WO2020246218A1 - Rubber composition and tire - Google Patents

Rubber composition and tire Download PDF

Info

Publication number
WO2020246218A1
WO2020246218A1 PCT/JP2020/019428 JP2020019428W WO2020246218A1 WO 2020246218 A1 WO2020246218 A1 WO 2020246218A1 JP 2020019428 W JP2020019428 W JP 2020019428W WO 2020246218 A1 WO2020246218 A1 WO 2020246218A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
rubber composition
hardness
rubber
tire
Prior art date
Application number
PCT/JP2020/019428
Other languages
French (fr)
Japanese (ja)
Inventor
健介 鷲頭
Original Assignee
住友ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ゴム工業株式会社 filed Critical 住友ゴム工業株式会社
Priority to JP2021524732A priority Critical patent/JPWO2020246218A1/ja
Priority to CN202080016472.XA priority patent/CN113474181B/en
Priority to US17/615,150 priority patent/US20220235209A1/en
Priority to EP20817948.1A priority patent/EP3904117A4/en
Publication of WO2020246218A1 publication Critical patent/WO2020246218A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/0008Tyre tread bands; Tread patterns; Anti-skid inserts characterised by the tread rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0327Tread patterns characterised by special properties of the tread pattern
    • B60C11/033Tread patterns characterised by special properties of the tread pattern by the void or net-to-gross ratios of the patterns
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/22Incorporating nitrogen atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/30Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule
    • C08C19/42Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups
    • C08C19/44Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups of polymers containing metal atoms exclusively at one or both ends of the skeleton
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • C08G65/22Cyclic ethers having at least one atom other than carbon and hydrogen outside the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/0008Tyre tread bands; Tread patterns; Anti-skid inserts characterised by the tread rubber
    • B60C2011/0016Physical properties or dimensions
    • B60C2011/0025Modulus or tan delta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/0008Tyre tread bands; Tread patterns; Anti-skid inserts characterised by the tread rubber
    • B60C2011/0016Physical properties or dimensions
    • B60C2011/0033Thickness of the tread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0341Circumferential grooves
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend

Definitions

  • the present invention relates to rubber compositions and tires.
  • Patent Document 1 Since the wet grip performance is greatly affected by the performance of the rubber composition of the tread portion in contact with the road surface, technical improvements of the rubber composition for tires such as treads have been widely studied and put into practical use.
  • the wet grip performance of the tire has been greatly improved by the technical improvement of the rubber composition for tread using silica, but the dry road surface to the wet road surface or the wet road surface to the dry It was found that the change in grip performance when the road surface changes to the road surface remains as an important technical issue and there is room for improvement.
  • the hardness of conventional rubber does not change when it changes from a dry state not wet with water to a so-called wet state wet with water, or it is cooled by water.
  • An object of the present invention is to provide a rubber composition and a tire capable of solving the above problems and improving the overall performance of wet grip performance and dry grip performance.
  • the present invention relates to a rubber composition whose hardness is reversibly changed by water and satisfies the following formulas (1) and (2).
  • Hardness when dried-Hardness when wet with water ⁇ 1 (1) (In the formula, the hardness is the JIS-A hardness of the rubber composition at 25 ° C.). 70 ° C tan ⁇ ⁇ 0.18 when dry (2) (In the equation, tan ⁇ at 70 ° C is the loss tangent measured under the conditions of 70 ° C, initial strain 10%, dynamic strain 2%, and frequency 10 Hz.)
  • the hardness when dried-the hardness when wet with water is preferably 2 or more, more preferably 3 or more, and further preferably 4 or more.
  • the tan ⁇ at 70 ° C. at the time of drying is preferably 0.19 or more, more preferably 0.20 or more, and further preferably 0.21 or more.
  • the rubber composition preferably contains a hydrophilic material.
  • the rubber composition preferably contains a diene-based rubber and a polymer having a carbon-carbon double bond and a heteroatom.
  • the hetero atom is at least one atom selected from the group consisting of an oxygen atom, a nitrogen atom, a silicon atom, a sulfur atom, a phosphorus atom, and a halogen atom.
  • the insoluble content is preferably 5% by mass or more.
  • the insoluble content is preferably 5% by mass or more.
  • the rubber composition preferably contains 5 parts by mass or more of the polymer with respect to 100 parts by mass of the rubber component.
  • the rubber composition preferably contains an isoprene-based rubber.
  • the rubber composition preferably contains a butadiene rubber.
  • the rubber composition preferably contains 95% by mass or less of styrene-butadiene rubber in 100% by mass of the rubber component.
  • silica and carbon black are each contained in an amount of 20 parts by mass or more with respect to 100 parts by mass of the rubber component.
  • It preferably contains a petroleum-based resin.
  • the rubber composition is preferably a rubber composition for tread.
  • the present invention also relates to a tire having a tire member that is at least partially composed of the rubber composition.
  • the tire member is a tread.
  • the tire member is a tread and the thickness of the tread is 4 mm or more.
  • the tire member is a tread and the land ratio of the tread is 30% or more.
  • the tire member is a tread and is provided with a groove continuous in the tire circumferential direction and / or a groove discontinuous in the tire circumferential direction.
  • the rubber composition reversibly changes its hardness with water and satisfies the above formulas (1) and (2), the total performance of wet grip performance and dry grip performance can be improved.
  • the hardness of the rubber composition of the present invention changes reversibly with water and satisfies the following formulas (1) and (2). As a result, the overall performance of wet grip performance and dry grip performance can be improved.
  • Hardness when dried-Hardness when wet with water ⁇ 1 (1) In the formula, the hardness is the JIS-A hardness of the rubber composition at 25 ° C.). 70 ° C tan ⁇ ⁇ 0.18 when dry (2) (In the equation, tan ⁇ at 70 ° C is the loss tangent measured under the conditions of 70 ° C, initial strain 10%, dynamic strain 2%, and frequency 10 Hz.)
  • the rubber composition can obtain the above-mentioned effects, but the reason why such effects are obtained is not always clear, but it is presumed as follows.
  • the hardness of the rubber composition of the present invention changes reversibly with water and satisfies the above formula (1).
  • the above formula (1) means that the hardness when wet with water is smaller than the hardness when wet. That is, the hardness of the rubber composition of the present invention changes reversibly with water and satisfies the above formula (1), but the hardness when wet with water is smaller than the hardness when wet. It also means that the hardness changes reversibly with the presence of water.
  • the rubber composition when the road surface changes from a dry road surface to a wet road surface, the rubber composition is moistened with water, the hardness of the rubber composition decreases, the decrease in grip performance (wet grip performance) can be suppressed, and good grip performance (wet grip performance) can be suppressed. ) Is obtained. This is because it is easy to slip on a wet road surface, so sufficient grip performance cannot be obtained with the hardness suitable for a dry road surface, but as the hardness decreases, the contact area with the road surface increases and the grip performance (wet). It is presumed that a decrease in grip performance (grip performance) can be suppressed and good grip performance (wet grip performance) can be obtained.
  • the hardness is reversibly changed by water, and by satisfying the above formula (1), an appropriate hardness can be obtained according to the water condition of the road surface (wet road surface, dry road surface).
  • the overall performance of grip performance and dry grip performance can be improved.
  • the rubber composition of the present invention can obtain better wet grip performance and dry grip performance by satisfying the above formula (2). Therefore, the hardness of the rubber composition of the present invention is reversibly changed by water, and by satisfying the above formulas (1) and (2), the total performance of wet grip performance and dry grip performance can be improved.
  • the present invention solves the problem (objective) of improving the overall performance of wet grip performance and dry grip performance by forming a rubber composition that satisfies the parameters of the above formulas (1) and (2).
  • the parameter does not define a problem (purpose), and the problem of the present application is to improve the overall performance of wet grip performance and dry grip performance, and as a solution for that, the rubber composition is used in the above formula (1).
  • the hardness of the rubber composition, tan ⁇ means the hardness of the rubber composition after vulcanization, tan ⁇ . Further, tan ⁇ is a value obtained by conducting a viscoelasticity test on the vulcanized rubber composition.
  • the reversible change in hardness due to water means that the hardness of the rubber composition (after vulcanization) is reversibly increased or decreased due to the presence of water. It should be noted that, for example, the hardness may change reversibly when the hardness changes from drying to water wetting to drying, and the hardness does not have to be the same during the first drying and the subsequent drying. Alternatively, the hardness may be the same at the time of the first drying and the time of the later drying.
  • the hardness at the time of drying means the hardness of the rubber composition (after vulcanization) in a dry state, and specifically, the rubber composition dried by the method described in Examples (the rubber composition). It means the hardness after vulcanization).
  • the hardness when moistened with water means the hardness of the rubber composition (after vulcanization) in a state of being moistened with water, and specifically, by the method described in Examples, with water. It means the hardness of the wet rubber composition (after vulcanization).
  • the hardness (JIS-A hardness) of the rubber composition (after vulcanization) is defined in "Vulcanized rubber and thermoplastic rubber-How to determine hardness-Part 3:” of JIS K6253-3 (2012).
  • Durometer hardness is measured by a Type A durometer at 25 ° C.
  • the tan ⁇ at 70 ° C. at the time of drying means the tan ⁇ at 70 ° C. of the rubber composition (after vulcanization) in a dry state, and specifically, by the method described in Examples. It means tan ⁇ at 70 ° C. of the dried rubber composition (after vulcanization).
  • 70 ° C. tan ⁇ of the rubber composition (after vulcanization) is a loss tangent measured under the conditions of 70 ° C., initial strain of 10%, dynamic strain of 2%, and frequency of 10 Hz.
  • the hardness at the time of drying can be appropriately adjusted within a range satisfying the above formula (1), but is preferably 20 or more, more preferably 25 or more, and further. It is preferably 30 or more, particularly preferably 40 or more, most preferably 50 or more, more preferably 55 or more, more preferably 58 or more, more preferably 62 or more, more preferably 64 or more, and preferably 95 or less. It is more preferably 90 or less, still more preferably 85 or less, particularly preferably 75 or less, most preferably 70 or less, more preferably 66 or less, and even more preferably 65 or less. When the hardness is within the above range, the effect is more preferably obtained.
  • the hardness when wetted with water can be appropriately adjusted within a range satisfying the above formula (1), but is preferably 20 or more, more preferably 25 or more. More preferably 30 or more, particularly preferably 35 or more, most preferably 40 or more, more preferably 43 or more, more preferably 45 or more, more preferably 46 or more, more preferably 49 or more, more preferably 50 or more, more. It is preferably 51 or more, more preferably 53 or more, more preferably 55 or more, and preferably 80 or less, more preferably 70 or less, still more preferably 65 or less, still more preferably 62 or less, and particularly preferably 61 or less. It is most preferably 60 or less, more preferably 59 or less, and more preferably 56 or less. When the hardness is within the above range, the effect is more preferably obtained.
  • the tan ⁇ at 70 ° C. at the time of drying is 0.18 or more, preferably 0.19 or more, more preferably.
  • the hardness change represented by the above formula (1) and the reversible hardness change due to water of the rubber composition are reversible molecular bonds such as hydrogen bond and ionic bond to the hydrophilic material, that is, water.
  • a compound capable of The hydrophilic material is not particularly limited as long as it is a compound capable of reversible molecular bonds such as hydrogen bond and ionic bond with respect to water, and examples thereof include compounds having a hetero atom. More specifically, the production guideline for satisfying the above parameters will be described.
  • a rubber component containing a diene-based rubber and a polymer having a carbon-carbon double bond and a heteroatom in combination the above formula of a rubber composition can be described.
  • the hardness change represented by (1) and the reversible hardness change due to water can be realized.
  • the heteroatom is capable of reversible molecular bonds such as hydrogen bonds and ionic bonds with respect to water in the rubber composition, and as a result of the formation of these molecular bonds, the rubber composition when wetted with water.
  • the hardness of the object decreases.
  • the polymer is crosslinked to the rubber component by a carbon-carbon double bond during vulcanization and fixed to the rubber component, so that the release of the polymer from the rubber component can be suppressed and the rubber surface can be pressed. Precipitation of the polymer can be suppressed, and deterioration of grip performance (wet grip performance, dry grip performance) can also be suppressed.
  • the tan ⁇ at 70 ° C. at the time of drying depends on the type and amount of chemicals (particularly rubber components, fillers, softeners, resins, sulfur, vulcanization accelerators, silane coupling agents) blended in the rubber composition. It is possible to adjust, for example, using a softener (for example, resin) that is less compatible with the rubber component, using non-modified rubber, increasing the amount of filler, oil as a plasticizer.
  • the tan ⁇ at 70 ° C. tends to increase when the amount of rubber is increased, the amount of sulfur is reduced, the amount of vulcanization accelerator is reduced, or the amount of silane coupling agent is reduced.
  • the hardness at the time of drying can be adjusted by the type and amount of chemicals (particularly, softeners such as rubber components, fillers, oils and resins) blended in the rubber composition.
  • the softening agent When the amount of rubber is increased, the hardness at the time of drying tends to decrease, when the amount of the filler is increased, the hardness at the time of drying tends to increase, and when the amount of sulfur is decreased, the hardness at the time of drying tends to decrease.
  • the hardness at the time of drying can also be adjusted by adjusting the blending amount of sulfur and the vulcanization accelerator. More specifically, increasing the amount of sulfur tends to increase the hardness during drying, and increasing the amount of vulcanization accelerator tends to increase the hardness during drying.
  • a hydrophilic material is blended, more preferably a rubber component containing a diene rubber, a carbon-carbon double bond and a hetero.
  • a rubber composition in combination with a polymer having an atom, it is possible to realize a hardness change represented by the above formula (1) and a reversible hardness change due to water, and the tan ⁇ at 70 ° C. during drying is also in a desired range. It becomes possible to adjust within. Further, the amount of the filler may be increased for the purpose of increasing the tan ⁇ at 70 ° C. during drying.
  • a rubber component containing a diene rubber, a carbon-carbon double bond and a hetero atom are used as another means for achieving the hardness change represented by the above formula (1) and the reversible hardness change due to water of the rubber composition.
  • the polymer is used in combination with a polymer having the above, the polymer is crosslinked to the rubber component by a carbon-carbon double bond and fixed to the rubber component during brewing, so that the release of the polymer from the rubber component can be suppressed.
  • the hardness change represented by the above formula (1) of the rubber composition and the reversible hardness change due to water can be achieved. If it does not have a carbon-carbon double bond, the rubber composition may be liberated into water when it comes into contact with water, and a reversible change in hardness may not be obtained.
  • the hardness change represented by the above formula (1) and the reversible hardness change due to water of the rubber composition for example, the ionic bond between the rubber molecules is added and dried by adding water.
  • examples thereof include a method of reversibly cutting and recombining. More specifically, by using a rubber having halogen or oxygen and a compound having metal, metalloid or nitrogen in combination, the hardness change represented by the above formula (1) of the rubber composition is reversible by water. Hardness change can be realized.
  • an ionic bond is formed between rubber molecules by a cation derived from a metal, a semimetal or nitrogen, and an anion derived from halogen or oxygen, and an ionic bond is formed between the rubber molecules by adding water. This is because as a result of cleavage and recombination of ionic bonds due to drying of water, hardness decreases when wet with water and increases when dried.
  • the rubber component examples include isoprene rubber, butadiene rubber (BR), styrene butadiene rubber (SBR), styrene isoprene butadiene rubber (SIBR), acrylonitrile butadiene rubber (NBR), chloroprene rubber (CR), butyl rubber (IIR) and the like. Diene rubber can be mentioned.
  • the rubber component may be used alone or in combination of two or more. Of these, diene-based rubber is preferable, isoprene-based rubber, BR, and SBR are more preferable, and SBR is even more preferable.
  • the combined use of isoprene-based rubber and SBR, the combined use of BR and SBR, and the combined use of isoprene-based rubber, BR and SBR are also preferable.
  • the rubber component preferably has a weight average molecular weight (Mw) of 150,000 or more, and more preferably 350,000 or more.
  • Mw weight average molecular weight
  • the upper limit of Mw is not particularly limited, but is preferably 4 million or less, more preferably 3 million or less.
  • the content of the diene rubber in 100% by mass of the rubber component is preferably 20% by mass or more, more preferably 50% by mass or more, further preferably 70% by mass or more, particularly preferably 80% by mass or more, and most preferably 90% by mass. It is mass% or more, and may be 100 mass%. Within the above range, the effect tends to be better obtained.
  • the SBR is not particularly limited, and for example, emulsion polymerization SBR (E-SBR), solution polymerization SBR (S-SBR), and the like, which are common in the tire industry, can be used. These may be used alone or in combination of two or more.
  • E-SBR emulsion polymerization SBR
  • S-SBR solution polymerization SBR
  • the amount of styrene in SBR is preferably 10% by mass or more, more preferably 15% by mass or more, still more preferably 20% by mass or more, and preferably 50% by mass or less, more preferably 40% by mass or less, still more preferably. Is 30% by mass or less. Within the above range, the effect tends to be obtained more preferably.
  • the vinyl content of SBR is preferably 10% by mass or more, more preferably 20% by mass or more, further preferably 30% by mass or more, particularly preferably 40% by mass or more, most preferably 50% by mass or more, and preferably. Is 75% by mass or less, more preferably 65% by mass or less. Within the above range, the compatibility with BR becomes good, and the effect tends to be obtained more preferably.
  • the SBR may be a non-modified SBR or a modified SBR.
  • the modified SBR may be an SBR having a functional group that interacts with a filler such as silica.
  • at least one end of the SBR is modified with a compound having the above functional group (modifying agent).
  • SBR terminal modified SBR having the above functional group at the end
  • main chain modified SBR having the above functional group on the main chain
  • main chain terminal modified SBR having the above functional group on the main chain and the end for example, on the main chain
  • Main chain terminal modified SBR having the above functional group and having at least one end modified with the above modifying agent or a polyfunctional compound having two or more epoxy groups in the molecule, which is modified (coupling) with a hydroxyl group.
  • terminally modified SBR into which an epoxy group has been introduced may be used alone or in combination of two or more.
  • Examples of the functional group include an amino group, an amide group, a silyl group, an alkoxysilyl group, an isocyanate group, an imino group, an imidazole group, a urea group, an ether group, a carbonyl group, an oxycarbonyl group, a mercapto group, a sulfide group and a disulfide.
  • Examples thereof include a group, a sulfonyl group, a sulfinyl group, a thiocarbonyl group, an ammonium group, an imide group, a hydrazo group, an azo group, a diazo group, a carboxyl group, a nitrile group, a pyridyl group, an alkoxy group, a hydroxyl group, an oxy group and an epoxy group. ..
  • these functional groups may have a substituent.
  • an amino group preferably an amino group in which the hydrogen atom of the amino group is replaced with an alkyl group having 1 to 6 carbon atoms
  • an alkoxy group preferably an alkoxy group having 1 to 6 carbon atoms
  • an alkoxysilyl group preferably an alkoxy group having 1 to 6 carbon atoms.
  • An alkoxysilyl group having 1 to 6 carbon atoms) and an amide group are preferable.
  • SBR for example, SBR manufactured and sold by Sumitomo Chemical Co., Ltd., JSR Co., Ltd., Asahi Kasei Co., Ltd., Zeon Corporation, etc. can be used.
  • the content of SBR in 100% by mass of the rubber component is preferably 20% by mass or more, more preferably 50% by mass or more, further preferably 60% by mass or more, and preferably 95% by mass or less, more preferably 95% by mass or less. It is 90% by mass or less, more preferably 80% by mass or less. Within the above range, the effect tends to be better obtained.
  • the BR is not particularly limited, and a BR commonly used in the tire industry can be used. These may be used alone or in combination of two or more.
  • the cis amount of BR is preferably 90% by mass or more, more preferably 95% by mass or more, and further preferably 97% by mass or more.
  • the upper limit is not particularly limited and may be 100% by mass. Within the above range, the effect tends to be obtained more preferably.
  • the BR may be either a non-modified BR or a modified BR.
  • modified BR include modified BRs into which the above-mentioned functional groups have been introduced.
  • the preferred embodiment is the same as for the modified SBR.
  • BR for example, products such as Ube Industries, Ltd., JSR Corporation, Asahi Kasei Corporation, and ZEON Corporation can be used.
  • the content of BR in 100% by mass of the rubber component is preferably 5% by mass or more, more preferably 10% by mass or more, and preferably 70% by mass or less, more preferably 40% by mass or less, still more preferably. It is 30% by mass or less. Within the above range, the effect tends to be obtained more preferably.
  • isoprene rubber examples include natural rubber (NR), isoprene rubber (IR), modified NR, modified NR, modified IR and the like.
  • NR natural rubber
  • IR isoprene rubber
  • modified NR for example, SIR20, RSS # 3, TSR20 and the like, which are common in the tire industry, can be used.
  • the IR is not particularly limited, and for example, an IR 2200 or the like that is common in the tire industry can be used.
  • Modified NR includes deproteinized natural rubber (DPNR), high-purity natural rubber (UPNR), etc.
  • modified NR includes epoxidized natural rubber (ENR), hydrogenated natural rubber (HNR), grafted natural rubber, etc.
  • modified IR examples include epoxidized isoprene rubber, hydrogenated isoprene rubber, grafted isoprene rubber and the like. These may be used alone or in combination of two or more. Of these, NR is preferable.
  • the content of the isoprene-based rubber in 100% by mass of the rubber component is preferably 3% by mass or more, more preferably 5% by mass or more, and preferably 60% by mass or less, more preferably 30% by mass or less, and further. It is preferably 20% by mass or less. Within the above range, the effect tends to be obtained more preferably.
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) are gel permeation chromatographs (GPC) (GPC-8000 series manufactured by Toso Co., Ltd., detector: differential refractometer, column: It can be obtained by standard polystyrene conversion based on the measured value by TSKGEL SUPERMULTIPORE HZ-M manufactured by Toso Co., Ltd.
  • the amount of cis (cis-1,4-bonded butadiene unit amount) and vinyl amount (1,2-bonded butadiene unit amount) can be measured by infrared absorption spectrum analysis, and the amount of styrene is measured by 1 H-NMR. Can be measured by.
  • the rubber composition preferably contains a hydrophilic material.
  • the hydrophilic material is not particularly limited as long as it is a compound capable of reversible molecular bonds such as hydrogen bond and ionic bond with respect to water, and examples thereof include compounds having a hetero atom. .. Among them, a compound having a carbon-carbon double bond and a heteroatom is preferable, and a polymer having a carbon-carbon double bond and a heteroatom is more preferable.
  • the carbon-carbon double bond is necessary for cross-linking with the diene rubber, and the number thereof is not particularly limited.
  • the hetero atom means an atom other than a carbon atom and a hydrogen atom, and a reversible molecular bond such as a hydrogen bond or an ionic bond with respect to water is not particularly limited as much as possible, but an oxygen atom, a nitrogen atom and a silicon atom.
  • Sulfur atom, phosphorus atom, and halogen atom are preferably at least one selected from the group, oxygen atom, nitrogen atom, and silicon atom are more preferable, and oxygen atom is further preferable.
  • the hetero atom is preferably present in the main chain (skeleton) of the polymer, and more preferably in the repeating unit of the polymer.
  • Examples of the structure and group containing an oxygen atom include an ether group, an ester, a carboxy group, a carbonyl group, an alkoxy group, and a hydroxy group. Of these, an ether group is preferable, and an oxyalkylene group is more preferable.
  • Examples of the structure and group containing a nitrogen atom include an amino group (primary amino group, secondary amino group, tertiary amino group), amide group, nitrile group, nitro group and the like. Of these, an amino group is preferable, and a tertiary amino group is more preferable.
  • Examples of the structure and group containing a silicon atom include a silyl group, an alkoxysilyl group, and a silanol group.
  • a silyl group is preferable, and an alkoxysilyl group is more preferable.
  • Examples of the structure and group containing a sulfur atom include a sulfide group, a sulfate group, a sulfate ester, and a sulfo group.
  • Examples of the structure and group containing a phosphorus atom include a phosphoric acid group and a phosphoric acid ester.
  • Examples of the structure and group containing a halogen atom include a halogeno group such as a fluoro group, a chloro group, a bromo group and an iodine group.
  • the oxyalkylene group is a group represented by ⁇ (AO) ⁇ , and preferably a group represented by ⁇ (AO) n ⁇ (n is the number of repeating units).
  • the carbon number of the alkylene group A in the oxyalkylene group AO is preferably 1 or more, more preferably 2 or more, preferably 10 or less, more preferably 8 or less, still more preferably 6 or less. Within the above range, the effect tends to be obtained more preferably.
  • the alkylene group A in the oxyalkylene group AO may be linear or branched, but the branched form is preferable because it has a bulkier structure and the effect can be obtained more preferably.
  • the AO is branched into an oxyalkylene group having 2 to 3 carbon atoms (oxyethylene group (EO), an oxypropylene group (PO)) and an oxyalkylene group having 2 to 3 carbon atoms because the effect can be obtained more preferably.
  • It is preferably a group to which the chain R 4 (R 4 represents a hydrocarbon group which may have a hetero atom) is bonded, an oxyalkylene group having 2 to 3 carbon atoms and an oxy having 2 to 3 carbon atoms.
  • branched R 4 is bonded group to an alkylene group. Note that branched chain R 4 is preferably attached to a carbon atom adjacent to the oxygen atom.
  • the hydrocarbon group that may have a heteroatom of R 4 is not particularly limited.
  • the number of carbon atoms of the hydrocarbon group is preferably 1 or more, more preferably 2 or more, preferably 10 or less, more preferably 6 or less, still more preferably 4 or less. Within the above range, the effect tends to be obtained more preferably.
  • a group represented by the following formula is preferable.
  • the group represented by ⁇ (AO) ⁇ is more preferably a group represented by the following formula (B), and particularly preferably a group represented by the following formulas (A) to (B).
  • a group represented by the following formula (C) can also be used in combination.
  • the arrangement of the oxyalkylene groups may be block or random.
  • a polymer containing a group (structural unit) represented by the above formula (B) is preferable, and a polymer composed of a group (structural unit) represented by the above formulas (A) to (B) is more preferable.
  • the content of the group (structural unit) represented by the above formula (B) in 100 mol% of the polymer is preferably 2 mol% or more, more preferably 5 mol% or more, preferably 50 mol% or less, more preferably 40 mol. % Or less, more preferably 30 mol% or less, and particularly preferably 20 mol% or less.
  • the weight average molecular weight (Mw) of the polymer is preferably 10,000 or more, more preferably 50,000 or more, still more preferably 100,000 or more, particularly preferably 500,000 or more, preferably 3 million or less, more preferably 250. It is 10,000 or less, more preferably 2 million or less, particularly preferably 1.5 million or less, and most preferably 1 million or less.
  • the insoluble content (water-insoluble content) of the above polymer when 1 g is suspended is preferably 5% by mass or more, more preferably 10% by mass or more, still more preferably 30% by mass or more, based on 10 mL of water. It is particularly preferably 50% by mass or more, most preferably 70% by mass or more, more preferably 80% by mass or more, still most preferably 90% by mass or more, and the upper limit is not particularly limited.
  • the insoluble matter can be measured by the method described in Examples. The larger the amount of the insoluble matter, the more the amount of the polymer eluted in water when the rubber is wetted with water, and the reversible change in hardness can be more preferably achieved.
  • the insoluble content (THF insoluble content) of the above polymer when 1 g is suspended is preferably 5% by mass or more, more preferably 10% by mass or more, still more preferably 30% by mass or more, based on 10 mL of tetrahydrofuran. It is particularly preferably 50% by mass or more, most preferably 70% by mass or more, more preferably 90% by mass or more, and the upper limit is not particularly limited.
  • the insoluble matter can be measured by the method described in Examples.
  • the diene rubber has solubility in tetrahydrofuran, the larger the insoluble content of the polymer in tetrahydrofuran, the more the effect of lowering the hardness at the time of water wetting tends to be sufficiently obtained without being compatible with the diene rubber.
  • the above polymer may be a commercially available product, or may be produced by preparing a polymer from a monomer having a hetero atom.
  • the monomer having a hetero atom is not particularly limited, but examples of the monomer having an oxygen atom include ethers such as vinyl ether, alkoxystyrene, allylglycidyl ether, ethylene oxide, propylene oxide, and tetrahydrofuran, (meth).
  • Acrylic acids and their esters, acid anhydrides, monomers having a nitrogen atom include acrylonitrile, N-vinylcarbazole, carbamate, caprolactam, and monomers having a silicon atom include alkoxysilylstyrene and alkoxysilylvinyls.
  • monomers having a heteroatom do not contain an unsaturated bond
  • the monomer having a heteroatom and the monomer having a carbon-carbon double bond (for example, a conjugated diene monomer such as butadiene and isoprene, and a vinyl polymer such as styrene) ) May be polymerized.
  • the polymerization method is not particularly limited, and a known method can be used.
  • the content of the polymer is preferably 5 parts by mass or more, more preferably 10 parts by mass or more, still more preferably 20 parts by mass or more, particularly preferably 30 parts by mass or more, and most preferably 30 parts by mass or more with respect to 100 parts by mass of the rubber component.
  • the rubber composition may contain silica.
  • silica examples include dry silica (silicic anhydride) and wet silica (hydrous silicic acid), but wet silica is preferable because it contains a large amount of silanol groups. These may be used alone or in combination of two or more.
  • the nitrogen adsorption specific surface area (N 2 SA) of silica is 40 m 2 / g or more, preferably 60 m 2 / g or more, more preferably 80 m 2 / g or more, and further preferably 160 m 2 / g or more.
  • the N 2 SA is preferably 600 m 2 / g or less, more preferably 300 m 2 / g or less, still more preferably 250 m 2 / g or less, and particularly preferably 200 m 2 / g or less. Within the above range, the effect tends to be obtained more preferably.
  • the N 2 SA of silica is a value measured by the BET method according to ASTM D3037-81.
  • silica for example, products such as Degussa, Rhodia, Tosoh Silica Co., Ltd., Solvay Japan Co., Ltd., Tokuyama Corporation can be used.
  • the content of silica is preferably 5 parts by mass or more, more preferably 10 parts by mass or more, still more preferably 15 parts by mass or more, particularly preferably 20 parts by mass or more, and most preferably 30 parts by mass with respect to 100 parts by mass of the rubber component. It is more than parts by mass, more preferably 50 parts by mass or more, more preferably 60 parts by mass or more, more preferably 70 parts by mass or more, and preferably 150 parts by mass or less, more preferably 140 parts by mass or less, still more preferably. It is 120 parts by mass or less, particularly preferably 100 parts by mass or less, and most preferably 90 parts by mass or less. Within the above range, the effect tends to be better obtained.
  • the content of silica in 100% by mass of the filler is preferably 10% by mass or more, more preferably 20% by mass or more, still more preferably 30% by mass or more.
  • the upper limit is not particularly limited, but is preferably 90% by mass or less, more preferably 70% by mass or less, and further preferably 60% by mass or less. Within the above range, the effect tends to be obtained more preferably.
  • the silane coupling agent is not particularly limited, and for example, bis (3-triethoxysilylpropyl) tetrasulfide, bis (2-triethoxysilylethyl) tetrasulfide, bis (4-triethoxysilylbutyl) tetrasulfide, Bis (3-trimethoxysilylpropyl) tetrasulfide, bis (2-trimethoxysilylethyl) tetrasulfide, bis (2-triethoxysilylethyl) trisulfide, bis (4-trimethoxysilylbutyl) trisulfide, bis ( 3-Triethoxysilylpropyl) disulfide, bis (2-triethoxysilylethyl) disulfide, bis (4-triethoxysilylbutyl) disulfide, bis (3-tritriethoxysilylpropyl) disulfide, bis (2-triethoxy
  • sulfide-based silane coupling agents and mercapto-based silane coupling agents are preferable because the effects tend to be better, and disulfide-based agents having a disulfide bond such as bis (3-triethoxysilylpropyl) disulfide are preferable.
  • Silane coupling agents are more preferred.
  • the content of the silane coupling agent is preferably 3 parts by mass or more, more preferably 5 parts by mass or more, and preferably 20 parts by mass or less, more preferably 15 parts by mass or less, based on 100 parts by mass of silica. Is. Within the above range, the effect tends to be better obtained.
  • the rubber composition may contain carbon black.
  • the carbon black is not particularly limited, and examples thereof include N134, N110, N220, N234, N219, N339, N330, N326, N351, N550, and N762. These may be used alone or in combination of two or more.
  • the nitrogen adsorption specific surface area (N 2 SA) of carbon black is preferably 80 m 2 / g or more, more preferably 100 m 2 / g or more, and preferably 150 m 2 / g or less, more preferably 130 m 2 / g. It is as follows. Within the above range, the effect tends to be better obtained. In this specification, N 2 SA of carbon black is a value measured in accordance with JIS K6217-2: 2001.
  • As carbon black for example, products of Asahi Carbon Co., Ltd., Cabot Japan Co., Ltd., Tokai Carbon Co., Ltd., Mitsubishi Chemical Corporation, Lion Corporation, Shin Nikka Carbon Co., Ltd., Columbia Carbon Co., Ltd., etc. Can be used.
  • the content of carbon black is preferably 5 parts by mass or more, more preferably 10 parts by mass or more, still more preferably 20 parts by mass or more, and particularly preferably 30 parts by mass or more, based on 100 parts by mass of the rubber component. It is preferably 150 parts by mass or less, more preferably 100 parts by mass or less, further preferably 80 parts by mass or less, particularly preferably 60 parts by mass or less, and most preferably 50 parts by mass or less. Within the above range, the effect tends to be better obtained.
  • silica and carbon black are contained in an amount of 20 parts by mass or more with respect to 100 parts by mass of the rubber component, and it is more preferable that silica and carbon black are contained in an amount of 30 parts by mass or more with respect to 100 parts by mass of the rubber component. Within the above range, the effect tends to be better obtained.
  • the rubber composition may contain oil.
  • the oil include process oils, vegetable oils and fats, or mixtures thereof.
  • process oil for example, paraffin-based process oil, aroma-based process oil, naphthenic process oil, and the like can be used.
  • Vegetable oils and fats include castor oil, cottonseed oil, sesame oil, rapeseed oil, soybean oil, palm oil, palm oil, peanut oil, rosin, pine oil, pineapple, tall oil, corn oil, rice oil, beni flower oil, sesame oil
  • examples thereof include olive oil, sunflower oil, palm kernel oil, camellia oil, jojoba oil, macadamia nut oil, and tung oil. These may be used alone or in combination of two or more. Of these, a process oil is preferable, and an aroma-based process oil is more preferable, because a good effect can be obtained.
  • oils examples include Idemitsu Kosan Co., Ltd., Sankyo Yuka Kogyo Co., Ltd., Japan Energy Co., Ltd., Orisoi Co., Ltd., H & R Co., Ltd., Toyokuni Seiyu Co., Ltd., Showa Shell Sekiyu Co., Ltd., Fuji Kosan Co., Ltd. And other products can be used.
  • the content of the oil is preferably 5 parts by mass or more, more preferably 10 parts by mass or more, still more preferably 20 parts by mass or more, and preferably 50 parts by mass or less, based on 100 parts by mass of the rubber component. It is preferably 35 parts by mass or less. Within the above range, the effect tends to be better obtained.
  • the oil content also includes the amount of oil contained in rubber (oil spread rubber).
  • the rubber composition may contain a resin.
  • the resin is not particularly limited as long as it is widely used in the tire industry, and is rosin-based resin, kumaron inden resin, ⁇ -methylstyrene-based resin, terpene-based resin, pt-butylphenol acetylene resin, acrylic-based resin. Examples thereof include resin, C5 resin, and C9 resin.
  • Commercially available products include Maruzen Petrochemical Co., Ltd., Sumitomo Bakelite Co., Ltd., Yasuhara Chemical Co., Ltd., Toso Co., Ltd., Rutgers Chemicals Co., Ltd., BASF Co., Ltd., Arizona Chemical Co., Ltd., Nikko Chemical Co., Ltd., Japan Co., Ltd.
  • Products such as catalysts, JXTG Energy Co., Ltd., Arakawa Chemical Industry Co., Ltd., Taoka Chemical Co., Ltd., and Toa Synthetic Co., Ltd. can be used. These may be used alone or in combination of two or more.
  • petroleum-based resins such as kumaron inden resin, ⁇ -methylstyrene resin, pt-butylphenol acetylene resin, C5 resin, and C9 resin are preferable, and kumaron inden resin is more preferable.
  • the softening point of the resin is preferably 30 ° C. or higher, more preferably 60 ° C. or higher, further preferably 80 ° C. or higher, preferably 200 ° C. or lower, more preferably 160 ° C. or lower, still more preferably 140 ° C. or lower, particularly preferably. Is 120 ° C. or lower. Within the above range, the effect tends to be more preferably obtained.
  • the softening point of the resin is the temperature at which the ball drops when the softening point defined in JIS K 6220-1: 2001 is measured by a ring-ball type softening point measuring device.
  • the content of the resin is preferably 1 part by mass or more, more preferably 5 parts by mass or more, still more preferably 10 parts by mass or more, particularly preferably 20 parts by mass or more, and most preferably 30 parts by mass with respect to 100 parts by mass of the rubber component. It is more than parts by mass, more preferably 40 parts by mass or more, and preferably 80 parts by mass or less, more preferably 60 parts by mass or less. Within the above range, the effect tends to be better obtained.
  • the rubber composition may contain wax.
  • the wax is not particularly limited, and examples thereof include petroleum wax such as paraffin wax and microcrystalline wax; natural wax such as plant wax and animal wax; and synthetic wax such as a polymer such as ethylene and propylene. These may be used alone or in combination of two or more. Of these, petroleum wax is preferable, and paraffin wax is more preferable.
  • wax for example, products such as Ouchi Shinko Kagaku Kogyo Co., Ltd., Nippon Seiro Co., Ltd., and Seiko Kagaku Co., Ltd. can be used.
  • the content of the wax is preferably 0.3 parts by mass or more, more preferably 0.5 parts by mass or more, and preferably 20 parts by mass or less, more preferably 10 parts by mass with respect to 100 parts by mass of the rubber component. It is less than a part. Within the above range, the effect tends to be better obtained.
  • the rubber composition may contain an anti-aging agent.
  • the anti-aging agent include naphthylamine-based anti-aging agents such as phenyl- ⁇ -naphthylamine; diphenylamine-based anti-aging agents such as octylated diphenylamine and 4,4′-bis ( ⁇ , ⁇ ′-dimethylbenzyl) diphenylamine; -Isopropyl-N'-phenyl-p-phenylenediamine, N- (1,3-dimethylbutyl) -N'-phenyl-p-phenylenediamine, N, N'-di-2-naphthyl-p-phenylenediamine, etc.
  • P-Phenylenediamine-based anti-aging agent P-Phenylenediamine-based anti-aging agent; quinoline-based anti-aging agent such as a polymer of 2,2,4-trimethyl-1,2-dihydroquinolin; 2,6-di-t-butyl-4-methylphenol, Monophenolic antioxidants such as styrenated phenol; tetrakis- [methylene-3- (3', 5'-di-t-butyl-4'-hydroxyphenyl) propionate] bis, tris, polyphenolic aging such as methane Examples include preventive agents. These may be used alone or in combination of two or more. Of these, p-phenylenediamine-based anti-aging agents and quinoline-based anti-aging agents are preferable.
  • anti-aging agent for example, products of Seiko Chemical Co., Ltd., Sumitomo Chemical Co., Ltd., Ouchi Shinko Chemical Industry Co., Ltd., Flexis Co., Ltd. and the like can be used.
  • the content of the anti-aging agent is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more, and preferably 10 parts by mass or less, more preferably 5 parts by mass with respect to 100 parts by mass of the rubber component. It is less than a part. Within the above range, the effect tends to be better obtained.
  • the rubber composition may contain stearic acid.
  • stearic acid conventionally known ones can be used, and for example, products such as NOF Corporation, Kao Corporation, Fujifilm Wako Pure Chemical Industries, Ltd., and Chiba Fatty Acid Co., Ltd. can be used.
  • the content of stearic acid is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more, and preferably 10 parts by mass or less, more preferably 5 parts by mass with respect to 100 parts by mass of the rubber component. It is as follows. Within the above range, the effect tends to be better obtained.
  • the rubber composition may contain zinc oxide.
  • Conventionally known zinc oxide can be used.
  • products of Mitsui Metal Mining Co., Ltd., Toho Zinc Co., Ltd., HakusuiTech Co., Ltd., Shodo Chemical Industry Co., Ltd., Sakai Chemical Industry Co., Ltd., etc. Can be used.
  • the content of zinc oxide is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more, and preferably 10 parts by mass or less, more preferably 5 parts by mass with respect to 100 parts by mass of the rubber component. It is as follows. Within the above range, the effect tends to be better obtained.
  • the rubber composition may contain sulfur.
  • sulfur examples include powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, highly dispersible sulfur, and soluble sulfur, which are generally used in the rubber industry. These may be used alone or in combination of two or more.
  • sulfur for example, products such as Tsurumi Chemical Industry Co., Ltd., Karuizawa Sulfur Co., Ltd., Shikoku Chemicals Corporation, Flexis Co., Ltd., Nippon Inui Kogyo Co., Ltd., Hosoi Chemical Industry Co., Ltd. can be used.
  • the sulfur content is preferably 0.1 part by mass or more, more preferably 0.5 part by mass or more, and preferably 10 parts by mass or less, more preferably 5 parts by mass with respect to 100 parts by mass of the rubber component. It is less than a part, more preferably 3 parts by mass or less. Within the above range, the effect tends to be better obtained.
  • the rubber composition may contain a vulcanization accelerator.
  • vulcanization accelerator include thiazole-based vulcanization accelerators such as 2-mercaptobenzothiazole, di-2-benzothiazolyl disulfide, and N-cyclohexyl-2-benzothiadylsulfenamide; tetramethylthiuram disulfide (TMTD).
  • TMTD tetramethylthiuram disulfide
  • thiuram-based vulcanization accelerators Tetrabenzyl thiuram disulfide (TBzTD), tetrakis (2-ethylhexyl) thiuram disulfide (TOT-N) and other thiuram-based vulcanization accelerators; N-cyclohexyl-2-benzothiazolesulfenamide, N-tert-butyl- Sulfenamide-based vulcanization accelerators such as 2-benzothiazolyl sulfenamide, N-oxyethylene-2-benzothiazolesulfenamide, N, N'-diisopropyl-2-benzothiazolesulfenamide; diphenylguanidine, Examples thereof include guanidine-based vulcanization accelerators such as dioltotrilguanidine and orthotrilbiguanidine. These may be used alone or in combination of two or more. Of these, sulfenamide-based vulcanization accelerators and guanidine-based
  • vulcanization accelerator for example, products manufactured by Kawaguchi Chemical Industry Co., Ltd., Ouchi Shinko Chemical Co., Ltd., etc. can be used.
  • the content of the vulcanization accelerator is preferably 1 part by mass or more, more preferably 2 parts by mass or more, and preferably 10 parts by mass or less, more preferably 7 parts by mass with respect to 100 parts by mass of the rubber component. It is as follows. Within the above range, the effect tends to be better obtained.
  • the rubber composition contains additives commonly used in the tire industry, such as organic peroxides; fillers such as calcium carbonate, talc, alumina, clay, aluminum hydroxide, and mica. ; Etc. may be further blended.
  • the content of these additives is preferably 0.1 to 200 parts by mass with respect to 100 parts by mass of the rubber component.
  • the rubber composition can be produced, for example, by kneading each component using a rubber kneading device such as an open roll or a Banbury mixer, and then vulcanizing.
  • a rubber kneading device such as an open roll or a Banbury mixer
  • the kneading temperature is usually 100 to 180 ° C., preferably 120 to 170 ° C.
  • the kneading temperature is usually 120 ° C. or lower, preferably 80 to 110 ° C.
  • the composition obtained by kneading the vulcanizing agent and the vulcanization accelerator is usually subjected to a vulcanization treatment such as press vulcanization.
  • the vulcanization temperature is usually 140 to 190 ° C, preferably 150 to 185 ° C.
  • the vulcanization time is usually 5 to 15 minutes.
  • the rubber composition includes, for example, tread (cap tread), sidewall, base tread, under tread, shoulder, clinch, bead apex, breaker cushion rubber, carcass cord covering rubber, insulation, chafer, inner liner and the like. It can also be used as a tire member (as a rubber composition for a tire) such as a side reinforcing layer of a run flat tire. Among them, it is preferably used for members (treads, sidewalls, shoulders) that can come into contact with water, and is more preferably used for treads. In the case of a tread composed of a cap tread and a base tread, it can be suitably used for a cap tread. Examples of the member that may come into contact with water include a member (tread, sidewall, shoulder) located on the outermost surface of the tire when the tire is new or when the tire is worn out.
  • the tire of the present invention (pneumatic tire, etc.) is produced by a usual method using the above rubber composition. That is, a rubber composition containing various additives as needed is extruded according to the shape of each member of the tire (particularly, tread (cap tread)) at the unvulcanized stage, and then put onto the tire molding machine.
  • the tire can be manufactured by heating and pressurizing in a vulcanizer after forming an unvulcanized tire by molding it by a usual method and laminating it together with other tire members.
  • the tire member (for example, tread) of the tire may be composed of at least a part of the rubber composition, and may be entirely composed of the rubber composition.
  • the above tires are passenger car tires, large passenger car tires, large SUV tires, truck / bus tires, motorcycle tires, competition tires, winter tires (studless tires, snow tires, stud tires), all-season tires, and runs. It is suitably used as a flat tire, an aircraft tire, a mining tire, and the like.
  • the thickness of the tread is preferably 4 mm or more, more preferably 6 mm or more, still more preferably 8 mm or more, and particularly preferably 11 mm or more. Within the above range, the effect tends to be better obtained.
  • the upper limit is not particularly limited, but is preferably 35 mm or less, more preferably 25 mm or less, still more preferably 20 mm or less, and particularly preferably 15 mm or less.
  • the groove depth of the tread (distance in the tire longitudinal direction to the deepest part of the groove) is usually about 70% of the thickness of the tread, which correlates with the thickness of the tread.
  • the tire has a tread whose hardness is reversibly changed by water and is composed of a rubber composition satisfying the above formulas (1) and (2), and the thickness of the tread is 4 mm or more. Is preferable. As a result, the overall performance of the wet grip performance and the dry grip performance can be more preferably improved.
  • the reason why such effects are obtained is not always clear, but it is presumed as follows.
  • the hardness is reversibly changed by water, and by satisfying the above formula (1), an appropriate hardness can be obtained according to the water condition of the road surface (wet road surface, dry road surface).
  • the overall performance of the grip performance and the dry grip performance can be improved, and further, the rubber composition of the present invention can obtain better wet grip performance and dry grip performance by satisfying the above formula (2).
  • the wet grip performance can be improved by increasing the groove depth of the tread, that is, increasing the thickness of the tread.
  • the wet grip performance of the tread is improved by increasing the thickness, but the tire has the dry grip performance and the wet grip when the thickness of the tread produced by the rubber composition is within a predetermined range.
  • the overall performance of the grip performance can be improved more preferably. Therefore, in the tire, the rubber composition constituting the tread changes its hardness reversibly with water, satisfies the above formulas (1) and (2), and further, the thickness of the tread is within a predetermined range. As a result, the overall performance of wet grip performance and dry grip performance can be improved more preferably.
  • the tread design The degree of freedom can be improved.
  • the thickness of the tread is the tire radial length of the portion where the width of the layer in the tire radial direction is maximum when the tread is composed of one layer, and the tread is the cap tread and the base tread.
  • the tread is the tire radial length of the portion where the width of the cap tread located on the surface layer in the tire radial direction is maximum.
  • the land ratio of the tread is preferably 30% or more, more preferably 40% or more, more preferably 50% or more, still more preferably 75% or more from the viewpoint of dry grip performance.
  • the upper limit is preferably 95% or less, more preferably 90% or less, still more preferably 85% or less.
  • the tire has a tread whose hardness is reversibly changed by water and is composed of a rubber composition satisfying the above formulas (1) and (2), and the land ratio of the tread is 30% or more. It is preferable to have. As a result, the overall performance of the wet grip performance and the dry grip performance can be more preferably improved.
  • the hardness is reversibly changed by water, and by satisfying the above formula (1), an appropriate hardness can be obtained according to the water condition of the road surface (wet road surface, dry road surface).
  • the overall performance of the grip performance and the dry grip performance can be improved, and further, the rubber composition of the present invention can obtain better wet grip performance and dry grip performance by satisfying the above formula (2).
  • the dry grip performance is improved by increasing the land ratio, and the wet grip performance is improved by decreasing the land ratio.
  • the land ratio of the tread produced by the rubber composition is predetermined.
  • the overall performance of dry grip performance and wet grip performance can be more preferably improved. Therefore, in the tire, the rubber composition constituting the tread reversibly changes in hardness with water, satisfies the above formulas (1) and (2), and further, the land ratio of the tread is within a predetermined range. This makes it possible to more preferably improve the overall performance of the wet grip performance and the dry grip performance. In addition, by using rubber whose hardness changes reversibly with water, it is possible to obtain grip performance according to the road surface condition, and the range of hardness of the rubber that can be used for the tread is expanded, so the tread design The degree of freedom can be improved.
  • the land ratio is calculated from the ground contact shape under normal rim, normal internal pressure, and normal load conditions.
  • a "regular rim” is a rim defined for each tire in the standard system including the standard on which the tire is based.
  • JATMA is a standard rim
  • TRA is a "Design Rim", or ETRTO. If there is, it means “Measuring Rim”.
  • the "regular internal pressure” is the air pressure defined for each tire by the above standard. If it is JATTA, it is the maximum air pressure.
  • TRA it is the maximum value described in the table "TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES". If there is, it means “INFRATION PRESSURE", but in the case of passenger car tires, it is 180 kPa.
  • the "regular load” is the load defined for each tire by the above standard, and is the maximum load capacity for JATTA, and the maximum value described in the table "TIRE LOAD LIMITS AT VARIOUS COLD INFRATION PRESSURES" for TRA, ETRTO. If so, it means a load obtained by multiplying "LOAD CAPACITY" by 0.88, respectively.
  • the ground contact shape For the ground contact shape, assemble it on a regular rim, apply regular internal pressure, let it stand at 25 ° C for 24 hours, then apply black ink on the tire tread surface, apply a regular load and press it against thick paper (camber angle is 0 °), paper. It is obtained by transferring to. Rotate the tire by 72 ° in the circumferential direction and transfer it at 5 points. That is, the ground contact shape is obtained 5 times.
  • the average value of the maximum lengths in the tire axial direction is L
  • the average value of the lengths in the direction orthogonal to the axial direction is W.
  • the land ratio is calculated by the average area / (L ⁇ W) ⁇ 100 (%) of the five grounded shapes (black portions) transferred from the cardboard.
  • the average value of the length and the area is a simple average of the five values.
  • the tread in the tire may be provided with a groove continuous in the tire circumferential direction and / or a groove discontinuous in the tire circumferential direction.
  • Examples of the pattern having such a groove include a rib type, a lug type, a rib lug type, and a block type.
  • the obtained polymer solution was stirred at a stirring speed of 130 rpm, N- (3-dimethylaminopropyl) acrylamide was added, and the reaction was carried out for 15 minutes. After completion of the polymerization reaction, 2,6-di-tert-butyl-p-cresol was added. Then, the solvent was removed by steam stripping and dried by a heat roll adjusted to 110 ° C. to obtain modified styrene-butadiene rubber (SBR).
  • SBR modified styrene-butadiene rubber
  • the solvent was distilled off under reduced pressure at an external temperature of 50 ° C./internal pressure of 1.0 kPa or less, the remaining residue was suspended in water, filtered, and the filtered residue was washed with THF, and then 50 ° C./ Dry under reduced pressure at 1 kPa or less until a constant amount is reached, and in an 80% yield, polymer 1 (ether group derived from the above formula (A) and carbon-carbon derived from the above formula (B) in the infrared absorption spectrum). A peak was confirmed.
  • the weight average molecular weight (Mw) was 780,000, and the content of the group (structural unit) represented by the above formula (B) in 100 mol% of the polymer was 8 mol%).
  • SBR SBR synthesized by the above method (modified S-SBR, styrene content: 25% by mass, vinyl content: 59 mol%, non-oil-extended product)
  • BR BR150B manufactured by Ube Industries, Ltd.
  • NR TSR20 Polymer 1: Polymer 1 synthesized by the above method (water insoluble content: 96% by mass, THF insoluble content: 96% by mass)
  • Silica ZEOSIL 1165MP (N 2 SA: 160m 2 / g) manufactured by Rhodesia Carbon Black: Tokai Carbon Co., Ltd.
  • Seest 9H (DBP oil absorption 115 ml / 100 g, N 2 SA: 110 m 2 / g)
  • Silane coupling agent Si75 (bis (3-triethoxysilylpropyl) disulfide) manufactured by Evonik Degussa Oil: Process X-140 (aroma-based process oil) manufactured by Japan Energy Co., Ltd.
  • Resin G90 manufactured by Nikko Kagaku Co., Ltd. (Kumaron Inden resin, softening point: 90 ° C)
  • Wax Ozo Ace 0355 manufactured by Nippon Seiro Co., Ltd.
  • Anti-aging agent Santoflex 13 (N- (1,3-dimethylbutyl) -N'-phenyl-p-phenylenediamine (6PPD)) manufactured by Flexis Co., Ltd.
  • Stearic acid Stearic acid "Camellia” manufactured by NOF CORPORATION
  • Zinc oxide Zinc oxide type 2 manufactured by Mitsui Metal Mining Co., Ltd.
  • Sulfur Powdered sulfur vulcanization accelerator manufactured by Tsurumi Chemical Industry Co., Ltd. 1: Noxeller NS (N-tert-) manufactured by Ouchi Shinko Chemical Industry Co., Ltd. Butyl-2-benzothiazolyl vulcan amide)
  • Vulcanization accelerator 2 Noxeller D (1,3-diphenylguanidine) manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd.
  • Examples and comparative examples According to the formulation shown in Table 1, using a 1.7L Bunbury mixer manufactured by Kobe Steel, Ltd., chemicals other than sulfur and vulcanization accelerator are kneaded under the condition of 160 ° C for 4 minutes, and the kneaded product is kneaded. Got Next, sulfur and a vulcanization accelerator were added to the obtained kneaded product, and the mixture was kneaded for 4 minutes under the condition of 80 ° C. using an open roll to obtain an unvulcanized rubber composition. The obtained unvulcanized rubber composition was press-vulcanized under the condition of 170 ° C. for 12 minutes to obtain a vulcanized rubber composition.
  • the obtained vulcanized rubber composition was evaluated as follows. The results are shown in Table 1.
  • the vulcanized rubber composition (30 mm ⁇ 30 mm ⁇ 4 mm rectangular parallelepiped shape) was immersed in 20 ml of water at 25 ° C. for 6 hours to obtain a vulcanized rubber composition after water wetting.
  • the hardness of the obtained vulcanized rubber composition after wetting with water was measured by the above method and used as the hardness at the time of wetting with water.
  • the vulcanized rubber composition after being wetted with water was dried under reduced pressure at 80 ° C. and 1 kPa or less until the amount became constant to obtain a dried vulcanized rubber composition. After returning the temperature of the obtained vulcanized rubber composition after drying to 25 ° C., the hardness of the vulcanized rubber composition after drying was measured by the above method and used as the hardness at the time of drying.
  • the dried vulcanized rubber composition (30 mm ⁇ 30 mm ⁇ 4 mm rectangular parallelepiped shape) was immersed in 20 ml of water at 25 ° C. for 6 hours to obtain a vulcanized rubber composition after re-wetting.
  • the hardness of the obtained vulcanized rubber composition after re-wetting was measured by the above method and used as the hardness at the time of re-wetting.
  • the obtained unvulcanized rubber composition sheet is formed into a tread shape, laminated with other tire members, and press-vulcanized at 150 ° C./15 minutes to produce a tire for carts (tire size: 11 x 1.10-). 5) was created.
  • the cart tires were mounted on the cart, and the test driver ran eight laps on a test course of 2 km per lap on a pre-sprinkled road surface, and the test driver evaluated the grip performance with Comparative Example 1 as 100 on a scale of 200 points.
  • the obtained unvulcanized rubber composition sheet is formed into a tread shape, laminated with other tire members, and press-vulcanized at 150 ° C./15 minutes to produce a tire for carts (tire size: 11 x 1.10-). 5) was created.
  • the cart tire was attached to the cart, and the test driver ran 8 laps on a test course of 2 km per lap on a dry road surface, and the test driver evaluated the grip performance with Comparative Example 1 as 100 on a scale of 200 points.
  • the obtained unvulcanized rubber composition is formed into a tread shape (thickness of the tread shown in Table 2), laminated with other tire members, and press-vulcanized at 170 ° C./12 min to test tire (size). 195 / 65R15) was prepared.
  • tires having a tread whose hardness is reversibly changed by water and which is composed of a rubber composition satisfying the above formulas (1) and (2) and whose tread thickness is 4 mm or more are wet. It was found that the total performance of the grip performance and the dry grip performance (expressed by the sum of the two indexes of the wet grip performance and the dry grip performance) can be improved more preferably.
  • the obtained unvulcanized rubber composition is formed into a tread shape (land ratio shown in Table 3), laminated with other tire members, and press-vulcanized at 170 ° C./12 minutes to test tire (size:: 195 / 65R15) was prepared.
  • the land ratio (%) was measured using the JATTA standard according to the land ratio measuring method described in the present specification. The measurement results are shown in Table 3.

Abstract

The purpose of the present invention is to provide a rubber composition and a tire which are capable of improving the overall performance of wet grip performance and dry grip performance. The present invention pertains to a rubber composition in which the hardness is reversibly changed by water, and which satisfies expressions (1) and (2) below. (1) [(Hardness when dry) - (Hardness when wet from water)] ≥ 1 (In the expression, hardness is defined as the JIS-A hardness of the rubber composition at 25℃.) (2) (tanδ at 70℃ when dry) ≥ 0.18 (In the expression, tanδ at 70℃ is defined as the loss tangent measured under the conditions of 70℃, an initial strain of 10%, a dynamic strain of 2%, and a frequency of 10 Hz.)

Description

ゴム組成物及びタイヤRubber composition and tires
本発明は、ゴム組成物及びタイヤに関する。 The present invention relates to rubber compositions and tires.
近年、自動車共通の課題として、安全性に対する意識がますます高まっており、ウェットグリップ性能の更なる改善が要求されている。これまで、ウェットグリップ性能改善のために様々な研究がなされており、シリカを配合したゴム組成物の発明が多々報告されている(例えば、特許文献1)。ウェットグリップ性能は、特に路面に接するトレッド部分のゴム組成物の性能に大きく左右されるため、トレッドなどのタイヤ用ゴム組成物の技術的改良が広く検討され、実用化されている。 In recent years, as a common issue for automobiles, awareness of safety has been increasing, and further improvement of wet grip performance is required. So far, various studies have been conducted to improve wet grip performance, and many inventions of rubber compositions containing silica have been reported (for example, Patent Document 1). Since the wet grip performance is greatly affected by the performance of the rubber composition of the tread portion in contact with the road surface, technical improvements of the rubber composition for tires such as treads have been widely studied and put into practical use.
特開2008-285524号公報Japanese Unexamined Patent Publication No. 2008-285524
本発明者が鋭意検討した結果、シリカを用いたトレッド用ゴム組成物の技術的改良により、タイヤのウェットグリップ性能は大幅な進歩を遂げているが、ドライ路面からウェット路面、またはウェット路面からドライ路面への路面変化などが起こった場合のグリップ性能の変化については、重要な技術課題として残っており、改善の余地があることが判明した。
この点について、本発明者が鋭意検討した結果、従来のゴムは、水に濡れていないドライ状態から水に濡れた所謂ウェット状態に変化した場合において硬度は変化しないか、または、水に冷やされて硬くなる性質があるため、路面との接触面積が低下し、その結果、ウェットグリップ性能はドライグリップ性能に対して低下する傾向があることが判明した。
このように、従来の技術では、ウェットグリップ性能、ドライグリップ性能の総合性能を改善するという点では改善の余地があることが判明した。
本発明は、前記課題を解決し、ウェットグリップ性能、ドライグリップ性能の総合性能を改善できるゴム組成物及びタイヤを提供することを目的とする。
As a result of diligent studies by the present inventor, the wet grip performance of the tire has been greatly improved by the technical improvement of the rubber composition for tread using silica, but the dry road surface to the wet road surface or the wet road surface to the dry It was found that the change in grip performance when the road surface changes to the road surface remains as an important technical issue and there is room for improvement.
As a result of diligent studies by the present inventor on this point, the hardness of conventional rubber does not change when it changes from a dry state not wet with water to a so-called wet state wet with water, or it is cooled by water. It has been found that the contact area with the road surface is reduced due to the property of becoming hard, and as a result, the wet grip performance tends to be lower than the dry grip performance.
As described above, it has been found that there is room for improvement in the conventional technique in terms of improving the overall performance of wet grip performance and dry grip performance.
An object of the present invention is to provide a rubber composition and a tire capable of solving the above problems and improving the overall performance of wet grip performance and dry grip performance.
本発明は、水によって可逆的に硬度が変化し、下記式(1)及び(2)を満たすゴム組成物に関する。
乾燥時の硬度-水湿潤時の硬度≧1           (1)
(式中、硬度は、ゴム組成物の25℃におけるJIS-A硬度である。)
乾燥時の70℃のtanδ≧0.18               (2)
(式中、70℃のtanδは、70℃、初期歪10%、動歪2%、周波数10Hzの条件で測定した損失正接である。)
The present invention relates to a rubber composition whose hardness is reversibly changed by water and satisfies the following formulas (1) and (2).
Hardness when dried-Hardness when wet with water ≥ 1 (1)
(In the formula, the hardness is the JIS-A hardness of the rubber composition at 25 ° C.).
70 ° C tan δ ≧ 0.18 when dry (2)
(In the equation, tan δ at 70 ° C is the loss tangent measured under the conditions of 70 ° C, initial strain 10%, dynamic strain 2%, and frequency 10 Hz.)
上記式(1)において、乾燥時の硬度-水湿潤時の硬度が2以上であることが好ましく、3以上であることがより好ましく、4以上であることが更に好ましい。 In the above formula (1), the hardness when dried-the hardness when wet with water is preferably 2 or more, more preferably 3 or more, and further preferably 4 or more.
上記式(2)において、乾燥時の70℃のtanδが0.19以上であることが好ましく、0.20以上であることがより好ましく、0.21以上であることが更に好ましい。 In the above formula (2), the tan δ at 70 ° C. at the time of drying is preferably 0.19 or more, more preferably 0.20 or more, and further preferably 0.21 or more.
上記ゴム組成物は、親水性材料を含むことが好ましい。 The rubber composition preferably contains a hydrophilic material.
上記ゴム組成物は、ジエン系ゴムと、炭素-炭素2重結合とヘテロ原子を有するポリマーとを含むことが好ましい。 The rubber composition preferably contains a diene-based rubber and a polymer having a carbon-carbon double bond and a heteroatom.
上記ヘテロ原子が、酸素原子、窒素原子、ケイ素原子、硫黄原子、リン原子、及びハロゲン原子からなる群より選択される少なくとも1種の原子であることが好ましい。 It is preferable that the hetero atom is at least one atom selected from the group consisting of an oxygen atom, a nitrogen atom, a silicon atom, a sulfur atom, a phosphorus atom, and a halogen atom.
上記ポリマーが、水10mLに対し、1gを懸濁した場合の不溶分が5質量%以上であることが好ましい。 When 1 g of the polymer is suspended in 10 mL of water, the insoluble content is preferably 5% by mass or more.
上記ポリマーが、テトラヒドロフラン10mLに対し、1gを懸濁した場合の不溶分が5質量%以上であることが好ましい。 When 1 g of the above polymer is suspended in 10 mL of tetrahydrofuran, the insoluble content is preferably 5% by mass or more.
前記ゴム組成物は、ゴム成分100質量部に対して、上記ポリマーを5質量部以上含むことが好ましい。 The rubber composition preferably contains 5 parts by mass or more of the polymer with respect to 100 parts by mass of the rubber component.
前記ゴム組成物は、イソプレン系ゴムを含むことが好ましい。 The rubber composition preferably contains an isoprene-based rubber.
前記ゴム組成物は、ブタジエンゴムを含むことが好ましい。 The rubber composition preferably contains a butadiene rubber.
前記ゴム組成物は、ゴム成分100質量%中のスチレンブタジエンゴムの含有量が95質量%以下であることが好ましい。 The rubber composition preferably contains 95% by mass or less of styrene-butadiene rubber in 100% by mass of the rubber component.
ゴム成分100質量%中のスチレンブタジエンゴムの含有量>50質量%>ゴム成分100質量%中のブタジエンゴムの含有量>ゴム成分100質量%中のイソプレン系ゴムの含有量の関係を満たすことが好ましい。 Styrene-butadiene rubber content in 100% by mass of rubber component> 50% by mass> Content of butadiene rubber in 100% by mass of rubber component> Isoprene-based rubber content in 100% by mass of rubber component can be satisfied. preferable.
シリカ、カーボンブラックをそれぞれゴム成分100質量部に対して、20質量部以上含むことが好ましい。 It is preferable that silica and carbon black are each contained in an amount of 20 parts by mass or more with respect to 100 parts by mass of the rubber component.
石油系樹脂を含むことが好ましい。 It preferably contains a petroleum-based resin.
上記ゴム組成物は、トレッド用ゴム組成物であることが好ましい。 The rubber composition is preferably a rubber composition for tread.
本発明はまた、上記ゴム組成物で少なくとも一部が構成されたタイヤ部材を有するタイヤに関する。 The present invention also relates to a tire having a tire member that is at least partially composed of the rubber composition.
上記タイヤ部材がトレッドであることが好ましい。 It is preferable that the tire member is a tread.
上記タイヤ部材がトレッドであり、トレッドの厚みが4mm以上であることが好ましい。 It is preferable that the tire member is a tread and the thickness of the tread is 4 mm or more.
上記タイヤ部材がトレッドであり、トレッドのランド比が30%以上であることが好ましい。 It is preferable that the tire member is a tread and the land ratio of the tread is 30% or more.
上記タイヤ部材がトレッドであり、タイヤ周方向に連続する溝、及び/又は、タイヤ周方向に非連続の溝を備えることが好ましい。 It is preferable that the tire member is a tread and is provided with a groove continuous in the tire circumferential direction and / or a groove discontinuous in the tire circumferential direction.
本発明によれば、水によって可逆的に硬度が変化し、上記式(1)及び(2)を満たすゴム組成物であるので、ウェットグリップ性能、ドライグリップ性能の総合性能を改善できる。 According to the present invention, since the rubber composition reversibly changes its hardness with water and satisfies the above formulas (1) and (2), the total performance of wet grip performance and dry grip performance can be improved.
本発明のゴム組成物は、水によって可逆的に硬度が変化し、下記式(1)及び(2)を満たす。これにより、ウェットグリップ性能、ドライグリップ性能の総合性能を改善できる。
乾燥時の硬度-水湿潤時の硬度≧1           (1)
(式中、硬度は、ゴム組成物の25℃におけるJIS-A硬度である。)
乾燥時の70℃のtanδ≧0.18               (2)
(式中、70℃のtanδは、70℃、初期歪10%、動歪2%、周波数10Hzの条件で測定した損失正接である。)
The hardness of the rubber composition of the present invention changes reversibly with water and satisfies the following formulas (1) and (2). As a result, the overall performance of wet grip performance and dry grip performance can be improved.
Hardness when dried-Hardness when wet with water ≥ 1 (1)
(In the formula, the hardness is the JIS-A hardness of the rubber composition at 25 ° C.).
70 ° C tan δ ≧ 0.18 when dry (2)
(In the equation, tan δ at 70 ° C is the loss tangent measured under the conditions of 70 ° C, initial strain 10%, dynamic strain 2%, and frequency 10 Hz.)
上記ゴム組成物は前述の効果が得られるが、このような作用効果が得られる理由は必ずしも明らかではないが、以下のように推察される。
本発明のゴム組成物は、水によって可逆的に硬度が変化し、上記式(1)を満たす。ここで、上記式(1)は、乾燥時の硬度に比べて、水湿潤時の硬度が小さいことを意味する。すなわち、本発明のゴム組成物は、水によって可逆的に硬度が変化し、上記式(1)を満たすものであるが、これは、乾燥時の硬度に比べて、水湿潤時の硬度が小さく、かつ、硬度が水の存在によって可逆的に変化することを意味する。
従って、ドライ路面からウェット路面へ変化すると、ゴム組成物が水によって湿潤されてゴム組成物の硬度が低下し、グリップ性能(ウェットグリップ性能)の低下を抑制でき、良好なグリップ性能(ウェットグリップ性能)が得られる。これは、ウェット路面ではスリップしやすいためにドライ路面にとって好適な硬度のままでは充分なグリップ性能が得られないが、硬度が低下することにより、路面との接触面積が増大し、グリップ性能(ウェットグリップ性能)の低下を抑制でき、良好なグリップ性能(ウェットグリップ性能)が得られるものと推測される。
一方、ウェット路面からドライ路面へ変化すると、水によって湿潤されたゴム組成物が乾燥されてゴム組成物の硬度が上昇し、グリップ性能(ドライグリップ性能)の低下を抑制でき、良好なグリップ性能(ドライグリップ性能)が得られる。これは、ドライ路面ではスリップしにくいためにウェット路面にとって好適な硬度のままでは充分なグリップ性能が得られないが、硬度が上昇することにより、ドライ路面にとって好適な硬度となり、グリップ性能(ドライグリップ性能)の低下を抑制でき、良好なグリップ性能(ドライグリップ性能)が得られるものと推測される。
このように、水によって可逆的に硬度が変化し、かつ、上記式(1)を満たすことにより、路面の水の状態(ウェット路面、ドライ路面)に応じた適切な硬度が得られるため、ウェットグリップ性能、ドライグリップ性能の総合性能を改善できる。
更に、本発明のゴム組成物は、上記式(2)を満たすことにより、より良好なウェットグリップ性能、ドライグリップ性能が得られる。
従って、本発明のゴム組成物は、水によって可逆的に硬度が変化し、上記式(1)及び(2)を満たすことにより、ウェットグリップ性能、ドライグリップ性能の総合性能を改善できる。
このように、本発明は、上記式(1)、(2)のパラメーターを満たすゴム組成物の構成にすることにより、ウェットグリップ性能、ドライグリップ性能の総合性能の改善という課題(目的)を解決するものである。すなわち、当該パラメーターは課題(目的)を規定したものではなく、本願の課題は、ウェットグリップ性能、ドライグリップ性能の総合性能の改善であり、そのための解決手段として、ゴム組成物を上記式(1)、(2)のパラメーターを満たす構成にしたものである。つまり、上記式(1)、(2)のパラメーターを満たすことが必須の構成要件である。
なお、本明細書において、ゴム組成物の硬度、tanδは、加硫後のゴム組成物の硬度、tanδを意味する。また、tanδは、加硫後のゴム組成物に対し、粘弾性試験を実施することで得られる値である。
The rubber composition can obtain the above-mentioned effects, but the reason why such effects are obtained is not always clear, but it is presumed as follows.
The hardness of the rubber composition of the present invention changes reversibly with water and satisfies the above formula (1). Here, the above formula (1) means that the hardness when wet with water is smaller than the hardness when wet. That is, the hardness of the rubber composition of the present invention changes reversibly with water and satisfies the above formula (1), but the hardness when wet with water is smaller than the hardness when wet. It also means that the hardness changes reversibly with the presence of water.
Therefore, when the road surface changes from a dry road surface to a wet road surface, the rubber composition is moistened with water, the hardness of the rubber composition decreases, the decrease in grip performance (wet grip performance) can be suppressed, and good grip performance (wet grip performance) can be suppressed. ) Is obtained. This is because it is easy to slip on a wet road surface, so sufficient grip performance cannot be obtained with the hardness suitable for a dry road surface, but as the hardness decreases, the contact area with the road surface increases and the grip performance (wet). It is presumed that a decrease in grip performance (grip performance) can be suppressed and good grip performance (wet grip performance) can be obtained.
On the other hand, when the road surface changes from a wet road surface to a dry road surface, the rubber composition moistened with water is dried, the hardness of the rubber composition increases, the decrease in grip performance (dry grip performance) can be suppressed, and good grip performance (good grip performance). Dry grip performance) can be obtained. This is because it is difficult to slip on a dry road surface, so sufficient grip performance cannot be obtained with the hardness suitable for a wet road surface, but as the hardness increases, the hardness becomes suitable for a dry road surface, and the grip performance (dry grip). It is presumed that the deterioration of performance) can be suppressed and good grip performance (dry grip performance) can be obtained.
In this way, the hardness is reversibly changed by water, and by satisfying the above formula (1), an appropriate hardness can be obtained according to the water condition of the road surface (wet road surface, dry road surface). The overall performance of grip performance and dry grip performance can be improved.
Further, the rubber composition of the present invention can obtain better wet grip performance and dry grip performance by satisfying the above formula (2).
Therefore, the hardness of the rubber composition of the present invention is reversibly changed by water, and by satisfying the above formulas (1) and (2), the total performance of wet grip performance and dry grip performance can be improved.
As described above, the present invention solves the problem (objective) of improving the overall performance of wet grip performance and dry grip performance by forming a rubber composition that satisfies the parameters of the above formulas (1) and (2). Is what you do. That is, the parameter does not define a problem (purpose), and the problem of the present application is to improve the overall performance of wet grip performance and dry grip performance, and as a solution for that, the rubber composition is used in the above formula (1). ) And (2) are satisfied. That is, it is an indispensable constituent requirement to satisfy the parameters of the above equations (1) and (2).
In the present specification, the hardness of the rubber composition, tan δ, means the hardness of the rubber composition after vulcanization, tan δ. Further, tan δ is a value obtained by conducting a viscoelasticity test on the vulcanized rubber composition.
本明細書において、水によって可逆的に硬度が変化とは、水の存在によって、ゴム組成物(加硫後)の硬度が可逆的に大きくなったり、小さくなったりすることを意味する。なお、例えば、乾燥時→水湿潤時→乾燥時と変化した場合に、硬度が可逆的に変化すればよく、先の乾燥時と、後の乾燥時において、同一の硬度を有さなくてもよいし、先の乾燥時と、後の乾燥時において、同一の硬度を有していてもよい。 In the present specification, the reversible change in hardness due to water means that the hardness of the rubber composition (after vulcanization) is reversibly increased or decreased due to the presence of water. It should be noted that, for example, the hardness may change reversibly when the hardness changes from drying to water wetting to drying, and the hardness does not have to be the same during the first drying and the subsequent drying. Alternatively, the hardness may be the same at the time of the first drying and the time of the later drying.
本明細書において、乾燥時の硬度とは、乾燥している状態のゴム組成物(加硫後)の硬度を意味し、具体的には、実施例に記載の方法により乾燥したゴム組成物(加硫後)の硬度を意味する。
本明細書において、水湿潤時の硬度とは、水によって湿潤している状態のゴム組成物(加硫後)の硬度を意味し、具体的には、実施例に記載の方法により、水によって湿潤したゴム組成物(加硫後)の硬度を意味する。
In the present specification, the hardness at the time of drying means the hardness of the rubber composition (after vulcanization) in a dry state, and specifically, the rubber composition dried by the method described in Examples (the rubber composition). It means the hardness after vulcanization).
In the present specification, the hardness when moistened with water means the hardness of the rubber composition (after vulcanization) in a state of being moistened with water, and specifically, by the method described in Examples, with water. It means the hardness of the wet rubber composition (after vulcanization).
本明細書において、ゴム組成物(加硫後)の硬度(JIS-A硬度)は、JIS K6253-3(2012)の「加硫ゴム及び熱可塑性ゴム-硬さの求め方-第3部:デュロメータ硬さ」に従って、タイプAデュロメータにより、25℃で測定される。 In the present specification, the hardness (JIS-A hardness) of the rubber composition (after vulcanization) is defined in "Vulcanized rubber and thermoplastic rubber-How to determine hardness-Part 3:" of JIS K6253-3 (2012). Durometer hardness is measured by a Type A durometer at 25 ° C.
本明細書において、乾燥時の70℃のtanδとは、乾燥している状態のゴム組成物(加硫後)の70℃のtanδを意味し、具体的には、実施例に記載の方法により乾燥したゴム組成物(加硫後)の70℃のtanδを意味する。 In the present specification, the tan δ at 70 ° C. at the time of drying means the tan δ at 70 ° C. of the rubber composition (after vulcanization) in a dry state, and specifically, by the method described in Examples. It means tan δ at 70 ° C. of the dried rubber composition (after vulcanization).
本明細書において、ゴム組成物(加硫後)の70℃tanδは、70℃、初期歪10%、動歪2%、周波数10Hzの条件で測定した損失正接である。 In the present specification, 70 ° C. tan δ of the rubber composition (after vulcanization) is a loss tangent measured under the conditions of 70 ° C., initial strain of 10%, dynamic strain of 2%, and frequency of 10 Hz.
上記式(1)の通り、(乾燥時の硬度-水湿潤時の硬度(乾燥時のゴム組成物(加硫後)の硬度-水湿潤時のゴム組成物(加硫後)の硬度))は1以上であり、好ましくは2以上、より好ましくは3以上、更に好ましくは4以上、特に好ましくは5以上、最も好ましくは6以上、より好ましくは8以上、より好ましくは9以上、より好ましくは10以上、より好ましくは11以上、より好ましくは13以上、より好ましくは15以上、より好ましくは18以上、より好ましくは21以上、より好ましくは24以上であり、上限は特に限定されないが、好ましくは50以下、より好ましくは40以下、更に好ましくは30以下、特に好ましくは28以下、最も好ましくは26以下である。上記範囲内であると、効果がより好適に得られる。 As shown in the above formula (1) (hardness when dried-hardness when wet with water (hardness of rubber composition when dry (after vulcanization) -hardness of rubber composition when wet with water (after vulcanization))) Is 1 or more, preferably 2 or more, more preferably 3 or more, still more preferably 4 or more, particularly preferably 5 or more, most preferably 6 or more, more preferably 8 or more, more preferably 9 or more, more preferably. It is 10 or more, more preferably 11 or more, more preferably 13 or more, more preferably 15 or more, more preferably 18 or more, more preferably 21 or more, more preferably 24 or more, and the upper limit is not particularly limited, but is preferable. It is 50 or less, more preferably 40 or less, still more preferably 30 or less, particularly preferably 28 or less, and most preferably 26 or less. When it is within the above range, the effect can be obtained more preferably.
乾燥時の硬度(乾燥時のゴム組成物(加硫後)の硬度)は、上記式(1)を満たす範囲内で適宜調整可能であるが、好ましくは20以上、より好ましくは25以上、更に好ましくは30以上、特に好ましくは40以上、最も好ましくは50以上、より好ましくは55以上、より好ましくは58以上、より好ましくは62以上、より好ましくは64以上であり、また、好ましくは95以下、より好ましくは90以下、更に好ましくは85以下、特に好ましくは75以下、最も好ましくは70以下、より好ましくは66以下、より好ましくは65以下である。上記硬度が上記範囲内であると、効果がより好適に得られる。 The hardness at the time of drying (hardness of the rubber composition (after vulcanization) at the time of drying) can be appropriately adjusted within a range satisfying the above formula (1), but is preferably 20 or more, more preferably 25 or more, and further. It is preferably 30 or more, particularly preferably 40 or more, most preferably 50 or more, more preferably 55 or more, more preferably 58 or more, more preferably 62 or more, more preferably 64 or more, and preferably 95 or less. It is more preferably 90 or less, still more preferably 85 or less, particularly preferably 75 or less, most preferably 70 or less, more preferably 66 or less, and even more preferably 65 or less. When the hardness is within the above range, the effect is more preferably obtained.
水湿潤時の硬度(水湿潤時のゴム組成物(加硫後)の硬度)は、上記式(1)を満たす範囲内で適宜調整可能であるが、好ましくは20以上、より好ましくは25以上、更に好ましくは30以上、特に好ましくは35以上、最も好ましくは40以上、より好ましくは43以上、より好ましくは45以上、より好ましくは46以上、より好ましくは49以上、より好ましくは50以上、より好ましくは51以上、より好ましくは53以上、より好ましくは55以上であり、また、好ましくは80以下、より好ましくは70以下、更に好ましくは65以下、更に好ましくは62以下、特に好ましくは61以下、最も好ましくは60以下、より好ましくは59以下、より好ましくは56以下である。上記硬度が上記範囲内であると、効果がより好適に得られる。 The hardness when wetted with water (hardness of the rubber composition (after vulcanization) when wetted with water) can be appropriately adjusted within a range satisfying the above formula (1), but is preferably 20 or more, more preferably 25 or more. More preferably 30 or more, particularly preferably 35 or more, most preferably 40 or more, more preferably 43 or more, more preferably 45 or more, more preferably 46 or more, more preferably 49 or more, more preferably 50 or more, more. It is preferably 51 or more, more preferably 53 or more, more preferably 55 or more, and preferably 80 or less, more preferably 70 or less, still more preferably 65 or less, still more preferably 62 or less, and particularly preferably 61 or less. It is most preferably 60 or less, more preferably 59 or less, and more preferably 56 or less. When the hardness is within the above range, the effect is more preferably obtained.
上記式(2)の通り、乾燥時の70℃のtanδ(乾燥時のゴム組成物(加硫後)の70℃のtanδ)は0.18以上であり、好ましくは0.19以上、より好ましくは0.20以上、更に好ましくは0.21以上、特に好ましくは0.22以上、最も好ましくは0.23以上であり、上限は特に限定されないが、好ましくは0.60以下、より好ましくは0.40以下、更に好ましくは0.30以下、特に好ましくは0.25以下である。上記範囲内であると、効果がより好適に得られる。 As shown in the above formula (2), the tan δ at 70 ° C. at the time of drying (tan δ at 70 ° C. of the rubber composition (after vulcanization) at the time of drying) is 0.18 or more, preferably 0.19 or more, more preferably. Is 0.20 or more, more preferably 0.21 or more, particularly preferably 0.22 or more, most preferably 0.23 or more, and the upper limit is not particularly limited, but is preferably 0.60 or less, more preferably 0. It is .40 or less, more preferably 0.30 or less, and particularly preferably 0.25 or less. When it is within the above range, the effect can be obtained more preferably.
なお、ゴム組成物の上記式(1)で表される硬度変化、水による可逆的な硬度変化は、親水性材料、すなわち、水に対して、水素結合、イオン結合などの可逆的な分子結合が可能な化合物を配合することにより達成できる。
親水性材料としては、水に対して、水素結合、イオン結合などの可逆的な分子結合が可能な化合物であれば特に限定されず、例えば、ヘテロ原子を有する化合物等が挙げられる。
上記パラメーターを満たすための製造指針をより具体的に説明すると、ジエン系ゴムを含むゴム成分と、炭素-炭素2重結合とヘテロ原子を有するポリマーとを併用することにより、ゴム組成物の上記式(1)で表される硬度変化、水による可逆的な硬度変化を実現できる。
これは、ヘテロ原子は、ゴム組成物中で、水に対して、水素結合、イオン結合などの可逆的な分子結合が可能であり、この分子結合が形成された結果、水湿潤時のゴム組成物の硬度が低下するためである。
更には、上記併用により、加硫の際に炭素-炭素2重結合によりポリマーがゴム成分に架橋されてゴム成分に固定されるため、ゴム成分からの上記ポリマーの遊離を抑制でき、ゴム表面に上記ポリマーが析出することを抑制でき、グリップ性能(ウェットグリップ性能、ドライグリップ性能)の低下も抑制できる。
The hardness change represented by the above formula (1) and the reversible hardness change due to water of the rubber composition are reversible molecular bonds such as hydrogen bond and ionic bond to the hydrophilic material, that is, water. Can be achieved by blending a compound capable of
The hydrophilic material is not particularly limited as long as it is a compound capable of reversible molecular bonds such as hydrogen bond and ionic bond with respect to water, and examples thereof include compounds having a hetero atom.
More specifically, the production guideline for satisfying the above parameters will be described. By using a rubber component containing a diene-based rubber and a polymer having a carbon-carbon double bond and a heteroatom in combination, the above formula of a rubber composition can be described. The hardness change represented by (1) and the reversible hardness change due to water can be realized.
This is because the heteroatom is capable of reversible molecular bonds such as hydrogen bonds and ionic bonds with respect to water in the rubber composition, and as a result of the formation of these molecular bonds, the rubber composition when wetted with water. This is because the hardness of the object decreases.
Furthermore, by the above combined use, the polymer is crosslinked to the rubber component by a carbon-carbon double bond during vulcanization and fixed to the rubber component, so that the release of the polymer from the rubber component can be suppressed and the rubber surface can be pressed. Precipitation of the polymer can be suppressed, and deterioration of grip performance (wet grip performance, dry grip performance) can also be suppressed.
また、乾燥時の70℃のtanδは、ゴム組成物に配合される薬品(特に、ゴム成分、充填材、軟化剤、樹脂、硫黄、加硫促進剤、シランカップリング剤)の種類や量によって調整することが可能であり、例えば、ゴム成分と相溶性の低い軟化剤(例えば、樹脂)を使用したり、非変性ゴムを使用したり、充填材量を増量したり、可塑剤としてのオイルを増やしたり、硫黄を減らしたり、加硫促進剤を減らしたり、シランカップリング剤を減らしたりすると70℃のtanδは大きくなる傾向がある。 Further, the tan δ at 70 ° C. at the time of drying depends on the type and amount of chemicals (particularly rubber components, fillers, softeners, resins, sulfur, vulcanization accelerators, silane coupling agents) blended in the rubber composition. It is possible to adjust, for example, using a softener (for example, resin) that is less compatible with the rubber component, using non-modified rubber, increasing the amount of filler, oil as a plasticizer. The tan δ at 70 ° C. tends to increase when the amount of rubber is increased, the amount of sulfur is reduced, the amount of vulcanization accelerator is reduced, or the amount of silane coupling agent is reduced.
また、乾燥時の硬度は、ゴム組成物に配合される薬品(特に、ゴム成分、充填材、オイル、樹脂などの軟化剤)の種類や量によって調整することが可能であり、例えば、軟化剤の量を増量すると乾燥時の硬度は小さくなる傾向、充填材の量を増量すると乾燥時の硬度は大きくなる傾向、硫黄の量を減らすと乾燥時の硬度は小さくなる傾向がある。また、硫黄と加硫促進剤の配合量を調整することによっても、乾燥時の硬度を調整できる。より具体的には、硫黄量を増やすと乾燥時の硬度は大きくなる傾向、加硫促進剤を増やすと乾燥時の硬度は大きくなる傾向がある。 Further, the hardness at the time of drying can be adjusted by the type and amount of chemicals (particularly, softeners such as rubber components, fillers, oils and resins) blended in the rubber composition. For example, the softening agent. When the amount of rubber is increased, the hardness at the time of drying tends to decrease, when the amount of the filler is increased, the hardness at the time of drying tends to increase, and when the amount of sulfur is decreased, the hardness at the time of drying tends to decrease. The hardness at the time of drying can also be adjusted by adjusting the blending amount of sulfur and the vulcanization accelerator. More specifically, increasing the amount of sulfur tends to increase the hardness during drying, and increasing the amount of vulcanization accelerator tends to increase the hardness during drying.
より具体的に説明すると、乾燥時の硬度を所望の範囲内に調整した上で、親水性材料を配合すること、より好ましくはジエン系ゴムを含むゴム成分と、炭素-炭素2重結合とヘテロ原子を有するポリマーとを併用することにより、ゴム組成物の上記式(1)で表される硬度変化、水による可逆的な硬度変化を実現できると共に、乾燥時の70℃のtanδも所望の範囲内に調整することが可能となる。更に、乾燥時の70℃のtanδを大きくする目的で、充填材量を増量してもよい。 More specifically, after adjusting the hardness at the time of drying within a desired range, a hydrophilic material is blended, more preferably a rubber component containing a diene rubber, a carbon-carbon double bond and a hetero. By using the rubber composition in combination with a polymer having an atom, it is possible to realize a hardness change represented by the above formula (1) and a reversible hardness change due to water, and the tan δ at 70 ° C. during drying is also in a desired range. It becomes possible to adjust within. Further, the amount of the filler may be increased for the purpose of increasing the tan δ at 70 ° C. during drying.
ゴム組成物の上記式(1)で表される硬度変化、水による可逆的な硬度変化を達成する他の手段としては、ジエン系ゴムを含むゴム成分と、炭素-炭素2重結合とヘテロ原子を有するポリマーとを併用することにより、加硫の際に炭素-炭素2重結合によりポリマーがゴム成分に架橋されてゴム成分に固定されるため、ゴム成分からの上記ポリマーの遊離を抑制でき、ゴム組成物の上記式(1)で表される硬度変化、水による可逆的な硬度変化を達成することができる。
炭素-炭素2重結合を持たない場合、ゴム組成物が水に触れた際に水中へ遊離してしまい、可逆的な硬度変化が得られない場合がある。
As another means for achieving the hardness change represented by the above formula (1) and the reversible hardness change due to water of the rubber composition, a rubber component containing a diene rubber, a carbon-carbon double bond and a hetero atom are used. When the polymer is used in combination with a polymer having the above, the polymer is crosslinked to the rubber component by a carbon-carbon double bond and fixed to the rubber component during brewing, so that the release of the polymer from the rubber component can be suppressed. The hardness change represented by the above formula (1) of the rubber composition and the reversible hardness change due to water can be achieved.
If it does not have a carbon-carbon double bond, the rubber composition may be liberated into water when it comes into contact with water, and a reversible change in hardness may not be obtained.
なお、ゴム組成物の上記式(1)で表される硬度変化、水による可逆的な硬度変化を達成する他の手段としては、例えば、ゴム分子間のイオン結合を、水の添加・乾燥によって可逆的に切断、再結合させる方法が挙げられる。より具体的に説明すると、ハロゲンや酸素を有するゴムと、金属、半金属や窒素を有する化合物とを併用することにより、ゴム組成物の上記式(1)で表される硬度変化、水による可逆的な硬度変化を実現できる。これは、該併用により、金属、半金属や窒素由来のカチオンと、ハロゲンや酸素由来のアニオンとによりゴム分子間でイオン結合が形成され、そして、ゴム分子間において、水の添加によるイオン結合の開裂、水の乾燥によるイオン結合の再結合が生じる結果、水湿潤時には硬度低下、乾燥時には硬度上昇が起きるためである。 As another means for achieving the hardness change represented by the above formula (1) and the reversible hardness change due to water of the rubber composition, for example, the ionic bond between the rubber molecules is added and dried by adding water. Examples thereof include a method of reversibly cutting and recombining. More specifically, by using a rubber having halogen or oxygen and a compound having metal, metalloid or nitrogen in combination, the hardness change represented by the above formula (1) of the rubber composition is reversible by water. Hardness change can be realized. This is because, by the combined use, an ionic bond is formed between rubber molecules by a cation derived from a metal, a semimetal or nitrogen, and an anion derived from halogen or oxygen, and an ionic bond is formed between the rubber molecules by adding water. This is because as a result of cleavage and recombination of ionic bonds due to drying of water, hardness decreases when wet with water and increases when dried.
以下、使用可能な薬品について説明する。 The chemicals that can be used will be described below.
ゴム成分としては、例えば、イソプレン系ゴム、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、スチレンイソプレンブタジエンゴム(SIBR)、アクリロニトリルブタジエンゴム(NBR)、クロロプレンゴム(CR)、ブチルゴム(IIR)等のジエン系ゴムが挙げられる。ゴム成分は、単独で用いてもよく、2種以上を併用してもよい。なかでも、ジエン系ゴムが好ましく、イソプレン系ゴム、BR、SBRがより好ましく、SBRが更に好ましい。イソプレン系ゴム、SBRの併用、BR、SBRの併用、イソプレン系ゴム、BR、SBRの併用も好ましい。 Examples of the rubber component include isoprene rubber, butadiene rubber (BR), styrene butadiene rubber (SBR), styrene isoprene butadiene rubber (SIBR), acrylonitrile butadiene rubber (NBR), chloroprene rubber (CR), butyl rubber (IIR) and the like. Diene rubber can be mentioned. The rubber component may be used alone or in combination of two or more. Of these, diene-based rubber is preferable, isoprene-based rubber, BR, and SBR are more preferable, and SBR is even more preferable. The combined use of isoprene-based rubber and SBR, the combined use of BR and SBR, and the combined use of isoprene-based rubber, BR and SBR are also preferable.
ここで、ゴム成分は、重量平均分子量(Mw)が15万以上が好ましく、より好ましくは35万以上のゴムである。Mwの上限は特に限定されないが、好ましくは400万以下、より好ましくは300万以下である。 Here, the rubber component preferably has a weight average molecular weight (Mw) of 150,000 or more, and more preferably 350,000 or more. The upper limit of Mw is not particularly limited, but is preferably 4 million or less, more preferably 3 million or less.
ゴム成分100質量%中のジエン系ゴムの含有量は、好ましくは20質量%以上、より好ましくは50質量%以上、更に好ましくは70質量%以上、特に好ましくは80質量%以上、最も好ましくは90質量%以上であり、100質量%であってもよい。上記範囲内であると、効果がより良好に得られる傾向がある。 The content of the diene rubber in 100% by mass of the rubber component is preferably 20% by mass or more, more preferably 50% by mass or more, further preferably 70% by mass or more, particularly preferably 80% by mass or more, and most preferably 90% by mass. It is mass% or more, and may be 100 mass%. Within the above range, the effect tends to be better obtained.
SBRとしては特に限定されず、例えば、乳化重合SBR(E-SBR)、溶液重合SBR(S-SBR)等、タイヤ工業において一般的なものを使用できる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The SBR is not particularly limited, and for example, emulsion polymerization SBR (E-SBR), solution polymerization SBR (S-SBR), and the like, which are common in the tire industry, can be used. These may be used alone or in combination of two or more.
SBRのスチレン量は、好ましくは10質量%以上、より好ましくは15質量%以上、更に好ましくは20質量%以上であり、また、好ましくは50質量%以下、より好ましくは40質量%以下、更に好ましくは30質量%以下である。上記範囲内であると、効果がより好適に得られる傾向がある。 The amount of styrene in SBR is preferably 10% by mass or more, more preferably 15% by mass or more, still more preferably 20% by mass or more, and preferably 50% by mass or less, more preferably 40% by mass or less, still more preferably. Is 30% by mass or less. Within the above range, the effect tends to be obtained more preferably.
SBRのビニル量は、好ましくは10質量%以上、より好ましくは20質量%以上、更に好ましくは30質量%以上、特に好ましくは40質量%以上、最も好ましくは50質量%以上であり、また、好ましくは75質量%以下、より好ましくは65質量%以下である。上記範囲内であると、BRとの相溶性が良好となり、効果がより好適に得られる傾向がある。 The vinyl content of SBR is preferably 10% by mass or more, more preferably 20% by mass or more, further preferably 30% by mass or more, particularly preferably 40% by mass or more, most preferably 50% by mass or more, and preferably. Is 75% by mass or less, more preferably 65% by mass or less. Within the above range, the compatibility with BR becomes good, and the effect tends to be obtained more preferably.
SBRは、非変性SBRでもよいし、変性SBRでもよい。
変性SBRとしては、シリカ等の充填剤と相互作用する官能基を有するSBRであればよく、例えば、SBRの少なくとも一方の末端を、上記官能基を有する化合物(変性剤)で変性された末端変性SBR(末端に上記官能基を有する末端変性SBR)や、主鎖に上記官能基を有する主鎖変性SBRや、主鎖及び末端に上記官能基を有する主鎖末端変性SBR(例えば、主鎖に上記官能基を有し、少なくとも一方の末端を上記変性剤で変性された主鎖末端変性SBR)や、分子中に2個以上のエポキシ基を有する多官能化合物により変性(カップリング)され、水酸基やエポキシ基が導入された末端変性SBR等が挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
The SBR may be a non-modified SBR or a modified SBR.
The modified SBR may be an SBR having a functional group that interacts with a filler such as silica. For example, at least one end of the SBR is modified with a compound having the above functional group (modifying agent). SBR (terminal modified SBR having the above functional group at the end), main chain modified SBR having the above functional group on the main chain, and main chain terminal modified SBR having the above functional group on the main chain and the end (for example, on the main chain) Main chain terminal modified SBR having the above functional group and having at least one end modified with the above modifying agent) or a polyfunctional compound having two or more epoxy groups in the molecule, which is modified (coupling) with a hydroxyl group. And terminally modified SBR into which an epoxy group has been introduced. These may be used alone or in combination of two or more.
上記官能基としては、例えば、アミノ基、アミド基、シリル基、アルコキシシリル基、イソシアネート基、イミノ基、イミダゾール基、ウレア基、エーテル基、カルボニル基、オキシカルボニル基、メルカプト基、スルフィド基、ジスルフィド基、スルホニル基、スルフィニル基、チオカルボニル基、アンモニウム基、イミド基、ヒドラゾ基、アゾ基、ジアゾ基、カルボキシル基、ニトリル基、ピリジル基、アルコキシ基、水酸基、オキシ基、エポキシ基等が挙げられる。なお、これらの官能基は、置換基を有していてもよい。なかでも、アミノ基(好ましくはアミノ基が有する水素原子が炭素数1~6のアルキル基に置換されたアミノ基)、アルコキシ基(好ましくは炭素数1~6のアルコキシ基)、アルコキシシリル基(好ましくは炭素数1~6のアルコキシシリル基)、アミド基が好ましい。  Examples of the functional group include an amino group, an amide group, a silyl group, an alkoxysilyl group, an isocyanate group, an imino group, an imidazole group, a urea group, an ether group, a carbonyl group, an oxycarbonyl group, a mercapto group, a sulfide group and a disulfide. Examples thereof include a group, a sulfonyl group, a sulfinyl group, a thiocarbonyl group, an ammonium group, an imide group, a hydrazo group, an azo group, a diazo group, a carboxyl group, a nitrile group, a pyridyl group, an alkoxy group, a hydroxyl group, an oxy group and an epoxy group. .. In addition, these functional groups may have a substituent. Among them, an amino group (preferably an amino group in which the hydrogen atom of the amino group is replaced with an alkyl group having 1 to 6 carbon atoms), an alkoxy group (preferably an alkoxy group having 1 to 6 carbon atoms), and an alkoxysilyl group (preferably an alkoxy group having 1 to 6 carbon atoms). An alkoxysilyl group having 1 to 6 carbon atoms) and an amide group are preferable.
SBRとしては、例えば、住友化学(株)、JSR(株)、旭化成(株)、日本ゼオン(株)等により製造・販売されているSBRを使用することができる。 As the SBR, for example, SBR manufactured and sold by Sumitomo Chemical Co., Ltd., JSR Co., Ltd., Asahi Kasei Co., Ltd., Zeon Corporation, etc. can be used.
ゴム成分100質量%中のSBRの含有量は、好ましくは20質量%以上、より好ましくは50質量%以上、更に好ましくは60質量%以上であり、また、好ましくは95質量%以下、より好ましくは90質量%以下、更に好ましくは80質量%以下である。上記範囲内であると、効果がより良好に得られる傾向がある。 The content of SBR in 100% by mass of the rubber component is preferably 20% by mass or more, more preferably 50% by mass or more, further preferably 60% by mass or more, and preferably 95% by mass or less, more preferably 95% by mass or less. It is 90% by mass or less, more preferably 80% by mass or less. Within the above range, the effect tends to be better obtained.
BRとしては特に限定されず、タイヤ工業において一般的なものを使用できる。これらは、単独で用いてもよく、2種以上を併用してもよい。 The BR is not particularly limited, and a BR commonly used in the tire industry can be used. These may be used alone or in combination of two or more.
BRのシス量は、好ましくは90質量%以上、より好ましくは95質量%以上、更に好ましくは97質量%以上である。上限は特に限定されず、100質量%であってもよい。上記範囲内であると、効果がより好適に得られる傾向がある。 The cis amount of BR is preferably 90% by mass or more, more preferably 95% by mass or more, and further preferably 97% by mass or more. The upper limit is not particularly limited and may be 100% by mass. Within the above range, the effect tends to be obtained more preferably.
BRは、非変性BR、変性BRのいずれでもよい。変性BRとしては、前述の官能基が導入された変性BRが挙げられる。好ましい態様は変性SBRの場合と同様である。 The BR may be either a non-modified BR or a modified BR. Examples of the modified BR include modified BRs into which the above-mentioned functional groups have been introduced. The preferred embodiment is the same as for the modified SBR.
BRとしては、例えば、宇部興産(株)、JSR(株)、旭化成(株)、日本ゼオン(株)等の製品を使用できる。 As the BR, for example, products such as Ube Industries, Ltd., JSR Corporation, Asahi Kasei Corporation, and ZEON Corporation can be used.
ゴム成分100質量%中のBRの含有量は、好ましくは5質量%以上、より好ましくは10質量%以上であり、また、好ましくは70質量%以下、より好ましくは40質量%以下、更に好ましくは30質量%以下である。上記範囲内であると、効果がより好適に得られる傾向がある。 The content of BR in 100% by mass of the rubber component is preferably 5% by mass or more, more preferably 10% by mass or more, and preferably 70% by mass or less, more preferably 40% by mass or less, still more preferably. It is 30% by mass or less. Within the above range, the effect tends to be obtained more preferably.
イソプレン系ゴムとしては、天然ゴム(NR)、イソプレンゴム(IR)、改質NR、変性NR、変性IR等が挙げられる。NRとしては、例えば、SIR20、RSS♯3、TSR20等、タイヤ工業において一般的なものを使用できる。IRとしては、特に限定されず、例えば、IR2200等、タイヤ工業において一般的なものを使用できる。改質NRとしては、脱タンパク質天然ゴム(DPNR)、高純度天然ゴム(UPNR)等、変性NRとしては、エポキシ化天然ゴム(ENR)、水素添加天然ゴム(HNR)、グラフト化天然ゴム等、変性IRとしては、エポキシ化イソプレンゴム、水素添加イソプレンゴム、グラフト化イソプレンゴム等、が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。なかでも、NRが好ましい。 Examples of the isoprene rubber include natural rubber (NR), isoprene rubber (IR), modified NR, modified NR, modified IR and the like. As the NR, for example, SIR20, RSS # 3, TSR20 and the like, which are common in the tire industry, can be used. The IR is not particularly limited, and for example, an IR 2200 or the like that is common in the tire industry can be used. Modified NR includes deproteinized natural rubber (DPNR), high-purity natural rubber (UPNR), etc., and modified NR includes epoxidized natural rubber (ENR), hydrogenated natural rubber (HNR), grafted natural rubber, etc. Examples of the modified IR include epoxidized isoprene rubber, hydrogenated isoprene rubber, grafted isoprene rubber and the like. These may be used alone or in combination of two or more. Of these, NR is preferable.
ゴム成分100質量%中のイソプレン系ゴムの含有量は、好ましくは3質量%以上、より好ましくは5質量%以上であり、また、好ましくは60質量%以下、より好ましくは30質量%以下、更に好ましくは20質量%以下である。上記範囲内であると、効果がより好適に得られる傾向がある。 The content of the isoprene-based rubber in 100% by mass of the rubber component is preferably 3% by mass or more, more preferably 5% by mass or more, and preferably 60% by mass or less, more preferably 30% by mass or less, and further. It is preferably 20% by mass or less. Within the above range, the effect tends to be obtained more preferably.
ゴム成分100質量%中のスチレンブタジエンゴムの含有量>50質量%>ゴム成分100質量%中のブタジエンゴムの含有量>ゴム成分100質量%中のイソプレン系ゴムの含有量の関係を満たすことが好ましい。これにより、効果がより好適に得られる傾向がある。 Styrene-butadiene rubber content in 100% by mass of rubber component> 50% by mass> Content of butadiene rubber in 100% by mass of rubber component> Isoprene-based rubber content in 100% by mass of rubber component can be satisfied. preferable. As a result, the effect tends to be obtained more preferably.
なお、本明細書において、重量平均分子量(Mw)、数平均分子量(Mn)は、ゲルパーミエーションクロマトグラフ(GPC)(東ソー(株)製GPC-8000シリーズ、検出器:示差屈折計、カラム:東ソー(株)製のTSKGEL SUPERMULTIPORE HZ-M)による測定値を基に標準ポリスチレン換算により求めることができる。
また、シス量(シス-1,4-結合ブタジエン単位量)、ビニル量(1,2-結合ブタジエン単位量)は、赤外吸収スペクトル分析法によって測定でき、スチレン量は、H-NMR測定によって測定できる。
In the present specification, the weight average molecular weight (Mw) and the number average molecular weight (Mn) are gel permeation chromatographs (GPC) (GPC-8000 series manufactured by Toso Co., Ltd., detector: differential refractometer, column: It can be obtained by standard polystyrene conversion based on the measured value by TSKGEL SUPERMULTIPORE HZ-M manufactured by Toso Co., Ltd.
The amount of cis (cis-1,4-bonded butadiene unit amount) and vinyl amount (1,2-bonded butadiene unit amount) can be measured by infrared absorption spectrum analysis, and the amount of styrene is measured by 1 H-NMR. Can be measured by.
上記ゴム組成物は、親水性材料を含むことが好ましい。
親水性材料としては、上記の通り、水に対して、水素結合、イオン結合などの可逆的な分子結合が可能な化合物であれば特に限定されず、例えば、ヘテロ原子を有する化合物等が挙げられる。なかでも、炭素-炭素2重結合とヘテロ原子を有する化合物が好ましく、炭素-炭素2重結合とヘテロ原子を有するポリマー(重合体)がより好ましい。
The rubber composition preferably contains a hydrophilic material.
As described above, the hydrophilic material is not particularly limited as long as it is a compound capable of reversible molecular bonds such as hydrogen bond and ionic bond with respect to water, and examples thereof include compounds having a hetero atom. .. Among them, a compound having a carbon-carbon double bond and a heteroatom is preferable, and a polymer having a carbon-carbon double bond and a heteroatom is more preferable.
炭素-炭素2重結合は、ジエン系ゴムと架橋されるために必要であり、その数は特に限定されない。 The carbon-carbon double bond is necessary for cross-linking with the diene rubber, and the number thereof is not particularly limited.
ヘテロ原子は、炭素原子、水素原子以外の原子を意味し、水に対して、水素結合、イオン結合などの可逆的な分子結合が可能な限り特に限定されないが、酸素原子、窒素原子、ケイ素原子、硫黄原子、リン原子、及びハロゲン原子からなる群より選択される少なくとも1種の原子であることが好ましく、酸素原子、窒素原子、ケイ素原子がより好ましく、酸素原子が更に好ましい。なお、ヘテロ原子は、上記ポリマーの主鎖(骨格)中に存在することが好ましく、上記ポリマーの繰り返し単位中に存在することがより好ましい。 The hetero atom means an atom other than a carbon atom and a hydrogen atom, and a reversible molecular bond such as a hydrogen bond or an ionic bond with respect to water is not particularly limited as much as possible, but an oxygen atom, a nitrogen atom and a silicon atom. , Sulfur atom, phosphorus atom, and halogen atom are preferably at least one selected from the group, oxygen atom, nitrogen atom, and silicon atom are more preferable, and oxygen atom is further preferable. The hetero atom is preferably present in the main chain (skeleton) of the polymer, and more preferably in the repeating unit of the polymer.
酸素原子を含む構造、基としては、エーテル基、エステル、カルボキシ基、カルボニル基、アルコキシ基、ヒドロキシ基等が挙げられる。なかでも、エーテル基が好ましく、オキシアルキレン基がより好ましい。
窒素原子を含む構造、基としては、アミノ基(第一級アミノ基、第二級アミノ基、第三級アミノ基)、アミド基、ニトリル基、ニトロ基等が挙げられる。なかでも、アミノ基が好ましく、第三級アミノ基がより好ましい。
ケイ素原子を含む構造、基としては、シリル基、アルコキシシリル基、シラノール基等が挙げられる。なかでも、シリル基が好ましく、アルコキシシリル基がより好ましい。
硫黄原子を含む構造、基としては、スルフィド基、硫酸基、硫酸エステル、スルホ基等が挙げられる。
リン原子を含む構造、基としては、リン酸基、リン酸エステル等が挙げられる。
ハロゲン原子を含む構造、基としては、フルオロ基、クロロ基、ブロモ基、ヨード基などのハロゲノ基等が挙げられる。
Examples of the structure and group containing an oxygen atom include an ether group, an ester, a carboxy group, a carbonyl group, an alkoxy group, and a hydroxy group. Of these, an ether group is preferable, and an oxyalkylene group is more preferable.
Examples of the structure and group containing a nitrogen atom include an amino group (primary amino group, secondary amino group, tertiary amino group), amide group, nitrile group, nitro group and the like. Of these, an amino group is preferable, and a tertiary amino group is more preferable.
Examples of the structure and group containing a silicon atom include a silyl group, an alkoxysilyl group, and a silanol group. Of these, a silyl group is preferable, and an alkoxysilyl group is more preferable.
Examples of the structure and group containing a sulfur atom include a sulfide group, a sulfate group, a sulfate ester, and a sulfo group.
Examples of the structure and group containing a phosphorus atom include a phosphoric acid group and a phosphoric acid ester.
Examples of the structure and group containing a halogen atom include a halogeno group such as a fluoro group, a chloro group, a bromo group and an iodine group.
オキシアルキレン基とは、-(AO)-で表される基であり、-(AO)-で表される基(nは繰り返し単位数)であることが好ましい。
オキシアルキレン基AO中のアルキレン基Aの炭素数は、好ましくは1以上、より好ましくは2以上であり、好ましくは10以下、より好ましくは8以下、更に好ましくは6以下である。上記範囲内であると、効果がより好適に得られる傾向がある。
The oxyalkylene group is a group represented by − (AO) −, and preferably a group represented by − (AO) n − (n is the number of repeating units).
The carbon number of the alkylene group A in the oxyalkylene group AO is preferably 1 or more, more preferably 2 or more, preferably 10 or less, more preferably 8 or less, still more preferably 6 or less. Within the above range, the effect tends to be obtained more preferably.
オキシアルキレン基AO中のアルキレン基Aは、直鎖状、分岐状のいずれでもよいが、より嵩高い構造となり、効果がより好適に得られるという理由から、分岐状が好ましい。
効果がより好適に得られるという理由から、AOは、炭素数2~3のオキシアルキレン基(オキシエチレン基(EO)、オキシプロピレン基(PO))、炭素数2~3のオキシアルキレン基に分岐鎖R(Rは、ヘテロ原子を有してもよい炭化水素基を表す。)が結合した基であることが好ましく、炭素数2~3のオキシアルキレン基、炭素数2~3のオキシアルキレン基に分岐鎖Rが結合した基を併用することがより好ましい。なお、分岐鎖Rは、酸素原子に隣接する炭素原子に結合していることが好ましい。
The alkylene group A in the oxyalkylene group AO may be linear or branched, but the branched form is preferable because it has a bulkier structure and the effect can be obtained more preferably.
The AO is branched into an oxyalkylene group having 2 to 3 carbon atoms (oxyethylene group (EO), an oxypropylene group (PO)) and an oxyalkylene group having 2 to 3 carbon atoms because the effect can be obtained more preferably. It is preferably a group to which the chain R 4 (R 4 represents a hydrocarbon group which may have a hetero atom) is bonded, an oxyalkylene group having 2 to 3 carbon atoms and an oxy having 2 to 3 carbon atoms. it is more preferable to use branched R 4 is bonded group to an alkylene group. Note that branched chain R 4 is preferably attached to a carbon atom adjacent to the oxygen atom.
のヘテロ原子を有してもよい炭化水素基は、特に限定されない。炭化水素基の炭素数は、好ましくは1以上、より好ましくは2以上であり、好ましくは10以下、より好ましくは6以下、更に好ましくは4以下である。上記範囲内であると、効果がより好適に得られる傾向がある。
のヘテロ原子を有してもよい炭化水素基としては、下記式で表される基が好ましい。
Figure JPOXMLDOC01-appb-C000001
The hydrocarbon group that may have a heteroatom of R 4 is not particularly limited. The number of carbon atoms of the hydrocarbon group is preferably 1 or more, more preferably 2 or more, preferably 10 or less, more preferably 6 or less, still more preferably 4 or less. Within the above range, the effect tends to be obtained more preferably.
As the hydrocarbon group which may have a hetero atom of R 4 , a group represented by the following formula is preferable.
Figure JPOXMLDOC01-appb-C000001
-(AO)-で表される基は、下記式(B)で表される基であることが更に好ましく、下記式(A)~(B)で表される基であることが特に好ましく、下記式(C)で表される基を併用することもできる。
Figure JPOXMLDOC01-appb-C000002
The group represented by − (AO) − is more preferably a group represented by the following formula (B), and particularly preferably a group represented by the following formulas (A) to (B). A group represented by the following formula (C) can also be used in combination.
Figure JPOXMLDOC01-appb-C000002
上記ポリマーが2種以上のオキシアルキレン基を含む場合、オキシアルキレン基の配列はブロックでもランダムでもよい。 When the polymer contains two or more oxyalkylene groups, the arrangement of the oxyalkylene groups may be block or random.
上記ポリマーとしては、上記式(B)で表される基(構造単位)を含む重合体が好ましく、上記式(A)~(B)で表される基(構造単位)からなる重合体がより好ましい。
上記ポリマー100mol%中の上記式(B)で表される基(構造単位)の含有量は、好ましくは2mol%以上、より好ましくは5mol%以上であり、好ましくは50mol%以下、より好ましくは40mol%以下、更に好ましくは30mol%以下、特に好ましくは20mol%以下である。
As the polymer, a polymer containing a group (structural unit) represented by the above formula (B) is preferable, and a polymer composed of a group (structural unit) represented by the above formulas (A) to (B) is more preferable. preferable.
The content of the group (structural unit) represented by the above formula (B) in 100 mol% of the polymer is preferably 2 mol% or more, more preferably 5 mol% or more, preferably 50 mol% or less, more preferably 40 mol. % Or less, more preferably 30 mol% or less, and particularly preferably 20 mol% or less.
上記ポリマーの重量平均分子量(Mw)は、好ましくは1万以上、より好ましくは5万以上、更に好ましくは10万以上、特に好ましくは50万以上であり、好ましくは300万以下、より好ましくは250万以下、更に好ましくは200万以下、特に好ましくは150万以下、最も好ましくは100万以下である。 The weight average molecular weight (Mw) of the polymer is preferably 10,000 or more, more preferably 50,000 or more, still more preferably 100,000 or more, particularly preferably 500,000 or more, preferably 3 million or less, more preferably 250. It is 10,000 or less, more preferably 2 million or less, particularly preferably 1.5 million or less, and most preferably 1 million or less.
上記ポリマーは、水10mLに対し、1gを懸濁した場合の不溶分(水不溶分)が5質量%以上であることが好ましく、より好ましくは10質量%以上、更に好ましくは30質量%以上、特に好ましくは50質量%以上、最も好ましくは70質量%以上、より最も好ましくは80質量%以上、更に最も好ましくは90質量%以上であり、上限は特に限定されない。
上記不溶分は、実施例に記載の方法により測定できる。
上記不溶分が多いほど、ゴムを水に湿潤した場合に、上記ポリマーが水に溶出する量を低減でき、可逆的な硬度変化をより好適に達成できる。
The insoluble content (water-insoluble content) of the above polymer when 1 g is suspended is preferably 5% by mass or more, more preferably 10% by mass or more, still more preferably 30% by mass or more, based on 10 mL of water. It is particularly preferably 50% by mass or more, most preferably 70% by mass or more, more preferably 80% by mass or more, still most preferably 90% by mass or more, and the upper limit is not particularly limited.
The insoluble matter can be measured by the method described in Examples.
The larger the amount of the insoluble matter, the more the amount of the polymer eluted in water when the rubber is wetted with water, and the reversible change in hardness can be more preferably achieved.
上記ポリマーは、テトラヒドロフラン10mLに対し、1gを懸濁した場合の不溶分(THF不溶分)が5質量%以上であることが好ましく、より好ましくは10質量%以上、更に好ましくは30質量%以上、特に好ましくは50質量%以上、最も好ましくは70質量%以上、より最も好ましくは90質量%以上であり、上限は特に限定されない。
上記不溶分は、実施例に記載の方法により測定できる。
ジエン系ゴムはテトラヒドロフランに対し、溶解性を有するため、上記ポリマーのテトラヒドロフランに対する不溶分が多いほど、ジエン系ゴムに相容せずに水湿潤時の硬度低下効果を十分に得られる傾向がある。
The insoluble content (THF insoluble content) of the above polymer when 1 g is suspended is preferably 5% by mass or more, more preferably 10% by mass or more, still more preferably 30% by mass or more, based on 10 mL of tetrahydrofuran. It is particularly preferably 50% by mass or more, most preferably 70% by mass or more, more preferably 90% by mass or more, and the upper limit is not particularly limited.
The insoluble matter can be measured by the method described in Examples.
Since the diene rubber has solubility in tetrahydrofuran, the larger the insoluble content of the polymer in tetrahydrofuran, the more the effect of lowering the hardness at the time of water wetting tends to be sufficiently obtained without being compatible with the diene rubber.
上記ポリマーは、市販品を用いてもよいが、ヘテロ原子を有するモノマーから重合物を調製することにより製造してもよい。
ヘテロ原子を有するモノマーとしては、特に限定されるわけではないが、酸素原子を有するモノマーの例としては、ビニルエーテル、アルコキシスチレン、アリルグリシジルエーテル、エチレンオキサイド、プロピレンオキサイド、テトラヒドロフランなどのエーテル類、(メタ)アクリル酸およびそれらのエステル類、酸無水物、窒素原子を有するモノマーとしては、アクリロニトリル、N-ビニルカルバゾール、カルバミン酸、カプロラクタム、ケイ素原子を有するモノマーとしては、アルコキシシリルスチレン、アルコキシシリルビニル類などが挙げられる。
ヘテロ原子を有するモノマーに不飽和結合が含まれていない場合は、ヘテロ原子を有するモノマーと共に、炭素-炭素2重結合を有するモノマー(例えば、ブタジエン、イソプレンなどの共役ジエンモノマー、スチレンなどのビニルポリマー)を重合すればよい。
重合方法は特に限定されず、公知の方法により行うことができる。
The above polymer may be a commercially available product, or may be produced by preparing a polymer from a monomer having a hetero atom.
The monomer having a hetero atom is not particularly limited, but examples of the monomer having an oxygen atom include ethers such as vinyl ether, alkoxystyrene, allylglycidyl ether, ethylene oxide, propylene oxide, and tetrahydrofuran, (meth). ) Acrylic acids and their esters, acid anhydrides, monomers having a nitrogen atom include acrylonitrile, N-vinylcarbazole, carbamate, caprolactam, and monomers having a silicon atom include alkoxysilylstyrene and alkoxysilylvinyls. Can be mentioned.
When the monomer having a heteroatom does not contain an unsaturated bond, the monomer having a heteroatom and the monomer having a carbon-carbon double bond (for example, a conjugated diene monomer such as butadiene and isoprene, and a vinyl polymer such as styrene) ) May be polymerized.
The polymerization method is not particularly limited, and a known method can be used.
上記ポリマーの含有量は、ゴム成分100質量部に対して、好ましくは5質量部以上、より好ましくは10質量部以上、更に好ましくは20質量部以上、特に好ましくは30質量部以上、最も好ましくは40質量部以上、より最も好ましくは50質量部以上、更に最も好ましくは60質量部以上、特に最も好ましくは70質量部以上、より好ましくは80質量部以上、より好ましくは90質量部以上、より好ましくは100質量部以上であり、また、好ましくは150質量部以下、より好ましくは120質量部以下である。上記範囲内であると、効果がより良好に得られる傾向がある。 The content of the polymer is preferably 5 parts by mass or more, more preferably 10 parts by mass or more, still more preferably 20 parts by mass or more, particularly preferably 30 parts by mass or more, and most preferably 30 parts by mass or more with respect to 100 parts by mass of the rubber component. 40 parts by mass or more, more preferably 50 parts by mass or more, further most preferably 60 parts by mass or more, particularly most preferably 70 parts by mass or more, more preferably 80 parts by mass or more, more preferably 90 parts by mass or more, more preferably. Is 100 parts by mass or more, preferably 150 parts by mass or less, and more preferably 120 parts by mass or less. Within the above range, the effect tends to be better obtained.
上記ゴム組成物は、シリカを含んでもよい。
シリカとしては、例えば、乾式法シリカ(無水ケイ酸)、湿式法シリカ(含水ケイ酸)等が挙げられるが、シラノール基が多いという理由から、湿式法シリカが好ましい。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
The rubber composition may contain silica.
Examples of silica include dry silica (silicic anhydride) and wet silica (hydrous silicic acid), but wet silica is preferable because it contains a large amount of silanol groups. These may be used alone or in combination of two or more.
シリカの窒素吸着比表面積(NSA)は、40m/g以上、好ましくは60m/g以上、より好ましくは80m/g以上、更に好ましくは160m/g以上である。また、上記NSAは、好ましくは600m/g以下、より好ましくは300m/g以下、更に好ましくは250m/g以下、特に好ましくは200m/g以下である。上記範囲内であると、効果がより好適に得られる傾向がある。
なお、シリカのNSAは、ASTM D3037-81に準じてBET法で測定される値である。
The nitrogen adsorption specific surface area (N 2 SA) of silica is 40 m 2 / g or more, preferably 60 m 2 / g or more, more preferably 80 m 2 / g or more, and further preferably 160 m 2 / g or more. The N 2 SA is preferably 600 m 2 / g or less, more preferably 300 m 2 / g or less, still more preferably 250 m 2 / g or less, and particularly preferably 200 m 2 / g or less. Within the above range, the effect tends to be obtained more preferably.
The N 2 SA of silica is a value measured by the BET method according to ASTM D3037-81.
シリカとしては、例えば、デグッサ社、ローディア社、東ソー・シリカ(株)、ソルベイジャパン(株)、(株)トクヤマ等の製品を使用できる。 As the silica, for example, products such as Degussa, Rhodia, Tosoh Silica Co., Ltd., Solvay Japan Co., Ltd., Tokuyama Corporation can be used.
シリカの含有量は、ゴム成分100質量部に対して、好ましくは5質量部以上、より好ましくは10質量部以上、更に好ましくは15質量部以上、特に好ましくは20質量部以上、最も好ましくは30質量部以上、より好ましくは50質量部以上、より好ましくは60質量部以上、より好ましくは70質量部以上であり、また、好ましくは150質量部以下、より好ましくは140質量部以下、更に好ましくは120質量部以下、特に好ましくは100質量部以下、最も好ましくは90質量部以下である。上記範囲内であると、効果がより良好に得られる傾向がある。 The content of silica is preferably 5 parts by mass or more, more preferably 10 parts by mass or more, still more preferably 15 parts by mass or more, particularly preferably 20 parts by mass or more, and most preferably 30 parts by mass with respect to 100 parts by mass of the rubber component. It is more than parts by mass, more preferably 50 parts by mass or more, more preferably 60 parts by mass or more, more preferably 70 parts by mass or more, and preferably 150 parts by mass or less, more preferably 140 parts by mass or less, still more preferably. It is 120 parts by mass or less, particularly preferably 100 parts by mass or less, and most preferably 90 parts by mass or less. Within the above range, the effect tends to be better obtained.
上記ゴム組成物において、充填剤(補強性充填剤)100質量%中のシリカの含有量は、好ましくは10質量%以上、より好ましくは20質量%以上、更に好ましくは30質量%以上であり、上限は特に限定されないが、好ましくは90質量%以下、より好ましくは70質量%以下、更に好ましくは60質量%以下である。上記範囲内であると、効果がより好適に得られる傾向がある。 In the rubber composition, the content of silica in 100% by mass of the filler (reinforcing filler) is preferably 10% by mass or more, more preferably 20% by mass or more, still more preferably 30% by mass or more. The upper limit is not particularly limited, but is preferably 90% by mass or less, more preferably 70% by mass or less, and further preferably 60% by mass or less. Within the above range, the effect tends to be obtained more preferably.
上記ゴム組成物がシリカを含有する場合、更にシランカップリング剤を含有することが好ましい。
シランカップリング剤としては、特に限定されず、例えば、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(2-トリエトキシシリルエチル)テトラスルフィド、ビス(4-トリエトキシシリルブチル)テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(2-トリメトキシシリルエチル)テトラスルフィド、ビス(2-トリエトキシシリルエチル)トリスルフィド、ビス(4-トリメトキシシリルブチル)トリスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(2-トリエトキシシリルエチル)ジスルフィド、ビス(4-トリエトキシシリルブチル)ジスルフィド、ビス(3-トリメトキシシリルプロピル)ジスルフィド、ビス(2-トリメトキシシリルエチル)ジスルフィド、ビス(4-トリメトキシシリルブチル)ジスルフィド、3-トリメトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリエトキシシリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリエトキシシリルプロピルメタクリレートモノスルフィド、などのスルフィド系、3-メルカプトプロピルトリメトキシシラン、2-メルカプトエチルトリエトキシシランなどのメルカプト系、ビニルトリエトキシシラン、ビニルトリメトキシシランなどのビニル系、3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシランなどのアミノ系、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、などのグリシドキシ系、3-ニトロプロピルトリメトキシシラン、3-ニトロプロピルトリエトキシシランなどのニトロ系、3-クロロプロピルトリメトキシシラン、3-クロロプロピルトリエトキシシランなどのクロロ系などがあげられる。市販されているものとしては、例えば、デグッサ社、Momentive社、信越シリコーン(株)、東京化成工業(株)、アヅマックス(株)、東レ・ダウコーニング(株)等の製品を使用できる。これらは、単独で用いてもよく、2種以上を併用してもよい。なかでも、効果がより良好に得られる傾向がある点から、スルフィド系シランカップリング剤、メルカプト系シランカップリング剤が好ましく、ビス(3-トリエトキシシリルプロピル)ジスルフィドなどのジスルフィド結合を有するジスルフィド系シランカップリング剤がより好ましい。
When the rubber composition contains silica, it is preferable to further contain a silane coupling agent.
The silane coupling agent is not particularly limited, and for example, bis (3-triethoxysilylpropyl) tetrasulfide, bis (2-triethoxysilylethyl) tetrasulfide, bis (4-triethoxysilylbutyl) tetrasulfide, Bis (3-trimethoxysilylpropyl) tetrasulfide, bis (2-trimethoxysilylethyl) tetrasulfide, bis (2-triethoxysilylethyl) trisulfide, bis (4-trimethoxysilylbutyl) trisulfide, bis ( 3-Triethoxysilylpropyl) disulfide, bis (2-triethoxysilylethyl) disulfide, bis (4-triethoxysilylbutyl) disulfide, bis (3-trimethoxysilylpropyl) disulfide, bis (2-trimethoxysilylethyl) ) Disulfide, bis (4-trimethoxysilylbutyl) disulfide, 3-trimethoxysilylpropyl-N, N-dimethylthiocarbamoyltetrasulfide, 2-triethoxysilylethyl-N, N-dimethylthiocarbamoyltetrasulfide, 3- Sulfates such as triethoxysilylpropylmethacrylate monosulfide, mercaptos such as 3-mercaptopropyltrimethoxysilane, 2-mercaptoethyltriethoxysilane, vinyls such as vinyltriethoxysilane and vinyltrimethoxysilane, 3-amino Amino series such as propyltriethoxysilane and 3-aminopropyltrimethoxysilane, glycidoxy series such as γ-glycidoxypropyltriethoxysilane and γ-glycidoxypropyltrimethoxysilane, 3-nitropropyltrimethoxysilane, Examples thereof include nitro type such as 3-nitropropyltriethoxysilane and chloro type such as 3-chloropropyltrimethoxysilane and 3-chloropropyltriethoxysilane. As commercially available products, for example, products such as Degussa, Momentive, Shin-Etsu Silicone Co., Ltd., Tokyo Chemical Industry Co., Ltd., Azumax Co., Ltd., Toray Dow Corning Co., Ltd. can be used. These may be used alone or in combination of two or more. Of these, sulfide-based silane coupling agents and mercapto-based silane coupling agents are preferable because the effects tend to be better, and disulfide-based agents having a disulfide bond such as bis (3-triethoxysilylpropyl) disulfide are preferable. Silane coupling agents are more preferred.
シランカップリング剤の含有量は、シリカ100質量部に対して、好ましくは3質量部以上、より好ましくは5質量部以上であり、また、好ましくは20質量部以下、より好ましくは15質量部以下である。上記範囲内であると、効果がより良好に得られる傾向がある。 The content of the silane coupling agent is preferably 3 parts by mass or more, more preferably 5 parts by mass or more, and preferably 20 parts by mass or less, more preferably 15 parts by mass or less, based on 100 parts by mass of silica. Is. Within the above range, the effect tends to be better obtained.
上記ゴム組成物は、カーボンブラックを含んでもよい。
カーボンブラックとしては、特に限定されず、N134、N110、N220、N234、N219、N339、N330、N326、N351、N550、N762等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。
The rubber composition may contain carbon black.
The carbon black is not particularly limited, and examples thereof include N134, N110, N220, N234, N219, N339, N330, N326, N351, N550, and N762. These may be used alone or in combination of two or more.
カーボンブラックの窒素吸着比表面積(NSA)は、好ましくは80m/g以上、より好ましくは100m/g以上であり、また、好ましくは150m/g以下、より好ましくは130m/g以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
なお、本明細書において、カーボンブラックのNSAは、JIS K6217-2:2001に準拠して測定される値である。
The nitrogen adsorption specific surface area (N 2 SA) of carbon black is preferably 80 m 2 / g or more, more preferably 100 m 2 / g or more, and preferably 150 m 2 / g or less, more preferably 130 m 2 / g. It is as follows. Within the above range, the effect tends to be better obtained.
In this specification, N 2 SA of carbon black is a value measured in accordance with JIS K6217-2: 2001.
カーボンブラックとしては、例えば、旭カーボン(株)、キャボットジャパン(株)、東海カーボン(株)、三菱化学(株)、ライオン(株)、新日化カーボン(株)、コロンビアカーボン社等の製品を使用できる。 As carbon black, for example, products of Asahi Carbon Co., Ltd., Cabot Japan Co., Ltd., Tokai Carbon Co., Ltd., Mitsubishi Chemical Corporation, Lion Corporation, Shin Nikka Carbon Co., Ltd., Columbia Carbon Co., Ltd., etc. Can be used.
カーボンブラックの含有量は、ゴム成分100質量部に対して、好ましくは5質量部以上、より好ましくは10質量部以上、更に好ましくは20質量部以上、特に好ましくは30質量部以上であり、また、好ましくは150質量部以下、より好ましくは100質量部以下、更に好ましくは80質量部以下、特に好ましくは60質量部以下、最も好ましくは50質量部以下である。上記範囲内であると、効果がより良好に得られる傾向がある。 The content of carbon black is preferably 5 parts by mass or more, more preferably 10 parts by mass or more, still more preferably 20 parts by mass or more, and particularly preferably 30 parts by mass or more, based on 100 parts by mass of the rubber component. It is preferably 150 parts by mass or less, more preferably 100 parts by mass or less, further preferably 80 parts by mass or less, particularly preferably 60 parts by mass or less, and most preferably 50 parts by mass or less. Within the above range, the effect tends to be better obtained.
シリカ、カーボンブラックをそれぞれゴム成分100質量部に対して、20質量部以上含むことが好ましく、シリカ、カーボンブラックをそれぞれゴム成分100質量部に対して、30質量部以上含むことがより好ましい。上記範囲内であると、効果がより良好に得られる傾向がある。 It is preferable that silica and carbon black are contained in an amount of 20 parts by mass or more with respect to 100 parts by mass of the rubber component, and it is more preferable that silica and carbon black are contained in an amount of 30 parts by mass or more with respect to 100 parts by mass of the rubber component. Within the above range, the effect tends to be better obtained.
上記ゴム組成物は、オイルを含んでもよい。
オイルとしては、例えば、プロセスオイル、植物油脂、又はその混合物が挙げられる。プロセスオイルとしては、例えば、パラフィン系プロセスオイル、アロマ系プロセスオイル、ナフテン系プロセスオイルなどを用いることができる。植物油脂としては、ひまし油、綿実油、あまに油、なたね油、大豆油、パーム油、やし油、落花生油、ロジン、パインオイル、パインタール、トール油、コーン油、こめ油、べに花油、ごま油、オリーブ油、ひまわり油、パーム核油、椿油、ホホバ油、マカデミアナッツ油、桐油等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。なかでも、効果が良好に得られるという理由から、プロセスオイルが好ましく、アロマ系プロセスオイルがより好ましい。
The rubber composition may contain oil.
Examples of the oil include process oils, vegetable oils and fats, or mixtures thereof. As the process oil, for example, paraffin-based process oil, aroma-based process oil, naphthenic process oil, and the like can be used. Vegetable oils and fats include castor oil, cottonseed oil, sesame oil, rapeseed oil, soybean oil, palm oil, palm oil, peanut oil, rosin, pine oil, pineapple, tall oil, corn oil, rice oil, beni flower oil, sesame oil Examples thereof include olive oil, sunflower oil, palm kernel oil, camellia oil, jojoba oil, macadamia nut oil, and tung oil. These may be used alone or in combination of two or more. Of these, a process oil is preferable, and an aroma-based process oil is more preferable, because a good effect can be obtained.
オイルとしては、例えば、出光興産(株)、三共油化工業(株)、(株)ジャパンエナジー、オリソイ社、H&R社、豊国製油(株)、昭和シェル石油(株)、富士興産(株)等の製品を使用できる。 Examples of oils include Idemitsu Kosan Co., Ltd., Sankyo Yuka Kogyo Co., Ltd., Japan Energy Co., Ltd., Orisoi Co., Ltd., H & R Co., Ltd., Toyokuni Seiyu Co., Ltd., Showa Shell Sekiyu Co., Ltd., Fuji Kosan Co., Ltd. And other products can be used.
オイルの含有量は、ゴム成分100質量部に対して、好ましくは5質量部以上、より好ましくは10質量部以上、更に好ましくは20質量部以上であり、また、好ましくは50質量部以下、より好ましくは35質量部以下である。上記範囲内であると、効果がより良好に得られる傾向がある。なお、オイルの含有量には、ゴム(油展ゴム)に含まれるオイルの量も含まれる。 The content of the oil is preferably 5 parts by mass or more, more preferably 10 parts by mass or more, still more preferably 20 parts by mass or more, and preferably 50 parts by mass or less, based on 100 parts by mass of the rubber component. It is preferably 35 parts by mass or less. Within the above range, the effect tends to be better obtained. The oil content also includes the amount of oil contained in rubber (oil spread rubber).
上記ゴム組成物は、樹脂を含有していてもよい。
樹脂としては、タイヤ工業で汎用されているものであれば特に限定されず、ロジン系樹脂、クマロンインデン樹脂、α-メチルスチレン系樹脂、テルペン系樹脂、p-t-ブチルフェノールアセチレン樹脂、アクリル系樹脂、C5樹脂、C9樹脂等が挙げられる。市販品としては、丸善石油化学(株)、住友ベークライト(株)、ヤスハラケミカル(株)、東ソー(株)、Rutgers Chemicals社、BASF社、アリゾナケミカル社、日塗化学(株)、(株)日本触媒、JXTGエネルギー(株)、荒川化学工業(株)、田岡化学工業(株)、東亞合成(株)等の製品を使用できる。これらは、単独で用いてもよく、2種以上を併用してもよい。なかでも、クマロンインデン樹脂、α-メチルスチレン系樹脂、p-t-ブチルフェノールアセチレン樹脂、C5樹脂、C9樹脂等の石油系樹脂が好ましく、クマロンインデン樹脂がより好ましい。
The rubber composition may contain a resin.
The resin is not particularly limited as long as it is widely used in the tire industry, and is rosin-based resin, kumaron inden resin, α-methylstyrene-based resin, terpene-based resin, pt-butylphenol acetylene resin, acrylic-based resin. Examples thereof include resin, C5 resin, and C9 resin. Commercially available products include Maruzen Petrochemical Co., Ltd., Sumitomo Bakelite Co., Ltd., Yasuhara Chemical Co., Ltd., Toso Co., Ltd., Rutgers Chemicals Co., Ltd., BASF Co., Ltd., Arizona Chemical Co., Ltd., Nikko Chemical Co., Ltd., Japan Co., Ltd. Products such as catalysts, JXTG Energy Co., Ltd., Arakawa Chemical Industry Co., Ltd., Taoka Chemical Co., Ltd., and Toa Synthetic Co., Ltd. can be used. These may be used alone or in combination of two or more. Of these, petroleum-based resins such as kumaron inden resin, α-methylstyrene resin, pt-butylphenol acetylene resin, C5 resin, and C9 resin are preferable, and kumaron inden resin is more preferable.
樹脂の軟化点は、好ましくは30℃以上、より好ましくは60℃以上、更に好ましくは80℃以上であり、好ましくは200℃以下、より好ましくは160℃以下、更に好ましくは140℃以下、特に好ましくは120℃以下である。上記範囲内にすることで、前記効果がより好適に得られる傾向がある。
なお、本明細書において、樹脂の軟化点は、JIS K 6220-1:2001に規定される軟化点を環球式軟化点測定装置で測定し、球が降下した温度である。
The softening point of the resin is preferably 30 ° C. or higher, more preferably 60 ° C. or higher, further preferably 80 ° C. or higher, preferably 200 ° C. or lower, more preferably 160 ° C. or lower, still more preferably 140 ° C. or lower, particularly preferably. Is 120 ° C. or lower. Within the above range, the effect tends to be more preferably obtained.
In the present specification, the softening point of the resin is the temperature at which the ball drops when the softening point defined in JIS K 6220-1: 2001 is measured by a ring-ball type softening point measuring device.
樹脂の含有量は、ゴム成分100質量部に対して、好ましくは1質量部以上、より好ましくは5質量部以上、更に好ましくは10質量部以上、特に好ましくは20質量部以上、最も好ましくは30質量部以上、より最も好ましくは40質量部以上であり、また、好ましくは80質量部以下、より好ましくは60質量部以下である。上記範囲内であると、効果がより良好に得られる傾向がある。 The content of the resin is preferably 1 part by mass or more, more preferably 5 parts by mass or more, still more preferably 10 parts by mass or more, particularly preferably 20 parts by mass or more, and most preferably 30 parts by mass with respect to 100 parts by mass of the rubber component. It is more than parts by mass, more preferably 40 parts by mass or more, and preferably 80 parts by mass or less, more preferably 60 parts by mass or less. Within the above range, the effect tends to be better obtained.
上記ゴム組成物は、ワックスを含んでもよい。
ワックスとしては、特に限定されず、パラフィンワックス、マイクロクリスタリンワックス等の石油系ワックス;植物系ワックス、動物系ワックス等の天然系ワックス;エチレン、プロピレン等の重合物等の合成ワックスなどが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。なかでも、石油系ワックスが好ましく、パラフィンワックスがより好ましい。
The rubber composition may contain wax.
The wax is not particularly limited, and examples thereof include petroleum wax such as paraffin wax and microcrystalline wax; natural wax such as plant wax and animal wax; and synthetic wax such as a polymer such as ethylene and propylene. These may be used alone or in combination of two or more. Of these, petroleum wax is preferable, and paraffin wax is more preferable.
ワックスとしては、例えば、大内新興化学工業(株)、日本精蝋(株)、精工化学(株)等の製品を使用できる。 As the wax, for example, products such as Ouchi Shinko Kagaku Kogyo Co., Ltd., Nippon Seiro Co., Ltd., and Seiko Kagaku Co., Ltd. can be used.
ワックスの含有量は、ゴム成分100質量部に対して、好ましくは0.3質量部以上、より好ましくは0.5質量部以上であり、また、好ましくは20質量部以下、より好ましくは10質量部以下である。上記範囲内であると、効果がより良好に得られる傾向がある。 The content of the wax is preferably 0.3 parts by mass or more, more preferably 0.5 parts by mass or more, and preferably 20 parts by mass or less, more preferably 10 parts by mass with respect to 100 parts by mass of the rubber component. It is less than a part. Within the above range, the effect tends to be better obtained.
上記ゴム組成物は、老化防止剤を含んでもよい。
老化防止剤としては、例えば、フェニル-α-ナフチルアミン等のナフチルアミン系老化防止剤;オクチル化ジフェニルアミン、4,4′-ビス(α,α′-ジメチルベンジル)ジフェニルアミン等のジフェニルアミン系老化防止剤;N-イソプロピル-N′-フェニル-p-フェニレンジアミン、N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン、N,N′-ジ-2-ナフチル-p-フェニレンジアミン等のp-フェニレンジアミン系老化防止剤;2,2,4-トリメチル-1,2-ジヒドロキノリンの重合物等のキノリン系老化防止剤;2,6-ジ-t-ブチル-4-メチルフェノール、スチレン化フェノール等のモノフェノール系老化防止剤;テトラキス-[メチレン-3-(3′,5′-ジ-t-ブチル-4′-ヒドロキシフェニル)プロピオネート]メタン等のビス、トリス、ポリフェノール系老化防止剤などが挙げられる。これらは単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。なかでも、p-フェニレンジアミン系老化防止剤、キノリン系老化防止剤が好ましい。
The rubber composition may contain an anti-aging agent.
Examples of the anti-aging agent include naphthylamine-based anti-aging agents such as phenyl-α-naphthylamine; diphenylamine-based anti-aging agents such as octylated diphenylamine and 4,4′-bis (α, α′-dimethylbenzyl) diphenylamine; -Isopropyl-N'-phenyl-p-phenylenediamine, N- (1,3-dimethylbutyl) -N'-phenyl-p-phenylenediamine, N, N'-di-2-naphthyl-p-phenylenediamine, etc. P-Phenylenediamine-based anti-aging agent; quinoline-based anti-aging agent such as a polymer of 2,2,4-trimethyl-1,2-dihydroquinolin; 2,6-di-t-butyl-4-methylphenol, Monophenolic antioxidants such as styrenated phenol; tetrakis- [methylene-3- (3', 5'-di-t-butyl-4'-hydroxyphenyl) propionate] bis, tris, polyphenolic aging such as methane Examples include preventive agents. These may be used alone or in combination of two or more. Of these, p-phenylenediamine-based anti-aging agents and quinoline-based anti-aging agents are preferable.
老化防止剤としては、例えば、精工化学(株)、住友化学(株)、大内新興化学工業(株)、フレクシス社等の製品を使用できる。 As the anti-aging agent, for example, products of Seiko Chemical Co., Ltd., Sumitomo Chemical Co., Ltd., Ouchi Shinko Chemical Industry Co., Ltd., Flexis Co., Ltd. and the like can be used.
老化防止剤の含有量は、ゴム成分100質量部に対して、好ましくは0.5質量部以上、より好ましくは1質量部以上であり、また、好ましくは10質量部以下、より好ましくは5質量部以下である。上記範囲内であると、効果がより良好に得られる傾向がある。 The content of the anti-aging agent is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more, and preferably 10 parts by mass or less, more preferably 5 parts by mass with respect to 100 parts by mass of the rubber component. It is less than a part. Within the above range, the effect tends to be better obtained.
上記ゴム組成物は、ステアリン酸を含有してもよい。
ステアリン酸としては、従来公知のものを使用でき、例えば、日油(株)、花王(株)、富士フイルム和光純薬(株)、千葉脂肪酸(株)等の製品を使用できる。
The rubber composition may contain stearic acid.
As the stearic acid, conventionally known ones can be used, and for example, products such as NOF Corporation, Kao Corporation, Fujifilm Wako Pure Chemical Industries, Ltd., and Chiba Fatty Acid Co., Ltd. can be used.
ステアリン酸の含有量は、ゴム成分100質量部に対して、好ましくは0.5質量部以上、より好ましくは1質量部以上であり、また、好ましくは10質量部以下、より好ましくは5質量部以下である。上記範囲内であると、効果がより良好に得られる傾向がある。 The content of stearic acid is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more, and preferably 10 parts by mass or less, more preferably 5 parts by mass with respect to 100 parts by mass of the rubber component. It is as follows. Within the above range, the effect tends to be better obtained.
上記ゴム組成物は、酸化亜鉛を含有してもよい。
酸化亜鉛としては、従来公知のものを使用でき、例えば、三井金属鉱業(株)、東邦亜鉛(株)、ハクスイテック(株)、正同化学工業(株)、堺化学工業(株)等の製品を使用できる。
The rubber composition may contain zinc oxide.
Conventionally known zinc oxide can be used. For example, products of Mitsui Metal Mining Co., Ltd., Toho Zinc Co., Ltd., HakusuiTech Co., Ltd., Shodo Chemical Industry Co., Ltd., Sakai Chemical Industry Co., Ltd., etc. Can be used.
酸化亜鉛の含有量は、ゴム成分100質量部に対して、好ましくは0.5質量部以上、より好ましくは1質量部以上であり、また、好ましくは10質量部以下、より好ましくは5質量部以下である。上記範囲内であると、効果がより良好に得られる傾向がある。 The content of zinc oxide is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more, and preferably 10 parts by mass or less, more preferably 5 parts by mass with respect to 100 parts by mass of the rubber component. It is as follows. Within the above range, the effect tends to be better obtained.
上記ゴム組成物は硫黄を含有してもよい。
硫黄としては、ゴム工業において一般的に用いられる粉末硫黄、沈降硫黄、コロイド硫黄、不溶性硫黄、高分散性硫黄、可溶性硫黄などが挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。
The rubber composition may contain sulfur.
Examples of sulfur include powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, highly dispersible sulfur, and soluble sulfur, which are generally used in the rubber industry. These may be used alone or in combination of two or more.
硫黄としては、例えば、鶴見化学工業(株)、軽井沢硫黄(株)、四国化成工業(株)、フレクシス社、日本乾溜工業(株)、細井化学工業(株)等の製品を使用できる。 As the sulfur, for example, products such as Tsurumi Chemical Industry Co., Ltd., Karuizawa Sulfur Co., Ltd., Shikoku Chemicals Corporation, Flexis Co., Ltd., Nippon Inui Kogyo Co., Ltd., Hosoi Chemical Industry Co., Ltd. can be used.
硫黄の含有量は、ゴム成分100質量部に対して、好ましくは0.1質量部以上、より好ましくは0.5質量部以上であり、また、好ましくは10質量部以下、より好ましくは5質量部以下、更に好ましくは3質量部以下である。上記範囲内であると、効果がより良好に得られる傾向がある。 The sulfur content is preferably 0.1 part by mass or more, more preferably 0.5 part by mass or more, and preferably 10 parts by mass or less, more preferably 5 parts by mass with respect to 100 parts by mass of the rubber component. It is less than a part, more preferably 3 parts by mass or less. Within the above range, the effect tends to be better obtained.
上記ゴム組成物は、加硫促進剤を含有してもよい。
加硫促進剤としては、2-メルカプトベンゾチアゾール、ジ-2-ベンゾチアゾリルジスルフィド、N-シクロヘキシル-2-ベンゾチアジルスルフェンアミド等のチアゾール系加硫促進剤;テトラメチルチウラムジスルフィド(TMTD)、テトラベンジルチウラムジスルフィド(TBzTD)、テトラキス(2-エチルヘキシル)チウラムジスルフィド(TOT-N)等のチウラム系加硫促進剤;N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド、N-tert-ブチル-2-ベンゾチアゾリルスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N,N′-ジイソプロピル-2-ベンゾチアゾールスルフェンアミド等のスルフェンアミド系加硫促進剤;ジフェニルグアニジン、ジオルトトリルグアニジン、オルトトリルビグアニジン等のグアニジン系加硫促進剤を挙げることができる。これらは、単独で用いてもよく、2種以上を併用してもよい。なかでも、効果がより好適に得られるという理由から、スルフェンアミド系加硫促進剤、グアニジン系加硫促進剤が好ましい。
The rubber composition may contain a vulcanization accelerator.
Examples of the vulcanization accelerator include thiazole-based vulcanization accelerators such as 2-mercaptobenzothiazole, di-2-benzothiazolyl disulfide, and N-cyclohexyl-2-benzothiadylsulfenamide; tetramethylthiuram disulfide (TMTD). ), Tetrabenzyl thiuram disulfide (TBzTD), tetrakis (2-ethylhexyl) thiuram disulfide (TOT-N) and other thiuram-based vulcanization accelerators; N-cyclohexyl-2-benzothiazolesulfenamide, N-tert-butyl- Sulfenamide-based vulcanization accelerators such as 2-benzothiazolyl sulfenamide, N-oxyethylene-2-benzothiazolesulfenamide, N, N'-diisopropyl-2-benzothiazolesulfenamide; diphenylguanidine, Examples thereof include guanidine-based vulcanization accelerators such as dioltotrilguanidine and orthotrilbiguanidine. These may be used alone or in combination of two or more. Of these, sulfenamide-based vulcanization accelerators and guanidine-based vulcanization accelerators are preferable because the effects can be obtained more preferably.
加硫促進剤としては、例えば、川口化学(株)、大内新興化学(株)製等の製品を使用できる。 As the vulcanization accelerator, for example, products manufactured by Kawaguchi Chemical Industry Co., Ltd., Ouchi Shinko Chemical Co., Ltd., etc. can be used.
加硫促進剤の含有量は、ゴム成分100質量部に対して、好ましくは1質量部以上、より好ましくは2質量部以上であり、また、好ましくは10質量部以下、より好ましくは7質量部以下である。上記範囲内であると、効果がより良好に得られる傾向がある。 The content of the vulcanization accelerator is preferably 1 part by mass or more, more preferably 2 parts by mass or more, and preferably 10 parts by mass or less, more preferably 7 parts by mass with respect to 100 parts by mass of the rubber component. It is as follows. Within the above range, the effect tends to be better obtained.
上記ゴム組成物には、前記成分の他、タイヤ工業において一般的に用いられている添加剤、例えば、有機過酸化物;炭酸カルシウム、タルク、アルミナ、クレー、水酸化アルミニウム、マイカなどの充填剤;等を更に配合してもよい。これらの添加剤の含有量は、ゴム成分100質量部に対して、0.1~200質量部が好ましい。 In addition to the above components, the rubber composition contains additives commonly used in the tire industry, such as organic peroxides; fillers such as calcium carbonate, talc, alumina, clay, aluminum hydroxide, and mica. ; Etc. may be further blended. The content of these additives is preferably 0.1 to 200 parts by mass with respect to 100 parts by mass of the rubber component.
上記ゴム組成物は、例えば、前記各成分をオープンロール、バンバリーミキサーなどのゴム混練装置を用いて混練し、その後加硫する方法等により製造できる。 The rubber composition can be produced, for example, by kneading each component using a rubber kneading device such as an open roll or a Banbury mixer, and then vulcanizing.
混練条件としては、加硫剤及び加硫促進剤以外の添加剤を混練するベース練り工程では、混練温度は、通常100~180℃、好ましくは120~170℃である。加硫剤、加硫促進剤を混練する仕上げ練り工程では、混練温度は、通常120℃以下、好ましくは80~110℃である。また、加硫剤、加硫促進剤を混練した組成物は、通常、プレス加硫等の加硫処理が施される。加硫温度としては、通常140~190℃、好ましくは150~185℃である。加硫時間は、通常5~15分である。 As the kneading conditions, in the base kneading step of kneading additives other than the vulcanizing agent and the vulcanization accelerator, the kneading temperature is usually 100 to 180 ° C., preferably 120 to 170 ° C. In the final kneading step of kneading the vulcanizing agent and the vulcanization accelerator, the kneading temperature is usually 120 ° C. or lower, preferably 80 to 110 ° C. Further, the composition obtained by kneading the vulcanizing agent and the vulcanization accelerator is usually subjected to a vulcanization treatment such as press vulcanization. The vulcanization temperature is usually 140 to 190 ° C, preferably 150 to 185 ° C. The vulcanization time is usually 5 to 15 minutes.
上記ゴム組成物は、例えば、トレッド(キャップトレッド)、サイドウォール、ベーストレッド、アンダートレッド、ショルダー、クリンチ、ビードエイペックス、ブレーカークッションゴム、カーカスコード被覆用ゴム、インスレーション、チェーファー、インナーライナー等や、ランフラットタイヤのサイド補強層などのタイヤ部材に(タイヤ用ゴム組成物として)用いることができる。なかでも、水と接触し得る部材(トレッド、サイドウォール、ショルダー)に好適に用いられ、トレッドにより好適に用いられる。キャップトレッド及びベーストレッドで構成されるトレッドの場合、キャップトレッドに好適に使用可能である。
水と接触し得る部材としては、新品時又はタイヤの摩耗が進行する走行時にタイヤの最表面に位置する部材(トレッド、サイドウォール、ショルダー)が挙げられる。
The rubber composition includes, for example, tread (cap tread), sidewall, base tread, under tread, shoulder, clinch, bead apex, breaker cushion rubber, carcass cord covering rubber, insulation, chafer, inner liner and the like. It can also be used as a tire member (as a rubber composition for a tire) such as a side reinforcing layer of a run flat tire. Among them, it is preferably used for members (treads, sidewalls, shoulders) that can come into contact with water, and is more preferably used for treads. In the case of a tread composed of a cap tread and a base tread, it can be suitably used for a cap tread.
Examples of the member that may come into contact with water include a member (tread, sidewall, shoulder) located on the outermost surface of the tire when the tire is new or when the tire is worn out.
本発明のタイヤ(空気入りタイヤ等)は、上記ゴム組成物を用いて通常の方法によって製造される。すなわち、必要に応じて各種添加剤を配合したゴム組成物を、未加硫の段階でタイヤの各部材(特に、トレッド(キャップトレッド))の形状に合わせて押し出し加工し、タイヤ成型機上にて通常の方法にて成形し、他のタイヤ部材とともに貼り合わせ、未加硫タイヤを形成した後、加硫機中で加熱加圧してタイヤを製造することができる。 The tire of the present invention (pneumatic tire, etc.) is produced by a usual method using the above rubber composition. That is, a rubber composition containing various additives as needed is extruded according to the shape of each member of the tire (particularly, tread (cap tread)) at the unvulcanized stage, and then put onto the tire molding machine. The tire can be manufactured by heating and pressurizing in a vulcanizer after forming an unvulcanized tire by molding it by a usual method and laminating it together with other tire members.
なお、上記タイヤのタイヤ部材(例えば、トレッド)は、少なくとも一部が上記ゴム組成物で構成されていればよく、全部が上記ゴム組成物で構成されていてもよい。 The tire member (for example, tread) of the tire may be composed of at least a part of the rubber composition, and may be entirely composed of the rubber composition.
上記タイヤは、乗用車用タイヤ、大型乗用車用、大型SUV用タイヤ、トラック・バス用タイヤ、二輪車用タイヤ、競技用タイヤ、冬用タイヤ(スタッドレスタイヤ、スノータイヤ、スタッドタイヤ)、オールシーズンタイヤ、ランフラットタイヤ、航空機用タイヤ、鉱山用タイヤ等として好適に用いられる。 The above tires are passenger car tires, large passenger car tires, large SUV tires, truck / bus tires, motorcycle tires, competition tires, winter tires (studless tires, snow tires, stud tires), all-season tires, and runs. It is suitably used as a flat tire, an aircraft tire, a mining tire, and the like.
上記タイヤにおいて、トレッドの厚みは、好ましくは4mm以上、より好ましくは6mm以上、更に好ましくは8mm以上、特に好ましくは11mm以上である。上記範囲内であると、効果がより良好に得られる傾向がある。また、上限は特に限定されないが、好ましくは35mm以下、より好ましくは25mm以下、更に好ましくは20mm以下、特に好ましくは15mm以下である。 In the above tire, the thickness of the tread is preferably 4 mm or more, more preferably 6 mm or more, still more preferably 8 mm or more, and particularly preferably 11 mm or more. Within the above range, the effect tends to be better obtained. The upper limit is not particularly limited, but is preferably 35 mm or less, more preferably 25 mm or less, still more preferably 20 mm or less, and particularly preferably 15 mm or less.
上記タイヤにおいて、トレッドの溝深さ(溝の最深部までのタイヤ経方向距離)は、通常、トレッドの厚みの70%前後であり、トレッドの厚みと相関がある。 In the above tire, the groove depth of the tread (distance in the tire longitudinal direction to the deepest part of the groove) is usually about 70% of the thickness of the tread, which correlates with the thickness of the tread.
上記タイヤは、水によって可逆的に硬度が変化し、上記式(1)及び(2)を満たすゴム組成物によって構成されたトレッドを有し、上記トレッドの厚みが4mm以上であるタイヤであることが好ましい。これにより、ウェットグリップ性能、ドライグリップ性能の総合性能をより好適に改善できる。 The tire has a tread whose hardness is reversibly changed by water and is composed of a rubber composition satisfying the above formulas (1) and (2), and the thickness of the tread is 4 mm or more. Is preferable. As a result, the overall performance of the wet grip performance and the dry grip performance can be more preferably improved.
上記タイヤは前述の効果が得られるが、このような作用効果が得られる理由は必ずしも明らかではないが、以下のように推察される。
上記の通り、水によって可逆的に硬度が変化し、かつ、上記式(1)を満たすことにより、路面の水の状態(ウェット路面、ドライ路面)に応じた適切な硬度が得られるため、ウェットグリップ性能、ドライグリップ性能の総合性能を改善でき、更に、本発明のゴム組成物は、上記式(2)を満たすことにより、より良好なウェットグリップ性能、ドライグリップ性能が得られる。
トレッドの厚みと溝深さは相関関係があり、厚みが大きくなると溝深さも大きくなる傾向がある。そこで、トレッドの厚みの観点において、トレッドの溝深さを大きくする、すなわちトレッドの厚みを大きくすることにより、ウェットグリップ性能を向上できる。
このように、トレッドは、厚みを大きくすることでウェットグリップ性能が向上するが、上記タイヤは、上記ゴム組成物で作製したトレッドの厚みが所定の範囲内であることで、ドライグリップ性能、ウェットグリップ性能の総合性能をより好適に改善できる。
従って、上記タイヤは、トレッドを構成するゴム組成物が、水によって可逆的に硬度が変化し、かつ上記式(1)、(2)を満たし、更に、トレッドの厚みが所定の範囲内であることにより、ウェットグリップ性能、ドライグリップ性能の総合性能をより好適に改善できる。
また、水によって可逆的に硬度変化するゴムを使用することで、路面状態に応じたグリップ性能を得ることが可能となるとともに、トレッドに使用できるゴムの硬さの範囲が広がるため、トレッド設計の自由度を向上させることができる。
Although the above-mentioned tires can obtain the above-mentioned effects, the reason why such effects are obtained is not always clear, but it is presumed as follows.
As described above, the hardness is reversibly changed by water, and by satisfying the above formula (1), an appropriate hardness can be obtained according to the water condition of the road surface (wet road surface, dry road surface). The overall performance of the grip performance and the dry grip performance can be improved, and further, the rubber composition of the present invention can obtain better wet grip performance and dry grip performance by satisfying the above formula (2).
There is a correlation between the thickness of the tread and the groove depth, and the groove depth tends to increase as the thickness increases. Therefore, from the viewpoint of the thickness of the tread, the wet grip performance can be improved by increasing the groove depth of the tread, that is, increasing the thickness of the tread.
As described above, the wet grip performance of the tread is improved by increasing the thickness, but the tire has the dry grip performance and the wet grip when the thickness of the tread produced by the rubber composition is within a predetermined range. The overall performance of the grip performance can be improved more preferably.
Therefore, in the tire, the rubber composition constituting the tread changes its hardness reversibly with water, satisfies the above formulas (1) and (2), and further, the thickness of the tread is within a predetermined range. As a result, the overall performance of wet grip performance and dry grip performance can be improved more preferably.
In addition, by using rubber whose hardness changes reversibly with water, it is possible to obtain grip performance according to the road surface condition, and the range of hardness of the rubber that can be used for the tread is expanded, so the tread design The degree of freedom can be improved.
本明細書において、トレッドの厚みは、トレッドが一層で構成される場合、その層のタイヤ径方向の幅が最大となる部分のタイヤ径方向長さであり、トレッドがキャップトレッドとベーストレッドの2層で構成される場合等、多層構造のトレッドの場合、表層に位置するキャップトレッドのタイヤ径方向の幅が最大となる部分のタイヤ径方向長さである。 In the present specification, the thickness of the tread is the tire radial length of the portion where the width of the layer in the tire radial direction is maximum when the tread is composed of one layer, and the tread is the cap tread and the base tread. In the case of a tread having a multi-layer structure such as when composed of layers, it is the tire radial length of the portion where the width of the cap tread located on the surface layer in the tire radial direction is maximum.
上記タイヤにおいて、トレッドのランド比は、ドライグリップ性能の観点からは、好ましくは30%以上、より好ましくは40%以上、より好ましくは50%以上、更に好ましくは75%以上である。上限は、ウェットグリップ性能の観点から、好ましくは95%以下、より好ましくは90%以下、更に好ましくは85%以下である。 In the above tire, the land ratio of the tread is preferably 30% or more, more preferably 40% or more, more preferably 50% or more, still more preferably 75% or more from the viewpoint of dry grip performance. From the viewpoint of wet grip performance, the upper limit is preferably 95% or less, more preferably 90% or less, still more preferably 85% or less.
上記タイヤは、水によって可逆的に硬度が変化し、上記式(1)及び(2)を満たすゴム組成物によって構成されたトレッドを有し、上記トレッドのランド比が30%以上であるタイヤであることが好ましい。これにより、ウェットグリップ性能、ドライグリップ性能の総合性能をより好適に改善できる。 The tire has a tread whose hardness is reversibly changed by water and is composed of a rubber composition satisfying the above formulas (1) and (2), and the land ratio of the tread is 30% or more. It is preferable to have. As a result, the overall performance of the wet grip performance and the dry grip performance can be more preferably improved.
上記タイヤは前述の効果が得られるが、このような作用効果が得られる理由は必ずしも明らかではないが、以下のように推察される。
上記の通り、水によって可逆的に硬度が変化し、かつ、上記式(1)を満たすことにより、路面の水の状態(ウェット路面、ドライ路面)に応じた適切な硬度が得られるため、ウェットグリップ性能、ドライグリップ性能の総合性能を改善でき、更に、本発明のゴム組成物は、上記式(2)を満たすことにより、より良好なウェットグリップ性能、ドライグリップ性能が得られる。
更に、トレッドは、ランド比を上げることでドライグリップ性能が向上し、ランド比を下げることでウェットグリップ性能が向上するが、上記タイヤは、上記ゴム組成物で作製したトレッドのランド比が所定の範囲内であることで、ドライグリップ性能、ウェットグリップ性能の総合性能をより好適に向上できる。
従って、上記タイヤは、トレッドを構成するゴム組成物が、水によって可逆的に硬度が変化し、かつ上記式(1)、(2)を満たし、更に、トレッドのランド比が所定の範囲内であることにより、ウェットグリップ性能、ドライグリップ性能の総合性能をより好適に改善できる。
また、水によって可逆的に硬度変化するゴムを使用することで、路面状態に応じたグリップ性能を得ることが可能となるとともに、トレッドに使用できるゴムの硬さの範囲が広がるため、トレッド設計の自由度を向上させることができる。
Although the above-mentioned tires can obtain the above-mentioned effects, the reason why such effects are obtained is not always clear, but it is presumed as follows.
As described above, the hardness is reversibly changed by water, and by satisfying the above formula (1), an appropriate hardness can be obtained according to the water condition of the road surface (wet road surface, dry road surface). The overall performance of the grip performance and the dry grip performance can be improved, and further, the rubber composition of the present invention can obtain better wet grip performance and dry grip performance by satisfying the above formula (2).
Further, in the tread, the dry grip performance is improved by increasing the land ratio, and the wet grip performance is improved by decreasing the land ratio. However, in the tire, the land ratio of the tread produced by the rubber composition is predetermined. Within the range, the overall performance of dry grip performance and wet grip performance can be more preferably improved.
Therefore, in the tire, the rubber composition constituting the tread reversibly changes in hardness with water, satisfies the above formulas (1) and (2), and further, the land ratio of the tread is within a predetermined range. This makes it possible to more preferably improve the overall performance of the wet grip performance and the dry grip performance.
In addition, by using rubber whose hardness changes reversibly with water, it is possible to obtain grip performance according to the road surface condition, and the range of hardness of the rubber that can be used for the tread is expanded, so the tread design The degree of freedom can be improved.
なお、本明細書において、上記タイヤが空気入りタイヤの場合、ランド比は、正規リム、正規内圧、正規荷重条件下における接地形状から計算される。非空気入りタイヤの場合、正規内圧を必要とせずに、同様に測定できる。
「正規リム」とは、タイヤが基づいている規格を含む規格体系において、当該規格がタイヤ毎に定めるリムであり、例えばJATMAであれば標準リム、TRAであれば ”Design Rim”、或いはETRTOであれば”Measuring Rim”を意味する。
「正規内圧」とは、前記規格がタイヤ毎に定めている空気圧であり、JATMAであれば最高空気圧、TRAであれば表”TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” に記載の最大値、ETRTOであれば”INFLATION PRESSURE”を意味するが、乗用車用タイヤの場合には180kPaとする。
「正規荷重」とは、前記規格がタイヤ毎に定めている荷重であり、JATMAであれば最大負荷能力、TRAであれば表”TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” に記載の最大値、ETRTOであれば”LOAD CAPACITY”に、夫々0.88を乗じた荷重を意味する。
接地形状は、正規リムに組み付け、正規内圧を加え、25℃で24時間静置した後、タイヤトレッド表面に墨を塗り、正規荷重を負荷して厚紙に押しつけ(キャンバー角は0°)、紙に転写させることで得られる。
タイヤを周方向に72°ずつ回転させて、5か所で転写させる。すなわち、5回、接地形状を得る。
5つの接地形状について、タイヤ軸方向の最大長さの平均値をL、軸方向に直交する方向の長さの平均値をWとする。
ランド比は、厚紙の転写された5つの接地形状(墨部分)の平均面積/(L×W)×100(%)で計算される。
ここで、長さや面積の平均値は、5つの値の単純平均である。
In the present specification, when the tire is a pneumatic tire, the land ratio is calculated from the ground contact shape under normal rim, normal internal pressure, and normal load conditions. In the case of non-pneumatic tires, the same measurement can be performed without the need for regular internal pressure.
A "regular rim" is a rim defined for each tire in the standard system including the standard on which the tire is based. For example, JATMA is a standard rim, TRA is a "Design Rim", or ETRTO. If there is, it means "Measuring Rim".
The "regular internal pressure" is the air pressure defined for each tire by the above standard. If it is JATTA, it is the maximum air pressure. If it is TRA, it is the maximum value described in the table "TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES". If there is, it means "INFRATION PRESSURE", but in the case of passenger car tires, it is 180 kPa.
The "regular load" is the load defined for each tire by the above standard, and is the maximum load capacity for JATTA, and the maximum value described in the table "TIRE LOAD LIMITS AT VARIOUS COLD INFRATION PRESSURES" for TRA, ETRTO. If so, it means a load obtained by multiplying "LOAD CAPACITY" by 0.88, respectively.
For the ground contact shape, assemble it on a regular rim, apply regular internal pressure, let it stand at 25 ° C for 24 hours, then apply black ink on the tire tread surface, apply a regular load and press it against thick paper (camber angle is 0 °), paper. It is obtained by transferring to.
Rotate the tire by 72 ° in the circumferential direction and transfer it at 5 points. That is, the ground contact shape is obtained 5 times.
For the five ground contact shapes, the average value of the maximum lengths in the tire axial direction is L, and the average value of the lengths in the direction orthogonal to the axial direction is W.
The land ratio is calculated by the average area / (L × W) × 100 (%) of the five grounded shapes (black portions) transferred from the cardboard.
Here, the average value of the length and the area is a simple average of the five values.
上記タイヤにおけるトレッドは、タイヤ周方向に連続する溝、及び/又は、タイヤ周方向に非連続の溝を備えてもよい。このような溝を有するパターンとして、リブ型、ラグ型、リブラグ型、ブロック型が挙げられる。 The tread in the tire may be provided with a groove continuous in the tire circumferential direction and / or a groove discontinuous in the tire circumferential direction. Examples of the pattern having such a groove include a rib type, a lug type, a rib lug type, and a block type.
実施例に基づいて、本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。 The present invention will be specifically described based on Examples, but the present invention is not limited thereto.
(製造例1)
窒素置換されたオートクレーブ反応器に、ヘキサン、1,3-ブタジエン、スチレン、テトラヒドロフラン、エチレングリコールジエチルエーテルを投入した。次に、ビス(ジエチルアミノ)メチルビニルシラン及びn-ブチルリチウムを、それぞれ、シクロヘキサン溶液及びn-ヘキサン溶液として投入し、重合を開始した。
撹拌速度を130rpm、反応器内温度を65℃とし、単量体を反応器内に連続的に供給しながら、1,3-ブタジエンとスチレンの共重合を3時間行った。次に、得られた重合体溶液を130rpmの撹拌速度で撹拌し、N-(3-ジメチルアミノプロピル)アクリルアミドを添加し、15分間反応を行った。重合反応終了後、2,6-ジ-tert-ブチル-p-クレゾールを添加した。次いで、スチームストリッピングにより脱溶媒を行い、110℃に調温された熱ロールにより乾燥して変性スチレンブタジエンゴム(SBR)を得た。
(Manufacturing Example 1)
Hexane, 1,3-butadiene, styrene, tetrahydrofuran and ethylene glycol diethyl ether were charged into a nitrogen-substituted autoclave reactor. Next, bis (diethylamino) methylvinylsilane and n-butyllithium were added as cyclohexane solution and n-hexane solution, respectively, and polymerization was started.
The stirring speed was 130 rpm, the temperature inside the reactor was 65 ° C., and copolymerization of 1,3-butadiene and styrene was carried out for 3 hours while continuously supplying the monomers into the reactor. Next, the obtained polymer solution was stirred at a stirring speed of 130 rpm, N- (3-dimethylaminopropyl) acrylamide was added, and the reaction was carried out for 15 minutes. After completion of the polymerization reaction, 2,6-di-tert-butyl-p-cresol was added. Then, the solvent was removed by steam stripping and dried by a heat roll adjusted to 110 ° C. to obtain modified styrene-butadiene rubber (SBR).
(製造例2)重合体1(エポキシド・アリルグリシジルエーテル共重合体)の合成
窒素置換したガラス製フラスコにジエチルエーテルを500mL添加し、内部温度を0℃以下に冷却した後、0.55mol/Lのトリイソブチルアルミニウム/ヘキサン溶液を10mL添加し、次いで0.55mol/Lのエタノール/ジエチルエーテル溶液を内部温度が10℃を超えないよう滴下した。次いで、エチレンオキサイドおよびアリルグリシジルエーテルをモル比で9/1、合計重量200gになるように混合した溶液を、内部温度が10℃を超えないように滴下した後、8時間撹拌させた。次いで、外部温度50℃/内部圧力1.0kPa以下で溶媒を減圧留去した後、残った残渣を水に懸濁させたものを濾過して、濾過残渣をTHFで洗浄した後、50℃/1kPa以下で恒量に達するまで減圧乾燥し、80%の収率で重合体1(赤外吸収スペクトルにて上記式(A)に由来するエーテル基および上記式(B)に由来する炭素-炭素のピークが確認された。重量平均分子量(Mw)は78万、ポリマー100mol%中の上記式(B)で表される基(構造単位)の含有量は8mol%であった)を得た。
(Production Example 2) Synthesis of Polymer 1 (Epoxide / Allyl Glycydyl Ether Copolymer) 500 mL of diethyl ether was added to a nitrogen-substituted glass flask, the internal temperature was cooled to 0 ° C. or lower, and then 0.55 mol / L. 10 mL of the triisobutylaluminum / hexane solution was added, and then a 0.55 mol / L ethanol / diethyl ether solution was added dropwise so that the internal temperature did not exceed 10 ° C. Next, a solution prepared by mixing ethylene oxide and allyl glycidyl ether so as to have a molar ratio of 9/1 and a total weight of 200 g was added dropwise so that the internal temperature did not exceed 10 ° C., and then the mixture was stirred for 8 hours. Next, the solvent was distilled off under reduced pressure at an external temperature of 50 ° C./internal pressure of 1.0 kPa or less, the remaining residue was suspended in water, filtered, and the filtered residue was washed with THF, and then 50 ° C./ Dry under reduced pressure at 1 kPa or less until a constant amount is reached, and in an 80% yield, polymer 1 (ether group derived from the above formula (A) and carbon-carbon derived from the above formula (B) in the infrared absorption spectrum). A peak was confirmed. The weight average molecular weight (Mw) was 780,000, and the content of the group (structural unit) represented by the above formula (B) in 100 mol% of the polymer was 8 mol%).
(製造例3)重合体2(アミン・アリルグリシジルエーテル共重合体)の合成
エチレンオキサイドをトリグリシジルアミンに変更した点以外は、製造例2と同様に操作して、80%の収率でトリグリシジルアミンとアリルグリシジルエーテルの重合体2(製造例2と同様の分析を行いアミンの吸収と炭素-炭素2重結合由来のピークを確認し、重量平均分子量は98万、ポリマー100mol%中の上記式(B)で表される基(構造単位)の含有量は8mol%であった)を得た。
(Production Example 3) Synthesis of Polymer 2 (Amine / Allylglycidyl Ether Copolymer) Except that the ethylene oxide was changed to triglycidylamine, the same procedure as in Production Example 2 was carried out to obtain 80% yield. Polymer 2 of glycidylamine and allylglycidyl ether (The same analysis as in Production Example 2 was performed to confirm the absorption of amine and the peak derived from the carbon-carbon double bond. The weight average molecular weight was 980,000, and the above in 100 mol% of the polymer. The content of the group (structural unit) represented by the formula (B) was 8 mol%).
(製造例4)重合体3(シリル・アリルグリシジルエーテル共重合体)の合成
エチレンオキサイドをトリエトキシシリルグリシジルエーテルに変更した点以外は、製造例2と同様に操作して、80%の収率でトリエトキシシリルグリシジルエーテルとアリルグリシジルエーテルの重合体3(製造例2と同様の分析を行いシラノールの吸収と炭素-炭素2重結合由来のピークを確認し、重量平均分子量は64万、ポリマー100mol%中の上記式(B)で表される基(構造単位)の含有量は8mol%であった)を得た。
(Production Example 4) Synthesis of Polymer 3 (silyl-allyl glycidyl ether copolymer) 80% yield by the same procedure as in Production Example 2 except that the ethylene oxide was changed to triethoxysilyl glycidyl ether. Polymer 3 of triethoxysilyl glycidyl ether and allyl glycidyl ether (the same analysis as in Production Example 2 was performed to confirm the absorption of silanol and the peak derived from the carbon-carbon double bond. The weight average molecular weight was 640,000 and the polymer was 100 mol. The content of the group (structural unit) represented by the above formula (B) in% was 8 mol%).
また、得られた重合体1~3について下記の評価を行った。 In addition, the following evaluations were performed on the obtained polymers 1 to 3.
<水不溶分の測定>
ガラス製フラスコにポリマーを1g計量し、水10mLを注ぎ、内部温度66℃で10分撹拌した後、内部温度25℃以下になるまで撹拌を続けた後、材質セルロース、メッシュサイズ5Cのろ紙により濾過し、濾紙に残った残渣を温度80℃、内圧0.1kPa以下で8時間乾燥し、重量を測定し、下記式により水不溶分を算出した。
水不溶分(質量%)=残渣の乾燥重量(g)/ポリマーの初期重量(g)x100
<Measurement of water insoluble matter>
Weigh 1 g of polymer in a glass flask, pour 10 mL of water, stir for 10 minutes at an internal temperature of 66 ° C, continue stirring until the internal temperature drops to 25 ° C or less, and then filter with a filter paper of material cellulose and mesh size 5C. Then, the residue remaining on the filter paper was dried at a temperature of 80 ° C. and an internal pressure of 0.1 kPa or less for 8 hours, the weight was measured, and the water-insoluble content was calculated by the following formula.
Water insoluble content (% by mass) = dry weight of residue (g) / initial weight of polymer (g) x 100
<THF不溶分の測定>
ガラス製フラスコにポリマーを1g計量し、テトラヒドロフラン10mLを注ぎ、内部温度66℃で10分撹拌した後、内部温度25℃以下になるまで撹拌を続けた後、材質セルロース、メッシュサイズ5Cのろ紙により濾過し、濾紙に残った残渣を温度80℃、内圧0.1kPa以下で8時間乾燥し、重量を測定し、下記式によりTHF不溶分を算出した。
THF不溶分(質量%)=残渣の乾燥重量(g)/ポリマーの初期重量(g)x100
<Measurement of THF insoluble matter>
Weigh 1 g of polymer into a glass flask, pour 10 mL of tetrahydrofuran, stir at an internal temperature of 66 ° C. for 10 minutes, continue stirring until the internal temperature drops to 25 ° C. or lower, and then filter with a filter paper of material cellulose and mesh size 5C. Then, the residue remaining on the filter paper was dried at a temperature of 80 ° C. and an internal pressure of 0.1 kPa or less for 8 hours, the weight was measured, and the THF insoluble content was calculated by the following formula.
THF insoluble content (% by mass) = dry weight of residue (g) / initial weight of polymer (g) x 100
以下、実施例及び比較例で使用した各種薬品について、まとめて説明する。
SBR:上記方法で合成したSBR(変性S-SBR、スチレン量:25質量%、ビニル量:59モル%、非油展品)
BR:宇部興産(株)製のBR150B(シス量:97質量%)
NR:TSR20
重合体1:上記方法で合成した重合体1(水不溶分:96質量%、THF不溶分:96質量%)
重合体2:上記方法で合成した重合体2(水不溶分:82質量%、THF不溶分:96質量%)
重合体3:上記方法で合成した重合体3(水不溶分:92質量%、THF不溶分:92質量%)
シリカ:ローデシア社製のZEOSIL 1165MP(NSA:160m/g)
カーボンブラック:東海カーボン(株)製のシースト9H(DBP吸油量115ml/100g、NSA:110m/g)
シランカップリング剤:エボニックデグッサ社製のSi75(ビス(3-トリエトキシシリルプロピル)ジスルフィド)
オイル:(株)ジャパンエナジー製のプロセスX-140(アロマ系プロセスオイル)
樹脂:日塗化学(株)製のG90(クマロンインデン樹脂、軟化点:90℃)
ワックス:日本精蝋(株)製のオゾエース0355
老化防止剤:フレキシス(株)製のサントフレックス13(N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン(6PPD))
ステアリン酸:日油(株)製のステアリン酸「椿」
酸化亜鉛:三井金属鉱業(株)製の酸化亜鉛2種
硫黄:鶴見化学工業(株)製の粉末硫黄
加硫促進剤1:大内新興化学工業(株)製のノクセラーNS(N-tert-ブチル-2-ベンゾチアゾリルスルフェンアミド)
加硫促進剤2:大内新興化学工業(株)製のノクセラーD(1,3-ジフェニルグアニジン)
Hereinafter, various chemicals used in Examples and Comparative Examples will be collectively described.
SBR: SBR synthesized by the above method (modified S-SBR, styrene content: 25% by mass, vinyl content: 59 mol%, non-oil-extended product)
BR: BR150B manufactured by Ube Industries, Ltd. (cis amount: 97% by mass)
NR: TSR20
Polymer 1: Polymer 1 synthesized by the above method (water insoluble content: 96% by mass, THF insoluble content: 96% by mass)
Polymer 2: Polymer 2 synthesized by the above method (water insoluble content: 82% by mass, THF insoluble content: 96% by mass)
Polymer 3: Polymer 3 synthesized by the above method (water insoluble content: 92% by mass, THF insoluble content: 92% by mass)
Silica: ZEOSIL 1165MP (N 2 SA: 160m 2 / g) manufactured by Rhodesia
Carbon Black: Tokai Carbon Co., Ltd. Seest 9H (DBP oil absorption 115 ml / 100 g, N 2 SA: 110 m 2 / g)
Silane coupling agent: Si75 (bis (3-triethoxysilylpropyl) disulfide) manufactured by Evonik Degussa
Oil: Process X-140 (aroma-based process oil) manufactured by Japan Energy Co., Ltd.
Resin: G90 manufactured by Nikko Kagaku Co., Ltd. (Kumaron Inden resin, softening point: 90 ° C)
Wax: Ozo Ace 0355 manufactured by Nippon Seiro Co., Ltd.
Anti-aging agent: Santoflex 13 (N- (1,3-dimethylbutyl) -N'-phenyl-p-phenylenediamine (6PPD)) manufactured by Flexis Co., Ltd.
Stearic acid: Stearic acid "Camellia" manufactured by NOF CORPORATION
Zinc oxide: Zinc oxide type 2 manufactured by Mitsui Metal Mining Co., Ltd. Sulfur: Powdered sulfur vulcanization accelerator manufactured by Tsurumi Chemical Industry Co., Ltd. 1: Noxeller NS (N-tert-) manufactured by Ouchi Shinko Chemical Industry Co., Ltd. Butyl-2-benzothiazolyl vulcan amide)
Vulcanization accelerator 2: Noxeller D (1,3-diphenylguanidine) manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd.
(実施例及び比較例)
表1に示す配合処方にしたがい、(株)神戸製鋼所製の1.7Lバンバリーミキサーを用いて、硫黄及び加硫促進剤以外の薬品を160℃の条件下で4分間混練りし、混練り物を得た。次に、得られた混練り物に硫黄及び加硫促進剤を添加し、オープンロールを用いて、80℃の条件下で4分間練り込み、未加硫ゴム組成物を得た。
得られた未加硫ゴム組成物を170℃の条件下で12分間プレス加硫し、加硫ゴム組成物を得た。
(Examples and comparative examples)
According to the formulation shown in Table 1, using a 1.7L Bunbury mixer manufactured by Kobe Steel, Ltd., chemicals other than sulfur and vulcanization accelerator are kneaded under the condition of 160 ° C for 4 minutes, and the kneaded product is kneaded. Got Next, sulfur and a vulcanization accelerator were added to the obtained kneaded product, and the mixture was kneaded for 4 minutes under the condition of 80 ° C. using an open roll to obtain an unvulcanized rubber composition.
The obtained unvulcanized rubber composition was press-vulcanized under the condition of 170 ° C. for 12 minutes to obtain a vulcanized rubber composition.
得られた加硫ゴム組成物を下記により評価した。結果を表1に示す。 The obtained vulcanized rubber composition was evaluated as follows. The results are shown in Table 1.
(加硫ゴムの硬度(Hs))
JIS K6253-3(2012)の「加硫ゴム及び熱可塑性ゴム-硬さの求め方-第3部:デュロメータ硬さ」に従って、タイプAデュロメータにより、加硫ゴム組成物(試験片)のショア硬度(Hs)を測定した(JIS-A硬度)。測定は25℃で行った。
(Vulcanized rubber hardness (Hs))
Shore hardness of vulcanized rubber composition (test piece) by Type A durometer according to "Vulcanized rubber and thermoplastic rubber-How to determine hardness-Part 3: Durometer hardness" of JIS K6253-3 (2012). (Hs) was measured (JIS-A hardness). The measurement was performed at 25 ° C.
(水湿潤時の硬度)
加硫ゴム組成物(30mm×30mm×4mmの直方体形状)を20mlの水に25℃で6時間浸漬させることにより、水湿潤後の加硫ゴム組成物を得た。得られた水湿潤後の加硫ゴム組成物の硬度を上記の方法で測定し、水湿潤時の硬度とした。
(Hardness when wet with water)
The vulcanized rubber composition (30 mm × 30 mm × 4 mm rectangular parallelepiped shape) was immersed in 20 ml of water at 25 ° C. for 6 hours to obtain a vulcanized rubber composition after water wetting. The hardness of the obtained vulcanized rubber composition after wetting with water was measured by the above method and used as the hardness at the time of wetting with water.
(乾燥時の硬度)
水湿潤後の加硫ゴム組成物を80℃、1kPa以下の条件で恒量になるまで減圧乾燥し、乾燥後の加硫ゴム組成物を得た。得られた乾燥後の加硫ゴム組成物の温度を25℃に戻した後、乾燥後の加硫ゴム組成物の硬度を上記の方法で測定し、乾燥時の硬度とした。
(Hardness when dried)
The vulcanized rubber composition after being wetted with water was dried under reduced pressure at 80 ° C. and 1 kPa or less until the amount became constant to obtain a dried vulcanized rubber composition. After returning the temperature of the obtained vulcanized rubber composition after drying to 25 ° C., the hardness of the vulcanized rubber composition after drying was measured by the above method and used as the hardness at the time of drying.
(再水湿潤時の硬度)
乾燥後の加硫ゴム組成物(30mm×30mm×4mmの直方体形状)を20mlの水に25℃で6時間浸漬させることにより、再水湿潤後の加硫ゴム組成物を得た。得られた再水湿潤後の加硫ゴム組成物の硬度を上記の方法で測定し、再水湿潤時の硬度とした。
(Hardness when re-wet)
The dried vulcanized rubber composition (30 mm × 30 mm × 4 mm rectangular parallelepiped shape) was immersed in 20 ml of water at 25 ° C. for 6 hours to obtain a vulcanized rubber composition after re-wetting. The hardness of the obtained vulcanized rubber composition after re-wetting was measured by the above method and used as the hardness at the time of re-wetting.
(乾燥時のtanδ)
(株)岩本製作所製の粘弾性スペクトロメータVESを用いて、乾燥後の加硫ゴム組成物の70℃tanδを測定した。測定条件は以下のとおりである。
測定温度70℃、初期歪10%、動歪2%、周波数10Hz
(Tan δ when dried)
Using a viscoelastic spectrometer VES manufactured by Iwamoto Seisakusho Co., Ltd., 70 ° C. tan δ of the vulcanized rubber composition after drying was measured. The measurement conditions are as follows.
Measurement temperature 70 ° C, initial strain 10%, dynamic strain 2%, frequency 10Hz
(ウェットグリップ性能指数)
得られた未加硫ゴム組成物シートをトレッド形状に成形して、他のタイヤ部材と張り合わせ150℃/15分でプレス加硫することで、カート用タイヤ(タイヤサイズ:11 x 1.10―5)を作成した。該カート用タイヤをカートに装着し、予め散水した路面の1周2kmのテストコースを8周走行して、グリップ性能を比較例1を100として、200点満点でテストドライバーが評価した。
(Wet grip figure of merit)
The obtained unvulcanized rubber composition sheet is formed into a tread shape, laminated with other tire members, and press-vulcanized at 150 ° C./15 minutes to produce a tire for carts (tire size: 11 x 1.10-). 5) was created. The cart tires were mounted on the cart, and the test driver ran eight laps on a test course of 2 km per lap on a pre-sprinkled road surface, and the test driver evaluated the grip performance with Comparative Example 1 as 100 on a scale of 200 points.
(ドライグリップ性能指数)
得られた未加硫ゴム組成物シートをトレッド形状に成形して、他のタイヤ部材と張り合わせ150℃/15分でプレス加硫することで、カート用タイヤ(タイヤサイズ:11 x 1.10―5)を作成した。該カート用タイヤをカートに装着し、乾燥路面の1周2kmのテストコースを8周走行して、グリップ性能を比較例1を100として、200点満点でテストドライバーが評価した。
(Dry grip performance index)
The obtained unvulcanized rubber composition sheet is formed into a tread shape, laminated with other tire members, and press-vulcanized at 150 ° C./15 minutes to produce a tire for carts (tire size: 11 x 1.10-). 5) was created. The cart tire was attached to the cart, and the test driver ran 8 laps on a test course of 2 km per lap on a dry road surface, and the test driver evaluated the grip performance with Comparative Example 1 as 100 on a scale of 200 points.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
表1より、水によって可逆的に硬度が変化し、上記式(1)及び(2)を満たす実施例は、ウェットグリップ性能、ドライグリップ性能の総合性能(ウェットグリップ性能、ドライグリップ性能の2つの指数の総和で表す)を改善できることが分かった。 From Table 1, the examples in which the hardness changes reversibly with water and satisfies the above equations (1) and (2) are the total performance of wet grip performance and dry grip performance (wet grip performance and dry grip performance). It was found that (represented by the sum of the indexes) can be improved.
(タイヤの作製)
得られた未加硫ゴム組成物をトレッド形状(表2に示すトレッドの厚み)に成形して、他のタイヤ部材と張り合わせ170℃/12分でプレス加硫することで、試験用タイヤ(サイズ:195/65R15)を作製した。
(Making tires)
The obtained unvulcanized rubber composition is formed into a tread shape (thickness of the tread shown in Table 2), laminated with other tire members, and press-vulcanized at 170 ° C./12 min to test tire (size). 195 / 65R15) was prepared.
(ウェットグリップ性能指数)
上記試験用タイヤを車両に装着し、予め路面に散水した1周2kmのテストコースを8周走行して、グリップ性能を実施例2-1を100として、200点満点でテストドライバーが評価した。評価結果を表2に示す。
(Wet grip figure of merit)
The test tires were mounted on the vehicle, and the test driver ran eight laps on a test course of 2 km per lap in which water was sprinkled on the road surface in advance, and the grip performance was evaluated by the test driver with a maximum of 200 points, with Example 2-1 as 100. The evaluation results are shown in Table 2.
(ドライグリップ性能指数)
上記試験用タイヤを車両に装着し、乾燥路面の1周2kmのテストコースを8周走行して、グリップ性能を実施例2-1を100として、200点満点でテストドライバーが評価した。評価結果を表2に示す。
(Dry grip performance index)
The test tires were mounted on the vehicle, and the test driver ran eight laps on a test course of 2 km per lap on a dry road surface, and the test driver evaluated the grip performance with Example 2-1 as 100 on a scale of 200 points. The evaluation results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
表2より、水によって可逆的に硬度が変化し、上記式(1)及び(2)を満たすゴム組成物によって構成されたトレッドを有し、上記トレッドの厚みが4mm以上であるタイヤは、ウェットグリップ性能、ドライグリップ性能の総合性能(ウェットグリップ性能、ドライグリップ性能の2つの指数の総和で表す)をより好適に改善できることが分かった。 From Table 2, tires having a tread whose hardness is reversibly changed by water and which is composed of a rubber composition satisfying the above formulas (1) and (2) and whose tread thickness is 4 mm or more are wet. It was found that the total performance of the grip performance and the dry grip performance (expressed by the sum of the two indexes of the wet grip performance and the dry grip performance) can be improved more preferably.
(タイヤの作製)
得られた未加硫ゴム組成物をトレッド形状(表3に示すランド比)に成形して、他のタイヤ部材と張り合わせ170℃/12分でプレス加硫することで、試験用タイヤ(サイズ:195/65R15)を作製した。
(Making tires)
The obtained unvulcanized rubber composition is formed into a tread shape (land ratio shown in Table 3), laminated with other tire members, and press-vulcanized at 170 ° C./12 minutes to test tire (size:: 195 / 65R15) was prepared.
(ランド比の測定)
本明細書に記載のランド比の測定方法にしたがい、JATMAの規格を用いて、ランド比(%)を測定した。測定結果を表3に示す。
(Measurement of land ratio)
The land ratio (%) was measured using the JATTA standard according to the land ratio measuring method described in the present specification. The measurement results are shown in Table 3.
(ウェットグリップ性能指数)
上記試験用タイヤを車両に装着し、予め路面に散水した1周2kmのテストコースを8周走行して、グリップ性能を実施例3-1を100として、200点満点でテストドライバーが評価した。評価結果を表3に示す。
(Wet grip figure of merit)
The test tires were mounted on the vehicle, and the test driver ran eight laps on a test course of 2 km per lap in which water was sprinkled on the road surface in advance, and the test driver evaluated the grip performance with Example 3-1 as 100 on a scale of 200 points. The evaluation results are shown in Table 3.
(ドライグリップ性能指数)
上記試験用タイヤを車両に装着し、乾燥路面の1周2kmのテストコースを8周走行して、グリップ性能を実施例3-1を100として、200点満点でテストドライバーが評価した。評価結果を表3に示す。
(Dry grip performance index)
The test tires were mounted on the vehicle, and the test driver ran eight laps on a test course of 2 km per lap on a dry road surface, and the test driver evaluated the grip performance with Example 3-1 as 100 on a scale of 200 points. The evaluation results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
表3より、水によって可逆的に硬度が変化し、上記式(1)及び(2)を満たすゴム組成物によって構成されたトレッドを有し、上記トレッドのランド比が30%以上であるタイヤは、ウェットグリップ性能、ドライグリップ性能の総合性能(ウェットグリップ性能、ドライグリップ性能の2つの指数の総和で表す)をより好適に改善できることが分かった。
 
From Table 3, tires having a tread whose hardness is reversibly changed by water and composed of a rubber composition satisfying the above formulas (1) and (2) and having a land ratio of the tread of 30% or more , It was found that the total performance of wet grip performance and dry grip performance (expressed by the sum of the two indexes of wet grip performance and dry grip performance) can be improved more preferably.

Claims (15)

  1. 水によって可逆的に硬度が変化し、下記式(1)及び(2)を満たすゴム組成物。
    乾燥時の硬度-水湿潤時の硬度≧1           (1)
    (式中、硬度は、ゴム組成物の25℃におけるJIS-A硬度である。)
    乾燥時の70℃のtanδ≧0.18               (2)
    (式中、70℃のtanδは、70℃、初期歪10%、動歪2%、周波数10Hzの条件で測定した損失正接である。)
    A rubber composition whose hardness is reversibly changed by water and satisfies the following formulas (1) and (2).
    Hardness when dried-Hardness when wet with water ≥ 1 (1)
    (In the formula, the hardness is the JIS-A hardness of the rubber composition at 25 ° C.).
    70 ° C tan δ ≧ 0.18 when dry (2)
    (In the equation, tan δ at 70 ° C is the loss tangent measured under the conditions of 70 ° C, initial strain 10%, dynamic strain 2%, and frequency 10 Hz.)
  2. 前記式(1)において、乾燥時の硬度-水湿潤時の硬度が4以上である請求項1記載のゴム組成物。 The rubber composition according to claim 1, wherein in the formula (1), the hardness when dried-the hardness when wetted with water is 4 or more.
  3. 前記式(2)において、乾燥時の70℃のtanδが0.21以上である請求項1又は2に記載のゴム組成物。 The rubber composition according to claim 1 or 2, wherein the tan δ at 70 ° C. at the time of drying in the formula (2) is 0.21 or more.
  4. 親水性材料を含む請求項1~3のいずれかに記載のゴム組成物。 The rubber composition according to any one of claims 1 to 3, which comprises a hydrophilic material.
  5. イソプレン系ゴムを含む請求項1~4のいずれかに記載のゴム組成物。 The rubber composition according to any one of claims 1 to 4, which comprises an isoprene-based rubber.
  6. ブタジエンゴムを含む請求項1~5のいずれかに記載のゴム組成物。 The rubber composition according to any one of claims 1 to 5, which comprises a butadiene rubber.
  7. ゴム成分100質量%中のスチレンブタジエンゴムの含有量が95質量%以下である請求項1~6のいずれかに記載のゴム組成物。 The rubber composition according to any one of claims 1 to 6, wherein the content of styrene-butadiene rubber in 100% by mass of the rubber component is 95% by mass or less.
  8. ゴム成分100質量%中のスチレンブタジエンゴムの含有量>50質量%>ゴム成分100質量%中のブタジエンゴムの含有量>ゴム成分100質量%中のイソプレン系ゴムの含有量の関係を満たす請求項1~7のいずれかに記載のゴム組成物。 A claim that satisfies the relationship of the content of styrene-butadiene rubber in 100% by mass of the rubber component> 50% by mass> the content of butadiene rubber in 100% by mass of the rubber component> the content of isoprene-based rubber in 100% by mass of the rubber component. The rubber composition according to any one of 1 to 7.
  9. シリカ、カーボンブラックをそれぞれゴム成分100質量部に対して、20質量部以上含む請求項1~8のいずれかに記載のゴム組成物。 The rubber composition according to any one of claims 1 to 8, which contains 20 parts by mass or more of silica and carbon black with respect to 100 parts by mass of each rubber component.
  10. 石油系樹脂を含む請求項1~9のいずれかに記載のゴム組成物。 The rubber composition according to any one of claims 1 to 9, which comprises a petroleum-based resin.
  11. トレッド用ゴム組成物である請求項1~10のいずれかに記載のゴム組成物。 The rubber composition according to any one of claims 1 to 10, which is a rubber composition for tread.
  12. 請求項1~11のいずれかに記載のゴム組成物で少なくとも一部が構成されたタイヤ部材を有するタイヤ。 A tire having a tire member composed of at least a part of the rubber composition according to any one of claims 1 to 11.
  13. 前記タイヤ部材がトレッドであり、トレッドの厚みが4mm以上である請求項12記載のタイヤ。 The tire according to claim 12, wherein the tire member is a tread, and the thickness of the tread is 4 mm or more.
  14. 前記タイヤ部材がトレッドであり、トレッドのランド比が30%以上である請求項12又は13記載のタイヤ。 The tire according to claim 12 or 13, wherein the tire member is a tread and the land ratio of the tread is 30% or more.
  15. 前記タイヤ部材がトレッドであり、タイヤ周方向に連続する溝、及び/又は、タイヤ周方向に非連続の溝を備える請求項12~14のいずれかに記載のタイヤ。 The tire according to any one of claims 12 to 14, wherein the tire member is a tread and has a groove continuous in the tire circumferential direction and / or a groove discontinuous in the tire circumferential direction.
PCT/JP2020/019428 2019-06-04 2020-05-15 Rubber composition and tire WO2020246218A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021524732A JPWO2020246218A1 (en) 2019-06-04 2020-05-15
CN202080016472.XA CN113474181B (en) 2019-06-04 2020-05-15 Rubber composition and tire
US17/615,150 US20220235209A1 (en) 2019-06-04 2020-05-15 Rubber composition and tire
EP20817948.1A EP3904117A4 (en) 2019-06-04 2020-05-15 Rubber composition and tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-104592 2019-06-04
JP2019104592 2019-06-04

Publications (1)

Publication Number Publication Date
WO2020246218A1 true WO2020246218A1 (en) 2020-12-10

Family

ID=73652811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/019428 WO2020246218A1 (en) 2019-06-04 2020-05-15 Rubber composition and tire

Country Status (5)

Country Link
US (1) US20220235209A1 (en)
EP (1) EP3904117A4 (en)
JP (1) JPWO2020246218A1 (en)
CN (1) CN113474181B (en)
WO (1) WO2020246218A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023171320A1 (en) * 2022-03-07 2023-09-14 住友ゴム工業株式会社 Tire
WO2023171323A1 (en) * 2022-03-07 2023-09-14 住友ゴム工業株式会社 Tire
WO2023248611A1 (en) * 2022-06-24 2023-12-28 住友ゴム工業株式会社 Tire
US20230416507A1 (en) * 2022-06-24 2023-12-28 Sumitomo Rubber Industries, Ltd. Tire

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220388345A1 (en) * 2019-11-06 2022-12-08 Compagnie Generale Des Etablissements Michelin Tire having a tread
JP2022094627A (en) * 2020-12-15 2022-06-27 横浜ゴム株式会社 tire
CN116102801A (en) * 2021-11-09 2023-05-12 住友橡胶工业株式会社 Tire with a tire body

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0779330A1 (en) * 1995-12-15 1997-06-18 Bridgestone Corporation Sulfur curable mix compositions including silica and an antistatic agent, particularly for manufacturing tires; tire tread produced from such mixes; and tire comprising such a tread
WO1997039055A1 (en) * 1996-04-17 1997-10-23 Nippon Zeon Co., Ltd. Rubber composition
JP2000239445A (en) * 1999-02-22 2000-09-05 Sumitomo Rubber Ind Ltd Tread rubber composition
JP2003128839A (en) * 2001-10-22 2003-05-08 Sumitomo Rubber Ind Ltd Rubber composition
JP2006213864A (en) * 2005-02-04 2006-08-17 Toyo Tire & Rubber Co Ltd Rubber composition for tire tread
JP2008285524A (en) 2007-05-15 2008-11-27 Sumitomo Rubber Ind Ltd Rubber composition for tire tread and pneumatic tire
JP2016125000A (en) * 2015-01-06 2016-07-11 横浜ゴム株式会社 Studless tire rubber composition and studless tire prepared therewith

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5082901A (en) * 1990-09-24 1992-01-21 The Goodyear Tire & Rubber Company Tire with tread
JP3511493B2 (en) * 1999-12-21 2004-03-29 住友ゴム工業株式会社 Tread rubber composition
DE10108981A1 (en) * 2001-02-23 2002-09-12 Continental Ag Rubber compound for tire treads
JP3913731B2 (en) * 2003-12-11 2007-05-09 住友ゴム工業株式会社 Rubber composition for tire tread and pneumatic tire
US20080066838A1 (en) * 2006-09-08 2008-03-20 Ping Zhang Carbon black-rich rubber composition containing particulate hydrophylic water absorbing polymer and tire with tread thereof
JP2009057413A (en) * 2007-08-30 2009-03-19 Toyo Tire & Rubber Co Ltd Rubber composition for tire tread and pneumatic tire
CN101724127A (en) * 2008-10-16 2010-06-09 住友橡胶工业株式会社 Polymer, rubber composition and tire using the same
JP5934677B2 (en) * 2013-06-18 2016-06-15 住友ゴム工業株式会社 Rubber composition for tire and pneumatic tire
JP6262487B2 (en) * 2013-10-08 2018-01-17 株式会社クラレ Rubber composition and tire
WO2015145843A1 (en) * 2014-03-26 2015-10-01 住友ゴム工業株式会社 Rubber composition for tire, pneumatic tire, and method for manufacturing rubber composition for tire
JP6021195B2 (en) * 2014-06-04 2016-11-09 住友ゴム工業株式会社 Semi-conductive roller
JP6258177B2 (en) * 2014-09-25 2018-01-10 住友ゴム工業株式会社 Rubber composition for tire and tire
CN107001712B (en) * 2014-12-24 2020-03-17 住友橡胶工业株式会社 Pneumatic tire
JP2017110070A (en) * 2015-12-15 2017-06-22 東洋ゴム工業株式会社 Rubber composition and pneumatic tire
CN108699298B (en) * 2016-02-25 2021-04-06 住友橡胶工业株式会社 Rubber composition and pneumatic tire
JP7077946B2 (en) * 2016-12-14 2022-05-31 住友ゴム工業株式会社 Rubber composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0779330A1 (en) * 1995-12-15 1997-06-18 Bridgestone Corporation Sulfur curable mix compositions including silica and an antistatic agent, particularly for manufacturing tires; tire tread produced from such mixes; and tire comprising such a tread
WO1997039055A1 (en) * 1996-04-17 1997-10-23 Nippon Zeon Co., Ltd. Rubber composition
JP2000239445A (en) * 1999-02-22 2000-09-05 Sumitomo Rubber Ind Ltd Tread rubber composition
JP2003128839A (en) * 2001-10-22 2003-05-08 Sumitomo Rubber Ind Ltd Rubber composition
JP2006213864A (en) * 2005-02-04 2006-08-17 Toyo Tire & Rubber Co Ltd Rubber composition for tire tread
JP2008285524A (en) 2007-05-15 2008-11-27 Sumitomo Rubber Ind Ltd Rubber composition for tire tread and pneumatic tire
JP2016125000A (en) * 2015-01-06 2016-07-11 横浜ゴム株式会社 Studless tire rubber composition and studless tire prepared therewith

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023171320A1 (en) * 2022-03-07 2023-09-14 住友ゴム工業株式会社 Tire
WO2023171323A1 (en) * 2022-03-07 2023-09-14 住友ゴム工業株式会社 Tire
WO2023248611A1 (en) * 2022-06-24 2023-12-28 住友ゴム工業株式会社 Tire
US20230416507A1 (en) * 2022-06-24 2023-12-28 Sumitomo Rubber Industries, Ltd. Tire

Also Published As

Publication number Publication date
CN113474181A (en) 2021-10-01
JPWO2020246218A1 (en) 2020-12-10
EP3904117A4 (en) 2022-04-06
US20220235209A1 (en) 2022-07-28
CN113474181B (en) 2023-11-07
EP3904117A1 (en) 2021-11-03

Similar Documents

Publication Publication Date Title
CN113474181B (en) Rubber composition and tire
JP6434585B1 (en) Pneumatic tire
JP7243068B2 (en) tire
CN111801378B (en) Rubber composition and tire
EP3744777B1 (en) Rubber composition and tire
EP3744780B1 (en) Rubber composition and tire
JP7215304B2 (en) Rubber composition for tire tread and tire
WO2020189100A1 (en) Tire
US11772422B2 (en) Tire rubber composition and tire
WO2021090660A1 (en) Rubber composition for tires, and tire
JP7243067B2 (en) tire
JP7103458B2 (en) Rubber composition for tires and tires
EP3954551B1 (en) Pneumatic tire
US11866586B2 (en) Rubber composition for tires and tire
JP2020015884A (en) Rubber composition and tire
JP2023028916A (en) Rubber composition and tire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20817948

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020817948

Country of ref document: EP

Effective date: 20210729

ENP Entry into the national phase

Ref document number: 2021524732

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE