合(ステップS401、Yes)、フィードバック部224は、脈拍数(推定用)に予め定められた値である3bpmを加算する(ステップS402)。そして、フィードバック部204は、脈拍数(推定用)に予め定められた値である3bpmを加算した値を、新たな脈拍数(推定用)として設定する(ステップS406)。 With reference to FIG. 12, when the pulse rate calculated by the pulse rate calculation unit 223 is larger than the value obtained by adding the predetermined value of 5 bpm to the previously calculated pulse rate (step S401, Yes), the feedback unit 224 determines the pulse rate ( Add 3 bpm, which is a predetermined value, to (for estimation) (step S402). Then, the feedback unit 204 sets a value obtained by adding 3 bpm, which is a predetermined value, to the pulse rate (for estimation) as a new pulse rate (for estimation) (step S406).
 脈拍数算出部223が算出した脈拍数が前回算出した脈拍数に所定値である5bpmを加算した値以下である場合(ステップS401、No)、フィードバック部224は、脈拍数算出部223が算出した脈拍数が前回算出した脈拍数から所定値である5bpmを減算した値より小さいか否か確認する。 When the pulse rate calculated by the pulse rate calculation unit 223 is equal to or less than the value obtained by adding the predetermined value of 5 bpm to the previously calculated pulse rate (step S401, No), the feedback unit 224 is calculated by the pulse rate calculation unit 223. It is confirmed whether or not the pulse rate is smaller than the value obtained by subtracting the predetermined value of 5 bpm from the previously calculated pulse rate.
 脈拍数算出部223が算出した脈拍数が前回算出した脈拍数から所定値である5bpmを減算した値より小さい場合(ステップS403、Yes)、フィードバック部224は、脈拍数(推定用)から予め定められた値である3bpmを減算する(ステップS404)。そして、フィードバック部204は、脈拍数(推定用)から予め定められた値である3bpmを減算した値を、新たな脈拍数(推定用)として設定する(ステップS406)。一方、脈拍数算出部223が算出した脈拍数が前回算出した脈拍数から所定値である5bpmを減算した値以上である場合(ステップS403、No)、フィードバック部224は、前回の脈拍数(推定用)をそのまま新たな脈拍数(推定用)として(ステップS405)設定する(ステップS406)。 When the pulse rate calculated by the pulse rate calculation unit 223 is smaller than the value obtained by subtracting the predetermined value of 5 bpm from the previously calculated pulse rate (step S403, Yes), the feedback unit 224 is predetermined from the pulse rate (for estimation). The obtained value of 3 bpm is subtracted (step S404). Then, the feedback unit 204 sets a value obtained by subtracting 3 bpm, which is a predetermined value, from the pulse rate (for estimation) as a new pulse rate (for estimation) (step S406). On the other hand, when the pulse rate calculated by the pulse rate calculation unit 223 is equal to or greater than the value obtained by subtracting the predetermined value of 5 bpm from the previously calculated pulse rate (step S403, No), the feedback unit 224 uses the previous pulse rate (estimated). (For step S405) is set as it is as a new pulse rate (for estimation) (step S406).
 このように、処理部220は、ピーク検出部222と脈拍数算出部223とを有している。このような構成により、ピーク検出部222は、2種類のローパスフィルタを適用した結果に基づいて脈拍のピークを検出することが出来る。また、脈拍数算出部223は、ピーク検出部222が2種類のローパスフィルタを用いて検出したピークに基づいて、脈拍数を算出することが出来る。その結果、より確実にピークを検出することが可能となり、より精度よく脈拍数を算出することが可能となる。つまり、上記構成によると、体動センサなどを有さなくても、また、フーリエ変換を用いることなく、容易な構成によりノイズの影響を低減させて精度よく脈拍数を算出することが可能となる。 As described above, the processing unit 220 has a peak detection unit 222 and a pulse rate calculation unit 223. With such a configuration, the peak detection unit 222 can detect the peak of the pulse based on the result of applying two types of low-pass filters. Further, the pulse rate calculation unit 223 can calculate the pulse rate based on the peak detected by the peak detection unit 222 using two types of low-pass filters. As a result, it becomes possible to detect the peak more reliably, and it becomes possible to calculate the pulse rate more accurately. That is, according to the above configuration, it is possible to accurately calculate the pulse rate by reducing the influence of noise by a simple configuration without using a body motion sensor or the like and without using a Fourier transform. ..
 また、ピーク検出部222は、推定範囲に基づいてピークを検出するよう構成されている。このような構成により、より精度よくピークを検出することが可能となる。また、推定範囲は、フィードバック部224によるフィードバック処理により更新される脈拍数(推定用)に基づいて設定されるよう構成されている。このような構成により、より精度よくピークを検出することが可能となる。 Further, the peak detection unit 222 is configured to detect the peak based on the estimation range. With such a configuration, it is possible to detect peaks with higher accuracy. Further, the estimation range is configured to be set based on the pulse rate (for estimation) updated by the feedback processing by the feedback unit 224. With such a configuration, it is possible to detect peaks with higher accuracy.
 なお、本実施形態においては、ピーク検出部222が2種類のローパスフィルタを適用する場合について例示した。しかしながら、ピーク検出部222が適用するローパスフィルタの数は、2種類に限定されない。例えば、ピーク検出部222は、3種類以上の複数のローパスフィルタを適用して、ピークを検出するよう構成しても構わない。 In the present embodiment, the case where the peak detection unit 222 applies two types of low-pass filters is illustrated. However, the number of low-pass filters applied by the peak detection unit 222 is not limited to two types. For example, the peak detection unit 222 may be configured to detect a peak by applying a plurality of types of low-pass filters.
 また、本実施形態においては、脈拍数算出部223が脈拍数を算出するごとにフィードバック部224によりフィードバック処理が行われる場合について例示した。しかしながら、フィードバック部224によるフィードバック処理は、必ずしも毎回行うよう構成しなくても構わない。 Further, in the present embodiment, the case where the feedback process is performed by the feedback unit 224 every time the pulse rate calculation unit 223 calculates the pulse rate is illustrated. However, the feedback processing by the feedback unit 224 does not necessarily have to be performed every time.
[第2の実施形態]
 次に、図13を参照して、本発明の第2の実施形態について説明する。第2の実施形態では、脈拍数算出装置30の構成の概要について説明する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described with reference to FIG. In the second embodiment, the outline of the configuration of the pulse rate calculation device 30 will be described.
 脈拍数算出装置30は、測定した脈波信号に基づいて脈拍数を算出する情報処理装置(または、回路装置)である。図13を参照すると、脈拍数算出装置30は、例えば、脈拍数算出部31を有している。 The pulse rate calculation device 30 is an information processing device (or circuit device) that calculates the pulse rate based on the measured pulse wave signal. Referring to FIG. 13, the pulse rate calculation device 30 includes, for example, a pulse rate calculation unit 31.
 上述した処理部は、例えば、論理回路などのハードウェアにより実現することが出来る。上述した処理部は、例えば、記憶装置に格納されたプログラムをCPUなどの演算装置が実行することにより実現されても構わない。 The above-mentioned processing unit can be realized by hardware such as a logic circuit, for example. The processing unit described above may be realized, for example, by executing a program stored in the storage device by an arithmetic unit such as a CPU.
 脈拍数算出部31は、脈波信号を取得すると、減衰させる周波数の異なる複数種類のローパスフィルタを取得した脈波信号に適用する。そして、脈拍数算出部31は、適用した結果に基づいて、脈拍数を算出する。 When the pulse rate calculation unit 31 acquires the pulse wave signal, it applies it to the acquired pulse wave signal of a plurality of types of low-pass filters having different attenuation frequencies. Then, the pulse rate calculation unit 31 calculates the pulse rate based on the applied result.
 このように、脈拍数算出装置30は、脈拍数算出部31を有している。このような構成により、脈拍数算出部31は、減衰させる周波数の異なる複数種類のローパスフィルタを脈波信号に適用した結果に基づいて、脈拍数を算出することが出来る。その結果、より確実にピークを検出することが可能となり、より精度よく脈拍数を算出することが可能となる。これにより、フーリエ変換を用いることなく、容易な構成によりノイズの影響を低減させて精度よく脈拍数を算出することが可能となる。 As described above, the pulse rate calculation device 30 has a pulse rate calculation unit 31. With such a configuration, the pulse rate calculation unit 31 can calculate the pulse rate based on the result of applying a plurality of types of low-pass filters having different attenuation frequencies to the pulse wave signal. As a result, it becomes possible to detect the peak more reliably, and it becomes possible to calculate the pulse rate more accurately. This makes it possible to reduce the influence of noise with a simple configuration and calculate the pulse rate with high accuracy without using the Fourier transform.
 また、上述した脈拍数算出装置30は、当該脈拍数算出装置30に所定のプログラムが組み込まれることで実現できる。具体的に、本発明の他の形態であるプログラムは、取得した脈波信号に基づいて脈拍数を算出する脈拍数算出装置30に、減衰させる周波数の異なる複数種類のローパスフィルタを脈波信号に適用して、適用した結果に基づいて脈拍数を算出する脈拍数算出部31を実現するためのプログラムである。 Further, the pulse rate calculation device 30 described above can be realized by incorporating a predetermined program into the pulse rate calculation device 30. Specifically, the program according to another embodiment of the present invention uses a pulse rate calculation device 30 that calculates the pulse rate based on the acquired pulse wave signal, and uses a plurality of types of low-pass filters having different attenuation frequencies as the pulse wave signal. It is a program for realizing the pulse rate calculation unit 31 that applies and calculates the pulse rate based on the applied result.
 また、上述した脈拍数算出装置30により実行される脈拍数算出方法は、取得した脈波信号に基づいて脈拍数を算出する脈拍数算出装置が行う脈拍数算出方法であって、減衰させる周波数の異なる複数種類のローパスフィルタを脈波信号に適用して、適用した結果に基づいて脈拍数を算出する、という方法である。 Further, the pulse rate calculation method executed by the pulse rate calculation device 30 described above is a pulse rate calculation method performed by the pulse rate calculation device that calculates the pulse rate based on the acquired pulse wave signal, and is a pulse rate calculation method of the frequency to be attenuated. This is a method in which a plurality of different types of low-pass filters are applied to a pulse wave signal, and the pulse rate is calculated based on the applied result.
 上述した構成を有する、プログラム、又は、脈拍数算出方法、の発明であっても、上記脈拍数算出装置30と同様の作用・効果を有するために、上述した本発明の目的を達成することが出来る。 Even the invention of the program or the pulse rate calculation method having the above-described configuration can achieve the above-mentioned object of the present invention in order to have the same action and effect as the pulse rate calculation device 30. You can.
 <付記>
 上記実施形態の一部又は全部は、以下の付記のようにも記載されうる。以下、本発明における脈拍数算出方法などの概略を説明する。但し、本発明は、以下の構成に限定されない。
<Additional notes>
Part or all of the above embodiments may also be described as in the appendix below. Hereinafter, the outline of the pulse rate calculation method and the like in the present invention will be described. However, the present invention is not limited to the following configurations.
(付記1)
 取得した脈波信号に基づいて脈拍数を算出する脈拍数算出装置が行う脈拍数算出方法であって、
 減衰させる周波数の異なる複数種類のローパスフィルタを前記脈波信号に適用して、適用した結果に基づいて脈拍数を算出する
 脈拍数算出方法。
(付記2)
 付記1に記載の脈拍数算出方法であって、
 複数種類のローパスフィルタを適用した結果に基づいて検出した脈拍のピークに基づいて脈拍数を算出する
 脈拍数算出方法。
(付記3)
 付記2に記載の脈拍数算出方法であって、
 基準となる値に基づいて推定範囲を設定し、前回のピークから前記推定範囲内にある脈拍のピークを検出する
 脈拍数算出方法。
(付記4)
 付記3に記載の脈拍数算出方法であって、
 前記基準となる値に所定の値を加算した場合のピーク間隔と、前記基準となる値から所定の値を減算した場合のピーク間隔と、を算出し、算出した結果に基づいて前記推定範囲を設定する
 脈拍数算出方法。
(付記5)
 付記3又は付記4に記載の脈拍数算出方法であって、
 前記基準となる値は、脈拍数の算出結果に基づいて変更される値である
 脈拍数算出方法。
(付記6)
 付記3から付記5までのいずれか1項に記載の脈拍数算出方法であって、
 あるローパスフィルタを適用した結果において前記推定範囲内に脈拍のピークが存在しない場合、他のローパスフィルタを適用した結果において前記推定範囲内に脈拍のピークが存在するか確認する
 脈拍数算出方法。
(付記7)
 付記2から付記6までのいずれか1項に記載の脈拍数算出方法であって、
 検出した脈拍のピークと、前回の脈拍のピークと、の間のピーク間隔に基づいて脈拍数を算出する
 脈拍数算出方法。
(付記8)
 付記1から付記7までのいずれか1項に記載の脈拍数算出方法であって、
 前記脈波信号に所定のハイパスフィルタを適用した後、減衰させる周波数の異なる複数種類のローパスフィルタを適用する
 脈拍数算出方法。
(付記9)
 取得した脈波信号に基づいて脈拍数を算出する脈拍数算出装置であって、
 減衰させる周波数の異なる複数種類のローパスフィルタを前記脈波信号に適用して、適用した結果に基づいて脈拍数を算出する脈拍数算出部を有する
 脈拍数算出装置。
(付記10)
 取得した脈波信号に基づいて脈拍数を算出する脈拍数算出装置に、
 減衰させる周波数の異なる複数種類のローパスフィルタを前記脈波信号に適用して、適用した結果に基づいて脈拍数を算出する脈拍数算出部を実現するためのプログラム。
(Appendix 1)
It is a pulse rate calculation method performed by a pulse rate calculation device that calculates the pulse rate based on the acquired pulse wave signal.
A pulse rate calculation method in which a plurality of types of low-pass filters having different frequencies to be attenuated are applied to the pulse wave signal, and the pulse rate is calculated based on the applied result.
(Appendix 2)
The pulse rate calculation method described in Appendix 1
A pulse rate calculation method that calculates the pulse rate based on the peak of the pulse detected based on the results of applying multiple types of low-pass filters.
(Appendix 3)
The pulse rate calculation method described in Appendix 2,
A pulse rate calculation method in which an estimation range is set based on a reference value and a peak of a pulse within the estimation range is detected from the previous peak.
(Appendix 4)
The pulse rate calculation method described in Appendix 3,
The peak interval when a predetermined value is added to the reference value and the peak interval when a predetermined value is subtracted from the reference value are calculated, and the estimated range is calculated based on the calculated result. How to calculate the pulse rate to be set.
(Appendix 5)
The pulse rate calculation method according to Appendix 3 or Appendix 4.
The reference value is a value that is changed based on the calculation result of the pulse rate. A pulse rate calculation method.
(Appendix 6)
The pulse rate calculation method according to any one of Supplementary note 3 to Supplementary note 5.
A pulse rate calculation method for confirming whether or not a pulse peak exists in the estimated range in the result of applying another low-pass filter when the pulse peak does not exist in the estimated range in the result of applying a certain low-pass filter.
(Appendix 7)
The pulse rate calculation method according to any one of Supplementary note 2 to Supplementary note 6.
A pulse rate calculation method that calculates the pulse rate based on the peak interval between the detected pulse peak and the previous pulse peak.
(Appendix 8)
The pulse rate calculation method according to any one of Supplementary note 1 to Supplementary note 7.
A pulse rate calculation method in which a predetermined high-pass filter is applied to the pulse wave signal, and then a plurality of types of low-pass filters having different attenuation frequencies are applied.
(Appendix 9)
It is a pulse rate calculation device that calculates the pulse rate based on the acquired pulse wave signal.
A pulse rate calculation device having a pulse rate calculation unit that applies a plurality of types of low-pass filters having different attenuation frequencies to the pulse wave signal and calculates the pulse rate based on the applied result.
(Appendix 10)
In the pulse rate calculation device that calculates the pulse rate based on the acquired pulse wave signal,
A program for realizing a pulse rate calculation unit that applies a plurality of types of low-pass filters having different attenuation frequencies to the pulse wave signal and calculates the pulse rate based on the applied result.
 なお、上記各実施形態及び付記において記載したプログラムは、記憶装置に記憶されていたり、コンピュータが読み取り可能な記録媒体に記録されていたりする。例えば、記録媒体は、フレキシブルディスク、光ディスク、光磁気ディスク、及び、半導体メモリ等の可搬性を有する媒体である。 Note that the programs described in each of the above embodiments and appendices may be stored in a storage device or recorded in a computer-readable recording medium. For example, the recording medium is a portable medium such as a flexible disk, an optical disk, a magneto-optical disk, and a semiconductor memory.
 以上、上記各実施形態を参照して本願発明を説明したが、本願発明は、上述した実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明の範囲内で当業者が理解しうる様々な変更をすることが出来る。 Although the invention of the present application has been described above with reference to each of the above embodiments, the invention of the present application is not limited to the above-described embodiment. Various changes that can be understood by those skilled in the art can be made to the structure and details of the present invention within the scope of the present invention.
 なお、本発明は、日本国にて2019年6月5日に特許出願された特願2019-104970の特許出願に基づく優先権主張の利益を享受するものであり、当該特許出願に記載された内容は、全て本明細書に含まれるものとする。 The present invention enjoys the benefit of priority claim based on the patent application of Japanese Patent Application No. 2019-104970, which was filed for patent on June 5, 2019 in Japan, and is described in the patent application. All contents are included in this specification.
100 ウェアラブルデバイス
200 センサボード
210 脈波センサ
220 処理部
221 基線変動除去部
222 ピーク検出部
223 脈拍数算出部
224 フィードバック部
30 脈拍数算出装置
31 脈拍数算出部

 
100 Wearable device 200 Sensor board 210 Pulse wave sensor 220 Processing unit 221 Baseline fluctuation removal unit 222 Peak detection unit 223 Pulse rate calculation unit 224 Feedback unit 30 Pulse rate calculation device 31 Pulse rate calculation unit

Claims (10)

  1.  取得した脈波信号に基づいて脈拍数を算出する脈拍数算出装置が行う脈拍数算出方法であって、
     減衰させる周波数の異なる複数種類のローパスフィルタを前記脈波信号に適用して、適用した結果に基づいて脈拍数を算出する
     脈拍数算出方法。
    It is a pulse rate calculation method performed by a pulse rate calculation device that calculates the pulse rate based on the acquired pulse wave signal.
    A pulse rate calculation method in which a plurality of types of low-pass filters having different frequencies to be attenuated are applied to the pulse wave signal, and the pulse rate is calculated based on the applied result.
  2.  請求項1に記載の脈拍数算出方法であって、
     複数種類のローパスフィルタを適用した結果に基づいて検出した脈拍のピークに基づいて脈拍数を算出する
     脈拍数算出方法。
    The pulse rate calculation method according to claim 1.
    A pulse rate calculation method that calculates the pulse rate based on the peak of the pulse detected based on the results of applying multiple types of low-pass filters.
  3.  請求項2に記載の脈拍数算出方法であって、
     基準となる値に基づいて推定範囲を設定し、前回のピークから前記推定範囲内にある脈拍のピークを検出する
     脈拍数算出方法。
    The pulse rate calculation method according to claim 2.
    A pulse rate calculation method in which an estimation range is set based on a reference value and a peak of a pulse within the estimation range is detected from the previous peak.
  4.  請求項3に記載の脈拍数算出方法であって、
     前記基準となる値に所定の値を加算した場合のピーク間隔と、前記基準となる値から所定の値を減算した場合のピーク間隔と、を算出し、算出した結果に基づいて前記推定範囲を設定する
     脈拍数算出方法。
    The pulse rate calculation method according to claim 3.
    The peak interval when a predetermined value is added to the reference value and the peak interval when a predetermined value is subtracted from the reference value are calculated, and the estimated range is calculated based on the calculated result. How to calculate the pulse rate to be set.
  5.  請求項3又は請求項4に記載の脈拍数算出方法であって、
     前記基準となる値は、脈拍数の算出結果に基づいて変更される値である
     脈拍数算出方法。
    The pulse rate calculation method according to claim 3 or 4.
    The reference value is a value that is changed based on the calculation result of the pulse rate. A pulse rate calculation method.
  6.  請求項3から請求項5までのいずれか1項に記載の脈拍数算出方法であって、
     あるローパスフィルタを適用した結果において前記推定範囲内に脈拍のピークが存在しない場合、他のローパスフィルタを適用した結果において前記推定範囲内に脈拍のピークが存在するか確認する
     脈拍数算出方法。
    The pulse rate calculation method according to any one of claims 3 to 5.
    A pulse rate calculation method for confirming whether or not a pulse peak exists in the estimated range in the result of applying another low-pass filter when the pulse peak does not exist in the estimated range in the result of applying a certain low-pass filter.
  7.  請求項2から請求項6までのいずれか1項に記載の脈拍数算出方法であって、
     検出した脈拍のピークと、前回の脈拍のピークと、の間のピーク間隔に基づいて脈拍数を算出する
     脈拍数算出方法。
    The pulse rate calculation method according to any one of claims 2 to 6.
    A pulse rate calculation method that calculates the pulse rate based on the peak interval between the detected pulse peak and the previous pulse peak.
  8.  請求項1から請求項7までのいずれか1項に記載の脈拍数算出方法であって、
     前記脈波信号に所定のハイパスフィルタを適用した後、減衰させる周波数の異なる複数種類のローパスフィルタを適用する
     脈拍数算出方法。
    The pulse rate calculation method according to any one of claims 1 to 7.
    A pulse rate calculation method in which a predetermined high-pass filter is applied to the pulse wave signal, and then a plurality of types of low-pass filters having different attenuation frequencies are applied.
  9.  取得した脈波信号に基づいて脈拍数を算出する脈拍数算出装置であって、
     減衰させる周波数の異なる複数種類のローパスフィルタを前記脈波信号に適用して、適用した結果に基づいて脈拍数を算出する脈拍数算出部を有する
     脈拍数算出装置。
    It is a pulse rate calculation device that calculates the pulse rate based on the acquired pulse wave signal.
    A pulse rate calculation device having a pulse rate calculation unit that applies a plurality of types of low-pass filters having different attenuation frequencies to the pulse wave signal and calculates the pulse rate based on the applied result.
  10.  取得した脈波信号に基づいて脈拍数を算出する脈拍数算出装置に、
     減衰させる周波数の異なる複数種類のローパスフィルタを前記脈波信号に適用して、適用した結果に基づいて脈拍数を算出する脈拍数算出部を実現するためのプログラムを記録した、コンピュータが読み取り可能な記録媒体。

     
    In the pulse rate calculation device that calculates the pulse rate based on the acquired pulse wave signal,
    A computer-readable program for realizing a pulse rate calculation unit that applies a plurality of types of low-pass filters having different attenuation frequencies to the pulse wave signal and calculates the pulse rate based on the applied result. recoding media.

PCT/JP2020/021210 2019-06-05 2020-05-28 Pulse rate calculating method, pulse rate calculating device, and recording medium WO2020246370A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021524805A JP7160460B2 (en) 2019-06-05 2020-05-28 Pulse rate calculation method, pulse rate calculation device, recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-104970 2019-06-05
JP2019104970 2019-06-05

Publications (1)

Publication Number Publication Date
WO2020246370A1 true WO2020246370A1 (en) 2020-12-10

Family

ID=73652204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/021210 WO2020246370A1 (en) 2019-06-05 2020-05-28 Pulse rate calculating method, pulse rate calculating device, and recording medium

Country Status (2)

Country Link
JP (1) JP7160460B2 (en)
WO (1) WO2020246370A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006271731A (en) * 2005-03-29 2006-10-12 Toshiba Corp Heartbeat measuring apparatus and heartbeat measuring method
JP2009189562A (en) * 2008-02-14 2009-08-27 Citizen Holdings Co Ltd Pulse wave measuring apparatus
US20160324477A1 (en) * 2015-05-08 2016-11-10 Texas Instruments Incorporated Accuracy of heart rate estimation from photoplethysmographic (ppg) signals
JP2017213123A (en) * 2016-05-31 2017-12-07 日本電信電話株式会社 Blood flow rate measurement device and blood flow rate measurement method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6690726B2 (en) 2016-10-07 2020-04-28 株式会社村田製作所 Grip-type pulse wave measuring device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006271731A (en) * 2005-03-29 2006-10-12 Toshiba Corp Heartbeat measuring apparatus and heartbeat measuring method
JP2009189562A (en) * 2008-02-14 2009-08-27 Citizen Holdings Co Ltd Pulse wave measuring apparatus
US20160324477A1 (en) * 2015-05-08 2016-11-10 Texas Instruments Incorporated Accuracy of heart rate estimation from photoplethysmographic (ppg) signals
JP2017213123A (en) * 2016-05-31 2017-12-07 日本電信電話株式会社 Blood flow rate measurement device and blood flow rate measurement method

Also Published As

Publication number Publication date
JP7160460B2 (en) 2022-10-25
JPWO2020246370A1 (en) 2021-12-02

Similar Documents

Publication Publication Date Title
JP5191791B2 (en) Elimination of coherent signals in ECG
Chandrakar et al. Denoising ECG signals using adaptive filter algorithm
AU2017273638A1 (en) Systems and methods for reducing noise caused by stimulation artifacts in neural signals received by neuro-modulation devices
US9936919B2 (en) Devices, systems, and methods for determining heart rate of a subject from noisy electrocardiogram data
UA103474C2 (en) Device for monitoring a vascular access during an extracorporealblood treatment and equipment for extracorporealblood treatment
Sheppard et al. Detecting the harmonics of oscillations with time-variable frequencies
US10135424B2 (en) Digital filter with confidence input
Li et al. A UV-visible absorption spectrum denoising method based on EEMD and an improved universal threshold filter
TWI609671B (en) Signal detection method
WO2020246370A1 (en) Pulse rate calculating method, pulse rate calculating device, and recording medium
Azami et al. A novel signal segmentation method based on standard deviation and variable threshold
Shirbani et al. ECG power line interference removal using combination of FFT and adaptive non-linear noise estimator
CN113054949A (en) Filtering method, device and equipment for water hammer pressure wave signal
Mortezapouraghdam et al. Reducing the effect of spurious phase variations in neural oscillatory signals
TW201801671A (en) Method of heart rate detection
TWI593238B (en) Impulsive noise detection circuit and method thereof
CN110521123B (en) Method for determining the contact time of a capacitive sensor element
Alamdari et al. Tracking respiratory mechanics with oscillometry: Introduction of time-varying error
JP5888078B2 (en) Magnetic measuring device
US8078273B2 (en) Detection and classification of neuromuscular late wave activity for the assessment of neuromuscular function
Basha et al. Noise Removal from Electrocardiogram Signals using Leaky and Normalized version of Adaptive Noise Canceller
US20230130318A1 (en) Method and apparatus for determining a measure of contact of emg sensors
Luong et al. Removal of baseline noise from electrocardiography (ECG) signal based on time domain approach
KR101721648B1 (en) Apparatus and method for removing power noise frequency
Medonza Automatic Detection of Sleep and Wake States in Mice using Piezoelectric Sensors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20818337

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021524805

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20818337

Country of ref document: EP

Kind code of ref document: A1