WO2020246163A1 - Corrugated cardboard material and corrugated cardboard box using same - Google Patents

Corrugated cardboard material and corrugated cardboard box using same Download PDF

Info

Publication number
WO2020246163A1
WO2020246163A1 PCT/JP2020/017263 JP2020017263W WO2020246163A1 WO 2020246163 A1 WO2020246163 A1 WO 2020246163A1 JP 2020017263 W JP2020017263 W JP 2020017263W WO 2020246163 A1 WO2020246163 A1 WO 2020246163A1
Authority
WO
WIPO (PCT)
Prior art keywords
corrugated cardboard
liner
cardboard material
sheet
less
Prior art date
Application number
PCT/JP2020/017263
Other languages
French (fr)
Japanese (ja)
Inventor
祥平 眞田
悠生 川浪
壮 佐藤
豪 盤指
貴迪 山口
隼介 塩田
優作 高杉
良樹 小関
Original Assignee
王子ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019105562A external-priority patent/JP6697617B1/en
Priority claimed from JP2019105561A external-priority patent/JP6697616B1/en
Priority claimed from JP2019105558A external-priority patent/JP6697613B1/en
Priority claimed from JP2019105560A external-priority patent/JP6697615B1/en
Priority claimed from JP2019105559A external-priority patent/JP6697614B1/en
Priority claimed from JP2019188246A external-priority patent/JP6684425B1/en
Priority claimed from JP2020062420A external-priority patent/JP6754510B1/en
Priority to MYPI2021007155A priority Critical patent/MY192401A/en
Priority to AU2020287947A priority patent/AU2020287947B2/en
Application filed by 王子ホールディングス株式会社 filed Critical 王子ホールディングス株式会社
Publication of WO2020246163A1 publication Critical patent/WO2020246163A1/en
Priority to AU2023200159A priority patent/AU2023200159A1/en
Priority to AU2023200158A priority patent/AU2023200158A1/en
Priority to AU2023200160A priority patent/AU2023200160A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B31MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31FMECHANICAL WORKING OR DEFORMATION OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31F1/00Mechanical deformation without removing material, e.g. in combination with laminating
    • B31F1/08Creasing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/28Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer comprising a deformed thin sheet, i.e. the layer having its entire thickness deformed out of the plane, e.g. corrugated, crumpled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D5/00Rigid or semi-rigid containers of polygonal cross-section, e.g. boxes, cartons or trays, formed by folding or erecting one or more blanks made of paper
    • B65D5/42Details of containers or of foldable or erectable container blanks
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/30Multi-ply
    • D21H27/40Multi-ply at least one of the sheets being non-planar, e.g. crêped

Definitions

  • the present invention relates to a bellows-folded cardboard material and a cardboard box using the same.
  • Corrugated cardboard material with bellows fold (also called “fan fold”) is known as a material for box making.
  • the corrugated cardboard material is provided with creases between continuous rectangular sheets, and the sheets are alternately folded back at the folds.
  • bellows-folded cardboard material continuous sheets are stacked one above the other and folded into a rectangular parallelepiped packaging.
  • the above cardboard materials are box-making systems (“automatic packaging system”, “three-side variable system”, “three-side automatic packaging”, and “on-demand packaging” that manufacture boxes of the optimum size according to the size of the object to be packaged. It is also used as a packaging material.
  • box-making system various steps illustrated below are carried out (see Patent Document 1 below).
  • ⁇ Feed process Process of feeding out bellows-folded cardboard material
  • ⁇ Cutting process Process of cutting out flat cardboard material fed in the feed process
  • Folding process Process of assembling a box from the cardboard material cut out in the cutting process
  • Printing process The process of printing on a flat or assembled cardboard material
  • Packing process The process of storing the contents in the assembled box
  • the corrugated cardboard material disclosed here is a second corrugated cardboard material orthogonal to the first direction on a plane along the fold at each of the folds in which a rectangular sheet extends linearly along the first direction in continuous cardboard.
  • the corrugated cardboard material has a predetermined structure with respect to the properties used for the corrugated cardboard material.
  • the predetermined configuration includes at least one of the configurations a to f shown below.
  • the configurations a to e are pretreated for 24 hours or more under temperature and humidity conditions of a temperature of 23 [° C.] and a humidity of 50 [%] in accordance with JIS Z0203: 2000 regarding the properties of the sheet. It is a predetermined configuration which is a parameter of the sheet measured in the applied normal state.
  • Configuration a includes the following configurations 1 and 2.
  • Configuration 1 includes that the thickness dimension measured in accordance with the corrugated board industry standard T0004: 2000 is 2.0 [mm] or more and 9.6 [mm] or less.
  • Configuration 2 includes that the planar compressive strength measured in accordance with JIS Z0403-1: 1999 is 50 [kPa] or more and 250 [kPa] or less.
  • Configuration b includes the above configuration 2 and the following configuration 3.
  • the configuration 3 includes a step-by-step rate of 1.2 [times] or more and 1.7 [times] or less.
  • the cores intersect and are adjacent to a virtual auxiliary line extending in the second direction at the center of the front liner and the back liner when viewed from the first direction.
  • the ratio of the difference between the two acute angles formed by the auxiliary line and the auxiliary line divided by the sum of the two acute angles is 0.30 or less.
  • Configuration d includes that the burst strength measured in accordance with JIS P8131: 2009 is 500 [kPa] or more.
  • the burst strength of the double-sided corrugated cardboard of the double flute, which is measured in accordance with JIS P8131: 2009 and does not include creases is 500 [kPa] or more, and conforms to JIS P8131: 2009. It is included that the burst strength of the portion including the crease measured in the above is 520 [kPa] or more.
  • the configuration e includes that the average value of the adhesive force measured on the single facer side and the glue machine side in accordance with JIS Z0402: 1995 is 140 [N] or more.
  • the basis weight of the liner constituting the double-sided cardboard is 110 [g / m 2 ] or more and 290 [g / m 2 ] or less, and the pulp fiber length of the liner is 0.55 [mm]. ] Or more and 1.60 [mm] or less, and the fiber orientation ratio, which is the ratio of the orientation of the pulp fibers in the first direction to the orientation in the second direction in the liner, is 1.0 or more and 2 It is included that the fiber length ratio, which is 0.0 or less and is the ratio of the pulp fiber length of the liner to the pulp fiber length of the core constituting the double-sided cardboard, is 0.65 or more and 1.90 or less. Is done.
  • a box in good condition can be manufactured.
  • damage to the fold can be suppressed.
  • the corrugated cardboard material of the present embodiment is a bellows-folded box-making material in which a rectangular sheet is folded in continuous corrugated cardboard.
  • double-sided corrugated cardboard having liners on both sides with respect to the core is used.
  • the above-mentioned double-sided cardboard includes single-flute cardboard composed of three base papers (materials) corresponding to one core and two liners, as well as so-called "double-sided cardboard” and "double-sided cardboard". Also included are multi-flute corrugated cardboard composed of two or more cores and five or more base papers corresponding to each of the two liners and one or more middle liners.
  • the cardboard material When the cardboard material is made, it becomes a cardboard box.
  • the corrugated cardboard material used as the box-making material of the box-making system has a feed process in which the sheets are sequentially fed, a cutting process in which the delivered sheets are cut out in a box development pattern, and folding into a box shape. It is made into a cardboard box through various processes such as a folding process in which it is erected.
  • the box-making system for assembling the cardboard box is not particularly limited, but for example, "CMC's Carton Wrap XL" and "CMC's carton wrap 1000", which are fully automatic systems (fully automatic machines) for automatic packaging systems.
  • the vertical direction (first direction, indicated by “CD” in the figure) and the horizontal direction (second direction, indicated by “MD” in the figure) are horizontal directions and along the sheet (crease). The direction in which the plane extends. These vertical and horizontal directions are orthogonal to each other.
  • the height direction (third direction, indicated by "TD” in the figure) is a direction along the vertical direction and is orthogonal to both the vertical direction and the horizontal direction. This height direction corresponds to the direction in which the sheets are overlapped.
  • the MD (Machine Direction) direction is also referred to as a "flow direction", and is a direction in which the corrugated cardboard material manufacturing process progresses from upstream to downstream.
  • the CD (Cross Direction) direction is a direction orthogonal to the MD direction in a plane along the MD direction.
  • the TD (Transverse Direction) direction is a direction orthogonal to both the MD direction and the CD direction.
  • the expression "numerical value X to numerical value Y" in this embodiment means a range of numerical value X or more and numerical value Y or less.
  • Item [1] describes a structure in which the corrugated cardboard material is folded (hereinafter referred to as “folded structure”).
  • Item [2] describes parameters related to the properties of the sheet (corrugated cardboard sheet) used for the corrugated cardboard material. Then, the actions and effects of the configurations of items [1] and [2] will be described in item [3].
  • the corrugated cardboard material 1 is a box-making material having a rectangular parallelepiped shape.
  • the continuous rectangular sheet 2 (partially marked in FIG. 1) is folded back at the fold F (only partly coded in FIG. 1), and the folded sheet 2 is folded. They are stacked in the height direction.
  • a plurality of folds F extend linearly along the vertical direction on a pair of side surfaces along both the vertical direction and the height direction.
  • the first fold F1 is provided between the first sheet 21 and the second sheet 22, and the sheets 21 and 22 are continuous via the first fold F1.
  • a second fold F2 is provided between the second sheet 22 and the third sheet 23, and the sheets 22 and 23 are continuous via the second fold F2.
  • the first fold F1 is a fold F in which the second sheet 22 is folded back toward one side in the lateral direction (to the right in FIG. 1) with respect to the first sheet 21, and the other side in the corrugated cardboard material 1 (right side in FIG. 1). It is arranged on the left side in FIG.
  • the second fold F2 is a fold F in which the third sheet 23 is folded back toward the other side in the lateral direction (left in FIG. 1) with respect to the second sheet 22, and the second fold F2 is one in the lateral direction (one in the corrugated cardboard material 1). It is arranged on the right side in FIG.
  • the corrugated cardboard step 10 (in FIG. 1, only the front edge is marked) extends to the first edge E 1 extending in the lateral direction (the direction intersecting the fold F). Waves) are exposed.
  • the cardboard is provided on the second edge E 2 extending in the lateral direction (the direction intersecting the crease F) (in FIG. 1, only the front edge is marked). The step 10 is exposed.
  • the first end edge E 1 and the second end edge E 2 are arranged adjacent to each other in the height direction.
  • the corrugated cardboard material 1 having the above-mentioned folding structure even a material that is difficult to be wound in a roll shape can be folded into a rectangular parallelepiped shape. That is, the corrugated cardboard sheet 2 having a higher strength than the material that can be wound in a roll shape can be made into a compact packaging.
  • the corrugated cardboard material 1 in which the sheet 2 whose strength is ensured is folded in this way is suitable for use as a packaging material for a box-making system for manufacturing a box in which strength is required.
  • the fold F is provided along the corrugated cardboard step 10.
  • the corrugated cardboard material 1 having a step 10 perpendicular to the MD direction is manufactured.
  • the corrugated cardboard material 1 is preferably wrapped (wrapped) with a packaging film in order to prevent stains and collapse of the load.
  • the size of the corrugated cardboard material 1 is determined from the following dimensions L1 to L3.
  • -Vertical dimension L1 Vertical dimension (first dimension) -Horizontal dimension
  • L2 Horizontal dimension (second dimension) -Height dimension
  • L3 Dimension in the height direction (third dimension)
  • the dimensions L1 to L3 are preferably in the range shown in Table 2 below.
  • the number of folds F in the corrugated cardboard material 1 is N [sheets]
  • the number of sheets 2 is N + 1 [sheets].
  • the N + 1 [stage] sheets 2 are overlapped on the cardboard material 1.
  • the number of stages of the corrugated cardboard material for example, various stages of 10 to 1000 [stages] can be mentioned.
  • the corrugated cardboard material to which the parameters related to folding, which will be described in detail later, are measured it is preferable to measure the parameters at each of all the stages for the measurement target having less than a predetermined number of stages (for example, 100 [stages]).
  • the parameters may be measured partially (for example, a portion divided into parts or a set area).
  • An arbitrary basis weight can be set for the sheet 2 used for the corrugated cardboard material 1.
  • the range of the basis weight adopted for the sheet 2 includes a range of 50 to 1500 [g / m 2 ], preferably a range of 100 to 1000 [g / m 2 ], and more preferably 200 to 200.
  • the range of 800 [g / m 2 ] is mentioned, and more preferably the range of 200 to 600 [g / m 2 ] is mentioned.
  • the weight of the corrugated cardboard material 1 is calculated by multiplying the above basis weight by the vertical dimension L1 and the horizontal dimension L2 and the number of steps N + 1 of the sheet 2.
  • the present embodiment includes a configuration relating to the properties of the corrugated cardboard material 1 from the viewpoint of enabling a good box to be manufactured when used as a material for a box making system. Specifically, it has a predetermined configuration regarding the properties of the corrugated cardboard material 1 based on at least one of the viewpoints I to VI listed below.
  • Viewpoint I Ensuring box-making property
  • Viewpoint II Suppressing breakage of bent parts when assembling into a box
  • Viewpoint III Ensuring suitability when printing is performed
  • Viewpoint IV Suppressing tearing (damage) of the assembled box
  • Viewpoint V Suppressing the peeling of the liner
  • Viewpoint VI Suppressing damage to the fold F
  • the predetermined configurations corresponding to the above viewpoints I to VI and the tasks I to VI include at least one of the configurations a to f shown below.
  • -Structure a The following configurations 1 and 2 > Configuration 1: Thickness dimension is within a predetermined dimensional range > Configuration 2: Planar compressive strength is within a predetermined compressive strength range ⁇ Configuration b: The following configurations 2 and 3 > Configuration 2: Configuration 2 above > Configuration 3: The step-by-step ratio is within a predetermined magnification range ⁇ Configuration c: The angle ratio is within a predetermined ratio range ⁇ Configuration d: The burst strength is within a predetermined burst strength range ⁇ Configuration d ′ : The bursting strength of the portion including the crease F in the corrugated cardboard material 1 made of double-sided corrugated cardboard of a single flute is within a predetermined bursting strength range.
  • the configuration a includes "configuration 1 in which the thickness dimension is in a predetermined dimensional range” and “configuration 2 in which the planar compressive strength is in a predetermined compressive strength range”.
  • the "thickness dimension” of the configuration a is a parameter representing the thickness of the sheet 2 per sheet.
  • the “planar compressive strength” of the configuration a is the strength when the sheet 2 is compressed in the thickness direction (height direction, TD direction), and is a parameter corresponding to the difficulty of crushing the sheet of the corrugated cardboard material 1.
  • the inventors of the present application have found that if the thickness dimension of the sheet 2 is within a predetermined dimensional range and the planar compressive strength is within a predetermined compressive strength range, the above-mentioned problems I and II tend to be suppressed.
  • the sheet 2 having a thickness dimension and a planar compressive strength outside the range of the configuration a tends to cause problems I and II. That is, the sheet 2 is provided with the configuration a based on the above-mentioned viewpoints I and II.
  • the thickness dimension exceeds the predetermined dimension range, it is presumed that when the sheet 2 is bent by the ruled line for box making, the liners 2a and 2b are not fully stretched and are broken, which causes the problem II.
  • the thickness dimension is less than the predetermined dimension range, it is presumed that the strength of the sheet 2 is insufficient and the sheet 2 is bent at a place other than the ruled line for box making, which causes the problem I.
  • the plane compressive strength is below the predetermined compressive strength range, it is presumed that the strength of the sheet 2 is insufficient and it is bent at a place other than the ruled line for box making, which causes problem I.
  • the planar compressive strength exceeds a predetermined compressive strength range, it is presumed that the ruled lines for box making are difficult to form, which causes the problem I.
  • the "predetermined dimensional range" of the configuration a is 2.0 [mm] or more and 9.6 [mm] or less, and 3.0 [mm] or more and 8.0 [mm] or less. It is preferable that it is 4.0 [mm] or more and 7.0 [mm] or less. Further, the "predetermined compressive strength range" of the configuration a is preferably 50 [kPa] or more and 250 [kPa] or less, and 80 [kPa] or more and 220 [kPa] or less. It is more preferable that it is 110 [kPa] or more and 190 [kPa] or less.
  • the configuration b includes the same “configuration 2 in which the planar compressive strength is in a predetermined compressive strength range” and the above-mentioned “configuration 3 in which the step ratio is in a predetermined magnification range” similar to the configuration a.
  • the “step ratio" of the configuration b is a parameter representing the magnification of the length dimension in the MD direction (horizontal direction) with respect to the liner of the core.
  • the inventors of the present application have found that if the planar compressive strength of the sheet 2 is within a predetermined compressive strength range and the step-by-step ratio is within a predetermined magnification range, the above-mentioned problem I tends to be suppressed. Obtained. Conversely, it was found that the sheet 2 having the plane compression strength and the step-by-step ratio outside the range of the configuration b tends to cause the problem I. That is, the sheet 2 is provided with the configuration b based on the above-mentioned viewpoint I.
  • the plane compressive strength is less than the predetermined compressive strength range, it is presumed that the problem I is caused by the insufficient strength of the sheet 2 as described above.
  • the planar compressive strength exceeds a predetermined compressive strength range, it is presumed that the ruled lines for box making are difficult to form, which causes problem I.
  • the step-by-step ratio is less than the above-mentioned predetermined magnification, it is presumed that the problem I is caused by the insufficient strength of the sheet 2.
  • the step-by-step ratio exceeds the above-mentioned predetermined magnification, it is presumed that the ruled line for box making is difficult to be formed, which causes the problem I.
  • the "predetermined compressive strength range" of the configuration b is 50 [kPa] or more and 250 [kPa] or less, and 80 [kPa] or more, similarly to the "predetermined compressive strength range” of the configuration a. It is preferably 220 [kPa] or less, and more preferably 110 [kPa] or more and 190 [kPa] or less.
  • the "predetermined magnification range" of configuration b is 1.2 [times] or more and 1.7 [times] or less, and 1.35 [times] or more and 1.6 [times] or less. It is preferable, and it is more preferable that it is 1.45 [times] or more and 1.55 [times] or less.
  • the magnification range of the step-by-step rate referred to here can be applied not only when the sheet 2 is a single flute but also when the sheet 2 is a double flute.
  • the stepping rate of any of the cores of the double flute is 1.2 [times] or more and 1.7 [times] or less, and 1.35 [times] or more and 1 It is preferably 6.6 [times] or less, and more preferably 1.45 [times] or more and 1.55 [times] or less.
  • the step-by-step rate of the double flute referred to here is a step-by-step rate calculated for each stage (the stage corresponding to each flute of one and the other in the double flute).
  • the configuration c includes "a configuration in which the angle ratio is within a predetermined ratio range".
  • the “angle ratio” of the configuration c is a parameter corresponding to the degree of inclination of the step 10 in the sheet 2 of the corrugated cardboard material 1.
  • FIG. 2 shows an enlarged main part of the sheet 2.
  • FIG. 2 illustrates a state in which the step 10 of the sheet 2 is slightly tilted.
  • the sheet 2 has a structure in which the liners 2a and 2b on the front and back surfaces and the core 2c are adhered to each other.
  • the core 2c constitutes the step 10, and forms a corrugated structure between the liners 2a and 2b. If the core 2c has an ideal shape, the cross section (that is, the step 10) along the lateral direction and the height direction has a sinusoidal shape. On the other hand, in the actual sheet 2, the step 10 formed by the core 2c may be tilted with respect to the ideal shape. The angle ratio expresses the degree of such inclination.
  • This angle ratio is a ratio calculated based on the angles ⁇ 1 and ⁇ 2 (intersection angles) at which the core 2c and the auxiliary line L intersect.
  • the auxiliary line L is a virtual line that is parallel to the liners 2a and 2b (that is, the lateral direction ⁇ MD direction>) and passes through the center of the liners 2a and 2b (that is, the center of the height direction ⁇ TD direction>). Is set as.
  • the angles ⁇ 1 and ⁇ 2 are acute angles among the intersection angles at the two adjacent points P1 and P2 at the points where the core 2c intersects the auxiliary line L.
  • the inventors of the present application have found that if the angle ratio of the sheet 2 is within a predetermined ratio range, the above-mentioned problem III tends to be suppressed. Conversely, it was found that the sheet 2 having an angle ratio outside the range of the configuration c tends to cause the problem III. That is, the sheet 2 is provided with the configuration c based on the above-mentioned viewpoint III. If the angle ratio exceeds a predetermined ratio range, the heights of the steps 10 on the sheet 2 tend to be uneven, which is presumed to lead to Problem III.
  • the “predetermined ratio range” of the configuration c is 0.30 or less, preferably 0.15 or less, and more preferably 0.05 or less.
  • the configuration d includes "a configuration in which the burst strength is within a predetermined burst strength range”.
  • the “burst strength” of the configuration d is a parameter corresponding to the load capacity of the sheet 2 in the corrugated cardboard material 1. The inventors of the present application have found that if the burst strength of the sheet 2 is within a predetermined burst strength range, the above-mentioned problem IV tends to be suppressed. Conversely, it was found that the sheet 2 having a burst strength outside the range of the configuration d tends to cause the problem IV.
  • the sheet 2 is provided with the configuration d based on the above-mentioned viewpoint IV. If the burst strength is less than the predetermined burst strength range, it is presumed that the problem IV is caused by the insufficient load capacity of the sheet 2.
  • the "predetermined burst strength range" of the configuration d is 500 [kPa] or more, preferably 1000 [kPa] or more, and more preferably 2000 [kPa] or more.
  • the configuration d' provides a corrugated cardboard material 1 made of double-sided corrugated cardboard with a single flute, "a configuration in which the burst strength at a portion including the fold F is within a predetermined burst strength range".
  • the “burst strength” of the configuration d ′ is the same as the “burst strength” described above in the configuration d, except that it is the burst strength of the portion including the crease F.
  • the inventors of the present application have stated that the above-mentioned problem IV tends to be suppressed if the burst strength of the portion of the sheet 2 of the single flute cardboard material 1 including the crease F is within a predetermined burst strength range. I got the knowledge. Conversely, it was found that the sheet 2 having the burst strength at the portion including the fold F outside the range of the configuration d'tends to cause the problem IV.
  • the sheet 2 is provided with a configuration d'based on the above-mentioned viewpoint IV. If the burst strength of the single flute at the portion including the fold F is less than the predetermined burst strength range, it is presumed that the problem IV is caused by the insufficient load capacity of the sheet 2.
  • the "predetermined burst strength range" of the configuration d' is 500 [kPa] or more, preferably 650 [kPa] or more, and more preferably 1500 [kPa] or more.
  • the configuration d ′′ is described in the corrugated cardboard material 1 made of double-sided corrugated cardboard with double flutes, “a configuration 4 in which the burst strength at a portion not including the crease F is within a predetermined burst strength range” and “fold F”. 5 ”is provided, in which the burst strength of the portion including the above is within a predetermined burst strength range.
  • the “burst strength” of the configuration d ′′ is the burst strength of the portion not including the fold F and the portion including the crease F, respectively, except that the “burst strength” described in the configurations d and d ′ is described above. It is the same as “strength”.
  • the inventors of the present application have determined that the burst strength of the sheet 2 of the double flute cardboard material 1 that does not include the fold F is within the predetermined burst strength range and the burst strength of the portion that includes the crease F is predetermined. It was found that the above-mentioned problem IV tends to be suppressed within the burst strength range of. Conversely, it was found that the sheet 2 having the burst strength at the portion including the fold F outside the range of the configuration d ′′ tends to cause the problem IV.
  • the sheet 2 is provided with a configuration d ′′ based on the above-mentioned viewpoint IV.
  • the burst strength of the portion not including the crease F is below the predetermined burst strength range, or the burst strength of the portion including the fold F is below the predetermined burst strength range. If so, it is presumed that the problem IV is caused by the insufficient load capacity of the sheet 2.
  • the "predetermined burst strength range" of the portion of the configuration d ′′ that does not include the fold F is 500 [kPa] or more, preferably 700 [kPa] or more, and 1000 [kPa] or more. Is more preferable.
  • the "predetermined burst strength range" of the portion including the fold F is 520 [kPa] or more, preferably 800 [kPa] or more, and more preferably 1500 [kPa] or more.
  • the inventors of the present application tend to suppress the above-mentioned problem IV as the burst strength of the portion not including the crease F and the burst strength of the portion including the crease F are increased, while the crease
  • damage is likely to occur at point F. That is, if the burst strength exceeds a predetermined upper limit, it is presumed that damage is likely to occur at the crease F.
  • the damage includes cracking, tearing, tearing, etc. of the liner at the crease.
  • the crease portion is an area including the periphery of the fold.
  • the predetermined upper limit of the burst strength of the portion including the fold F and the portion including the crease F is 2500 [kPa], and 2250 from the viewpoint of obtaining a bellows-folded corrugated cardboard material in which the crease F is less likely to be cracked. It is preferably [kPa], and more preferably 2000 [kPa].
  • the configuration e includes "a configuration in which the adhesive force is within a predetermined force range".
  • the “adhesive force” of the configuration e is a parameter corresponding to the strength of bonding the core 2c of the sheet 2 and the liners 2a and 2b.
  • the “adhesive force” referred to here is the adhesive force between the core 2c and the front liner 2a (adhesive force on the glue machine side) and the adhesive force between the core 2c and the back liner 2b (adhesion on the single facer side). It means the average value with (force).
  • the inventors of the present application have found that the above-mentioned problem V tends to be suppressed if the adhesive force of the sheet 2 is within a predetermined force range. Conversely, it was found that the sheet 2 having an adhesive strength outside the range of the configuration e tends to cause the problem V. That is, the sheet 2 is provided with the configuration e based on the above-mentioned viewpoint V. If the adhesive force is less than the predetermined force range, it is presumed that the liners 2a and 2b are likely to be peeled off from the core 2c when the cardboard material 1 is manufactured in the box, which causes the problem V.
  • the "predetermined force range" of the configuration e is 140 [N] or more, preferably 190 [N] or more, and more preferably 220 [N] or more.
  • Configuration f has configurations 6 to 9 as described above with respect to the liner constituting the double-sided corrugated cardboard of the corrugated cardboard material 1.
  • the liner for which each parameter is specified in the configurations 6 to 9 includes a front liner and a back liner, and can be said to be a liner constituting the sheet 2 used for the corrugated cardboard material 1.
  • the “basis weight” of the configuration 6 is a parameter representing the weight [g] per liner area 1 [m 2 ].
  • the “pulp fiber length” of configuration 7 is the length of the pulp fibers constituting the liner.
  • the pulp fibers constituting the liner will be referred to as “liner fibers”
  • the length of the liner fibers will be referred to as “liner fiber length”.
  • the “fiber orientation ratio” of the configuration 8 is the ratio of the horizontal orientation to the vertical orientation of the liner fibers (MD / CD).
  • the “fiber length ratio” of the configuration 9 is the ratio of the liner fiber length to the pulp fiber length of the core constituting the double-sided corrugated cardboard of the corrugated cardboard material 1 (liner / core).
  • the pulp fiber of the core is referred to as "core fiber”
  • the length of the core fiber is referred to as "core fiber length”.
  • the liner fiber length is the absolute length
  • the fiber length ratio is the relative length of the liner fiber length to the core fiber length.
  • the inventors of the present application have obtained the finding that the above-mentioned problem VI tends to be effectively suppressed according to the corrugated cardboard material 1 having all of the configurations 6 to 9. Conversely, it was found that the corrugated cardboard material 1 which does not have any one of the configurations 6 to 9 tends to cause a problem VI.
  • the corrugated cardboard material 1 is provided with the configurations f of the configurations 6 to 9. --Composition 6-- The smaller the basis weight of the liner with respect to the configuration 6, the lower the strength of the liner tends to be. From this tendency, it is presumed that if the basis weight of the liner is smaller than the predetermined lower limit basis weight, the problem VI is caused by the lack of the overall strength of the liner.
  • the basis weight of the liner with respect to the configuration 6 not only the strength of the liner tends to increase as the weight increases, but also the thickness of the liner (also referred to as “bulk” or “paper thickness”) tends to increase. From this tendency, it is presumed that if the basis weight of the liner is larger than the predetermined upper limit basis weight, the stress due to the folding back of the fold F in the corrugated cardboard material 1 tends to be concentrated on the liner, which causes a problem VI.
  • the “predetermined basis weight range” of the configuration 6 is set to be equal to or more than a predetermined lower limit basis weight and not more than a predetermined upper limit basis weight.
  • the predetermined lower limit basis weight is 110 [g / m 2 ], preferably 115 [g / m 2 ], and more preferably 140 [g / m 2 ].
  • the predetermined upper limit basis weight is 290 [g / m 2 ] or less, preferably 240 [g / m 2 ], and more preferably 180 [g / m 2 ].
  • the "predetermined fiber length range" of the configuration 7 is set to be equal to or greater than the predetermined lower limit fiber length and equal to or less than the predetermined upper limit fiber length.
  • the predetermined lower limit fiber length is 0.55 [mm], preferably 0.70 [mm], and more preferably 0.90 [mm].
  • the predetermined upper limit fiber length is 1.60 [mm], preferably 1.45 [mm], and more preferably 1.30 [mm]. Even if the overall strength of the liner is ensured by keeping the liner fiber length within a predetermined fiber length range as described above, the smaller the orientation of the liner fibers in the lateral direction, the lower the lateral strength of the liner. Tend to do. Therefore, a predetermined orientation ratio range is specified for the fiber orientation ratio described below.
  • the “predetermined orientation ratio range” of the configuration 8 is set to be equal to or more than a predetermined lower limit orientation ratio and equal to or less than a predetermined upper limit orientation ratio.
  • the predetermined lower limit orientation ratio is 1.0, preferably 1.2, and more preferably 1.3.
  • the predetermined upper limit orientation ratio is 2.0, preferably 1.8, and more preferably 1.7 or less.
  • composition 9-- The smaller the fiber length ratio with respect to the composition 9, the strength of the liner tends to decrease relative to the strength of the core. From such a tendency of strength imbalance, it is presumed that if the fiber length ratio is smaller than the predetermined lower limit ratio, the moldability of the fold F is lowered, which may be one of the causes of the problem VI. Guessed.
  • the strength of the liner tends to be relatively larger than the strength of the core, so that the drag against folding back at the fold F tends to be larger.
  • the external force required to fold back the liner at the eye F also tends to increase. From this tendency, it is presumed that if the fiber orientation ratio is larger than the predetermined upper limit ratio, stress concentrates on the liner at the crease F and its surroundings, which causes a problem VI.
  • the "predetermined fiber length ratio range" of the configuration 7 is set to be equal to or more than a predetermined lower limit ratio and not more than a predetermined upper limit ratio.
  • the predetermined lower limit ratio is 0.65, preferably 0.80, and more preferably 0.90.
  • the predetermined upper limit ratio is 1.90, preferably 1.60, and more preferably 1.40.
  • the corrugated cardboard material 1 of the present embodiment can produce a box in a good state when used as a box-making material.
  • the configuration a since the thickness dimension of the sheet 2 is within a predetermined dimension range and the planar compressive strength is within a predetermined compressive strength range, the box-making property of the corrugated cardboard material 1 can be ensured, and the box can be made. It is possible to suppress breakage of the bent portion when assembling the cardboard.
  • the box-making property of the corrugated cardboard material 1 can be ensured.
  • the angle ratio of the sheet 2 is within a predetermined ratio range, it is possible to ensure the suitability when the cardboard material 1 is printed.
  • the burst strength of the sheet 2 is within a predetermined burst strength range, it is possible to suppress the tearing of the box assembled from the corrugated cardboard material 1.
  • the burst strength of the portion of the double flute that does not include the fold F is within the predetermined burst strength range, and the burst strength of the portion that includes the crease F is within the predetermined burst strength range. Therefore, it is possible to suppress the tearing of the box assembled from the cardboard material 1.
  • the configuration e since the adhesive force of the sheet 2 is within a predetermined force range, it is possible to prevent the liners 2a and 2b of the box assembled from the cardboard material 1 from peeling off.
  • the configuration f since the above configurations 6 to 9 are combined, damage to the fold F can be suppressed.
  • the configurations common to the corrugated cardboard material (hereinafter referred to as “measurement corrugated cardboard material”) whose parameters are measured will be described.
  • Measurement target-- The measurement cardboard material is a double-sided cardboard sheet. This measured corrugated cardboard material has the following size. ⁇ Size: Vertical dimension 1300 [mm], Horizontal dimension 1150 [mm], Height dimension 1800 [mm]
  • Examples a1 to a6 and Comparative Examples a7 to a14 the type of flute, the step height of the stepping roll, and the basis weight of the base paper will be described.
  • Examples a1 to a6 and Comparative Examples a7 to a14 either a single flute or a double flute was adopted as shown below.
  • Single flute Examples a1 to a3, a5, a6 and Comparative Examples a8 to a14 -Double flute: Example a4 and Comparative Example a7
  • Examples a1 to a6 and Comparative Examples a7 to a14 were manufactured by a step-rolling roll set to any one of the five step heights as listed below.
  • the "step height” is a dimension corresponding to the height of the step in the sheet of the corrugated cardboard material to be measured and corresponding to the amplitude of the step.
  • Examples a1 to a6 and Comparative Examples a7 to a9 the common liner base paper shown below was used.
  • Comparative Examples a10 to a14 liner base papers having various basis weights prepared according to the production method of Patent Publication No. 6213364 were used. Specifically, one of the following three types of basis weight was adopted. The basis weights listed here are the basis weights of the base paper that is the material (raw material) of the corrugated cardboard material to be measured.
  • Examples a1 to a6 and Comparative Examples a7 to a14 core base papers having various basis weights prepared according to the production method published in JP-A-2018-162526 were used. Specifically, one of the seven types of basis weights shown below was adopted for each of Examples a1 to a6 and Comparative Examples a7 to a14.
  • -Procedure xa Pre-treat the base paper for measuring the basis weight according to JIS Z0203: 2000.
  • -Procedure xb Cut out the base paper to a size of 250 [mm] x 400 [mm].
  • -Procedure xc The weight of the base paper cut out in procedure xb is measured with an electronic balance.
  • -Procedure xd The weight measured in procedure xc is converted into the weight per unit square meter [g / m 2 ].
  • the basis weight of the liner (base paper) forming the sheet of the corrugated cardboard material is measured by the following procedures ya to yf.
  • -Procedure ya Immerse the sheet of measurement cardboard material in tap water for 15 [minutes].
  • -Procedure yb The liner and core of the sheet immersed in procedure ya are peeled off by hand.
  • -Procedure yc The liner peeled off in the procedure yb is dried in a dryer at 105 [° C.] for 20 [minutes].
  • -Procedure yd The liner dried in the procedure yc is cut into a size of 250 [mm] x 400 [mm].
  • -Procedure yes The weight of the liner cut out in the procedure yd is measured with an electronic balance.
  • -Procedure yf The weight measured in the procedure y is converted into the weight per unit square meter [g / m 2 ].
  • the basis weight of the core (base paper) forming the sheet of the corrugated cardboard material is measured by the following procedures za to zg.
  • -Procedure za Immerse the sheet of measurement cardboard material in tap water for 15 [minutes].
  • -Procedure zb The liner, core and hand of the sheet immersed in procedure z are peeled off by hand.
  • -Procedure zc The liner peeled off in procedure zb is dried in a dryer at 105 [° C.] for 20 [minutes].
  • -Pre-treat the liner for measuring basis weight according to procedure zd JIS Z0203: 2000.
  • -Procedure ze Cut out a liner to a size of 250 [mm] x 400 [mm]. If the waveform structure remains, cut it out to this size while stretching the wave.
  • -Procedure zf The weight of the liner cut out in the procedure ze is measured with an electronic balance.
  • -Procedure zg The weight measured in procedure zf is converted into the weight per unit square meter [g / m 2 ].
  • the basis weight of the liner and core that form the sheet of the measured corrugated cardboard material is the basis weight of the base paper that is the material of the measured corrugated cardboard material, even if the same base paper is used as the measurement target.
  • the measured value of is variable by about ⁇ 10 [%].
  • the "thickness dimension” is a parameter corresponding to the thickness of each sheet in the measured corrugated cardboard material. This thickness dimension was measured by the following procedures aa to ad. -Procedure aa: Collect sheets for five upper and lower stages based on half the number of stages (that is, the middle stage) of the total number of stages of the corrugated cardboard material to be measured. Specifically, when the total number of stages M of the measured corrugated cardboard material is odd, the sheets for the upper and lower five stages are based on the stage obtained by rounding off the number of stages M / 2 which is half of the total number of stages of the measured corrugated cardboard material (that is, the middle stage). To collect.
  • Planar compressive strength is a parameter corresponding to the resistance of the corrugated cardboard sheet to be crushed. This planar compressive strength was measured by the following procedures aA to aD.
  • -Procedure aA In the same manner as in procedure aa, five upper and lower sheets are collected based on half the total number of steps of the measured corrugated cardboard material.
  • -Procedure aB A circular test piece having a diameter of 6.4 [cm] is cut out from the ten sheets collected in the procedure aA.
  • -Procedure aC Measure the planar compressive strength of the test piece cut out in step aB under the following compliant standards, measuring equipment, test speed and parallelism measurement conditions.
  • the parallelism represents the degree of parallelism above and below the jig for plane compression.
  • the plane compressive strength was taken by taking the average value, excluding the values that could be.
  • the method of assembling the evaluation cardboard pieces by the box-making system is the same regardless of whether the evaluation cardboard pieces are assembled by hand or by the box-making system. Therefore, it can be said that the box-making property of the evaluation cardboard piece assembled by hand has a correlation with the box-making property of the evaluation cardboard piece assembled by the box-making system.
  • the "evaluation cardboard piece” is a test piece in which the measurement cardboard material is punched into the following shape and size with a sample cutter (CF2-1218 manufactured by Mimaki Engineering Co., Ltd.).
  • -Shape Pattern in which the A-type cardboard box is developed
  • -Size Width dimension of the side plate of the A-type cardboard box 356 [mm]
  • Height dimension of A type cardboard box 256 [mm] Number of sheets: 100 [sheets]
  • the above evaluation cardboard pieces were evaluated according to the following criteria. - ⁇ : All (100 [sheets]) evaluation cardboard pieces have good box-making properties. - ⁇ : Evaluation of 100 [sheets] Of the cardboard pieces, 1 to 2 [sheets] have poor box-making properties. - ⁇ : Evaluation of 100 [sheets] 3 [sheets] of the corrugated cardboard pieces have poor box-making properties. -X: Evaluation of 100 [sheets] Of the cardboard pieces, 4 [sheets] or more have poor box-making properties. In Example a4, in which the evaluation of “ ⁇ ” was obtained with respect to the box-making property, the box-making property of 2 [sheets] was poor.
  • good box-making property means that the distance dimension between the following folded portions A and B in the evaluated corrugated cardboard piece is less than the predetermined distance dimension.
  • -Folded part A A part where a ruled line for box making (an element different from the fold) is provided.
  • -Folded part B A part actually folded when assembled in a box (during box making) "Predetermined distance”
  • the "dimensions” are 2.0 [mm] for the dimension perpendicular to the crease of the evaluation cardboard piece (MD direction) and 5 [mm] for the dimension in the direction parallel to the crease (CD direction). ].
  • “poor box-making property” means that the distance dimension between the folded portions A and B in the evaluated corrugated cardboard piece is equal to or larger than the predetermined distance dimension.
  • line cracking means that the bent portion is broken when the evaluation cardboard piece is assembled into the box.
  • This rule cracking is observed by visually observing a box whose box-making property has been evaluated (that is, a box in which evaluation cardboard pieces are assembled, hereinafter referred to as an "evaluation box”).
  • This rule crack was evaluated according to the following criteria. - ⁇ : No cracking was observed in all (100 [box]) evaluation boxes. - ⁇ : Of the 100 [box] evaluation boxes, 1 to 2 [boxes] were cracked. - ⁇ : Cracks were found in 3 [boxes] of the 100 [boxes] evaluation boxes. -X: Of the 100 [box] evaluation boxes, 4 [boxes] or more were cracked.
  • the thickness dimension is 2.0 [mm] or more and 9.6 [mm] or less
  • the planar compressive strength is 50 [kPa] or more and 250 [kPa] or less.
  • a good evaluation of at least " ⁇ " or more was obtained in both box-making property and rule cracking.
  • Comparative Examples a7 and a9 having a thickness dimension outside the range of 2.0 to 9.6 [mm]
  • a poor evaluation of "x” was obtained for the box-making property.
  • Comparative Example a7 in which the thickness dimension was larger than 9.6 [mm] the evaluation of the rule cracking was also a poor evaluation of “x”.
  • Comparative Example a7 if the thickness dimension is larger than 9.6 [mm], the liner base paper cannot be stretched and breaks when it is bent by the ruled line for box making, and the evaluation of the ruled crack is poor. Inferred. From Comparative Examples a7 and Comparative Examples a9 to a14, if the plane compression strength is larger than 250 [kPa], it becomes difficult to insert a ruled line for box making (due to a decrease in the formability of the ruled line). It is also presumed that the box-making property is evaluated poorly because it is bent at a place other than the ruled line for the box.
  • the planar compression strength is 50 [kPa] or more, it is presumed that the bending strength of the evaluated corrugated cardboard piece is secured and the bending is suppressed at a place other than the ruled line for box making. Therefore, if the thickness dimension is 2.0 [mm] or more and 9.6 [mm] or less, and the planar compressive strength is 50 [kPa] or more and 250 [kPa] or less, the box-making property It can be said that it is possible to both secure and suppress rule cracking.
  • Examples b1 to b3 and Comparative Examples b4, b5 and b8 the following core base papers were used.
  • -Core base paper 170 [g / m 2 ]
  • Comparative Examples b6, b7, b9, and b10 core base papers having various basis weights prepared according to the manufacturing method published in JP-A-2018-162526 were used. Specifically, one of the following three types of basis weight was adopted for each of Comparative Examples b6, b7, b9, and b10.
  • the measured corrugated cardboard materials used in Examples b1 to b3 and Comparative Examples b4 to b10 are manufactured by using a corrugated board having various stepped ridges and stepped rolls having a stepped ratio shown in Tables 5 and 6 below. did. Further, for each of Examples b1 to b3 and Comparative Examples b4 to b10, the planar compressive strength was measured in the same procedure as the above-mentioned procedures aA to aD, and the planar compressive strength shown in Tables 5 and 6 below was measured. It was measured. Single flutes were used in Examples b1 to b3 and Comparative Examples b4 to b10.
  • the "step ratio" is a parameter corresponding to the magnification of the length dimension in the MD direction with respect to the liner of the core.
  • This step-by-step rate was measured by the following procedures ba to bg.
  • -Procedure ba Similar to procedures aa and aA, five upper and lower sheets are collected based on half the total number of steps of the corrugated cardboard material to be measured.
  • -Procedure bb 20 [cm] in the direction in which the core peaks are continuous (horizontal direction, MD direction) from the ten sheets collected in procedure ba, and in the direction orthogonal to the core peaks (vertical direction). , CD direction) to a size of 10 [cm].
  • -Procedure bc The test piece cut out in procedure bb is immersed in tap water for 24 hours.
  • -Procedure bd After immersion in procedure bc, the liners on the front and back are peeled off and the core is taken out.
  • -Procedure be The core taken out in step bd is stretched by hand, and the length in the fully stretched state is measured with a ruler.
  • -Procedure bf The length in the direction in which the "extended length of the core" measured in procedure be and the mountain of the core of the test piece cut out in procedure bb are continuous ("the length of the original cardboard sheet"). , Here, 20 [cm]), and the step-by-step rate is calculated by the following formula b.
  • Step ratio length when the core is fully extended / length of the original cardboard sheet ... Equation b -Procedure bg: Similar to the above procedures ad and aD, the average value is taken by excluding the numerical values that may cause disturbances (factors) that reduce the accuracy of the measurement result from the step-by-step rate calculated in the procedure bf. Was taken as the step-by-step rate.
  • Example b1 to b3 the step ratio is 1.2 [times] or more and 1.7 [times] or less, and the planar compressive strength is 50 [kPa] or more and 250 [kPa] or less. Yes, a good evaluation of at least " ⁇ " or higher was obtained for the box-making property.
  • Comparative Example b4 in which the stepwise ratio is less than 1.2 [times] and the planar compressive strength is less than 50 [kPa], and the planar compressive strength is larger than 1.7 [times] and the planar compressive strength.
  • the step-by-step ratio is 1.2 [times] or more, and the planar compressive strength is 50 [kPa] or more. It is presumed that bending at places other than the ruled lines for boxes can be suppressed. Further, it is presumed that the defect of the ruled line formed for box making can be suppressed by the step-by-step ratio of 1.7 [times] or less and the planar compressive strength of 250 [kPa] or less.
  • the box is manufactured. It can be said that sex can be secured.
  • the "angle ratio" is a parameter corresponding to the degree of inclination of the step in the sheet of the corrugated cardboard material to be measured. This angle ratio was measured by the following procedures ca to cf.
  • -Procedure ca Take a picture of one mountain of the core in the sheet of corrugated cardboard material from the vertical direction (CD direction).
  • -Procedure cb The photograph taken in procedure ca is enlarged and printed on printing paper so that one mountain has a height of 10 [cm] or more.
  • -Procedure cc Draw an auxiliary line in the direction parallel to the front and back liners (that is, the lateral direction ⁇ MD direction>) and passing through the center of the front liner and the back liner (center in the TD direction).
  • -Procedure cd Select any two adjacent points from the intersections of the auxiliary line and the core drawn in the procedure cc.
  • -Procedure ce At each of the two points selected in the procedure cd, the acute angle of the angle formed by the auxiliary line and the core was measured with a protractor.
  • -Procedure cf Calculate the ratio obtained by dividing the absolute value of the difference between the two angles (measured values) measured in the procedure ce by the sum of the two angles.
  • -Procedure cB Aqueous flexo ink (product number: Super-EX) engraved on 550 [lines / inch] with a direct flexo printing machine DYNA FLEX160 (manufactured by Bobst) on the test piece cut in procedure cA. FK-99, manufactured by Sakata Inc.) was applied and printed in the following order. > Coating order: Red ⁇ ink ⁇ indigo ⁇ yellow ⁇ varnish ⁇ Procedure cC: The finish printed in procedure cB was visually observed.
  • Example c1 to c3 the angle ratio is 0.30 or less, the printability is evaluated as “ ⁇ ” or more, and there is no practical problem.
  • Example c1 and c2 having an angle ratio of 0.15 or less an evaluation of “ ⁇ ” or higher was obtained, and in Example c1 having an angle ratio of 0.05 or less, an evaluation of “ ⁇ ” was obtained.
  • Comparative Example c4 in which the angle ratio is larger than 0.30 an evaluation of “x” is obtained for printability, which poses a practical problem.
  • a corrugated cardboard material produced by using a corrugated board having the same stepping rolls as in Examples c1 to c3 and Comparative Example c4 was used. The burst strength was measured for each of Examples d1 to d3 and Comparative Example d4 using the measured corrugated cardboard material produced as described above, and the burst strength shown in Table 8 below was measured.
  • the “burst strength” is a parameter corresponding to the easiness of tearing of the evaluation box (IFC code: 0401) targeted for evaluation of rule cracking in the above configuration a. This burst strength was measured by the following procedures da to dd.
  • -Procedure da Similar to procedure aa, the sheets for the upper and lower five stages are collected based on half the total number of stages of the measured corrugated cardboard material.
  • -Procedure db A test piece is cut out into a square having a size of 100 [mm] x 100 [mm] from ten sheets collected in the procedure da.
  • -Procedure dc Measure the thickness of the test piece cut out in procedure db according to the following compliant standards, test pieces, measuring equipment, and measuring conditions.
  • Compliant standard JIS P 8131: 2009 (paperboard-burst strength test method)
  • Measuring equipment Murren burst tester EH, manufactured by Toyo Seiki Seisakusho Co., Ltd.
  • Measurement conditions Use a rubber diaphragm with a pressure of 170 to 220 [kpa] when expanded to a height of 10 [mm] from the tightening surface.
  • Procedure dd Same as procedure ad, aD, pg, in procedure dc From the measured burst strength, the numerical value that could be a disturbance (factor) that reduces the accuracy of the measurement result was excluded, and the average value was taken as the burst strength.
  • -Procedure dB After the procedure dB, two workers lift the bottom surface where the weight is not in contact with the evaluation box and hold it for 30 [seconds].
  • -Procedure DC Visually check whether or not the evaluation box has been torn in procedure dB.
  • ⁇ ⁇ The appearance of the evaluation box has not changed at all after being lifted.
  • ⁇ ⁇ The evaluation box is slightly torn after being lifted, but the weight remains in the evaluation box.
  • ⁇ ⁇ The evaluation box is torn after being lifted, but the weight stays in the evaluation box.
  • ⁇ ⁇ After lifting, the evaluation box is severely torn, and the weight falls from the evaluation box.
  • Example d1 to d3 the burst strength was 500 [kPa] or more, the easiness of tearing was evaluated as “ ⁇ ” or more, and the weight did not fall.
  • Examples d2 and d3 having a burst strength of 1000 [kPa] or more an evaluation of " ⁇ " or more was obtained, and in Example d3 having a burst strength of 2000 [kPa] or more, an evaluation of " ⁇ " was obtained. ..
  • Comparative Example d4 having a burst strength of less than 500 [kPa] an evaluation of “x” was obtained for the ease of tearing, and the weight fell.
  • the burst strength is 500 [kPa] or more, it can be said that it is possible to prevent the contents from falling out of the evaluation box. Further, if the burst strength is 1000 [kPa] or more, it can be said that damage to the evaluation box due to the load of the contents can be suppressed. Moreover, if the burst strength is 2000 [kPa] or more, it can be said that damage to the evaluation box due to the load of the contents can be prevented. In addition, it can be seen that the larger the basis weight of the liner base paper, the higher the burst strength.
  • the basis weight is 80 [g / m 2 ] or more, it is possible to prevent the contents from falling out of the evaluation box. Further, when the basis weight is 160 [g / m 2 ] or more, it can be said that damage to the evaluation box due to the load of the contents can be suppressed. Moreover, if the basis weight is 240 [g / m 2 ] or more, it can be said that damage to the evaluation box due to the load of the contents can be prevented.
  • any one of the four types of flutes shown below was adopted.
  • the single flutes that make up the A flute, B flute, and E flute correspond to one core (“core 2” in Tables 9 to 11 below) and two liners, respectively. It is composed of three base papers (materials).
  • the double flute that forms the AB flute consists of three cores (“core 1”, “core 2”, and “core 3” in Tables 9 to 11 below) and five base papers corresponding to each of the two liners. It is composed of (materials).
  • Examples d10 to d24 and Comparative Examples d25 and d26 one of the following ten types of corrugated cardboard base paper was used for each of the base papers forming the core or liner constituting the respective measurement cardboard materials.
  • ⁇ No. 1 Basis weight 90 [g / m 2 ], density 0.77 [g / cm 3 ]
  • No. 2 Basis weight 170 [g / m 2 ], density 0.86 [g / cm 3 ]
  • No. 3 Basis weight 250 [g / m 2 ], density 0.87 [g / cm 3 ]
  • No. 4 Basis weight 60 [g / m 2 ], density 0.72 [g / cm 3 ] ⁇ No.
  • the method of making the base paper of No. 1 is to use softwood kraft pulp and corrugated cardboard waste paper as raw materials, make paper using a multi-layer paper machine, and have a basis weight of 90 [g / m 2 ] composed of three layers. It creates a cardboard base paper.
  • the papermaking conditions were that the cationic paper strength enhancer was contained in an amount of 0.5 [parts by mass] with respect to a total of 100 [parts by mass] of the total pulp of the paper layer, and 10 of the surface pulps were coniferous kraft pulp. It was contained in a proportion of [mass%]. In addition, all the cationic paper strength enhancers were contained in the surface layer. The softwood kraft pulp accounted for 6 [mass%] of the total pulp in the paper layer.
  • the above No. 1 to No. In order to adjust the density of the base paper at 10, the nip pressure was adjusted by the calendering process in the papermaking process at the time of making the base paper. The density was measured by a measuring method according to JIS P8118: 1998. Except for the fact that the density was adjusted, the above No. 2-No. 6, No. The method for producing the base paper of No. 10 is No. 1 except for the basis weight. This is the same creation method as in 1.
  • the above No. The method for producing the base paper of No. 7 was No. 7 except that the surface layer pulp contained softwood kraft pulp in a proportion of 50% by mass. It is the same creation method as 2.
  • the burst strength was measured for each of Examples d10 to d24 and Comparative Examples d25 and d26 using the measured corrugated cardboard material manufactured as described above, and the burst strength shown in Tables 9 to 11 below was measured. It was.
  • the burst strength was evaluated in the same way as the above-mentioned "burst strength" except that it was measured at each of the points without creases (without creases) and the points with creases (with creases). This is a parameter corresponding to the fragility of the box (IFC code: 0401).
  • the test pieces without creases and the test pieces with creases were used for Examples d10 to d24 and Comparative Examples d25 and d26, respectively. Two types of test pieces were prepared.
  • test piece without creases For both the test piece without creases and the test piece with creases, a sample cutter (CF2-1218 manufactured by Mimaki Engineering Co., Ltd.) was used from an A4 size cardboard sheet cut out from an arbitrary stage of the measurement cardboard material. It is a test piece cut out with the following dimensions. -Dimensions: Vertical dimension 100 [mm] Horizontal dimension 100 [mm] Further, the test piece with creases is a test piece having the following creases in the test piece having the above dimensions. For the measurement of the burst strength, a test piece having no creases, scratches, dents, etc. other than the intentionally provided creases is used. ⁇ Fold: Passes through the center of the test piece and extends along the direction of the step.
  • This crease is formed by processing a test piece having the above dimensions according to the following procedure.
  • -Procedure de The examiner manually folds the test piece having the above dimensions at the fold position.
  • -Procedure df Place the test piece created in procedure de on a flat surface, apply the following crimping equipment to the creases, and place the crimping equipment at the folds at a speed of about 10 [mm / s]. Make a round trip. Then, the test piece is left for 24 hours under temperature and humidity conditions of a temperature of 23 [° C.] and a humidity of 50 [%] in accordance with JIS Z0203: 2000.
  • Crimping equipment Product name "Tape crimping roller (manual)", manufactured by Yasuda Seiki Seisakusho, product number No. 349, roller mass: 1 [kg] -Procedure dc: After opening the crease of the test piece (with crease) left in the procedure df, the burst strength is measured by the above procedures dc and dd.
  • the cube is attached to each position on the bottom surface using an adhesive (product name "Aron Alpha EXTRA Impact Resistant” manufactured by Toagosei Co., Ltd.).
  • An adhesive product name "Aron Alpha EXTRA Impact Resistant” manufactured by Toagosei Co., Ltd.
  • Position At the four corners of the bottom surface 30 (see FIGS. 3 and 4) of the evaluation box, a position of 80 [mm] from the vertical end toward the vertical center and from the horizontal end to the horizontal center. 4 [pieces] of cubes 31 (see FIGS. 3 and 4) are arranged with reference to the position of 50 [mm] toward the direction (see the broken line in FIG. 3).
  • Dimensions of the bottom surface 30 of the evaluation box length 210 [mm] Horizontal 297 [mm]
  • the evaluation box was an assembly type (IFC code 0401) so as not to be affected by the tape.
  • -Procedure dE An evaluation box in which 4 [pieces] of cubes are arranged on the bottom surface 30 in the procedure dD is placed on a pedestal 32 (see FIG. 4).
  • the pedestal 32 (see FIG. 4) communicates to the outside with a size that allows the cube 31 (see FIGS. 3 and 4) to penetrate into a portion overlapping each of the cubes 31 (see FIGS. 3 and 4) in a top view.
  • a space 33 (see FIG. 4) is provided.
  • -Procedure dF The following stainless steel bats 34 (see FIGS. 3 and 4) are placed on the upper side of the 4 [pieces] cubes placed on the bottom surface 30 of the evaluation box in the procedure dD.
  • > Bat (“SUS bat"): (TRUSCO NAKAYAMA Co., Ltd., product name "Stainless steel deep type bat No. 5", product number: T-FU-7, bottom size "230 [mm] x 150 [mm]"
  • -Procedure dG The weight 35 (see FIGS. 3 and 4) was allowed to stand on the SUS bat arranged in the procedure dF so that the weight per unit area was 15 [kgf / cm 2 ], and 1 [hour]. put.
  • the weight 35 (see FIGS. 3 and 4) is arranged at the center of the SUS bat 34 (see FIGS. 3 and 4) so that the load is evenly applied to each of the 4 cubes.
  • -Procedure dH Visually check whether or not the evaluation box is torn in the procedure dG under each weight condition. Whether or not a tear has occurred is specifically determined by whether or not the cube has penetrated the bottom surface of the evaluation box.
  • the evaluation according to the procedures dD to dI is 15 [kgf / cm 2 ], 10 [kgf / cm 2 ] and 5 for the measurement cardboard materials of Examples d10 to d24 and Comparative Examples d25 and d26, respectively.
  • the evaluation of "easiness of tearing without creases” and the evaluation of "easiness of tearing with creases” are carried out respectively.
  • the evaluation of "easiness of tearing without creases” is an evaluation in which an iron cube is placed on the bottom surface of the evaluation box where no creases are provided.
  • the evaluation of "easiness of tearing with creases” is an evaluation in which a cube is arranged at a place where a crease is provided on the bottom surface of the evaluation box.
  • ⁇ ⁇ No tearing occurs under any of the three weight conditions.
  • - ⁇ 1 [location] or more is torn under the condition of 15 [kgf / cm 2 ].
  • ⁇ ⁇ 15,10 [kgf / cm 2] of but 1 [points] or more tear occurs (in other words 10 [kgf / cm 2] at 1 [point] or more tear occurs in each condition, 5 [kgf / Cm 2 ] does not cause tearing).
  • -X One or more tears occur in any of the three weight conditions. Of the above evaluations, those with " ⁇ " or higher were regarded as good evaluations.
  • the weight condition of 5 [kgf / cm 2 ] is set as the criterion for evaluating " ⁇ " or more, so the weight of luggage (5 [kg]) that is often transported in the mail-order field is taken into consideration. The evaluation is carried out.
  • the weight condition of 15 [kgf / cm 2 ] is set as the criterion for evaluating " ⁇ "
  • the weight upper limit (15 [kg]) of luggage that is common in the automatic box making system (fully automatic machine). ) Is taken into consideration.
  • Rule splitting property is an evaluation standard corresponding to the resistance to damage when the measured corrugated cardboard material is bent. Damage includes cracking, tearing, and tearing of the liner at the creases.
  • the crease portion is an area including the periphery of the fold.
  • the evaluation of the rule-breaking property was carried out by visually confirming whether or not the liner located outside the crease had a rule-breaking at all the folds of the measured corrugated cardboard material. ..
  • the confirmation results were evaluated according to the following two criteria. ⁇ ⁇ : No cracks were found in all the creases. ⁇ ⁇ : One or more ruled cracks were found in the creases. Of the above evaluations, " ⁇ " was regarded as a good evaluation and " ⁇ " was regarded as a poor evaluation.
  • both the burst strength with creases and the burst strength without creases are 500 [kPa] or more, and "easiness to tear without creases" and “breakage with creases”. All of "ease” were evaluated as “ ⁇ ” or higher.
  • Examples d11 to d13 and d15 to d24 in which the burst strength with creases was 650 [kPa] or more the easiness of tearing with creases was evaluated as “ ⁇ ” or higher.
  • Examples d11 to d21, d23, and d24 having a crease-free burst strength of 650 [kPa] or more an evaluation of “ ⁇ ” or higher was obtained for the crease-free tearability.
  • Examples d18, d21, d23, and d24 having a crease-bearing burst strength of 1500 [kPa] or more an evaluation of “ ⁇ ” was obtained for the crease-bearing easiness of tearing.
  • Examples d12, d23, and d24 having a crease-free burst strength of 1500 [kPa] or more an evaluation of “ ⁇ ” was obtained for the crease-free tearability.
  • Comparative Examples d25 and 26 in which at least one of the crease-free burst strength and the crease-bearing burst strength is less than 500 [kPa], the crease-free rupture easiness and the crease-bearing rupture easiness at least.
  • One of them was evaluated as "x". Specifically, in Comparative Example d25 of a single flute, both the burst strength without creases and the burst strength with creases were less than 500 [kPa], and both the crease-free and crease-bearing tearability were indicated by "x". Was obtained.
  • the rupture strength with creases was 500 [kPa] or more, and the fragility with creases was evaluated as “ ⁇ ”, but the rupture strength without creases was 500. When it was less than [kPa], the evaluation of "x" was obtained for the ease of tearing without creases.
  • Examples d10 to d22 of Examples d10 to d24 both the burst strength with creases and the burst strength without creases are 2000 [kPa] or less, and the "ruledness" is " ⁇ ".
  • Examples d23 and d24 in which at least one of the crease-bearing burst strength and the crease-free burst strength is greater than 2000 [kPa] among Examples d10 to d24 an evaluation of “x” is given in terms of rule-cutting property. Obtained.
  • Example d23 of the single flute from Examples d10 to d17 of the single flute, if the burst strength of the single flute with creases is 1500 [kPa] or less, all the folds of the measured corrugated cardboard material. It can be said that damage can be prevented.
  • the larger the basis weight and density of the liner base paper the higher the burst strength. From such a correlation between the basis weight and the burst strength, if the basis weight of the liner base paper is 80 [g / m 2 ] or more and the density is 0.75 [g / cm 3 ] or more in the single flute, it is evaluated. It can be said that it is possible to prevent the contents from falling out of the box. Furthermore, in the case of a single flute, if the basis weight of the liner base paper is 160 [g / m 2 ] or more and the density is 0.85 [g / cm 3 ] or more, damage to the evaluation box due to the load of the contents should be suppressed. Can be said to be possible.
  • Examples d10 to d17 and d23 of the single flute from Examples d13 and d14 in which the material and density of the liner base paper are different, in the single flute, the pulp of the surface layer is specifically due to the difference in the material of the liner base paper. It is presumed that the greater the proportion of softwood kraft pulp contained in, the lower the burst strength tends to be.
  • Examples d10 to d17 and d23 of the single flute from Examples d15, d16 and d17 in which the base paper is common and only the flute is different from each other, the difference in the flute is no crease and crease is present in the single flute. It is presumed that it does not affect the burst strength.
  • the burst strength without creases is 500 [kPa] or more and the burst strength with creases is 520 [kPa]. With the above, it can be said that it is possible to prevent the contents from falling out of the evaluation box. Further, from Examples d18 to d21 and d24, if the burst strength without creases is 700 [kPa] or more and the burst strength with creases is 800 [kPa] or more, the evaluation box based on the load of the contents It can be said that the damage of the box can be suppressed.
  • Example d24 of the double flute from Examples d18, d21, and d24, if the burst strength without creases is 1000 [kPa] or more and the burst strength with creases is 1500 [kPa] or more, the evaluation box based on the load of the contents It can be said that the damage can be prevented.
  • the burst strength of the double flute without creases and with creases is 2500 [kPa] or less, the corrugated cardboard material is measured. It can be said that damage can be prevented at all folds.
  • the basis weight of the liner base paper is 80 [g / m 2 ] or more and the density is 0.75 [g / cm 3 ] or more, or If the basis weight of the core base paper is 130 [g / m 2 ] or more and the density is 0.65 [g / cm 3 ] or more, it can be said that it is possible to prevent the contents from falling out of the evaluation box. ..
  • the basis weight of the liner base paper is 80 [g / m 2 ] or more and the density is 0.75 [g / cm 3 ] or more, damage to the evaluation box due to the load of the contents can be suppressed. I can say. Moreover, if the basis weight of the liner base paper is 150 [g / m 2 ] or more and the density is 0.85 [g / cm 3 ] or more, damage to the evaluation box due to the load of the contents can be prevented. I can say.
  • the "adhesive force" is a parameter corresponding to the peeling resistance value of the adhesive portion between the stepped top of the core (the part corresponding to the maximum value) and the liner in the sheet of the corrugated cardboard material to be measured. To put it plainly, it is a parameter corresponding to the difficulty of peeling off the liner forming the sheet of the corrugated cardboard material.
  • This adhesive strength was measured by the following procedures ea to ed. -Procedure ea: Based on the number of steps of half of the total number of steps of the corrugated cardboard material to be measured, 10 upper and lower sheets are collected, and 20 sheets without deformation (for example, dents) are cut out.
  • -Procedure eb From the sheet cut out in step ea, cut out a test sample to the size shown below with a cutter.
  • Direction parallel to the corrugated structure of the core (vertical direction ⁇ CD direction>): 50 [mm]
  • Direction orthogonal to the corrugated structure of the core (horizontal direction ⁇ MD direction>): 85 [mm]
  • -Procedure ec Prepare ten samples on the front and back of the sample cut out in procedure eb. Specifically, ten sheets for measuring the adhesive force on the single facer side and ten sheets for measuring the adhesive force on the glue machine side are prepared.
  • Liner peeling is an evaluation standard corresponding to the quality of the box and the quality of the appearance. This liner peeling was evaluated by the following procedures eA to eC.
  • -Procedure eA Similar to the evaluation of the box-making property according to the configurations a and b, the evaluation cardboard piece is cut out at the cut line straddling the crease of the measurement cardboard material. When cutting out the first evaluation cardboard piece, it was replaced with a new cutter blade, and this cutter blade was used without replacement until the 100th (last) piece.
  • -Procedure eB Assemble the evaluation cardboard pieces cut out in procedure eA by hand.
  • -Procedure eC Observe the presence or absence of peeling of the liner (sheet) in the evaluation box assembled in procedure eB.
  • Example e1 to e3 the average value of the adhesive strength (hereinafter referred to as "average adhesive strength") measured on the single facer side and the glue machine side is 140 [N] or more, and the liner peeling is " ⁇ ".
  • average adhesive strength the average value of the adhesive strength measured on the single facer side and the glue machine side is 140 [N] or more
  • the liner peeling is " ⁇ ".
  • the above evaluation was obtained.
  • Example e1 having an average adhesive strength of 220 [N] or more an evaluation of “ ⁇ ” was obtained.
  • Comparative Example 1 in which the average adhesive strength was less than 140 [N] an evaluation of "x" was obtained for the liner peeling.
  • the liner will not easily come off when the evaluation cardboard piece is cut out from the measurement cardboard material, and the liner will not come off easily when the evaluation box is assembled from the evaluation cardboard piece. Inferred. Furthermore, if the average adhesive strength is 220 [N] or more, it is presumed that the liner can be prevented from peeling off both when the evaluation cardboard piece is cut out and when it is assembled. Therefore, the average adhesive strength is 140 [N]. With the above, it can be said that the liner of the evaluation box is less likely to come off. As a result, it can be said that the deterioration of the appearance of the evaluation box can be suppressed and the quality of the evaluation box can be ensured.
  • any one of the basis weights shown below is applied to the liner base papers of Examples f1 to f11, f21 to f32 and Comparative Examples f12 to f20, f33 to f36 regarding the configuration f. Adopted one basis weight.
  • These liner base papers were produced according to the method for producing a corrugated cardboard liner of Japanese Patent No. 6213364.
  • Basis weight 120 [g / m 2 ] (of liner base paper) ⁇ Basis weight (of liner base paper) 160 [g / m 2 ] ⁇ Basis weight (of liner base paper) 280 [g / m 2 ] ⁇ Basis weight (of liner base paper) 100 [g / m 2 ] ⁇ Basis weight 320 [g / m 2 ] (of liner base paper) ⁇ Basis weight 110 [g / m 2 ] (of liner base paper) ⁇ Basis weight 105 [g / m 2 ] (of liner base paper)
  • Examples f1 to f11, f21 to f32 and Comparative Examples f12 to f20 and f33 to f36 as shown in Tables 13 to 16 above, one of the two types of basis weights shown below is used. Adopted quantity. These core base papers were produced according to the production method of JP2017-218721A.
  • Each basis weight of the liner base paper and the core base paper described above is the basis weight of the base paper that forms the material (raw material) of the measured corrugated cardboard material, and has a temperature of 23 [° C.] and a humidity of 50 [%] in accordance with JIS Z0203: 2000. It was measured under normal conditions where pretreatment was performed for 24 hours or more under the temperature and humidity conditions of.
  • the measurement corrugated cardboard materials of Examples f21 to f27, f32 and Comparative Examples f35 and f36 are formed by laminating five base papers having the following basis weights in the order from one to the other in the height direction.
  • the measurement corrugated cardboard material of Example f28 is formed by laminating five base papers having the following basis weights in the order from one to the other in the height direction.
  • the measurement corrugated cardboard material of Example f29 is formed by laminating five base papers having the following basis weights in the order from one to the other in the height direction.
  • liner base paper for front liner and back liner
  • a fiber classifier for raw material pulp MAX-F700, manufactured by Aikawa Iron Works Co., Ltd.
  • the pulp fiber length is adjusted as described in.
  • the jet wire ratio is adjusted when the liner base paper is made, and the above tables 13 to 16 show.
  • the fiber orientation ratio was adjusted as described above.
  • the jet wire ratio is the ratio (J / W) of the flow velocity (J) of the pulp dispersion to the traveling speed (W) of the wire in the paper machine.
  • the "fiber length" is measured by the following procedures fa to fe.
  • Procedure fa The second step from the top of the corrugated cardboard material was cut into 40 [cm] squares, and the 40 [cm] square cardboard sheet was used for measurement. The cutting position was in the middle of the cardboard sheet width. Then, the cardboard sheet is immersed in ion-exchanged water for 15 minutes and removed from the ion-exchanged water.
  • Step fb Each of the liner base papers (front liner and back liner) is separated from the core base paper by hand peeling from the cardboard sheet taken out in step fa so that the liner base paper is not torn.
  • Procedure fc Each of the liner base paper and the core base paper separated in step fb was immersed in ion-exchanged water to adjust the concentration to 2%, and then immersed for 24 hours.
  • Procedure fd After immersing each of the liner base paper and the core base paper whose concentration was adjusted by the procedure fc for 24 hours, the pulp was separated into fibers using a standard type disintegrator (manufactured by Kumagai Riki Kogyo Co., Ltd.) for 20 minutes. Disassemble into a shape.
  • Procedure fe The slurry (pulp fiber) after disaggregation was separated in the procedure fd, and the fiber length in accordance with JIS P8226-2: 2011 was measured using the following fiber length measuring machine.
  • Fiber length ratio Fiber length of liner base paper / Fiber length of core base paper ... Formula f
  • Step fA Same as step fa above Step fB: Same as step fb above Step fC: Liner base paper and core base paper separated in step fB are each separated by a cylinder dryer (product number: MR3D, manufactured by Japo Co., Ltd.). Dry until dry.
  • Procedure fD The fiber orientation ratio of the liner base paper and the core base paper dried in the procedure fC is measured using the following fiber orientation characteristic evaluation device.
  • -Fiber orientation characteristic evaluation device Part number SST-2500, manufactured by Nomura Shoji Co., Ltd. The minimum value of the fiber orientation ratio is 1.0 due to the setting specifications of the above fiber orientation characteristic evaluation device. --Evaluation---
  • the "folded portion" is an area including the periphery of the fold. ⁇ : No cracks were observed in the folds ⁇ : 1 to 2 cracks were observed in the folds ⁇ : 3 to 4 cracks were observed in the folds ⁇ : 5 or more cracks were observed in the folds In Examples f1 to f11, f21 to f32 and Comparative Examples f12 to f20 and f33 to f36, " ⁇ " having the highest evaluation and " ⁇ ” having the next highest evaluation were regarded as good evaluations and the lowest evaluations. “ ⁇ ” and “ ⁇ ”, which has the next lowest evaluation, were regarded as poor evaluations.
  • the basis weight of the liner base paper is 110 [g / m 2 ] or more and 290 [g / m 2 ] or less, and the pulp fiber length of the liner base paper is 0.55 [g / m 2 ] or less.
  • a rating of " ⁇ " or higher was obtained for breakability.
  • the basis weight of the liner base paper is 140 [g / m 2 ] or more and 180 [g / m 2 ] or less, and the pulp fiber length of the liner base paper is 0.90 [mm] or more and 1.30.
  • Comparative Examples f12, f13, f15, f33 to f36 the pulp fiber length of the liner base paper was out of the range of 0.55 [mm] to 1.60 [mm], and the crease property was " ⁇ ". The following bad evaluations were obtained. Further, in Comparative Example f14, the fiber orientation ratio was larger than 2.0, and an evaluation of “x” was obtained for the breakability. Further, in Comparative Examples f16 and f17, the fiber length ratio was out of the range of 0.65 to 1.90, and the evaluation of “ ⁇ ” was obtained for the breakability.
  • the basis weight of the liner base paper was out of the range of 110 [g / m 2 ] to 290 [g / m 2 ], and the crease property was evaluated as “ ⁇ ” or less. ..
  • the basis weight of the liner base paper is 110 [g / m 2 ] or more and 290 [g / m 2]. ] Or less, the pulp fiber length of the liner base paper is 0.55 [mm] or more and 1.60 [mm] or less, and the fiber length ratio is 0.65 or more. When it is 90 or less, the overall strength of the liner base paper is secured, and when the fiber orientation ratio is 1.0 or more and 2.0 or less, the lateral strength of the liner base paper is secured. Therefore, it is presumed that the breakability will be good.
  • the pulp fiber length is 0.9 [mm] or more and 1.30 [mm] or less, and the fiber orientation ratio is 1.3 or more and 1 When it is 0.7 or less, the overall strength of the liner base paper and the lateral strength of the liner base paper are raised, so that it is presumed that the breakability becomes better.
  • the basis weight of the liner base paper is 110 [g / m 2 ] or more and 290 [g / m 2 ] or less, and the pulp fiber length of the liner base paper is 0.55 [mm] or more and 1.60.
  • the fiber orientation ratio is 1.0 or more and 2.0 or less, and the fiber length ratio is 0.65 or more and 1.90 or less, breakage of creases is suppressed. I know I can do it. As a result, it can be said that the deterioration of the appearance of the cardboard box using the measured cardboard material can be suppressed, and the quality of the cardboard box can be ensured.
  • Example of combining the three configurations Finally, an embodiment ade in which a part of the configuration a, d and e are combined will be described.
  • the details of the measurement target and evaluation of Example ade are the same as those described above unless otherwise specified.
  • --Measurement target-- Example ade was evaluated for the measurement corrugated cardboard material having the parameters listed below.
  • -Thickness dimension 5.1 [mm]
  • -Rupture strength 2009 [kpa]
  • -Average adhesive strength 237.5 [N] > Single facer side: 230 [N] > Glue machine side: 245 [N]
  • Example ade The corrugated cardboard material was evaluated for cracking, easiness of tearing, and liner peeling. As a result, excellent evaluation (“ ⁇ ” mentioned above) was obtained in all of the rule cracking, the easiness of tearing, and the liner peeling. From the evaluation results of Example ade, it can be seen that when a part of the configuration a, d, and e are combined, the evaluation corresponding to the part, d, and e of each configuration a is not impaired and is excellent.
  • the safety of manual work for the measured corrugated cardboard material is improved.
  • the reasons for this include the following reasons ⁇ and ⁇ . -Reason ⁇ : Since a good evaluation of liner peeling can be obtained, it is possible to prevent the liner from being unintentionally peeled off in the manual work on the measured corrugated cardboard material, and also to apply an appropriate force in the manual work to break the measured corrugated cardboard material. It is presumed that the liner will come off at the time of application. In other words, if the average adhesive strength is excessive, there is room for improvement in safety during breaking work.
  • the crease is a portion where the ruled line is folded back by 180 [°] from the starting point (for example, the ruled line is inside).
  • processing such as cuts and perforations may be performed.
  • the liner base paper and core base paper used for the above-mentioned corrugated cardboard material and measurement cardboard material are not limited to the products having the product numbers mentioned in the examples, but also the liner base paper produced by the method for manufacturing a corrugated board liner of Japanese Patent No. 6213364 and JP-A-2017.
  • a core base paper produced by the method for producing a corrugated board base paper of Japanese Patent Application Laid-Open No. -218721 may be used.
  • bellows-folded corrugated cardboard material is not limited to the use as a box-making material applied to a box-making system.
  • the bellows-folded corrugated cardboard material which is different from the conventional single-wafered corrugated cardboard sheet, and makes use of the structure in which a plurality of sheets are continuously provided through folds.
  • the bellows-folded corrugated cardboard material can be treated as a web-like paper material having a large dimension in the extending direction in the unfolded state of the sheet.
  • Use as disaster supplies By attaching it to windows, it can be used as a measure against window cracking during typhoons, as a partition for privacy protection and stress reduction at evacuation shelters, as a cushioning material and as a rug for measures against cold. It is available.
  • Use at event events It can be used for creative works such as signboards for events and school events.
  • Use as a building / moving material When it is necessary to temporarily protect a door, wall, door, etc. at a building site or a moving site, it can be used as a protective material (curing material) that can be attached to an object.
  • the fiber orientation ratio which is the ratio of the orientation of the pulp fibers in the first direction to the orientation in the second direction in the liner, is 1.0 or more and 2.0 or less.
  • a corrugated cardboard material characterized in that the fiber length ratio, which is the ratio of the pulp fiber length of the liner to the pulp fiber length of the core constituting the double-sided corrugated cardboard, is 0.65 or more and 1.90 or less.
  • the basis weight of the liner is 140 [g / m 2 ] or more and 180 [g / m 2 ] or less.
  • the pulp fiber length of the liner is 0.90 [mm] or more and 1.30 [mm] or less.
  • the fiber orientation ratio is 1.3 or more and 1.7 or less.
  • Appendix 3 In a continuous cardboard box, a rectangular sheet is folded back in a second direction orthogonal to the first direction on a plane along the fold at each of the folds extending linearly along the first direction. A bellows-folded corrugated cardboard material in which the sheets are stacked along a third direction orthogonal to both the direction and the second direction. The sheet is Under normal conditions where pretreatment was performed for 24 hours or more under temperature and humidity conditions of temperature 23 [° C.] and humidity 50 [%] in accordance with JIS Z0203: 2000.
  • the thickness dimension measured in accordance with the corrugated board industry standard T0004: 2000 is 2.0 [mm] or more and 9.6 [mm] or less.
  • Appendix 4 The corrugated cardboard material according to Appendix 3, wherein the sheet has an average value of adhesive strength of 140 [N] or more measured on the single facer side and the glue machine side in accordance with JIS Z0402: 1995.
  • the sheet is provided with the core at two locations where the core intersects and is adjacent to the virtual auxiliary line extending in the second direction at the center of the front liner and the back liner when viewed from the first direction.
  • the corrugated cardboard material according to Appendix 3 or 4 wherein the ratio obtained by dividing the difference between the two acute angles formed by the auxiliary line by the sum of the two acute angles is 0.30 or less.
  • Appendix 6 The corrugated cardboard material according to any one of Appendix 3 to 5, wherein the sheet has a burst strength of 500 [kPa] or more measured in accordance with JIS P8131: 2009.
  • Appendix 8 The sheet is provided with the core at two locations where the core intersects and is adjacent to the virtual auxiliary line extending in the second direction at the center of the front liner and the back liner when viewed from the first direction.
  • [Appendix 9] The corrugated cardboard material according to Appendix 7 or 8, wherein the sheet has a burst strength of 500 [kPa] or more measured in accordance with JIS P8131: 2009.
  • Appendix 10 The sheet is any one of Appendix 7 to 9, wherein the average value of the adhesive force measured on the single facer side and the glue machine side in accordance with JIS Z0402: 1995 is 140 [N] or more.
  • [Appendix 11] The sheet has a thickness dimension of 2.0 [mm] or more and 9.6 [mm] or less measured in accordance with the corrugated cardboard industry standard T0004: 2000. Or the cardboard material described in item 1.
  • the core intersects the virtual auxiliary line extending in the second direction, and at two adjacent locations, the core and the auxiliary line
  • a corrugated cardboard material characterized in that the ratio obtained by dividing the difference between two acute angles formed by the two acute angles by the sum of the two acute angles is 0.30 or less.
  • [Appendix 14] The corrugated cardboard according to Appendix 12 or 13, wherein the sheet has an average value of adhesive strength of 140 [N] or more measured on the single facer side and the glue machine side in accordance with JIS Z0402: 1995. Material.
  • Appendix 15] The sheet has a thickness dimension of 2.0 [mm] or more and 9.6 [mm] or less measured in accordance with the corrugated cardboard industry standard T0004: 2000. Or the cardboard material described in item 1.
  • [Appendix 16] The sheet is The step-by-step rate is 1.2 [times] or more and 1.7 [times] or less.
  • the sheet is Under normal conditions where pretreatment was performed for 24 hours or more under temperature and humidity conditions of temperature 23 [° C.] and humidity 50 [%] in accordance with JIS Z0203: 2000.
  • Appendix 18 The corrugated cardboard material according to Appendix 17, wherein the sheet has an average value of adhesive strength of 140 [N] or more measured on the single facer side and the glue machine side in accordance with JIS Z0402: 1995.
  • Appendix 19 The sheet is described in Appendix 17 or 18, characterized in that the thickness dimension measured in accordance with the corrugated board industry standard T0004: 2000 is 2.0 [mm] or more and 9.6 [mm] or less. Cardboard material.
  • Appendix 20 The sheet is The step-by-step rate is 1.2 [times] or more and 1.7 [times] or less.
  • the item according to any one of Supplementary note 17 to 19, wherein the planar compressive strength measured in accordance with JIS Z0403-1: 1999 is 50 [kPa] or more and 250 [kPa] or less. Cardboard material.
  • the sheet is provided with the core at two locations where the core intersects and is adjacent to the virtual auxiliary line extending in the second direction at the center of the front liner and the back liner when viewed from the first direction.
  • the corrugated cardboard material according to any one of Appendix 17 to 20, wherein the ratio obtained by dividing the difference between the two acute angles formed by the auxiliary line by the sum of the two acute angles is 0.30 or less.
  • Appendix 22 In a continuous cardboard box, a rectangular sheet is folded back in a second direction orthogonal to the first direction on a plane along the fold at each of the folds extending linearly along the first direction.
  • the sheet is Under normal conditions where pretreatment was performed for 24 hours or more under temperature and humidity conditions of temperature 23 [° C.] and humidity 50 [%] in accordance with JIS Z0203: 2000.
  • a corrugated cardboard material characterized in that the average value of the adhesive strength measured on the single facer side and the glue machine side in accordance with JIS Z0402: 1995 is 140 [N] or more.
  • Appendix 23 The corrugated cardboard according to Appendix 22, wherein the sheet has a thickness dimension of 2.0 [mm] or more and 9.6 [mm] or less measured in accordance with the corrugated cardboard industry standard T0004: 2000.
  • the sheet is The step-by-step rate is 1.2 [times] or more and 1.7 [times] or less.
  • the corrugated cardboard material according to Appendix 22 or 23, wherein the plane compressive strength measured in accordance with JIS Z0403-1: 1999 is 50 [kPa] or more and 250 [kPa] or less.
  • the sheet is provided with the core at two locations where the core intersects and is adjacent to the virtual auxiliary line extending in the second direction at the center of the front liner and the back liner when viewed from the first direction.
  • Appendix 26 The corrugated cardboard material according to any one of Appendix 22 to 25, wherein the sheet has a burst strength of 500 [kPa] or more measured in accordance with JIS P8131: 2009.
  • Appendix 27 In a continuous double-flute double-sided cardboard, a rectangular sheet is folded back in a second direction orthogonal to the first direction on a plane along the fold at each of the folds extending linearly along the first direction.
  • the sheet is Under normal conditions where pretreatment was performed for 24 hours or more under temperature and humidity conditions of temperature 23 [° C.] and humidity 50 [%] in accordance with JIS Z0203: 2000.
  • the burst strength of the portion not including the crease measured in accordance with JIS P8131: 2009 is 500 [kPa] or more.
  • [Appendix 28] The corrugated cardboard material according to Appendix 27, wherein the burst strength of the portion not including the crease and the burst strength of the portion including the fold are 2500 [kPa] or less.
  • [Appendix 29] The corrugated cardboard according to Appendix 27 or 28, wherein the sheet has an average value of adhesive strength of 140 [N] or more measured on the single facer side and the glue machine side in accordance with JIS Z0402: 1995. Material.
  • [Appendix 30] The sheet is The step-by-step rate is 1.2 [times] or more and 1.7 [times] or less.
  • Cardboard material [Appendix 31] The sheet is provided with the core at two locations where the core intersects and is adjacent to the virtual auxiliary line extending in the second direction at the center of the front liner and the back liner when viewed from the first direction.
  • Appendix 32 A corrugated cardboard box characterized in that the corrugated cardboard material according to any one of Supplementary notes 1 to 31 is used.
  • the thickness dimension measured in accordance with the corrugated board industry standard T0004: 2000 is 2.0 [mm] or more and 9.6 [mm] or less.
  • a corrugated cardboard material that satisfies both the conditions that the planar compressive strength measured in accordance with JIS Z0403-1: 1999 is 50 [kPa] or more and 250 [kPa] or less.
  • Appendix 34 The corrugated cardboard material according to Appendix 33, wherein the sheet has an average value of adhesive strength of 140 [N] or more measured on the single facer side and the glue machine side in accordance with JIS Z0402: 1995.
  • the sheet is provided with the core at two locations where the core intersects and is adjacent to the virtual auxiliary line extending in the second direction at the center of the front liner and the back liner when viewed from the first direction.
  • the corrugated cardboard material according to Appendix 33 or 34 wherein the ratio obtained by dividing the difference between the two acute angles formed by the auxiliary line by the sum of the two acute angles is 0.30 or less.
  • a corrugated cardboard material that satisfies both the conditions that the planar compressive strength measured in accordance with JIS Z0403-1: 1999 is 50 [kPa] or more and 250 [kPa] or less.
  • the sheet is provided with the core at two locations where the core intersects and is adjacent to the virtual auxiliary line extending in the second direction at the center of the front liner and the back liner when viewed from the first direction.
  • the corrugated cardboard material according to Appendix 37, wherein the ratio obtained by dividing the difference between the two acute angles formed by the auxiliary line by the sum of the two acute angles is 0.30 or less.
  • [Appendix 39] The corrugated cardboard material according to Appendix 37 or 38, wherein the sheet has a burst strength of 500 [kPa] or more measured in accordance with JIS P8131: 2009.
  • Appendix 40 The sheet is any one of Appendix 37 to 39, wherein the average value of the adhesive force measured on the single facer side and the glue machine side in accordance with JIS Z0402: 1995 is 140 [N] or more.
  • [Appendix 41] The sheet has a thickness dimension of 2.0 [mm] or more and 9.6 [mm] or less measured in accordance with the corrugated cardboard industry standard T0004: 2000. Or the cardboard material according to item 1.
  • the core intersects the virtual auxiliary line extending in the second direction, and at two adjacent locations, the core and the auxiliary line
  • a corrugated cardboard material that satisfies the condition that the ratio of the difference between the two acute angles formed by the two sharp angles divided by the sum of the two acute angles is 0.30 or less (excluding 0.08 or less).
  • [Appendix 44] The corrugated cardboard according to Appendix 42 or 43, wherein the sheet has an average value of adhesive strength of 140 [N] or more measured on the single facer side and the glue machine side in accordance with JIS Z0402: 1995. Material.
  • [Appendix 46] The sheet is The step-by-step rate is 1.2 [times] or more and 1.7 [times] or less.
  • the sheet is Under normal conditions where pretreatment was performed for 24 hours or more under temperature and humidity conditions of temperature 23 [° C.] and humidity 50 [%] in accordance with JIS Z0203: 2000.
  • a corrugated cardboard material characterized in that the average value of the adhesive strength measured on the single facer side and the glue machine side in accordance with JIS Z0402: 1995 is 140 [N] or more.
  • Appendix 48 The corrugated cardboard according to Appendix 47, wherein the sheet has a thickness dimension of 2.0 [mm] or more and 9.6 [mm] or less measured in accordance with the corrugated cardboard industry standard T0004: 2000. Material.
  • the sheet is The step-by-step rate is 1.2 [times] or more and 1.7 [times] or less.
  • the corrugated cardboard material according to Appendix 47 or 48, wherein the plane compressive strength measured in accordance with JIS Z0403-1: 1999 is 50 [kPa] or more and 250 [kPa] or less.
  • the sheet is provided with the core at two locations where the core intersects and is adjacent to the virtual auxiliary line extending in the second direction at the center of the front liner and the back liner when viewed from the first direction.
  • the cardboard material according to any one of Supplementary note 47 to 49 wherein the ratio of the difference between the two acute angles formed by the auxiliary line divided by the sum of the two acute angles is 0.30 or less.
  • Appendix 51 The corrugated cardboard material according to any one of Supplementary note 47 to 50, wherein the sheet has a burst strength of 500 [kPa] or more measured in accordance with JIS P8131: 2009.
  • Appendix 52 A corrugated cardboard box using the corrugated cardboard material according to any one of Appendix 33 to 51.

Abstract

A corrugated cardboard material (1) is designed such that a rectangle sheet (2) in a sequential double-sided corrugated cardboard is folded back in a second direction MD at each fold F linearly extending along a first direction CD and stacked in a third direction TD. In the corrugated cardboard material (1), a liner constituting the double-sided corrugated cardboard has a basis weight of 110 [g/m2] or more and 290 [g/m2] or less. The liner has a pulp fiber length of 0.55 [mm] or more and 1.60 [mm] or less. A fiber orientation ratio representing the ratio of the orientation of pulp fibers of the liner in the second direction MD to the orientation thereof in the first direction CD is 1.0 or more and 2.0 or less. A fiber length ratio representing the ratio of a pulp fiber length of a liner base paper to a pulp fiber length of a corrugating medium constituting the double-sided corrugated cardboard is 0.65 or more and 1.90 or less.

Description

ダンボール材およびこれを用いたダンボール箱Cardboard material and cardboard boxes using it
 本発明は、蛇腹折りのダンボール材およびこれを用いたダンボール箱に関する。 The present invention relates to a bellows-folded cardboard material and a cardboard box using the same.
 製函用資材として、蛇腹折り(「ファンフォールド」とも称される)のダンボール材が知られている。ダンボール材には連続する矩形状のシート間に折目が設けられ、この折目でシートが交互に折り返されている。このような蛇腹折りのダンボール材では、連続するシートが上下に積み重ねられ、直方体状の荷姿に折り畳まれている。 Corrugated cardboard material with bellows fold (also called "fan fold") is known as a material for box making. The corrugated cardboard material is provided with creases between continuous rectangular sheets, and the sheets are alternately folded back at the folds. In such a bellows-folded cardboard material, continuous sheets are stacked one above the other and folded into a rectangular parallelepiped packaging.
 上記のダンボール材は、包装対象のサイズに応じて最適な大きさの箱を製造する製函システム(「自動包装システム」や「三辺可変システム」,「三辺自動梱包」,「オンデマンド包装」などとも称される)の包装資材に用いられる。この製函システムでは、以下に例示する各種の工程が実施される(下記の特許文献1を参照)。
  ・フィード工程:蛇腹折りのダンボール材を繰り出す工程
  ・ カット工程 :フィード工程で繰り出された平面状のダンボール材を切り出す工程
  ・フォールド工程:カット工程で切り出されたダンボール材から箱を組み立てる工程
  ・プリント工程:平面状もしくは組み立てられたダンボール材に印刷を施す工程
  ・ 荷詰め工程 :組み立てられる箱に内容物を収容する工程
The above cardboard materials are box-making systems (“automatic packaging system”, “three-side variable system”, “three-side automatic packaging”, and “on-demand packaging” that manufacture boxes of the optimum size according to the size of the object to be packaged. It is also used as a packaging material. In this box-making system, various steps illustrated below are carried out (see Patent Document 1 below).
・ Feed process: Process of feeding out bellows-folded cardboard material ・ Cutting process: Process of cutting out flat cardboard material fed in the feed process ・ Folding process: Process of assembling a box from the cardboard material cut out in the cutting process ・ Printing process : The process of printing on a flat or assembled cardboard material ・ Packing process: The process of storing the contents in the assembled box
特表2013-513869号公報Special Table 2013-513869
 しかしながら、蛇腹折りのダンボール材に用いられる性状によっては、折目の破損を招くおそれや、蛇腹折りのダンボール材が製函システムの資材に用いられた場合に、製造された箱の状態が不良となるおそれがある。
 本件は、上記の課題に鑑みて創案されたものであり、折目の破損を抑制することを第一の目的とし、良好な状態の箱の製造を第二の目的とする。なお、この目的に限らず、後述する「発明を実施するための形態」に示す各構成から導き出される作用および効果であって、従来の技術では得られない作用および効果を奏することも、本件の他の目的として位置付けることができる。
However, depending on the properties used for the bellows-folded cardboard material, there is a risk of damaging the folds, and when the bellows-folded cardboard material is used as the material for the box-making system, the state of the manufactured box is poor. There is a risk of becoming.
This case was devised in view of the above problems, and the first purpose is to suppress the damage of folds, and the second purpose is to manufacture a box in good condition. Not limited to this purpose, it is also possible to exert actions and effects derived from each configuration shown in the "mode for carrying out the invention" described later, which cannot be obtained by the conventional technique. It can be positioned as another purpose.
 ここで開示するダンボール材は、連続するダンボールにおいて矩形状のシートが第一方向に沿って直線状に延在する折目のそれぞれにおいて前記折目の沿う平面で前記第一方向に直交する第二方向へ折り返され、前記第一方向および前記第二方向の双方に直交する第三方向に沿って前記シートが積み重ねられた蛇腹折りのダンボール材である。
 本ダンボール材は、前記ダンボール材に用いられる性状に関し、所定の構成を備える。
 前記所定の構成には、以下に示す構成a~fのうち少なくとも何れか一つが含まれる。
 前記構成a~fのうち構成a~eは、前記シートの性状に関し、JIS Z0203:2000に準拠して温度23[℃]および湿度50[%]の温湿度条件で24時間以上の前処理が施された常態において測定された前記シートのパラメータである所定の構成である。
The corrugated cardboard material disclosed here is a second corrugated cardboard material orthogonal to the first direction on a plane along the fold at each of the folds in which a rectangular sheet extends linearly along the first direction in continuous cardboard. A bellows-folded corrugated cardboard material that is folded back in a direction and the sheets are stacked along a third direction orthogonal to both the first direction and the second direction.
The corrugated cardboard material has a predetermined structure with respect to the properties used for the corrugated cardboard material.
The predetermined configuration includes at least one of the configurations a to f shown below.
Of the configurations a to f, the configurations a to e are pretreated for 24 hours or more under temperature and humidity conditions of a temperature of 23 [° C.] and a humidity of 50 [%] in accordance with JIS Z0203: 2000 regarding the properties of the sheet. It is a predetermined configuration which is a parameter of the sheet measured in the applied normal state.
 構成aには、下記の構成1および2が含まれる。
 構成1には、段ボール業界規格T0004:2000に準拠して測定された厚み寸法が2.0[mm]以上であって9.6[mm]以下であることが含まれる。
 構成2には、JIS Z0403-1:1999に準拠して測定された平面圧縮強さが50[kPa]以上であって250[kPa]以下であることが含まれる。
Configuration a includes the following configurations 1 and 2.
Configuration 1 includes that the thickness dimension measured in accordance with the corrugated board industry standard T0004: 2000 is 2.0 [mm] or more and 9.6 [mm] or less.
Configuration 2 includes that the planar compressive strength measured in accordance with JIS Z0403-1: 1999 is 50 [kPa] or more and 250 [kPa] or less.
 構成bには、上記の構成2と下記の構成3が含まれる。
 構成3には、段繰率が1.2[倍]以上であって1.7[倍]以下であることが含まれる。
Configuration b includes the above configuration 2 and the following configuration 3.
The configuration 3 includes a step-by-step rate of 1.2 [times] or more and 1.7 [times] or less.
 構成cには、前記第一方向から視て表ライナと裏ライナとの中央において前記第二方向に延びる仮想的な補助線に対して中芯が交差するとともに隣り合う二箇所において、前記中芯と前記補助線とのなす二つの鋭角どうしの差を前記二つの鋭角の和で除した比率が0.30以下であることが含まれる。 In configuration c, the cores intersect and are adjacent to a virtual auxiliary line extending in the second direction at the center of the front liner and the back liner when viewed from the first direction. The ratio of the difference between the two acute angles formed by the auxiliary line and the auxiliary line divided by the sum of the two acute angles is 0.30 or less.
 構成dには、JIS P8131:2009に準拠して測定された破裂強さが500[kPa]以上であることが含まれる。
 構成d′には、シングルフルートの両面ダンボールにおいて、JIS P8131:2009に準拠して測定された折目を含む箇所の破裂強さが500[kPa]以上であることが含まれる。
 構成d′′には、ダブルフルートの両面ダンボールにおいて、JIS P8131:2009に準拠して測定された折目を含まない箇所の破裂強さが500[kPa]以上であり、JIS P8131:2009に準拠して測定された折目を含む箇所の破裂強さが520[kPa]以上であることが含まれる。
Configuration d includes that the burst strength measured in accordance with JIS P8131: 2009 is 500 [kPa] or more.
The configuration d'includes that, in a single flute double-sided corrugated cardboard, the burst strength at a portion including a crease measured according to JIS P8131: 2009 is 500 [kPa] or more.
In the configuration d ″, the burst strength of the double-sided corrugated cardboard of the double flute, which is measured in accordance with JIS P8131: 2009 and does not include creases, is 500 [kPa] or more, and conforms to JIS P8131: 2009. It is included that the burst strength of the portion including the crease measured in the above is 520 [kPa] or more.
 構成eには、JIS Z0402:1995に準拠してシングルフェーサ側およびグルーマシン側で測定された接着力の平均値が140[N]以上であることが含まれる。 The configuration e includes that the average value of the adhesive force measured on the single facer side and the glue machine side in accordance with JIS Z0402: 1995 is 140 [N] or more.
 構成fには、前記両面ダンボールを構成するライナの坪量が110[g/m]以上であって290[g/m]以下であり、前記ライナのパルプ繊維長が0.55[mm]以上であって1.60[mm]以下であり、前記ライナにおけるパルプ繊維の前記第一方向の配向に対する前記第二方向の配向の比率である繊維配向比が1.0以上であって2.0以下であり、前記両面ダンボールを構成する中芯のパルプ繊維長に対する前記ライナの前記パルプ繊維長の比率である繊維長比が0.65以上であって1.90以下であることが含まれる。 In the configuration f, the basis weight of the liner constituting the double-sided cardboard is 110 [g / m 2 ] or more and 290 [g / m 2 ] or less, and the pulp fiber length of the liner is 0.55 [mm]. ] Or more and 1.60 [mm] or less, and the fiber orientation ratio, which is the ratio of the orientation of the pulp fibers in the first direction to the orientation in the second direction in the liner, is 1.0 or more and 2 It is included that the fiber length ratio, which is 0.0 or less and is the ratio of the pulp fiber length of the liner to the pulp fiber length of the core constituting the double-sided cardboard, is 0.65 or more and 1.90 or less. Is done.
 本件の構成a~eによれば、良好な状態の箱を製造することができる。
 本件の構成fによれば、折目の破損を抑制できる。
According to the configurations a to e of the present case, a box in good condition can be manufactured.
According to the configuration f of the present case, damage to the fold can be suppressed.
蛇腹折りのダンボール材を示す斜視図である。It is a perspective view which shows the corrugated cardboard material of a bellows fold. 蛇腹折りのダンボール材に用いられたシートにおける段目の一例を示す模式図である。It is a schematic diagram which shows an example of the step | step in the sheet used for the corrugated cardboard material of bellows folding. 破れやすさの評価するための評価箱を上面視で示す模式図である。It is a schematic diagram which shows the evaluation box for evaluating the easiness of tearing from the top view. 破れやすさの評価するための評価箱を側面視で示す模式図である。It is a schematic diagram which shows the evaluation box for evaluation of easiness of tearing from the side view.
 以下、実施形態としてのダンボール材およびダンボール箱を説明する。
 本実施形態のダンボール材は、連続するダンボールにおいて矩形状のシートが折り畳まれた蛇腹折りの製函用資材である。このダンボール材には、中芯に対して両側にライナが設けられた両面ダンボールが用いられる。
 上記の両面ダンボールには、一つの中芯および二つのライナのそれぞれに対応する三つの原紙(資材)から構成されたシングルフルートのダンボールのほか、いわゆる「複両面ダンボール」や「複々両面ダンボール」のように二つ以上の中芯ならびに二つのライナおよび一つ以上の中ライナのそれぞれに対応する五つ以上の原紙から構成されたマルチフルートのダンボールも含まれる。
Hereinafter, a cardboard material and a cardboard box as embodiments will be described.
The corrugated cardboard material of the present embodiment is a bellows-folded box-making material in which a rectangular sheet is folded in continuous corrugated cardboard. As this corrugated cardboard material, double-sided corrugated cardboard having liners on both sides with respect to the core is used.
The above-mentioned double-sided cardboard includes single-flute cardboard composed of three base papers (materials) corresponding to one core and two liners, as well as so-called "double-sided cardboard" and "double-sided cardboard". Also included are multi-flute corrugated cardboard composed of two or more cores and five or more base papers corresponding to each of the two liners and one or more middle liners.
 ダンボール材が製函されると、ダンボール箱となる。詳細に言えば、製函システムの製函用資材に用いられたダンボール材は、シートが順繰りに送り出されるフィード工程,送り出されたシートが箱の展開パターンに切り抜かれるカット工程,箱の形状に折り立てられるフォールド工程といった種々の工程を経てダンボール箱に製函される。なお、ダンボール箱を組み立てる製函システムは、特に制限されないが、たとえば自動包装システムの全自動システム(フルオート機)である「CMC社製のCarton Wrap XL」,「CMC社製のカートンラップ1000」,「Neopost社製のCVP-500」,「オーエスマシーナリー社製のTXP-600」や、半自動システム(セミオート機)の「Pack Size社製のEM7」,「Panotec社製のCompack」,「HOMAG社製のPAQTEQ C-200」,「HOMAG社製のPAQTEQ C-250」を用いることができる。 When the cardboard material is made, it becomes a cardboard box. Specifically, the corrugated cardboard material used as the box-making material of the box-making system has a feed process in which the sheets are sequentially fed, a cutting process in which the delivered sheets are cut out in a box development pattern, and folding into a box shape. It is made into a cardboard box through various processes such as a folding process in which it is erected. The box-making system for assembling the cardboard box is not particularly limited, but for example, "CMC's Carton Wrap XL" and "CMC's carton wrap 1000", which are fully automatic systems (fully automatic machines) for automatic packaging systems. , "CVP-500 made by Neopost", "TXP-600 made by OS Machinery", "EM7 made by Pack Size" of semi-automatic system (semi-automatic machine), "Compack made by Panotec", "HOMAG" PAQTEC C-200 manufactured by HOMAG and PAQTEC C-250 manufactured by HOMAG can be used.
 本実施形態では、下記の方向I,IIが以下の表1に示すように対応する例を挙げ、ダンボール材は水平面に載置されたものとする。
  ・方向 I :水平面に載置されたダンボール材における方向
  ・方向II:ダンボール材を製造する途中の半製品における方向
In the present embodiment, it is assumed that the corrugated cardboard material is placed on a horizontal plane by giving an example in which the following directions I and II correspond as shown in Table 1 below.
-Direction I: Direction in the corrugated cardboard placed on the horizontal plane-Direction II: Direction in the semi-finished product in the middle of manufacturing the cardboard material
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 縦方向(第一方向,図中には「CD」と記す)および横方向(第二方向,図中には「MD」と記す)は水平に沿う方向であり、シート(折目)の沿う平面が延在する方向である。これらの縦方向と横方向とは互いに直交する。高さ方向(第三方向,図中には「TD」と記す)は、鉛直方向に沿う方向であり、縦方向および横方向の双方に直交する。この高さ方向は、シートが重ね合わせられる方向に対応する。 The vertical direction (first direction, indicated by "CD" in the figure) and the horizontal direction (second direction, indicated by "MD" in the figure) are horizontal directions and along the sheet (crease). The direction in which the plane extends. These vertical and horizontal directions are orthogonal to each other. The height direction (third direction, indicated by "TD" in the figure) is a direction along the vertical direction and is orthogonal to both the vertical direction and the horizontal direction. This height direction corresponds to the direction in which the sheets are overlapped.
 MD(Machine Direction)方向は、「流れ方向」とも称され、ダンボール材の製造過程が上流から下流へ進捗する方向である。CD(Cross Direction)方向は、MD方向の沿う平面においてMD方向に直交する方向である。TD(Transverse Direction)方向は、MD方向およびCD方向の双方に直交する方向である。
 そのほか、特に断らない限り、本実施形態の「数値X~数値Y」なる表現は、数値X以上であって数値Y以下の範囲を意味する。
The MD (Machine Direction) direction is also referred to as a "flow direction", and is a direction in which the corrugated cardboard material manufacturing process progresses from upstream to downstream. The CD (Cross Direction) direction is a direction orthogonal to the MD direction in a plane along the MD direction. The TD (Transverse Direction) direction is a direction orthogonal to both the MD direction and the CD direction.
In addition, unless otherwise specified, the expression "numerical value X to numerical value Y" in this embodiment means a range of numerical value X or more and numerical value Y or less.
[I.一実施形態]
 下記の一実施形態では、ダンボール材の構成を項目[1]および[2]で述べる。項目[1]では、ダンボール材が折り畳まれた構造(以下「折畳構造」と称する)を説明する。項目[2]では、ダンボール材に用いられるシート(段ボールシート)の性状に関するパラメータを説明する。
 そして、項目[1]および[2]の構成による作用および効果を項目[3]で述べる。
[I. One Embodiment]
In one embodiment below, the configuration of the corrugated cardboard material will be described in items [1] and [2]. Item [1] describes a structure in which the corrugated cardboard material is folded (hereinafter referred to as “folded structure”). Item [2] describes parameters related to the properties of the sheet (corrugated cardboard sheet) used for the corrugated cardboard material.
Then, the actions and effects of the configurations of items [1] and [2] will be described in item [3].
[1.折畳構造]
 図1に示すように、ダンボール材1は、直方体状をなす製函用資材である。
 ダンボール材1では、連続する矩形状のシート2(図1では一部のみに符合を付す)が折目F(図1では一部のみに符合を付す)で折り返され、折り返されたシート2が高さ方向に積み重ねられている。
 このように折り畳まれたダンボール材1には、縦方向および高さ方向の双方に沿う一対の側面に、複数の折目Fが縦方向に沿って直線状に延在する。
[1. Folding structure]
As shown in FIG. 1, the corrugated cardboard material 1 is a box-making material having a rectangular parallelepiped shape.
In the corrugated cardboard material 1, the continuous rectangular sheet 2 (partially marked in FIG. 1) is folded back at the fold F (only partly coded in FIG. 1), and the folded sheet 2 is folded. They are stacked in the height direction.
In the corrugated cardboard material 1 folded in this way, a plurality of folds F extend linearly along the vertical direction on a pair of side surfaces along both the vertical direction and the height direction.
 ここで、連続する三つのシート2(図1では二点鎖線で示す)に着目して、ダンボール材1の折畳構造を説明する。
  ・第一シート21:第二シート22の一側に連続するシート2
  ・第二シート22:第一シート21と第三シート23との双方に連続するシート2
  ・第三シート23:第二シート22の他側に連続するシート2
Here, the folding structure of the corrugated cardboard material 1 will be described by focusing on three consecutive sheets 2 (indicated by a two-dot chain line in FIG. 1).
1st sheet 21: Sheet 2 continuous on one side of the 2nd sheet 22
Second sheet 22: Sheet 2 continuous with both the first sheet 21 and the third sheet 23
-Third sheet 23: Sheet 2 continuous with the other side of the second sheet 22
 第一シート21と第二シート22との間に第一折目F1が設けられ、第一折目F1を介してシート21,22が連続している。第二シート22と第三シート23との間に第二折目F2が設けられ、第二折目F2を介してシート22,23が連続している。
 第一折目F1は、第一シート21に対して横方向の一方(図1では右方)へ向けて第二シート22が折り返される折目Fであり、ダンボール材1における横方向の他方(図1では左方)に配置される。第二折目F2は、第二シート22に対して横方向の他方(図1では左方)へ向けて第三シート23が折り返される折目Fであり、ダンボール材1における横方向の一方(図1では右方)に配置される。
The first fold F1 is provided between the first sheet 21 and the second sheet 22, and the sheets 21 and 22 are continuous via the first fold F1. A second fold F2 is provided between the second sheet 22 and the third sheet 23, and the sheets 22 and 23 are continuous via the second fold F2.
The first fold F1 is a fold F in which the second sheet 22 is folded back toward one side in the lateral direction (to the right in FIG. 1) with respect to the first sheet 21, and the other side in the corrugated cardboard material 1 (right side in FIG. 1). It is arranged on the left side in FIG. The second fold F2 is a fold F in which the third sheet 23 is folded back toward the other side in the lateral direction (left in FIG. 1) with respect to the second sheet 22, and the second fold F2 is one in the lateral direction (one in the corrugated cardboard material 1). It is arranged on the right side in FIG.
 第一シート21では、横方向(折目Fと交差する方向)に延在する第一端縁E1(図1には手前側の端縁のみに符号を付す)にダンボールの段目10(波目)が露出する。同様に、第二シート22には、横方向(折目Fと交差する方向)に延在する第二端縁E2(図1には手前側の端縁のみに符号を付す)にダンボールの段目10が露出する。
 第一シート21および第二シート22からなるシート対20では、第一端縁E1と第二端縁E2とが高さ方向に隣り合って配置される。
In the first sheet 21, the corrugated cardboard step 10 (in FIG. 1, only the front edge is marked) extends to the first edge E 1 extending in the lateral direction (the direction intersecting the fold F). Waves) are exposed. Similarly, on the second sheet 22, the cardboard is provided on the second edge E 2 extending in the lateral direction (the direction intersecting the crease F) (in FIG. 1, only the front edge is marked). The step 10 is exposed.
In the sheet pair 20 composed of the first sheet 21 and the second sheet 22, the first end edge E 1 and the second end edge E 2 are arranged adjacent to each other in the height direction.
 上記の折畳構造を有するダンボール材1によれば、ロール状に巻回することの困難な資材であっても直方体状に折り畳むことができる。すなわち、ロール状に巻回可能な資材よりも高い強度をもつダンボールのシート2をコンパクトな荷姿にすることができる。このように強度の確保されたシート2が折り畳まれたダンボール材1は、強度の要求される箱を製造する製函システムの包装資材に用いて好適である。 According to the corrugated cardboard material 1 having the above-mentioned folding structure, even a material that is difficult to be wound in a roll shape can be folded into a rectangular parallelepiped shape. That is, the corrugated cardboard sheet 2 having a higher strength than the material that can be wound in a roll shape can be made into a compact packaging. The corrugated cardboard material 1 in which the sheet 2 whose strength is ensured is folded in this way is suitable for use as a packaging material for a box-making system for manufacturing a box in which strength is required.
 そのほか、折目Fは、ダンボールの段目10に沿って設けられている。言い換えれば、MD方向に対して垂直な段目10のダンボール材1が製造される。
 なお、ダンボール材1は、汚損や荷崩れを防ぐために、包装用のフィルムで被包(包装)されることが好ましい。
In addition, the fold F is provided along the corrugated cardboard step 10. In other words, the corrugated cardboard material 1 having a step 10 perpendicular to the MD direction is manufactured.
The corrugated cardboard material 1 is preferably wrapped (wrapped) with a packaging film in order to prevent stains and collapse of the load.
[2.パラメータ]
 以下、ダンボール材1のパラメータを説明する。
 まず、ダンボール材1のサイズや段数などの基本的なパラメータを述べる。その後に、ダンボール材1のシート2に関するパラメータを詳述する。
[2. Parameters]
Hereinafter, the parameters of the corrugated cardboard material 1 will be described.
First, basic parameters such as the size and the number of stages of the corrugated cardboard material 1 will be described. After that, the parameters related to the sheet 2 of the corrugated cardboard material 1 will be described in detail.
[2-1.基本的なパラメータ]
 ダンボール材1のサイズは、下記の寸法L1~L3から定まる。
  ・ 縦寸法L1 :縦方向の寸法(第一寸法)
  ・ 横寸法L2 :横方向の寸法(第二寸法)
  ・高さ寸法L3:高さ方向の寸法(第三寸法)
 上記の寸法L1~L3は、小さいほど製造される箱のサイズや形状の制約が大きくなるおそれがあり、大きいほど運搬や納入といった作業性が低下するおそれがある。これらの観点より、寸法L1~L3は、下記の表2に示す範囲であることが好ましい。
[2-1. Basic parameters]
The size of the corrugated cardboard material 1 is determined from the following dimensions L1 to L3.
-Vertical dimension L1: Vertical dimension (first dimension)
-Horizontal dimension L2: Horizontal dimension (second dimension)
-Height dimension L3: Dimension in the height direction (third dimension)
The smaller the above dimensions L1 to L3, the greater the restrictions on the size and shape of the box to be manufactured, and the larger the size, the lower the workability such as transportation and delivery. From these viewpoints, the dimensions L1 to L3 are preferably in the range shown in Table 2 below.
 
Figure JPOXMLDOC01-appb-T000002
 
 
Figure JPOXMLDOC01-appb-T000002
 
 そのほか、ダンボール材1における折目Fの本数をN[本]とおけば、シート2の枚数はN+1[枚]である。この場合には、N+1[段]のシート2がダンボール材1において重ね合わせられている。
 たとえば、ダンボール材1の段数としては、たとえば10~1000[段]のさまざまな段数が挙げられる。詳細を後述する折り畳みに関するパラメータが測定される対象のダンボール材については、所定の段数(たとえば100[段])未満の測定対象については、全段のそれぞれにおいてパラメータを測定するのが好ましい。一方、所定の段数(たとえば100[段])以上の測定対象については、部分的(たとえばパートに分けた部分や設定された領域)にパラメータが測定してもよい。
In addition, if the number of folds F in the corrugated cardboard material 1 is N [sheets], the number of sheets 2 is N + 1 [sheets]. In this case, the N + 1 [stage] sheets 2 are overlapped on the cardboard material 1.
For example, as the number of stages of the corrugated cardboard material 1, for example, various stages of 10 to 1000 [stages] can be mentioned. For the corrugated cardboard material to which the parameters related to folding, which will be described in detail later, are measured, it is preferable to measure the parameters at each of all the stages for the measurement target having less than a predetermined number of stages (for example, 100 [stages]). On the other hand, for a measurement target having a predetermined number of stages (for example, 100 [stages]) or more, the parameters may be measured partially (for example, a portion divided into parts or a set area).
 なお、ダンボール材1に用いられるシート2には、任意の坪量を設定することができる。シート2に採用される坪量の範囲としては、50~1500[g/m2]の範囲が挙げられ、好ましくは100~1000[g/m2]の範囲が挙げられ、より好ましくは200~800[g/m2]の範囲が挙げられ、さらに好ましくは200~600[g/m2]の範囲が挙げられる。
 上記の坪量に、縦寸法L1および横寸法L2とシート2の段数N+1とを乗算すれば、ダンボール材1の重量が算出される。
An arbitrary basis weight can be set for the sheet 2 used for the corrugated cardboard material 1. The range of the basis weight adopted for the sheet 2 includes a range of 50 to 1500 [g / m 2 ], preferably a range of 100 to 1000 [g / m 2 ], and more preferably 200 to 200. The range of 800 [g / m 2 ] is mentioned, and more preferably the range of 200 to 600 [g / m 2 ] is mentioned.
The weight of the corrugated cardboard material 1 is calculated by multiplying the above basis weight by the vertical dimension L1 and the horizontal dimension L2 and the number of steps N + 1 of the sheet 2.
[2-2.性状に関するパラメータ]
 本実施形態は、製函システムの資材に用いられた場合に良好な箱を製造することができるようにする観点に立脚して、ダンボール材1の性状に関する構成を備えている。具体的には、以下に列挙する観点I~VIの少なくとも何れかの観点に立脚して、ダンボール材1の性状に関する所定の構成を備えている。
  ・観点 I :製函性を確保すること
  ・観点 II :箱に組み立てるときに折り曲げられた箇所の破断を抑制すること
  ・観点III:印刷が施された場合の適性を確保すること
  ・観点 IV :組み立てられた箱の破れ(破損)を抑えること
  ・観点 V :ライナの剥がれを抑えること
  ・観点 VI :折目Fの破損を抑えること
[2-2. Parameters related to properties]
The present embodiment includes a configuration relating to the properties of the corrugated cardboard material 1 from the viewpoint of enabling a good box to be manufactured when used as a material for a box making system. Specifically, it has a predetermined configuration regarding the properties of the corrugated cardboard material 1 based on at least one of the viewpoints I to VI listed below.
・ Viewpoint I: Ensuring box-making property ・ Viewpoint II: Suppressing breakage of bent parts when assembling into a box ・ Viewpoint III: Ensuring suitability when printing is performed ・ Viewpoint IV: Suppressing tearing (damage) of the assembled box ・ Viewpoint V: Suppressing the peeling of the liner ・ Viewpoint VI: Suppressing damage to the fold F
 上記の観点I~VIは、共通の序数I~VIが記された下記の課題I~VIを解決するための観点である。
  ・課題 I :製函性が不十分であること
  ・課題 II :箱に組み立てるときに折り曲げられた箇所が破断しやいすいこと
  ・課題III:印刷が施された場合の適性が不十分であること
  ・課題 IV :組み立てられた箱の破れを招きやすいこと
  ・課題 V :ライナの剥がれを招きやすいこと
  ・課題 VI:折目Fの破損を招きやすいこと
The above viewpoints I to VI are viewpoints for solving the following problems I to VI in which common ordinals I to VI are described.
・ Problem I: Insufficient box-making property ・ Problem II: The bent part is easily broken when assembled into a box ・ Problem III: Insufficient suitability when printing is applied・ Problem IV: Easy to tear the assembled box ・ Problem V: Easy to peel off the liner ・ Problem VI: Easy to damage the crease F
 上記の観点I~VI,課題I~VIに対応する所定の構成には、以下に示す構成a~fの少なくとも一つが含まれる。
  ・構成a:下記の構成1および2
   >構成1:厚み寸法が所定の寸法範囲であること
   >構成2:平面圧縮強さが所定の圧縮強さ範囲であること
  ・構成b:下記の構成2および3
   >構成2:上記の構成2
   >構成3:段繰率が所定の倍率範囲であること
  ・構成c:角度比が所定の比率範囲であること
  ・構成d:破裂強さが所定の破裂強さ範囲であること
  ・構成d′:シングルフルートの両面ダンボールからなるダンボール材1において折目Fを含む箇所の破裂強さが所定の破裂強さ範囲であること
  ・構成d′′:ダブルフルートの両面ダンボールからなるダンボール材1において下記の構成4および5を満たすこと
   >構成4:折目Fを含まない箇所の破裂強さが所定の破裂強さ範囲であること
   >構成5:折目Fを含む箇所の破裂強さが所定の破裂強さ範囲であること
  ・構成e:接着力が所定の力範囲であること
  ・構成f:下記の構成6~9
   >構成6:ライナの坪量が所定の坪量範囲であること
   >構成7:ライナのパルプ繊維長が所定の繊維長範囲であること
   >構成8:ライナの繊維配向比が所定の配向比範囲であること
   >構成9:繊維長比が所定の繊維長比範囲であること
The predetermined configurations corresponding to the above viewpoints I to VI and the tasks I to VI include at least one of the configurations a to f shown below.
-Structure a: The following configurations 1 and 2
> Configuration 1: Thickness dimension is within a predetermined dimensional range > Configuration 2: Planar compressive strength is within a predetermined compressive strength range ・ Configuration b: The following configurations 2 and 3
> Configuration 2: Configuration 2 above
> Configuration 3: The step-by-step ratio is within a predetermined magnification range ・ Configuration c: The angle ratio is within a predetermined ratio range ・ Configuration d: The burst strength is within a predetermined burst strength range ・ Configuration d ′ : The bursting strength of the portion including the crease F in the corrugated cardboard material 1 made of double-sided corrugated cardboard of a single flute is within a predetermined bursting strength range. Satisfying configurations 4 and 5 of > Configuration 4: The burst strength of the portion not including the crease F is within the predetermined burst strength range > Configuration 5: The burst strength of the portion including the fold F is predetermined Burst strength range ・ Configuration e: Adhesive strength is within a predetermined force range ・ Configuration f: The following configurations 6 to 9
> Composition 6: The liner basis weight is in the predetermined basis weight range > Composition 7: The liner pulp fiber length is in the predetermined fiber length range > Composition 8: The liner fiber orientation ratio is in the predetermined orientation ratio range > Composition 9: The fiber length ratio is within the predetermined fiber length ratio range.
<構成a>
 構成aは、上述のように、「厚み寸法が所定の寸法範囲である構成1」と「平面圧縮強さが所定の圧縮強さ範囲である構成2」とを備えている。
 構成aの「厚み寸法」とは、一枚あたりのシート2の厚さを表すパラメータである。構成aの「平面圧縮強さ」は、シート2を厚み方向(高さ方向,TD方向)に圧縮したときの強さであり、ダンボール材1のシートのつぶれにくさに対応するパラメータである。
<Structure a>
As described above, the configuration a includes "configuration 1 in which the thickness dimension is in a predetermined dimensional range" and "configuration 2 in which the planar compressive strength is in a predetermined compressive strength range".
The "thickness dimension" of the configuration a is a parameter representing the thickness of the sheet 2 per sheet. The "planar compressive strength" of the configuration a is the strength when the sheet 2 is compressed in the thickness direction (height direction, TD direction), and is a parameter corresponding to the difficulty of crushing the sheet of the corrugated cardboard material 1.
 本願の発明者らは、シート2の厚み寸法が所定の寸法範囲であって平面圧縮強さが所定の圧縮強さ範囲であれば、上述の課題I,IIが抑えられる傾向にあるとの知見を得た。逆に言えば、構成aの範囲外にある厚み寸法や平面圧縮強さのシート2は、課題I,IIが生じやすい傾向にあることを見出した。
 つまり、シート2には、上述の観点I,IIに立脚して構成aが備えられている。
The inventors of the present application have found that if the thickness dimension of the sheet 2 is within a predetermined dimensional range and the planar compressive strength is within a predetermined compressive strength range, the above-mentioned problems I and II tend to be suppressed. Got Conversely, it was found that the sheet 2 having a thickness dimension and a planar compressive strength outside the range of the configuration a tends to cause problems I and II.
That is, the sheet 2 is provided with the configuration a based on the above-mentioned viewpoints I and II.
 厚み寸法が所定の寸法範囲を上回っていれば、シート2が製函用の罫線で折り曲げられる際にライナ2a,2bが伸びきれずに破断し、課題IIを招くものと推察される。一方、厚み寸法が所定の寸法範囲を下回っていれば、シート2の強度が不十分であり、製函用の罫線以外の箇所で折り曲げられて、課題Iを招くものと推察される。平面圧縮強さが所定の圧縮強さ範囲を下回っている際にも、シート2の強度が不十分であり、製函用の罫線以外の箇所で折り曲げられて、課題Iを招くものと推察される。
 また、平面圧縮強さが所定の圧縮強さ範囲を上回っていれば、製函用の罫線が形成されにくく、課題Iを招くものと推察される。
If the thickness dimension exceeds the predetermined dimension range, it is presumed that when the sheet 2 is bent by the ruled line for box making, the liners 2a and 2b are not fully stretched and are broken, which causes the problem II. On the other hand, if the thickness dimension is less than the predetermined dimension range, it is presumed that the strength of the sheet 2 is insufficient and the sheet 2 is bent at a place other than the ruled line for box making, which causes the problem I. Even when the plane compressive strength is below the predetermined compressive strength range, it is presumed that the strength of the sheet 2 is insufficient and it is bent at a place other than the ruled line for box making, which causes problem I. To.
Further, if the planar compressive strength exceeds a predetermined compressive strength range, it is presumed that the ruled lines for box making are difficult to form, which causes the problem I.
 構成aの「所定の寸法範囲」は、2.0[mm]以上であって9.6[mm]以下であり、3.0[mm]以上であって8.0[mm]以下であることが好ましく、4.0[mm]以上であって7.0[mm]以下であることがより好ましい。
 また、構成aの「所定の圧縮強さ範囲」は、50[kPa]以上であって250[kPa]以下であり、80[kPa]以上であって220[kPa]以下であることが好ましく、110[kPa]以上であって190[kPa]以下であることがより好ましい。
The "predetermined dimensional range" of the configuration a is 2.0 [mm] or more and 9.6 [mm] or less, and 3.0 [mm] or more and 8.0 [mm] or less. It is preferable that it is 4.0 [mm] or more and 7.0 [mm] or less.
Further, the "predetermined compressive strength range" of the configuration a is preferably 50 [kPa] or more and 250 [kPa] or less, and 80 [kPa] or more and 220 [kPa] or less. It is more preferable that it is 110 [kPa] or more and 190 [kPa] or less.
<構成b>
 構成bは、構成aと同様の「平面圧縮強さが所定の圧縮強さ範囲である構成2」と、上述の「段繰率が所定の倍率範囲である構成3」とを備えている。
 構成bの「段繰率」とは、中芯のライナに対するMD方向(横方向)の長さ寸法の倍率を表すパラメータである。
<Structure b>
The configuration b includes the same "configuration 2 in which the planar compressive strength is in a predetermined compressive strength range" and the above-mentioned "configuration 3 in which the step ratio is in a predetermined magnification range" similar to the configuration a.
The "step ratio" of the configuration b is a parameter representing the magnification of the length dimension in the MD direction (horizontal direction) with respect to the liner of the core.
 本願の発明者らは、シート2の平面圧縮強さが所定の圧縮強さ範囲であって段繰率が所定の倍率範囲であれば、上述の課題Iが抑えられる傾向にあるとの知見を得た。逆に言えば、構成bの範囲外にある平面圧縮強さや段繰率のシート2は、課題Iが生じやすい傾向にあることを見出した。
 つまり、シート2には、上述の観点Iに立脚して構成bが備えられている。
The inventors of the present application have found that if the planar compressive strength of the sheet 2 is within a predetermined compressive strength range and the step-by-step ratio is within a predetermined magnification range, the above-mentioned problem I tends to be suppressed. Obtained. Conversely, it was found that the sheet 2 having the plane compression strength and the step-by-step ratio outside the range of the configuration b tends to cause the problem I.
That is, the sheet 2 is provided with the configuration b based on the above-mentioned viewpoint I.
 平面圧縮強さが所定の圧縮強さ範囲を下回っていれば、上述したように、シート2の強度が不十分であることにより、課題Iを招くものと推察される。一方、平面圧縮強さが所定の圧縮強さ範囲を上回っていれば、製函用の罫線が形成されにくく、課題Iを招くものと推察される。
 同様に、段繰率が上記の所定倍率を下回っていれば、シート2の強度が不十分であることにより、課題Iを招くものと推察される。一方、段繰率が上記の所定倍率を上回っていれば、製函用の罫線が形成されにくく、課題Iを招くものと推察される。
If the plane compressive strength is less than the predetermined compressive strength range, it is presumed that the problem I is caused by the insufficient strength of the sheet 2 as described above. On the other hand, if the planar compressive strength exceeds a predetermined compressive strength range, it is presumed that the ruled lines for box making are difficult to form, which causes problem I.
Similarly, if the step-by-step ratio is less than the above-mentioned predetermined magnification, it is presumed that the problem I is caused by the insufficient strength of the sheet 2. On the other hand, if the step-by-step ratio exceeds the above-mentioned predetermined magnification, it is presumed that the ruled line for box making is difficult to be formed, which causes the problem I.
 構成bの「所定の圧縮強さ範囲」は、構成aの「所定の圧縮強さ範囲」と同様に、50[kPa]以上であって250[kPa]以下であり、80[kPa]以上であって220[kPa]以下であることが好ましく、110[kPa]以上であって190[kPa]以下であることがより好ましい。
 構成bの「所定の倍率範囲」は、1.2[倍]以上であって1.7[倍]以下であり、1.35[倍]以上であって1.6[倍]以下であることが好ましく、1.45[倍]以上であって1.55[倍]以下であることがより好ましい。
The "predetermined compressive strength range" of the configuration b is 50 [kPa] or more and 250 [kPa] or less, and 80 [kPa] or more, similarly to the "predetermined compressive strength range" of the configuration a. It is preferably 220 [kPa] or less, and more preferably 110 [kPa] or more and 190 [kPa] or less.
The "predetermined magnification range" of configuration b is 1.2 [times] or more and 1.7 [times] or less, and 1.35 [times] or more and 1.6 [times] or less. It is preferable, and it is more preferable that it is 1.45 [times] or more and 1.55 [times] or less.
 なお、ここでいう段繰率の倍率範囲は、シート2がシングルフルートの場合だけでなく、シート2がダブルフルートの場合であっても適用することができる。具体的に言えば、ダブルフルートの何れの中芯の段繰率とも、1.2[倍]以上であって1.7[倍]以下であり、1.35[倍]以上であって1.6[倍]以下であることが好ましく、1.45[倍]以上であって1.55[倍]以下であることがより好ましい。ここでいうダブルフルートの段繰率とは、各段(ダブルフルートにおいて一方および他方のそれぞれのフルートに対応する段)について算出された段繰率である。 The magnification range of the step-by-step rate referred to here can be applied not only when the sheet 2 is a single flute but also when the sheet 2 is a double flute. Specifically, the stepping rate of any of the cores of the double flute is 1.2 [times] or more and 1.7 [times] or less, and 1.35 [times] or more and 1 It is preferably 6.6 [times] or less, and more preferably 1.45 [times] or more and 1.55 [times] or less. The step-by-step rate of the double flute referred to here is a step-by-step rate calculated for each stage (the stage corresponding to each flute of one and the other in the double flute).
<構成c>
 構成cは、上述のように「角度比が所定の比率範囲である構成」を備えている。
 構成cの「角度比」とは、ダンボール材1のシート2における段目10の傾き度合いに対応するパラメータである。
 以下、シート2の要部を拡大して示す図2を参照して、角度比について説明する。なお、シート2の段目10がやや傾いた状態を図2に例示している。
<Structure c>
As described above, the configuration c includes "a configuration in which the angle ratio is within a predetermined ratio range".
The “angle ratio” of the configuration c is a parameter corresponding to the degree of inclination of the step 10 in the sheet 2 of the corrugated cardboard material 1.
Hereinafter, the angle ratio will be described with reference to FIG. 2, which shows an enlarged main part of the sheet 2. FIG. 2 illustrates a state in which the step 10 of the sheet 2 is slightly tilted.
 シート2は、表裏のライナ2a,2bと中芯2cとが接着された構造をなしている。中芯2cは、段目10を構成し、ライナ2a,2bどうしの間で波形構造を形成している。
 この中芯2cは、理想的な形状であれば、横方向および高さ方向に沿う断面(すなわち段目10)の形状が正弦波状をなす。一方、実際のシート2では、理想的な形状に対して中芯2cのなす段目10が傾いている場合もありうる。このような傾きの度合いを表すのが角度比である。
The sheet 2 has a structure in which the liners 2a and 2b on the front and back surfaces and the core 2c are adhered to each other. The core 2c constitutes the step 10, and forms a corrugated structure between the liners 2a and 2b.
If the core 2c has an ideal shape, the cross section (that is, the step 10) along the lateral direction and the height direction has a sinusoidal shape. On the other hand, in the actual sheet 2, the step 10 formed by the core 2c may be tilted with respect to the ideal shape. The angle ratio expresses the degree of such inclination.
 この角度比は、中芯2cと補助線Lとが交差する角度θ1,θ2(交差角度)に基づいて算出される比率である。
 補助線Lは、ライナ2a,2bと平行な方向(すなわち横方向〈MD方向〉)であってライナ2a,2bどうしの中央(すなわち高さ方向〈TD方向〉の真ん中)を通る仮想的な線として設定される。
 角度θ1,θ2は、上記の補助線Lに対して中芯2cが交差する箇所のうち、隣り合う二点P1,P2における交差角度のうち鋭角の角度である。
This angle ratio is a ratio calculated based on the angles θ1 and θ2 (intersection angles) at which the core 2c and the auxiliary line L intersect.
The auxiliary line L is a virtual line that is parallel to the liners 2a and 2b (that is, the lateral direction <MD direction>) and passes through the center of the liners 2a and 2b (that is, the center of the height direction <TD direction>). Is set as.
The angles θ1 and θ2 are acute angles among the intersection angles at the two adjacent points P1 and P2 at the points where the core 2c intersects the auxiliary line L.
 そして、二つの角度θ1,θ2どうしの差の絶対値を二つの角度θ1,θ2の和で除した比率が角度比である。この角度比は、下記の式cで表される。
    角度比=|θ1-θ2|/(θ1+θ2)・・・式c
 このように規定される角度比は、理想的な段目10であれば、0(ゼロ)であり、段目10が偏倚するほど大きな値となる。
The angle ratio is the ratio obtained by dividing the absolute value of the difference between the two angles θ1 and θ2 by the sum of the two angles θ1 and θ2. This angle ratio is represented by the following formula c.
Angle ratio = | θ1-θ2 | / (θ1 + θ2) ... Equation c
The angle ratio defined in this way is 0 (zero) in the case of the ideal step 10, and becomes a large value as the step 10 is deviated.
 本願の発明者らは、シート2の角度比が所定の比率範囲であれば、上述の課題IIIが抑えられる傾向にあるとの知見を得た。逆に言えば、構成cの範囲外にある角度比のシート2は、課題IIIが生じやすい傾向にあることを見出した。
 つまり、シート2には、上述の観点IIIに立脚して構成cが備えられている。
 角度比が所定の比率範囲を上回っていれば、シート2における段目10の高さが不揃いになりやすく、課題IIIを招くものと推察される。
 構成cの「所定の比率範囲」は、0.30以下であり、0.15以下であることが好ましく、0.05以下であることがより好ましい。
The inventors of the present application have found that if the angle ratio of the sheet 2 is within a predetermined ratio range, the above-mentioned problem III tends to be suppressed. Conversely, it was found that the sheet 2 having an angle ratio outside the range of the configuration c tends to cause the problem III.
That is, the sheet 2 is provided with the configuration c based on the above-mentioned viewpoint III.
If the angle ratio exceeds a predetermined ratio range, the heights of the steps 10 on the sheet 2 tend to be uneven, which is presumed to lead to Problem III.
The “predetermined ratio range” of the configuration c is 0.30 or less, preferably 0.15 or less, and more preferably 0.05 or less.
<構成d>
 構成dは、上述のように「破裂強さが所定の破裂強さ範囲である構成」を備えている。
 構成dの「破裂強さ」とは、ダンボール材1におけるシート2の耐荷重に対応するパラメータである。
 本願の発明者らは、シート2の破裂強さが所定の破裂強さ範囲であれば、上述の課題IVが抑えられる傾向にあるとの知見を得た。逆に言えば、構成dの範囲外にある破裂強さのシート2は、課題IVが生じやすい傾向にあることを見出した。
<Structure d>
As described above, the configuration d includes "a configuration in which the burst strength is within a predetermined burst strength range".
The “burst strength” of the configuration d is a parameter corresponding to the load capacity of the sheet 2 in the corrugated cardboard material 1.
The inventors of the present application have found that if the burst strength of the sheet 2 is within a predetermined burst strength range, the above-mentioned problem IV tends to be suppressed. Conversely, it was found that the sheet 2 having a burst strength outside the range of the configuration d tends to cause the problem IV.
 つまり、シート2には、上述の観点IVに立脚して構成dが備えられている。
 破裂強さが所定の破裂強さ範囲を下回っていれば、シート2の耐荷重が不十分であることにより、課題IVを招くものと推察される。
 構成dの「所定の破裂強さ範囲」は、500[kPa]以上であり、1000[kPa]以上であることが好ましく、2000[kPa]以上であることがより好ましい。
That is, the sheet 2 is provided with the configuration d based on the above-mentioned viewpoint IV.
If the burst strength is less than the predetermined burst strength range, it is presumed that the problem IV is caused by the insufficient load capacity of the sheet 2.
The "predetermined burst strength range" of the configuration d is 500 [kPa] or more, preferably 1000 [kPa] or more, and more preferably 2000 [kPa] or more.
<構成d′>
 構成d′は、上述のようにシングルフルートの両面ダンボールからなるダンボール材1において「折目Fを含む箇所の破裂強さが所定の破裂強さ範囲である構成」を備えている。
 構成d′の「破裂強さ」は、折目Fを含む箇所の破裂強さであることを除き、構成dで既述の「破裂強さ」と同様である。
 本願の発明者らは、シングルフルートのダンボール材1におけるシート2で折目Fを含む箇所の破裂強さが所定の破裂強さ範囲であれば、上述の課題IVが抑えられる傾向にあるとの知見を得た。逆に言えば、構成d′の範囲外にある折目Fを含む箇所の破裂強さのシート2は、課題IVが生じやすい傾向にあることを見出した。
<Structure d'>
As described above, the configuration d'provides a corrugated cardboard material 1 made of double-sided corrugated cardboard with a single flute, "a configuration in which the burst strength at a portion including the fold F is within a predetermined burst strength range".
The “burst strength” of the configuration d ′ is the same as the “burst strength” described above in the configuration d, except that it is the burst strength of the portion including the crease F.
The inventors of the present application have stated that the above-mentioned problem IV tends to be suppressed if the burst strength of the portion of the sheet 2 of the single flute cardboard material 1 including the crease F is within a predetermined burst strength range. I got the knowledge. Conversely, it was found that the sheet 2 having the burst strength at the portion including the fold F outside the range of the configuration d'tends to cause the problem IV.
 つまり、シート2には、上述の観点IVに立脚して構成d′が備えられている。
 シングルフルートで折目Fを含む箇所の破裂強さが所定の破裂強さ範囲を下回っていれば、シート2の耐荷重が不十分であることにより、課題IVを招くものと推察される。
 構成d′の「所定の破裂強さ範囲」は、500[kPa]以上であり、650[kPa]以上であることが好ましく、1500[kPa]以上であることがより好ましい。
That is, the sheet 2 is provided with a configuration d'based on the above-mentioned viewpoint IV.
If the burst strength of the single flute at the portion including the fold F is less than the predetermined burst strength range, it is presumed that the problem IV is caused by the insufficient load capacity of the sheet 2.
The "predetermined burst strength range" of the configuration d'is 500 [kPa] or more, preferably 650 [kPa] or more, and more preferably 1500 [kPa] or more.
<構成d′′>
 構成d′′は、上述のようにダブルフルートの両面ダンボールからなるダンボール材1において「折目Fを含まない箇所の破裂強さが所定の破裂強さ範囲である構成4」と「折目Fを含む箇所の破裂強さが所定の破裂強さ範囲である構成5」とを備えている。
 構成d′′の「破裂強さ」は、折目Fを含まない箇所と折目Fを含む箇所とのそれぞれの破裂強さであることを除き、構成d,d′で既述の「破裂強さ」と同様である。
 本願の発明者らは、ダブルフルートのダンボール材1におけるシート2で折目Fを含まない箇所の破裂強さが所定の破裂強さ範囲であって折目Fを含む箇所の破裂強さが所定の破裂強さ範囲であれば、上述の課題IVが抑えられる傾向にあるとの知見を得た。逆に言えば、構成d′′の範囲外にある折目Fを含む箇所の破裂強さのシート2は、課題IVが生じやすい傾向にあることを見出した。
<Structure d ″>
As described above, the configuration d ″ is described in the corrugated cardboard material 1 made of double-sided corrugated cardboard with double flutes, “a configuration 4 in which the burst strength at a portion not including the crease F is within a predetermined burst strength range” and “fold F”. 5 ”is provided, in which the burst strength of the portion including the above is within a predetermined burst strength range.
The “burst strength” of the configuration d ″ is the burst strength of the portion not including the fold F and the portion including the crease F, respectively, except that the “burst strength” described in the configurations d and d ′ is described above. It is the same as "strength".
The inventors of the present application have determined that the burst strength of the sheet 2 of the double flute cardboard material 1 that does not include the fold F is within the predetermined burst strength range and the burst strength of the portion that includes the crease F is predetermined. It was found that the above-mentioned problem IV tends to be suppressed within the burst strength range of. Conversely, it was found that the sheet 2 having the burst strength at the portion including the fold F outside the range of the configuration d ″ tends to cause the problem IV.
 つまり、シート2には、上述の観点IVに立脚して構成d′′が備えられている。
 ダブルフルートのシート2で折目Fを含まない箇所の破裂強さが所定の破裂強さ範囲を下回っている、または、折目Fを含む箇所の破裂強さが所定の破裂強さ範囲を下回っていれば、シート2の耐荷重が不十分であることにより、課題IVを招くものと推察される。
 構成d′′で折目Fを含まない箇所の「所定の破裂強さ範囲」は、500[kPa]以上であり、700[kPa]以上であることが好ましく、1000[kPa]以上であることがより好ましい。折目Fを含む箇所の「所定の破裂強さ範囲」は、520[kPa]以上であり、800[kPa]以上であることが好ましく、1500[kPa]以上であることがより好ましい。
That is, the sheet 2 is provided with a configuration d ″ based on the above-mentioned viewpoint IV.
In the double flute sheet 2, the burst strength of the portion not including the crease F is below the predetermined burst strength range, or the burst strength of the portion including the fold F is below the predetermined burst strength range. If so, it is presumed that the problem IV is caused by the insufficient load capacity of the sheet 2.
The "predetermined burst strength range" of the portion of the configuration d ″ that does not include the fold F is 500 [kPa] or more, preferably 700 [kPa] or more, and 1000 [kPa] or more. Is more preferable. The "predetermined burst strength range" of the portion including the fold F is 520 [kPa] or more, preferably 800 [kPa] or more, and more preferably 1500 [kPa] or more.
 さらに、本願の発明者らは、折目Fを含まない箇所の破裂強さや、折目Fを含む箇所の破裂強さが大きいほど、上述の課題IVが抑えられる傾向にある一方で、折目Fの箇所で破損が生じやすいとの知見も得た。すなわち、破裂強さが所定の上限を上回っていれば、折目Fの箇所で破損を招きやすくなるものと推察される。ここで、破損は折目の箇所でのライナの割れや、裂け,破れなどを含む。なお、折目の箇所とは折目の周辺を含む領域である。
 折目Fを含む箇所および折目Fを含む箇所の破裂強さの所定の上限は、2500[kPa]であり、折目Fに罫割れが生じにくい蛇腹折りのダンボール材を得る観点から、2250[kPa]であることが好ましく、2000[kPa]であることがより好ましい。
Further, the inventors of the present application tend to suppress the above-mentioned problem IV as the burst strength of the portion not including the crease F and the burst strength of the portion including the crease F are increased, while the crease We also found that damage is likely to occur at point F. That is, if the burst strength exceeds a predetermined upper limit, it is presumed that damage is likely to occur at the crease F. Here, the damage includes cracking, tearing, tearing, etc. of the liner at the crease. The crease portion is an area including the periphery of the fold.
The predetermined upper limit of the burst strength of the portion including the fold F and the portion including the crease F is 2500 [kPa], and 2250 from the viewpoint of obtaining a bellows-folded corrugated cardboard material in which the crease F is less likely to be cracked. It is preferably [kPa], and more preferably 2000 [kPa].
<構成e>
 構成eは、上述のように「接着力が所定の力範囲である構成」を備えている。
 構成eの「接着力」とは、シート2の中芯2cとライナ2a,2bとを接着する強さに対応するパラメータである。
 なお、ここでいう「接着力」は、中芯2cと表ライナ2aとの接着力(グルーマシン側の接着力)と、中芯2cと裏ライナ2bとの接着力(シングルフェーサ側の接着力)との平均値を意味する。
<Structure e>
As described above, the configuration e includes "a configuration in which the adhesive force is within a predetermined force range".
The "adhesive force" of the configuration e is a parameter corresponding to the strength of bonding the core 2c of the sheet 2 and the liners 2a and 2b.
The "adhesive force" referred to here is the adhesive force between the core 2c and the front liner 2a (adhesive force on the glue machine side) and the adhesive force between the core 2c and the back liner 2b (adhesion on the single facer side). It means the average value with (force).
 本願の発明者らは、シート2の接着力が所定の力範囲であれば、上述の課題Vが抑えられる傾向にあるとの知見を得た。逆に言えば、構成eの範囲外にある接着力のシート2は、課題Vが生じやすい傾向にあることを見出した。
 つまり、シート2には、上述の観点Vに立脚して構成eが備えられている。
 接着力が所定の力範囲を下回っていれば、ダンボール材1が箱に製造されるときにライナ2a,2bが中芯2cから剥がれやすくなり、課題Vを招くものと推察される。
 構成eの「所定の力範囲」は、140[N]以上であり、190[N]以上であることが好ましく、220[N]以上であることがより好ましい。
The inventors of the present application have found that the above-mentioned problem V tends to be suppressed if the adhesive force of the sheet 2 is within a predetermined force range. Conversely, it was found that the sheet 2 having an adhesive strength outside the range of the configuration e tends to cause the problem V.
That is, the sheet 2 is provided with the configuration e based on the above-mentioned viewpoint V.
If the adhesive force is less than the predetermined force range, it is presumed that the liners 2a and 2b are likely to be peeled off from the core 2c when the cardboard material 1 is manufactured in the box, which causes the problem V.
The "predetermined force range" of the configuration e is 140 [N] or more, preferably 190 [N] or more, and more preferably 220 [N] or more.
<構成f>
 構成fは、ダンボール材1の両面ダンボールを構成するライナに関し、上述のように構成6~構成9を兼ね備えている。構成6~9で各パラメータが特定されるライナは、表ライナ,裏ライナを含み、ダンボール材1に用いられるシート2を構成するライナとも言える。
<Structure f>
Configuration f has configurations 6 to 9 as described above with respect to the liner constituting the double-sided corrugated cardboard of the corrugated cardboard material 1. The liner for which each parameter is specified in the configurations 6 to 9 includes a front liner and a back liner, and can be said to be a liner constituting the sheet 2 used for the corrugated cardboard material 1.
 構成6の「坪量」は、ライナの面積1[m2]あたりの重さ[g]を表すパラメータである。
 構成7の「パルプ繊維長」は、ライナを構成するパルプ繊維の長さである。以下、ライナを構成するパルプ繊維を「ライナ繊維」と称し、ライナ繊維の長さを「ライナ繊維長」と称する。
 構成8の「繊維配向比」は、ライナ繊維の縦方向の配向に対する横方向の配向の比率(MD/CD)である。
The “basis weight” of the configuration 6 is a parameter representing the weight [g] per liner area 1 [m 2 ].
The “pulp fiber length” of configuration 7 is the length of the pulp fibers constituting the liner. Hereinafter, the pulp fibers constituting the liner will be referred to as "liner fibers", and the length of the liner fibers will be referred to as "liner fiber length".
The “fiber orientation ratio” of the configuration 8 is the ratio of the horizontal orientation to the vertical orientation of the liner fibers (MD / CD).
 構成9の「繊維長比」は、ダンボール材1の両面ダンボールを構成する中芯のパルプ繊維長に対するライナ繊維長の比率(ライナ/中芯)である。以下、中芯のパルプ繊維を「中芯繊維」と称し、中芯繊維の長さを「中芯繊維長」と称する。
 構成7,9に関し、ライナ繊維長が絶対的な長さであるのに対して、繊維長比は中芯繊維長に対するライナ繊維長の相対的な長さである。
The “fiber length ratio” of the configuration 9 is the ratio of the liner fiber length to the pulp fiber length of the core constituting the double-sided corrugated cardboard of the corrugated cardboard material 1 (liner / core). Hereinafter, the pulp fiber of the core is referred to as "core fiber", and the length of the core fiber is referred to as "core fiber length".
With respect to configurations 7 and 9, the liner fiber length is the absolute length, whereas the fiber length ratio is the relative length of the liner fiber length to the core fiber length.
 本願の発明者らは、構成6~9の全てを兼ね備えたダンボール材1によれば、上述の課題VIが有効に抑えられる傾向にあるとの知見を得た。逆に言えば、構成6~9の何れか一つでも備えていないダンボール材1では、課題VIが生じやすい傾向にあることを見出した。 The inventors of the present application have obtained the finding that the above-mentioned problem VI tends to be effectively suppressed according to the corrugated cardboard material 1 having all of the configurations 6 to 9. Conversely, it was found that the corrugated cardboard material 1 which does not have any one of the configurations 6 to 9 tends to cause a problem VI.
 つまり、上述の観点VIに立脚してダンボール材1に構成6~9の構成fが備えられている。
――構成6――
 構成6に関するライナの坪量が小さいほど、ライナの強度が低下する傾向にある。この傾向からは、ライナの坪量が所定の下限坪量よりも小さいと、ライナの全体的な強度が不足することによって課題VIを招くものと推測される。
That is, based on the above-mentioned viewpoint VI, the corrugated cardboard material 1 is provided with the configurations f of the configurations 6 to 9.
--Composition 6--
The smaller the basis weight of the liner with respect to the configuration 6, the lower the strength of the liner tends to be. From this tendency, it is presumed that if the basis weight of the liner is smaller than the predetermined lower limit basis weight, the problem VI is caused by the lack of the overall strength of the liner.
 一方、構成6に関するライナの坪量は、大きいほどライナの強度が高まる傾向にあるだけでなく、ライナの厚み(「嵩」や「紙厚」とも称される)が大きくなる傾向もある。この傾向からは、ライナの坪量が所定の上限坪量よりも大きいと、ダンボール材1における折目Fの折り返しによる応力がライナに集中しやすくなることによって課題VIを招くものと推測される。 On the other hand, as for the basis weight of the liner with respect to the configuration 6, not only the strength of the liner tends to increase as the weight increases, but also the thickness of the liner (also referred to as “bulk” or “paper thickness”) tends to increase. From this tendency, it is presumed that if the basis weight of the liner is larger than the predetermined upper limit basis weight, the stress due to the folding back of the fold F in the corrugated cardboard material 1 tends to be concentrated on the liner, which causes a problem VI.
 そのため、構成6の「所定の坪量範囲」は、所定の下限坪量以上であって所定の上限坪量以下に設定されている。所定の下限坪量は、110[g/m]であり、115[g/m]であることが好ましく、140[g/m]であることがより好ましい。所定の上限坪量は、290[g/m]以下であり、240[g/m]であることが好ましく、180[g/m]であることがより好ましい。 Therefore, the “predetermined basis weight range” of the configuration 6 is set to be equal to or more than a predetermined lower limit basis weight and not more than a predetermined upper limit basis weight. The predetermined lower limit basis weight is 110 [g / m 2 ], preferably 115 [g / m 2 ], and more preferably 140 [g / m 2 ]. The predetermined upper limit basis weight is 290 [g / m 2 ] or less, preferably 240 [g / m 2 ], and more preferably 180 [g / m 2 ].
――構成7――
 構成7に関するライナ繊維長が短いほど、ライナ繊維どうしの絡まり度合いが低く、ライナの全体的な強度が低下する傾向にある。この傾向からは、ライナ繊維長が所定の下限繊維長よりも小さいと、ライナの強度が不足することによって課題VIを招くものと推測される。
--Composition 7--
The shorter the liner fiber length with respect to the configuration 7, the lower the degree of entanglement between the liner fibers, and the lower the overall strength of the liner tends to be. From this tendency, it is presumed that if the liner fiber length is smaller than the predetermined lower limit fiber length, the strength of the liner is insufficient, which causes a problem VI.
 一方、構成7に関するライナ繊維長が長いほど、ライナの全体的な強度は向上するものの、ライナの表面の凹凸が大きくなる傾向がある。この傾向からは、ライナ繊維長が所定の上限繊維長よりも大きいと、ライナの表面に大きな凹凸が形成され、ダンボール材1に要求される仕様や品質を満たすことができない(ダンボール材1に適さない)おそれがある。
 さらに、構成7に関するライナ繊維長が長いほど、ライナ繊維どうしの絡まり度合いが高くなってライナの全体的な強度が高まる傾向があることから、折目Fでの折り返しに対する抗力や折目Fでライナを折り返すのに要する外力も大きくなる傾向もある。この傾向からは、ライナ繊維長が所定の上限繊維長よりも大きいと、折目Fやその周辺箇所においてライナに応力が集中することにより、課題VIを招くものと推測される。
On the other hand, the longer the liner fiber length with respect to the configuration 7, the higher the overall strength of the liner, but the more uneven the surface of the liner tends to be. From this tendency, if the liner fiber length is larger than the predetermined upper limit fiber length, large irregularities are formed on the surface of the liner, and the specifications and quality required for the corrugated cardboard material 1 cannot be satisfied (suitable for the corrugated cardboard material 1). There is a risk.
Further, the longer the liner fiber length with respect to the configuration 7, the higher the degree of entanglement between the liner fibers and the tendency to increase the overall strength of the liner. Therefore, the resistance to folding back at the fold F and the liner at the fold F tend to increase. There is also a tendency for the external force required to fold back to increase. From this tendency, it is presumed that if the liner fiber length is larger than the predetermined upper limit fiber length, stress concentrates on the liner at the crease F and the surrounding portion, which causes a problem VI.
 そのため、構成7の「所定の繊維長範囲」は、所定の下限繊維長以上であって所定の上限繊維長以下に設定されている。所定の下限繊維長は、0.55[mm]であり、0.70[mm]であることが好ましく、0.90[mm]であることがより好ましい。所定の上限繊維長は、1.60[mm]であり、1.45[mm]であることが好ましく、1.30[mm]であることがより好ましい。
 上記のようにライナ繊維長が所定の繊維長範囲であることでライナの全体的な強度が確保されたとしても、横方向へのライナ繊維の配向が小さいほど、ライナの横方向の強度が低下する傾向にある。そのため、つぎに説明する繊維配向比が所定の配向比範囲が特定されている。
Therefore, the "predetermined fiber length range" of the configuration 7 is set to be equal to or greater than the predetermined lower limit fiber length and equal to or less than the predetermined upper limit fiber length. The predetermined lower limit fiber length is 0.55 [mm], preferably 0.70 [mm], and more preferably 0.90 [mm]. The predetermined upper limit fiber length is 1.60 [mm], preferably 1.45 [mm], and more preferably 1.30 [mm].
Even if the overall strength of the liner is ensured by keeping the liner fiber length within a predetermined fiber length range as described above, the smaller the orientation of the liner fibers in the lateral direction, the lower the lateral strength of the liner. Tend to do. Therefore, a predetermined orientation ratio range is specified for the fiber orientation ratio described below.
――構成8――
 構成8に関する繊維配向比が小さいほど、折目Fに沿うライナ繊維の配向が強くなることから、折目Fの割れや避けといった課題VIを招く傾向にある。この傾向からは、繊維配向比が所定の下限配向比よりも小さいと、折目Fに沿うライナ繊維の配向によって課題VIを招くものと推測される。
--Composition 8--
The smaller the fiber orientation ratio with respect to the configuration 8, the stronger the orientation of the liner fibers along the fold F, which tends to cause a problem VI such as cracking or avoiding the fold F. From this tendency, it is presumed that if the fiber orientation ratio is smaller than the predetermined lower limit orientation ratio, the orientation of the liner fibers along the crease F causes a problem VI.
 一方、構成8に関する繊維配向比が大きいほど、折目Fに交差するライナ繊維の配向が強くなることから、折目Fでの折り返しに対する抗力が大きくなる傾向にあり、折目Fでライナを折り返すのに要する外力も大きくなる傾向もある。この傾向からは、繊維配向比が所定の上限配向比よりも大きいと、折目Fやその周辺箇所においてライナに応力が集中することにより、課題VIを招くものと推測される。 On the other hand, the larger the fiber orientation ratio with respect to the configuration 8, the stronger the orientation of the liner fibers intersecting the fold F. There is also a tendency for the external force required for this to increase. From this tendency, it is presumed that if the fiber orientation ratio is larger than the predetermined upper limit orientation ratio, stress concentrates on the liner at the crease F and its surroundings, which causes a problem VI.
 更に言えば、繊維配向比が所定の上限配向比よりも大きいと、縦方向の引っ張り荷重に対して裂けや割れといった破損を招きやすい傾向にあり、ライナに要求される基本的な強度の等方性を確保することができない(強度の異方性によってダンボール材1に適さない)おそれがある。
 そのため、構成8の「所定の配向比範囲」は、所定の下限配向比以上であって所定の上限配向比以下に設定されている。所定の下限配向比は、1.0であり、1.2であることが好ましく、1.3であることがより好ましい。所定の上限配向比は、2.0であり、1.8であることが好ましく、1.7以下であることがより好ましい。
Furthermore, if the fiber orientation ratio is larger than the predetermined upper limit orientation ratio, it tends to cause breakage such as tearing or cracking due to the tensile load in the longitudinal direction, and the basic strength required for the liner is isotropic. There is a risk that the property cannot be ensured (it is not suitable for the cardboard material 1 due to the anisotropy of strength).
Therefore, the “predetermined orientation ratio range” of the configuration 8 is set to be equal to or more than a predetermined lower limit orientation ratio and equal to or less than a predetermined upper limit orientation ratio. The predetermined lower limit orientation ratio is 1.0, preferably 1.2, and more preferably 1.3. The predetermined upper limit orientation ratio is 2.0, preferably 1.8, and more preferably 1.7 or less.
――構成9――
 構成9に関する繊維長比が小さいほど、ライナの強度が中芯の強度に対して相対的に低下する傾向がある。このような強度の不釣合いの傾向からは、繊維長比が所定の下限比よりも小さいと、折目Fの成形性が低下するものと推測され、課題VIを招く一因になりうるものとも推測される。
--Composition 9--
The smaller the fiber length ratio with respect to the composition 9, the strength of the liner tends to decrease relative to the strength of the core. From such a tendency of strength imbalance, it is presumed that if the fiber length ratio is smaller than the predetermined lower limit ratio, the moldability of the fold F is lowered, which may be one of the causes of the problem VI. Guessed.
 一方、構成9に関する繊維長比が大きいほど、ライナの強度が中芯の強度に対して相対的に大きくなる傾向にあることから、折目Fでの折り返しに対する抗力が大きくなる傾向にあり、折目Fにおいてライナを折り返すのに要する外力も大きくなる傾向もある。この傾向からは、繊維配向比が所定の上限比よりも大きいと、折目Fやその周辺箇所においてライナに応力が集中することにより、課題VIを招くものと推測される。 On the other hand, as the fiber length ratio with respect to the configuration 9 is larger, the strength of the liner tends to be relatively larger than the strength of the core, so that the drag against folding back at the fold F tends to be larger. The external force required to fold back the liner at the eye F also tends to increase. From this tendency, it is presumed that if the fiber orientation ratio is larger than the predetermined upper limit ratio, stress concentrates on the liner at the crease F and its surroundings, which causes a problem VI.
 そのほか、繊維長比が所定の上限比よりも大きいと、ライナの表面に大きな凹凸が形成され、ダンボール材1に要求される仕様や品質を満たすことができない(ダンボール材1に適さない)おそれがある。
 そのため、構成7の「所定の繊維長比範囲」は、所定の下限比以上であって所定の上限比以下に設定されている。所定の下限比は、0.65であり、0.80であることが好ましく、0.90であることがより好ましい。所定の上限比は、1.90であり、1.60であることが好ましく、1.40であることがより好ましい。
In addition, if the fiber length ratio is larger than the predetermined upper limit ratio, large irregularities are formed on the surface of the liner, and the specifications and quality required for the corrugated cardboard material 1 may not be satisfied (not suitable for the corrugated cardboard material 1). is there.
Therefore, the "predetermined fiber length ratio range" of the configuration 7 is set to be equal to or more than a predetermined lower limit ratio and not more than a predetermined upper limit ratio. The predetermined lower limit ratio is 0.65, preferably 0.80, and more preferably 0.90. The predetermined upper limit ratio is 1.90, preferably 1.60, and more preferably 1.40.
[3.作用および効果]
 本実施形態のダンボール材1は、上述の構成a~fの少なくとも何れか一つを備えることにより、製函用資材に用いられた場合に良好な状態の箱の製造することができる。
 構成aによれば、シート2の厚み寸法が所定の寸法範囲であって平面圧縮強さが所定の圧縮強さ範囲であることから、ダンボール材1の製函性を確保することができ、箱に組み立てるときに折り曲げられた箇所の破断を抑制することができる。
 構成bによれば、シート2の平面圧縮強さが所定の圧縮強さ範囲であって段繰率が所定の倍率範囲であることから、ダンボール材1の製函性を確保することができる。
 構成cによれば、シート2の角度比が所定の比率範囲であることから、ダンボール材1に印刷が施された場合の適性を確保することができる。
 構成d,d′によれば、シート2の破裂強さが所定の破裂強さ範囲であることから、ダンボール材1から組み立てられた箱の破れを抑えることができる。
 構成d′′によれば、ダブルフルートで折目Fを含まない箇所の破裂強さが所定の破裂強さ範囲であって折目Fを含む箇所の破裂強さが所定の破裂強さ範囲であることから、ダンボール材1から組み立てられた箱の破れを抑えることができる。
 構成eによれば、シート2の接着力が所定の力範囲であることから、ダンボール材1から組み立てられた箱のライナ2a,2bが剥がれるのを抑えることができる。
 構成fによれば、上記の構成6~9を兼ね備えていることから、折目Fの破損を抑制できる。
[3. Action and effect]
By providing at least one of the above-mentioned configurations a to f, the corrugated cardboard material 1 of the present embodiment can produce a box in a good state when used as a box-making material.
According to the configuration a, since the thickness dimension of the sheet 2 is within a predetermined dimension range and the planar compressive strength is within a predetermined compressive strength range, the box-making property of the corrugated cardboard material 1 can be ensured, and the box can be made. It is possible to suppress breakage of the bent portion when assembling the cardboard.
According to the configuration b, since the planar compressive strength of the sheet 2 is in a predetermined compressive strength range and the step-by-step ratio is in a predetermined magnification range, the box-making property of the corrugated cardboard material 1 can be ensured.
According to the configuration c, since the angle ratio of the sheet 2 is within a predetermined ratio range, it is possible to ensure the suitability when the cardboard material 1 is printed.
According to the configurations d and d', since the burst strength of the sheet 2 is within a predetermined burst strength range, it is possible to suppress the tearing of the box assembled from the corrugated cardboard material 1.
According to the configuration d ″, the burst strength of the portion of the double flute that does not include the fold F is within the predetermined burst strength range, and the burst strength of the portion that includes the crease F is within the predetermined burst strength range. Therefore, it is possible to suppress the tearing of the box assembled from the cardboard material 1.
According to the configuration e, since the adhesive force of the sheet 2 is within a predetermined force range, it is possible to prevent the liners 2a and 2b of the box assembled from the cardboard material 1 from peeling off.
According to the configuration f, since the above configurations 6 to 9 are combined, damage to the fold F can be suppressed.
[II.実施例]
 以下、実施例および比較例を挙げて本発明を具体的に説明する。ただし、本発明は、下記の実施例に限定されるものではない。
 本項目[II]では、構成a~fの実施例および比較例に共通する事項を項目[1]で述べ、構成a~fのそれぞれに対応する実施例および比較例を項目[2]で述べる。さらに、構成a~fのうち三つの構成を組み合わせた実施例を項目[3]で述べる。
[II. Example]
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. However, the present invention is not limited to the following examples.
In this item [II], items common to the examples and comparative examples of configurations a to f are described in item [1], and examples and comparative examples corresponding to the respective configurations a to f are described in item [2]. .. Further, an example in which three of the configurations a to f are combined will be described in item [3].
[1.共通事項]
 構成a~fの実施例および比較例において、パラメータの測定される対象となるダンボール材(以下「測定ダンボール材」と称する)に共通する構成を説明する。
――測定対象――
 測定ダンボール材は、両面ダンボールのシートである。
 この測定ダンボール材は、下記のサイズである。
  ・ サ イ ズ :縦寸法1300[mm],
         横寸法1150[mm],
        高さ寸法1800[mm]
[1. Common subject matter]
In the examples and comparative examples of the configurations a to f, the configurations common to the corrugated cardboard material (hereinafter referred to as “measurement corrugated cardboard material”) whose parameters are measured will be described.
--Measurement target--
The measurement cardboard material is a double-sided cardboard sheet.
This measured corrugated cardboard material has the following size.
・ Size: Vertical dimension 1300 [mm],
Horizontal dimension 1150 [mm],
Height dimension 1800 [mm]
――前処理――
 パラメータの測定対象である測定ダンボール材またはその一部は、JIS Z0203:2000に準拠して温度23[℃]および湿度50[%]の温湿度条件で24時間以上の前処理が施された常態としたうえで、各パラメータを測定した。
 そのほか、ライナ原紙と中芯原紙とを貼合する段ボール用接着剤には、通常用いられるワンタンク方式の澱粉糊を使用した。また、測定ダンボール材は、段繰りロールを有するコルゲータを用いて製造した。
――評価――
 つぎの項目[2]で詳細を後述する実施例および比較例のそれぞれは、「◎」,「○」,「△」,「×」の四段階で評価した。
--Preprocessing--
The measurement corrugated cardboard material or a part thereof, which is the measurement target of the parameters, has been pretreated for 24 hours or more under the temperature and humidity conditions of temperature 23 [° C.] and humidity 50 [%] in accordance with JIS Z0203: 2000. Then, each parameter was measured.
In addition, a commonly used one-tank type starch paste was used as the adhesive for corrugated cardboard to bond the liner base paper and the core base paper. Further, the corrugated cardboard material to be measured was manufactured using a corrugator having a stepped roll.
--Evaluation--
Each of the examples and comparative examples, which will be described in detail later in the next item [2], was evaluated on a four-point scale of “◎”, “○”, “△”, and “×”.
[2.構成a~f]
<構成a>
――測定対象――
 構成aに関する実施例a1~a6および比較例a7~a14に用いる測定ダンボール材は、以下に列挙するように、五種の段山数のうち何れか一つの段山数に設定された段繰りロールにて製造した。
  ・段山数34[山/30cm]:実施例a1~a6,比較例a7~a9
  ・段山数38[山/30cm]:比較例a14
  ・段山数40[山/30cm]:比較例a12,a13
  ・段山数46[山/30cm]:比較例a10
  ・段山数50[山/30cm]:比較例a11
 なお、「段山数」とは、シートにおいて30[cm]あたりの山(段)の数に対応し、段目の波長で30[cm]を除算した数値に対応する。
[2. Configuration a to f]
<Structure a>
--Measurement target--
The measurement corrugated cardboard materials used in Examples a1 to a6 and Comparative Examples a7 to a14 regarding the configuration a are stepped rolls set to the number of stepped ridges of any one of the five types of stepped ridges as listed below. Manufactured in.
-Number of steps 34 [mountain / 30 cm]: Examples a1 to a6, Comparative Examples a7 to a9
-Number of steps 38 [mountain / 30 cm]: Comparative example a14
-Number of steps 40 [mountain / 30 cm]: Comparative examples a12, a13
-Number of steps 46 [mountain / 30 cm]: Comparative example a10
-Number of steps 50 [mountain / 30 cm]: Comparative example a11
The "number of steps" corresponds to the number of peaks (steps) per 30 [cm] on the sheet, and corresponds to a value obtained by dividing 30 [cm] by the wavelength of the step.
 以下、実施例a1~a6および比較例a7~a14に関して、フルートの種別,段繰りロールの段高,原紙の坪量を述べる。
 実施例a1~a6,比較例a7~a14には、以下に示すようにシングルフルートおよびダブルフルートの何れか一方を採用した。
  ・シングルフルート:実施例a1~a3,a5,a6および比較例a8~a14
  ・ ダブルフルート :実施例a4および比較例a7
Hereinafter, with respect to Examples a1 to a6 and Comparative Examples a7 to a14, the type of flute, the step height of the stepping roll, and the basis weight of the base paper will be described.
In Examples a1 to a6 and Comparative Examples a7 to a14, either a single flute or a double flute was adopted as shown below.
Single flute: Examples a1 to a3, a5, a6 and Comparative Examples a8 to a14
-Double flute: Example a4 and Comparative Example a7
 実施例a1~a6,比較例a7~a14は、以下に列挙するように、五種の段高のうち何れか一つの段高に設定された段繰りロールにて製造した。なお、「段高」とは、測定ダンボール材のシートにおける段の高さに対応し、段目の振幅に対応する寸法である。
  ・段高0.5[mm]:比較例a9
  ・段高1.5[mm]:実施例a1
  ・段高2.5[mm]:比較例a10,a11
  ・段高3.1[mm]:実施例a2
  ・段高3.4[mm]:比較例a12,a13
  ・段高3.5[mm]:比較例a14
  ・段高4.5[mm]:実施例a3~a6,比較例a8
  ・段高4.7[mm]:比較例a7
Examples a1 to a6 and Comparative Examples a7 to a14 were manufactured by a step-rolling roll set to any one of the five step heights as listed below. The "step height" is a dimension corresponding to the height of the step in the sheet of the corrugated cardboard material to be measured and corresponding to the amplitude of the step.
-Step height 0.5 [mm]: Comparative example a9
-Step height 1.5 [mm]: Example a1
-Step height 2.5 [mm]: Comparative examples a10, a11
-Step height 3.1 [mm]: Example a2
-Step height 3.4 [mm]: Comparative examples a12, a13
-Step height 3.5 [mm]: Comparative example a14
Step height 4.5 [mm]: Examples a3 to a6, Comparative Example a8
-Step height 4.7 [mm]: Comparative example a7
 実施例a1~a6,比較例a7~a9では、以下に示す共通のライナ原紙を用いた。
  ・ライナ原紙:160[g/m2]〔MC160:王子マテリア株式会社製〕
 比較例a10~a14では、特許公報6213364号の製造方法にしたがって作製したさまざまな坪量のライナ原紙を使用した。具体的には、以下に示す三種の坪量のうち何れか一つの坪量を採用した。ここで列挙する坪量は、測定ダンボール材の資材(原材料)をなす原紙の坪量である。
  ・(ライナ原紙の)坪量120[g/m2]:比較例a14
  ・(ライナ原紙の)坪量170[g/m2]:比較例a10,a12
  ・(ライナ原紙の)坪量200[g/m2]:比較例a11,a13
In Examples a1 to a6 and Comparative Examples a7 to a9, the common liner base paper shown below was used.
・ Liner base paper: 160 [g / m 2 ] [MC160: manufactured by Oji Materia Co., Ltd.]
In Comparative Examples a10 to a14, liner base papers having various basis weights prepared according to the production method of Patent Publication No. 6213364 were used. Specifically, one of the following three types of basis weight was adopted. The basis weights listed here are the basis weights of the base paper that is the material (raw material) of the corrugated cardboard material to be measured.
Basis weight 120 [g / m 2 ] (of liner base paper): Comparative example a14
Basis weight 170 [g / m 2 ] (of liner base paper): Comparative examples a10, a12
Basis weight (of liner base paper) 200 [g / m 2 ]: Comparative examples a11, a13
 一方、実施例a1~a6,比較例a7~a14では、特開2018-162526号公の製造方法にしたがって作製したさまざまな坪量の中芯原紙を使用した。具体的には、実施例a1~a6,比較例a7~a14のそれぞれに、以下に示す七種の坪量のうち何れか一つの坪量を採用した。
  ・(中芯原紙の)坪量 60[g/m2]:比較例a8
  ・(中芯原紙の)坪量 80[g/m2]:実施例a6
  ・(中芯原紙の)坪量120[g/m2]:比較例a10,a14
  ・(中芯原紙の)坪量150[g/m2]:比較例a11
  ・(中芯原紙の)坪量170[g/m2]:実施例a5,比較例a12,a13
  ・(中芯原紙の)坪量250[g/m2]:実施例a1~a4,比較例a9
  ・(中芯原紙の)坪量320[g/m2]:比較例a7
On the other hand, in Examples a1 to a6 and Comparative Examples a7 to a14, core base papers having various basis weights prepared according to the production method published in JP-A-2018-162526 were used. Specifically, one of the seven types of basis weights shown below was adopted for each of Examples a1 to a6 and Comparative Examples a7 to a14.
Basis weight (of core base paper) 60 [g / m 2 ]: Comparative example a8
Basis weight (of core base paper) 80 [g / m 2 ]: Example a6
Basis weight 120 [g / m 2 ] (of core base paper): Comparative examples a10, a14
-Basis weight (of core base paper) 150 [g / m 2 ]: Comparative example a11
Basis weight 170 [g / m 2 ] (of core base paper): Example a5, Comparative Examples a12, a13
Basis weight 250 [g / m 2 ] (of core base paper): Examples a1 to a4, Comparative example a9
Basis weight 320 [g / m 2 ] (of core base paper): Comparative example a7
 測定ダンボール材のシートの資材をなす原紙(ライナ原紙,中芯原紙)の坪量は、下記の手順xa~xdで測定した。
  ・手順xa:JIS Z0203:2000に準拠して坪量を測定する原紙を前処理する。
  ・手順xb:250[mm]×400[mm]サイズに原紙を切り出す。
  ・手順xc:手順xbで切り出された原紙の重量を電子天秤で測定する。
  ・手順xd:手順xcで測定された重量を単位平方メートルあたりの重量[g/m2]に換算する。
Measurement The basis weight of the base paper (liner base paper, core base paper) used as the material for the corrugated cardboard sheet was measured by the following procedures xa to xd.
-Procedure xa: Pre-treat the base paper for measuring the basis weight according to JIS Z0203: 2000.
-Procedure xb: Cut out the base paper to a size of 250 [mm] x 400 [mm].
-Procedure xc: The weight of the base paper cut out in procedure xb is measured with an electronic balance.
-Procedure xd: The weight measured in procedure xc is converted into the weight per unit square meter [g / m 2 ].
 なお、測定ダンボール材のシートをなすライナ(原紙)の坪量は、下記の手順ya~yfで測定される。
  ・手順ya:測定ダンボール材のシートを水道水に15[分]間浸漬する。
  ・手順yb:手順yaで浸漬されたシートのライナと中芯と手で引き剥がす。
  ・手順yc:手順ybで引き剥がしたライナを105[℃]の乾燥機で20[分]間乾燥する。
  ・手順yd:手順ycで乾燥されたライナを250[mm]×400[mm]サイズに切り出す。
  ・手順ye:手順ydで切り出されたライナの重量を電子天秤で測定する。
  ・手順yf:手順yeで測定された重量を単位平方メートルあたりの重量[g/m2]に換算する。
The basis weight of the liner (base paper) forming the sheet of the corrugated cardboard material is measured by the following procedures ya to yf.
-Procedure ya: Immerse the sheet of measurement cardboard material in tap water for 15 [minutes].
-Procedure yb: The liner and core of the sheet immersed in procedure ya are peeled off by hand.
-Procedure yc: The liner peeled off in the procedure yb is dried in a dryer at 105 [° C.] for 20 [minutes].
-Procedure yd: The liner dried in the procedure yc is cut into a size of 250 [mm] x 400 [mm].
-Procedure yes: The weight of the liner cut out in the procedure yd is measured with an electronic balance.
-Procedure yf: The weight measured in the procedure y is converted into the weight per unit square meter [g / m 2 ].
 また、測定ダンボール材のシートをなす中芯(原紙)の坪量は、下記の手順za~zgで測定される。
  ・手順za:測定ダンボール材のシートを水道水に15[分]間浸漬する。
  ・手順zb:手順zaで浸漬されたシートのライナと中芯と手で引き剥がす。
  ・手順zc:手順zbで引き剥がしたライナを105[℃]の乾燥機で20[分]間乾燥する。
  ・手順zd:JIS Z0203:2000に準拠して坪量を測定するライナを前処理する。
  ・手順ze:250[mm]×400[mm]サイズにライナを切り出す。なお、波形構造が残す場合は、波を引き延ばしておさえながら本サイズに切り出す。
  ・手順zf:手順zeで切り出されたライナの重量を電子天秤で測定する。
  ・手順zg:手順zfで測定された重量を単位平方メートルあたりの重量[g/m2]に換算する。
Further, the basis weight of the core (base paper) forming the sheet of the corrugated cardboard material is measured by the following procedures za to zg.
-Procedure za: Immerse the sheet of measurement cardboard material in tap water for 15 [minutes].
-Procedure zb: The liner, core and hand of the sheet immersed in procedure z are peeled off by hand.
-Procedure zc: The liner peeled off in procedure zb is dried in a dryer at 105 [° C.] for 20 [minutes].
-Pre-treat the liner for measuring basis weight according to procedure zd: JIS Z0203: 2000.
-Procedure ze: Cut out a liner to a size of 250 [mm] x 400 [mm]. If the waveform structure remains, cut it out to this size while stretching the wave.
-Procedure zf: The weight of the liner cut out in the procedure ze is measured with an electronic balance.
-Procedure zg: The weight measured in procedure zf is converted into the weight per unit square meter [g / m 2 ].
 そのほか、測定される測定ダンボール材のシートをなすライナや中芯の坪量は、測定ダンボール材の資材をなす原紙の坪量に対して、同じ原紙を測定対象にする場合であっても坪量の測定値が±10[%]程度は変動しうる。
 上記の測定ダンボール材について、下記の表3,表4に示す厚み寸法,平面圧縮強さが測定された。
In addition, the basis weight of the liner and core that form the sheet of the measured corrugated cardboard material is the basis weight of the base paper that is the material of the measured corrugated cardboard material, even if the same base paper is used as the measurement target. The measured value of is variable by about ± 10 [%].
For the above-mentioned corrugated cardboard material, the thickness dimensions and planar compressive strength shown in Tables 3 and 4 below were measured.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000004
 
 「厚み寸法」は、測定ダンボール材における一枚あたりのシートの厚さに対応するパラメータである。この厚み寸法は、下記の手順aa~adで測定した。
  ・手順aa:測定ダンボール材の全段数のうち半分の段数(すなわち真ん中の段)を基準に上下五段分のシートを採取する。具体的には、測定ダンボール材の全段数Mが奇数の場合、測定ダンボール材の全段数のうち半分の段数M/2を四捨五入した段(すなわち真ん中の段)を基準に上下五段分のシートを採取する。測定ダンボール材の全段数Mが偶数の場合、測定ダンボール材の全段数のうち半分の段数[(M/2)+1]を基準に上下五段分のシートを採取した。なお、試験片を採取するときに、段が潰れないように注意した。
  ・手順ab:手順aaで採取された十枚のシートから5[cm]×5[cm]サイズの正方形に試験片を切り出す。
  ・手順ac:手順abで切り出された試験片の厚みを下記の準拠規格,測定機器,測定条件で測定する。
   >準拠規格:段ボール業界規格T0004:2000
   >測定機器:厚み計(ミツトヨラチェット製,型番K470101K)
   >測定条件:プランジャの直径16[mm],荷重3923[mN]
  ・手順ad:手順acで測定された厚みから、測定結果の精度を低下させる外乱(要因)となりうる数値(いわば大きく外れた数値)を除外して、平均値をとったものを厚み寸法とした。
 なお、手順adの「外乱となりうる数値の除外」では、手順acで測定された各数値を母集団としたときに、その母集団の標準偏差が±3σから外れる数値が排除される。
The "thickness dimension" is a parameter corresponding to the thickness of each sheet in the measured corrugated cardboard material. This thickness dimension was measured by the following procedures aa to ad.
-Procedure aa: Collect sheets for five upper and lower stages based on half the number of stages (that is, the middle stage) of the total number of stages of the corrugated cardboard material to be measured. Specifically, when the total number of stages M of the measured corrugated cardboard material is odd, the sheets for the upper and lower five stages are based on the stage obtained by rounding off the number of stages M / 2 which is half of the total number of stages of the measured corrugated cardboard material (that is, the middle stage). To collect. When the total number of stages M of the measured corrugated cardboard material was an even number, sheets for five upper and lower stages were collected based on the number of stages [(M / 2) + 1], which is half of the total number of stages of the measured corrugated cardboard material. Care was taken not to crush the steps when collecting the test pieces.
-Procedure ab: A test piece is cut out from the ten sheets collected in the procedure aa into a square having a size of 5 [cm] x 5 [cm].
-Procedure ac: Measure the thickness of the test piece cut out in procedure ab according to the following compliant standards, measuring equipment, and measuring conditions.
> Compliant standard: Corrugated cardboard industry standard T0004: 2000
> Measuring equipment: Thickness gauge (Mitutoyo Ratchet, model number K470101K)
> Measurement conditions: Plunger diameter 16 [mm], load 3923 [mN]
-Procedure ad: From the thickness measured by procedure ac, the numerical value that can be a disturbance (factor) that reduces the accuracy of the measurement result (so to speak, a numerical value that deviates greatly) is excluded, and the average value is taken as the thickness dimension. ..
In the "exclusion of numerical values that can cause disturbance" in step ad, when each numerical value measured in procedure ac is used as a population, the numerical value whose standard deviation of the population deviates from ± 3σ is excluded.
 「平面圧縮強さ」は、測定ダンボール材のシートのつぶれにくさに対応するパラメータである。この平面圧縮強さは、下記の手順aA~aDで測定した。
  ・手順aA:手順aaと同様に、測定ダンボール材の全段数のうち半分の段数を基準に上下五段分のシートを採取する。
  ・手順aB:手順aAで採取された十枚のシートから直径6.4[cm]の円形の試験片を切り出す。
  ・手順aC:手順aBで切り出された試験片の平面圧縮強さを下記の準拠規格,測定機器,試験速度・平行度の測定条件で測定する。なお、平行度とは、平面圧縮用の冶具の上下の平行度合いを表す。
     >準拠規格:JIS Z 0403-1:1999
     >測定機器:平面圧縮用の冶具(テスター産業株式会社製)を取り付けた圧縮試験機(株式会社エー・アンド・デイ製,RTF1350)
     >試験速度(測定条件):12.5±2.5[m/min]
     >平行度(測定条件):圧縮寸法の1/1000以下
  ・手順aD:上記の手順adと同様に、手順aCで測定された平面圧縮強さから、測定結果の精度を低下させる外乱(要因)となりうる数値を除外して、平均値をとったものを平面圧縮強さとした。
"Plane compressive strength" is a parameter corresponding to the resistance of the corrugated cardboard sheet to be crushed. This planar compressive strength was measured by the following procedures aA to aD.
-Procedure aA: In the same manner as in procedure aa, five upper and lower sheets are collected based on half the total number of steps of the measured corrugated cardboard material.
-Procedure aB: A circular test piece having a diameter of 6.4 [cm] is cut out from the ten sheets collected in the procedure aA.
-Procedure aC: Measure the planar compressive strength of the test piece cut out in step aB under the following compliant standards, measuring equipment, test speed and parallelism measurement conditions. The parallelism represents the degree of parallelism above and below the jig for plane compression.
> Compliant standard: JIS Z 0403-1: 1999
> Measuring equipment: Compression tester equipped with a jig for planar compression (manufactured by Tester Sangyo Co., Ltd.) (manufactured by A & D Co., Ltd., RTF1350)
> Test speed (measurement conditions): 12.5 ± 2.5 [m / min]
> Parallelism (measurement condition): 1/1000 or less of the compression dimension-Procedure aD: Disturbance (factor) that reduces the accuracy of the measurement result from the planar compressive strength measured in step aC, as in step a above. The plane compressive strength was taken by taking the average value, excluding the values that could be.
――評価――
 上記のようにして厚み寸法,平面圧縮強さのそれぞれが測定された実施例a1~a6および比較例a7~a14について、つぎに説明する製函性,罫割れのそれぞれを評価した。
 「製函性」は、測定ダンボール材の折目を跨ぐカット線で切り出されたダンボール片(以下「評価ダンボール片」と称する)が手組み(手作り)にて組み立てられた箱の精度の良否に対応する評価基準である。手組みの方法として、カットされた段ボール片の所定の罫線の箇所で折りたたみ、ホットメルト接着剤にて貼着し、製函した。
 なお、製函システムによって評価ダンボール片を組み立てる手法は、手組みであっても製函システムによる組み立てであっても同様である。そのため、手組みによって組み立てられた評価ダンボール片の製函性には、製函システムで組み立てられた評価ダンボール片との製函性と相関があるものと言える。
--Evaluation--
For Examples a1 to a6 and Comparative Examples a7 to a14 in which the thickness dimension and the planar compressive strength were measured as described above, each of the box-making property and the ruled cracking described below was evaluated.
"Box making" depends on the accuracy of the box in which the cardboard pieces (hereinafter referred to as "evaluation cardboard pieces") cut out by the cut line straddling the folds of the measured cardboard material are assembled by hand (handmade). Corresponding evaluation criteria. As a manual assembly method, the cut corrugated cardboard piece was folded at a predetermined ruled line, attached with a hot melt adhesive, and boxed.
The method of assembling the evaluation cardboard pieces by the box-making system is the same regardless of whether the evaluation cardboard pieces are assembled by hand or by the box-making system. Therefore, it can be said that the box-making property of the evaluation cardboard piece assembled by hand has a correlation with the box-making property of the evaluation cardboard piece assembled by the box-making system.
 「評価ダンボール片」は、測定ダンボール材が下記の形状・サイズにサンプルカッター(株式会社ミマキエンジニアリング社製,CF2-1218)で下記の枚数が打ち抜かれた試験片である。
  ・形 状:A式段ボール箱が展開されたパターン
  ・サイズ:A式段ボール箱の側板の幅寸法356[mm],
       A式段ボール箱の端板の幅寸法159[mm],
       A式段ボール箱の高さ寸法256[mm]
  ・枚 数:100[枚]
The "evaluation cardboard piece" is a test piece in which the measurement cardboard material is punched into the following shape and size with a sample cutter (CF2-1218 manufactured by Mimaki Engineering Co., Ltd.).
-Shape: Pattern in which the A-type cardboard box is developed-Size: Width dimension of the side plate of the A-type cardboard box 356 [mm],
Width dimension of the end plate of the A type cardboard box 159 [mm],
Height dimension of A type cardboard box 256 [mm]
・ Number of sheets: 100 [sheets]
 上記の評価ダンボール片は、下記の基準で評価した。
  ・◎:全て(100[枚])の評価ダンボール片において製函性が良好である。
  ・○:100[枚]の評価ダンボール片のうち1~2[枚]の製函性が不良である。
  ・△:100[枚]の評価ダンボール片のうち3[枚]の製函性が不良である。
  ・×:100[枚]の評価ダンボール片のうち4[枚]以上の製函性が不良である。
 なお、製函性に関して「○」の評価が得られた実施例a4では、2[枚]の製函性が不良であった。
The above evaluation cardboard pieces were evaluated according to the following criteria.
-⊚: All (100 [sheets]) evaluation cardboard pieces have good box-making properties.
-○: Evaluation of 100 [sheets] Of the cardboard pieces, 1 to 2 [sheets] have poor box-making properties.
-Δ: Evaluation of 100 [sheets] 3 [sheets] of the corrugated cardboard pieces have poor box-making properties.
-X: Evaluation of 100 [sheets] Of the cardboard pieces, 4 [sheets] or more have poor box-making properties.
In Example a4, in which the evaluation of “◯” was obtained with respect to the box-making property, the box-making property of 2 [sheets] was poor.
 ここでいう「製函性が良好」とは、評価ダンボール片において下記の折部A,Bどうしの距離寸法が所定の距離寸法未満であることをいう。
  ・折部A:製函用の罫線(折目とは別の要素)が設けられた部分
  ・折部B:箱に組み立てられたとき(製函時)に実際に折れた部分
 「所定の距離寸法」は、評価ダンボール片の折目に対して垂直な方向(MD方向)の寸法については2.0[mm]であり、折目と平行な方向(CD方向)の寸法については5[mm]である。
 一方、「製函性が不良」とは、評価ダンボール片において上記の折部A,Bどうしの距離寸法が所定の距離寸法以上であることをいう。
The term "good box-making property" as used herein means that the distance dimension between the following folded portions A and B in the evaluated corrugated cardboard piece is less than the predetermined distance dimension.
-Folded part A: A part where a ruled line for box making (an element different from the fold) is provided.-Folded part B: A part actually folded when assembled in a box (during box making) "Predetermined distance" The "dimensions" are 2.0 [mm] for the dimension perpendicular to the crease of the evaluation cardboard piece (MD direction) and 5 [mm] for the dimension in the direction parallel to the crease (CD direction). ].
On the other hand, "poor box-making property" means that the distance dimension between the folded portions A and B in the evaluated corrugated cardboard piece is equal to or larger than the predetermined distance dimension.
 また、「罫割れ」とは、評価ダンボール片が箱に組み立てられるときに折り曲げられた箇所が破断していることをいう。この罫割れは、製函性を評価した箱(すなわち評価ダンボール片が組み立てられた箱,以下「評価箱」と称する)を目視することで観察される。
 この罫割れは、下記の基準で評価した。
  ・◎:全て(100[箱])の評価箱において罫割れが見られなかった。
  ・○:100[箱]の評価箱のうち1~2[箱]に罫割れが見られた。
  ・△:100[箱]の評価箱のうち3[箱]に罫割れが見られた。
  ・×:100[箱]の評価箱のうち4[箱]以上に罫割れが見られた。
 なお、罫割れに関して「○」の評価が得られた実施例a3,a5,a6および比較例a8については、実施例a3,a5,a6で1[箱]に罫割れが見られ、比較例a8で2[箱]に罫割れが見られた。
Further, "line cracking" means that the bent portion is broken when the evaluation cardboard piece is assembled into the box. This rule cracking is observed by visually observing a box whose box-making property has been evaluated (that is, a box in which evaluation cardboard pieces are assembled, hereinafter referred to as an "evaluation box").
This rule crack was evaluated according to the following criteria.
-⊚: No cracking was observed in all (100 [box]) evaluation boxes.
-○: Of the 100 [box] evaluation boxes, 1 to 2 [boxes] were cracked.
-Δ: Cracks were found in 3 [boxes] of the 100 [boxes] evaluation boxes.
-X: Of the 100 [box] evaluation boxes, 4 [boxes] or more were cracked.
Regarding Examples a3, a5, a6 and Comparative Example a8 in which the evaluation of "○" was obtained for the rule cracking, the rule cracking was observed in 1 [box] in Examples a3, a5, a6, and Comparative Example a8. In 2 [box], a crack was seen.
 実施例a1~a6では、厚み寸法が2.0[mm]以上であって9.6[mm]以下であり、平面圧縮強さが50[kPa]以上であって250[kPa]以下であり、製函性および罫割れの双方で少なくとも「△」以上の良好な評価が得られた。
 一方、2.0~9.6[mm]の範囲から外れた厚み寸法の比較例a7,a9や、50~250[kPa]の範囲から外れた平面圧縮強さの比較例a7~a14では、製函性の評価が「×」の不良な評価が得られた。また、厚み寸法が9.6[mm]よりも大きい比較例a7では、罫割れの評価も「×」の不良な評価であった。
In Examples a1 to a6, the thickness dimension is 2.0 [mm] or more and 9.6 [mm] or less, and the planar compressive strength is 50 [kPa] or more and 250 [kPa] or less. , A good evaluation of at least "Δ" or more was obtained in both box-making property and rule cracking.
On the other hand, in Comparative Examples a7 and a9 having a thickness dimension outside the range of 2.0 to 9.6 [mm] and Comparative Examples a7 to a14 having a planar compressive strength outside the range of 50 to 250 [kPa]. A poor evaluation of "x" was obtained for the box-making property. Further, in Comparative Example a7 in which the thickness dimension was larger than 9.6 [mm], the evaluation of the rule cracking was also a poor evaluation of “x”.
 比較例a7からは、厚み寸法が9.6[mm]よりも大きいと、製函用の罫線で折り曲げられる際にライナ原紙が伸びきれずに破断し、罫割れの評価が不良となるものと推察される。
 この比較例a7や、比較例a9~a14からは、平面圧縮強度が250[kPa]よりも大きいと、製函用の罫線を入れずらくなり(罫線の形成性が低下することにより)、製函用の罫線以外の箇所で折り曲げられて、製函性の評価が不良となることも推察される。
From Comparative Example a7, if the thickness dimension is larger than 9.6 [mm], the liner base paper cannot be stretched and breaks when it is bent by the ruled line for box making, and the evaluation of the ruled crack is poor. Inferred.
From Comparative Examples a7 and Comparative Examples a9 to a14, if the plane compression strength is larger than 250 [kPa], it becomes difficult to insert a ruled line for box making (due to a decrease in the formability of the ruled line). It is also presumed that the box-making property is evaluated poorly because it is bent at a place other than the ruled line for the box.
 比較例a8からは、平面圧縮強度が50[kPa]未満であると、評価ダンボール片の曲げ強度が不十分であって製函用の罫線以外の箇所で折り曲げられやすくなり、製函性の評価が不良となるものと推察される。
 同様に、比較例a9からは、厚み寸法が2.0[mm]未満であると、評価ダンボール片の曲げ強度が不十分であって製函用の罫線以外の箇所で折り曲げられやすくなり、製函性の評価が不良となるものと推察される。
From Comparative Example a8, when the planar compression strength is less than 50 [kPa], the bending strength of the evaluated corrugated cardboard piece is insufficient and it becomes easy to bend at a place other than the ruled line for box making, and the box making property is evaluated. Is presumed to be defective.
Similarly, from Comparative Example a9, when the thickness dimension is less than 2.0 [mm], the bending strength of the evaluated corrugated cardboard piece is insufficient and it becomes easy to bend at a place other than the ruled line for box making. It is presumed that the evaluation of corrugated cardboard is poor.
 上記の比較例a7~a14に鑑みて、実施例a1~a6からは、9.6[mm]以下の範囲で厚み寸法が小さいほど罫割れの発生が抑えられると推察される。一方、2.0[mm]以上の範囲で厚み寸法が大きいほど製函用の罫線以外の箇所での折り曲げが抑えられると推察される。
 実施例a1~a6からは、平面圧縮強度が250[kPa]以下であれば製函用に形成される罫線の不良が抑えられることも推察される。一方、平面圧縮強度が50[kPa]以上であれば評価ダンボール片の曲げ強度が確保され、製函用の罫線以外の箇所で折り曲げが抑えられると推察される。
 よって、厚み寸法が2.0[mm]以上であって9.6[mm]以下であり、平面圧縮強さが50[kPa]以上であって250[kPa]以下であれば、製函性の確保と罫割れの抑制とを両立することができると言える。
In view of the above Comparative Examples a7 to a14, it is presumed from Examples a1 to a6 that the smaller the thickness dimension is in the range of 9.6 [mm] or less, the more the occurrence of rule cracking is suppressed. On the other hand, it is presumed that the larger the thickness dimension in the range of 2.0 [mm] or more, the more the bending at the place other than the ruled line for box making can be suppressed.
From Examples a1 to a6, it can be inferred that if the planar compression strength is 250 [kPa] or less, defects in the ruled lines formed for box making can be suppressed. On the other hand, if the planar compression strength is 50 [kPa] or more, it is presumed that the bending strength of the evaluated corrugated cardboard piece is secured and the bending is suppressed at a place other than the ruled line for box making.
Therefore, if the thickness dimension is 2.0 [mm] or more and 9.6 [mm] or less, and the planar compressive strength is 50 [kPa] or more and 250 [kPa] or less, the box-making property It can be said that it is possible to both secure and suppress rule cracking.
<構成b>
――測定対象――
 構成bに関する実施例b1~b3および比較例b4,b5に用いる測定ダンボール材には、実施例a1~a6,比較例a7~a9と同様のライナ原紙を用いた。
 比較例b6~b10では、特許公報6213364号の製造方法にしたがって作製したさまざまな坪量のライナ原紙を使用した。具体的には、以下に示す三種の坪量のうち何れか一つの坪量を採用した。
  ・(ライナ原紙の)坪量120[g/m2]:比較例b10
  ・(ライナ原紙の)坪量170[g/m2]:比較例b7~b9
  ・(ライナ原紙の)坪量200[g/m2]:比較例b6
<Structure b>
--Measurement target--
As the measurement corrugated cardboard materials used in Examples b1 to b3 and Comparative Examples b4 and b5 relating to the configuration b, the same liner base papers as in Examples a1 to a6 and Comparative Examples a7 to a9 were used.
In Comparative Examples b6 to b10, liner base papers having various basis weights prepared according to the production method of Patent Publication No. 6213364 were used. Specifically, one of the following three types of basis weight was adopted.
Basis weight 120 [g / m 2 ] (of liner base paper): Comparative example b10
Basis weight 170 [g / m 2 ] (of liner base paper): Comparative examples b7 to b9
-Basis weight (of liner base paper) 200 [g / m 2 ]: Comparative example b6
 実施例b1~b3,比較例b4,b5,b8では、下記の中芯原紙を用いた。
  ・ 中芯原紙 :170[g/m2]〔LB170:王子マテリア株式会社製〕
 比較例b6,b7,b9,b10では、特開2018-162526号公の製造方法にしたがって作製したさまざまな坪量の中芯原紙を使用した。具体的には、比較例b6,b7,b9,b10のそれぞれに、以下に示す三種の坪量のうち何れか一つの坪量を採用した。
  ・(中芯原紙の)坪量120[g/m2]:比較例b9,b10
  ・(中芯原紙の)坪量130[g/m2]:比較例b7
  ・(中芯原紙の)坪量150[g/m2]:比較例b6
In Examples b1 to b3 and Comparative Examples b4, b5 and b8, the following core base papers were used.
-Core base paper: 170 [g / m 2 ] [LB170: manufactured by Oji Materia Co., Ltd.]
In Comparative Examples b6, b7, b9, and b10, core base papers having various basis weights prepared according to the manufacturing method published in JP-A-2018-162526 were used. Specifically, one of the following three types of basis weight was adopted for each of Comparative Examples b6, b7, b9, and b10.
Basis weight 120 [g / m 2 ] (of core base paper): Comparative examples b9, b10
Basis weight 130 [g / m 2 ] (of core base paper): Comparative example b7
-Basis weight (of core base paper) 150 [g / m 2 ]: Comparative example b6
 また、実施例b1~b3および比較例b4~b10に用いる測定ダンボール材は、下記の表5,表6に示す各種の段山数および段繰率となる段繰りロールを有するコルゲータを用いて製造した。
 また、実施例b1~b3および比較例b4~b10のそれぞれについて、上述の手順aA~aDと同様の手順で平面圧縮強さを測定し、下記の表5,表6に示す平面圧縮強さが測定された。
 実施例b1~b3および比較例b4~b10にはシングルフルートを採用した。
Further, the measured corrugated cardboard materials used in Examples b1 to b3 and Comparative Examples b4 to b10 are manufactured by using a corrugated board having various stepped ridges and stepped rolls having a stepped ratio shown in Tables 5 and 6 below. did.
Further, for each of Examples b1 to b3 and Comparative Examples b4 to b10, the planar compressive strength was measured in the same procedure as the above-mentioned procedures aA to aD, and the planar compressive strength shown in Tables 5 and 6 below was measured. It was measured.
Single flutes were used in Examples b1 to b3 and Comparative Examples b4 to b10.
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000006
 
Figure JPOXMLDOC01-appb-T000006
 
 「段繰率」は、中芯のライナに対するMD方向の長さ寸法の倍率に対応するパラメータである。この段繰率は、下記の手順ba~bgで測定した。
  ・手順ba:手順aa,aAと同様に、測定ダンボール材の全段数のうち半分の段数を基準に上下五段分のシートを採取する。
  ・手順bb:手順baで採取された十枚のシートから中芯の山が連続する方向(横方向,MD方向)に20[cm]であって、中芯の山に直交する方向(縦方向,CD方向)に10[cm]のサイズに切り出す。
  ・手順bc:手順bbで切り出された試験片を水道水に24時間浸漬する。
  ・手順bd:手順bcの浸漬後に、表裏のライナを剥がして中芯を取り出す。
  ・手順be:手順bdで取り出された中芯を手で引き伸ばし、伸びきった状態の長さを定規で測定する。
  ・手順bf:手順beで測定された「中芯の伸びきった長さ」と手順bbで切り出された試験片の中芯の山が連続する方向の長さ(「元のダンボールシートの長さ」と称する,ここでは20[cm])とから下記の式bで段繰率を算出する。
   段繰率=中芯が伸びきった状態の長さ/元のダンボールシートの長さ・・・式b
  ・手順bg:上記の手順ad,aDと同様に、手順bfで算出された段繰率から、測定結果の精度を低下させる外乱(要因)となりうる数値を除外して、平均値をとったものを段繰率とした。
The "step ratio" is a parameter corresponding to the magnification of the length dimension in the MD direction with respect to the liner of the core. This step-by-step rate was measured by the following procedures ba to bg.
-Procedure ba: Similar to procedures aa and aA, five upper and lower sheets are collected based on half the total number of steps of the corrugated cardboard material to be measured.
-Procedure bb: 20 [cm] in the direction in which the core peaks are continuous (horizontal direction, MD direction) from the ten sheets collected in procedure ba, and in the direction orthogonal to the core peaks (vertical direction). , CD direction) to a size of 10 [cm].
-Procedure bc: The test piece cut out in procedure bb is immersed in tap water for 24 hours.
-Procedure bd: After immersion in procedure bc, the liners on the front and back are peeled off and the core is taken out.
-Procedure be: The core taken out in step bd is stretched by hand, and the length in the fully stretched state is measured with a ruler.
-Procedure bf: The length in the direction in which the "extended length of the core" measured in procedure be and the mountain of the core of the test piece cut out in procedure bb are continuous ("the length of the original cardboard sheet"). , Here, 20 [cm]), and the step-by-step rate is calculated by the following formula b.
Step ratio = length when the core is fully extended / length of the original cardboard sheet ... Equation b
-Procedure bg: Similar to the above procedures ad and aD, the average value is taken by excluding the numerical values that may cause disturbances (factors) that reduce the accuracy of the measurement result from the step-by-step rate calculated in the procedure bf. Was taken as the step-by-step rate.
――評価――
 上記のようにして段繰率が得られた実施例b1~b3および比較例b4~b10について、製函性を評価した。この製函性は、実施例a1~a6および比較例a7~a14の評価に用いた製函性と同義である。なお、製函性に関して「○」の評価が得られた実施例b1では、2[枚]の製函性が不良であった。
--Evaluation--
Box-making properties were evaluated for Examples b1 to b3 and Comparative Examples b4 to b10 for which the step-by-step ratio was obtained as described above. This box-making property is synonymous with the box-making property used for the evaluation of Examples a1 to a6 and Comparative Examples a7 to a14. In Example b1 in which the evaluation of “◯” was obtained with respect to the box-making property, the box-making property of 2 [sheets] was poor.
 実施例b1~b3では、段繰率が1.2[倍]以上であって1.7[倍]以下であり、平面圧縮強さが50[kPa]以上であって250[kPa]以下であり、製函性について少なくとも「△」以上の良好な評価が得られた。
 一方、段繰率が1.2[倍]未満であって平面圧縮強さが50[kPa]未満の比較例b4や、段繰率が1.7[倍]よりも大きくて平面圧縮強さが250[kPa]よりも大きい比較例b5,段繰率が1.2[倍]以上であって1.7[倍]以下であるものの平面圧縮強さが250[kPa]よりも大きい比較例b6~b10では、製函性の評価が「×」の不良な評価が得られた。
In Examples b1 to b3, the step ratio is 1.2 [times] or more and 1.7 [times] or less, and the planar compressive strength is 50 [kPa] or more and 250 [kPa] or less. Yes, a good evaluation of at least "Δ" or higher was obtained for the box-making property.
On the other hand, Comparative Example b4 in which the stepwise ratio is less than 1.2 [times] and the planar compressive strength is less than 50 [kPa], and the planar compressive strength is larger than 1.7 [times] and the planar compressive strength. Is larger than 250 [kPa] b5, a comparative example in which the stepwise compressive strength is 1.2 [times] or more and 1.7 [times] or less, but the planar compressive strength is larger than 250 [kPa]. In b6 to b10, a poor evaluation of box-making property of "x" was obtained.
 比較例b4からは、段繰率が1.2[倍]未満であることや平面圧縮強さが50[kPa]未満であることにより、評価ダンボール片の曲げ強度が不十分であるため製函用の罫線以外の箇所で折り曲げられやすくなり、製函性の評価が不良となるものと推察される。
 比較例b5,比較例b6~b10からは、段繰率が1.7[倍]よりも大きいことや平面圧縮強さが250[kPa]よりも大きいことにより、製函用の罫線を入れずらくなり(罫線の形成性が低下することにより)、製函用の罫線以外の箇所で折り曲げられて、製函性の評価が不良となるものと推察される。
From Comparative Example b4, since the step-by-step ratio is less than 1.2 [times] and the planar compressive strength is less than 50 [kPa], the bending strength of the evaluated corrugated cardboard piece is insufficient, so that the box is manufactured. It is presumed that the box-making property will be poorly evaluated because it will be easily bent at places other than the corrugated cardboard.
From Comparative Examples b5 and b6 to b10, the ruled lines for box making were not inserted because the step ratio was larger than 1.7 [times] and the planar compressive strength was larger than 250 [kPa]. It is presumed that it becomes easier (due to the decrease in the formability of the ruled line) and is bent at a place other than the ruled line for box making, resulting in poor evaluation of the box making property.
 上記の比較例b4~b10に鑑みて、実施例b1~b3からは、段繰率が1.2[倍]以上であることや平面圧縮強さが50[kPa]以上であることにより、製函用の罫線以外の箇所での折り曲げが抑えられると推察される。また、段繰率が1.7[倍]以下であることや平面圧縮強さが250[kPa]以下であることにより、製函用に形成される罫線の不良が抑えられると推察される。
 よって、段繰率が1.2[倍]以上であって1.7[倍]以下であり、平面圧縮強さが50[kPa]以上であって250[kPa]以下であれば、製函性を確保することができると言える。
In view of the above comparative examples b4 to b10, from Examples b1 to b3, the step-by-step ratio is 1.2 [times] or more, and the planar compressive strength is 50 [kPa] or more. It is presumed that bending at places other than the ruled lines for boxes can be suppressed. Further, it is presumed that the defect of the ruled line formed for box making can be suppressed by the step-by-step ratio of 1.7 [times] or less and the planar compressive strength of 250 [kPa] or less.
Therefore, if the step ratio is 1.2 [times] or more and 1.7 [times] or less, and the planar compressive strength is 50 [kPa] or more and 250 [kPa] or less, the box is manufactured. It can be said that sex can be secured.
<構成c>
――測定対象――
 構成cに関する実施例c1~c3および比較例c4には、実施例b1~b3や比較例b4と同様の原紙を用い、以下に示す諸元の段繰りロールを有するコルゲータを用いて製造されたAフルートの測定ダンボール材を用いた。
  ・ 段高 :4.5[mm]
  ・段山数:34[山/30cm]
 そして、下記の表7に示す角度比となるように製造された測定ダンボール材を実施例c1~c3および比較例c4に用いた。なお、表7の単位[-]は、無次元量を表す。
<Structure c>
--Measurement target--
In Examples c1 to c3 and Comparative Example c4 relating to the configuration c, the same base papers as in Examples b1 to b3 and Comparative Example b4 are used, and A produced by using a corrugator having a stepping roll of the specifications shown below. Measurement of flute A cardboard material was used.
・ Step height: 4.5 [mm]
・ Number of steps: 34 [mountain / 30 cm]
Then, the measured corrugated cardboard materials manufactured so as to have the angle ratios shown in Table 7 below were used in Examples c1 to c3 and Comparative Example c4. The unit [-] in Table 7 represents a dimensionless quantity.
Figure JPOXMLDOC01-appb-T000007
 
Figure JPOXMLDOC01-appb-T000007
 
 「角度比」とは、測定ダンボール材のシートにおける段目の傾き度合いに対応するパラメータである。この角度比は、下記の手順ca~cfで測定した。
  ・手順ca:測定ダンボール材のシートにおいて中芯の一つの山を縦方向(CD方向)から写真を撮影する。
  ・手順cb:手順caで撮影された写真を一つの山が高さ10[cm]以上となるように拡大して印刷用紙にプリントする。
  ・手順cc:表裏のライナと平行な方向(すなわち横方向〈MD方向〉)であって、表ライナと裏ライナとの中央(TD方向中央)を通る補助線を引く。
  ・手順cd:手順ccで引いた補助線と中芯との交点のうち、隣り合う任意の二点を選択する。
  ・手順ce:手順cdで選択された二点のそれぞれにおいて、補助線と中芯とのなす角度のうち鋭角を分度器で測定した。
  ・手順cf:手順ceで測定された二つの角度(測定値)どうしの差の絶対値を二つの角度の和で除した比率を算出する。
The "angle ratio" is a parameter corresponding to the degree of inclination of the step in the sheet of the corrugated cardboard material to be measured. This angle ratio was measured by the following procedures ca to cf.
-Procedure ca: Take a picture of one mountain of the core in the sheet of corrugated cardboard material from the vertical direction (CD direction).
-Procedure cb: The photograph taken in procedure ca is enlarged and printed on printing paper so that one mountain has a height of 10 [cm] or more.
-Procedure cc: Draw an auxiliary line in the direction parallel to the front and back liners (that is, the lateral direction <MD direction>) and passing through the center of the front liner and the back liner (center in the TD direction).
-Procedure cd: Select any two adjacent points from the intersections of the auxiliary line and the core drawn in the procedure cc.
-Procedure ce: At each of the two points selected in the procedure cd, the acute angle of the angle formed by the auxiliary line and the core was measured with a protractor.
-Procedure cf: Calculate the ratio obtained by dividing the absolute value of the difference between the two angles (measured values) measured in the procedure ce by the sum of the two angles.
――評価――
 上記のようにして角度比が得られた実施例c1~c3および比較例c4について、印刷適性を評価した。
 「印刷適性」とは、測定ダンボール材に印刷を施した場合の適性であり、測定ダンボール材に施された印刷の良否に対応する評価基準である。
 この印刷適性は、下記の手順cA~cCで評価した。
  ・手順cA:測定ダンボール材のシートをMD方向が長辺となる500[mm]×1350[mm]のサイズにカットする。
  ・手順cB:手順cAでカットされた試験片に対して、ダイレクトフレキソ印刷機DYNA FLEX160(ボブスト社製)によって、550[線/インチ]に彫刻したアニロックスロールで水性フレキソインキ(品番:Super-EX FK-99、サカタインク社製)で下記の順番で塗工し印刷した。
   >塗工の順番:紅→墨→藍→黄→ニス
  ・手順cC:手順cBで印刷された仕上がりを目視にて観察した。
--Evaluation--
The printability of Examples c1 to c3 and Comparative Example c4 for which the angle ratio was obtained as described above was evaluated.
"Printability" is the suitability when printing is applied to the measured corrugated cardboard material, and is an evaluation standard corresponding to the quality of printing applied to the measured corrugated cardboard material.
This printability was evaluated by the following procedures cA to cC.
-Procedure cA: A sheet of corrugated cardboard material to be measured is cut into a size of 500 [mm] × 1350 [mm] having a long side in the MD direction.
-Procedure cB: Aqueous flexo ink (product number: Super-EX) engraved on 550 [lines / inch] with a direct flexo printing machine DYNA FLEX160 (manufactured by Bobst) on the test piece cut in procedure cA. FK-99, manufactured by Sakata Inc.) was applied and printed in the following order.
> Coating order: Red → ink → indigo → yellow → varnish ・ Procedure cC: The finish printed in procedure cB was visually observed.
 上記の印刷適性は、下記の基準で評価した。
  ・◎:インキの着肉ムラが無く、印刷の仕上がりが良好である。
  ・○:インキの着肉ムラがほとんど無く、実用上の問題がない。
  ・△:インキの着肉ムラがやや多いが、実用上の問題はない。
  ・×:インキの着肉ムラが非常に多く、実用上の問題があり、品質も著しく劣る。
The above printability was evaluated according to the following criteria.
-◎: There is no uneven ink deposition, and the print finish is good.
-○: There is almost no uneven ink deposition, and there is no practical problem.
-△: There is a little unevenness in ink deposition, but there is no practical problem.
・ ×: There is a great deal of uneven ink deposition, there are practical problems, and the quality is significantly inferior.
 実施例c1~c3では、角度比が0.30以下であり、印刷適性について「△」以上の評価が得られ、実用上の問題はない。角度比が0.15以下の実施例c1,c2では、「○」以上の評価が得られ、角度比が0.05以下の実施例c1では、「◎」の評価が得られた。
 一方、角度比が0.30よりも大きい比較例c4では、印刷適性について「×」の評価が得られ、実用上の問題がある。
In Examples c1 to c3, the angle ratio is 0.30 or less, the printability is evaluated as “Δ” or more, and there is no practical problem. In Examples c1 and c2 having an angle ratio of 0.15 or less, an evaluation of “◯” or higher was obtained, and in Example c1 having an angle ratio of 0.05 or less, an evaluation of “⊚” was obtained.
On the other hand, in Comparative Example c4 in which the angle ratio is larger than 0.30, an evaluation of “x” is obtained for printability, which poses a practical problem.
 比較例c4からは、角度比が0.30よりも大きいことにより、段目の高さが不揃いとなることで、印刷適性の評価が不良となるものと推察される。あるいは、インキの着肉時に試験片が段目の傾きに応じた方向へ変形しやすくなることも、印刷適性の評価が不良となる推察する理由に挙げられる。
 これに対し、実施例c1~c3からは、角度比が0.30以下であることにより、段目の高さのバラツキが抑えられ、実用上問題のない印刷適性が得られると推察される。段目の高さのバラツキは、実施例c1,c2からは角度比が0.15以下であることにより確実に抑えられ、実施例c1からは角度比が0.05以下であることにより、より一層抑えられると推察される。
 よって、角度比が0.30以下であれば、印刷適性を確保できると言える。
From Comparative Example c4, it is presumed that when the angle ratio is larger than 0.30, the heights of the steps become uneven, and the evaluation of printability becomes poor. Alternatively, the fact that the test piece is likely to be deformed in the direction corresponding to the inclination of the step when the ink is applied is also a reason for presuming that the evaluation of printability is poor.
On the other hand, from Examples c1 to c3, it is presumed that when the angle ratio is 0.30 or less, the variation in the height of the steps is suppressed, and printability without any practical problem can be obtained. The variation in the height of the steps is surely suppressed by the angle ratio of 0.15 or less from Examples c1 and c2, and more by the angle ratio of 0.05 or less from Example c1. It is presumed that it will be further suppressed.
Therefore, if the angle ratio is 0.30 or less, it can be said that printability can be ensured.
<構成d>
――測定対象――
 構成dに関する実施例d1~d3および比較例d4には、実施例b1~b3,c1~c3や比較例b4,c4と同様の中芯原紙を用いた。一方、実施例d1~d3および比較例d4では、特許6213364号公報のダンボール用ライナの製造方法にしたがって作製したさまざまな坪量のライナ原紙を使用した。具体的には、実施例d1~d3および比較例d4のそれぞれに、以下に示す4種の坪量のうち何れか一つの坪量を採用した。
  ・(ライナ原紙の)坪量 90[g/m2]:実施例d1
  ・(ライナ原紙の)坪量170[g/m2]:実施例d2
  ・(ライナ原紙の)坪量250[g/m2]:実施例d3
  ・(ライナ原紙の)坪量 60[g/m2]:比較例d4
 また、実施例c1~c3や比較例c4と同様の段繰りロールを有するコルゲータを用いて製造された測定ダンボール材を用いた。
 上記のように製造された測定ダンボール材を用いた実施例d1~d3および比較例d4のそれぞれについて、破裂強さを測定し、下記の表8に示す破裂強さが測定された。
<Structure d>
--Measurement target--
For Examples d1 to d3 and Comparative Example d4 regarding the configuration d, the same core base papers as in Examples b1 to b3, c1 to c3 and Comparative Examples b4 and c4 were used. On the other hand, in Examples d1 to d3 and Comparative Example d4, liner base papers having various basis weights produced according to the method for producing a liner for corrugated cardboard of Japanese Patent No. 6213364 were used. Specifically, one of the four types of basis weights shown below was adopted for each of Examples d1 to d3 and Comparative Example d4.
Basis weight (of liner base paper) 90 [g / m 2 ]: Example d1
Basis weight 170 [g / m 2 ] (of liner base paper): Example d2
Basis weight (of liner base paper) 250 [g / m 2 ]: Example d3
Basis weight (of liner base paper) 60 [g / m 2 ]: Comparative example d4
In addition, a corrugated cardboard material produced by using a corrugated board having the same stepping rolls as in Examples c1 to c3 and Comparative Example c4 was used.
The burst strength was measured for each of Examples d1 to d3 and Comparative Example d4 using the measured corrugated cardboard material produced as described above, and the burst strength shown in Table 8 below was measured.
Figure JPOXMLDOC01-appb-T000008
 
Figure JPOXMLDOC01-appb-T000008
 
 「破裂強さ」は、上述の構成aで罫割れの評価対象とした評価箱(IFCコード:0401)の破れやすさに対応するパラメータである。この破裂強さは、下記の手順da~ddで測定した。
  ・手順da:手順aaと同様に、測定ダンボール材の全段数のうち半分の段数を基準に上下五段分のシートを採取する。
  ・手順db:手順daで採取された十枚のシートから100[mm]×100[mm]サイズの正方形に試験片を切り出す。
  ・手順dc:手順dbで切り出された試験片の厚みを下記の準拠規格,試験片,測定機器,測定条件で測定する。
    >準拠規格:JIS P 8131:2009(板紙-破裂強さ試験方法)
    >測定機器:株式会社東洋精機製作所製,ミューレン破裂試験機EH
    >測定条件:締め付け面から10[mm]の高さまで膨張させたときの圧力が170~220[kpa]となるゴム隔膜を使用
  ・手順dd:手順ad,aD,bgと同様に、手順dcで測定された破裂強さから、測定結果の精度を低下させる外乱(要因)となりうる数値を除外して、平均値をとったものを破裂強さとした。
The “burst strength” is a parameter corresponding to the easiness of tearing of the evaluation box (IFC code: 0401) targeted for evaluation of rule cracking in the above configuration a. This burst strength was measured by the following procedures da to dd.
-Procedure da: Similar to procedure aa, the sheets for the upper and lower five stages are collected based on half the total number of stages of the measured corrugated cardboard material.
-Procedure db: A test piece is cut out into a square having a size of 100 [mm] x 100 [mm] from ten sheets collected in the procedure da.
-Procedure dc: Measure the thickness of the test piece cut out in procedure db according to the following compliant standards, test pieces, measuring equipment, and measuring conditions.
> Compliant standard: JIS P 8131: 2009 (paperboard-burst strength test method)
> Measuring equipment: Murren burst tester EH, manufactured by Toyo Seiki Seisakusho Co., Ltd.
> Measurement conditions: Use a rubber diaphragm with a pressure of 170 to 220 [kpa] when expanded to a height of 10 [mm] from the tightening surface. ・ Procedure dd: Same as procedure ad, aD, pg, in procedure dc From the measured burst strength, the numerical value that could be a disturbance (factor) that reduces the accuracy of the measurement result was excluded, and the average value was taken as the burst strength.
――評価――
 上記のようにして破裂強さが得られた実施例d1~d3および比較例d4について、評価箱の破れやすさを評価した。
 「破れやすさ」とは、箱に収容される内容物に対する耐荷重の軽重に対応する評価基準である。この破れやすさは、下記の手順dA~dCで評価した。
  ・手順dA:単位面積当たりの重量が15[kgf/cm2]となるようにオモリを評価箱に収容する。なお、評価箱はテープの影響が出ないよう組立型(IFCコード0401)とした。
  ・手順dB:手順dAの後、オモリが評価箱と接していない底面を二人の作業員が持ち上げて、30[秒]間保持する。
  ・手順dC:手順dBにて評価箱に破れが発生したか否かを目視で確認する。
--Evaluation--
The tearability of the evaluation box was evaluated for Examples d1 to d3 and Comparative Example d4 in which the burst strength was obtained as described above.
"Easiness of tearing" is an evaluation standard corresponding to the light and heavy load capacity of the contents contained in the box. This easiness of tearing was evaluated by the following procedures dA to dC.
-Procedure dA: The weight is housed in the evaluation box so that the weight per unit area is 15 [kgf / cm 2 ]. The evaluation box was an assembly type (IFC code 0401) so as not to be affected by the tape.
-Procedure dB: After the procedure dB, two workers lift the bottom surface where the weight is not in contact with the evaluation box and hold it for 30 [seconds].
-Procedure DC: Visually check whether or not the evaluation box has been torn in procedure dB.
 上記の破れやすさは、下記の基準で評価した。
  ・◎:持ち上げられた後に評価箱の外観が全く変化していない。
  ・○:持ち上げた後で評価箱に軽微な破れが生じるが、オモリが評価箱に留まる。
  ・△:持ち上げた後で評価箱に破れが生じるが、オモリが評価箱に留まる。
  ・×:持ち上げた後で評価箱に大きな破れが生じ、オモリが評価箱から落下する。
The above-mentioned fragility was evaluated according to the following criteria.
・ ◎: The appearance of the evaluation box has not changed at all after being lifted.
・ ○: The evaluation box is slightly torn after being lifted, but the weight remains in the evaluation box.
・ △: The evaluation box is torn after being lifted, but the weight stays in the evaluation box.
・ ×: After lifting, the evaluation box is severely torn, and the weight falls from the evaluation box.
 実施例d1~d3では、破裂強さが500[kPa]以上であり、破れやすさについて「△」以上の評価が得られ、オモリが落下することがなかった。破裂強さが1000[kPa]以上の実施例d2,d3では、「○」以上の評価が得られ、破裂強さが2000[kPa]以上の実施例d3では「◎」の評価が得られた。
 一方、破裂強さが500[kPa]未満の比較例d4では、破れやすさについて「×」の評価が得られ、オモリが落下した。
In Examples d1 to d3, the burst strength was 500 [kPa] or more, the easiness of tearing was evaluated as “Δ” or more, and the weight did not fall. In Examples d2 and d3 having a burst strength of 1000 [kPa] or more, an evaluation of "○" or more was obtained, and in Example d3 having a burst strength of 2000 [kPa] or more, an evaluation of "◎" was obtained. ..
On the other hand, in Comparative Example d4 having a burst strength of less than 500 [kPa], an evaluation of “x” was obtained for the ease of tearing, and the weight fell.
 よって、破裂強さが500[kPa]以上であれば、評価箱から内容物が抜け落ちることを防止することができると言える。さらに、破裂強さが1000[kPa]以上であれば、内容物の荷重による評価箱の損傷を抑制することができると言える。そのうえ、破裂強さが2000[kPa]以上であれば、内容物の荷重による評価箱の損傷を防止することができると言える。
 そのほか、ライナ原紙の坪量が大きいほど、破裂強さが高い傾向が見て取れる。このような坪量と破裂強さとの相関関係から、坪量が80[g/m2]以上であれば、評価箱から内容物が抜け落ちることを防止することができると言える。さらに、坪量が160[g/m2]以上であれば、内容物の荷重による評価箱の損傷を抑制することができると言える。そのうえ、坪量が240[g/m2]以上であれば、内容物の荷重による評価箱の損傷を防止することができると言える。
Therefore, if the burst strength is 500 [kPa] or more, it can be said that it is possible to prevent the contents from falling out of the evaluation box. Further, if the burst strength is 1000 [kPa] or more, it can be said that damage to the evaluation box due to the load of the contents can be suppressed. Moreover, if the burst strength is 2000 [kPa] or more, it can be said that damage to the evaluation box due to the load of the contents can be prevented.
In addition, it can be seen that the larger the basis weight of the liner base paper, the higher the burst strength. From such a correlation between the basis weight and the burst strength, it can be said that if the basis weight is 80 [g / m 2 ] or more, it is possible to prevent the contents from falling out of the evaluation box. Further, when the basis weight is 160 [g / m 2 ] or more, it can be said that damage to the evaluation box due to the load of the contents can be suppressed. Moreover, if the basis weight is 240 [g / m 2 ] or more, it can be said that damage to the evaluation box due to the load of the contents can be prevented.
<構成d′,d′′>
――測定対象――
 構成d′,d′′に関する実施例d10~d24および比較例d25,d26のうち、実施例d10,d11,d12および比較例d25のそれぞれの測定ダンボール材では、厚み,坪量のそれぞれが、上述の実施例d1,d2,d3および比較例d4の測定ダンボール材と同一である。実施例d13~d24および比較例d26のそれぞれの測定ダンボール材では、厚み,坪量のそれぞれが、上述の実施例d1,d2,d3および比較例d4の測定ダンボール材とは異なっている。
<Structure d', d''>
--Measurement target--
Of Examples d10 to d24 and Comparative Examples d25 and d26 relating to the configurations d'and d', the thickness and basis weight of the measured corrugated cardboard materials of Examples d10, d11, d12 and Comparative Example d25 are described above. It is the same as the measurement corrugated cardboard material of Example d1, d2, d3 and Comparative Example d4. In each of the measured corrugated cardboard materials of Examples d13 to d24 and Comparative Example d26, the thickness and the basis weight are different from the measured corrugated cardboard materials of Examples d1, d2, d3 and Comparative Example d4 described above.
 具体的には、実施例d10~d24および比較例d25,d26のそれぞれの測定ダンボール材では、以下に示す四種のフルートの何れか一つを採用した。
  ・Aフルート(シングルフルート)
  ・Bフルート(シングルフルート)
  ・Eフルート(シングルフルート)
  ・ABフルート(ダブルフルート)
Specifically, for each of the measurement cardboard materials of Examples d10 to d24 and Comparative Examples d25 and d26, any one of the four types of flutes shown below was adopted.
・ A flute (single flute)
・ B flute (single flute)
・ E flute (single flute)
・ AB flute (double flute)
 実施例d10~d24および比較例d25,d26のそれぞれに用いる各フルートの測定ダンボール材は、以下に示す緒元の段繰りロールを有するコルゲータを用いて製造された。
>Aフルート
  ・ 段高 :4.5[mm]
  ・段山数:34[山/30cm]
>Bフルート
  ・ 段高 :2.5[mm]
  ・段山数:50[山/30cm]
>Eフルート
  ・ 段高 :1.1[mm]
  ・段山数:85[山/30cm]
>ABフルート
 ――Aフルート――
  ・ 段高 :4.5[mm]
  ・段山数:34[山/30cm]
 ――Bフルート――
  ・ 段高 :2.5[mm]
  ・段山数:50[山/30cm]
The measurement cardboard material of each flute used in each of Examples d10 to d24 and Comparative Examples d25 and d26 was produced by using a corrugator having a stepped roll of the specifications shown below.
> A flute ・ Step height: 4.5 [mm]
・ Number of steps: 34 [mountain / 30 cm]
> B flute ・ Step height: 2.5 [mm]
・ Number of steps: 50 [mountain / 30 cm]
> E flute ・ Step height: 1.1 [mm]
・ Number of steps: 85 [mountain / 30 cm]
> AB Flute ――A Flute――
・ Step height: 4.5 [mm]
・ Number of steps: 34 [mountain / 30 cm]
--B flute--
・ Step height: 2.5 [mm]
・ Number of steps: 50 [mountain / 30 cm]
 上記の四種のフルートのうち、Aフルート,Bフルート,Eフルートをなすシングルフルートは、一つの中芯(下記表9~表11で「中芯2」)および二つのライナのそれぞれに対応する三つの原紙(資材)で構成されている。ABフルートをなすダブルフルートは、三つの中芯(下記表9~表11で「中芯1」,「中芯2」,「中芯3」)および二つのライナのそれぞれに対応する五つの原紙(資材)で構成されている。 Of the above four types of flutes, the single flutes that make up the A flute, B flute, and E flute correspond to one core (“core 2” in Tables 9 to 11 below) and two liners, respectively. It is composed of three base papers (materials). The double flute that forms the AB flute consists of three cores (“core 1”, “core 2”, and “core 3” in Tables 9 to 11 below) and five base papers corresponding to each of the two liners. It is composed of (materials).
 実施例d10~d24および比較例d25,d26では、それぞれの測定ダンボール材を構成する中芯またはライナをなす原紙のそれぞれに、下記の十種類のダンボール原紙の何れか一つを用いた。
  ・No.1:坪量90[g/m2],密度0.77[g/cm
  ・No.2:坪量170[g/m2],密度0.86[g/cm
  ・No.3:坪量250[g/m2],密度0.87[g/cm
  ・No.4:坪量60[g/m2],密度0.72[g/cm
  ・No.5:坪量160[g/m2],密度0.86[g/cm
  ・No.6:坪量120[g/m2],密度0.78[g/cm
  ・No.7:坪量170[g/m2],密度0.85[g/cm
  ・No.8:坪量170[g/m2],密度0.68[g/cm]〔LB 170:王子マテリア株式会社製〕
  ・No.9:坪量120[g/m2],密度0.59[g/cm]〔S 120:王子マテリア株式会社製〕
  ・No.10:坪量280[g/m2],密度0.85[g/cm
In Examples d10 to d24 and Comparative Examples d25 and d26, one of the following ten types of corrugated cardboard base paper was used for each of the base papers forming the core or liner constituting the respective measurement cardboard materials.
・ No. 1: Basis weight 90 [g / m 2 ], density 0.77 [g / cm 3 ]
・ No. 2: Basis weight 170 [g / m 2 ], density 0.86 [g / cm 3 ]
・ No. 3: Basis weight 250 [g / m 2 ], density 0.87 [g / cm 3 ]
・ No. 4: Basis weight 60 [g / m 2 ], density 0.72 [g / cm 3 ]
・ No. 5: Basis weight 160 [g / m 2 ], density 0.86 [g / cm 3 ]
・ No. 6: Basis weight 120 [g / m 2 ], density 0.78 [g / cm 3 ]
・ No. 7: Basis weight 170 [g / m 2 ], density 0.85 [g / cm 3 ]
・ No. 8: Basis weight 170 [g / m 2 ], density 0.68 [g / cm 3 ] [LB 170: manufactured by Oji Materia Co., Ltd.]
・ No. 9: Basis weight 120 [g / m 2 ], density 0.59 [g / cm 3 ] [S 120: manufactured by Oji Materia Co., Ltd.]
・ No. 10: Basis weight 280 [g / m 2 ], density 0.85 [g / cm 3 ]
 上記No.1の原紙を作成する方法は、針葉樹クラフトパルプおよびダンボール古紙パルプを原料とし、多層抄き抄紙機を使用して抄紙を施して、三層で構成される坪量90[g/m2]のダンボール原紙を作成するものである。抄紙条件は、カチオン性の紙力増強剤を紙層の全パルプの合計100[質量部]に対して、0.5[質量部]で含有し、表層のパルプのうち、針葉樹クラフトパルプを10[質量%]の割合で含有した。なお、カチオン性の紙力増強剤は全て表層に含有させた。また、針葉樹クラフトパルプは紙層の全パルプのうち6[質量%]であった。 No. above. The method of making the base paper of No. 1 is to use softwood kraft pulp and corrugated cardboard waste paper as raw materials, make paper using a multi-layer paper machine, and have a basis weight of 90 [g / m 2 ] composed of three layers. It creates a cardboard base paper. The papermaking conditions were that the cationic paper strength enhancer was contained in an amount of 0.5 [parts by mass] with respect to a total of 100 [parts by mass] of the total pulp of the paper layer, and 10 of the surface pulps were coniferous kraft pulp. It was contained in a proportion of [mass%]. In addition, all the cationic paper strength enhancers were contained in the surface layer. The softwood kraft pulp accounted for 6 [mass%] of the total pulp in the paper layer.
 上記No.1~No.10で原紙の密度を調節するために、原紙作成時の抄紙工程におけるカレンダー処理でニップ圧が調節された。密度の測定は、JIS P8118:1998に準じた測定方法で実施された。
 密度が調節されたこと以外では、上記No.2~No.6,No.10の原紙を作成する方法は、坪量を除きNo.1と同様の作成方法である。上記No.7の原紙を作成する方法は、表層のパルプのうち、針葉樹クラフトパルプを50質量%の割合で含有した以外は、No.2と同様の作成方法である。
 上記のように製造された測定ダンボール材を用いた実施例d10~d24および比較例d25,d26のそれぞれについて、破裂強さを測定し、下記の表9~表11に示す破裂強さが測定された。
The above No. 1 to No. In order to adjust the density of the base paper at 10, the nip pressure was adjusted by the calendering process in the papermaking process at the time of making the base paper. The density was measured by a measuring method according to JIS P8118: 1998.
Except for the fact that the density was adjusted, the above No. 2-No. 6, No. The method for producing the base paper of No. 10 is No. 1 except for the basis weight. This is the same creation method as in 1. The above No. The method for producing the base paper of No. 7 was No. 7 except that the surface layer pulp contained softwood kraft pulp in a proportion of 50% by mass. It is the same creation method as 2.
The burst strength was measured for each of Examples d10 to d24 and Comparative Examples d25 and d26 using the measured corrugated cardboard material manufactured as described above, and the burst strength shown in Tables 9 to 11 below was measured. It was.
Figure JPOXMLDOC01-appb-T000009
 
Figure JPOXMLDOC01-appb-T000009
 
Figure JPOXMLDOC01-appb-T000010
 
Figure JPOXMLDOC01-appb-T000010
 
Figure JPOXMLDOC01-appb-T000011
 
Figure JPOXMLDOC01-appb-T000011
 
 破裂強さは、折目を含まない箇所(折目無)と折目を含む箇所(折目有)とのそれぞれで測定されたことを除き、既述の「破裂強さ」と同様な評価箱(IFCコード:0401)の破れやすさに対応するパラメータである。
 折目無の破裂強さと折目有の破裂強さとのそれぞれを測定するために、実施例d10~d24および比較例d25,d26のそれぞれについて折目無の試験片と折目有の試験片との二種類の試験片を用意した。
The burst strength was evaluated in the same way as the above-mentioned "burst strength" except that it was measured at each of the points without creases (without creases) and the points with creases (with creases). This is a parameter corresponding to the fragility of the box (IFC code: 0401).
In order to measure the burst strength without creases and the burst strength with creases, the test pieces without creases and the test pieces with creases were used for Examples d10 to d24 and Comparative Examples d25 and d26, respectively. Two types of test pieces were prepared.
 折目無の試験片および折目有の試験片の何れも、測定ダンボール材の任意の段から切り出したA4サイズのダンボールシートからサンプルカッター(株式会社ミマキエンジニアリング社製,CF2-1218)を用いて下記の寸法で切り出された試験片である。
  ・寸法:縦寸法100[mm]
      横寸法100[mm]
 さらに、折目有の試験片は、上記寸法の試験片に下記の折目を入れた試験片である。なお、破裂強さの測定には、意図して設けた折目以外の、折目、傷や凹み等が存在しない試験片を使用する。
  ・折目:試験片の中心を通り、段目の方向に沿って延在する。
 この折目は、上記寸法の試験片に、下記の手順で加工を施して形成される。
  ・手順de:試験者が手で上記の寸法の試験片を折目の位置で折り畳む。
  ・手順df:手順deで作成した試験片を平坦面に載置して、折目箇所に下記の圧着機器を当てて、折目箇所で圧着機器を約10[mm/s]の速度で二往復させる。その後、JIS Z0203:2000に準拠して温度23[℃]および湿度50[%]の温湿度条件で試験片を24時間放置する。
     >圧着機器:品名「テープ圧着ローラー(手動)」,安田精機製作所製,品番No.349,ローラー質量:1[kg]
  ・手順dg:手順dfで放置した試験片(折目有り)の折目を開いた後に、上記の手順dc,ddで破裂強さを測定する。
For both the test piece without creases and the test piece with creases, a sample cutter (CF2-1218 manufactured by Mimaki Engineering Co., Ltd.) was used from an A4 size cardboard sheet cut out from an arbitrary stage of the measurement cardboard material. It is a test piece cut out with the following dimensions.
-Dimensions: Vertical dimension 100 [mm]
Horizontal dimension 100 [mm]
Further, the test piece with creases is a test piece having the following creases in the test piece having the above dimensions. For the measurement of the burst strength, a test piece having no creases, scratches, dents, etc. other than the intentionally provided creases is used.
・ Fold: Passes through the center of the test piece and extends along the direction of the step.
This crease is formed by processing a test piece having the above dimensions according to the following procedure.
-Procedure de: The examiner manually folds the test piece having the above dimensions at the fold position.
-Procedure df: Place the test piece created in procedure de on a flat surface, apply the following crimping equipment to the creases, and place the crimping equipment at the folds at a speed of about 10 [mm / s]. Make a round trip. Then, the test piece is left for 24 hours under temperature and humidity conditions of a temperature of 23 [° C.] and a humidity of 50 [%] in accordance with JIS Z0203: 2000.
> Crimping equipment: Product name "Tape crimping roller (manual)", manufactured by Yasuda Seiki Seisakusho, product number No. 349, roller mass: 1 [kg]
-Procedure dc: After opening the crease of the test piece (with crease) left in the procedure df, the burst strength is measured by the above procedures dc and dd.
――評価――
 実施例d10~d24および比較例d25,d26の測定ダンボール材に対して、折目無の試験片についての破れやすさと、折目有の試験片についての破れやすさと、罫割性とのそれぞれを評価した。
 「破れやすさ」は、「折目無の破れやすさ」「折目有の破れやすさ」とのそれぞれを評価することを除き、上述の「破れやすさ」と同様な箱に収容される内容物に対する耐荷重の軽重に対応する評価基準である。
--Evaluation--
With respect to the measured corrugated cardboard materials of Examples d10 to d24 and Comparative Examples d25 and d26, the easiness of tearing of the test piece without creases, the easiness of tearing of the test piece with creases, and the rule-breaking property evaluated.
"Easy to tear" is housed in the same box as "Easy to tear" described above, except that "Easy to tear without creases" and "Easy to tear with creases" are evaluated respectively. It is an evaluation standard corresponding to the light weight of the load capacity for the contents.
 上記の「折目無の破れやすさ」と「折目有の破れやすさ」とのそれぞれは下記の手順dD~dIで評価した。なお、評価対象の測定ダンボール材は、JIS P8111:1989規格に準拠して評価した。
  ・手順dD:評価箱の底面で下記の位置のそれぞれに、各辺の寸法が1[cm]鉄製の立方体(アーテック株式会社,製品名「密度測定用体(立方体)」,品番:61-6020-21,型番:8350)を配置する。なお、立方体は、底面の各位置に接着剤(東亞合成株式会社製の製品名「アロンアルファEXTRA耐衝撃」)を用いて貼り付けられる。
    >位置:評価箱の底面30(図3,図4参照)の四隅で、縦方向の端部から縦方向の中心へ向かって80[mm]の位置かつ横方向の端部から横方向の中心へ向かって50[mm]の位置を基準として(図3の破線を参照)、4[個]の立方体31(図3,図4参照)を配置する。
    >評価箱の底面30の寸法:縦210[mm]
                 横297[mm]
 なお、評価箱はテープの影響が出ないよう組立型(IFCコード0401)とした。
The above-mentioned "easiness of tearing without creases" and "easiness of tearing with creases" were evaluated by the following procedures dD to dI. The measurement corrugated cardboard material to be evaluated was evaluated in accordance with JIS P8111: 1989 standard.
-Procedure dD: A cube made of iron with a dimension of 1 [cm] on each side at each of the following positions on the bottom of the evaluation box (Artec Co., Ltd., product name "Density measurement body (cube)", product number: 61-6020 -21, model number: 8350) is placed. The cube is attached to each position on the bottom surface using an adhesive (product name "Aron Alpha EXTRA Impact Resistant" manufactured by Toagosei Co., Ltd.).
> Position: At the four corners of the bottom surface 30 (see FIGS. 3 and 4) of the evaluation box, a position of 80 [mm] from the vertical end toward the vertical center and from the horizontal end to the horizontal center. 4 [pieces] of cubes 31 (see FIGS. 3 and 4) are arranged with reference to the position of 50 [mm] toward the direction (see the broken line in FIG. 3).
> Dimensions of the bottom surface 30 of the evaluation box: length 210 [mm]
Horizontal 297 [mm]
The evaluation box was an assembly type (IFC code 0401) so as not to be affected by the tape.
  ・手順dE:手順dDで4[個]の立方体が底面30に配置された評価箱を台座32(図4参照)に載置する。台座32(図4参照)には、上面視で立方体31(図3,図4参照)のそれぞれと重複する箇所に、立方体31(図3,図4参照)が侵入可能な寸法で外部に連通した空間33(図4参照)が設けられている。
  ・手順dF:手順dDで評価箱の底面30に載置された4[個]の立方体の上側に下記のステンレス製バット34(図3,図4参照)を配置する。
    >バット(「SUSバット」):(トラスコ中山株式会社,製品名「ステンレス深型組バット5号」、品番:T-FU-7,底面サイズ「230[mm]×150[mm]」)
-Procedure dE: An evaluation box in which 4 [pieces] of cubes are arranged on the bottom surface 30 in the procedure dD is placed on a pedestal 32 (see FIG. 4). The pedestal 32 (see FIG. 4) communicates to the outside with a size that allows the cube 31 (see FIGS. 3 and 4) to penetrate into a portion overlapping each of the cubes 31 (see FIGS. 3 and 4) in a top view. A space 33 (see FIG. 4) is provided.
-Procedure dF: The following stainless steel bats 34 (see FIGS. 3 and 4) are placed on the upper side of the 4 [pieces] cubes placed on the bottom surface 30 of the evaluation box in the procedure dD.
> Bat ("SUS bat"): (TRUSCO NAKAYAMA Co., Ltd., product name "Stainless steel deep type bat No. 5", product number: T-FU-7, bottom size "230 [mm] x 150 [mm]")
  ・手順dG:手順dFで配置されたSUSバットに単位面積当たりの重量が15[kgf/cm2]となるようにオモリ35(図3,図4参照)を静置して、1[時間]放置する。オモリ35(図3,図4参照)は、4[個]の立方体のそれぞれに均等に荷重がかかるように、SUSバット34(図3,図4参照)の中央部に配置する。
  ・手順dH:各重量条件での手順dGにて評価箱に破れが発生したか否かを目視で確認する。破れが発生したか否かは、具体的には立方体が評価箱の底面を貫通したか否かで判断する。
  ・手順dI:手順dGで単位面積当たりの重量が10[kgf/cm2],5[kgf/cm2]となるようにオモリを変更して、各重量条件での手順dD~dHの試験も実施した。
-Procedure dG: The weight 35 (see FIGS. 3 and 4) was allowed to stand on the SUS bat arranged in the procedure dF so that the weight per unit area was 15 [kgf / cm 2 ], and 1 [hour]. put. The weight 35 (see FIGS. 3 and 4) is arranged at the center of the SUS bat 34 (see FIGS. 3 and 4) so that the load is evenly applied to each of the 4 cubes.
-Procedure dH: Visually check whether or not the evaluation box is torn in the procedure dG under each weight condition. Whether or not a tear has occurred is specifically determined by whether or not the cube has penetrated the bottom surface of the evaluation box.
-Procedure dI: The weights are changed so that the weight per unit area is 10 [kgf / cm 2 ] and 5 [kgf / cm 2 ] in the procedure dG, and the tests of the procedures dD to dH under each weight condition are also performed. Carried out.
 上記のように、手順dD~dIによる評価は、実施例d10~d24および比較例d25,d26の測定ダンボール材のそれぞれに対して15[kgf/cm2],10[kgf/cm2]および5[kgf/cm2]の三通りの重量条件で、「折目無の破れやすさ」の評価と「折目有の破れやすさ」の評価とのそれぞれを実施する。「折目無の破れやすさ」の評価は、評価箱の底面で折目が設けられていない箇所に鉄製立方体が配置された状態での評価である。「折目有の破れやすさ」の評価は、評価箱の底面で折目が設けられている箇所に立方体が配置された状態での評価である。 As described above, the evaluation according to the procedures dD to dI is 15 [kgf / cm 2 ], 10 [kgf / cm 2 ] and 5 for the measurement cardboard materials of Examples d10 to d24 and Comparative Examples d25 and d26, respectively. Under the three weight conditions of [kgf / cm 2 ], the evaluation of "easiness of tearing without creases" and the evaluation of "easiness of tearing with creases" are carried out respectively. The evaluation of "easiness of tearing without creases" is an evaluation in which an iron cube is placed on the bottom surface of the evaluation box where no creases are provided. The evaluation of "easiness of tearing with creases" is an evaluation in which a cube is arranged at a place where a crease is provided on the bottom surface of the evaluation box.
 「折目無の破れやすさ」と「折目有の破れやすさ」とは、下記の基準で評価した。
  ・◎:三通りの重量条件の何れでも破れが全く生じない。
  ・○:15[kgf/cm2]の条件で1[箇所]以上の破れが生じる。
  ・△:15,10[kgf/cm2]の各条件で1[箇所]以上の破れが生じる(言い換えれば10[kgf/cm2]で1[箇所]以上の破れが生じるが、5[kgf/cm2]では破れが生じない)。
  ・×:三通りの重量条件の何れでも1[箇所]以上の破れが生じる。
 上記の評価のうち「△」以上を良好な評価とした。上記の基準では、「△」以上と評価する基準に5[kgf/cm2]の重量条件を設定しているので、通販分野で搬送されることが多い荷物重量(5[kg])を考慮した評価が実施される。また、「◎」と評価する基準として、15[kgf/cm2]の重量条件を設定しているので、自動製函システム(フルオート機)で一般的な荷物の重量上限(15[kg])を考慮した評価が実施される。
"Easy to tear without creases" and "Easy to tear with creases" were evaluated according to the following criteria.
・ ◎: No tearing occurs under any of the three weight conditions.
-○: 1 [location] or more is torn under the condition of 15 [kgf / cm 2 ].
· △: 15,10 [kgf / cm 2] of but 1 [points] or more tear occurs (in other words 10 [kgf / cm 2] at 1 [point] or more tear occurs in each condition, 5 [kgf / Cm 2 ] does not cause tearing).
-X: One or more tears occur in any of the three weight conditions.
Of the above evaluations, those with "Δ" or higher were regarded as good evaluations. In the above criteria, the weight condition of 5 [kgf / cm 2 ] is set as the criterion for evaluating "△" or more, so the weight of luggage (5 [kg]) that is often transported in the mail-order field is taken into consideration. The evaluation is carried out. In addition, since the weight condition of 15 [kgf / cm 2 ] is set as the criterion for evaluating "◎", the weight upper limit (15 [kg]) of luggage that is common in the automatic box making system (fully automatic machine). ) Is taken into consideration.
 「罫割性」とは、測定ダンボール材を折り曲げた際の破損のしにくさに対応する評価基準である。破損は折目の箇所でのライナの割れや、裂け,破れなどを含む。なお、折目の箇所とは折目の周辺を含む領域である。
 罫割性の評価は、測定ダンボール材の全ての折目を対象として、折目の箇所において折目の外側に位置するライナに罫割が生じているか否かを目視で確認することで実施した。
確認結果は、以下の二段階の基準で評価した。
  ・○:全ての折目に罫割れがみられなかった。
  ・×:折目に罫割れが1以上みられた。
 上記の評価のうち「〇」を良好な評価とし、「×」を不良な評価とした。
"Rule splitting property" is an evaluation standard corresponding to the resistance to damage when the measured corrugated cardboard material is bent. Damage includes cracking, tearing, and tearing of the liner at the creases. The crease portion is an area including the periphery of the fold.
The evaluation of the rule-breaking property was carried out by visually confirming whether or not the liner located outside the crease had a rule-breaking at all the folds of the measured corrugated cardboard material. ..
The confirmation results were evaluated according to the following two criteria.
・ ○: No cracks were found in all the creases.
・ ×: One or more ruled cracks were found in the creases.
Of the above evaluations, "○" was regarded as a good evaluation and "×" was regarded as a poor evaluation.
 実施例d10~d24では、折目有の破裂強さ,折目無の破裂強さの何れもが500[kPa]以上であり、「折目無の破れやすさ」および「折目有の破れやすさ」の何れも「△」以上の評価が得られた。
 折目有の破裂強さが650[kPa]以上の実施例d11~d13,d15~d24では、折目有の破れやすさで「○」以上の評価が得られた。折目無の破裂強さが650[kPa]以上の実施例d11~d21,d23,d24では、折目無の破れやすさで「○」以上の評価が得られた。
 折目有の破裂強さが1500[kPa]以上の実施例d18,d21,d23,d24では、折目有の破れやすさで「◎」の評価が得られた。折目無の破裂強さが1500[kPa]以上の実施例d12,d23,d24では、折目無の破れやすさで「◎」の評価が得られた。
In Examples d10 to d24, both the burst strength with creases and the burst strength without creases are 500 [kPa] or more, and "easiness to tear without creases" and "breakage with creases". All of "ease" were evaluated as "△" or higher.
In Examples d11 to d13 and d15 to d24 in which the burst strength with creases was 650 [kPa] or more, the easiness of tearing with creases was evaluated as “◯” or higher. In Examples d11 to d21, d23, and d24 having a crease-free burst strength of 650 [kPa] or more, an evaluation of “◯” or higher was obtained for the crease-free tearability.
In Examples d18, d21, d23, and d24 having a crease-bearing burst strength of 1500 [kPa] or more, an evaluation of “⊚” was obtained for the crease-bearing easiness of tearing. In Examples d12, d23, and d24 having a crease-free burst strength of 1500 [kPa] or more, an evaluation of “⊚” was obtained for the crease-free tearability.
 一方、折目無の破裂強さおよび折目有の破裂強さの少なくとも一方が500[kPa]未満の比較例d25,26では、折目無の破れやすさおよび折目有の破れやすさ少なくとも一方について「×」の評価が得られた。
 具体的には、シングルフルートの比較例d25では、折目無および折目有の破裂強さの何れとも500[kPa]未満で折目無および折目有の破れやすさの両方について「×」の評価が得られた。ダブルフルートの比較例d26では、折目有の破裂強さが500[kPa]以上で折目有の破れやすさは「△」の評価が得られたが、折目無の破裂強さが500[kPa]未満で、折目無の破れやすさで「×」の評価が得られた。
On the other hand, in Comparative Examples d25 and 26 in which at least one of the crease-free burst strength and the crease-bearing burst strength is less than 500 [kPa], the crease-free rupture easiness and the crease-bearing rupture easiness at least. One of them was evaluated as "x".
Specifically, in Comparative Example d25 of a single flute, both the burst strength without creases and the burst strength with creases were less than 500 [kPa], and both the crease-free and crease-bearing tearability were indicated by "x". Was obtained. In the double flute comparative example d26, the rupture strength with creases was 500 [kPa] or more, and the fragility with creases was evaluated as “△”, but the rupture strength without creases was 500. When it was less than [kPa], the evaluation of "x" was obtained for the ease of tearing without creases.
 実施例d10~d24のうち実施例d10~d22では、折目有の破裂強さ,折目無の破裂強さの何れもが2000[kPa]以下であり、「罫割性」で「〇」の評価が得られた。
 実施例d10~d24のうち折目有の破裂強さおよび折目無の破裂強さの少なくとも一方が2000[kPa]よりも大きい実施例d23,d24では、罫割性で「×」の評価が得られた。
In Examples d10 to d22 of Examples d10 to d24, both the burst strength with creases and the burst strength without creases are 2000 [kPa] or less, and the "ruledness" is "○". Was obtained.
In Examples d23 and d24 in which at least one of the crease-bearing burst strength and the crease-free burst strength is greater than 2000 [kPa] among Examples d10 to d24, an evaluation of “x” is given in terms of rule-cutting property. Obtained.
 シングルフルートの比較例d25に鑑みて、シングルフルートの実施例d10~d17,d23からは、シングルフルートで折目有の破裂強さが500[kPa]以上であれば、評価箱から内容物が抜け落ちることを防止することができると言える。さらに、折目有りの破裂強さが650[kPa]以上であれば、内容物の荷重による評価箱の損傷を抑制することができると言える。そのうえ、破裂強さが1500[kPa]以上であれば、内容物の荷重による評価箱の損傷を防止することができると言える。
 一方、シングルフルートの実施例d23に鑑みて、シングルフルートの実施例d10~d17からは、シングルフルートで折目有の破裂強さが1500[kPa]以下であれば測定ダンボール材の全ての折目で破損を防止することができると言える。
In view of Comparative Example d25 of Single Flute, from Examples d10 to d17 and d23 of Single Flute, if the burst strength of the single flute with creases is 500 [kPa] or more, the contents fall out from the evaluation box. It can be said that this can be prevented. Further, if the burst strength with creases is 650 [kPa] or more, it can be said that damage to the evaluation box due to the load of the contents can be suppressed. Moreover, if the burst strength is 1500 [kPa] or more, it can be said that damage to the evaluation box due to the load of the contents can be prevented.
On the other hand, in view of Example d23 of the single flute, from Examples d10 to d17 of the single flute, if the burst strength of the single flute with creases is 1500 [kPa] or less, all the folds of the measured corrugated cardboard material. It can be said that damage can be prevented.
 そのほか、ライナ原紙の坪量や密度が大きいほど、破裂強さが高い傾向が見て取れる。このような坪量と破裂強さとの相関関係から、シングルフルートではライナ原紙の坪量が80[g/m2]以上であり密度が0.75[g/cm3]以上であれば、評価箱から内容物が抜け落ちることを防止することができると言える。さらに、シングルフルートではライナ原紙の坪量が160[g/m2]以上であり密度が0.85[g/cm3]以上であれば、内容物の荷重による評価箱の損傷を抑制することができると言える。そのうえ、シングルフルートではライナ原紙の坪量が240[g/m2]以上であり密度が0.87[g/cm3]以上であれば、内容物の荷重による評価箱の損傷を防止することができると言える。 In addition, it can be seen that the larger the basis weight and density of the liner base paper, the higher the burst strength. From such a correlation between the basis weight and the burst strength, if the basis weight of the liner base paper is 80 [g / m 2 ] or more and the density is 0.75 [g / cm 3 ] or more in the single flute, it is evaluated. It can be said that it is possible to prevent the contents from falling out of the box. Furthermore, in the case of a single flute, if the basis weight of the liner base paper is 160 [g / m 2 ] or more and the density is 0.85 [g / cm 3 ] or more, damage to the evaluation box due to the load of the contents should be suppressed. Can be said to be possible. In addition, for single flutes, if the basis weight of the liner base paper is 240 [g / m 2 ] or more and the density is 0.87 [g / cm 3 ] or more, damage to the evaluation box due to the load of the contents should be prevented. Can be said to be possible.
 また、シングルフルートの実施例d10~d17,d23のうち、ライナ原紙の材質と密度とが異なる実施例d13とd14から、シングルフルートでは、ライナ原紙の材質の違いにより、具体的には表層のパルプに含有される針葉樹クラフトパルプの割合が大きいほど、破裂強さが低下する傾向があると推察される。また、シングルフルートの実施例d10~d17,d23のうち、原紙は共通であって互いにフルートのみが異なる実施例d15,d16,d17から、シングルフルートではフルートの違いが折目無,折目有の破裂強さに影響を与えないと推察される。 Further, among Examples d10 to d17 and d23 of the single flute, from Examples d13 and d14 in which the material and density of the liner base paper are different, in the single flute, the pulp of the surface layer is specifically due to the difference in the material of the liner base paper. It is presumed that the greater the proportion of softwood kraft pulp contained in, the lower the burst strength tends to be. Further, among Examples d10 to d17 and d23 of the single flute, from Examples d15, d16 and d17 in which the base paper is common and only the flute is different from each other, the difference in the flute is no crease and crease is present in the single flute. It is presumed that it does not affect the burst strength.
 シングルフルートの実施例d10~d17,d23,比較例d25から、シングルフルートでは、折目無の破裂強さと比較して折目有の破裂強さが低い傾向が見て取れる。
 ライナの坪量が比較的小さい実施例d10とライナの坪量が比較的大きい実施例d11やd12から、坪量の比較的小さいライナを用いたシングルフルートの測定ダンボール材では、折目無と比較して折目有の破裂強さが大きく変化しないのに対して、坪量の比較的大きいライナを用いたシングルフルートの測定ダンボール材では、折目無の破裂強さと比較して折目有の破裂強さの低下する度合いが大きいことが見て取れる。
From Examples d10 to d17, d23 and Comparative Example d25 of the single flute, it can be seen that the single flute tends to have a lower burst strength with creases than the burst strength without creases.
From Examples d10 in which the liner basis weight is relatively small and Examples d11 and d12 in which the liner basis weight is relatively large, the single flute measurement using the liner having a relatively small basis weight is compared with no crease. The burst strength with creases does not change significantly, whereas the single flute measurement cardboard material using a liner with a relatively large basis weight has creases compared to the burst strength without creases. It can be seen that the degree of decrease in burst strength is large.
 ダブルフルートの比較例d26に鑑みて、ダブルフルートの実施例d18~d22,d24からは、折目無の破裂強さが500[kPa]以上であり折目有の破裂強さが520[kPa]以上であれば、評価箱から内容物が抜け落ちることを防止することができると言える。さらに、実施例d18~d21,d24からは折目無の破裂強さが700[kPa]以上であり折目有の破裂強さが800[kPa]以上であれば、内容物の荷重による評価箱の損傷を抑制することができると言える。そのうえ、実施例d18,d21,d24からは折目無の破裂強さが1000[kPa]以上であり折目有の破裂強さが1500[kPa]以上であれば、内容物の荷重による評価箱の損傷を防止することができると言える。
 一方、ダブルフルートの実施例d24に鑑みて、ダブルフルートの実施例d18~d22からは、ダブルフルートで折目無および折目有の破裂強さが2500[kPa]以下であれば測定ダンボール材の全ての折目で破損を防止することができると言える。
In view of Comparative Example d26 of the double flute, from Examples d18 to d22 and d24 of the double flute, the burst strength without creases is 500 [kPa] or more and the burst strength with creases is 520 [kPa]. With the above, it can be said that it is possible to prevent the contents from falling out of the evaluation box. Further, from Examples d18 to d21 and d24, if the burst strength without creases is 700 [kPa] or more and the burst strength with creases is 800 [kPa] or more, the evaluation box based on the load of the contents It can be said that the damage of the box can be suppressed. Moreover, from Examples d18, d21, and d24, if the burst strength without creases is 1000 [kPa] or more and the burst strength with creases is 1500 [kPa] or more, the evaluation box based on the load of the contents It can be said that the damage can be prevented.
On the other hand, in view of Example d24 of the double flute, from Examples d18 to d22 of the double flute, if the burst strength of the double flute without creases and with creases is 2500 [kPa] or less, the corrugated cardboard material is measured. It can be said that damage can be prevented at all folds.
 ダブルフルートの実施例d18~d22,d24,比較例d26から、ダブルフルートでは、折目無の破裂強さと比較して折目有の破裂強さが高くなる傾向が見て取れる。ダブルフルートの測定段ボール材では、折目を展開した際に、中芯の段目が折目で潰れた状態であるため、二つのライナと三つの中芯の厚み方向の距離が近接することと、中芯の段目が潰れて厚み方向に重なり合うこととにより、折目無に比べて折目有の破裂強さが高くなると推察される。 From Examples d18 to d22, d24 and Comparative Example d26 of the double flute, it can be seen that in the double flute, the burst strength with creases tends to be higher than the burst strength without creases. Double flute measurement In corrugated cardboard materials, when the creases are unfolded, the steps of the core are crushed by the folds, so the distance between the two liners and the three cores in the thickness direction is close. It is presumed that the rupture strength with creases is higher than that without creases because the steps of the core are crushed and overlap in the thickness direction.
 そのほか、ダブルフルートでもライナ原紙や中芯原紙の坪量および密度が大きいほど、破裂強さが高い傾向が見て取れる。このような坪量と破裂強さとの相関関係から、ダブルフルートではライナ原紙の坪量が80[g/m2]以上であり密度が0.75[g/cm3]以上であるか、または、中芯原紙の坪量が130[g/m2]以上であり密度が0.65[g/cm3]以上であれば、評価箱から内容物が抜け落ちることを防止することができると言える。とくに、ライナ原紙の坪量が80[g/m2]以上であり密度が0.75[g/cm]以上であれば、内容物の荷重による評価箱の損傷を抑制することができると言える。そのうえ、ライナ原紙の坪量が150[g/m2]以上であり密度が0.85[g/cm3]以上であれば、内容物の荷重による評価箱の損傷を防止することができると言える。 In addition, even with double flutes, it can be seen that the greater the basis weight and density of the liner base paper and core base paper, the higher the burst strength. From such a correlation between the basis weight and the burst strength, in the double flute, the basis weight of the liner base paper is 80 [g / m 2 ] or more and the density is 0.75 [g / cm 3 ] or more, or If the basis weight of the core base paper is 130 [g / m 2 ] or more and the density is 0.65 [g / cm 3 ] or more, it can be said that it is possible to prevent the contents from falling out of the evaluation box. .. In particular, if the basis weight of the liner base paper is 80 [g / m 2 ] or more and the density is 0.75 [g / cm 3 ] or more, damage to the evaluation box due to the load of the contents can be suppressed. I can say. Moreover, if the basis weight of the liner base paper is 150 [g / m 2 ] or more and the density is 0.85 [g / cm 3 ] or more, damage to the evaluation box due to the load of the contents can be prevented. I can say.
<構成e>
――測定対象――
 構成eに関する実施例e1~e3および比較例e4には、実施例b1~b3,c1~c3,d1~d3や比較例b4,c4,d4と同様の原紙を用い、実施例c1~c3,d1~d3や比較例c4,d4と同様の段繰りロールを有するコルゲータを用いて製造されたAフルートの測定ダンボール材を用いた。
 上記のように製造された測定ダンボール材を用いた実施例e1~e3および比較例e4のそれぞれについて、接着力を測定し、下記の表12に示す接着力が測定された。
 なお、表12の表記に関し、「S側」は「シングルフェーサ側」(裏ライナ側)を意味し、「G側」は「グルーマシン側」(表ライナ側)を意味する。
<Structure e>
--Measurement target--
In Examples e1 to e3 and Comparative Example e4 regarding the configuration e, the same base papers as in Examples b1 to b3, c1 to c3, d1 to d3 and Comparative Examples b4, c4, d4 are used, and Examples c1 to c3, d1 A corrugated cardboard material for measuring A flute produced by using a corrugator having the same stepping rolls as in d3 and Comparative Examples c4 and d4 was used.
The adhesive strength was measured for each of Examples e1 to e3 and Comparative Example e4 using the measured corrugated cardboard material produced as described above, and the adhesive strength shown in Table 12 below was measured.
Regarding the notation in Table 12, "S side" means "single facer side" (back liner side), and "G side" means "glue machine side" (front liner side).
Figure JPOXMLDOC01-appb-T000012
 
Figure JPOXMLDOC01-appb-T000012
 
 「接着力」は、測定ダンボール材のシートにおいて中芯の段頂(極大値に対応する箇所)とライナとの接着部の引き剥がし抵抗値に対応するパラメータである。平たく言えば、測定ダンボール材のシートをなすライナの剥がれにくさに対応するパラメータである。
 この接着力は、下記の手順ea~edで測定した。
  ・手順ea:測定ダンボール材の全段数のうち半分の段数を基準に上下十段分のシートを採取し、変形(たとえば凹み)のない二十枚のシートを切り出す。
  ・手順eb:手順eaで切り出されたシートから、以下に示すサイズに試験用のサンプルをカッタで切り出す。
    中芯の波形構造と平行な方向(縦方向〈CD方向〉):50[mm]
    中芯の波形構造と直交する方向(横方向〈MD方向〉):85[mm]
  ・手順ec:手順ebで切り出されたサンプルは、表裏のそれぞれ十枚準備する。具体的には、シングルフェーサ側の接着力を測定するための十枚と、グルーマシン側の接着力を測定するための十枚とを準備する。
  ・手順ed:手順ecで準備されたサンプルを下記の測定装置に装着し、下記の準拠規格,測定条件で接着力を測定した。
   >準拠規格:JIS Z0402:1995
   >測定装置:圧縮試験機(株式会社エー・アンド・デイ製,RTF1350)
   >測定条件:ピンアタッチメント(日本T.M.C.株式会社)をサンプルに装着し、測定装置上に置いて、剥離面が上側となるように13[mm/分]の速度で荷重を印加し、サンプルの接着部が剥離したときの最大荷重を測定する。
  ・手順ee:手順ad,aD,bg,ddと同様に、手順edで測定された接着力から、測定結果の精度を低下させる外乱(要因)となりうる数値を除外して、平均値をとったものを破裂強さとした。
The "adhesive force" is a parameter corresponding to the peeling resistance value of the adhesive portion between the stepped top of the core (the part corresponding to the maximum value) and the liner in the sheet of the corrugated cardboard material to be measured. To put it plainly, it is a parameter corresponding to the difficulty of peeling off the liner forming the sheet of the corrugated cardboard material.
This adhesive strength was measured by the following procedures ea to ed.
-Procedure ea: Based on the number of steps of half of the total number of steps of the corrugated cardboard material to be measured, 10 upper and lower sheets are collected, and 20 sheets without deformation (for example, dents) are cut out.
-Procedure eb: From the sheet cut out in step ea, cut out a test sample to the size shown below with a cutter.
Direction parallel to the corrugated structure of the core (vertical direction <CD direction>): 50 [mm]
Direction orthogonal to the corrugated structure of the core (horizontal direction <MD direction>): 85 [mm]
-Procedure ec: Prepare ten samples on the front and back of the sample cut out in procedure eb. Specifically, ten sheets for measuring the adhesive force on the single facer side and ten sheets for measuring the adhesive force on the glue machine side are prepared.
-Procedure ed: The sample prepared in procedure ec was attached to the following measuring device, and the adhesive strength was measured under the following compliant standards and measurement conditions.
> Compliant standard: JIS Z0402: 1995
> Measuring device: Compression tester (manufactured by A & D Co., Ltd., RTF1350)
> Measurement conditions: A pin attachment (Nippon TMC Co., Ltd.) is attached to the sample, placed on the measuring device, and a load is applied at a speed of 13 [mm / min] so that the peeling surface is on the upper side. Then, measure the maximum load when the adhesive part of the sample is peeled off.
-Procedure ee: Similar to procedure ad, aD, bg, dd, the average value was taken by excluding the numerical values that could be a disturbance (factor) that deteriorates the accuracy of the measurement result from the adhesive force measured in procedure ed. The thing was made the burst strength.
――評価――
 上記のようにして接着力が得られた実施例e1~e3および比較例e4について、ライナ剥がれを評価した。
 「ライナ剥がれ」とは、箱の品質の高低や外観の良否などに対応する評価基準である。このライナ剥がれは、下記の手順eA~eCで評価した。
  ・手順eA:構成a,bに係る製函性の評価と同様に、測定ダンボール材の折目を跨ぐカット線で評価ダンボール片を切り抜く。なお、一枚目の評価ダンボール片を切り抜くにあたって新しいカッタ刃に交換し、このカッタ刃を百枚目(最後)まで交換せずに使用した。
  ・手順eB:手順eAで切り抜かれた評価ダンボール片を手組みで組み立てる。
  ・手順eC:手順eBで組み立てられた評価箱におけるライナ(シート)の剥がれの有無を観察する。
--Evaluation--
The liner peeling was evaluated for Examples e1 to e3 and Comparative Example e4 in which the adhesive strength was obtained as described above.
"Liner peeling" is an evaluation standard corresponding to the quality of the box and the quality of the appearance. This liner peeling was evaluated by the following procedures eA to eC.
-Procedure eA: Similar to the evaluation of the box-making property according to the configurations a and b, the evaluation cardboard piece is cut out at the cut line straddling the crease of the measurement cardboard material. When cutting out the first evaluation cardboard piece, it was replaced with a new cutter blade, and this cutter blade was used without replacement until the 100th (last) piece.
-Procedure eB: Assemble the evaluation cardboard pieces cut out in procedure eA by hand.
-Procedure eC: Observe the presence or absence of peeling of the liner (sheet) in the evaluation box assembled in procedure eB.
 上記のライナ剥がれは、下記の基準で評価した。
  ・◎:全て(100[箱])の評価箱において、ライナの剥がれが見られなかった。
  ・○:100[箱]の評価箱のうち1~2[箱]にライナの剥がれが見られた。
  ・△:100[箱]の評価箱のうち3~4[箱]にライナの剥がれが見られた。
  ・×:100[箱]の評価箱のうち5[箱]にライナの剥がれが見られた。
 なお、ライナ剥がれに関して「○」の評価が得られた実施例e2,e3については、実施例e2で1[箱]にライナの剥がれが見られ、比較例e3で2[箱]にライナの剥がれが見られた。そのほか、ライナ剥がれに関して「△」の評価が得られた実施例や比較例は無かった。
The above liner peeling was evaluated according to the following criteria.
-⊚: No peeling of the liner was observed in all (100 [box]) evaluation boxes.
-○: Liner peeling was observed in 1 to 2 [boxes] of the evaluation boxes of 100 [boxes].
-△: The liner was peeled off in 3 to 4 [boxes] out of the evaluation boxes of 100 [boxes].
-X: Liner peeling was observed in 5 [boxes] of the 100 [boxes] evaluation boxes.
Regarding Examples e2 and e3 in which the evaluation of "○" was obtained for liner peeling, liner peeling was observed in 1 [box] in Example e2, and liner peeling was observed in 2 [box] in Comparative Example e3. It was observed. In addition, there were no examples or comparative examples in which a rating of "Δ" was obtained for liner peeling.
 実施例e1~e3では、シングルフェーサ側およびグルーマシン側で測定された接着力の平均値(以下「平均接着力」と称する)が140[N]以上であって、ライナ剥がれについて「○」以上の評価が得られた。特に、平均接着力が220[N]以上の実施例e1では、「◎」の評価が得られた。
 一方、平均接着力が140[N]未満の比較例1では、ライナ剥がれについて「×」の評価が得られた。
In Examples e1 to e3, the average value of the adhesive strength (hereinafter referred to as "average adhesive strength") measured on the single facer side and the glue machine side is 140 [N] or more, and the liner peeling is "○". The above evaluation was obtained. In particular, in Example e1 having an average adhesive strength of 220 [N] or more, an evaluation of “⊚” was obtained.
On the other hand, in Comparative Example 1 in which the average adhesive strength was less than 140 [N], an evaluation of "x" was obtained for the liner peeling.
 上記の平均接着力が140[N]以上であれば、測定ダンボール材から評価ダンボール片が切り抜かれるときにライナが剥がれにくくなり、評価ダンボール片から評価箱が組み立てられるときにもライナが剥がれにくくなると推察される。さらに、平均接着力が220[N]以上であれば、評価ダンボール片の切り抜き時や組み立て時の双方でライナの剥がれを防止することができると推察される
 よって、平均接着力が140[N]以上であれば、評価箱のライナが剥がれにくくなると言える。延いては、評価箱の外観が低下するのを抑えることができ、評価箱の品質を確保することができるとも言える。
If the above average adhesive strength is 140 [N] or more, the liner will not easily come off when the evaluation cardboard piece is cut out from the measurement cardboard material, and the liner will not come off easily when the evaluation box is assembled from the evaluation cardboard piece. Inferred. Furthermore, if the average adhesive strength is 220 [N] or more, it is presumed that the liner can be prevented from peeling off both when the evaluation cardboard piece is cut out and when it is assembled. Therefore, the average adhesive strength is 140 [N]. With the above, it can be said that the liner of the evaluation box is less likely to come off. As a result, it can be said that the deterioration of the appearance of the evaluation box can be suppressed and the quality of the evaluation box can be ensured.
<構成f>
――測定対象――
 まず、下記の表13~表16に示す構成fに関する実施例f1~f11,f21~f32および比較例f12~f20,f33~f36の測定ダンボール材の構成を説明する。
<Structure f>
--Measurement target--
First, the configurations of the measured corrugated cardboard materials of Examples f1 to f11, f21 to f32 and Comparative Examples f12 to f20 and f33 to f36 regarding the configurations f shown in Tables 13 to 16 below will be described.
Figure JPOXMLDOC01-appb-T000013
 
Figure JPOXMLDOC01-appb-T000013
 
Figure JPOXMLDOC01-appb-T000014
 
Figure JPOXMLDOC01-appb-T000014
 
Figure JPOXMLDOC01-appb-T000015
 
Figure JPOXMLDOC01-appb-T000015
 
Figure JPOXMLDOC01-appb-T000016
 
Figure JPOXMLDOC01-appb-T000016
 
 構成fに関する実施例f1~f11,f21~f32および比較例f12~f20,f33~f36のライナ原紙には、上記の表13~表16に示すように、以下に示す坪量のうち何れか一つの坪量を採用した。これらライナ原紙は、特許6213364号公報のダンボール用ライナの製造方法にしたがって作製した。
  ・(ライナ原紙の)坪量120[g/m2
  ・(ライナ原紙の)坪量160[g/m2
  ・(ライナ原紙の)坪量280[g/m2
  ・(ライナ原紙の)坪量100[g/m2
  ・(ライナ原紙の)坪量320[g/m2
  ・(ライナ原紙の)坪量110[g/m2
  ・(ライナ原紙の)坪量105[g/m2
As shown in Tables 13 to 16 above, any one of the basis weights shown below is applied to the liner base papers of Examples f1 to f11, f21 to f32 and Comparative Examples f12 to f20, f33 to f36 regarding the configuration f. Adopted one basis weight. These liner base papers were produced according to the method for producing a corrugated cardboard liner of Japanese Patent No. 6213364.
・ Basis weight 120 [g / m 2 ] (of liner base paper)
・ Basis weight (of liner base paper) 160 [g / m 2 ]
・ Basis weight (of liner base paper) 280 [g / m 2 ]
・ Basis weight (of liner base paper) 100 [g / m 2 ]
・ Basis weight 320 [g / m 2 ] (of liner base paper)
・ Basis weight 110 [g / m 2 ] (of liner base paper)
・ Basis weight 105 [g / m 2 ] (of liner base paper)
 また、実施例f1~f11,f21~f32および比較例f12~f20,f33~f36では、上記の表13~表16に示すように、以下に示す二種の坪量のうち何れか一つの坪量を採用した。これらの中芯原紙は、特開2017-218721号公報の製造方法にしたがって作製した。
  ・(中芯原紙の)坪量120[g/m2
  ・(中芯原紙の)坪量160[g/m2
 上記のライナ原紙および中芯原紙の各坪量は、測定ダンボール材の資材(原材料)をなす原紙の坪量であり、JIS Z0203:2000に準拠して温度23[℃]および湿度50[%]の温湿度条件で24時間以上の前処理が施された常態において測定された。
Further, in Examples f1 to f11, f21 to f32 and Comparative Examples f12 to f20 and f33 to f36, as shown in Tables 13 to 16 above, one of the two types of basis weights shown below is used. Adopted quantity. These core base papers were produced according to the production method of JP2017-218721A.
・ Basis weight 120 [g / m 2 ] (of core base paper)
・ Basis weight (of core base paper) 160 [g / m 2 ]
Each basis weight of the liner base paper and the core base paper described above is the basis weight of the base paper that forms the material (raw material) of the measured corrugated cardboard material, and has a temperature of 23 [° C.] and a humidity of 50 [%] in accordance with JIS Z0203: 2000. It was measured under normal conditions where pretreatment was performed for 24 hours or more under the temperature and humidity conditions of.
 実施例f1~f11,f21~f32および比較例f12~f20,f33~f36の測定ダンボール材は両面ダンボールであり、以下に示す五種のフルートのうち何れか一つのフルートを採用した。
  ・ A フルート
  ・ B フルート
  ・ C フルート
  ・ ABフルート
  ・ ACフルート
The measurement corrugated cardboard materials of Examples f1 to f11, f21 to f32 and Comparative Examples f12 to f20 and f33 to f36 were double-sided corrugated cardboard, and one of the five types of flutes shown below was adopted.
・ A flute ・ B flute ・ C flute ・ AB flute ・ AC flute
 実施例f21~f27,f32,比較例f35,f36の測定ダンボール材は、高さ方向の一方から他方へ向かう順に下記の坪量を有する五つの原紙を積層して構成されている。
  ・ ライナ原紙:坪量160[g/m2
  ・  中芯原紙:坪量160[g/m2
  ・中ライナ原紙:坪量160[g/m2
  ・  中芯原紙:坪量160[g/m2
  ・ ライナ原紙:坪量160[g/m2
The measurement corrugated cardboard materials of Examples f21 to f27, f32 and Comparative Examples f35 and f36 are formed by laminating five base papers having the following basis weights in the order from one to the other in the height direction.
・ Liner base paper: Basis weight 160 [g / m 2 ]
-Core base paper: Basis weight 160 [g / m 2 ]
・ Medium liner base paper: Basis weight 160 [g / m 2 ]
-Core base paper: Basis weight 160 [g / m 2 ]
・ Liner base paper: Basis weight 160 [g / m 2 ]
 また、実施例f28の測定ダンボール材は、高さ方向の一方から他方へ向かう順に下記の坪量を有する五つの原紙を積層して構成されている。
  ・ ライナ原紙:坪量280[g/m2
  ・  中芯原紙:坪量160[g/m2
  ・中ライナ原紙:坪量160[g/m2
  ・  中芯原紙:坪量160[g/m2
  ・ ライナ原紙:坪量280[g/m2
Further, the measurement corrugated cardboard material of Example f28 is formed by laminating five base papers having the following basis weights in the order from one to the other in the height direction.
・ Liner base paper: Basis weight 280 [g / m 2 ]
-Core base paper: Basis weight 160 [g / m 2 ]
・ Medium liner base paper: Basis weight 160 [g / m 2 ]
-Core base paper: Basis weight 160 [g / m 2 ]
・ Liner base paper: Basis weight 280 [g / m 2 ]
 また、実施例f29の測定ダンボール材は、高さ方向の一方から他方へ向かう順に下記の坪量を有する五つの原紙を積層して構成されている。
  ・ ライナ原紙:坪量160[g/m2
  ・  中芯原紙:坪量120[g/m2
  ・中ライナ原紙:坪量120[g/m2
  ・  中芯原紙:坪量120[g/m2
  ・ ライナ原紙:坪量160[g/m2
Further, the measurement corrugated cardboard material of Example f29 is formed by laminating five base papers having the following basis weights in the order from one to the other in the height direction.
・ Liner base paper: Basis weight 160 [g / m 2 ]
-Core base paper: Basis weight 120 [g / m 2 ]
・ Medium liner base paper: Basis weight 120 [g / m 2 ]
-Core base paper: Basis weight 120 [g / m 2 ]
・ Liner base paper: Basis weight 160 [g / m 2 ]
 測定ダンボール材を構成するライナ原紙(表ライナ用および裏ライナ用)の製造において、原料パルプの繊維分級機(MAX-F700,相川鉄工株式会社製)を使用して、上記の表13~表16に記載のように、パルプ繊維長が調整されている。
 また、測定ダンボール材を構成するライナ原紙(表ライナ用および裏ライナ用)の製造おいて、ライナ原紙を抄く際に、ジェットワイヤー比を調整して、上記の表13~表16に記載のように繊維配向比を調整した。ジェットワイヤー比とは、抄紙機におけるワイヤーの走行速度(W)に対するパルプ分散液の流速(J)の比(J/W)である。ジェットワイヤー比を調整することにより、ワイヤー付近における分散液の流れを層流域にコントロールできる。
In the production of liner base paper (for front liner and back liner) that constitutes the corrugated cardboard material, a fiber classifier for raw material pulp (MAX-F700, manufactured by Aikawa Iron Works Co., Ltd.) was used to table 13 to 16 above. The pulp fiber length is adjusted as described in.
Further, in the production of the liner base paper (for the front liner and the back liner) constituting the measurement corrugated cardboard material, the jet wire ratio is adjusted when the liner base paper is made, and the above tables 13 to 16 show. The fiber orientation ratio was adjusted as described above. The jet wire ratio is the ratio (J / W) of the flow velocity (J) of the pulp dispersion to the traveling speed (W) of the wire in the paper machine. By adjusting the jet wire ratio, the flow of the dispersion liquid near the wire can be controlled in the laminar watershed.
 「繊維長」は、下記の手順fa~feで測定される。
  手順fa:ダンボール材の最上段から2段目を40[cm]角に切り出し、その40[cm]角ダンボールシートを測定に供試した。切り出し位置はダンボールシート幅の真ん中とした。それから、ダンボールシートをイオン交換水に15分間浸漬し、イオン交換水から取り出す。
  手順fb:手順faで取り出したダンボールシートからライナ原紙(表ライナおよび裏ライナ)のそれぞれを、ライナ原紙が破れないよう、手で剥がすことで中芯原紙から分離する。
  手順fc:手順fbで分離したライナ原紙と中芯原紙とのそれぞれを、イオン交換水に浸し、濃度2%に調整した上で、24時間浸した。
  手順fd:手順fcにより濃度を調整したライナ原紙と中芯原紙とのそれぞれを24時間浸した後、標準型離解機(熊谷理機工業社製)を用いて20分間離解して、パルプを繊維状に分解する。
  手順fe:手順fdで離解後のスラリー(パルプ繊維)を分取し、下記の繊維長測定機を使用して、JIS P8226-2:2011に準拠した繊維長を測定した。
  ・繊維長測定機:品番FS-5 UHDベースユニット,バルメット社製
 また、「繊維長比」は、上記の手順fa~feで測定したライナ原紙の繊維長と中芯原紙の繊維長とに基づき下記の式fで計算した。
  繊維長比=ライナ原紙の繊維長/中芯原紙の繊維長・・・式f
The "fiber length" is measured by the following procedures fa to fe.
Procedure fa: The second step from the top of the corrugated cardboard material was cut into 40 [cm] squares, and the 40 [cm] square cardboard sheet was used for measurement. The cutting position was in the middle of the cardboard sheet width. Then, the cardboard sheet is immersed in ion-exchanged water for 15 minutes and removed from the ion-exchanged water.
Step fb: Each of the liner base papers (front liner and back liner) is separated from the core base paper by hand peeling from the cardboard sheet taken out in step fa so that the liner base paper is not torn.
Procedure fc: Each of the liner base paper and the core base paper separated in step fb was immersed in ion-exchanged water to adjust the concentration to 2%, and then immersed for 24 hours.
Procedure fd: After immersing each of the liner base paper and the core base paper whose concentration was adjusted by the procedure fc for 24 hours, the pulp was separated into fibers using a standard type disintegrator (manufactured by Kumagai Riki Kogyo Co., Ltd.) for 20 minutes. Disassemble into a shape.
Procedure fe: The slurry (pulp fiber) after disaggregation was separated in the procedure fd, and the fiber length in accordance with JIS P8226-2: 2011 was measured using the following fiber length measuring machine.
-Fiber length measuring machine: Part number FS-5 UHD base unit, manufactured by Valmet Co., Ltd. The "fiber length ratio" is based on the fiber length of the liner base paper and the fiber length of the core base paper measured in the above procedures fa to fe. It was calculated by the following formula f.
Fiber length ratio = Fiber length of liner base paper / Fiber length of core base paper ... Formula f
 「繊維配向比」は、下記の手順fA~fDで測定される。
  手順fA:上記の手順faと同様
  手順fB:上記の手順fbと同様
  手順fC:手順fBで分離したライナ原紙と中芯原紙とのそれぞれを、シリンダードライヤー(品番:MR3D,ジャポー株式会社製)により水分がなくなるまで乾燥する。
  手順fD:手順fCで乾燥したライナ原紙と中芯原紙の繊維配向比を、下記の繊維配向特性評価装置を使用して測定する。
  ・繊維配向特性評価装置:品番SST‐2500,野村商事株式会社製
 なお、繊維配向比の値は、上記の繊維配向特性評価装置の設定仕様の都合上、1.0が最小値となる。
――評価――
The "fiber orientation ratio" is measured by the following procedures fA to fD.
Step fA: Same as step fa above Step fB: Same as step fb above Step fC: Liner base paper and core base paper separated in step fB are each separated by a cylinder dryer (product number: MR3D, manufactured by Japo Co., Ltd.). Dry until dry.
Procedure fD: The fiber orientation ratio of the liner base paper and the core base paper dried in the procedure fC is measured using the following fiber orientation characteristic evaluation device.
-Fiber orientation characteristic evaluation device: Part number SST-2500, manufactured by Nomura Shoji Co., Ltd. The minimum value of the fiber orientation ratio is 1.0 due to the setting specifications of the above fiber orientation characteristic evaluation device.
--Evaluation--
 実施例f1~f11,f21~f32および比較例f12~f20,f33~f36では、測定ダンボール材の全ての折目(端部)について折れ割れ性を評価した。「折れ割れ性」とは、ダンボール材を折り曲げた際の破損しにくさに対応する評価基準である。「破損」は折目でのライナ原紙の割れ,裂け,破れなどを含む。 In Examples f1 to f11, f21 to f32 and Comparative Examples f12 to f20 and f33 to f36, the crease property was evaluated for all the folds (ends) of the measured corrugated cardboard material. "Foldability" is an evaluation standard corresponding to the resistance to breakage when the corrugated cardboard material is bent. "Damage" includes cracking, tearing, and tearing of the liner base paper at creases.
 折れ割れ性の評価では、折目の箇所において表ライナおよび裏ライナの少なくとも一方のライナ原紙に割れが生じているか否かを確認し、確認結果を以下の基準で評価した。「折目の箇所」とは、折目の周辺を含む領域である。
  ◎:折目に割れが観察されない
  ○:折目に割れが1~2つ観察された
  △:折目に割れが3~4つ観察された
  ×:折目に割れが5つ以上観察された
 なお、実施例f1~f11,f21~f32および比較例f12~f20,f33~f36では、最も評価の高い「◎」およびその次に評価の高い「○」は良好な評価とし、最も評価の低い「×」およびその次に評価の低い「△」は不良な評価とした。
In the evaluation of the crease property, it was confirmed whether or not at least one of the front liner and the back liner liner base paper was cracked at the crease, and the confirmation result was evaluated according to the following criteria. The "folded portion" is an area including the periphery of the fold.
⊚: No cracks were observed in the folds ○: 1 to 2 cracks were observed in the folds Δ: 3 to 4 cracks were observed in the folds ×: 5 or more cracks were observed in the folds In Examples f1 to f11, f21 to f32 and Comparative Examples f12 to f20 and f33 to f36, "⊚" having the highest evaluation and "○" having the next highest evaluation were regarded as good evaluations and the lowest evaluations. “×” and “Δ”, which has the next lowest evaluation, were regarded as poor evaluations.
 実施例f1~f11,f21~F32では、ライナ原紙の坪量が110[g/m]以上であって290[g/m]以下であり、ライナ原紙のパルプ繊維長が0.55[mm]以上であって1.60[mm]以下であり、繊維配向比が1.0以上であって2.0以下であり、繊維長比が0.65以上であって1.90以下であり、折れ割れ性について「〇」以上の評価が得られた。
 特に、ライナ原紙の坪量が140[g/m]以上であって180[g/m]以下であり、ライナ原紙のパルプ繊維長が0.90[mm]以上であって1.30[mm]以下であり、繊維配向比が1.3以上であって1.7以下であり、繊維長比が0.90以上であって1.40以下である実施例f3,f11,f23,f30~f32では、折れ割れ性について最も優れた「◎」の評価が得られた。
In Examples f1 to f11 and f21 to F32, the basis weight of the liner base paper is 110 [g / m 2 ] or more and 290 [g / m 2 ] or less, and the pulp fiber length of the liner base paper is 0.55 [g / m 2 ] or less. Mm] or more and 1.60 [mm] or less, the fiber orientation ratio is 1.0 or more and 2.0 or less, and the fiber length ratio is 0.65 or more and 1.90 or less. Yes, a rating of "○" or higher was obtained for breakability.
In particular, the basis weight of the liner base paper is 140 [g / m 2 ] or more and 180 [g / m 2 ] or less, and the pulp fiber length of the liner base paper is 0.90 [mm] or more and 1.30. Examples f3, f11, f23, which are [mm] or less, the fiber orientation ratio is 1.3 or more and 1.7 or less, and the fiber length ratio is 0.90 or more and 1.40 or less. In f30 to f32, the most excellent evaluation of “⊚” was obtained for the breakability.
 一方で、比較例f12,f13,f15,f33~f36では、ライナ原紙のパルプ繊維長が0.55[mm]~1.60[mm]の範囲を外れており、折れ割れ性について「△」以下の不良な評価が得られた。
 また、比較例f14では、繊維配向比が2.0よりも大きく、折れ割れ性について「×」の評価が得られた。また、比較例f16,f17では繊維長比が0.65~1.90の範囲を外れており、折れ割れ性について「△」の評価が得られた。また、比較例f18~f20ではライナ原紙の坪量が110[g/m]~290[g/m]の範囲を外れており、折れ割れ性について「△」以下の評価が得られた。
On the other hand, in Comparative Examples f12, f13, f15, f33 to f36, the pulp fiber length of the liner base paper was out of the range of 0.55 [mm] to 1.60 [mm], and the crease property was "Δ". The following bad evaluations were obtained.
Further, in Comparative Example f14, the fiber orientation ratio was larger than 2.0, and an evaluation of “x” was obtained for the breakability. Further, in Comparative Examples f16 and f17, the fiber length ratio was out of the range of 0.65 to 1.90, and the evaluation of “Δ” was obtained for the breakability. Further, in Comparative Examples f18 to f20, the basis weight of the liner base paper was out of the range of 110 [g / m 2 ] to 290 [g / m 2 ], and the crease property was evaluated as “Δ” or less. ..
 比較例f12,f13,f33~f36からは、ライナ原紙のパルプ繊維長が0.55[mm]未満であることにより、パルプ繊維長が短すぎるためパルプ繊維どうしの絡まりが少なくライナ原紙の全体的な強度が弱くなるため、折れ割れ性が不良となるものと推測される。比較例f15からはパルプ繊維長が1.60[mm]よりも大きいことにより、比較例f14からは繊維配向比が2.0よりも大きいことにより、折目やその周辺箇所においてライナ原紙に応力が集中するため、折れ割れ性が不良となるものと推測される。 From Comparative Examples f12, f13, f33 to f36, since the pulp fiber length of the liner base paper is less than 0.55 [mm], the pulp fiber length is too short, so that the pulp fibers are less entangled with each other and the entire liner base paper is not entangled. It is presumed that the bending property becomes poor because the strength is weakened. From Comparative Example f15, the pulp fiber length is larger than 1.60 [mm], and from Comparative Example f14, the fiber orientation ratio is larger than 2.0, so that the liner base paper is stressed at the creases and surrounding areas. It is presumed that the breakability will be poor because of the concentration.
 比較例f16からは、繊維長比が0.65よりも小さいことにより、ライナ原紙の全体的な強度が中芯原紙に対して相対的に低下するため、折目の成形性が低下して不良な折れ割れ性が得られたものと推測される。比較例f17からは、繊維長比が1.90よりも大きいことにより、折目やその周辺箇所においてライナ原紙に応力が集中するため、折れ割れ性が不良となるものと推測される。
 比較例f18,f19からは坪量が110[g/m]よりも小さいことにより、ライナ原紙の全体的な強度が低下するため、折れ割れ性が不良となるものと推測される。比較例f20からは坪量が290[g/m]よりも大きいことにより、折目やその周辺箇所においてライナ原紙に応力が集中するため、折れ割れ性が不良となるものと推測される。
From Comparative Example f16, since the fiber length ratio is smaller than 0.65, the overall strength of the liner base paper is relatively low with respect to the core base paper, so that the formability of the folds is lowered and defective. It is presumed that the crackability was obtained. From Comparative Example f17, it is presumed that since the fiber length ratio is larger than 1.90, stress is concentrated on the liner base paper at the creases and the surrounding portions, so that the crease property is poor.
From Comparative Examples f18 and f19, it is presumed that since the basis weight is smaller than 110 [g / m 2 ], the overall strength of the liner base paper is lowered, so that the breakability is poor. From Comparative Example f20, it is presumed that since the basis weight is larger than 290 [g / m 2 ], stress is concentrated on the liner base paper at the creases and their surroundings, resulting in poor crease resistance.
 上記の比較例f12~f20,f33~f36に鑑みて、実施例f1~f11,f21~f32からは、ライナ原紙の坪量が110[g/m]以上であって290[g/m]以下であることを前提にして、ライナ原紙のパルプ繊維長が0.55[mm]以上であって1.60[mm]以下であり、繊維長比が0.65以上であって1.90以下であることによりライナ原紙の全体的な強度が確保され、且つ、繊維配向比が1.0以上であって2.0以下であることにより、ライナ原紙の横方向の強度が確保されるので、折れ割れ性が良好になると推察される。
 実施例f3,f11,f23,f30~f32からは、パルプ繊維長が0.9[mm]以上であって1.30[mm]以下であり、繊維配向比が1.3以上であって1.7以下であることにより、ライナ原紙の全体的な強度とライナ原紙の横方向の強度とが底上げされるので、折れ割れ性がより良好になると推察される。
In view of the above comparative examples f12 to f20 and f33 to f36, from Examples f1 to f11 and f21 to f32, the basis weight of the liner base paper is 110 [g / m 2 ] or more and 290 [g / m 2]. ] Or less, the pulp fiber length of the liner base paper is 0.55 [mm] or more and 1.60 [mm] or less, and the fiber length ratio is 0.65 or more. When it is 90 or less, the overall strength of the liner base paper is secured, and when the fiber orientation ratio is 1.0 or more and 2.0 or less, the lateral strength of the liner base paper is secured. Therefore, it is presumed that the breakability will be good.
From Examples f3, f11, f23, f30 to f32, the pulp fiber length is 0.9 [mm] or more and 1.30 [mm] or less, and the fiber orientation ratio is 1.3 or more and 1 When it is 0.7 or less, the overall strength of the liner base paper and the lateral strength of the liner base paper are raised, so that it is presumed that the breakability becomes better.
 よって、ライナ原紙の坪量が110[g/m]以上であって290[g/m]以下であり、ライナ原紙のパルプ繊維長が0.55[mm]以上であって1.60[mm]以下であり、繊維配向比が1.0以上であって2.0以下であり、繊維長比が0.65以上であって1.90以下であれば、折目の破損を抑制できることがわかる。延いては、測定ダンボール材を用いたダンボール箱の外観が低下するのを抑えることができ、ダンボール箱の品質を確保できるとも言える。 Therefore, the basis weight of the liner base paper is 110 [g / m 2 ] or more and 290 [g / m 2 ] or less, and the pulp fiber length of the liner base paper is 0.55 [mm] or more and 1.60. When it is [mm] or less, the fiber orientation ratio is 1.0 or more and 2.0 or less, and the fiber length ratio is 0.65 or more and 1.90 or less, breakage of creases is suppressed. I know I can do it. As a result, it can be said that the deterioration of the appearance of the cardboard box using the measured cardboard material can be suppressed, and the quality of the cardboard box can be ensured.
[3.三構成を組み合わせた実施例]
 さいごに、構成aの一部,dおよびeを組み合わせた実施例adeを述べる。
 なお、実施例adeについて測定対象や評価の詳細は、特に言及しない限り、上述の内容と同様である。
――測定対象――
 実施例adeは、以下に列挙するパラメータを兼ね備えた測定ダンボール材を対象にして評価した。
  ・ 厚 み 寸法 :5.1[mm]
  ・ 破 裂 強さ :2009[kpa]
  ・ 平均接着力 :237.5[N]
   >シングルフェーサ側:230[N]
   >  グルーマシン側:245[N]
[3. Example of combining the three configurations]
Finally, an embodiment ade in which a part of the configuration a, d and e are combined will be described.
The details of the measurement target and evaluation of Example ade are the same as those described above unless otherwise specified.
--Measurement target--
Example ade was evaluated for the measurement corrugated cardboard material having the parameters listed below.
-Thickness dimension: 5.1 [mm]
-Rupture strength: 2009 [kpa]
-Average adhesive strength: 237.5 [N]
> Single facer side: 230 [N]
> Glue machine side: 245 [N]
――評価――
 実施例adeの測定ダンボール材に対して、罫割れ,破れやすさ,ライナ剥がれのそれぞれを評価した。その結果、罫割れ,破れやすさ,ライナ剥がれの何れにおいても優良(上述の「◎」)の評価が得られた。
 実施例adeの評価結果より、構成aの一部,d,eを組み合わせた場合には、各構成aの一部,d,eに対応する評価が損なわれることなく優良なことがわかる。
--Evaluation--
Measurement of Example ade The corrugated cardboard material was evaluated for cracking, easiness of tearing, and liner peeling. As a result, excellent evaluation (“◎” mentioned above) was obtained in all of the rule cracking, the easiness of tearing, and the liner peeling.
From the evaluation results of Example ade, it can be seen that when a part of the configuration a, d, and e are combined, the evaluation corresponding to the part, d, and e of each configuration a is not impaired and is excellent.
 さらに、上記のパラメータを有する測定ダンボール材を製函システムに用いた場合には、測定ダンボール材に対する手作業の安全性が向上すると推察される。その理由としては、下記の理由α,βが挙げられる。
  ・理由α:ライナ剥がれの優良な評価が得られることから、測定ダンボール材に対する手作業において意図せずにライナが剥がれることが抑えられるうえに、測定ダンボール材を破断する手作業において適度な力を印加した時点でライナが剥がれると推察されること。言い換えれば、平均接着力が過大であると、破断作業時の安全性に改善の余地があること。
  ・理由β:仮に、測定ダンボール材のシートが過剰に薄ければ、シートの端部と作業員とが接触した際の安全性に改善の余地があること。測定ダンボール材のシートが過剰に厚ければ、シートのライナと作業員とが接触した際の安全性に改善の余地があること。これらに対し、実施例adeでは罫割れの優良な評価が得られることから、シートの端部やライナと作業員とが接触した際の安全性が向上すると推察される。
Further, when the measured corrugated cardboard material having the above parameters is used in the box making system, it is presumed that the safety of manual work for the measured corrugated cardboard material is improved. The reasons for this include the following reasons α and β.
-Reason α: Since a good evaluation of liner peeling can be obtained, it is possible to prevent the liner from being unintentionally peeled off in the manual work on the measured corrugated cardboard material, and also to apply an appropriate force in the manual work to break the measured corrugated cardboard material. It is presumed that the liner will come off at the time of application. In other words, if the average adhesive strength is excessive, there is room for improvement in safety during breaking work.
-Reason β: If the sheet of the corrugated cardboard material to be measured is excessively thin, there is room for improvement in safety when the edge of the sheet comes into contact with the worker. Measurement If the corrugated cardboard sheet is excessively thick, there is room for improvement in safety when the liner of the sheet and the worker come into contact with each other. On the other hand, in the example ade, a good evaluation of the rule cracking is obtained, so that it is presumed that the safety when the edge of the sheet or the liner comes into contact with the worker is improved.
[III.変形例]
 上述の実施形態はあくまでも例示に過ぎず、この実施形態で明示しない種々の変形や技術の適用を排除する意図はない。本実施形態の各構成は、それらの趣旨を逸脱しない範囲で種々変形して実施することができる。また、必要に応じて取捨選択することができ、適宜組み合わせることもできる。
 たとえば、上述した構成a~構成fの一部または全部を適宜組み合わせてもよい。
 ダンボール材が製函システム用の資材である場合には、意図的に形成された切れ込みやミシン目などの追加加工が折目に施されていないことが好ましく、ダンボール材におけるライナの表層に設けられる罫線を起点(たとえば罫線を内側)に180[°]折り返される箇所が折目であることが好ましい。一方、ダンボール材が製函システム用以外の資材である場合には、切れ込みやミシン目などの加工が折目に施されていてもよい。
[III. Modification example]
The above-described embodiment is merely an example, and there is no intention of excluding the application of various modifications and techniques not specified in this embodiment. Each configuration of the present embodiment can be variously modified and implemented without departing from the gist thereof. In addition, it can be selected as needed and can be combined as appropriate.
For example, a part or all of the above-mentioned configurations a to f may be appropriately combined.
When the corrugated cardboard material is a material for a box making system, it is preferable that no additional processing such as intentionally formed notches or perforations is applied to the creases, and the corrugated cardboard material is provided on the surface layer of the liner in the corrugated cardboard material. It is preferable that the crease is a portion where the ruled line is folded back by 180 [°] from the starting point (for example, the ruled line is inside). On the other hand, when the corrugated cardboard material is a material other than that used for the box making system, processing such as cuts and perforations may be performed.
 上述したダンボール材や測定ダンボール材に用いるライナ原紙および中芯原紙は、例に挙げた品番の製品に限らず、特許6213364号公報のダンボール用ライナの製造方法で作製したライナ原紙や、特開2017-218721号公報の段ボール原紙の製造方法で作製した中芯原紙を用いても良い。 The liner base paper and core base paper used for the above-mentioned corrugated cardboard material and measurement cardboard material are not limited to the products having the product numbers mentioned in the examples, but also the liner base paper produced by the method for manufacturing a corrugated board liner of Japanese Patent No. 6213364 and JP-A-2017. A core base paper produced by the method for producing a corrugated board base paper of Japanese Patent Application Laid-Open No. -218721 may be used.
 上述した蛇腹折りのダンボール材の用途は、製函システムに適用される製函用資材としての用途に限らない。
 蛇腹折りのダンボール材には、従来の枚葉のダンボールシートと異なる、複数のシートが折目を介して連設された構造を活かした様々な活用方法がある。
 例えば、蛇腹折りのダンボール材は、シートを展開した状態で、延在する方向の寸法が大きいウェブ状の紙資材として扱うこともできる。
The use of the bellows-folded corrugated cardboard material described above is not limited to the use as a box-making material applied to a box-making system.
There are various ways to utilize the bellows-folded corrugated cardboard material, which is different from the conventional single-wafered corrugated cardboard sheet, and makes use of the structure in which a plurality of sheets are continuously provided through folds.
For example, the bellows-folded corrugated cardboard material can be treated as a web-like paper material having a large dimension in the extending direction in the unfolded state of the sheet.
 ウェブ状の紙資材として利用方法としては、例えば下記の用途を例に挙げることができる。
  災害用品としての利用:窓に貼り付けることで、台風時の窓割れ対策に利用できるほか、避難所でのプライバシー保護やストレス軽減用のパーテーションとしての利用や、緩衝材や冷え対策用の敷物として利用可能である。
  イベント行事での利用:イベントや学校行事の看板等の創作物に利用可能である。
  建築/引越資材としての利用:建築現場や引越し現場で一時的にドアや壁、扉などを守る必要がある場合、対象物に貼り付けるタイプの保護材(養生材)として活用可能である。対象物に巻き付けるタイプの保護材(梱包資材)として利用することもできる。
 何れの利用方法においても、複数のシートが折目を介して連設された構造であることで、作業効率向上や、延在する方向の寸法を確保できるという利点がある。
As a method of using it as a web-like paper material, for example, the following uses can be mentioned as an example.
Use as disaster supplies: By attaching it to windows, it can be used as a measure against window cracking during typhoons, as a partition for privacy protection and stress reduction at evacuation shelters, as a cushioning material and as a rug for measures against cold. It is available.
Use at event events: It can be used for creative works such as signboards for events and school events.
Use as a building / moving material: When it is necessary to temporarily protect a door, wall, door, etc. at a building site or a moving site, it can be used as a protective material (curing material) that can be attached to an object. It can also be used as a protective material (packing material) that can be wrapped around an object.
In any of the usage methods, since the structure is such that a plurality of sheets are continuously provided through folds, there are advantages that work efficiency can be improved and dimensions in the extending direction can be secured.
[IV.付記]
 以上の実施形態に関し、ダンボール材に関する付記を開示する。
 〔付記1〕
 連続する両面ダンボールにおいて矩形状のシートが第一方向に沿って直線状に延在する折目のそれぞれにおいて前記折目の沿う平面で前記第一方向に直交する第二方向へ折り返され、前記第一方向および前記第二方向の双方に直交する第三方向に沿って前記シートが積み重ねられた蛇腹折りのダンボール材であって、
 前記両面ダンボールを構成するライナの坪量が110[g/m]以上であって290[g/m]以下であり、
 前記ライナのパルプ繊維長が0.55[mm]以上であって1.60[mm]以下であり、
 前記ライナにおけるパルプ繊維の前記第一方向の配向に対する前記第二方向の配向の比率である繊維配向比が1.0以上であって2.0以下であり、
 前記両面ダンボールを構成する中芯のパルプ繊維長に対する前記ライナの前記パルプ繊維長の比率である繊維長比が0.65以上であって1.90以下である
ことを特徴とするダンボール材。
 〔付記2〕
 前記ライナの坪量が140[g/m]以上であって180[g/m]以下であり、
 前記ライナの前記パルプ繊維長が0.90[mm]以上であって1.30[mm]以下であり、
 前記繊維配向比が1.3以上であって1.7以下であり、
 前記繊維長比が0.90以上であって1.40以下である
ことを特徴とする付記1に記載のダンボール材。
 〔付記3〕
 連続するダンボールにおいて矩形状のシートが第一方向に沿って直線状に延在する折目のそれぞれにおいて前記折目の沿う平面で前記第一方向に直交する第二方向へ折り返され、前記第一方向および前記第二方向の双方に直交する第三方向に沿って前記シートが積み重ねられた蛇腹折りのダンボール材であって、
 前記シートは、
 JIS Z0203:2000に準拠して温度23[℃]および湿度50[%]の温湿度条件で24時間以上の前処理が施された常態において、
 段ボール業界規格T0004:2000に準拠して測定された厚み寸法が2.0[mm]以上であって9.6[mm]以下であり、
 JIS Z0403-1:1999に準拠して測定された平面圧縮強さが50[kPa]以上であって250[kPa]以下である
ことを特徴とするダンボール材。
 〔付記4〕
 前記シートは、JIS Z0402:1995に準拠してシングルフェーサ側およびグルーマシン側で測定された接着力の平均値が140[N]以上である
ことを特徴とする付記3に記載のダンボール材。
〔付記5〕
 前記シートは、前記第一方向から視て表ライナと裏ライナとの中央において前記第二方向に延びる仮想的な補助線に対して中芯が交差するとともに隣り合う二箇所において、前記中芯と前記補助線とのなす二つの鋭角どうしの差を前記二つの鋭角の和で除した比率が0.30以下である
ことを特徴とする付記3または4に記載のダンボール材。
〔付記6〕
 前記シートは、JIS P8131:2009に準拠して測定された破裂強さが500[kPa]以上である
ことを特徴とする付記3~5の何れか1項に記載のダンボール材。
〔付記7〕
 連続するダンボールにおいて矩形状のシートが第一方向に沿って直線状に延在する折目のそれぞれにおいて前記折目の沿う平面で前記第一方向に直交する第二方向へ折り返され、前記第一方向および前記第二方向の双方に直交する第三方向に沿って前記シートが積み重ねられた蛇腹折りのダンボール材であって、
 前記シートは、
 JIS Z0203:2000に準拠して温度23[℃]および湿度50[%]の温湿度条件で24時間以上の前処理が施された常態において、
 段繰率が1.2[倍]以上であって1.7[倍]以下であり、
 JIS Z0403-1:1999に準拠して測定された平面圧縮強さが50[kPa]以上であって250[kPa]以下である
ことを特徴とするダンボール材。
〔付記8〕
 前記シートは、前記第一方向から視て表ライナと裏ライナとの中央において前記第二方向に延びる仮想的な補助線に対して中芯が交差するとともに隣り合う二箇所において、前記中芯と前記補助線とのなす二つの鋭角どうしの差を前記二つの鋭角の和で除した比率が0.30以下である
ことを特徴とする付記7に記載のダンボール材。
〔付記9〕
 前記シートは、JIS P8131:2009に準拠して測定された破裂強さが500[kPa]以上である
ことを特徴とする付記7または8に記載のダンボール材。
〔付記10〕
 前記シートは、JIS Z0402:1995に準拠してシングルフェーサ側およびグルーマシン側で測定された接着力の平均値が140[N]以上である
ことを特徴とする付記7~9の何れか1項に記載のダンボール材。
〔付記11〕
 前記シートは、段ボール業界規格T0004:2000に準拠して測定された厚み寸法が2.0[mm]以上であって9.6[mm]以下である
ことを特徴とする付記7~10の何れか1項に記載のダンボール材。
〔付記12〕
 連続するダンボールにおいて矩形状のシートが第一方向に沿って直線状に延在する折目のそれぞれにおいて前記折目の沿う平面で前記第一方向に直交する第二方向へ折り返され、前記第一方向および前記第二方向の双方に直交する第三方向に沿って前記シートが積み重ねられた蛇腹折りのダンボール材であって、
 前記シートは、
 JIS Z0203:2000に準拠して温度23[℃]および湿度50[%]の温湿度条件で24時間以上の前処理が施された常態において、
 前記第一方向から視て表ライナと裏ライナとの中央において前記第二方向に延びる仮想的な補助線に対して中芯が交差するとともに隣り合う二箇所において、前記中芯と前記補助線とのなす二つの鋭角どうしの差を前記二つの鋭角の和で除した比率が0.30以下である
ことを特徴とするダンボール材。
〔付記13〕
 前記シートは、JIS P8131:2009に準拠して測定された破裂強さが500[kPa]以上である
ことを特徴とする付記12に記載のダンボール材。
〔付記14〕
 前記シートは、JIS Z0402:1995に準拠してシングルフェーサ側およびグルーマシン側で測定された接着力の平均値が140[N]以上である
ことを特徴とする付記12または13に記載のダンボール材。
〔付記15〕
 前記シートは、段ボール業界規格T0004:2000に準拠して測定された厚み寸法が2.0[mm]以上であって9.6[mm]以下である
ことを特徴とする付記12~14の何れか1項に記載のダンボール材。
〔付記16〕
 前記シートは、
 段繰率が1.2[倍]以上であって1.7[倍]以下であり、
 JIS Z0403-1:1999に準拠して測定された平面圧縮強さが50[kPa]以上であって250[kPa]以下である
ことを特徴とする付記12~15の何れか1項に記載のダンボール材。
〔付記17〕
 連続するダンボールにおいて矩形状のシートが第一方向に沿って直線状に延在する折目のそれぞれにおいて前記折目の沿う平面で前記第一方向に直交する第二方向へ折り返され、前記第一方向および前記第二方向の双方に直交する第三方向に沿って前記シートが積み重ねられた蛇腹折りのダンボール材であって、
 前記シートは、
 JIS Z0203:2000に準拠して温度23[℃]および湿度50[%]の温湿度条件で24時間以上の前処理が施された常態において、
 JIS P8131:2009に準拠して測定された破裂強さが500[kPa]以上である
ことを特徴とするダンボール材。
〔付記18〕
 前記シートは、JIS Z0402:1995に準拠してシングルフェーサ側およびグルーマシン側で測定された接着力の平均値が140[N]以上である
ことを特徴とする付記17に記載のダンボール材。
〔付記19〕
 前記シートは、段ボール業界規格T0004:2000に準拠して測定された厚み寸法が2.0[mm]以上であって9.6[mm]以下である
ことを特徴とする付記17または18に記載のダンボール材。
〔付記20〕
 前記シートは、
 段繰率が1.2[倍]以上であって1.7[倍]以下であり、
 JIS Z0403-1:1999に準拠して測定された平面圧縮強さが50[kPa]以上であって250[kPa]以下である
ことを特徴とする付記17~19の何れか1項に記載のダンボール材。
〔付記21〕
 前記シートは、前記第一方向から視て表ライナと裏ライナとの中央において前記第二方向に延びる仮想的な補助線に対して中芯が交差するとともに隣り合う二箇所において、前記中芯と前記補助線とのなす二つの鋭角どうしの差を前記二つの鋭角の和で除した比率が0.30以下である
ことを特徴とする付記17~20の何れか1項に記載のダンボール材。
〔付記22〕
 連続するダンボールにおいて矩形状のシートが第一方向に沿って直線状に延在する折目のそれぞれにおいて前記折目の沿う平面で前記第一方向に直交する第二方向へ折り返され、前記第一方向および前記第二方向の双方に直交する第三方向に沿って前記シートが積み重ねられた蛇腹折りのダンボール材であって、
 前記シートは、
 JIS Z0203:2000に準拠して温度23[℃]および湿度50[%]の温湿度条件で24時間以上の前処理が施された常態において、
 JIS Z0402:1995に準拠してシングルフェーサ側およびグルーマシン側で測定された接着力の平均値が140[N]以上である
ことを特徴とするダンボール材。
〔付記23〕
 前記シートは、段ボール業界規格T0004:2000に準拠して測定された厚み寸法が2.0[mm]以上であって9.6[mm]以下である
ことを特徴とする付記22に記載のダンボール材。
〔付記24〕
 前記シートは、
 段繰率が1.2[倍]以上であって1.7[倍]以下であり、
 JIS Z0403-1:1999に準拠して測定された平面圧縮強さが50[kPa]以上であって250[kPa]以下である
ことを特徴とする付記22または23に記載のダンボール材。
〔付記25〕
 前記シートは、前記第一方向から視て表ライナと裏ライナとの中央において前記第二方向に延びる仮想的な補助線に対して中芯が交差するとともに隣り合う二箇所において、前記中芯と前記補助線とのなす二つの鋭角どうしの差を前記二つの鋭角の和で除した比率が0.30以下である
ことを特徴とする付記22~24の何れか1項に記載のダンボール材。
〔付記26〕
 前記シートは、JIS P8131:2009に準拠して測定された破裂強さが500[kPa]以上である
ことを特徴とする付記22~25の何れか1項に記載のダンボール材。
〔付記27〕
 連続するダブルフルートの両面ダンボールにおいて矩形状のシートが第一方向に沿って直線状に延在する折目のそれぞれにおいて前記折目の沿う平面で前記第一方向に直交する第二方向へ折り返され、前記第一方向および前記第二方向の双方に直交する第三方向に沿って前記シートが積み重ねられた蛇腹折りのダンボール材であって、
 前記シートは、
 JIS Z0203:2000に準拠して温度23[℃]および湿度50[%]の温湿度条件で24時間以上の前処理が施された常態において、
 JIS P8131:2009に準拠して測定された前記折目を含まない箇所の破裂強さが500[kPa]以上であり、
 JIS P8131:2009に準拠して測定された前記折目を含む箇所の破裂強さが520[kPa]以上である
ことを特徴とするダンボール材。
〔付記28〕
 前記折目を含まない箇所の破裂強さおよび前記折目を含む箇所の破裂強さが2500[kPa]以下である
ことを特徴とする付記27に記載のダンボール材。
〔付記29〕
 前記シートは、JIS Z0402:1995に準拠してシングルフェーサ側およびグルーマシン側で測定された接着力の平均値が140[N]以上である
ことを特徴とする付記27または28に記載のダンボール材。
〔付記30〕
 前記シートは、
 段繰率が1.2[倍]以上であって1.7[倍]以下であり、
 JIS Z0403-1:1999に準拠して測定された平面圧縮強さが50[kPa]以上であって250[kPa]以下である
ことを特徴とする付記27~29の何れか1項に記載のダンボール材。
〔付記31〕
 前記シートは、前記第一方向から視て表ライナと裏ライナとの中央において前記第二方向に延びる仮想的な補助線に対して中芯が交差するとともに隣り合う二箇所において、前記中芯と前記補助線とのなす二つの鋭角どうしの差を前記二つの鋭角の和で除した比率が0.30以下である
ことを特徴とする付記27~30の何れか1項に記載のダンボール材。
〔付記32〕
 付記1~31の何れか1項に記載のダンボール材を用いた
ことを特徴とするダンボール箱。
[IV. Addendum]
Regarding the above embodiments, the additional notes regarding the corrugated cardboard material will be disclosed.
[Appendix 1]
In continuous double-sided corrugated cardboard, a rectangular sheet is folded back in a second direction orthogonal to the first direction on a plane along the fold at each of the folds extending linearly along the first direction. A bellows-folded corrugated cardboard material in which the sheets are stacked along a third direction orthogonal to both one direction and the second direction.
The basis weight of the liner constituting the double-sided corrugated cardboard is 110 [g / m 2 ] or more and 290 [g / m 2 ] or less.
The pulp fiber length of the liner is 0.55 [mm] or more and 1.60 [mm] or less.
The fiber orientation ratio, which is the ratio of the orientation of the pulp fibers in the first direction to the orientation in the second direction in the liner, is 1.0 or more and 2.0 or less.
A corrugated cardboard material characterized in that the fiber length ratio, which is the ratio of the pulp fiber length of the liner to the pulp fiber length of the core constituting the double-sided corrugated cardboard, is 0.65 or more and 1.90 or less.
[Appendix 2]
The basis weight of the liner is 140 [g / m 2 ] or more and 180 [g / m 2 ] or less.
The pulp fiber length of the liner is 0.90 [mm] or more and 1.30 [mm] or less.
The fiber orientation ratio is 1.3 or more and 1.7 or less.
The corrugated cardboard material according to Appendix 1, wherein the fiber length ratio is 0.90 or more and 1.40 or less.
[Appendix 3]
In a continuous cardboard box, a rectangular sheet is folded back in a second direction orthogonal to the first direction on a plane along the fold at each of the folds extending linearly along the first direction. A bellows-folded corrugated cardboard material in which the sheets are stacked along a third direction orthogonal to both the direction and the second direction.
The sheet is
Under normal conditions where pretreatment was performed for 24 hours or more under temperature and humidity conditions of temperature 23 [° C.] and humidity 50 [%] in accordance with JIS Z0203: 2000.
The thickness dimension measured in accordance with the corrugated board industry standard T0004: 2000 is 2.0 [mm] or more and 9.6 [mm] or less.
A corrugated cardboard material having a planar compressive strength of 50 [kPa] or more and 250 [kPa] or less measured in accordance with JIS Z0403-1: 1999.
[Appendix 4]
The corrugated cardboard material according to Appendix 3, wherein the sheet has an average value of adhesive strength of 140 [N] or more measured on the single facer side and the glue machine side in accordance with JIS Z0402: 1995.
[Appendix 5]
The sheet is provided with the core at two locations where the core intersects and is adjacent to the virtual auxiliary line extending in the second direction at the center of the front liner and the back liner when viewed from the first direction. The corrugated cardboard material according to Appendix 3 or 4, wherein the ratio obtained by dividing the difference between the two acute angles formed by the auxiliary line by the sum of the two acute angles is 0.30 or less.
[Appendix 6]
The corrugated cardboard material according to any one of Appendix 3 to 5, wherein the sheet has a burst strength of 500 [kPa] or more measured in accordance with JIS P8131: 2009.
[Appendix 7]
In a continuous cardboard box, a rectangular sheet is folded back in a second direction orthogonal to the first direction on a plane along the fold at each of the folds extending linearly along the first direction. A bellows-folded corrugated cardboard material in which the sheets are stacked along a third direction orthogonal to both the direction and the second direction.
The sheet is
Under normal conditions where pretreatment was performed for 24 hours or more under temperature and humidity conditions of temperature 23 [° C.] and humidity 50 [%] in accordance with JIS Z0203: 2000.
The step-by-step rate is 1.2 [times] or more and 1.7 [times] or less.
A corrugated cardboard material having a planar compressive strength of 50 [kPa] or more and 250 [kPa] or less measured in accordance with JIS Z0403-1: 1999.
[Appendix 8]
The sheet is provided with the core at two locations where the core intersects and is adjacent to the virtual auxiliary line extending in the second direction at the center of the front liner and the back liner when viewed from the first direction. The cardboard material according to Appendix 7, wherein the ratio obtained by dividing the difference between the two acute angles formed by the auxiliary line by the sum of the two acute angles is 0.30 or less.
[Appendix 9]
The corrugated cardboard material according to Appendix 7 or 8, wherein the sheet has a burst strength of 500 [kPa] or more measured in accordance with JIS P8131: 2009.
[Appendix 10]
The sheet is any one of Appendix 7 to 9, wherein the average value of the adhesive force measured on the single facer side and the glue machine side in accordance with JIS Z0402: 1995 is 140 [N] or more. The cardboard material described in the section.
[Appendix 11]
The sheet has a thickness dimension of 2.0 [mm] or more and 9.6 [mm] or less measured in accordance with the corrugated cardboard industry standard T0004: 2000. Or the cardboard material described in item 1.
[Appendix 12]
In a continuous cardboard box, a rectangular sheet is folded back in a second direction orthogonal to the first direction on a plane along the fold at each of the folds extending linearly along the first direction. A bellows-folded corrugated cardboard material in which the sheets are stacked along a third direction orthogonal to both the direction and the second direction.
The sheet is
Under normal conditions where pretreatment was performed for 24 hours or more under temperature and humidity conditions of temperature 23 [° C.] and humidity 50 [%] in accordance with JIS Z0203: 2000.
At the center of the front liner and the back liner when viewed from the first direction, the core intersects the virtual auxiliary line extending in the second direction, and at two adjacent locations, the core and the auxiliary line A corrugated cardboard material characterized in that the ratio obtained by dividing the difference between two acute angles formed by the two acute angles by the sum of the two acute angles is 0.30 or less.
[Appendix 13]
The corrugated cardboard material according to Appendix 12, wherein the sheet has a burst strength of 500 [kPa] or more measured in accordance with JIS P8131: 2009.
[Appendix 14]
The corrugated cardboard according to Appendix 12 or 13, wherein the sheet has an average value of adhesive strength of 140 [N] or more measured on the single facer side and the glue machine side in accordance with JIS Z0402: 1995. Material.
[Appendix 15]
The sheet has a thickness dimension of 2.0 [mm] or more and 9.6 [mm] or less measured in accordance with the corrugated cardboard industry standard T0004: 2000. Or the cardboard material described in item 1.
[Appendix 16]
The sheet is
The step-by-step rate is 1.2 [times] or more and 1.7 [times] or less.
The item according to any one of Appendix 12 to 15, wherein the planar compressive strength measured in accordance with JIS Z0403-1: 1999 is 50 [kPa] or more and 250 [kPa] or less. Cardboard material.
[Appendix 17]
In a continuous cardboard box, a rectangular sheet is folded back in a second direction orthogonal to the first direction on a plane along the fold at each of the folds extending linearly along the first direction. A bellows-folded corrugated cardboard material in which the sheets are stacked along a third direction orthogonal to both the direction and the second direction.
The sheet is
Under normal conditions where pretreatment was performed for 24 hours or more under temperature and humidity conditions of temperature 23 [° C.] and humidity 50 [%] in accordance with JIS Z0203: 2000.
A corrugated cardboard material having a burst strength of 500 [kPa] or more measured in accordance with JIS P8131: 2009.
[Appendix 18]
The corrugated cardboard material according to Appendix 17, wherein the sheet has an average value of adhesive strength of 140 [N] or more measured on the single facer side and the glue machine side in accordance with JIS Z0402: 1995.
[Appendix 19]
The sheet is described in Appendix 17 or 18, characterized in that the thickness dimension measured in accordance with the corrugated board industry standard T0004: 2000 is 2.0 [mm] or more and 9.6 [mm] or less. Cardboard material.
[Appendix 20]
The sheet is
The step-by-step rate is 1.2 [times] or more and 1.7 [times] or less.
The item according to any one of Supplementary note 17 to 19, wherein the planar compressive strength measured in accordance with JIS Z0403-1: 1999 is 50 [kPa] or more and 250 [kPa] or less. Cardboard material.
[Appendix 21]
The sheet is provided with the core at two locations where the core intersects and is adjacent to the virtual auxiliary line extending in the second direction at the center of the front liner and the back liner when viewed from the first direction. The corrugated cardboard material according to any one of Appendix 17 to 20, wherein the ratio obtained by dividing the difference between the two acute angles formed by the auxiliary line by the sum of the two acute angles is 0.30 or less.
[Appendix 22]
In a continuous cardboard box, a rectangular sheet is folded back in a second direction orthogonal to the first direction on a plane along the fold at each of the folds extending linearly along the first direction. A bellows-folded corrugated cardboard material in which the sheets are stacked along a third direction orthogonal to both the direction and the second direction.
The sheet is
Under normal conditions where pretreatment was performed for 24 hours or more under temperature and humidity conditions of temperature 23 [° C.] and humidity 50 [%] in accordance with JIS Z0203: 2000.
A corrugated cardboard material characterized in that the average value of the adhesive strength measured on the single facer side and the glue machine side in accordance with JIS Z0402: 1995 is 140 [N] or more.
[Appendix 23]
The corrugated cardboard according to Appendix 22, wherein the sheet has a thickness dimension of 2.0 [mm] or more and 9.6 [mm] or less measured in accordance with the corrugated cardboard industry standard T0004: 2000. Material.
[Appendix 24]
The sheet is
The step-by-step rate is 1.2 [times] or more and 1.7 [times] or less.
The corrugated cardboard material according to Appendix 22 or 23, wherein the plane compressive strength measured in accordance with JIS Z0403-1: 1999 is 50 [kPa] or more and 250 [kPa] or less.
[Appendix 25]
The sheet is provided with the core at two locations where the core intersects and is adjacent to the virtual auxiliary line extending in the second direction at the center of the front liner and the back liner when viewed from the first direction. The cardboard material according to any one of Supplementary note 22 to 24, wherein the ratio obtained by dividing the difference between the two acute angles formed by the auxiliary line by the sum of the two acute angles is 0.30 or less.
[Appendix 26]
The corrugated cardboard material according to any one of Appendix 22 to 25, wherein the sheet has a burst strength of 500 [kPa] or more measured in accordance with JIS P8131: 2009.
[Appendix 27]
In a continuous double-flute double-sided cardboard, a rectangular sheet is folded back in a second direction orthogonal to the first direction on a plane along the fold at each of the folds extending linearly along the first direction. , A bellows-folded corrugated cardboard material in which the sheets are stacked along a third direction orthogonal to both the first direction and the second direction.
The sheet is
Under normal conditions where pretreatment was performed for 24 hours or more under temperature and humidity conditions of temperature 23 [° C.] and humidity 50 [%] in accordance with JIS Z0203: 2000.
The burst strength of the portion not including the crease measured in accordance with JIS P8131: 2009 is 500 [kPa] or more.
A corrugated cardboard material having a burst strength of 520 [kPa] or more at a portion including the crease measured in accordance with JIS P8131: 2009.
[Appendix 28]
The corrugated cardboard material according to Appendix 27, wherein the burst strength of the portion not including the crease and the burst strength of the portion including the fold are 2500 [kPa] or less.
[Appendix 29]
The corrugated cardboard according to Appendix 27 or 28, wherein the sheet has an average value of adhesive strength of 140 [N] or more measured on the single facer side and the glue machine side in accordance with JIS Z0402: 1995. Material.
[Appendix 30]
The sheet is
The step-by-step rate is 1.2 [times] or more and 1.7 [times] or less.
The item according to any one of Appendix 27 to 29, wherein the planar compressive strength measured in accordance with JIS Z0403-1: 1999 is 50 [kPa] or more and 250 [kPa] or less. Cardboard material.
[Appendix 31]
The sheet is provided with the core at two locations where the core intersects and is adjacent to the virtual auxiliary line extending in the second direction at the center of the front liner and the back liner when viewed from the first direction. The cardboard material according to any one of Supplementary note 27 to 30, wherein the ratio obtained by dividing the difference between the two acute angles formed by the auxiliary line by the sum of the two acute angles is 0.30 or less.
[Appendix 32]
A corrugated cardboard box characterized in that the corrugated cardboard material according to any one of Supplementary notes 1 to 31 is used.
[V.付記‐2]
〔付記33〕
 連続するダンボールにおいて矩形状のシートが第一方向に沿って直線状に延在する折目のそれぞれにおいて前記折目の沿う平面で前記第一方向に直交する第二方向へ折り返され、前記第一方向および前記第二方向の双方に直交する第三方向に沿って前記シートが積み重ねられた蛇腹折りのダンボール材であって、
 前記シートは、
 JIS Z0203:2000に準拠して温度23[℃]および湿度50[%]の温湿度条件で24時間以上の前処理が施された常態において、
 前記折目を跨ぐカット線で切り出されたダンボール片について、
 段ボール業界規格T0004:2000に準拠して測定された厚み寸法が2.0[mm]以上であって9.6[mm]以下であり、
 JIS Z0403-1:1999に準拠して測定された平面圧縮強さが50[kPa]以上であって250[kPa]以下であるという条件をともに満足する
ことを特徴とするダンボール材。
 〔付記34〕
 前記シートは、JIS Z0402:1995に準拠してシングルフェーサ側およびグルーマシン側で測定された接着力の平均値が140[N]以上である
ことを特徴とする付記33に記載のダンボール材。
〔付記35〕
 前記シートは、前記第一方向から視て表ライナと裏ライナとの中央において前記第二方向に延びる仮想的な補助線に対して中芯が交差するとともに隣り合う二箇所において、前記中芯と前記補助線とのなす二つの鋭角どうしの差を前記二つの鋭角の和で除した比率が0.30以下である
ことを特徴とする付記33または34に記載のダンボール材。
〔付記36〕
 前記シートは、JIS P8131:2009に準拠して測定された破裂強さが500[kPa]以上である
ことを特徴とする付記33~35の何れか1項に記載のダンボール材。
〔付記37〕
 連続するダンボールにおいて矩形状のシートが第一方向に沿って直線状に延在する折目のそれぞれにおいて前記折目の沿う平面で前記第一方向に直交する第二方向へ折り返され、前記第一方向および前記第二方向の双方に直交する第三方向に沿って前記シートが積み重ねられた蛇腹折りのダンボール材であって、
 前記シートは、
 JIS Z0203:2000に準拠して温度23[℃]および湿度50[%]の温湿度条件で24時間以上の前処理が施された常態において、
 前記折目を跨ぐカット線で切り出されたダンボール片について、
 段繰率が1.2[倍]以上であって1.7[倍]以下であり、
 JIS Z0403-1:1999に準拠して測定された平面圧縮強さが50[kPa]以上であって250[kPa]以下であるという条件をともに満足する
ことを特徴とするダンボール材。
〔付記38〕
 前記シートは、前記第一方向から視て表ライナと裏ライナとの中央において前記第二方向に延びる仮想的な補助線に対して中芯が交差するとともに隣り合う二箇所において、前記中芯と前記補助線とのなす二つの鋭角どうしの差を前記二つの鋭角の和で除した比率が0.30以下である
ことを特徴とする付記37に記載のダンボール材。
〔付記39〕
 前記シートは、JIS P8131:2009に準拠して測定された破裂強さが500[kPa]以上である
ことを特徴とする付記37または38に記載のダンボール材。
〔付記40〕
 前記シートは、JIS Z0402:1995に準拠してシングルフェーサ側およびグルーマシン側で測定された接着力の平均値が140[N]以上である
ことを特徴とする付記37~39の何れか1項に記載のダンボール材。
〔付記41〕
 前記シートは、段ボール業界規格T0004:2000に準拠して測定された厚み寸法が2.0[mm]以上であって9.6[mm]以下である
ことを特徴とする付記37~40の何れか1項に記載のダンボール材。
〔付記42〕
 連続するダンボールにおいて矩形状のシートが第一方向に沿って直線状に延在する折目のそれぞれにおいて前記折目の沿う平面で前記第一方向に直交する第二方向へ折り返され、前記第一方向および前記第二方向の双方に直交する第三方向に沿って前記シートが積み重ねられた蛇腹折りのダンボール材であり、
 当該ダンボール材は、自動的に箱に製造する自動包装システムに用いられるものであって、
 前記シートは、
 JIS Z0203:2000に準拠して温度23[℃]および湿度50[%]の温湿度条件で24時間以上の前処理が施された常態において、
 前記第一方向から視て表ライナと裏ライナとの中央において前記第二方向に延びる仮想的な補助線に対して中芯が交差するとともに隣り合う二箇所において、前記中芯と前記補助線とのなす二つの鋭角どうしの差を前記二つの鋭角の和で除した比率が0.30以下(ただし0.08以下を除く)であるという条件を満足する
ことを特徴とするダンボール材。
〔付記43〕
 前記シートは、JIS P8131:2009に準拠して測定された破裂強さが500[kPa]以上である
ことを特徴とする付記42に記載のダンボール材。
〔付記44〕
 前記シートは、JIS Z0402:1995に準拠してシングルフェーサ側およびグルーマシン側で測定された接着力の平均値が140[N]以上である
ことを特徴とする付記42または43に記載のダンボール材。
〔付記45〕
 前記シートは、段ボール業界規格T0004:2000に準拠して測定された厚み寸法が2.0[mm]以上であって9.6[mm]以下である
ことを特徴とする付記42~44の何れか1項に記載のダンボール材。
〔付記46〕
 前記シートは、
 段繰率が1.2[倍]以上であって1.7[倍]以下であり、
 JIS Z0403-1:1999に準拠して測定された平面圧縮強さが50[kPa]以上であって250[kPa]以下である
ことを特徴とする付記42~45の何れか1項に記載のダンボール材。
〔付記47〕
 連続するダンボールにおいて矩形状のシートが第一方向に沿って直線状に延在する折目のそれぞれにおいて前記折目の沿う平面で前記第一方向に直交する第二方向へ折り返され、前記第一方向および前記第二方向の双方に直交する第三方向に沿って前記シートが積み重ねられた製函用の自動包装システムに用いられる蛇腹折りのダンボール材であって、
 前記シートは、
 JIS Z0203:2000に準拠して温度23[℃]および湿度50[%]の温湿度条件で24時間以上の前処理が施された常態において、
 前記折目を跨ぐカット線で切り出されたダンボール片のライナについて、
 JIS Z0402:1995に準拠してシングルフェーサ側およびグルーマシン側で測定された接着力の平均値が140[N]以上である
ことを特徴とするダンボール材。
〔付記48〕
 前記シートは、段ボール業界規格T0004:2000に準拠して測定された厚み寸法が2.0[mm]以上であって9.6[mm]以下である
ことを特徴とする付記47に記載のダンボール材。
〔付記49〕
 前記シートは、
 段繰率が1.2[倍]以上であって1.7[倍]以下であり、
 JIS Z0403-1:1999に準拠して測定された平面圧縮強さが50[kPa]以上であって250[kPa]以下である
ことを特徴とする付記47または48に記載のダンボール材。
〔付記50〕
 前記シートは、前記第一方向から視て表ライナと裏ライナとの中央において前記第二方向に延びる仮想的な補助線に対して中芯が交差するとともに隣り合う二箇所において、前記中芯と前記補助線とのなす二つの鋭角どうしの差を前記二つの鋭角の和で除した比率が0.30以下である
ことを特徴とする付記47~49の何れか1項に記載のダンボール材。
〔付記51〕
 前記シートは、JIS P8131:2009に準拠して測定された破裂強さが500[kPa]以上である
ことを特徴とする付記47~50の何れか1項に記載のダンボール材。
〔付記52〕
 付記33~51の何れか1項に記載のダンボール材を用いた
ことを特徴とするダンボール箱。
[V. Appendix-2]
[Appendix 33]
In a continuous cardboard box, a rectangular sheet is folded back in a second direction orthogonal to the first direction on a plane along the fold at each of the folds extending linearly along the first direction. A bellows-folded corrugated cardboard material in which the sheets are stacked along a third direction orthogonal to both the direction and the second direction.
The sheet is
Under normal conditions where pretreatment was performed for 24 hours or more under temperature and humidity conditions of temperature 23 [° C.] and humidity 50 [%] in accordance with JIS Z0203: 2000.
About the cardboard piece cut out by the cut line straddling the crease
The thickness dimension measured in accordance with the corrugated board industry standard T0004: 2000 is 2.0 [mm] or more and 9.6 [mm] or less.
A corrugated cardboard material that satisfies both the conditions that the planar compressive strength measured in accordance with JIS Z0403-1: 1999 is 50 [kPa] or more and 250 [kPa] or less.
[Appendix 34]
The corrugated cardboard material according to Appendix 33, wherein the sheet has an average value of adhesive strength of 140 [N] or more measured on the single facer side and the glue machine side in accordance with JIS Z0402: 1995.
[Appendix 35]
The sheet is provided with the core at two locations where the core intersects and is adjacent to the virtual auxiliary line extending in the second direction at the center of the front liner and the back liner when viewed from the first direction. The corrugated cardboard material according to Appendix 33 or 34, wherein the ratio obtained by dividing the difference between the two acute angles formed by the auxiliary line by the sum of the two acute angles is 0.30 or less.
[Appendix 36]
The corrugated cardboard material according to any one of Supplementary note 33 to 35, wherein the sheet has a burst strength of 500 [kPa] or more measured in accordance with JIS P8131: 2009.
[Appendix 37]
In a continuous cardboard box, a rectangular sheet is folded back in a second direction orthogonal to the first direction on a plane along the fold at each of the folds extending linearly along the first direction. A bellows-folded corrugated cardboard material in which the sheets are stacked along a third direction orthogonal to both the direction and the second direction.
The sheet is
Under normal conditions where pretreatment was performed for 24 hours or more under temperature and humidity conditions of temperature 23 [° C.] and humidity 50 [%] in accordance with JIS Z0203: 2000.
About the cardboard piece cut out by the cut line straddling the crease
The step-by-step rate is 1.2 [times] or more and 1.7 [times] or less.
A corrugated cardboard material that satisfies both the conditions that the planar compressive strength measured in accordance with JIS Z0403-1: 1999 is 50 [kPa] or more and 250 [kPa] or less.
[Appendix 38]
The sheet is provided with the core at two locations where the core intersects and is adjacent to the virtual auxiliary line extending in the second direction at the center of the front liner and the back liner when viewed from the first direction. The corrugated cardboard material according to Appendix 37, wherein the ratio obtained by dividing the difference between the two acute angles formed by the auxiliary line by the sum of the two acute angles is 0.30 or less.
[Appendix 39]
The corrugated cardboard material according to Appendix 37 or 38, wherein the sheet has a burst strength of 500 [kPa] or more measured in accordance with JIS P8131: 2009.
[Appendix 40]
The sheet is any one of Appendix 37 to 39, wherein the average value of the adhesive force measured on the single facer side and the glue machine side in accordance with JIS Z0402: 1995 is 140 [N] or more. The cardboard material described in the section.
[Appendix 41]
The sheet has a thickness dimension of 2.0 [mm] or more and 9.6 [mm] or less measured in accordance with the corrugated cardboard industry standard T0004: 2000. Or the cardboard material according to item 1.
[Appendix 42]
In a continuous cardboard box, a rectangular sheet is folded back in a second direction orthogonal to the first direction on a plane along the fold at each of the folds extending linearly along the first direction. A bellows-folded corrugated cardboard material in which the sheets are stacked along a third direction orthogonal to both the direction and the second direction.
The corrugated cardboard material is used in an automatic packaging system that automatically manufactures boxes.
The sheet is
Under normal conditions where pretreatment was performed for 24 hours or more under temperature and humidity conditions of temperature 23 [° C.] and humidity 50 [%] in accordance with JIS Z0203: 2000.
At the center of the front liner and the back liner when viewed from the first direction, the core intersects the virtual auxiliary line extending in the second direction, and at two adjacent locations, the core and the auxiliary line A corrugated cardboard material that satisfies the condition that the ratio of the difference between the two acute angles formed by the two sharp angles divided by the sum of the two acute angles is 0.30 or less (excluding 0.08 or less).
[Appendix 43]
The corrugated cardboard material according to Appendix 42, wherein the sheet has a burst strength of 500 [kPa] or more measured in accordance with JIS P8131: 2009.
[Appendix 44]
The corrugated cardboard according to Appendix 42 or 43, wherein the sheet has an average value of adhesive strength of 140 [N] or more measured on the single facer side and the glue machine side in accordance with JIS Z0402: 1995. Material.
[Appendix 45]
Any of Appendix 42 to 44, wherein the sheet has a thickness dimension of 2.0 [mm] or more and 9.6 [mm] or less measured in accordance with the corrugated cardboard industry standard T0004: 2000. Or the cardboard material according to item 1.
[Appendix 46]
The sheet is
The step-by-step rate is 1.2 [times] or more and 1.7 [times] or less.
The item according to any one of Appendix 42 to 45, wherein the planar compressive strength measured in accordance with JIS Z0403-1: 1999 is 50 [kPa] or more and 250 [kPa] or less. Cardboard material.
[Appendix 47]
In continuous cardboard, a rectangular sheet is folded back in a second direction orthogonal to the first direction on a plane along the fold at each of the folds extending linearly along the first direction. A bellows-folded corrugated cardboard material used in an automatic packaging system for box making in which the sheets are stacked along a third direction orthogonal to both the direction and the second direction.
The sheet is
Under normal conditions where pretreatment was performed for 24 hours or more under temperature and humidity conditions of temperature 23 [° C.] and humidity 50 [%] in accordance with JIS Z0203: 2000.
Regarding the liner of the cardboard piece cut out by the cut line that straddles the crease
A corrugated cardboard material characterized in that the average value of the adhesive strength measured on the single facer side and the glue machine side in accordance with JIS Z0402: 1995 is 140 [N] or more.
[Appendix 48]
The corrugated cardboard according to Appendix 47, wherein the sheet has a thickness dimension of 2.0 [mm] or more and 9.6 [mm] or less measured in accordance with the corrugated cardboard industry standard T0004: 2000. Material.
[Appendix 49]
The sheet is
The step-by-step rate is 1.2 [times] or more and 1.7 [times] or less.
The corrugated cardboard material according to Appendix 47 or 48, wherein the plane compressive strength measured in accordance with JIS Z0403-1: 1999 is 50 [kPa] or more and 250 [kPa] or less.
[Appendix 50]
The sheet is provided with the core at two locations where the core intersects and is adjacent to the virtual auxiliary line extending in the second direction at the center of the front liner and the back liner when viewed from the first direction. The cardboard material according to any one of Supplementary note 47 to 49, wherein the ratio of the difference between the two acute angles formed by the auxiliary line divided by the sum of the two acute angles is 0.30 or less.
[Appendix 51]
The corrugated cardboard material according to any one of Supplementary note 47 to 50, wherein the sheet has a burst strength of 500 [kPa] or more measured in accordance with JIS P8131: 2009.
[Appendix 52]
A corrugated cardboard box using the corrugated cardboard material according to any one of Appendix 33 to 51.
 1  ダンボール材
 10  段目(波目)
 2  シート
 20  シート対
 21  第一シート
 22  第二シート
 23  第三シート
 F  折目
 L  補助線
 L1  縦寸法(第一寸法)
 L2  横寸法(第二寸法)
 L3  高さ寸法(第三寸法)
 
1 Cardboard material 10th stage (wave)
2 Sheets 20 Sheets vs. 21 1st Sheet 22 2nd Sheet 23 3rd Sheet F Fold L Auxiliary Line L1 Vertical Dimension (1st Dimension)
L2 horizontal dimension (second dimension)
L3 height dimension (third dimension)

Claims (8)

  1.  連続する両面ダンボールにおいて矩形状のシートが第一方向に沿って直線状に延在する折目のそれぞれにおいて前記折目の沿う平面で前記第一方向に直交する第二方向へ折り返され、前記第一方向および前記第二方向の双方に直交する第三方向に沿って前記シートが積み重ねられた蛇腹折りのダンボール材であって、
     前記両面ダンボールを構成するライナの坪量が110[g/m]以上であって290[g/m]以下であり、
     前記ライナのパルプ繊維長が0.55[mm]以上であって1.60[mm]以下であり、
     前記ライナにおけるパルプ繊維の前記第一方向の配向に対する前記第二方向の配向の比率である繊維配向比が1.0以上であって2.0以下であり、
     前記両面ダンボールを構成する中芯のパルプ繊維長に対する前記ライナの前記パルプ繊維長の比率である繊維長比が0.65以上であって1.90以下である
    ことを特徴とするダンボール材。
    In continuous double-sided corrugated cardboard, a rectangular sheet is folded back in a second direction orthogonal to the first direction on a plane along the fold at each of the folds extending linearly along the first direction. A bellows-folded corrugated cardboard material in which the sheets are stacked along a third direction orthogonal to both one direction and the second direction.
    The basis weight of the liner constituting the double-sided corrugated cardboard is 110 [g / m 2 ] or more and 290 [g / m 2 ] or less.
    The pulp fiber length of the liner is 0.55 [mm] or more and 1.60 [mm] or less.
    The fiber orientation ratio, which is the ratio of the orientation of the pulp fibers in the first direction to the orientation in the second direction in the liner, is 1.0 or more and 2.0 or less.
    A corrugated cardboard material characterized in that the fiber length ratio, which is the ratio of the pulp fiber length of the liner to the pulp fiber length of the core constituting the double-sided corrugated cardboard, is 0.65 or more and 1.90 or less.
  2.  連続するダンボールにおいて矩形状のシートが第一方向に沿って直線状に延在する折目のそれぞれにおいて前記折目の沿う平面で前記第一方向に直交する第二方向へ折り返され、前記第一方向および前記第二方向の双方に直交する第三方向に沿って前記シートが積み重ねられた蛇腹折りのダンボール材であって、
     前記シートは、
     JIS Z0203:2000に準拠して温度23[℃]および湿度50[%]の温湿度条件で24時間以上の前処理が施された常態において、
     段ボール業界規格T0004:2000に準拠して測定された厚み寸法が2.0[mm]以上であって9.6[mm]以下であり、
     JIS Z0403-1:1999に準拠して測定された平面圧縮強さが50[kPa]以上であって250[kPa]以下である
    ことを特徴とするダンボール材。
    In a continuous cardboard box, a rectangular sheet is folded back in a second direction orthogonal to the first direction on a plane along the fold at each of the folds extending linearly along the first direction. A bellows-folded corrugated cardboard material in which the sheets are stacked along a third direction orthogonal to both the direction and the second direction.
    The sheet is
    Under normal conditions where pretreatment was performed for 24 hours or more under temperature and humidity conditions of temperature 23 [° C.] and humidity 50 [%] in accordance with JIS Z0203: 2000.
    The thickness dimension measured in accordance with the corrugated board industry standard T0004: 2000 is 2.0 [mm] or more and 9.6 [mm] or less.
    A corrugated cardboard material having a planar compressive strength of 50 [kPa] or more and 250 [kPa] or less measured in accordance with JIS Z0403-1: 1999.
  3.  連続するダンボールにおいて矩形状のシートが第一方向に沿って直線状に延在する折目のそれぞれにおいて前記折目の沿う平面で前記第一方向に直交する第二方向へ折り返され、前記第一方向および前記第二方向の双方に直交する第三方向に沿って前記シートが積み重ねられた蛇腹折りのダンボール材であって、
     前記シートは、
     JIS Z0203:2000に準拠して温度23[℃]および湿度50[%]の温湿度条件で24時間以上の前処理が施された常態において、
     段繰率が1.2[倍]以上であって1.7[倍]以下であり、
     JIS Z0403-1:1999に準拠して測定された平面圧縮強さが50[kPa]以上であって250[kPa]以下である
    ことを特徴とするダンボール材。
    In a continuous cardboard box, a rectangular sheet is folded back in a second direction orthogonal to the first direction on a plane along the fold at each of the folds extending linearly along the first direction. A bellows-folded corrugated cardboard material in which the sheets are stacked along a third direction orthogonal to both the direction and the second direction.
    The sheet is
    Under normal conditions where pretreatment was performed for 24 hours or more under temperature and humidity conditions of temperature 23 [° C.] and humidity 50 [%] in accordance with JIS Z0203: 2000.
    The step-by-step rate is 1.2 [times] or more and 1.7 [times] or less.
    A corrugated cardboard material having a planar compressive strength of 50 [kPa] or more and 250 [kPa] or less measured in accordance with JIS Z0403-1: 1999.
  4.  連続するダンボールにおいて矩形状のシートが第一方向に沿って直線状に延在する折目のそれぞれにおいて前記折目の沿う平面で前記第一方向に直交する第二方向へ折り返され、前記第一方向および前記第二方向の双方に直交する第三方向に沿って前記シートが積み重ねられた蛇腹折りのダンボール材であって、
     前記シートは、
     JIS Z0203:2000に準拠して温度23[℃]および湿度50[%]の温湿度条件で24時間以上の前処理が施された常態において、
     前記第一方向から視て表ライナと裏ライナとの中央において前記第二方向に延びる仮想的な補助線に対して中芯が交差するとともに隣り合う二箇所において、前記中芯と前記補助線とのなす二つの鋭角どうしの差を前記二つの鋭角の和で除した比率が0.30以下である
    ことを特徴とするダンボール材。
    In a continuous cardboard box, a rectangular sheet is folded back in a second direction orthogonal to the first direction on a plane along the fold at each of the folds extending linearly along the first direction. A bellows-folded corrugated cardboard material in which the sheets are stacked along a third direction orthogonal to both the direction and the second direction.
    The sheet is
    Under normal conditions where pretreatment was performed for 24 hours or more under temperature and humidity conditions of temperature 23 [° C.] and humidity 50 [%] in accordance with JIS Z0203: 2000.
    At the center of the front liner and the back liner when viewed from the first direction, the core intersects the virtual auxiliary line extending in the second direction, and at two adjacent locations, the core and the auxiliary line A corrugated cardboard material characterized in that the ratio obtained by dividing the difference between the two acute angles formed by the two acute angles by the sum of the two acute angles is 0.30 or less.
  5.  連続するダンボールにおいて矩形状のシートが第一方向に沿って直線状に延在する折目のそれぞれにおいて前記折目の沿う平面で前記第一方向に直交する第二方向へ折り返され、前記第一方向および前記第二方向の双方に直交する第三方向に沿って前記シートが積み重ねられた蛇腹折りのダンボール材であって、
     前記シートは、
     JIS Z0203:2000に準拠して温度23[℃]および湿度50[%]の温湿度条件で24時間以上の前処理が施された常態において、
     JIS P8131:2009に準拠して測定された破裂強さが500[kPa]以上である
    ことを特徴とするダンボール材。
    In a continuous cardboard box, a rectangular sheet is folded back in a second direction orthogonal to the first direction on a plane along the fold at each of the folds extending linearly along the first direction. A bellows-folded corrugated cardboard material in which the sheets are stacked along a third direction orthogonal to both the direction and the second direction.
    The sheet is
    Under normal conditions where pretreatment was performed for 24 hours or more under temperature and humidity conditions of temperature 23 [° C.] and humidity 50 [%] in accordance with JIS Z0203: 2000.
    A corrugated cardboard material having a burst strength of 500 [kPa] or more measured in accordance with JIS P8131: 2009.
  6.  連続するダンボールにおいて矩形状のシートが第一方向に沿って直線状に延在する折目のそれぞれにおいて前記折目の沿う平面で前記第一方向に直交する第二方向へ折り返され、前記第一方向および前記第二方向の双方に直交する第三方向に沿って前記シートが積み重ねられた蛇腹折りのダンボール材であって、
     前記シートは、
     JIS Z0203:2000に準拠して温度23[℃]および湿度50[%]の温湿度条件で24時間以上の前処理が施された常態において、
     JIS Z0402:1995に準拠してシングルフェーサ側およびグルーマシン側で測定された接着力の平均値が140[N]以上である
    ことを特徴とするダンボール材。
    In a continuous cardboard box, a rectangular sheet is folded back in a second direction orthogonal to the first direction on a plane along the fold at each of the folds extending linearly along the first direction. A bellows-folded corrugated cardboard material in which the sheets are stacked along a third direction orthogonal to both the direction and the second direction.
    The sheet is
    Under normal conditions where pretreatment was performed for 24 hours or more under temperature and humidity conditions of temperature 23 [° C.] and humidity 50 [%] in accordance with JIS Z0203: 2000.
    A corrugated cardboard material characterized in that the average value of the adhesive strength measured on the single facer side and the glue machine side in accordance with JIS Z0402: 1995 is 140 [N] or more.
  7.  連続するダブルフルートの両面ダンボールにおいて矩形状のシートが第一方向に沿って直線状に延在する折目のそれぞれにおいて前記折目の沿う平面で前記第一方向に直交する第二方向へ折り返され、前記第一方向および前記第二方向の双方に直交する第三方向に沿って前記シートが積み重ねられた蛇腹折りのダンボール材であって、
     前記シートは、
     JIS Z0203:2000に準拠して温度23[℃]および湿度50[%]の温湿度条件で24時間以上の前処理が施された常態において、
     JIS P8131:2009に準拠して測定された前記折目を含まない箇所の破裂強さが500[kPa]以上であり、
     JIS P8131:2009に準拠して測定された前記折目を含む箇所の破裂強さが520[kPa]以上である
    ことを特徴とするダンボール材。
    In a continuous double-flute double-sided cardboard, a rectangular sheet is folded back in a second direction orthogonal to the first direction on a plane along the fold at each of the folds extending linearly along the first direction. , A bellows-folded corrugated cardboard material in which the sheets are stacked along a third direction orthogonal to both the first direction and the second direction.
    The sheet is
    Under normal conditions where pretreatment was performed for 24 hours or more under temperature and humidity conditions of temperature 23 [° C.] and humidity 50 [%] in accordance with JIS Z0203: 2000.
    The burst strength of the portion not including the crease measured in accordance with JIS P8131: 2009 is 500 [kPa] or more.
    A corrugated cardboard material having a burst strength of 520 [kPa] or more at a portion including the crease measured in accordance with JIS P8131: 2009.
  8.  請求項1~7の何れか1項に記載のダンボール材を用いた
    ことを特徴とするダンボール箱。
     
    A corrugated cardboard box using the corrugated cardboard material according to any one of claims 1 to 7.
PCT/JP2020/017263 2019-06-05 2020-04-21 Corrugated cardboard material and corrugated cardboard box using same WO2020246163A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
MYPI2021007155A MY192401A (en) 2019-06-05 2020-04-21 Corrugated cardboard material and corrugated cardboard box using same
AU2020287947A AU2020287947B2 (en) 2019-06-05 2020-04-21 Corrugated cardboard material and corrugated cardboard box using same
AU2023200160A AU2023200160A1 (en) 2019-06-05 2023-01-12 Corrugated cardboard material and corrugated cardboard box using same
AU2023200158A AU2023200158A1 (en) 2019-06-05 2023-01-12 Corrugated cardboard material and corrugated cardboard box using same
AU2023200159A AU2023200159A1 (en) 2019-06-05 2023-01-12 Corrugated cardboard material and corrugated cardboard box using same

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
JP2019-105560 2019-06-05
JP2019105558A JP6697613B1 (en) 2019-06-05 2019-06-05 Cardboard material and cardboard box using the same
JP2019-105561 2019-06-05
JP2019105560A JP6697615B1 (en) 2019-06-05 2019-06-05 Cardboard material and cardboard box using the same
JP2019-105559 2019-06-05
JP2019-105562 2019-06-05
JP2019105559A JP6697614B1 (en) 2019-06-05 2019-06-05 Cardboard material and cardboard box using the same
JP2019-105558 2019-06-05
JP2019105562A JP6697617B1 (en) 2019-06-05 2019-06-05 Cardboard material and cardboard box using the same
JP2019105561A JP6697616B1 (en) 2019-06-05 2019-06-05 Cardboard material and cardboard box using the same
JP2019188246A JP6684425B1 (en) 2019-10-11 2019-10-11 Cardboard material and cardboard box using the same
JP2019-188246 2019-10-11
JP2020-062420 2020-03-31
JP2020062420A JP6754510B1 (en) 2020-03-31 2020-03-31 Cardboard material and cardboard boxes using it

Publications (1)

Publication Number Publication Date
WO2020246163A1 true WO2020246163A1 (en) 2020-12-10

Family

ID=73652771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/017263 WO2020246163A1 (en) 2019-06-05 2020-04-21 Corrugated cardboard material and corrugated cardboard box using same

Country Status (3)

Country Link
AU (4) AU2020287947B2 (en)
MY (1) MY192401A (en)
WO (1) WO2020246163A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60168923U (en) * 1984-04-16 1985-11-09 五洋紙工株式会社 Waterproof and moisture-proof cardboard sheet
JPS62280030A (en) * 1986-05-30 1987-12-04 陳 曉明 Reinforced cardboard and manufacture of reinforced corrugated board
JP2000109049A (en) * 1998-10-12 2000-04-18 Taisho Pharmaceut Co Ltd Double-faced corrugated board and corrugated board box
JP2003251720A (en) * 2002-03-01 2003-09-09 Oji Paper Co Ltd Double-faced corrugated fiberboard sheet
JP2005179586A (en) * 2003-12-22 2005-07-07 Oji Cornstarch Co Ltd Adhesive for use in heat-saving lamination
JP2009172942A (en) * 2008-01-28 2009-08-06 Nippon Shikogyo Kk Corrugating medium and corrugated cardboard sheet
JP3160065U (en) * 2010-03-30 2010-06-10 中越パッケージ株式会社 Cardboard and cardboard boxes
US20140093705A1 (en) * 2012-09-28 2014-04-03 Kimberly-Clark Worldwide, Inc. Tree-free fiber compositions and uses in containerboard packaging
CN103991260A (en) * 2014-05-29 2014-08-20 达成包装制品(苏州)有限公司 Combined seven-layer double-corrugated heavy paper board
JP2015509473A (en) * 2012-03-06 2015-03-30 パノテック ソシエタ ア レスポンサビリタ リミタータ An automated mechanism that folds and stacks cocoon tape made of sufficiently rigid material in a zigzag manner
JP2016030442A (en) * 2014-07-25 2016-03-07 株式会社TanaーX Folding rule application device to corrugated fiberboard material
WO2017208845A1 (en) * 2016-06-01 2017-12-07 株式会社TanaーX Method and device for folding long double-sided cardboard

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60168923U (en) * 1984-04-16 1985-11-09 五洋紙工株式会社 Waterproof and moisture-proof cardboard sheet
JPS62280030A (en) * 1986-05-30 1987-12-04 陳 曉明 Reinforced cardboard and manufacture of reinforced corrugated board
JP2000109049A (en) * 1998-10-12 2000-04-18 Taisho Pharmaceut Co Ltd Double-faced corrugated board and corrugated board box
JP2003251720A (en) * 2002-03-01 2003-09-09 Oji Paper Co Ltd Double-faced corrugated fiberboard sheet
JP2005179586A (en) * 2003-12-22 2005-07-07 Oji Cornstarch Co Ltd Adhesive for use in heat-saving lamination
JP2009172942A (en) * 2008-01-28 2009-08-06 Nippon Shikogyo Kk Corrugating medium and corrugated cardboard sheet
JP3160065U (en) * 2010-03-30 2010-06-10 中越パッケージ株式会社 Cardboard and cardboard boxes
JP2015509473A (en) * 2012-03-06 2015-03-30 パノテック ソシエタ ア レスポンサビリタ リミタータ An automated mechanism that folds and stacks cocoon tape made of sufficiently rigid material in a zigzag manner
US20140093705A1 (en) * 2012-09-28 2014-04-03 Kimberly-Clark Worldwide, Inc. Tree-free fiber compositions and uses in containerboard packaging
CN103991260A (en) * 2014-05-29 2014-08-20 达成包装制品(苏州)有限公司 Combined seven-layer double-corrugated heavy paper board
JP2016030442A (en) * 2014-07-25 2016-03-07 株式会社TanaーX Folding rule application device to corrugated fiberboard material
WO2017208845A1 (en) * 2016-06-01 2017-12-07 株式会社TanaーX Method and device for folding long double-sided cardboard

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Hand book of pulp and paper technolog", JAPAN TAPPI, 30 January 1992 (1992-01-30), pages 484 - 486 *

Also Published As

Publication number Publication date
MY192401A (en) 2022-08-19
AU2023200158A1 (en) 2023-02-09
AU2020287947B2 (en) 2022-12-08
AU2020287947A1 (en) 2022-01-20
AU2023200160A1 (en) 2023-02-16
AU2023200159A1 (en) 2023-02-16

Similar Documents

Publication Publication Date Title
JP6684425B1 (en) Cardboard material and cardboard box using the same
WO2020246163A1 (en) Corrugated cardboard material and corrugated cardboard box using same
JP6801807B1 (en) Cardboard material and cardboard boxes using it
JP6801808B1 (en) Cardboard material and cardboard boxes using it
JP6754510B1 (en) Cardboard material and cardboard boxes using it
JP6822594B1 (en) Cardboard material
JP2021160833A (en) Cardboard material and cardboard box using the same
WO2021070966A1 (en) Cardboard material, cardboard box using same, box making material, box making article, and joining method
JP6870773B2 (en) Cardboard material
JP2020196240A (en) Cardboard material and cardboard box using the same
JP2021171950A (en) Cardboard material and cardboard box using the same
JP6741181B1 (en) Cardboard material and cardboard box using the same
JP6741180B1 (en) Cardboard material and cardboard box using the same
JP6741182B1 (en) Cardboard material and cardboard box using the same
JP6813113B2 (en) Cardboard material and cardboard boxes using it
JP6813116B2 (en) Cardboard material and cardboard boxes using it
JP2021171951A (en) Cardboard material and cardboard box using the same
JP6813115B2 (en) Cardboard material and cardboard boxes using it
JP6813114B2 (en) Cardboard material and cardboard boxes using it
JP6813112B2 (en) Cardboard material and cardboard boxes using it
WO2021200988A1 (en) Corrugated fiberboard material
JP2021062604A (en) Cardboard material and cardboard box using the same
JP6697616B1 (en) Cardboard material and cardboard box using the same
JP6825673B1 (en) Cardboard material
JP6697617B1 (en) Cardboard material and cardboard box using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20818038

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020287947

Country of ref document: AU

Date of ref document: 20200421

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20818038

Country of ref document: EP

Kind code of ref document: A1