WO2020246258A1 - Blood pressure measurement device, blood pressure measurement system, blood pressure measurement method, and blood pressure measurement program - Google Patents

Blood pressure measurement device, blood pressure measurement system, blood pressure measurement method, and blood pressure measurement program Download PDF

Info

Publication number
WO2020246258A1
WO2020246258A1 PCT/JP2020/020181 JP2020020181W WO2020246258A1 WO 2020246258 A1 WO2020246258 A1 WO 2020246258A1 JP 2020020181 W JP2020020181 W JP 2020020181W WO 2020246258 A1 WO2020246258 A1 WO 2020246258A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood pressure
index value
blood
calculated
measuring device
Prior art date
Application number
PCT/JP2020/020181
Other languages
French (fr)
Japanese (ja)
Inventor
昭子 服部
靖和 二瓶
秀明 小澤
赤松 学
Original Assignee
富士フイルム株式会社
富士ゼロックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社, 富士ゼロックス株式会社 filed Critical 富士フイルム株式会社
Priority to JP2021524751A priority Critical patent/JP7138244B2/en
Publication of WO2020246258A1 publication Critical patent/WO2020246258A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/0245Detecting, measuring or recording pulse rate or heart rate by using sensing means generating electric signals, i.e. ECG signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow

Definitions

  • the present disclosure relates to a blood pressure measuring device, a blood pressure measuring system, a blood pressure measuring method, and a blood pressure measuring program.
  • a portable small blood pressure measuring device has been proposed for the purpose of not only using it in a medical institution but also at home (see Japanese Patent Application Laid-Open No. 2016-112277).
  • the device described in Japanese Patent Application Laid-Open No. 2016-112277 irradiates the body with laser light, receives the laser light reflected or transmitted in the body, calculates the blood pressure and vascular resistance based on the received signal, and calculates the blood.
  • Blood pressure is calculated based on flow rate and vascular resistance.
  • the blood flow rate is calculated by performing an operation based on the laser Doppler method on the received signal.
  • the vascular resistance the waveform of the volumetric pulse wave is read from the received signal, and the vascular resistance is calculated based on the ratio of the amplitudes of the ejection wave and the reflected wave in the volume pulse wave.
  • Blood pressure is said to be related to cerebral heart disease and dementia, and controlling blood pressure is important for extending healthy life expectancy.
  • blood pressure is not constant and fluctuates within the day, and the risk of disease can be estimated by confirming the state of the fluctuation.
  • the blood pressure measuring device includes at least one processor, and the processor acquires a received light signal detected based on the laser beam emitted into the body of the person to be measured, and uses the acquired light receiving signal as the received light signal.
  • the blood flow velocity is calculated by performing a calculation based on the laser Doppler method
  • the blood flow acceleration is calculated based on the calculated blood flow velocity
  • the blood pressure index value is derived based on the calculated blood flow acceleration.
  • the processor may derive a blood pressure index value based on the correlation between the blood flow acceleration and the blood pressure.
  • the processor may calculate the heart rate based on the time change of the received signal and derive the blood pressure index value based on the calculated blood flow acceleration and the heart rate.
  • the processor may derive a blood pressure index value based on the correlation between blood flow acceleration and blood pressure and the correlation between heart rate and blood pressure.
  • the processor further detects the behavioral state of the person to be measured, and the processor calculates the blood pressure index value based on the behavioral state of the person to be measured, the blood flow acceleration, and the heart rate. It may be derived.
  • the blood pressure index value may be calculated using the equation (1) represented by.
  • the processor is further adapted to detect the action status of the subject, the processor, a constant for adjusting the weights of the heart rate HR a 1, adjust the weighting of blood flow acceleration diff
  • the constant to be measured is b 1
  • the constant a 1 and the constant b 1 are determined based on the behavioral state of the person to be measured.
  • BFV HR x diff x (a 1 x HR + b 1 x diff) / (HR + diff) ...
  • the blood pressure index value may be calculated using the equation (2) represented by.
  • the processor may calculate the blood pressure at the time of measurement based on the reference blood pressure of the subject to be measured and the blood pressure index value acquired in advance.
  • the blood pressure at the time of measurement may be calculated using the equation (3) represented by.
  • the blood pressure measuring device of the above aspect may include an output unit that outputs information based on the blood pressure index value derived by the processor.
  • the output unit outputs at least one of a real-time measured value of the blood pressure index value, a diurnal variation of the blood pressure index value, and a comparison of the blood pressure index value with a past measured value. You may.
  • the processor calculates the blood pressure at the time of measurement based on the reference blood pressure of the subject to be measured and the blood pressure index value acquired in advance, and the output unit is the blood pressure. At least one of real-time measurements of blood pressure, diurnal variation in blood pressure, and comparison with past measurements of blood pressure may be output.
  • the output unit may output information indicating an abnormality when the blood pressure index value derived by the processor exceeds a predetermined threshold value.
  • an irradiation unit that irradiates the body of the person to be measured with a laser beam, a light receiving unit that receives the laser light reflected or transmitted inside the body, a processor, and an output unit are integrally held.
  • a housing that can be carried by the person to be measured.
  • the output unit may be a display.
  • the blood flow measurement system acquires a light-receiving signal detected based on the laser beam radiated into the body of the person to be measured, and performs a calculation based on the laser Doppler method on the acquired light-receiving signal.
  • a blood pressure measuring device main body provided with at least one processor that calculates the blood flow velocity, calculates the blood flow acceleration based on the calculated blood flow velocity, and derives the blood pressure index value based on the calculated blood flow acceleration. It includes an irradiation unit that irradiates the body of the person to be measured with a laser beam, and a light receiving signal detection unit including a light receiving unit that receives the laser light reflected or transmitted inside the body.
  • a light receiving signal detected based on the laser beam radiated into the body of the person to be measured is acquired, and the acquired light receiving signal is calculated based on the laser Doppler method.
  • the blood flow velocity is calculated, the blood flow acceleration is calculated based on the calculated blood flow velocity, and the blood pressure index value is derived based on the calculated blood flow acceleration.
  • the blood pressure measurement program includes a procedure for acquiring a received light signal detected based on the laser beam radiated into the body of the subject, and an operation based on the laser Doppler method for the acquired received signal.
  • a blood pressure measuring device a blood pressure measuring system, a blood pressure measuring method, and a blood pressure measuring program that can accurately confirm the state of blood pressure fluctuation.
  • FIG. 1 A flowchart illustrating a flow of blood pressure measurement processing in the second embodiment.
  • FIG. 1 is an external view of the blood pressure measuring device 10 according to the first embodiment
  • FIG. 2 is an external view of the back surface of the main body case 11 of the blood pressure measuring device 10.
  • the blood pressure measuring device 10 irradiates the body of the person to be measured with a laser beam, receives the laser light reflected or transmitted in the body, and measures information on the blood pressure of the person to be measured based on the received signal.
  • the blood pressure measuring device 10 is a wristwatch-type device that can be worn on the wrist and carried like a wristwatch.
  • the blood pressure measuring device 10 includes a main body case 11 which is a housing, and a fixing band 12 for attaching and fixing the main body case 11 to a measuring portion such as an arm of a person to be measured. ..
  • a touch panel display 13, an operation switch 14, a speaker 15, and the like are provided on the surface of the main body case 11 (that is, the surface that faces outward when worn by the person to be measured).
  • the touch panel display 13 is a device that combines a display device such as an LCD (Liquid Crystal Display) and a position detection device that detects the contact position of a hand on the screen.
  • the touch panel display 13 and the operation switch 14 the person to be measured inputs a measurement start instruction or the like.
  • the touch panel display 13 displays an operation screen, measurement results, and the like.
  • the speaker 15 outputs voice guidance related to the measurement, a notification sound of the measurement result, and the like.
  • an irradiation unit 16 (see FIG. 3) and a light receiving unit 17 (see FIG. 3) are provided in the main body case 11, and an irradiation window 16A of the irradiation unit 16 and a light receiving unit 17 are provided on the back surface of the main body case 11.
  • the light receiving window 17A of 17 is arranged.
  • the irradiation unit 16 has a light source that irradiates the person to be measured with the measurement light.
  • the light source is, for example, a laser light source that irradiates a single wavelength laser light as measurement light.
  • a laser light source for example, a laser light source such as VCSEL (Vertical Cavity Surface Emitting Laser) is used.
  • the wavelength of the laser light is preferably a wavelength in the near-infrared light band having skin transparency.
  • the light receiving unit 17 receives a light receiving element that receives the laser light reflected or transmitted in the body and outputs a light receiving signal that is an electric signal according to the amount of light received, and receives the light receiving signal by converting the light receiving signal from an analog signal to a digital signal. It is equipped with an A / D (Analog / Digital) converter that outputs digital data of signals.
  • a light receiving element for example, a photodiode is used. Instead of the photodiode, an element such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor) may be used.
  • the blood vessel for which the blood pressure is to be measured for example, the radial artery of the wrist of the person to be measured is preferable.
  • the blood pressure measuring device 10 is a wristwatch type, when the blood pressure measuring device 10 is attached to the wrist, the irradiation window 16A and the light receiving window 17A are arranged at positions corresponding to the radial artery of the wrist, which is a blood vessel to be measured. ..
  • the laser beam emitted from the irradiation unit 16 enters the body from the skin surface of the subject and is diffusely reflected, and a part of the laser light reaches the light receiving unit 17.
  • FIG. 3 is a functional configuration diagram of the blood pressure measuring device 10.
  • the blood pressure measuring device 10 includes an irradiation unit 16, a light receiving unit 17, an operation unit 110, a display unit 120, a sound output unit 130, a communication unit 140, a storage unit 150, a power supply unit 160, and a processing unit 200. And. Each of these parts is provided in the main body case 11 shown in FIG.
  • the operation unit 110 is an operation input device that inputs an operation signal corresponding to the operation to the processing unit 200.
  • Various instructions such as a blood pressure measurement start instruction are input by the operation unit 110.
  • the operation switch 14 and the touch panel display 13 of FIG. 1 correspond to the operation unit 110.
  • the display unit 120 performs various displays based on the display signal from the processing unit 200.
  • the measurement result and the like are displayed on the display unit 120.
  • the touch panel display 13 of FIG. 1 corresponds to the display unit 120.
  • the sound output unit 130 is, for example, a speaker, and outputs sound based on an instruction from the processing unit 200.
  • the sound output unit 130 outputs a notification sound such as the start and end of blood pressure measurement and / or a guidance voice.
  • the speaker 15 in FIG. 1 corresponds to the sound output unit 130.
  • At least one of the display unit 120 and the sound output unit 130 is an example of an output unit within the scope of claims.
  • the communication unit 140 realizes communication with an external device.
  • the communication unit 140 includes at least one of a wired communication unit and a wireless communication unit.
  • the wired communication unit includes, for example, a wired communication module composed of an electric circuit for performing wired communication and a jack for connecting a wired cable.
  • the wireless communication unit includes, for example, a wireless communication module composed of an electric circuit for performing wireless communication and an antenna for transmitting and receiving radio waves.
  • the storage unit 150 is a storage medium such as a RAM (RandomAccessMemory), a ROM (ReadOnlyMemory), and / or a flash memory.
  • the storage unit 150 stores a program, data, and the like for the processing unit 200 to integrally control the blood pressure measuring device 10. Further, the storage unit 150 stores the calculation result executed by the processing unit 200.
  • the power supply unit 160 is, for example, a rechargeable battery, and supplies electric power to each unit of the blood pressure measuring device 10.
  • a charging method for the battery for example, a charging connector is provided in the main body case 11, and the charging connector and the charger are wiredly connected by a cable or the like.
  • a wireless charging method using electromagnetic induction or the like may be used instead of the wired method.
  • the processing unit 200 is realized by, for example, an electronic component such as a CPU (Central Processing Unit), an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), and / or a main memory.
  • the processing unit 200 executes various arithmetic processes related to blood pressure measurement based on a predetermined program such as a blood pressure measurement program and data necessary for executing the program. Further, the processing unit 200 controls the operation of each unit of the blood pressure measuring device 10 based on an operation signal or the like from the operation unit 110.
  • the main memory is a storage medium that can store programs, program data, etc., and CPU calculation values, and is realized by RAM, ROM, and / or flash memory, etc.
  • the processing unit 200 has an acquisition unit 201 and a calculation unit 202.
  • the acquisition unit 201 acquires the received light signal output from the light receiving unit 17.
  • the acquisition unit 201 acquires the received light signal after being converted into digital data.
  • the calculation unit 202 derives a blood pressure index value based on the light receiving signal of the light receiving unit 17. In this example, the calculation unit 202 performs a calculation based on the calculation formula to calculate the blood pressure index value.
  • FIG. 4 is a graph showing the relationship between blood flow acceleration and blood pressure, and the horizontal axis is blood flow acceleration (unit: cm / s 2). ), The vertical axis shows blood pressure (unit: mmHg). As shown in the graph of FIG. 4, there is a correlation between blood flow acceleration and blood pressure. Further, FIG. 5 is a graph showing the relationship between the heart rate and the blood pressure, and the horizontal axis shows the heart rate (unit: bpm (beats per minute)) and the vertical axis shows the blood pressure (unit: mmHg).
  • a blood pressure index value can be derived based on the blood flow acceleration and the heart rate by using the correlation between the blood flow acceleration and the blood pressure and the correlation between the heart rate and the blood pressure.
  • the blood pressure index value means an index value indicating how much the blood pressure has changed from the reference state with reference to the blood pressure in the specific state of the person to be measured. Although this blood pressure index value does not indicate the actual blood pressure value, it is possible to confirm the state of blood pressure fluctuation by acquiring the blood pressure index value over time.
  • the blood pressure in a specific state of the subject to be measured as a reference may be any state of blood pressure.
  • the blood pressure includes systolic blood pressure (for example, systolic blood pressure) and diastolic blood pressure (for example, diastolic blood pressure), and either blood pressure may be used.
  • systolic blood pressure for example, systolic blood pressure
  • diastolic blood pressure for example, diastolic blood pressure
  • a blood pressure index value for systolic blood pressure for example, systolic blood pressure
  • a blood pressure index value for systolic blood pressure is derived based on the resting systolic blood pressure (for example, systolic blood pressure) of the subject.
  • the blood pressure index value is BFV (unit: none)
  • the heart rate is HR (unit: bpm)
  • the blood flow acceleration is diff (diff).
  • FIG. 6 is a flowchart illustrating the flow of blood flow acceleration calculation.
  • FIG. 7 is a diagram for explaining the propagation of the laser beam in the body, and shows a cross section of the subject to be measured along the depth direction in the body.
  • the calculation of the blood flow acceleration based on the laser Doppler method will be described in detail with reference to FIG.
  • the light receiving signal acquired by the light receiving unit 17 is calculated based on the laser Doppler method, and the power spectrum representing the distribution state of the blood flow velocity of the plurality of blood vessels 21 in FIG. Is calculated (step S1).
  • the power spectrum will be described later.
  • FIG. 8 is a graph showing the time course of the received signal. Blood vessels repeatedly expand and contract according to the heartbeat cycle. The amount of laser light absorbed by the blood vessels is large when the blood vessels are dilated and small when the blood vessels are contracted. Therefore, the amount of reflected light from the laser light (and the received signal indicating the amount of reflected light) depends on the heartbeat cycle. Repeat the increase and decrease. The change with time of the received light signal shown in FIG. 8 represents an increase or decrease of the received light signal according to the heartbeat cycle.
  • FIG. 9 is an enlarged graph of a part of the waveform shown in FIG. 8 (specifically, the waveform for one heartbeat).
  • FIG. 10 is a graph showing a beat signal included in the received light signal
  • FIG. 11 is a graph showing a power spectrum of the beat signal included in the received signal. The beat signal will be described later.
  • the Doppler effect occurs in which the frequency of scattered scattered light changes due to the reflection of light on the object according to the moving speed of the object. Since the hemoglobin 22 moves in the blood vessel 21 as shown in FIG. 7, the scattered light scattered by the hemoglobin 22 causes a Doppler shift which is a frequency change according to the movement speed (that is, the blood flow speed) of the hemoglobin 22. .. Since the frequencies of the laser light are the same, the difference between the frequency of the irradiated laser light and the frequency of the scattered light that has caused the Doppler shift is information that mainly reflects the moving speed of the hemoglobin 22. Therefore, it is possible to detect the blood flow velocity by using the laser light as the measurement light.
  • the laser Doppler method is a method for calculating the blood flow velocity on the premise of such a Doppler shift of laser light.
  • the calculation unit 202 calculates the blood flow velocity by performing a calculation based on the laser Doppler method.
  • the laser beam when the laser beam is irradiated into the body from the skin surface 20, when the laser beam is scattered by the hemoglobin 22 moving in the blood vessel 21, a Doppler shift occurs.
  • the laser light does not cause Doppler shift even if it is scattered by a stationary tissue other than the blood vessel 21 such as skin.
  • the frequency of the irradiated laser light is ⁇ 0 and the frequency change caused by the moving speed of the hemoglobin 22 is the difference frequency ⁇
  • the frequency of the scattered light scattered by the hemoglobin 22 is ⁇ 0 + ⁇ .
  • the received signal includes a volume pulse wave component corresponding to a pulse change of a blood vessel accompanying blood ejection from the heart, and a beat signal component.
  • the frequency of the volume pulse wave in the received signal is several tens of Hz or less, and the frequency of the beat signal in the received signal is about several hundred Hz to several tens of kHz.
  • high-frequency noise having a frequency higher than that of the beat signal may be superimposed on the received signal.
  • the frequency of the volume pulse wave, the frequency of the beat signal, and the frequency of the high frequency noise in the received signal are all different. Therefore, the calculation unit 202 executes, for example, a filtering process and separates only the beat signal as shown in the graph of FIG.
  • the calculation unit 202 performs frequency analysis such as FFT (Fast Fourier Transform) analysis on the beat signal at regular sampling periods (for example, about 10 seconds to 1 minute), so that the beat signal in each sampling period is performed.
  • FFT Fast Fourier Transform
  • the beat signal includes a plurality of frequency components reflecting the blood flow velocity of each blood vessel 21.
  • the power spectrum of the beat signal represents the distribution state of the blood flow velocity of the plurality of blood vessels 21.
  • FIG. 11 is an example of the power spectrum of the beat signal.
  • step S1 when a certain sampling period elapses, the calculation unit 202 calculates a power spectrum based on the beat signal acquired during the sampling period. Then, in step S2, the blood flow velocity is calculated based on the calculated power spectrum.
  • the calculation unit 202 obtains the average value of the blood flow velocities of the plurality of blood vessels 21 by calculating the frequency average value of the power spectrum, and calculates this average value as the blood flow velocity.
  • the frequency mean value ⁇ ave of the power spectrum P ( ⁇ ) is the area obtained by integrating the product of the product of the frequency ⁇ and the power spectrum P ( ⁇ ) at the frequency ⁇ with respect to the frequency ⁇ in the area of the signal region of the power spectrum P ( ⁇ ). It is proportional to the divided value.
  • the frequency mean value ⁇ ave of the power spectrum P ( ⁇ ) is calculated by using the equation (B) as an example.
  • ⁇ ave ( ⁇ ⁇ P ( ⁇ ) d ⁇ ) / ( ⁇ P ( ⁇ ) d ⁇ )... (B)
  • step S3 the calculation unit 202 saves the calculated blood flow velocity. Then, in step S4, the calculation unit 202 repeats steps S1, S2, and S3 to acquire the blood flow velocity for a preset period. As a result, the time course of blood flow velocity is acquired. Then, in step S5, the calculation unit 202 calculates the blood flow acceleration by differentiating the blood flow velocity.
  • the calculation unit 202 calculates the heart rate by, for example, counting the number of peaks of the received signal including the component of the volume pulse wave for one minute as shown in FIG.
  • the calculation unit 202 performs a filtering process for extracting only the frequency component of the volume pulse wave from the received signal, for example, removes the frequency component unnecessary for the measurement of the number of peaks, and then calculates the heart rate. ..
  • the constant a 2 is a coefficient parameter for adjusting the calculated value according to the BFV calculation formula and the measurement conditions.
  • the constant b 2 is a reference parameter corresponding to the reference blood pressure of the subject.
  • the reference blood pressure is the blood pressure obtained in a specific state of the person to be measured, and may be the blood pressure in any state.
  • the resting systolic blood pressure for example, systolic blood pressure
  • the blood pressure is measured by a general sphygmomanometer different from the blood pressure measuring device 10 of the present embodiment and the blood pressure is measured by the blood pressure measuring device 10 of the present embodiment at the same time.
  • the resting systolic blood pressure for example, systolic blood pressure
  • BP s resting blood pressure index value
  • BFV s resting blood pressure index value
  • the systolic blood pressure (for example, systolic blood pressure) BP s is input to the blood pressure measuring device 10 by the person to be measured via the touch panel display 13 or the like.
  • systolic blood pressure for example, systolic blood pressure
  • the blood pressure BP at the time of measurement of the subject is calculated based on the blood pressure index value BFV will be described using the formula (C).
  • the constant a 2 is determined to be 0.870 based on the BFV calculation formula and the measurement conditions
  • the constant b 2 is the pre-obtained systolic blood pressure of the subject (for example, systolic blood pressure). ) Is determined as 107.150 as the reference blood pressure.
  • the blood pressure BP (unit: mmHg) is calculated as 118.46 based on the equation (C).
  • BP a 2 x BFV + b 2 ... (C)
  • FIG. 12 is a flowchart illustrating a flow of blood pressure measurement processing. This process is realized by the processing unit 200 executing the process according to the program.
  • the blood pressure measuring device 10 is attached to the measurement site of the person to be measured and the person to be measured gives an instruction to start measurement, the blood pressure measuring process is started.
  • the processing unit 200 starts irradiating the measurement light by the irradiation unit 16 and acquires the light receiving signal of the light receiving unit 17 at that time (step S11).
  • the calculation unit 202 executes the process of step S1 of FIG. 6 based on the beat signal superimposed on the received light signal, calculates the power spectrum of the beat signal, and stores it in the storage unit 150 (step S12). ).
  • the calculation unit 202 calculates the blood flow acceleration based on the power spectrum of the beat signal and stores it in the storage unit 150 (step S13). Specifically, the calculation unit 202 executes the processes from step S2 to step S4 in FIG. 6 and acquires the change with time of the blood flow velocity for a preset period based on the power spectrum of the beat signal. .. Then, the blood flow acceleration is calculated by differentiating the blood flow velocity based on the acquired blood flow velocity change with time. The calculation unit 202 stores the calculated blood flow acceleration in the storage unit 150.
  • the calculation unit 202 calculates the heart rate based on the received signal and stores it in the storage unit 150 (step S14).
  • the calculation unit 202 calculates the blood pressure index value based on the blood flow acceleration and the heart rate and stores it in the storage unit 150 (step S15).
  • the calculation unit 202 calculates the blood pressure based on the blood pressure index value and stores it in the storage unit 150 (step S16).
  • the processing unit 200 displays the measurement result including the calculated blood pressure on the display unit 120 (step S17).
  • the processing unit 200 displays four icons 31 to 34 shown in FIG. 13 according to, for example, a blood pressure value in addition to the blood pressure.
  • the four icons 31 to 34 are characters that imitate the faces of animals, and the four icons 31 to 34 have different facial expressions.
  • the facial expression corresponds to the blood pressure value, and one of the four icons 31 to 34 is selected according to the blood pressure value.
  • both icon 31 and icon 32 have a smile, but icon 31 has a higher degree of smile.
  • Icon 31 is selected when the blood pressure value is in a very good range.
  • the icon 32 is selected when the degree of smile is lower than that of the icon 31 and the blood pressure value is in a slightly good range.
  • the facial expression of the icon 34 is a crying face and is selected when the blood pressure value is out of the appropriate range.
  • the icon 33 is a normal facial expression that is neither a smiling face nor a crying face, and is selected when the blood pressure value is not good, but is within an appropriate range.
  • the blood pressure index value may be displayed in addition to or in place of the blood pressure and the icons 31 to 34.
  • FIG. 14 is a display example of the blood pressure index value on the display unit 120.
  • the magnitude of the blood pressure index value may be indicated by the meter display by the meter 40.
  • the meter display color is, for example, green when the blood pressure index value is 0, that is, a region close to the reference blood pressure, and gradually changes to red as the blood pressure index value approaches outside the appropriate range.
  • one blood pressure measurement is completed by performing the processes from step S11 to step S17 in response to the measurement start instruction, but the blood pressure measurement is continuously performed until the measurement end instruction is given. You may do it. That is, after the blood pressure measurement process is completed, if the measurement end instruction is not given, the process may be shifted to step S11.
  • the blood pressure measuring device 10 of the present embodiment includes an acquisition unit 201 and a calculation unit 202, and the calculation unit 202 calculates a blood flow velocity by performing a calculation based on the laser Doppler method, and the calculated blood flow velocity is calculated. Since the blood flow acceleration is calculated based on the above and the blood pressure index value is derived based on the calculated blood flow acceleration, the state of blood pressure fluctuation can be confirmed accurately.
  • the method shown in Japanese Patent Application Laid-Open No. 2016-112277 calculates blood pressure by obtaining heartbeat and vascular resistance based on a received signal.
  • FIG. 9 in the method of determining the vascular resistance, it is necessary to accurately measure the amplitude AP of the ejection wave and the amplitude AT of the reflected wave in the volume pulse wave from the received signal.
  • high frequency noise when superimposed on the received signal, it is difficult to accurately measure the amplitude AP and the amplitude AT.
  • the blood pressure index value is derived based on the blood flow acceleration. Since this method does not require the process of obtaining the vascular resistance based on the amplitude AP and the amplitude AT, which are difficult to read due to high frequency noise, it is possible to derive an accurate blood pressure index value as compared with the conventional method. .. In this way, if an accurate blood pressure index value can be derived, the state of blood pressure fluctuation can be confirmed accurately.
  • the blood pressure measuring device 10 of the present embodiment calculates the heart rate based on the time change of the received signal in addition to the blood flow acceleration, and derives the blood pressure index value based on the blood flow acceleration and the heart rate. Therefore, the blood pressure index value can be derived more accurately than in the case of deriving the blood pressure index value based only on the blood flow acceleration.
  • the heart rate can be calculated by counting the number of peaks of the volume pulse wave of the received signal. Unlike reading the amplitude AP and the amplitude AT, it can be accurately executed even if high frequency noise is superimposed on the received signal as long as the number of peaks of the volume pulse wave is counted.
  • the blood pressure measuring device 10 of the present embodiment integrally holds the irradiation unit 16, the light receiving unit 17, the calculation unit 202, and the display unit 120 and the sound output unit 130, which are output units, and is to be measured. It includes a main body case 11 which is a housing that can be carried by a person. Since it is portable, it is possible to easily continue the measurement. Therefore, since the blood pressure index value or the time change of blood pressure can be easily recorded, it is easy to record the diurnal variation of blood pressure.
  • the blood pressure index value is calculated using the formula (A) that reflects these correlations. In this way, the blood pressure index value can be accurately calculated by calculating the blood pressure index value by reflecting the actual phenomenon in the body.
  • BFV HR x diff ... (A)
  • the blood pressure at the time of measurement can be calculated based on the blood pressure index value and the reference blood pressure of the subject to be measured, which is obtained in advance.
  • the blood pressure is calculated using the formula (C). doing.
  • the blood pressure index value is an accurate value as described above, the blood pressure can also be calculated accurately.
  • BP a 2 x BFV + b 2 ... (C)
  • the output unit that outputs the information based on the blood pressure index value calculated by the calculation unit 202 since the output unit that outputs the information based on the blood pressure index value calculated by the calculation unit 202 is provided, the information based on the blood pressure index value calculated by the calculation unit 202 can be output to the outside. Since the display unit 120 (corresponding to the touch panel display 13 in this example) is provided as the output unit, the blood pressure index value and / or the blood pressure measurement result can be displayed numerically on the display unit 120, or the measurement result can be displayed. Information based on the blood pressure index value can be visually transmitted to the subject by displaying an image or the like.
  • the sound output unit 130 (corresponding to the speaker 15 in this example) is provided as the output unit, the blood pressure index value and / or the numerical value of the blood pressure measurement result can be output by voice or according to the measurement result. Information based on the blood pressure index value can be audibly transmitted to the person to be measured by outputting a sound effect or the like.
  • FIG. 15 is a functional configuration diagram of the blood pressure measuring device 10B according to the second embodiment.
  • the differences from the first embodiment will be mainly described, and the description of the contents overlapping with the first embodiment will be omitted.
  • the difference between the blood pressure measuring device 10B of the second embodiment and the first embodiment is that the blood pressure measuring device 10B of the second embodiment detects the behavioral state of the person to be measured by the processing unit 200.
  • the point is that the detection unit 203 is further provided.
  • the calculation unit 202 calculates the blood pressure index value based on the behavioral state of the person to be measured, the blood flow acceleration, and the heart rate.
  • FIG. 16 is a flowchart illustrating a flow of blood pressure measurement processing in the second embodiment.
  • step S21 The processing from the acquisition of the received light signal (step S21) to the calculation / storage of the heart rate (step S24) is the same as that of the first embodiment.
  • the detection unit 203 detects the behavioral state of the person to be measured and stores it in the storage unit 150 (step S25).
  • the detection unit 203 for example, a sensor that detects body movement, such as an acceleration sensor, is used.
  • the detection unit 203 is built in the main body case 11, and the detection unit 203 detects the behavioral state of the person to be measured.
  • the calculation unit 202 calculates the blood pressure index value based on the behavioral state of the person to be measured, the blood flow acceleration, and the heart rate, and stores it in the storage unit 150 (step S26).
  • the blood pressure index value is BFV (unit: none)
  • the heart rate is HR (unit: bpm)
  • the blood flow acceleration is diff (unit: cm / s 2 )
  • the constant for adjusting the weighting of the heart rate HR is set.
  • the blood pressure index value BFV is calculated using the equation (F).
  • BFV HR x diff x (a 1 x HR + b 1 x diff) / (HR + diff) ... (F)
  • both the constant a 1 and the constant b 1 are set to 1. Further, since the influence of the heart rate becomes large during strenuous exercise, for example, the constant a 1 is set to 1.5 and the constant b 1 is set to 0.5 during exercise.
  • the above values for the constant a 1 and the constant b 1 are examples, and are not limited to these values.
  • the load level and duration such exercise, for example, a light load, during a middle load, and, as a high load, further stepwise finely adjust the constants a 1 and a constant b 1 You may.
  • step S27 The processing from the calculation / storage of blood pressure (step S27) to the output of the measurement result (step S28) after step S26 is the same as that of the first embodiment.
  • the blood pressure index value is calculated based on the behavioral state, blood flow acceleration, and heart rate of the person to be measured, and based only on the blood flow acceleration and heart rate.
  • the blood pressure index value can be calculated by reflecting the phenomenon in the body more. Therefore, according to the second embodiment, a more accurate blood pressure index value can be calculated in the sense that it reflects the behavioral state of the person to be measured.
  • the calculation unit 202 may function as a detection unit instead of using the detection unit 203 such as an acceleration sensor.
  • the behavioral state of the person to be measured is determined by determining that the blood flow acceleration and / or heart rate values are less than a preset threshold value at rest and above the threshold value during exercise. Is detected.
  • the calculation unit 202 since the calculation unit 202 functions as a detection unit, it is not necessary to provide a detection unit 203 composed of an acceleration sensor or the like separately from the calculation unit 202, so that the number of parts can be reduced.
  • a third embodiment of the present invention will be described. Since the functional configuration of the blood pressure measuring device in the present embodiment is the same as that of the blood pressure measuring device 10 in the first embodiment, the description thereof will be omitted.
  • the blood pressure measuring device of the present embodiment is different from the blood pressure measuring device 10 of the first embodiment in that a blood pressure index value is derived only based on the blood flow acceleration.
  • FIG. 17 is a flowchart illustrating the flow of blood pressure measurement processing in the third embodiment.
  • step S31 The processing from the acquisition of the received light signal (step S31) to the calculation / storage of the blood flow acceleration (step S33) is the same as that of the first embodiment.
  • step S35 The processing from the calculation / storage of blood pressure (step S35) to the output of the measurement result (step S36) after step S34 is the same as that of the first embodiment.
  • the blood pressure index value is derived based only on the blood flow acceleration, so that the blood pressure index value can be derived by a lighter process than that of the first embodiment. it can.
  • FIG. 18 is an external view of the blood pressure measuring system 50 according to the fourth embodiment.
  • the blood pressure measurement system 50 of the fourth embodiment has functions as an acquisition unit for acquiring a received signal, a calculation unit for deriving a blood pressure index value, and an output unit for outputting information based on the blood pressure index value. It is composed of an apparatus main body 51, an irradiation unit that irradiates a laser beam, and a light receiving signal detection unit 52 that includes a light receiving unit that receives the laser light reflected or transmitted in the body.
  • the blood pressure measuring device main body 51 for example, a smartphone can be used.
  • a blood pressure measurement program for causing the CPU of the smartphone to function as an acquisition unit and a calculation unit is installed in the smartphone.
  • the smartphone can be used as the blood pressure measuring device main body 51.
  • a touch panel display and a speaker provided in the smartphone are used as an output unit for outputting information based on the blood pressure index value.
  • the light receiving signal detection unit 52 has the same configuration as the blood pressure measuring device 10 of the first embodiment except that it does not have the functions of the acquisition unit and the calculation unit.
  • Both the blood pressure measuring device main body 51 and the received light signal detection unit 52 are provided with a communication unit and are connected via a wireless or wired communication line.
  • a wireless line for example, a communication standard such as Bluetooth (registered trademark) or wireless LAN (Local Area Network) can be used.
  • a connection standard such as USB (Universal Serial Bus) can be used.
  • the smartphone can be used as the blood pressure measuring device main body, the same as in each of the above embodiments, only by newly adding the light receiving signal detection unit 52 and the blood pressure measuring program. Blood pressure can be measured. Since the light-receiving signal detection unit 52 only detects the light-receiving signal and does not execute the blood pressure measurement process, the device configuration is simple and the cost can be reduced as compared with the case where the light-receiving signal detection unit 52 has the blood pressure measurement function. Further, the touch panel display of a smartphone is generally larger than a wristwatch-type device. If such a large touch panel display is used for displaying the measurement result, the visibility and operability of the user are also improved.
  • a computer may be used instead of the smartphone as the main body of the blood pressure measuring device.
  • a computer is, for example, a server on the cloud.
  • the server is communicably connected to the light receiving signal detection unit 52 via a communication line such as the Internet.
  • the server acquires a light-receiving signal from the light-receiving signal detection unit 52 via a communication line, and executes a blood pressure measurement process for deriving a blood pressure index value based on the acquired light-receiving signal. Further, the server transmits the measurement result to the light receiving signal detection unit 52.
  • Servers often have higher processing power than smartphones. Therefore, if the server is used as the main body of the blood pressure measuring device, the measurement result can be obtained in a short time. Further, if the data storage function of the server is used, the measurement result can be saved in the server, and good convenience is ensured.
  • the calculation of the heart rate is not limited to the mode performed by counting the number of peaks of the volumetric pulse wave included in the received signal as described above, but is calculated based on the received signal and has the same periodicity as the volume pulse wave. This may be done by counting the number of peaks of the signal of the element value of. For example, when the values of blood flow velocity and / or blood flow acceleration are continuously acquired and graphed, the waveform is different from that of the volumetric pulse wave, but it has the same periodicity as the volume pulse wave. / Or the heart rate may be calculated based on the blood flow acceleration. In addition, it is possible to calculate the blood flow rate from the power spectrum calculated based on the received signal. When the value of the blood flow is continuously acquired and graphed, the heart rate may be calculated based on the blood flow because the waveform is different from that of the volumetric pulse wave but has the same periodicity as the volumetric pulse wave. ..
  • the storage unit 150 stores a table showing the correspondence between the blood flow acceleration and the blood pressure index value and / or a table showing the correspondence between the blood flow acceleration and the heart rate and the blood pressure index value.
  • the blood pressure index value may be derived by referring to the table based on the blood flow acceleration and / or the heart rate calculated by the calculation unit 202.
  • both the method using a table and the method using a calculation formula as shown in the above embodiment have the correlation between the blood flow acceleration and the blood pressure, and the blood pressure. / Or included in the method of deriving a blood pressure index value based on the correlation between heart rate and blood pressure.
  • the blood pressure measurement process when the received signal is first acquired, it is determined whether the intensity of the received signal is equal to or higher than a predetermined threshold value, and if the intensity of the received signal is less than the threshold value, the blood pressure measurement process is performed. It may be interrupted. If the blood pressure measuring device is not properly attached and fixed to the measurement site of the person to be measured, the blood pressure index value and / or the blood pressure cannot be measured accurately. If the intensity of the received signal is less than the threshold value, it is highly possible that the blood pressure measuring device is not properly attached and fixed to the measurement site of the person to be measured. In this case, it is useless to interrupt the blood pressure measuring process. It is possible to prevent the processing from being performed.
  • the blood flow acceleration when the blood flow acceleration is acquired in the blood pressure measurement process, it is determined whether the blood flow acceleration is within a predetermined threshold range (for example, a range assumed by the human body), and the blood flow acceleration is within the threshold range. If it is out of the range, the blood pressure measurement process may be interrupted. Similarly, at the stage of acquiring the heart rate, it is determined whether the heart rate is within a predetermined threshold range (for example, a range assumed by the human body), and if the heart rate is out of the threshold range, it is determined. , The blood pressure measurement process may be interrupted. If it is out of the range of blood flow acceleration and / or heart rate threshold, it is highly possible that the measurement cannot be performed accurately due to some abnormality. In this case, it is useless to interrupt the blood pressure measurement process. It is possible to prevent the processing from being performed.
  • a predetermined threshold range for example, a range assumed by the human body
  • the output of the measurement result is not limited to the mode in which the icon as shown in FIG. 13 is displayed or the blood pressure index value is displayed on the meter as shown in FIG. 14, and a plurality of states of blood pressure are set to each state.
  • Other aspects can be used, such as the aspect indicated by the corresponding color.
  • the comparison of the blood pressure index value with the past measured value is, for example, a comparison between the real-time measured value and the blood pressure index value at the same time on the previous day, and the real-time measured value and the blood pressure index value in the predetermined time zone on the previous day. It means a comparison with past measured values, such as a comparison with the average value of the above, a comparison between the real-time measured value and the average value of the blood pressure index value for one week.
  • the comparison with the past measured value of blood pressure is, for example, the comparison between the real-time measured value and the blood pressure at the same time on the previous day, and the comparison between the real-time measured value and the average value of the blood pressure in the predetermined time zone on the previous day.
  • Means a comparison with past measurements such as a comparison between real-time measurements and weekly mean blood pressure.
  • a display prompting attention is displayed on the display unit 120, or an alert sound is output to the sound output unit 130.
  • Information indicating an abnormality may be output from the output unit, such as output from.
  • the technique of the present disclosure extends to a storage medium for storing the program non-temporarily.

Abstract

A blood pressure measurement device that comprises at least one processor. The processor acquires a received light signal that is detected on the basis of laser light that has been radiated into the body of measurement subject, performs a computation that is based on a laser Doppler method on the acquired received light signal to calculate a blood flow speed, calculates a blood flow acceleration on the basis of the calculated blood flow speed, and derives a blood pressure index value on the basis of the calculated blood flow acceleration.

Description

血圧測定装置、血圧測定システム、血圧測定方法、及び、血圧測定プログラムBlood pressure measuring device, blood pressure measuring system, blood pressure measuring method, and blood pressure measuring program
 本開示は、血圧測定装置、血圧測定システム、血圧測定方法、及び、血圧測定プログラムに関する。 The present disclosure relates to a blood pressure measuring device, a blood pressure measuring system, a blood pressure measuring method, and a blood pressure measuring program.
 血圧測定装置の1つとして、医療機関で使用するだけでなく、家庭でも使用することを目的として、携帯可能な小型の血圧測定装置が提案されている(特開2016-112277号公報参照)。 As one of the blood pressure measuring devices, a portable small blood pressure measuring device has been proposed for the purpose of not only using it in a medical institution but also at home (see Japanese Patent Application Laid-Open No. 2016-112277).
 特開2016-112277号公報に記載の装置は、体内にレーザー光を照射し、体内で反射又は透過したレーザー光を受光し、受光信号に基づいて血流量及び血管抵抗を算出し、算出した血流量及び血管抵抗に基づいて血圧を算出している。ここで、血流量については、受光信号に対してレーザードップラー法に基づく演算を行って算出している。また、血管抵抗については、受光信号から容積脈波の波形を読み取り、容積脈波における駆出波及び反射波の各々の振幅の比率に基づいて血管抵抗を算出している。 The device described in Japanese Patent Application Laid-Open No. 2016-112277 irradiates the body with laser light, receives the laser light reflected or transmitted in the body, calculates the blood pressure and vascular resistance based on the received signal, and calculates the blood. Blood pressure is calculated based on flow rate and vascular resistance. Here, the blood flow rate is calculated by performing an operation based on the laser Doppler method on the received signal. As for the vascular resistance, the waveform of the volumetric pulse wave is read from the received signal, and the vascular resistance is calculated based on the ratio of the amplitudes of the ejection wave and the reflected wave in the volume pulse wave.
 血圧は、脳心疾患及び認知症等と関連があると言われており、血圧を管理することは健康寿命を延ばすのに重要である。また、血圧は一定ではなく日内で変動しており、その変動の状態を確認することで疾患リスクを見積れることが報告されている。 Blood pressure is said to be related to cerebral heart disease and dementia, and controlling blood pressure is important for extending healthy life expectancy. In addition, it has been reported that blood pressure is not constant and fluctuates within the day, and the risk of disease can be estimated by confirming the state of the fluctuation.
 しかしながら、特開2016-112277号公報に記載の血圧測定装置の方法では、血圧の変動の状態を正確に測定するのは難しい場合があった。というのも、特開2016-112277号公報では、血管抵抗を求めるために、受光信号から、容積脈波に含まれる駆出波及び反射波の各々の振幅を検出する必要がある。ところが、受光信号に高周波ノイズが多い場合は、容積脈波における駆出波及び反射波の各々の振幅を正確に測定するのが困難となってしまう。その場合、血管抵抗の算出が正確にできない。特開2016-112277号公報に記載の方法では、血圧は、血管抵抗を利用して測定するため、血管抵抗が正確でない場合は、血圧の測定についても正確性に懸念が生じる。そのため、血圧の変動の状態を正確に確認できないおそれがあった。 However, with the method of the blood pressure measuring device described in Japanese Patent Application Laid-Open No. 2016-112277, it may be difficult to accurately measure the state of blood pressure fluctuation. This is because, in Japanese Patent Application Laid-Open No. 2016-112277, it is necessary to detect the amplitudes of the ejection wave and the reflected wave included in the volume pulse wave from the received signal in order to obtain the vascular resistance. However, when the received signal has a large amount of high-frequency noise, it becomes difficult to accurately measure the amplitudes of the ejection wave and the reflected wave in the volume pulse wave. In that case, the vascular resistance cannot be calculated accurately. In the method described in JP-A-2016-112277, blood pressure is measured by utilizing vascular resistance. Therefore, if the vascular resistance is not accurate, there is a concern about the accuracy of blood pressure measurement. Therefore, there is a risk that the state of blood pressure fluctuation cannot be confirmed accurately.
 上記の問題に鑑み、本開示は、血圧の変動の状態を正確に確認可能な血圧測定装置、血圧測定システム、血圧測定方法、及び、血圧測定プログラムを提供することを目的とする。 In view of the above problems, it is an object of the present disclosure to provide a blood pressure measuring device, a blood pressure measuring system, a blood pressure measuring method, and a blood pressure measuring program capable of accurately confirming the state of blood pressure fluctuation.
 本開示の一態様に係る血圧測定装置は、少なくとも1つのプロセッサを備え、プロセッサは、被測定者の体内に照射されたレーザー光に基づいて検出される受光信号を取得し、取得した受光信号に対してレーザードップラー法に基づく演算を行って血流速度を算出し、算出した血流速度に基づいて血流加速度を算出し、算出した血流加速度に基づいて血圧指標値を導出する。 The blood pressure measuring device according to one aspect of the present disclosure includes at least one processor, and the processor acquires a received light signal detected based on the laser beam emitted into the body of the person to be measured, and uses the acquired light receiving signal as the received light signal. On the other hand, the blood flow velocity is calculated by performing a calculation based on the laser Doppler method, the blood flow acceleration is calculated based on the calculated blood flow velocity, and the blood pressure index value is derived based on the calculated blood flow acceleration.
 上記態様の血圧測定装置においては、プロセッサは、血流加速度と血圧との相関関係に基づいて、血圧指標値を導出してもよい。 In the blood pressure measuring device of the above aspect, the processor may derive a blood pressure index value based on the correlation between the blood flow acceleration and the blood pressure.
 また、上記態様の血圧測定装置においては、プロセッサは、受光信号の時間変化に基づいて心拍数を算出し、算出した血流加速度及び心拍数に基づいて血圧指標値を導出してもよい。 Further, in the blood pressure measuring device of the above aspect, the processor may calculate the heart rate based on the time change of the received signal and derive the blood pressure index value based on the calculated blood flow acceleration and the heart rate.
 また、上記態様の血圧測定装置においては、プロセッサは、血流加速度と血圧との相関関係及び心拍数と血圧との相関関係に基づいて、血圧指標値を導出してもよい。 Further, in the blood pressure measuring device of the above aspect, the processor may derive a blood pressure index value based on the correlation between blood flow acceleration and blood pressure and the correlation between heart rate and blood pressure.
 また、上記態様の血圧測定装置においては、プロセッサは、さらに、被測定者の行動状態を検出し、プロセッサは、被測定者の行動状態、血流加速度、及び心拍数に基づいて血圧指標値を導出してもよい。 Further, in the blood pressure measuring device of the above aspect, the processor further detects the behavioral state of the person to be measured, and the processor calculates the blood pressure index value based on the behavioral state of the person to be measured, the blood flow acceleration, and the heart rate. It may be derived.
 また、上記態様の血圧測定装置においては、プロセッサは、血圧指標値をBFV、心拍数をHR、血流加速度をdiffとした場合、
  BFV=HR×diff …(1)
 で表される(1)式を用いて血圧指標値を算出してもよい。
Further, in the blood pressure measuring device of the above aspect, when the processor sets the blood pressure index value as BFV, the heart rate as HR, and the blood flow acceleration as diff,
BFV = HR x diff ... (1)
The blood pressure index value may be calculated using the equation (1) represented by.
 また、上記態様の血圧測定装置においては、プロセッサは、さらに、被測定者の行動状態を検出し、プロセッサは、心拍数HRの重み付けを調整する定数をa、血流加速度diffの重み付けを調整する定数をbとした場合、被測定者の行動状態に基づいて、定数a及び定数bを決定し、
  BFV=HR×diff×(a×HR+b×diff)/(HR+diff) …(2)
 で表される(2)式を用いて血圧指標値を算出してもよい。
Further, the blood pressure measuring device of the above embodiment, the processor is further adapted to detect the action status of the subject, the processor, a constant for adjusting the weights of the heart rate HR a 1, adjust the weighting of blood flow acceleration diff When the constant to be measured is b 1 , the constant a 1 and the constant b 1 are determined based on the behavioral state of the person to be measured.
BFV = HR x diff x (a 1 x HR + b 1 x diff) / (HR + diff) ... (2)
The blood pressure index value may be calculated using the equation (2) represented by.
 また、上記態様の血圧測定装置においては、プロセッサは、予め取得された被測定者の基準となる基準血圧と、血圧指標値とに基づいて、測定時の血圧を算出してもよい。 Further, in the blood pressure measuring device of the above aspect, the processor may calculate the blood pressure at the time of measurement based on the reference blood pressure of the subject to be measured and the blood pressure index value acquired in advance.
 また、上記態様の血圧測定装置においては、プロセッサは、測定時の血圧をBP、血圧指標値をBFV、血圧指標値の算出方法及び測定条件の少なくとも1つに基づいて決定される定数をa2、基準血圧に基づいて決定される定数をbとした場合、
  BP=a×BFV+b …(3)
 で表される(3)式を用いて測定時の血圧を算出してもよい。
Further, the blood pressure measuring device of the above aspect, the processor, BP blood pressure at the time of measurement, BFV blood pressure index value, a constant determined based on at least one calculation method and measurement conditions of the blood pressure index value a 2 , if a constant determined based on the reference blood pressure was b 2,
BP = a 2 x BFV + b 2 ... (3)
The blood pressure at the time of measurement may be calculated using the equation (3) represented by.
 また、上記態様の血圧測定装置においては、プロセッサにより導出された血圧指標値に基づく情報を出力する出力部を備えてもよい。 Further, the blood pressure measuring device of the above aspect may include an output unit that outputs information based on the blood pressure index value derived by the processor.
 また、上記態様の血圧測定装置においては、出力部は、血圧指標値のリアルタイムの測定値、血圧指標値の日内変動、及び血圧指標値の過去の測定値との比較のうち少なくとも1つを出力してもよい。 Further, in the blood pressure measuring device of the above aspect, the output unit outputs at least one of a real-time measured value of the blood pressure index value, a diurnal variation of the blood pressure index value, and a comparison of the blood pressure index value with a past measured value. You may.
 また、上記態様の血圧測定装置においては、プロセッサは、予め取得された被測定者の基準となる基準血圧と、血圧指標値とに基づいて、測定時の血圧を算出し、出力部は、血圧のリアルタイムの測定値、血圧の日内変動、及び血圧の過去の測定値との比較のうち少なくとも1つを出力してもよい。 Further, in the blood pressure measuring device of the above aspect, the processor calculates the blood pressure at the time of measurement based on the reference blood pressure of the subject to be measured and the blood pressure index value acquired in advance, and the output unit is the blood pressure. At least one of real-time measurements of blood pressure, diurnal variation in blood pressure, and comparison with past measurements of blood pressure may be output.
 また、上記態様の血圧測定装置においては、出力部は、プロセッサにより導出された血圧指標値が予め定められている閾値を超えている場合に、異常を示す情報を出力してもよい。 Further, in the blood pressure measuring device of the above aspect, the output unit may output information indicating an abnormality when the blood pressure index value derived by the processor exceeds a predetermined threshold value.
 また、上記態様の血圧測定装置においては、被測定者の体内にレーザー光を照射する照射部、体内で反射又は透過したレーザー光を受光する受光部、プロセッサ、及び、出力部を一体的に保持し、かつ、被測定者が携帯可能な筐体を備えてもよい。 Further, in the blood pressure measuring device of the above aspect, an irradiation unit that irradiates the body of the person to be measured with a laser beam, a light receiving unit that receives the laser light reflected or transmitted inside the body, a processor, and an output unit are integrally held. However, it may be provided with a housing that can be carried by the person to be measured.
 また、上記態様の血圧測定装置においては、出力部は、ディスプレイであってもよい。 Further, in the blood pressure measuring device of the above aspect, the output unit may be a display.
 本開示の一態様に係る血圧測定システムは、被測定者の体内に照射されたレーザー光に基づいて検出される受光信号を取得し、取得した受光信号に対してレーザードップラー法に基づく演算を行って血流速度を算出し、算出した血流速度に基づいて血流加速度を算出し、算出した血流加速度に基づいて血圧指標値を導出する、少なくとも1つのプロセッサを備える血圧測定装置本体と、被測定者の体内にレーザー光を照射する照射部、及び、体内で反射又は透過したレーザー光を受光する受光部を備える受光信号検出ユニットとを備える。 The blood flow measurement system according to one aspect of the present disclosure acquires a light-receiving signal detected based on the laser beam radiated into the body of the person to be measured, and performs a calculation based on the laser Doppler method on the acquired light-receiving signal. A blood pressure measuring device main body provided with at least one processor that calculates the blood flow velocity, calculates the blood flow acceleration based on the calculated blood flow velocity, and derives the blood pressure index value based on the calculated blood flow acceleration. It includes an irradiation unit that irradiates the body of the person to be measured with a laser beam, and a light receiving signal detection unit including a light receiving unit that receives the laser light reflected or transmitted inside the body.
 本開示の一態様に係る血圧測定方法は、被測定者の体内に照射されたレーザー光に基づいて検出される受光信号を取得し、取得した受光信号に対してレーザードップラー法に基づく演算を行って血流速度を算出し、算出した血流速度に基づいて血流加速度を算出し、算出した血流加速度に基づいて血圧指標値を導出する。 In the blood flow measuring method according to one aspect of the present disclosure, a light receiving signal detected based on the laser beam radiated into the body of the person to be measured is acquired, and the acquired light receiving signal is calculated based on the laser Doppler method. The blood flow velocity is calculated, the blood flow acceleration is calculated based on the calculated blood flow velocity, and the blood pressure index value is derived based on the calculated blood flow acceleration.
 本開示の一態様に係る血圧測定プログラムは、被測定者の体内に照射されたレーザー光に基づいて検出される受光信号を取得する手順と、取得した受光信号に対してレーザードップラー法に基づく演算を行って血流速度を算出する手順と、算出した血流速度に基づいて血流加速度を算出する手順と、算出した血流加速度に基づいて血圧指標値を導出する手順とをコンピュータに実行させる。 The blood pressure measurement program according to one aspect of the present disclosure includes a procedure for acquiring a received light signal detected based on the laser beam radiated into the body of the subject, and an operation based on the laser Doppler method for the acquired received signal. To have the computer execute the procedure of calculating the blood flow velocity, the procedure of calculating the blood flow acceleration based on the calculated blood flow velocity, and the procedure of deriving the blood pressure index value based on the calculated blood flow acceleration. ..
 本開示によれば、血圧の変動の状態を正確に確認可能な血圧測定装置、血圧測定システム、血圧測定方法、及び、血圧測定プログラムを提供することができる。 According to the present disclosure, it is possible to provide a blood pressure measuring device, a blood pressure measuring system, a blood pressure measuring method, and a blood pressure measuring program that can accurately confirm the state of blood pressure fluctuation.
第1の実施の形態における血圧測定装置の外観図External view of the blood pressure measuring device according to the first embodiment 第1の実施の形態における血圧測定装置の本体ケースの裏面の外観図External view of the back surface of the main body case of the blood pressure measuring device according to the first embodiment. 第1の実施の形態における血圧測定装置の機能構成図Functional configuration diagram of the blood pressure measuring device according to the first embodiment 血流加速度と血圧との関係を示すグラフGraph showing the relationship between blood flow acceleration and blood pressure 心拍数と血圧との関係を示すグラフGraph showing the relationship between heart rate and blood pressure 血流加速度算出の流れを説明するフローチャートFlow chart explaining the flow of blood flow acceleration calculation 体内でのレーザー光の伝播を説明する図Diagram explaining the propagation of laser light in the body 受光信号の経時変化を示すグラフGraph showing the time course of the received signal 図8に示す波形を拡大した状態を示すグラフA graph showing an enlarged state of the waveform shown in FIG. 受光信号に含まれるビート信号を示すグラフGraph showing the beat signal included in the received signal 受光信号に含まれるビート信号のパワースペクトルを示すグラフGraph showing the power spectrum of the beat signal included in the received signal 第1の実施の形態における血圧測定処理の流れを説明するフローチャートA flowchart illustrating a flow of blood pressure measurement processing according to the first embodiment. 表示部における測定結果の表示例を示す図The figure which shows the display example of the measurement result in the display part 表示部における測定結果の表示例を示す図The figure which shows the display example of the measurement result in the display part 第2の実施の形態における血圧測定装置の機能構成図Functional configuration diagram of the blood pressure measuring device according to the second embodiment 第2の実施の形態における血圧測定処理の流れを説明するフローチャートA flowchart illustrating a flow of blood pressure measurement processing in the second embodiment. 第3の実施の形態における血圧測定処理の流れを説明するフローチャートA flowchart illustrating a flow of blood pressure measurement processing in the third embodiment. 第4の実施の形態における血圧測定システムの外観図External view of the blood pressure measurement system according to the fourth embodiment
[第1の実施の形態]
 以下、図面を参照して本発明の第1の実施の形態について説明する。図1は第1の実施の形態における血圧測定装置10の外観図であり、図2は血圧測定装置10の本体ケース11の裏面の外観図である。この血圧測定装置10は、被測定者の体内にレーザー光を照射し、体内で反射又は透過したレーザー光を受光し、受光信号に基づいて被測定者の血圧に関する情報を測定する。血圧測定装置10は、本例では、腕時計のように腕に装着して携帯することが可能な腕時計型の機器である。
[First Embodiment]
Hereinafter, the first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an external view of the blood pressure measuring device 10 according to the first embodiment, and FIG. 2 is an external view of the back surface of the main body case 11 of the blood pressure measuring device 10. The blood pressure measuring device 10 irradiates the body of the person to be measured with a laser beam, receives the laser light reflected or transmitted in the body, and measures information on the blood pressure of the person to be measured based on the received signal. In this example, the blood pressure measuring device 10 is a wristwatch-type device that can be worn on the wrist and carried like a wristwatch.
 図1及び図2に示すように、血圧測定装置10は、筐体である本体ケース11と、本体ケース11を被測定者の腕等の測定部位に装着固定するための固定バンド12とを備える。 As shown in FIGS. 1 and 2, the blood pressure measuring device 10 includes a main body case 11 which is a housing, and a fixing band 12 for attaching and fixing the main body case 11 to a measuring portion such as an arm of a person to be measured. ..
 本体ケース11の表面(すなわち、被測定者が装着したときに外向きとなる面)には、タッチパネルディスプレイ13、操作スイッチ14、及び、スピーカー15等が設けられている。タッチパネルディスプレイ13は、周知のように、LCD(Liquid Crystal Display)等の表示装置と画面内の手の接触位置を検知する位置検知装置とを組み合わせたデバイスである。このタッチパネルディスプレイ13及び操作スイッチ14を用いて被測定者が測定開始指示等の入力を行う。また、タッチパネルディスプレイ13には操作画面及び測定結果等が表示される。また、スピーカー15からは、測定に係る音声ガイダンス及び測定結果の報知音等が出力する。 A touch panel display 13, an operation switch 14, a speaker 15, and the like are provided on the surface of the main body case 11 (that is, the surface that faces outward when worn by the person to be measured). As is well known, the touch panel display 13 is a device that combines a display device such as an LCD (Liquid Crystal Display) and a position detection device that detects the contact position of a hand on the screen. Using the touch panel display 13 and the operation switch 14, the person to be measured inputs a measurement start instruction or the like. Further, the touch panel display 13 displays an operation screen, measurement results, and the like. Further, the speaker 15 outputs voice guidance related to the measurement, a notification sound of the measurement result, and the like.
 また、固定バンド12によって本体ケース11を腕に装着した場合、本体ケース11の裏面は、被測定者の皮膚面と対向した状態で接触する。本体ケース11内には、照射部16(図3参照)と受光部17(図3参照)とが設けられており、本体ケース11の裏面には、照射部16の照射窓16Aと、受光部17の受光窓17Aとが配置されている。 Further, when the main body case 11 is attached to the arm by the fixing band 12, the back surface of the main body case 11 comes into contact with the skin surface of the person to be measured. An irradiation unit 16 (see FIG. 3) and a light receiving unit 17 (see FIG. 3) are provided in the main body case 11, and an irradiation window 16A of the irradiation unit 16 and a light receiving unit 17 are provided on the back surface of the main body case 11. The light receiving window 17A of 17 is arranged.
 照射部16は、被測定者に対して測定光を照射する光源を有している。光源としては、例えば、測定光として単波長のレーザー光を照射するレーザー光源である。レーザー光源としては、例えば、VCSEL(Vertical Cavity Surface Emitting Laser)等のレーザー光源が使用される。本実施の形態では、レーザー光を体内に向けて照射するため、レーザー光の波長は、皮膚透過性を有する近赤外光の帯域の波長が好適である。 The irradiation unit 16 has a light source that irradiates the person to be measured with the measurement light. The light source is, for example, a laser light source that irradiates a single wavelength laser light as measurement light. As the laser light source, for example, a laser light source such as VCSEL (Vertical Cavity Surface Emitting Laser) is used. In the present embodiment, since the laser light is emitted toward the inside of the body, the wavelength of the laser light is preferably a wavelength in the near-infrared light band having skin transparency.
 受光部17は、体内で反射又は透過したレーザー光を受光し、受光量に応じた電気信号である受光信号を出力する受光素子と、受光信号をアナログ信号からデジタル信号に変換することにより、受光信号のデジタルデータを出力するA/D(Analog / Digital)コンバーターとを備える。受光素子としては、例えば、フォトダイオードが使用される。なお、フォトダイオードの代わりに、CCD(Charge Coupled Device)、又は、CMOS(Complementary Metal Oxide Semiconductor)等の素子を使用してもよい。 The light receiving unit 17 receives a light receiving element that receives the laser light reflected or transmitted in the body and outputs a light receiving signal that is an electric signal according to the amount of light received, and receives the light receiving signal by converting the light receiving signal from an analog signal to a digital signal. It is equipped with an A / D (Analog / Digital) converter that outputs digital data of signals. As the light receiving element, for example, a photodiode is used. Instead of the photodiode, an element such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor) may be used.
 また、血圧の測定対象となる血管としては、例えば、被測定者の手首の橈骨動脈が好ましい。血圧測定装置10は、腕時計型であるため、血圧測定装置10を手首に装着すると、照射窓16A及び受光窓17Aが、測定対象となる血管である手首の橈骨動脈に応じた位置に配置される。照射部16から照射されたレーザー光は、被測定者の皮膚面から体内に進入して拡散反射し、そのうちの一部が受光部17に到達する。 Further, as the blood vessel for which the blood pressure is to be measured, for example, the radial artery of the wrist of the person to be measured is preferable. Since the blood pressure measuring device 10 is a wristwatch type, when the blood pressure measuring device 10 is attached to the wrist, the irradiation window 16A and the light receiving window 17A are arranged at positions corresponding to the radial artery of the wrist, which is a blood vessel to be measured. .. The laser beam emitted from the irradiation unit 16 enters the body from the skin surface of the subject and is diffusely reflected, and a part of the laser light reaches the light receiving unit 17.
 図3は、血圧測定装置10の機能構成図である。血圧測定装置10は、照射部16と、受光部17と、操作部110と、表示部120と、音出力部130と、通信部140と、記憶部150と、電源部160と、処理部200とを備える。図1に示す本体ケース11には、これらの各部が設けられている。 FIG. 3 is a functional configuration diagram of the blood pressure measuring device 10. The blood pressure measuring device 10 includes an irradiation unit 16, a light receiving unit 17, an operation unit 110, a display unit 120, a sound output unit 130, a communication unit 140, a storage unit 150, a power supply unit 160, and a processing unit 200. And. Each of these parts is provided in the main body case 11 shown in FIG.
 操作部110は、操作に応じた操作信号を処理部200に入力する操作入力装置である。この操作部110によって、血圧の測定開始指示等の各種指示が入力される。図1の操作スイッチ14及びタッチパネルディスプレイ13等が、操作部110に該当する。 The operation unit 110 is an operation input device that inputs an operation signal corresponding to the operation to the processing unit 200. Various instructions such as a blood pressure measurement start instruction are input by the operation unit 110. The operation switch 14 and the touch panel display 13 of FIG. 1 correspond to the operation unit 110.
 表示部120は、処理部200からの表示信号に基づく各種表示を行う。この表示部120に、測定結果等が表示される。図1のタッチパネルディスプレイ13が、表示部120に該当する。 The display unit 120 performs various displays based on the display signal from the processing unit 200. The measurement result and the like are displayed on the display unit 120. The touch panel display 13 of FIG. 1 corresponds to the display unit 120.
 音出力部130は、例えばスピーカーであり、処理部200からの指示に基づいて音を出力する。この音出力部130によって、血圧の測定開始及び測定終了等の報知音、及び/又は、案内音声が出力される。図1のスピーカー15が、音出力部130に該当する。 The sound output unit 130 is, for example, a speaker, and outputs sound based on an instruction from the processing unit 200. The sound output unit 130 outputs a notification sound such as the start and end of blood pressure measurement and / or a guidance voice. The speaker 15 in FIG. 1 corresponds to the sound output unit 130.
 なお、表示部120及び音出力部130の少なくとも1つは、特許請求の範囲の出力部の一例である。 Note that at least one of the display unit 120 and the sound output unit 130 is an example of an output unit within the scope of claims.
 通信部140は、外部機器との通信を実現する。通信部140は、有線通信部及び無線通信部の少なくとも1つを備えている。有線通信部は、例えば、有線通信を行うための電気回路で構成される有線通信モジュール及び有線ケーブルを接続するためのジャックを備えている。無線通信部は、例えば、無線通信を行うための電気回路で構成される無線通信モジュール及び電波を送受信するアンテナを備えている。 The communication unit 140 realizes communication with an external device. The communication unit 140 includes at least one of a wired communication unit and a wireless communication unit. The wired communication unit includes, for example, a wired communication module composed of an electric circuit for performing wired communication and a jack for connecting a wired cable. The wireless communication unit includes, for example, a wireless communication module composed of an electric circuit for performing wireless communication and an antenna for transmitting and receiving radio waves.
 記憶部150は、RAM(Random Access Memory)、ROM(Read Only Memory)、及び/又は、フラッシュメモリー等の記憶媒体である。記憶部150は、処理部200が血圧測定装置10を統合的に制御するためのプログラム及びデータ等を格納する。また、記憶部150には、処理部200が実行した演算結果が格納される。 The storage unit 150 is a storage medium such as a RAM (RandomAccessMemory), a ROM (ReadOnlyMemory), and / or a flash memory. The storage unit 150 stores a program, data, and the like for the processing unit 200 to integrally control the blood pressure measuring device 10. Further, the storage unit 150 stores the calculation result executed by the processing unit 200.
 電源部160は、例えば充電式のバッテリーであり、血圧測定装置10の各部に電力を供給する。バッテリーへの充電方式としては、例えば、本体ケース11に充電用コネクタを設けて、充電用コネクタと充電器をケーブル等で有線接続する有線方式により行う。もちろん、有線方式に代えて、電磁誘導等を利用した無線充電方式でも良い。 The power supply unit 160 is, for example, a rechargeable battery, and supplies electric power to each unit of the blood pressure measuring device 10. As a charging method for the battery, for example, a charging connector is provided in the main body case 11, and the charging connector and the charger are wiredly connected by a cable or the like. Of course, instead of the wired method, a wireless charging method using electromagnetic induction or the like may be used.
 処理部200は、例えば、CPU(Central Processing Unit)、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、及び/又は、メインメモリー等の電子部品によって実現される。処理部200は、血圧測定プログラム等の所定のプログラム及びプログラムの実行に必要なデータに基づいて、血圧測定に係る各種の演算処理を実行する。また、処理部200は、操作部110からの操作信号等に基づいて、血圧測定装置10の各部の動作を制御する。 The processing unit 200 is realized by, for example, an electronic component such as a CPU (Central Processing Unit), an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), and / or a main memory. The processing unit 200 executes various arithmetic processes related to blood pressure measurement based on a predetermined program such as a blood pressure measurement program and data necessary for executing the program. Further, the processing unit 200 controls the operation of each unit of the blood pressure measuring device 10 based on an operation signal or the like from the operation unit 110.
 メインメモリーは、プログラム及びプログラムデータ等を格納したり、CPUの演算値を格納することができる記憶媒体であり、RAM、ROM、及び/又は、フラッシュメモリー等により実現される。 The main memory is a storage medium that can store programs, program data, etc., and CPU calculation values, and is realized by RAM, ROM, and / or flash memory, etc.
 また、処理部200は、取得部201と、演算部202とを有する。取得部201は、受光部17から出力された受光信号を取得する。取得部201は、デジタルデータに変換後の受光信号を取得する。演算部202は、受光部17の受光信号に基づき、血圧指標値を導出する。本例においては、演算部202は、計算式に基づく演算を行って、血圧指標値を算出する。 Further, the processing unit 200 has an acquisition unit 201 and a calculation unit 202. The acquisition unit 201 acquires the received light signal output from the light receiving unit 17. The acquisition unit 201 acquires the received light signal after being converted into digital data. The calculation unit 202 derives a blood pressure index value based on the light receiving signal of the light receiving unit 17. In this example, the calculation unit 202 performs a calculation based on the calculation formula to calculate the blood pressure index value.
 以下、演算部202が実行する処理の詳細を説明する。
[原理]
(A)血流加速度及び心拍数に基づいて血圧指標値を算出する方法
 図4は、血流加速度と血圧との関係を示すグラフであり、横軸は血流加速度(単位:cm/s)、縦軸は血圧(単位:mmHg)を示している。図4のグラフに示す通り、血流加速度と血圧との間には相関関係がある。また、図5は、心拍数と血圧との関係を示すグラフであり、横軸は心拍数(単位:bpm(beats per minute))、縦軸は血圧(単位:mmHg)を示している。図5のグラフに示す通り、心拍数と血圧との間には相関関係がある。発明者は、血流加速度と血圧との相関関係、及び、心拍数と血圧との相関関係を利用し、血流加速度及び心拍数に基づいて、血圧指標値を導出できることを見出した。
Hereinafter, the details of the processing executed by the calculation unit 202 will be described.
[principle]
(A) Method of calculating blood pressure index value based on blood flow acceleration and heart rate FIG. 4 is a graph showing the relationship between blood flow acceleration and blood pressure, and the horizontal axis is blood flow acceleration (unit: cm / s 2). ), The vertical axis shows blood pressure (unit: mmHg). As shown in the graph of FIG. 4, there is a correlation between blood flow acceleration and blood pressure. Further, FIG. 5 is a graph showing the relationship between the heart rate and the blood pressure, and the horizontal axis shows the heart rate (unit: bpm (beats per minute)) and the vertical axis shows the blood pressure (unit: mmHg). As shown in the graph of FIG. 5, there is a correlation between heart rate and blood pressure. The inventor has found that a blood pressure index value can be derived based on the blood flow acceleration and the heart rate by using the correlation between the blood flow acceleration and the blood pressure and the correlation between the heart rate and the blood pressure.
 本開示において、血圧指標値とは、被測定者の特定の状態の血圧を基準として、基準状態からどの程度血圧が変化しているかを示す指標値を意味する。この血圧指標値は、実際の血圧の値を示すものではないが、血圧指標値を経時的に取得することによって、血圧の変動の状態を確認することが可能である。 In the present disclosure, the blood pressure index value means an index value indicating how much the blood pressure has changed from the reference state with reference to the blood pressure in the specific state of the person to be measured. Although this blood pressure index value does not indicate the actual blood pressure value, it is possible to confirm the state of blood pressure fluctuation by acquiring the blood pressure index value over time.
 なお、基準となる被測定者の特定の状態の血圧については、どのような状態の血圧としてもよい。また、血圧には、最高血圧(例えば、収縮期血圧)と最低血圧(例えば、拡張期血圧)とがあるが、どちらの血圧としてもよい。ここでは、被測定者の安静時の最高血圧(例えば、収縮期血圧)を基準とし、最高血圧(例えば、収縮期血圧)についての血圧指標値を導出する場合について説明する。 The blood pressure in a specific state of the subject to be measured as a reference may be any state of blood pressure. Further, the blood pressure includes systolic blood pressure (for example, systolic blood pressure) and diastolic blood pressure (for example, diastolic blood pressure), and either blood pressure may be used. Here, a case will be described in which a blood pressure index value for systolic blood pressure (for example, systolic blood pressure) is derived based on the resting systolic blood pressure (for example, systolic blood pressure) of the subject.
 血流加速度及び心拍数に基づいて血圧指標値を導出する方法として、具体的には、血圧指標値をBFV(単位:なし)、心拍数をHR(単位:bpm)、血流加速度をdiff(単位:cm/s)とした場合、血圧指標値BFVは、(A)式を用いて算出する。
  BFV=HR×diff …(A)
As a method of deriving the blood pressure index value based on the blood flow acceleration and the heart rate, specifically, the blood pressure index value is BFV (unit: none), the heart rate is HR (unit: bpm), and the blood flow acceleration is diff (diff). When the unit is: cm / s 2 ), the blood pressure index value BFV is calculated using the formula (A).
BFV = HR x diff ... (A)
(A-1)血流加速度を算出する方法
 まず、血流加速度の算出方法について説明する。図6は血流加速度算出の流れを説明するフローチャートである。また、図7は、体内でのレーザー光の伝播を説明する図であり、被測定者の体内の深さ方向に沿った断面を示している。以下、図6を参照しながら、レーザードップラー法に基づく血流加速度の算出について、詳細に説明する。
(A-1) Method of calculating blood flow acceleration First, a method of calculating blood flow acceleration will be described. FIG. 6 is a flowchart illustrating the flow of blood flow acceleration calculation. Further, FIG. 7 is a diagram for explaining the propagation of the laser beam in the body, and shows a cross section of the subject to be measured along the depth direction in the body. Hereinafter, the calculation of the blood flow acceleration based on the laser Doppler method will be described in detail with reference to FIG.
 血流加速度の算出では、最初に、受光部17で取得された受光信号に対してレーザードップラー法に基づく演算を行って、図7の複数の血管21の血流速度の分布状態を表すパワースペクトルを算出する(ステップS1)。パワースペクトルについては、後述する。 In the calculation of the blood flow acceleration, first, the light receiving signal acquired by the light receiving unit 17 is calculated based on the laser Doppler method, and the power spectrum representing the distribution state of the blood flow velocity of the plurality of blood vessels 21 in FIG. Is calculated (step S1). The power spectrum will be described later.
 図8は受光信号の経時変化を示すグラフである。血管は、心拍周期に応じて、拡張と収縮を繰り返す。血管に照射されるレーザー光の吸収量は、血管が拡張した状態で多く、収縮した状態では少ない、そのため、レーザー光の反射光量(さらには、反射光量を表す受光信号)は心拍周期に応じて増減を繰り返す。図8に示す受光信号の経時変化は、心拍周期に応じた受光信号の増減を表している。図9は図8に示す波形の一部(具体的には一心拍分の波形)を拡大したグラフである。図10は受光信号に含まれるビート信号を示すグラフであり、図11は受光信号に含まれるビート信号のパワースペクトルを示すグラフである。ビート信号については後述する。 FIG. 8 is a graph showing the time course of the received signal. Blood vessels repeatedly expand and contract according to the heartbeat cycle. The amount of laser light absorbed by the blood vessels is large when the blood vessels are dilated and small when the blood vessels are contracted. Therefore, the amount of reflected light from the laser light (and the received signal indicating the amount of reflected light) depends on the heartbeat cycle. Repeat the increase and decrease. The change with time of the received light signal shown in FIG. 8 represents an increase or decrease of the received light signal according to the heartbeat cycle. FIG. 9 is an enlarged graph of a part of the waveform shown in FIG. 8 (specifically, the waveform for one heartbeat). FIG. 10 is a graph showing a beat signal included in the received light signal, and FIG. 11 is a graph showing a power spectrum of the beat signal included in the received signal. The beat signal will be described later.
 移動する物体に光を照射した場合、物体の移動速度に応じて、物体における光の反射で、散乱する散乱光の周波数が変化するドップラー効果が生じる。血管21内においては図7に示すようにヘモグロビン22が移動するため、ヘモグロビン22で散乱する散乱光は、ヘモグロビン22の移動速度(すなわち、血流速度)に応じた周波数変化であるドップラーシフトを生じる。レーザー光は周波数が揃っているため、照射したレーザー光の周波数と、ドップラーシフトを生じた散乱光の周波数との差は、主としてヘモグロビン22の移動速度を反映した情報となる。そのため、測定光としてレーザー光を使用することにより、血流速度を検出することが可能となる。レーザードップラー法は、このようなレーザー光のドップラーシフトを前提とした、血流速度を算出する手法である。演算部202は、レーザードップラー法に基づく演算を行って血流速度を算出する。 When a moving object is irradiated with light, the Doppler effect occurs in which the frequency of scattered scattered light changes due to the reflection of light on the object according to the moving speed of the object. Since the hemoglobin 22 moves in the blood vessel 21 as shown in FIG. 7, the scattered light scattered by the hemoglobin 22 causes a Doppler shift which is a frequency change according to the movement speed (that is, the blood flow speed) of the hemoglobin 22. .. Since the frequencies of the laser light are the same, the difference between the frequency of the irradiated laser light and the frequency of the scattered light that has caused the Doppler shift is information that mainly reflects the moving speed of the hemoglobin 22. Therefore, it is possible to detect the blood flow velocity by using the laser light as the measurement light. The laser Doppler method is a method for calculating the blood flow velocity on the premise of such a Doppler shift of laser light. The calculation unit 202 calculates the blood flow velocity by performing a calculation based on the laser Doppler method.
 より具体的には、図7に示すように、レーザー光を皮膚面20から体内に照射した場合、レーザー光は、血管21内を移動するヘモグロビン22で散乱すると、ドップラーシフトを生じる。一方、レーザー光は、皮膚などの血管21以外の静止組織で散乱しても、ドップラーシフトを生じない。照射したレーザー光の周波数をω0、ヘモグロビン22の移動速度に応じて生じる周波数変化分を差周波Δωとすると、ヘモグロビン22で散乱した散乱光の周波数は、ω0+Δωとなる。 More specifically, as shown in FIG. 7, when the laser beam is irradiated into the body from the skin surface 20, when the laser beam is scattered by the hemoglobin 22 moving in the blood vessel 21, a Doppler shift occurs. On the other hand, the laser light does not cause Doppler shift even if it is scattered by a stationary tissue other than the blood vessel 21 such as skin. Assuming that the frequency of the irradiated laser light is ω0 and the frequency change caused by the moving speed of the hemoglobin 22 is the difference frequency Δω, the frequency of the scattered light scattered by the hemoglobin 22 is ω0 + Δω.
 すなわち、周波数ω0のレーザー光を体内に照射した場合、静止組織で散乱して、ドップラーシフトが生じずに周波数ω0を維持しているレーザー光と、血管21中を移動するヘモグロビン22で散乱して、ドップラーシフトにより周波数ω0+Δωとなったレーザー光とによって、光の干渉が生じる。この光の干渉によって、差周波Δωを有するビート信号が発生し、ビート信号は、受光信号に重畳される。すなわち、受光信号には、図8及び図9のグラフに示すように、心臓の血液駆出に伴う血管の脈拍変化に対応した容積脈波の成分と、ビート信号の成分とが含まれる。 That is, when a laser beam having a frequency of ω0 is irradiated into the body, it is scattered by a stationary tissue and scattered by a laser beam that maintains the frequency ω0 without Doppler shift and a hemoglobin 22 that moves in the blood vessel 21. , Light interference occurs due to the laser light whose frequency is ω0 + Δω due to the Doppler shift. Due to this light interference, a beat signal having a difference frequency Δω is generated, and the beat signal is superimposed on the received signal. That is, as shown in the graphs of FIGS. 8 and 9, the received signal includes a volume pulse wave component corresponding to a pulse change of a blood vessel accompanying blood ejection from the heart, and a beat signal component.
 受光信号における容積脈波の周波数は数10Hz以下であり、受光信号におけるビート信号の周波数は数100Hzから数10kHz程度である。また、受光信号において、ビート信号の周波数よりも高い周波数の高周波ノイズが重畳する場合がある。受光信号における容積脈波の周波数、ビート信号の周波数、高周波ノイズの周波数は全て異なる。そのため、演算部202は、例えばフィルタリング処理を実行し、図10のグラフに示すように、ビート信号のみを分離する。 The frequency of the volume pulse wave in the received signal is several tens of Hz or less, and the frequency of the beat signal in the received signal is about several hundred Hz to several tens of kHz. In addition, high-frequency noise having a frequency higher than that of the beat signal may be superimposed on the received signal. The frequency of the volume pulse wave, the frequency of the beat signal, and the frequency of the high frequency noise in the received signal are all different. Therefore, the calculation unit 202 executes, for example, a filtering process and separates only the beat signal as shown in the graph of FIG.
 演算部202は、このビート信号について、一定のサンプリング期間(例えば、10秒から1分程度)毎に、例えばFFT(Fast Fourier Transform)解析などの周波数解析を行うことにより、各サンプリング期間におけるビート信号のパワースペクトルを算出する。レーザー光は複数の血管21に照射されるため、血管21毎に血流速度が異なれば、ビート信号には、各血管21の血流速度を反映した複数の周波数成分が含まれる。ビート信号のパワースペクトルは、複数の血管21の血流速度の分布状態を表す。図11は、ビート信号のパワースペクトルの一例である。 The calculation unit 202 performs frequency analysis such as FFT (Fast Fourier Transform) analysis on the beat signal at regular sampling periods (for example, about 10 seconds to 1 minute), so that the beat signal in each sampling period is performed. Calculate the power spectrum of. Since the laser beam irradiates a plurality of blood vessels 21, if the blood flow velocity is different for each blood vessel 21, the beat signal includes a plurality of frequency components reflecting the blood flow velocity of each blood vessel 21. The power spectrum of the beat signal represents the distribution state of the blood flow velocity of the plurality of blood vessels 21. FIG. 11 is an example of the power spectrum of the beat signal.
 図6に示すように、ステップS1において、演算部202は、一定のサンプリング期間が経過すると、そのサンプリング期間に取得したビート信号に基づいてパワースペクトルを算出する。そして、ステップS2において、算出したパワースペクトルに基づいて、血流速度を算出する。 As shown in FIG. 6, in step S1, when a certain sampling period elapses, the calculation unit 202 calculates a power spectrum based on the beat signal acquired during the sampling period. Then, in step S2, the blood flow velocity is calculated based on the calculated power spectrum.
 演算部202は、パワースペクトルの周波数平均値を算出することにより、複数の血管21の血流速度の平均値を求めて、この平均値を血流速度として算出する。ここで、血流速度の算出方法について説明する。パワースペクトルP(ω)の周波数平均値ωaveは、周波数ωと周波数ωにおけるパワースペクトルP(ω)との積を周波数ωについて積分した値を、パワースペクトルP(ω)の信号領域の面積で除算した値に比例する。パワースペクトルP(ω)の周波数平均値ωaveは、一例として、(B)式を用いて算出する。
  ωave=(∫ω×P(ω)dω)/(∫P(ω)dω) …(B)
The calculation unit 202 obtains the average value of the blood flow velocities of the plurality of blood vessels 21 by calculating the frequency average value of the power spectrum, and calculates this average value as the blood flow velocity. Here, a method of calculating the blood flow velocity will be described. The frequency mean value ω ave of the power spectrum P (ω) is the area obtained by integrating the product of the product of the frequency ω and the power spectrum P (ω) at the frequency ω with respect to the frequency ω in the area of the signal region of the power spectrum P (ω). It is proportional to the divided value. The frequency mean value ω ave of the power spectrum P (ω) is calculated by using the equation (B) as an example.
ω ave = (∫ω × P (ω) dω) / (∫P (ω) dω)… (B)
 ステップS3において、演算部202は、算出した血流速度を保存する。そして、ステップS4において、演算部202は、ステップS1、S2、及び、S3を繰り返して、予め設定された期間分の血流速度を取得する。これにより、血流速度の経時変化が取得される。そして、ステップS5において、演算部202は、血流速度を微分することによって、血流加速度を算出する。 In step S3, the calculation unit 202 saves the calculated blood flow velocity. Then, in step S4, the calculation unit 202 repeats steps S1, S2, and S3 to acquire the blood flow velocity for a preset period. As a result, the time course of blood flow velocity is acquired. Then, in step S5, the calculation unit 202 calculates the blood flow acceleration by differentiating the blood flow velocity.
(A-2)心拍数を算出する方法
 次に心拍数の算出方法について説明する。演算部202は、例えば、図8に示すような、容積脈波の成分を含む受光信号の1分間の山数をカウントすることによって、心拍数を算出する。ここで、演算部202は、例えば受光信号に対して容積脈波の周波数成分のみを抽出するフィルタリング処理を行い、山数の測定に不必要な周波数成分を除去してから、心拍数を算出する。
(A-2) Method of calculating heart rate Next, a method of calculating heart rate will be described. The calculation unit 202 calculates the heart rate by, for example, counting the number of peaks of the received signal including the component of the volume pulse wave for one minute as shown in FIG. Here, the calculation unit 202 performs a filtering process for extracting only the frequency component of the volume pulse wave from the received signal, for example, removes the frequency component unnecessary for the measurement of the number of peaks, and then calculates the heart rate. ..
(B)血圧指標値に基づいて血圧を算出する方法
 測定時の血圧をBP(単位:mmHg)、血圧指標値をBFV(単位:なし)、血圧指標値の算出方法及び測定条件の少なくとも1つに基づいて決定される定数をa2、基準血圧に基づいて決定される定数をbとした場合、(C)式を用いて算出する。
  BP=a×BFV+b …(C)
(B) Method of calculating blood pressure based on blood pressure index value At least one of blood pressure at the time of measurement is BP (unit: mmHg), blood pressure index value is BFV (unit: none), blood pressure index value calculation method and measurement conditions. When the constant determined based on is a 2 and the constant determined based on the reference blood pressure is b 2 , the calculation is performed using the equation (C).
BP = a 2 x BFV + b 2 ... (C)
 定数aは、BFV算出式及び測定条件に応じて計算値を調整するための係数パラメータである。 The constant a 2 is a coefficient parameter for adjusting the calculated value according to the BFV calculation formula and the measurement conditions.
 定数bは、被測定者の基準血圧に対応した基準パラメータである。上述したとおり、基準血圧については、被測定者の特定の状態において取得された血圧であり、どのような状態の血圧としてもよい。上述したとおり、本実施の形態では、一例として、被測定者の安静時の最高血圧(例えば、収縮期血圧)である。 The constant b 2 is a reference parameter corresponding to the reference blood pressure of the subject. As described above, the reference blood pressure is the blood pressure obtained in a specific state of the person to be measured, and may be the blood pressure in any state. As described above, in the present embodiment, one example is the resting systolic blood pressure (for example, systolic blood pressure) of the subject.
 定数bの決定方法の一例について説明する。初めに、被測定者の安静時において、本実施の形態の血圧測定装置10とは異なる一般的な血圧計による血圧の測定と、本実施の形態の血圧測定装置10による測定を同時に行なう。これにより、被測定者の安静時の最高血圧(例えば、収縮期血圧)BP及び安静時の血圧指標値BFVを取得する。最高血圧(例えば、収縮期血圧)BPは、被測定者によりタッチパネルディスプレイ13等を介して血圧測定装置10に入力される。なお、一般的な血圧計による血圧の測定が難しい場合には、被測定者は、自分の予想血圧(例えば、過去に測定した血圧)を最高血圧(例えば、収縮期血圧)BPとして入力してもよい。 An example of a method for determining the constant b 2 will be described. First, at rest of the subject, the blood pressure is measured by a general sphygmomanometer different from the blood pressure measuring device 10 of the present embodiment and the blood pressure is measured by the blood pressure measuring device 10 of the present embodiment at the same time. As a result, the resting systolic blood pressure (for example, systolic blood pressure) BP s and the resting blood pressure index value BFV s of the subject are acquired. The systolic blood pressure (for example, systolic blood pressure) BP s is input to the blood pressure measuring device 10 by the person to be measured via the touch panel display 13 or the like. When it is difficult to measure blood pressure with a general sphygmomanometer, the subject inputs his / her expected blood pressure (for example, blood pressure measured in the past) as systolic blood pressure (for example, systolic blood pressure) BP s. You may.
 (C)式において収縮期血圧BP及び血圧指標値BFVを代入すると(D)式の通りとなる。(D)式を定数bについて整理すると(E)式の通りとなり、定数bを算出することができる。なお、定数bの決定方法は上記に限らず、他の方法により決定してもよい。
  BP=a×BFV+b …(D)
  b=BP―a×BFV …(E)
Substituting the systolic blood pressure BP s and the blood pressure index value BFV s in the equation (C) gives the equation (D). When the equation (D) is rearranged for the constant b 2 , it becomes the same as the equation (E), and the constant b 2 can be calculated. The method for determining the constant b 2 is not limited to the above, and may be determined by another method.
BP s = a 2 x BFV s + b 2 ... (D)
b 2 = BP s ―a 2 × BFV s … (E)
(C)血圧指標値及び血圧の算出の具体例
 一例として、被測定者の安静時の最高血圧(例えば、収縮期血圧)を基準とし、(A)式を用いて、血流加速度diff及び心拍数HRに基づいて血圧指標値BFVを算出する場合について説明する。例えば、血圧測定装置10による測定された血流加速度diff(単位:cm/s)が0.20、心拍数HR(単位:bpm)が65.0であった場合、(A)式に基づいて血圧指標値BFV(単位:なし)は13.0と算出される。
  BFV=HR×diff …(A)
(C) Specific example of calculation of blood pressure index value and blood pressure As an example, based on the resting systolic blood pressure (for example, systolic blood pressure) of the subject, the blood flow acceleration diff and heartbeat are used using the formula (A). A case where the blood pressure index value BFV is calculated based on the number HR will be described. For example, when the blood flow acceleration diff (unit: cm / s 2 ) measured by the blood pressure measuring device 10 is 0.20 and the heart rate HR (unit: bpm) is 65.0, it is based on the equation (A). The blood pressure index value BFV (unit: none) is calculated as 13.0.
BFV = HR x diff ... (A)
 次に、(C)式を用いて、血圧指標値BFVに基づいて被測定者の測定時の血圧BPを算出する場合について説明する。ここでは、定数aは、BFV算出式及び測定条件に基づいて0.870と決定され、かつ、定数bは、予め取得された被測定者の安静時の最高血圧(例えば、収縮期血圧)を基準血圧として107.150と決定されているとする。上記の通り、血圧指標値BFV(単位:なし)は13.0と算出されているため、(C)式に基づいて血圧BP(単位:mmHg)は118.46と算出される。
  BP=a×BFV+b …(C)
Next, a case where the blood pressure BP at the time of measurement of the subject is calculated based on the blood pressure index value BFV will be described using the formula (C). Here, the constant a 2 is determined to be 0.870 based on the BFV calculation formula and the measurement conditions, and the constant b 2 is the pre-obtained systolic blood pressure of the subject (for example, systolic blood pressure). ) Is determined as 107.150 as the reference blood pressure. As described above, since the blood pressure index value BFV (unit: none) is calculated as 13.0, the blood pressure BP (unit: mmHg) is calculated as 118.46 based on the equation (C).
BP = a 2 x BFV + b 2 ... (C)
[処理の流れ]
 図12は、血圧測定処理の流れを説明するフローチャートである。この処理は、処理部200がプログラムに従った処理を実行することで実現される。血圧測定装置10が被測定者の測定部位に装着された状態において、被測定者によって測定開始指示がなされると血圧測定処理が開始される。
[Processing flow]
FIG. 12 is a flowchart illustrating a flow of blood pressure measurement processing. This process is realized by the processing unit 200 executing the process according to the program. When the blood pressure measuring device 10 is attached to the measurement site of the person to be measured and the person to be measured gives an instruction to start measurement, the blood pressure measuring process is started.
 先ず、処理部200は、照射部16による測定光の照射を開始させ、そのときの受光部17の受光信号を取得する(ステップS11)。 First, the processing unit 200 starts irradiating the measurement light by the irradiation unit 16 and acquires the light receiving signal of the light receiving unit 17 at that time (step S11).
 次に、演算部202は、受光信号に重畳されるビート信号に基づいて、図6のステップS1の処理を実行して、ビート信号のパワースペクトルを算出し、記憶部150に保存する(ステップS12)。 Next, the calculation unit 202 executes the process of step S1 of FIG. 6 based on the beat signal superimposed on the received light signal, calculates the power spectrum of the beat signal, and stores it in the storage unit 150 (step S12). ).
 次に、演算部202は、ビート信号のパワースペクトルに基づいて、血流加速度を算出して記憶部150に保存する(ステップS13)。具体的には、演算部202は、図6のステップS2からステップS4までの処理を実行し、ビート信号のパワースペクトルに基づいて、予め設定された期間分の血流速度の経時変化を取得する。そして、取得した血流速度の経時変化に基づき、血流速度を微分することによって血流加速度を算出する。演算部202は、算出した血流加速度を記憶部150に保存ずる。 Next, the calculation unit 202 calculates the blood flow acceleration based on the power spectrum of the beat signal and stores it in the storage unit 150 (step S13). Specifically, the calculation unit 202 executes the processes from step S2 to step S4 in FIG. 6 and acquires the change with time of the blood flow velocity for a preset period based on the power spectrum of the beat signal. .. Then, the blood flow acceleration is calculated by differentiating the blood flow velocity based on the acquired blood flow velocity change with time. The calculation unit 202 stores the calculated blood flow acceleration in the storage unit 150.
 次に、演算部202は、受光信号に基づいて、心拍数を算出して記憶部150に保存する(ステップS14)。 Next, the calculation unit 202 calculates the heart rate based on the received signal and stores it in the storage unit 150 (step S14).
 次に、演算部202は、血流加速度及び心拍数に基づき、血圧指標値を算出して記憶部150に保存する(ステップS15)。 Next, the calculation unit 202 calculates the blood pressure index value based on the blood flow acceleration and the heart rate and stores it in the storage unit 150 (step S15).
 次に、演算部202は、血圧指標値に基づいて、血圧を算出して記憶部150に保存する(ステップS16)。 Next, the calculation unit 202 calculates the blood pressure based on the blood pressure index value and stores it in the storage unit 150 (step S16).
 次に、処理部200は、算出した血圧を含む測定結果を表示部120に表示する(ステップS17)。 Next, the processing unit 200 displays the measurement result including the calculated blood pressure on the display unit 120 (step S17).
 ここで、表示部120における測定結果の表示例について説明する。処理部200は、測定結果として、血圧に加えて、例えば、血圧の値に応じて、図13に示す4つのアイコン31~34を表示する。4つのアイコン31~34は、動物の顔を模したキャラクターであり、4つのアイコン31~34は、顔の表情が異なっている。顔の表情は、血圧の値に対応しており、血圧の値に応じて、4つのアイコン31~34のいずれかが選択される。 Here, a display example of the measurement result on the display unit 120 will be described. As a measurement result, the processing unit 200 displays four icons 31 to 34 shown in FIG. 13 according to, for example, a blood pressure value in addition to the blood pressure. The four icons 31 to 34 are characters that imitate the faces of animals, and the four icons 31 to 34 have different facial expressions. The facial expression corresponds to the blood pressure value, and one of the four icons 31 to 34 is selected according to the blood pressure value.
 具体的にはアイコン31とアイコン32は、ともに笑顔であるが、アイコン31の方が笑顔の程度が高い。アイコン31は、血圧の値がとても良好な範囲にある場合に選択される。アイコン32は、アイコン31と比較すると笑顔の程度が下がり、血圧の値がやや良好な範囲にある場合に選択される。アイコン34の表情は、泣き顔であり、血圧の値が適正範囲外にある場合に選択される。アイコン33は、笑顔でも泣き顔でもない普通の表情であり、血圧の値が良好とまでは言えないが、適正範囲内にある場合に選択される。 Specifically, both icon 31 and icon 32 have a smile, but icon 31 has a higher degree of smile. Icon 31 is selected when the blood pressure value is in a very good range. The icon 32 is selected when the degree of smile is lower than that of the icon 31 and the blood pressure value is in a slightly good range. The facial expression of the icon 34 is a crying face and is selected when the blood pressure value is out of the appropriate range. The icon 33 is a normal facial expression that is neither a smiling face nor a crying face, and is selected when the blood pressure value is not good, but is within an appropriate range.
 また、測定結果としては、血圧及びアイコン31~34に加えて、又はそれらに代えて、血圧指標値を表示してもよい。図14は表示部120における血圧指標値の表示例である。図14に示す通り、メーター40によるメーター表示により血圧指標値の大きさを示してもよい。この場合、メーター表示色は、例えば、血圧指標値が0、すなわち基準血圧に近い領域を緑色とし、血圧指標値が適正範囲外に近づくにつれて赤色に徐々に変化する。 Further, as the measurement result, the blood pressure index value may be displayed in addition to or in place of the blood pressure and the icons 31 to 34. FIG. 14 is a display example of the blood pressure index value on the display unit 120. As shown in FIG. 14, the magnitude of the blood pressure index value may be indicated by the meter display by the meter 40. In this case, the meter display color is, for example, green when the blood pressure index value is 0, that is, a region close to the reference blood pressure, and gradually changes to red as the blood pressure index value approaches outside the appropriate range.
 なお、本実施の形態においては、測定開始指示を受けてステップS11からステップS17の処理を行うことにより1回の血圧測定が終了するが、測定終了指示がなされるまで、血圧測定を継続的に実行することとしてもよい。すなわち、血圧測定処理の終了後、測定終了指示がなされなければステップS11に処理を移行することとすればよい。 In the present embodiment, one blood pressure measurement is completed by performing the processes from step S11 to step S17 in response to the measurement start instruction, but the blood pressure measurement is continuously performed until the measurement end instruction is given. You may do it. That is, after the blood pressure measurement process is completed, if the measurement end instruction is not given, the process may be shifted to step S11.
[作用効果]
 本実施の形態の血圧測定装置10は、取得部201と演算部202とを備えており、演算部202は、レーザードップラー法に基づく演算を行って血流速度を算出し、算出した血流速度に基づいて血流加速度を算出し、算出した血流加速度に基づいて血圧指標値を導出するから、血圧の変動の状態を正確に確認することができる。
[Action effect]
The blood pressure measuring device 10 of the present embodiment includes an acquisition unit 201 and a calculation unit 202, and the calculation unit 202 calculates a blood flow velocity by performing a calculation based on the laser Doppler method, and the calculated blood flow velocity is calculated. Since the blood flow acceleration is calculated based on the above and the blood pressure index value is derived based on the calculated blood flow acceleration, the state of blood pressure fluctuation can be confirmed accurately.
 すなわち、特開2016-112277号公報に示す方法は、受光信号に基づいて心拍と血管抵抗とを求めて血圧を算出している。血管抵抗を求める方法は、図9に示すように、受光信号から、容積脈波における駆出波の振幅AP及び反射波の振幅ATを正確に測定する必要がある。しかし、受光信号に高周波ノイズが重畳している場合、振幅AP及び振幅ATを正確に測定することは困難である。 That is, the method shown in Japanese Patent Application Laid-Open No. 2016-112277 calculates blood pressure by obtaining heartbeat and vascular resistance based on a received signal. As shown in FIG. 9, in the method of determining the vascular resistance, it is necessary to accurately measure the amplitude AP of the ejection wave and the amplitude AT of the reflected wave in the volume pulse wave from the received signal. However, when high frequency noise is superimposed on the received signal, it is difficult to accurately measure the amplitude AP and the amplitude AT.
 これに対して、本実施の形態の血圧測定装置10によれば、血流加速度に基づいて血圧指標値を導出している。この方法では、高周波ノイズが原因で読み取りが困難な振幅AP及び振幅ATに基づいて血管抵抗を求める処理が不要であるため、従来の方法と比べて、正確な血圧指標値の導出が可能となる。このように、正確な血圧指標値の導出が可能になると、血圧の変動の状態も正確に確認することができる。 On the other hand, according to the blood pressure measuring device 10 of the present embodiment, the blood pressure index value is derived based on the blood flow acceleration. Since this method does not require the process of obtaining the vascular resistance based on the amplitude AP and the amplitude AT, which are difficult to read due to high frequency noise, it is possible to derive an accurate blood pressure index value as compared with the conventional method. .. In this way, if an accurate blood pressure index value can be derived, the state of blood pressure fluctuation can be confirmed accurately.
 さらに、本実施の形態の血圧測定装置10は、血流加速度に加えて、受光信号の時間変化に基づいて心拍数を算出し、血流加速度と心拍数に基づいて血圧指標値を導出する。そのため、血流加速度のみに基づいて、血圧指標値を導出する場合と比較して、より正確に血圧指標値を導出することができる。なお、心拍数は、上述したとおり、受光信号の容積脈波の山数をカウントすることにより算出することができる。振幅AP及び振幅ATを読み取るのとは異なり、容積脈波の山数をカウントする程度であれば、受光信号に高周波ノイズが重畳していても、正確に実行することができる。 Further, the blood pressure measuring device 10 of the present embodiment calculates the heart rate based on the time change of the received signal in addition to the blood flow acceleration, and derives the blood pressure index value based on the blood flow acceleration and the heart rate. Therefore, the blood pressure index value can be derived more accurately than in the case of deriving the blood pressure index value based only on the blood flow acceleration. As described above, the heart rate can be calculated by counting the number of peaks of the volume pulse wave of the received signal. Unlike reading the amplitude AP and the amplitude AT, it can be accurately executed even if high frequency noise is superimposed on the received signal as long as the number of peaks of the volume pulse wave is counted.
 また、本実施の形態の血圧測定装置10は、照射部16、受光部17、演算部202、及び、出力部である表示部120及び音出力部130を一体的に保持し、かつ、被測定者が携帯可能な筐体である本体ケース11を備えている。携帯可能であるため、簡便に測定を継続して行うことができる。そのため、血圧指標値又は血圧の時間変化を簡便に記録できるため、血圧の日内変動の記録も容易である。 Further, the blood pressure measuring device 10 of the present embodiment integrally holds the irradiation unit 16, the light receiving unit 17, the calculation unit 202, and the display unit 120 and the sound output unit 130, which are output units, and is to be measured. It includes a main body case 11 which is a housing that can be carried by a person. Since it is portable, it is possible to easily continue the measurement. Therefore, since the blood pressure index value or the time change of blood pressure can be easily recorded, it is easy to record the diurnal variation of blood pressure.
 また、血圧指標値の算出については、血流加速度と血圧との相関関係、及び、心拍数と血圧との相関関係を利用している。その一例として、これらの相関関係を反映させた(A)式を用いて、血圧指標値を算出している。このように、実際の体内での現象を反映させて血圧指標値を算出することによって、血圧指標値を正確に算出することができる。
  BFV=HR×diff …(A)
Further, for the calculation of the blood pressure index value, the correlation between the blood flow acceleration and the blood pressure and the correlation between the heart rate and the blood pressure are used. As an example, the blood pressure index value is calculated using the formula (A) that reflects these correlations. In this way, the blood pressure index value can be accurately calculated by calculating the blood pressure index value by reflecting the actual phenomenon in the body.
BFV = HR x diff ... (A)
 また、血圧指標値と、予め取得された被測定者の基準となる基準血圧とに基づいて、測定時の血圧を算出することができ、その一例として、(C)式を用いて血圧を算出している。このとき、血圧指標値については上記の通り正確な値であるため、血圧についても正確に算出することができる。
  BP=a×BFV+b …(C)
In addition, the blood pressure at the time of measurement can be calculated based on the blood pressure index value and the reference blood pressure of the subject to be measured, which is obtained in advance. As an example, the blood pressure is calculated using the formula (C). doing. At this time, since the blood pressure index value is an accurate value as described above, the blood pressure can also be calculated accurately.
BP = a 2 x BFV + b 2 ... (C)
 また、演算部202により算出された血圧指標値に基づく情報を出力する出力部を備えているため、演算部202において算出された血圧指標値に基づく情報を外部に出力することができる。出力部として、表示部120(本例では、タッチパネルディスプレイ13が該当)を備えているため、表示部120に血圧指標値及び/又は血圧の測定結果を数値で表示したり、測定結果に応じた画像を表示する等により、血圧指標値に基づく情報を視覚的に被測定者に伝達することができる。 Further, since the output unit that outputs the information based on the blood pressure index value calculated by the calculation unit 202 is provided, the information based on the blood pressure index value calculated by the calculation unit 202 can be output to the outside. Since the display unit 120 (corresponding to the touch panel display 13 in this example) is provided as the output unit, the blood pressure index value and / or the blood pressure measurement result can be displayed numerically on the display unit 120, or the measurement result can be displayed. Information based on the blood pressure index value can be visually transmitted to the subject by displaying an image or the like.
 また、出力部として、音出力部130(本例では、スピーカー15が該当)を備えているため、血圧指標値及び/又は血圧の測定結果の数値を音声で出力したり、測定結果に応じた効果音を出力する等により、血圧指標値に基づく情報を聴覚的に被測定者に伝達することができる。 Further, since the sound output unit 130 (corresponding to the speaker 15 in this example) is provided as the output unit, the blood pressure index value and / or the numerical value of the blood pressure measurement result can be output by voice or according to the measurement result. Information based on the blood pressure index value can be audibly transmitted to the person to be measured by outputting a sound effect or the like.
[第2の実施の形態]
 次に、本発明の第2の実施の形態について説明する。図15は、第2の実施の形態における血圧測定装置10Bの機能構成図である。以下では、第1の実施の形態との相違点を中心に説明し、第1の実施の形態と重複する内容についての説明は省略する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described. FIG. 15 is a functional configuration diagram of the blood pressure measuring device 10B according to the second embodiment. In the following, the differences from the first embodiment will be mainly described, and the description of the contents overlapping with the first embodiment will be omitted.
 第2の実施の形態の血圧測定装置10Bと第1の実施の形態との相違点は、第2の実施の形態の血圧測定装置10Bが、処理部200が被測定者の行動状態を検出する検出部203をさらに備えている点である。また、演算部202は、被測定者の行動状態、血流加速度、及び、心拍数に基づいて血圧指標値を算出する。 The difference between the blood pressure measuring device 10B of the second embodiment and the first embodiment is that the blood pressure measuring device 10B of the second embodiment detects the behavioral state of the person to be measured by the processing unit 200. The point is that the detection unit 203 is further provided. In addition, the calculation unit 202 calculates the blood pressure index value based on the behavioral state of the person to be measured, the blood flow acceleration, and the heart rate.
 図16は、第2の実施の形態における血圧測定処理の流れを説明するフローチャートである。 FIG. 16 is a flowchart illustrating a flow of blood pressure measurement processing in the second embodiment.
 受光信号の取得(ステップS21)から心拍数の算出・保存(ステップS24)までの処理については、第1の実施の形態と同じである。 The processing from the acquisition of the received light signal (step S21) to the calculation / storage of the heart rate (step S24) is the same as that of the first embodiment.
 次に、検出部203は、被測定者の行動状態を検出して記憶部150に保存する(ステップS25)。ここで、検出部203は、例えば、加速度センサー等の体動を検出するセンサーが用いられる。検出部203は本体ケース11内に内蔵されており、検出部203により被測定者の行動状態が検出される。 Next, the detection unit 203 detects the behavioral state of the person to be measured and stores it in the storage unit 150 (step S25). Here, as the detection unit 203, for example, a sensor that detects body movement, such as an acceleration sensor, is used. The detection unit 203 is built in the main body case 11, and the detection unit 203 detects the behavioral state of the person to be measured.
 次に、演算部202は、被測定者の行動状態、血流加速度、及び、心拍数に基づき、血圧指標値を算出して記憶部150に保存する(ステップS26)。具体的には、血圧指標値をBFV(単位:なし)、心拍数をHR(単位:bpm)、血流加速度をdiff(単位:cm/s)、心拍数HRの重み付けを調整する定数をa、血流加速度diffの重み付けを調整する定数をbとした場合、血圧指標値BFVは、(F)式を用いて算出する。
  BFV=HR×diff×(a×HR+b×diff)/(HR+diff) …(F)
Next, the calculation unit 202 calculates the blood pressure index value based on the behavioral state of the person to be measured, the blood flow acceleration, and the heart rate, and stores it in the storage unit 150 (step S26). Specifically, the blood pressure index value is BFV (unit: none), the heart rate is HR (unit: bpm), the blood flow acceleration is diff (unit: cm / s 2 ), and the constant for adjusting the weighting of the heart rate HR is set. When a 1 and the constant for adjusting the weighting of the blood flow acceleration diff are b 1 , the blood pressure index value BFV is calculated using the equation (F).
BFV = HR x diff x (a 1 x HR + b 1 x diff) / (HR + diff) ... (F)
 定数a及び定数bについて、例えば安静時は、定数a及び定数bともに1とする。また、激しい運動時などは心拍数の影響が大きくなるため、例えば運動時は、定数aを1.5、定数bを0.5とする。なお、定数a及び定数bについての上記値は一例であり、これらの値に限定されるものではない。また、運動時については、運動の負荷レベル及び継続時間等によって、例えば軽負荷時、中負荷時、及び、高負荷時のように、さらに段階的に細かく定数a及び定数bを調整してもよい。 Regarding the constant a 1 and the constant b 1 , for example, at rest, both the constant a 1 and the constant b 1 are set to 1. Further, since the influence of the heart rate becomes large during strenuous exercise, for example, the constant a 1 is set to 1.5 and the constant b 1 is set to 0.5 during exercise. The above values for the constant a 1 and the constant b 1 are examples, and are not limited to these values. As for exercise, the load level and duration such exercise, for example, a light load, during a middle load, and, as a high load, further stepwise finely adjust the constants a 1 and a constant b 1 You may.
 ステップS26以降の、血圧の算出・保存(ステップS27)から測定結果の出力(ステップS28)までの処理については、第1の実施の形態と同じである。 The processing from the calculation / storage of blood pressure (step S27) to the output of the measurement result (step S28) after step S26 is the same as that of the first embodiment.
 本実施の形態の血圧測定装置10Bによれば、被測定者の行動状態、血流加速度、及び、心拍数に基づいて血圧指標値を算出しており、血流加速度及び心拍数のみに基づいて血圧指標値を算出する場合と比較して、より体内での現象を反映させて血圧指標値を算出することができる。そのため、第2の実施の形態によれば、被測定者の行動状態を反映しているという意味で、より正確な血圧指標値を算出することができる。 According to the blood pressure measuring device 10B of the present embodiment, the blood pressure index value is calculated based on the behavioral state, blood flow acceleration, and heart rate of the person to be measured, and based only on the blood flow acceleration and heart rate. Compared with the case of calculating the blood pressure index value, the blood pressure index value can be calculated by reflecting the phenomenon in the body more. Therefore, according to the second embodiment, a more accurate blood pressure index value can be calculated in the sense that it reflects the behavioral state of the person to be measured.
 なお、被測定者の行動状態を検出する方法としては、加速度センサーなどの検出部203を使用する代わりに、演算部202を検出部として機能させてもよい。例えば、演算部202において、血流加速度及び/又は心拍数の値が、予め設定された閾値未満の場合は安静時、閾値以上の場合は運動時と判定することにより、被測定者の行動状態を検出する。この場合には、演算部202が検出部として機能するため、演算部202とは別に、加速度センサー等で構成される検出部203を設ける必要がないため、部品点数を低減させることができる。 As a method of detecting the behavioral state of the person to be measured, the calculation unit 202 may function as a detection unit instead of using the detection unit 203 such as an acceleration sensor. For example, in the calculation unit 202, the behavioral state of the person to be measured is determined by determining that the blood flow acceleration and / or heart rate values are less than a preset threshold value at rest and above the threshold value during exercise. Is detected. In this case, since the calculation unit 202 functions as a detection unit, it is not necessary to provide a detection unit 203 composed of an acceleration sensor or the like separately from the calculation unit 202, so that the number of parts can be reduced.
[第3の実施の形態]
 次に、本発明の第3の実施の形態について説明する。本実施の形態における血圧測定装置の機能構成は、第1の実施の形態の血圧測定装置10と同じであるため、説明は省略する。本実施の形態の血圧測定装置は、血流加速度のみに基づいて血圧指標値を導出する点が、第1の実施の形態の血圧測定装置10と異なる。
[Third Embodiment]
Next, a third embodiment of the present invention will be described. Since the functional configuration of the blood pressure measuring device in the present embodiment is the same as that of the blood pressure measuring device 10 in the first embodiment, the description thereof will be omitted. The blood pressure measuring device of the present embodiment is different from the blood pressure measuring device 10 of the first embodiment in that a blood pressure index value is derived only based on the blood flow acceleration.
 図17は、第3の実施の形態における血圧測定処理の流れを説明するフローチャートである。 FIG. 17 is a flowchart illustrating the flow of blood pressure measurement processing in the third embodiment.
 受光信号の取得(ステップS31)から血流加速度の算出・保存(ステップS33)までの処理については、第1の実施の形態と同じである。 The processing from the acquisition of the received light signal (step S31) to the calculation / storage of the blood flow acceleration (step S33) is the same as that of the first embodiment.
 次に、演算部202は、血流加速度に基づき、血圧指標値を導出して記憶部150に保存する(ステップS34)。具体的には、血圧指標値をBFV(単位:なし)、血流加速度をdiff(単位:cm/s)とした場合、血圧指標値BFVは、(G)式を用いて導出できる。すなわち、本例では、血流加速度そのものを血圧指標値として利用する。
  BFV=diff …(G)
Next, the calculation unit 202 derives the blood pressure index value based on the blood flow acceleration and stores it in the storage unit 150 (step S34). Specifically, when the blood pressure index value is BFV (unit: none) and the blood flow acceleration is diff (unit: cm / s 2 ), the blood pressure index value BFV can be derived using the equation (G). That is, in this example, the blood flow acceleration itself is used as the blood pressure index value.
BFV = diff ... (G)
 ステップS34以降の、血圧の算出・保存(ステップS35)から測定結果の出力(ステップS36)までの処理については、第1の実施の形態と同じである。 The processing from the calculation / storage of blood pressure (step S35) to the output of the measurement result (step S36) after step S34 is the same as that of the first embodiment.
 本実施の形態の血圧測定装置によれば、血流加速度のみに基づいて血圧指標値を導出しているため、第1の実施の形態と比較して軽い処理により血圧指標値を導出することができる。 According to the blood pressure measuring device of the present embodiment, the blood pressure index value is derived based only on the blood flow acceleration, so that the blood pressure index value can be derived by a lighter process than that of the first embodiment. it can.
[第4の実施の形態] 
 次に、本発明の第4の実施の形態について説明する。図18は第4の実施の形態における血圧測定システム50の外観図である。
[Fourth Embodiment]
Next, a fourth embodiment of the present invention will be described. FIG. 18 is an external view of the blood pressure measuring system 50 according to the fourth embodiment.
 第4の実施の形態の血圧測定システム50は、受光信号を取得する取得部、血圧指標値を導出する演算部、及び、血圧指標値に基づく情報を出力する出力部としての機能を備える血圧測定装置本体51と、レーザー光を照射する照射部、及び、体内で反射又は透過したレーザー光を受光する受光部を備える受光信号検出ユニット52とから構成される。 The blood pressure measurement system 50 of the fourth embodiment has functions as an acquisition unit for acquiring a received signal, a calculation unit for deriving a blood pressure index value, and an output unit for outputting information based on the blood pressure index value. It is composed of an apparatus main body 51, an irradiation unit that irradiates a laser beam, and a light receiving signal detection unit 52 that includes a light receiving unit that receives the laser light reflected or transmitted in the body.
 血圧測定装置本体51としては、例えば、スマートフォンを用いることができる。この場合は、スマートフォンに対して、スマートフォンのCPUを取得部及び演算部として機能させるための血圧測定プログラムをインストールする。これによって、スマートフォンを血圧測定装置本体51として利用可能になる。また、血圧指標値に基づく情報を出力する出力部として、スマートフォンが備えるタッチパネルディスプレイ及びスピーカーを利用する。 As the blood pressure measuring device main body 51, for example, a smartphone can be used. In this case, a blood pressure measurement program for causing the CPU of the smartphone to function as an acquisition unit and a calculation unit is installed in the smartphone. As a result, the smartphone can be used as the blood pressure measuring device main body 51. In addition, a touch panel display and a speaker provided in the smartphone are used as an output unit for outputting information based on the blood pressure index value.
 受光信号検出ユニット52は、取得部及び演算部の機能を持たない以外は、第1の実施の形態の血圧測定装置10と同じ構成である。 The light receiving signal detection unit 52 has the same configuration as the blood pressure measuring device 10 of the first embodiment except that it does not have the functions of the acquisition unit and the calculation unit.
 血圧測定装置本体51及び受光信号検出ユニット52はいずれも通信部を備え、無線又は有線の通信回線を介して接続される。血圧測定装置本体51と受光信号検出ユニット52とを無線回線で接続する場合は、例えば、Bluetooth(登録商標)又は無線LAN(Local Area Network)等の通信規格を用いることができる。また、血圧測定装置本体51と受光信号検出ユニット52とを有線回線で接続する場合は、例えば、USB(Universal Serial Bus)等の接続規格を用いることができる。 Both the blood pressure measuring device main body 51 and the received light signal detection unit 52 are provided with a communication unit and are connected via a wireless or wired communication line. When the blood pressure measuring device main body 51 and the received signal detection unit 52 are connected by a wireless line, for example, a communication standard such as Bluetooth (registered trademark) or wireless LAN (Local Area Network) can be used. Further, when connecting the blood pressure measuring device main body 51 and the received light signal detection unit 52 by a wired line, for example, a connection standard such as USB (Universal Serial Bus) can be used.
 上記以外の機能構成及び処理の流れについては、上記第1の実施の形態と同一であるため、ここでは詳細な説明は省略する。 Since the functional configuration and processing flow other than the above are the same as those in the first embodiment, detailed description thereof will be omitted here.
 本実施の形態の血圧測定装置によれば、スマートフォンを血圧測定装置本体として利用することができるため、受光信号検出ユニット52と血圧測定プログラムとを新たに追加するだけで、上記各実施形態と同様の血圧測定が可能になる。受光信号検出ユニット52は、受光信号を検出するのみで血圧測定処理は実行しないため、装置構成も簡単になり、血圧測定機能を有する場合と比べて、低コスト化が可能である。また、スマートフォンのタッチパネルディスプレイは、一般的に腕時計型の装置と比較して大型である。そのような大型のタッチパネルディスプレイを測定結果の表示に利用すれば、ユーザの視認性及び操作性も向上する。 According to the blood pressure measuring device of the present embodiment, since the smartphone can be used as the blood pressure measuring device main body, the same as in each of the above embodiments, only by newly adding the light receiving signal detection unit 52 and the blood pressure measuring program. Blood pressure can be measured. Since the light-receiving signal detection unit 52 only detects the light-receiving signal and does not execute the blood pressure measurement process, the device configuration is simple and the cost can be reduced as compared with the case where the light-receiving signal detection unit 52 has the blood pressure measurement function. Further, the touch panel display of a smartphone is generally larger than a wristwatch-type device. If such a large touch panel display is used for displaying the measurement result, the visibility and operability of the user are also improved.
 なお、血圧測定装置本体として、スマートフォンの代わりにコンピュータを用いてもよい。コンピュータは、例えば、クラウド上のサーバである。サーバは、インターネットなどの通信回線を介して、受光信号検出ユニット52と通信可能に接続される。サーバは、通信回線を介して、受光信号検出ユニット52から受光信号を取得し、取得した受光信号に基づいて血圧指標値を導出する血圧測定処理を実行する。さらに、サーバは、測定結果を受光信号検出ユニット52に送信する。サーバは、スマートフォンと比較して処理能力が高い場合が多い。そのため、サーバを血圧測定装置本体として利用すれば、測定結果を短時間で得ることができる。また、サーバのデータストレージ機能を利用すれば、測定結果をサーバに保存することも可能となり、良好な利便性が確保される。 A computer may be used instead of the smartphone as the main body of the blood pressure measuring device. A computer is, for example, a server on the cloud. The server is communicably connected to the light receiving signal detection unit 52 via a communication line such as the Internet. The server acquires a light-receiving signal from the light-receiving signal detection unit 52 via a communication line, and executes a blood pressure measurement process for deriving a blood pressure index value based on the acquired light-receiving signal. Further, the server transmits the measurement result to the light receiving signal detection unit 52. Servers often have higher processing power than smartphones. Therefore, if the server is used as the main body of the blood pressure measuring device, the measurement result can be obtained in a short time. Further, if the data storage function of the server is used, the measurement result can be saved in the server, and good convenience is ensured.
[変形例]
 以上、本発明をその好適な実施の形態に基づいて説明したが、本発明を適用可能な実施の形態は、上述の実施の形態に限定されものではない。
[Modification example]
Although the present invention has been described above based on its preferred embodiment, the embodiment to which the present invention can be applied is not limited to the above-described embodiment.
 心拍数の算出については、上記の通り受光信号に含まれる容積脈波の山数をカウントすることにより行う態様に限らず、受光信号に基づいて算出され、容積脈波と同じ周期性を持つ他の要素値の信号の山数をカウントすることにより行ってもよい。例えば、血流速度及び/又は血流加速度について連続的に値を取得してグラフ化した場合、容積脈波とは波形が異なるものの、容積脈波と同じ周期性を持つため、血流速度及び/又は血流加速度に基づいて心拍数を算出してもよい。また、受光信号に基づいて算出したパワースペクトルから血流量を算出することが可能である。血流量について連続的に値を取得してグラフ化した場合、容積脈波とは波形が異なるものの、容積脈波と同じ周期性を持つため、血流量に基づいて心拍数を算出してもよい。 The calculation of the heart rate is not limited to the mode performed by counting the number of peaks of the volumetric pulse wave included in the received signal as described above, but is calculated based on the received signal and has the same periodicity as the volume pulse wave. This may be done by counting the number of peaks of the signal of the element value of. For example, when the values of blood flow velocity and / or blood flow acceleration are continuously acquired and graphed, the waveform is different from that of the volumetric pulse wave, but it has the same periodicity as the volume pulse wave. / Or the heart rate may be calculated based on the blood flow acceleration. In addition, it is possible to calculate the blood flow rate from the power spectrum calculated based on the received signal. When the value of the blood flow is continuously acquired and graphed, the heart rate may be calculated based on the blood flow because the waveform is different from that of the volumetric pulse wave but has the same periodicity as the volumetric pulse wave. ..
 また、血圧指標値の導出については、血流加速度と血圧指標値との対応関係を示すテーブル、及び/又は、血流加速度及び心拍数と血圧指標値との対応関係を表すテーブルを記憶部150に記憶しておき、演算部202において算出された血流加速度及び/又は心拍数に基づいて、テーブルを参照して血圧指標値を導出してもよい。このように、血圧指標値を導出する方法として、テーブルを使用する方法でも、上記実施形態で示したように計算式を使用する方法でも、どちらも、血流加速度と血圧との相関関係、及び/又は、心拍数と血圧との相関関係に基づいて、血圧指標値を導出する方法に含まれる。 Regarding the derivation of the blood pressure index value, the storage unit 150 stores a table showing the correspondence between the blood flow acceleration and the blood pressure index value and / or a table showing the correspondence between the blood flow acceleration and the heart rate and the blood pressure index value. The blood pressure index value may be derived by referring to the table based on the blood flow acceleration and / or the heart rate calculated by the calculation unit 202. As described above, as a method for deriving the blood pressure index value, both the method using a table and the method using a calculation formula as shown in the above embodiment have the correlation between the blood flow acceleration and the blood pressure, and the blood pressure. / Or included in the method of deriving a blood pressure index value based on the correlation between heart rate and blood pressure.
 また、血圧測定処理において、最初に受光信号を取得した段階で、受光信号の強度が予め定められた閾値以上であるか判定し、受光信号の強度が閾値に満たない場合は、血圧測定処理を中断するようにしてもよい。血圧測定装置が被測定者の測定部位に正しく装着固定されていない場合には、血圧指標値及び/又は血圧の測定を正確に行うことはできない。受光信号の強度が閾値に満たない場合は、血圧測定装置が被測定者の測定部位に正しく装着固定されていない可能性が高いため、この場合には血圧測定処理を中断することによって、無駄な処理を行わないようにすることができる。 Further, in the blood pressure measurement process, when the received signal is first acquired, it is determined whether the intensity of the received signal is equal to or higher than a predetermined threshold value, and if the intensity of the received signal is less than the threshold value, the blood pressure measurement process is performed. It may be interrupted. If the blood pressure measuring device is not properly attached and fixed to the measurement site of the person to be measured, the blood pressure index value and / or the blood pressure cannot be measured accurately. If the intensity of the received signal is less than the threshold value, it is highly possible that the blood pressure measuring device is not properly attached and fixed to the measurement site of the person to be measured. In this case, it is useless to interrupt the blood pressure measuring process. It is possible to prevent the processing from being performed.
 また、血圧測定処理において血流加速度を取得した段階で、血流加速度が予め定められた閾値の範囲(例えば、人体で想定される範囲)内であるか判定し、血流加速度が閾値の範囲から外れている場合は、血圧測定処理を中断するようにしてもよい。同様に、心拍数を取得した段階で、心拍数が予め定められた閾値の範囲(例えば、人体で想定される範囲)内であるか判定し、心拍数が閾値の範囲から外れている場合は、血圧測定処理を中断するようにしてもよい。血流加速度及び/又は心拍数閾値の範囲から外れている場合は、何らかの異常により測定を正確に行うことができない可能性が高いため、この場合には血圧測定処理を中断することによって、無駄な処理を行わないようにすることができる。 In addition, when the blood flow acceleration is acquired in the blood pressure measurement process, it is determined whether the blood flow acceleration is within a predetermined threshold range (for example, a range assumed by the human body), and the blood flow acceleration is within the threshold range. If it is out of the range, the blood pressure measurement process may be interrupted. Similarly, at the stage of acquiring the heart rate, it is determined whether the heart rate is within a predetermined threshold range (for example, a range assumed by the human body), and if the heart rate is out of the threshold range, it is determined. , The blood pressure measurement process may be interrupted. If it is out of the range of blood flow acceleration and / or heart rate threshold, it is highly possible that the measurement cannot be performed accurately due to some abnormality. In this case, it is useless to interrupt the blood pressure measurement process. It is possible to prevent the processing from being performed.
 また、測定結果の出力については、図13に示すようなアイコンを表示したり、図14に示すような血圧指標値をメーター表示する態様に限らず、血圧の複数の状態を、それぞれの状態に対応する色で示す態様など、その他の態様とすることができる。 Further, the output of the measurement result is not limited to the mode in which the icon as shown in FIG. 13 is displayed or the blood pressure index value is displayed on the meter as shown in FIG. 14, and a plurality of states of blood pressure are set to each state. Other aspects can be used, such as the aspect indicated by the corresponding color.
 また、血圧指標値のリアルタイムの測定値、血圧指標値の日内変動、及び、血圧指標値の過去の測定値との比較のうち少なくとも1つの情報を表示部120に表示したり、上記情報を音声により音出力部130から出力してもよい。ここで、血圧指標値の過去の測定値との比較とは、例えば、リアルタイムの測定値と前日の同時刻の血圧指標値との比較、リアルタイムの測定値と前日の所定時間帯の血圧指標値の平均値との比較、リアルタイムの測定値と一週間の血圧指標値の平均値との比較等、過去の測定値に対する比較を意味する。このような情報を出力することによって、被測定者を初めとする測定結果の参照者に対し、血圧指標値の値、血圧の変動の状態、及び、過去のデータとの比較について、有益な情報を提供することができる。 In addition, at least one of the real-time measured value of the blood pressure index value, the diurnal variation of the blood pressure index value, and the comparison of the blood pressure index value with the past measured value is displayed on the display unit 120, or the above information is voiced. May be output from the sound output unit 130. Here, the comparison of the blood pressure index value with the past measured value is, for example, a comparison between the real-time measured value and the blood pressure index value at the same time on the previous day, and the real-time measured value and the blood pressure index value in the predetermined time zone on the previous day. It means a comparison with past measured values, such as a comparison with the average value of the above, a comparison between the real-time measured value and the average value of the blood pressure index value for one week. By outputting such information, useful information about the value of the blood pressure index value, the state of blood pressure fluctuation, and the comparison with the past data for the reference person of the measurement result including the subject. Can be provided.
 また、血圧のリアルタイムの測定値、血圧の日内変動、及び血圧の過去の測定値との比較のうち少なくとも1つの情報を表示部120に表示したり、上記情報を音声により音出力部130から出力してもよい。ここで、血圧の過去の測定値との比較とは、例えば、リアルタイムの測定値と前日の同時刻の血圧との比較、リアルタイムの測定値と前日の所定時間帯の血圧の平均値との比較、リアルタイムの測定値と一週間の血圧の平均値との比較等、過去の測定値に対する比較を意味する。このような情報を出力することによって、被測定者を初めとする測定結果の参照者に対し、血圧指標値の値、血圧の変動の状態、及び、過去のデータとの比較について、有益な情報を提供することができる。 In addition, at least one of the real-time measured value of blood pressure, the diurnal variation of blood pressure, and the comparison with the past measured value of blood pressure is displayed on the display unit 120, and the above information is output from the sound output unit 130 by voice. You may. Here, the comparison with the past measured value of blood pressure is, for example, the comparison between the real-time measured value and the blood pressure at the same time on the previous day, and the comparison between the real-time measured value and the average value of the blood pressure in the predetermined time zone on the previous day. , Means a comparison with past measurements, such as a comparison between real-time measurements and weekly mean blood pressure. By outputting such information, useful information about the value of the blood pressure index value, the state of blood pressure fluctuation, and the comparison with the past data for the reference person of the measurement result including the subject. Can be provided.
 また、血圧指標値及び/又は血圧の測定値が、予め定められている閾値を超えている場合に、例えば、注意喚起を促す表示を表示部120に表示したり、アラート音を音出力部130から出力する等、異常を示す情報を出力部から出力するようにしてもよい。このような態様とすることによって、被測定者の血圧が高い場合に、注意喚起を促すことができる。 Further, when the blood pressure index value and / or the measured value of blood pressure exceeds a predetermined threshold value, for example, a display prompting attention is displayed on the display unit 120, or an alert sound is output to the sound output unit 130. Information indicating an abnormality may be output from the output unit, such as output from. By adopting such an aspect, it is possible to call attention when the blood pressure of the person to be measured is high.
 上記以外にも、本発明の趣旨を逸脱しない範囲で適宜変更可能なのは勿論である。また、本開示の技術は、プログラムに加えて、プログラムを非一時的に記憶する記憶媒体にもおよぶ。 Of course, other than the above, it can be changed as appropriate without departing from the spirit of the present invention. In addition to the program, the technique of the present disclosure extends to a storage medium for storing the program non-temporarily.
 2019年6月3日に出願された日本出願特願2019-103867の開示はその全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 The entire disclosure of Japanese Application Japanese Patent Application No. 2019-103867 filed on June 3, 2019 is incorporated herein by reference in its entirety. All documents, patent applications, and technical standards described herein are to the same extent as if the individual documents, patent applications, and technical standards were specifically and individually stated to be incorporated by reference. Incorporated herein by reference.

Claims (18)

  1.  少なくとも1つのプロセッサを備え、
     前記プロセッサは、
     被測定者の体内に照射されたレーザー光に基づいて検出される受光信号を取得し、
     取得した受光信号に対してレーザードップラー法に基づく演算を行って血流速度を算出し、算出した前記血流速度に基づいて血流加速度を算出し、算出した前記血流加速度に基づいて血圧指標値を導出する
     血圧測定装置。
    With at least one processor
    The processor
    Acquires the received light signal detected based on the laser beam emitted into the body of the person to be measured,
    A blood flow velocity is calculated by performing a calculation based on the laser Doppler method on the acquired received signal, a blood flow acceleration is calculated based on the calculated blood flow velocity, and a blood pressure index is calculated based on the calculated blood flow acceleration. A blood pressure measuring device that derives values.
  2.  前記プロセッサは、血流加速度と血圧との相関関係に基づいて、前記血圧指標値を導出する
     請求項1に記載の血圧測定装置。
    The blood pressure measuring device according to claim 1, wherein the processor derives the blood pressure index value based on the correlation between the blood flow acceleration and the blood pressure.
  3.  前記プロセッサは、前記受光信号の時間変化に基づいて心拍数を算出し、算出した前記血流加速度及び前記心拍数に基づいて前記血圧指標値を導出する
     請求項1または2に記載の血圧測定装置。
    The blood pressure measuring device according to claim 1 or 2, wherein the processor calculates a heart rate based on a time change of the received signal, and derives the blood pressure index value based on the calculated blood flow acceleration and the heart rate. ..
  4.  前記プロセッサは、血流加速度と血圧との相関関係及び心拍数と血圧との相関関係に基づいて、前記血圧指標値を導出する
     請求項3に記載の血圧測定装置。
    The blood pressure measuring device according to claim 3, wherein the processor derives the blood pressure index value based on the correlation between blood flow acceleration and blood pressure and the correlation between heart rate and blood pressure.
  5.  前記プロセッサは、さらに、前記被測定者の行動状態を検出し、
     前記プロセッサは、前記被測定者の行動状態、前記血流加速度、及び前記心拍数に基づいて前記血圧指標値を導出する
     請求項3または4に記載の血圧測定装置。
    The processor further detects the behavioral state of the subject to be measured.
    The blood pressure measuring device according to claim 3 or 4, wherein the processor derives the blood pressure index value based on the behavioral state of the person to be measured, the blood flow acceleration, and the heart rate.
  6.  前記プロセッサは、
     前記血圧指標値をBFV、
     前記心拍数をHR、
     前記血流加速度をdiffとした場合、
      BFV=HR×diff …(1)
     で表される(1)式を用いて前記血圧指標値を算出する
     請求項4に記載の血圧測定装置。
    The processor
    The blood pressure index value is BFV,
    The heart rate is HR,
    When the blood flow acceleration is diff,
    BFV = HR x diff ... (1)
    The blood pressure measuring device according to claim 4, wherein the blood pressure index value is calculated using the equation (1) represented by.
  7.  前記プロセッサは、さらに、前記被測定者の行動状態を検出し、
     前記プロセッサは、
     前記心拍数HRの重み付けを調整する定数をa
     前記血流加速度diffの重み付けを調整する定数をbとした場合、
     前記被測定者の行動状態に基づいて、前記定数a及び前記定数bを決定し、
      BFV=HR×diff×(a×HR+b×diff)/(HR+diff) …(2)
     で表される(2)式を用いて前記血圧指標値を算出する
     請求項6に記載の血圧測定装置。
    The processor further detects the behavioral state of the subject to be measured.
    The processor
    The constant that adjusts the weighting of the heart rate HR is a 1 ,
    When the constant for adjusting the weighting of the blood flow acceleration diff is b 1 .
    The constant a 1 and the constant b 1 are determined based on the behavioral state of the person to be measured.
    BFV = HR x diff x (a 1 x HR + b 1 x diff) / (HR + diff) ... (2)
    The blood pressure measuring device according to claim 6, wherein the blood pressure index value is calculated using the equation (2) represented by.
  8.  前記プロセッサは、予め取得された前記被測定者の基準となる基準血圧と、前記血圧指標値とに基づいて、測定時の血圧を算出する
     請求項1から7のいずれか1項に記載の血圧測定装置。
    The blood pressure according to any one of claims 1 to 7, wherein the processor calculates the blood pressure at the time of measurement based on the reference blood pressure of the subject to be measured and the blood pressure index value acquired in advance. measuring device.
  9.  前記プロセッサは、
     前記測定時の血圧をBP、
     前記血圧指標値をBFV、
     前記血圧指標値の算出方法及び測定条件の少なくとも1つに基づいて決定される定数をa2、
     前記基準血圧に基づいて決定される定数をbとした場合、
      BP=a×BFV+b …(3)
     で表される(3)式を用いて前記測定時の血圧を算出する
     請求項8に記載の血圧測定装置。
    The processor
    The blood pressure at the time of the measurement is BP,
    The blood pressure index value is BFV,
    A constant determined based on at least one of the calculation method and measurement condition of the blood pressure index value is a 2.
    If a constant determined based on the reference blood pressure was b 2,
    BP = a 2 x BFV + b 2 ... (3)
    The blood pressure measuring device according to claim 8, wherein the blood pressure at the time of the measurement is calculated by using the formula (3) represented by.
  10.  前記プロセッサにより導出された前記血圧指標値に基づく情報を出力する出力部を備える
     請求項1から9のいずれか1項に記載の血圧測定装置。
    The blood pressure measuring device according to any one of claims 1 to 9, further comprising an output unit that outputs information based on the blood pressure index value derived by the processor.
  11.  前記出力部は、前記血圧指標値のリアルタイムの測定値、前記血圧指標値の日内変動、及び前記血圧指標値の過去の測定値との比較のうち少なくとも1つを出力する
     請求項10に記載の血圧測定装置。
    The output unit according to claim 10, wherein the output unit outputs at least one of a real-time measured value of the blood pressure index value, a diurnal variation of the blood pressure index value, and a comparison of the blood pressure index value with a past measured value. Blood pressure measuring device.
  12.  前記プロセッサは、予め取得された前記被測定者の基準となる基準血圧と、前記血圧指標値とに基づいて、測定時の血圧を算出し、
     前記出力部は、前記血圧のリアルタイムの測定値、前記血圧の日内変動、及び前記血圧の過去の測定値との比較のうち少なくとも1つを出力する
     請求項10または11に記載の血圧測定装置。
    The processor calculates the blood pressure at the time of measurement based on the reference blood pressure as a reference of the subject and the blood pressure index value acquired in advance.
    The blood pressure measuring device according to claim 10 or 11, wherein the output unit outputs at least one of a real-time measured value of the blood pressure, a diurnal variation of the blood pressure, and a comparison with a past measured value of the blood pressure.
  13.  前記出力部は、前記プロセッサにより導出された前記血圧指標値が予め定められている閾値を超えている場合に、異常を示す情報を出力する
     請求項10から12のいずれか1項に記載の血圧測定装置。
    The blood pressure according to any one of claims 10 to 12, wherein the output unit outputs information indicating an abnormality when the blood pressure index value derived by the processor exceeds a predetermined threshold value. measuring device.
  14.  前記被測定者の体内にレーザー光を照射する照射部、前記体内で反射又は透過したレーザー光を受光する受光部、前記プロセッサ、及び、前記出力部を一体的に保持し、かつ、被測定者が携帯可能な筐体を備える
     請求項10から13のいずれか1項に記載の血圧測定装置。
    An irradiation unit that irradiates a laser beam inside the body of the person to be measured, a light receiving unit that receives the laser light reflected or transmitted inside the body, a processor, and an output unit that integrally hold the person to be measured. The blood pressure measuring device according to any one of claims 10 to 13, further comprising a portable housing.
  15.  前記出力部は、ディスプレイである
     請求項14に記載の血圧測定装置。
    The blood pressure measuring device according to claim 14, wherein the output unit is a display.
  16.  被測定者の体内に照射されたレーザー光に基づいて検出される受光信号を取得し取得した受光信号に対してレーザードップラー法に基づく演算を行って血流速度を算出し、算出した前記血流速度に基づいて血流加速度を算出し、算出した前記血流加速度に基づいて血圧指標値を導出する、少なくとも1つのプロセッサを備える血圧測定装置本体と、
     前記被測定者の体内にレーザー光を照射する照射部、及び、前記体内で反射又は透過したレーザー光を受光する受光部を備える受光信号検出ユニットと
     を備える血圧測定システム。
    The blood flow velocity is calculated by acquiring a light-receiving signal detected based on the laser beam radiated into the body of the person to be measured and performing a calculation based on the laser Doppler method on the acquired light-receiving signal. A blood pressure measuring device main body including at least one processor that calculates the blood flow acceleration based on the velocity and derives the blood pressure index value based on the calculated blood flow acceleration.
    A blood pressure measurement system including an irradiation unit that irradiates a laser beam inside the body of the person to be measured, and a light receiving signal detection unit that includes a light receiving unit that receives the laser light reflected or transmitted inside the body.
  17.  被測定者の体内に照射されたレーザー光に基づいて検出される受光信号を取得し、
     取得した受光信号に対してレーザードップラー法に基づく演算を行って血流速度を算出し、
     算出した前記血流速度に基づいて血流加速度を算出し、
     算出した前記血流加速度に基づいて血圧指標値を導出する
     血圧測定方法。
    Acquires the received light signal detected based on the laser beam emitted into the body of the person to be measured,
    The blood flow velocity is calculated by performing an operation based on the laser Doppler method on the acquired received signal.
    The blood flow acceleration is calculated based on the calculated blood flow velocity, and the blood flow acceleration is calculated.
    A blood pressure measurement method for deriving a blood pressure index value based on the calculated blood flow acceleration.
  18.  被測定者の体内に照射されたレーザー光に基づいて検出される受光信号を取得する手順と、
     取得した受光信号に対してレーザードップラー法に基づく演算を行って血流速度を算出する手順と、
     算出した前記血流速度に基づいて血流加速度を算出する手順と、
     算出した前記血流加速度に基づいて血圧指標値を導出する手順とを
     コンピュータに実行させる血圧測定プログラム。
    The procedure for acquiring the received light signal detected based on the laser beam emitted into the body of the person to be measured, and
    The procedure for calculating the blood flow velocity by performing an operation based on the laser Doppler method on the acquired received signal, and
    The procedure for calculating the blood flow acceleration based on the calculated blood flow velocity and
    A blood pressure measurement program that causes a computer to execute a procedure for deriving a blood pressure index value based on the calculated blood flow acceleration.
PCT/JP2020/020181 2019-06-03 2020-05-21 Blood pressure measurement device, blood pressure measurement system, blood pressure measurement method, and blood pressure measurement program WO2020246258A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021524751A JP7138244B2 (en) 2019-06-03 2020-05-21 Blood pressure measurement device, blood pressure measurement system, blood pressure measurement method, and blood pressure measurement program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019103867 2019-06-03
JP2019-103867 2019-06-03

Publications (1)

Publication Number Publication Date
WO2020246258A1 true WO2020246258A1 (en) 2020-12-10

Family

ID=73652841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/020181 WO2020246258A1 (en) 2019-06-03 2020-05-21 Blood pressure measurement device, blood pressure measurement system, blood pressure measurement method, and blood pressure measurement program

Country Status (2)

Country Link
JP (1) JP7138244B2 (en)
WO (1) WO2020246258A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114652351A (en) * 2022-05-24 2022-06-24 苏州圣泽医疗科技有限公司 Continuous blood pressure measuring method and device based on ultrasonic Doppler and electronic equipment
EP4309573A1 (en) * 2022-07-21 2024-01-24 Sonion Nederland B.V. Determination of a parameter related to blood flow in a blood perfused part using a vcsel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5793036A (en) * 1980-11-29 1982-06-09 Hiroshi Osanai Acceleration pulse meter and diagnosis by using same
JP2002224063A (en) * 2001-01-30 2002-08-13 Aloka Co Ltd Pulse wave propagation speed measuring device and ultrasonograph
US20160106327A1 (en) * 2014-10-15 2016-04-21 Samsung Electronics Co., Ltd. Apparatus and method for acquiring bio-information

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5793036B2 (en) 2011-09-08 2015-10-14 三菱マテリアル電子化成株式会社 Laminated crucible for casting silicon ingot and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5793036A (en) * 1980-11-29 1982-06-09 Hiroshi Osanai Acceleration pulse meter and diagnosis by using same
JP2002224063A (en) * 2001-01-30 2002-08-13 Aloka Co Ltd Pulse wave propagation speed measuring device and ultrasonograph
US20160106327A1 (en) * 2014-10-15 2016-04-21 Samsung Electronics Co., Ltd. Apparatus and method for acquiring bio-information

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114652351A (en) * 2022-05-24 2022-06-24 苏州圣泽医疗科技有限公司 Continuous blood pressure measuring method and device based on ultrasonic Doppler and electronic equipment
CN114652351B (en) * 2022-05-24 2022-10-14 苏州圣泽医疗科技有限公司 Continuous blood pressure measuring method and device based on ultrasonic Doppler and electronic equipment
WO2023226293A1 (en) * 2022-05-24 2023-11-30 苏州圣泽医疗科技有限公司 Doppler ultrasound-based continuous blood pressure measuring apparatus and electronic device
EP4309573A1 (en) * 2022-07-21 2024-01-24 Sonion Nederland B.V. Determination of a parameter related to blood flow in a blood perfused part using a vcsel
WO2024017785A1 (en) 2022-07-21 2024-01-25 Sonion Nederland B.V. Optical determination of a biometric parameter

Also Published As

Publication number Publication date
JPWO2020246258A1 (en) 2020-12-10
JP7138244B2 (en) 2022-09-15

Similar Documents

Publication Publication Date Title
JP3605216B2 (en) Pulse meter
US9737218B2 (en) Blood pressure measurement device, electronic device, and blood pressure measurement method
US20090082681A1 (en) Biological information processing apparatus and biological information processing method
US20190029539A1 (en) Physical sign detecting earphone and physical sign detecting method
CN109310349A (en) Diastolic blood pressure measurement calibration
JP2014012072A (en) Measurement apparatus, measurement method, program, storage medium, and measurement system
JP2007007075A (en) Blood pressure measuring apparatus
WO2020246258A1 (en) Blood pressure measurement device, blood pressure measurement system, blood pressure measurement method, and blood pressure measurement program
JP5708341B2 (en) Biological information processing apparatus and biological information processing method
JP2016146958A (en) Blood pressure measuring device and blood pressure measuring method
US11272901B2 (en) Ultrasound blood-flow monitoring
JP2017153874A (en) Biological information measurement device and biological information measurement method
CN104027109A (en) Atrial fibrillation analyzer and program
JP2016195747A (en) Biological information processor, biological information processing system, biological information processing method, and biological information processing program
JP2012055464A (en) Sleep evaluating device, sleep evaluating system, and program
JP2012161556A (en) Pulse wave measurement device and program
US20150126881A1 (en) Biological information measurement device, patient terminal, server, and remote rehabilitation method
JP2013013645A (en) Biological information processing device and biological information processing method
JP5582051B2 (en) Pulse wave measuring device and program
JP4534535B2 (en) Biological evaluation apparatus and control method of biological evaluation apparatus
US20220151587A1 (en) Ultrasound Blood-Flow Monitoring
JP3815663B2 (en) Measuring device capable of detecting information about pulse
JP3533122B2 (en) Pulse wave monitor
JP5655721B2 (en) Biological information processing apparatus and biological information processing method
JP2012095795A (en) Pulse wave analysis method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20818045

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021524751

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20818045

Country of ref document: EP

Kind code of ref document: A1