WO2020246135A1 - Optical recording medium - Google Patents

Optical recording medium Download PDF

Info

Publication number
WO2020246135A1
WO2020246135A1 PCT/JP2020/016025 JP2020016025W WO2020246135A1 WO 2020246135 A1 WO2020246135 A1 WO 2020246135A1 JP 2020016025 W JP2020016025 W JP 2020016025W WO 2020246135 A1 WO2020246135 A1 WO 2020246135A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
recording medium
optical recording
information signal
optical
Prior art date
Application number
PCT/JP2020/016025
Other languages
French (fr)
Japanese (ja)
Inventor
陽 太田
紀彰 西
崇志 清水
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to JP2021524685A priority Critical patent/JP7468521B2/en
Priority to CN202080038506.5A priority patent/CN113874939A/en
Publication of WO2020246135A1 publication Critical patent/WO2020246135A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/24018Laminated discs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24035Recording layers
    • G11B7/24038Multiple laminated recording layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/254Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of protective topcoat layers
    • G11B7/2542Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of protective topcoat layers consisting essentially of organic resins
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers

Definitions

  • This disclosure relates to an optical recording medium.
  • optical recording media have higher storage reliability than hard disk drives (HDD), flash memories, etc. due to their recording / playback principle. For this reason, in recent years, the demand for optical recording media as archival media has increased. Optical recording media are generally required to ensure surface smoothness.
  • Patent Document 1 discloses an optical recording medium on which a hard coat layer having excellent durability such as scratch resistance, dust resistance, and stain resistance, and excellent surface smoothness at the time of coating is formed. ..
  • An object of the present disclosure is to provide an optical recording medium capable of suppressing sticking between optical recording media when a plurality of optical recording media are stacked.
  • the present disclosure includes an optical recording medium main body having a first surface and a second surface, and a first concavo-convex structure layer provided on the first surface.
  • the concavo-convex structure layer includes a plurality of first structures provided at a pitch equal to or lower than the wavelength of light for recording or reproducing an information signal, and the area ratio of the convex portion of the first concavo-convex structure layer is 80. % Or less, and is an optical recording medium in which light is irradiated from the first surface side.
  • FIG. 1A is a perspective view showing an example of the appearance of the optical recording medium according to the first embodiment of the present disclosure.
  • FIG. 1B is a cross-sectional view showing an example of the configuration of the optical recording medium according to the first embodiment of the present disclosure.
  • FIG. 2 is a cross-sectional view showing an example of the configuration of each information signal layer shown in FIG.
  • FIG. 3 is a plan view showing an example of arrangement of a plurality of structures.
  • FIG. 4 is a cross-sectional view showing an example of the configuration of the optical recording medium according to the second embodiment of the present disclosure.
  • FIG. 5 is a cross-sectional view showing an example of the configuration of the optical recording medium according to the modified example.
  • FIG. 6A is an SEM image of the uneven structure of the optical disc of the first embodiment.
  • FIG. 6B is an SEM image of the uneven structure of the optical disc of the second embodiment.
  • FIG. 6C is an SEM image of the uneven structure of the optical disc of Comparative Example 2.
  • FIG. 7 is a graph showing the frequency distribution of the uneven structure of the optical disk of the first embodiment.
  • FIG. 8 is a schematic view for explaining a method of measuring the sticking force.
  • FIG. 9A is a graph showing the relationship between the area ratio of the convex portion and the sticking force.
  • FIG. 9B is a graph showing the relationship between the area ratio of the convex portion and the sliding force.
  • FIG. 10A is a graph showing the evaluation results of the signal characteristics of the optical disc of the third embodiment.
  • FIG. 10B is a graph showing the evaluation results of the signal characteristics of the optical disc of the fourth embodiment.
  • FIG. 10C is a graph showing the evaluation results of the signal characteristics of the optical disc of Comparative Example 3.
  • the optical recording medium 1 As shown in FIG. 1A, the optical recording medium 1 according to the first embodiment of the present disclosure has a disk shape having an opening (hereinafter referred to as “center hole”) at the center.
  • the shape of the optical recording medium 1 is not limited to this example, and may be, for example, a card shape.
  • the optical recording medium 1 is a so-called multilayer write-once optical recording medium (for example, AD (Archival Disc)), and as shown in FIG. 1B, the optical recording medium main body 2, the first concave-convex structure layer 3, and the second The concavo-convex structure layer 4 is provided.
  • the optical recording medium 1 is an optical recording medium of a method of recording data on both a groove track and a land track (hereinafter referred to as a “land / groove recording method”).
  • the optical recording medium main body 2 includes a first disc 10, a second disc 20, and a bonding layer 30.
  • the information signal layer L0, the spacer layer S1, the information signal layer L1, ..., The spacer layer Sn, the information signal layer Ln, and the light transmitting layer 12 which is a cover layer are one of the substrates 11 in this order. It has a structure laminated on the main surface.
  • the information signal layer L0, the spacer layer S1, the information signal layer L1, ..., The spacer layer Sm, the information signal layer Lm, and the light transmitting layer 22 as the cover layer are one of the substrates 21 in this order. It has a structure laminated on the main surface.
  • n and m are independently integers of 2 or more, and from the viewpoint of improving the recording capacity, they are preferably an integer of 3 or more, more preferably an integer of 4 or more, and even more preferably an integer of 5 or more. is there.
  • the information signal layers L0 to Ln and L0 to Lm are not particularly distinguished, they are referred to as the information signal layer L.
  • the optical recording medium main body 2 has light irradiation surfaces on both sides to which laser light for recording or reproducing an information signal is irradiated. More specifically, the recording or reproduction of the information signal of the first disk 10 and the first light irradiation surface C1 irradiated with the laser beam for recording or reproducing the information signal of the first disk 10 and the information signal of the second disk 20. It has a second light irradiation surface C2 to be irradiated with a laser beam for performing.
  • the information signal layer L0 is located at the innermost position with respect to the first light irradiation surface C1, and the information signal layers L1 to Ln are located in front of the first light irradiation surface C1. Therefore, the information signal layers L1 to Ln are configured to be capable of transmitting laser light used for recording or reproduction.
  • the information signal layer L0 is located at the innermost position with respect to the second light irradiation surface C2, and the information signal layers L1 to Lm are located in front of the second light irradiation surface C2. Therefore, the information signal layers L1 to Lm are configured to be capable of transmitting laser light used for recording or reproduction.
  • the information signal of the first disk 10 is recorded or reproduced as follows. That is, by irradiating the information signal layers L0 to Ln included in the first disk 10 with laser light from the first light irradiation surface C1 on the light transmitting layer 12 side, the information signal of the first disk 10 can be obtained. Recording or playback takes place. For example, laser light having a wavelength in the range of 350 nm or more and 415 nm or less is focused by an objective lens having a numerical aperture in the range of 0.84 or more and 0.95 or less, and the first disk is displayed from the light transmitting layer 12 side. By irradiating each of the information signal layers L0 to Ln included in 10, the information signal is recorded or reproduced.
  • the recording or reproduction of the information signal of the second disc 20 is performed as follows. That is, by irradiating each information signal layer L0 to Lm included in the second disk 20 with laser light from the second light irradiation surface C2 on the light transmitting layer 22 side, the information signal of the second disk 20 can be obtained. Recording or playback takes place. For example, laser light having a wavelength in the range of 350 nm or more and 415 nm or less is focused by an objective lens having a numerical aperture in the range of 0.84 or more and 0.95 or less, and a second disk is displayed from the light transmitting layer 22 side. By irradiating each information signal layer L0 to Lm included in 20, the information signal is recorded or reproduced.
  • the substrates 11 and 21, the bonding layer 30, the information signal layers L0 to Ln, L0 to Lm, the spacer layers S1 to Sn, S1 to Sm, and the light transmitting layers 12 and 22 constituting the optical recording medium main body 2 will be sequentially described. To do.
  • the substrates 11 and 21 have, for example, a disk shape having a center hole provided in the center.
  • One main surface of the substrates 11 and 21 is, for example, an uneven surface, and the information signal layer L0 is formed on the uneven surface.
  • the concave portion of the uneven surface is referred to as a land Ld, and the convex portion is referred to as a groove Gv.
  • Examples of the shapes of the land Ld and the groove Gv include various shapes such as a spiral shape and a concentric circle shape. Further, the land Ld and / or the groove Gv may be wobbled (meandering) for stabilizing the linear velocity, adding address information, and the like.
  • the spiral directions of the first disc 10 and the second disc 20 may be opposite to each other.
  • the optical recording medium (double-sided disc) 1 in which the first disc 10 and the second disc 20 are bonded can be simultaneously recorded and played back, so that the data transfer speed during recording and playback is approximately doubled. be able to.
  • the outer diameter (diameter) of the substrates 11 and 21 is selected to be, for example, 120 mm.
  • the inner diameter (diameter) of the substrates 11 and 21 is selected to be, for example, 15 mm.
  • the thickness of the substrate 11 is selected in consideration of rigidity, and is preferably 0.3 mm or more and 0.545 mm or less, and more preferably 0.445 mm or more and 0.545 mm or less.
  • a plastic material or glass can be used, and it is preferable to use a plastic material from the viewpoint of moldability.
  • a plastic material for example, a polycarbonate resin, a polyolefin resin, an acrylic resin, or the like can be used, and from the viewpoint of cost, it is preferable to use a polycarbonate resin.
  • the bonding layer 30 is provided between the first disc 10 and the second disc 20.
  • the bonding layer 30 attaches the first disk 10 and the second disk 20 to each other. More specifically, the surface of the first disk 10 on the substrate 11 side and the surface of the second disk substrate on the substrate 21 side are bonded so that the light transmitting layers 12 and 22 are on the front side, respectively. ..
  • the bonding layer 30 is made of a cured ultraviolet curable resin.
  • the thickness of the bonded layer 30 is, for example, 0.01 mm or more and 0.22 mm or less.
  • the ultraviolet curable resin is, for example, a radical polymerization type ultraviolet curable resin.
  • the information signal layer L has a concave track (hereinafter referred to as “land track”) and a convex track (hereinafter referred to as “groove track”).
  • the optical recording medium 1 according to the first embodiment is configured to be capable of recording an information signal on both a land track and a groove track.
  • the track pitch Tp of the land track and the groove track is preferably 0.225 ⁇ m or less, more preferably less than 0.225 ⁇ m.
  • the lower limit of the track pitch Tp is not particularly limited, but is, for example, 0.12 ⁇ m or more.
  • the information signal layers L0 to Ln include an inorganic recording layer (hereinafter, simply referred to as “recording layer”) 13 having an upper surface (first main surface) and a lower surface (second main surface).
  • a protective layer 14 provided adjacent to the upper surface of the recording layer 13 and a protective layer 15 provided adjacent to the lower surface of the recording layer 13 are provided.
  • the durability of the recording layer 13 can be improved.
  • the upper surface refers to the main surface of both main surfaces of the recording layer 13 on the side irradiated with the laser light for recording or reproducing the information signal
  • the lower surface means the main surface irradiated with the above-mentioned laser light.
  • the main surface on the opposite side to the side that is, the main surface on the substrate 11 side. Since the configuration of the information signal layers L0 to Lm can be the same as that of the information signal layers L0 to Ln, the description thereof will be omitted.
  • the recording layer 13 is configured to be able to record an information signal by irradiating the laser beam. Specifically, the recording layer 13 is configured so that a recording mark can be formed by irradiating a laser beam.
  • the recording layer 13 is an inorganic recording layer and contains a metal oxide as a main component as an inorganic recording material.
  • the metal oxide includes, for example, an inorganic recording material containing manganese oxide (MnO-based material), an inorganic recording material containing palladium oxide (PdO-based material), an inorganic recording material containing copper oxide (CuO-based material), or silver oxide. It is an inorganic recording material (AgO-based material).
  • the MnO-based material preferably further contains one or both of tungsten oxide and molybdenum oxide and zirconium oxide in addition to manganese oxide.
  • the MnO-based material may further contain one or both of nickel oxide and magnesium oxide with or without these oxides other than manganese oxide.
  • the PdO-based material preferably further contains tungsten oxide and copper oxide in addition to palladium oxide, and more preferably further contains tungsten oxide, copper oxide, and zinc oxide.
  • the thickness of the recording layer 13 is preferably in the range of 25 nm or more and 60 nm or less, more preferably 30 nm or more and 50 nm or less. When the thickness of the recording layer 13 is 25 nm or more, excellent signal characteristics can be obtained. On the other hand, when the thickness of the recording layer 13 is 60 nm or less, a wide recording power margin can be secured.
  • the protective layers 14 and 15 have a function as an oxygen barrier layer. Thereby, the durability of the recording layer 13 can be improved. In addition, the protective layers 14 and 15 have a function of suppressing the escape of oxygen in the recording layer 13. As a result, changes in the film quality of the recording layer 13 (detected mainly as a decrease in reflectance) can be suppressed, and a preferable film quality as the recording layer 13 can be secured.
  • the protective layers 14 and 15 also have a function of improving recording characteristics.
  • the protective layers 14 and 15 contain a dielectric.
  • the dielectric comprises, for example, at least one selected from the group consisting of oxides, nitrides, sulfides, carbides and fluorides.
  • the materials of the protective layers 14 and 15 the same or different materials can be used.
  • the oxide for example, an oxide of one or more elements selected from the group consisting of In, Zn, Sn, Al, Si, Ge, Ti, Ga, Ta, Nb, Hf, Zr, Cr, Bi and Mg. Can be mentioned.
  • nitride for example, a nitride of one or more elements selected from the group consisting of In, Sn, Ge, Cr, Si, Al, Nb, Mo, Ti, Nb, Mo, Ti, W, Ta and Zn.
  • the sulfide include Zn sulfide.
  • the carbides include, for example, carbides of one or more elements selected from the group consisting of In, Sn, Ge, Cr, Si, Al, Ti, Zr, Ta and W, preferably from the group consisting of Si, Ti and W. Carbides of one or more selected elements can be mentioned.
  • fluoride examples include fluorides of one or more elements selected from the group consisting of Si, Al, Mg, Ca and La. Specific examples of these mixtures, ZnS-SiO 2, SiO 2 -In 2 O 3 -ZrO 2 (SIZ), SiO 2 -Cr 2 O 3 -ZrO 2 (SCZ), In 2 O 3 -SnO 2 ( ITO), In 2 O 3- CeO 2 (ICO), In 2 O 3- Ga 2 O 3 (IGO), In 2 O 3- Ga 2 O 3- ZnO (IGZO), Sn 2 O 3- Ta 2 O 5 (TTO), TiO 2 -SiO 2, Al 2 O 3 -ZnO, Al 2 O 3 -BaO , and the like.
  • SIZ SiO 2 -In 2 O 3 -ZrO 2
  • SCZ SiO 2 -Cr 2 O 3 -ZrO 2
  • ITO In 2 O 3- CeO 2
  • IGO In 2 O 3- Ga 2 O 3- ZnO
  • the thickness of the protective layer 15 is preferably in the range of 2 nm or more and 30 nm or less. When the thickness of the protective layer 15 is 2 nm or more, a good barrier effect can be obtained. On the other hand, when the thickness of the protective layer 15 is 30 nm or less, it is possible to suppress a decrease in the recording power margin.
  • the thickness of the protective layer 14 is preferably in the range of 2 nm or more and 50 nm or less. When the thickness of the protective layer 14 is 2 nm or more, a good barrier effect can be obtained. On the other hand, when the thickness of the protective layer 14 is 50 nm or less, it is possible to suppress a decrease in the recording power margin.
  • the spacer layers S1 to Sn and S1 to Sm have a role of physically and optically separating the information signal layers L0 to Ln and L0 to Lm with sufficient distances, respectively, and the surface thereof is provided with an uneven surface. There is.
  • the uneven surface forms, for example, concentric or spiral land Ld and groove Gv.
  • the thickness of the spacer layers S1 to Sn and S1 to Sm is preferably 9 ⁇ m or more and 50 ⁇ m or less.
  • the materials of the spacer layers S1 to Sn and S1 to Sm are not particularly limited, but it is preferable to use an ultraviolet curable acrylic resin. Further, since the spacer layers S1 to Sn and S1 to Sm serve as optical paths for laser light for recording and reproducing data in the inner layer, it is preferable that the spacer layers have sufficiently high light transmission.
  • the light transmitting layers 12 and 22 are resin layers obtained by curing a photosensitive resin such as an ultraviolet curable resin.
  • the ultraviolet curable resin include an ultraviolet curable acrylic resin.
  • the light transmitting layers 12 and 22 may be composed of a light transmitting sheet having a ring shape and an adhesive layer for adhering the light transmitting sheet to the information signal layers Ln and Lm. ..
  • the light-transmitting sheet is preferably made of a material having a low absorption ability with respect to the laser light used for recording and reproduction, and specifically, it is preferably made of a material having a transmittance of 90% or more.
  • the material of the light transmissive sheet for example, a polycarbonate resin or a polyolefin resin (for example, Zeonex (registered trademark)) or the like can be used.
  • a polycarbonate resin or a polyolefin resin for example, Zeonex (registered trademark)
  • the adhesive layer for example, an ultraviolet curable resin or a pressure-sensitive adhesive (PSA: Pressure Sensitive Adhesive) can be used.
  • the thickness of the light transmitting layers 12 and 22 is preferably selected from the range of 10 ⁇ m or more and 177 ⁇ m or less, for example, 57 ⁇ m.
  • High-density recording can be realized by combining such thin light transmitting layers 12 and 22 with an objective lens having a high NA (numerical aperture) of, for example, about 0.85.
  • the first and second uneven structure layers 3 and 4 impart scratch resistance to the first and second light irradiation surfaces C1 and C2, respectively. Further, the first and second uneven structure layers 3 and 4 have reflection suppression functions for suppressing the reflection of laser light for recording or reproducing an information signal on the first and second light irradiation surfaces C1 and C2, respectively.
  • the first uneven structure layer 3 is provided on the first light irradiation surface C1 of the optical recording medium main body 2.
  • the second uneven structure layer 4 is provided on the second light irradiation surface C2 of the optical recording medium main body 2.
  • first and second concave-convex structure layers 3 and 4 for example, an acrylic resin, a silicone resin, a fluororesin, an organic-inorganic hybrid resin, or the like can be used.
  • the first and second uneven structure layers 3 and 4 may contain fine powder of metal oxide particles such as silica particles in order to improve the mechanical strength.
  • the upper limit of the area ratio R of the convex portions in the first and second concave-convex structure layers 3 and 4 is 80% or less, preferably 60% or less from the viewpoint of suppressing the adhesion between the superimposed optical recording media 1. , More preferably 50% or less, even more preferably 40% or less, and particularly preferably 20% or less.
  • the lower limit of the area ratio R is preferably 10% or more, more preferably 20% or more, and even more preferably 30% or more from the viewpoint of improving the reflection suppressing effect.
  • the convex portion refers to the convex portion itself when the first and second concave-convex structure layers 3 and 4 have a convex structure, and the first and second concave-convex structure layers 3 When 4 has a concave structure, it refers to a portion without a concave structure which is regarded as a convex portion with reference to the concave portion.
  • the first uneven structure layer 3 is a hard coat layer provided with a fine uneven structure (moss eye structure) on the surface.
  • the first concavo-convex structure layer 3 includes a base layer 3A and a plurality of structures 3B.
  • the basal layer 3A and the plurality of structures 3B may be made of the same material or may be made of different materials. Since the second concavo-convex structure layer 4 has the same structure as the first concavo-convex structure layer 3, the description of the structure of the second concavo-convex structure layer 4 will be omitted.
  • the basal layer 3A is the main body of the hard coat layer and is provided on the first light irradiation surface C1.
  • the plurality of structures 3B are provided on the basal layer 3A.
  • the structure 3B is a so-called moth-eye structure (sub-wavelength structure), and has a convex shape with respect to the first light irradiation surface C1.
  • the structure 3B may have a shape similar to a concave portion or a convex portion (for example, a pit) used for recording an information signal on a reproduction-only optical recording medium.
  • a master (mold) for forming the first concave-convex structure layer 3 that is, a plurality of structures 3B
  • a master for forming a substrate of a reproduction-only optical recording medium can be used. Therefore, it is possible to omit the step of separately producing the master for forming the first concave-convex structure layer 3.
  • a plurality of structures 3B are arranged so as to form a plurality of rows on the surface of the first light irradiation surface C1, for example.
  • the row has, for example, a linear, concentric or curved shape. Two or more of these shapes may be combined.
  • Examples of the curve include a curve that meanders periodically or aperiodically. Specific examples of such a curve include, but are not limited to, waveforms such as a sine wave and a triangular wave.
  • the arrangement of the plurality of structures 3B on the first light irradiation surface C1 may be either a regular arrangement or an irregular arrangement.
  • a regular arrangement a grid-like arrangement such as a four-sided lattice, a quasi-four-sided lattice, a six-way lattice, or a quasi-hexagonal lattice is preferable.
  • FIG. 3 shows an example in which a plurality of structures 3B are arranged in a hexagonal grid pattern.
  • the four-sided grid means a square-shaped grid.
  • a quasi-square grid is a distorted four-way grid.
  • a hexagonal grid is a regular hexagonal grid.
  • a quasi-hexagonal grid is a distorted hexagonal grid.
  • Specific shapes of the structure 3B include, for example, a cone shape, a columnar shape, a needle shape, a hemispherical shape, a semi-elliptical shape, a polygonal shape, and the like, but the shape is not limited to these shapes. Other shapes may be adopted.
  • Examples of the cone shape include a cone shape having a sharp top, a cone shape having a flat top (so-called frustum shape), and a cone shape having a convex or concave curved surface at the top. It is not limited to the shape.
  • Examples of the cone shape having a convex curved surface at the top include a quadric curved surface such as a parabolic surface. Further, the conical surface may be curved in a concave or convex shape.
  • the plurality of structures 3B provided on the first light irradiation surface C1 may all have the same size, shape and height, and the plurality of structures 3B may have different sizes, shapes or different sizes. Those having a height may be included. Further, a plurality of structures 3B may be included in which the lower parts are connected so as to overlap each other.
  • the plurality of structures 3B are arranged at pitches P1 and P2 below the wavelength of the laser beam (for example, 350 nm or less) for recording or reproducing an information signal.
  • the absolute value H of the height of the structure 3B is set, for example, in the range of 40 nm or more and 450 nm or less, but is not limited thereto.
  • the pitch P1 means the pitch of the structure 3B in the inter-row direction D1.
  • the pitch P2 means the pitch of the structure 3B in the row direction (row extending direction) D2.
  • the aspect ratio of the structure 3B is preferably 1 or more. This is because when the aspect ratio is 1 or more, an excellent reflection suppression function and transmission characteristics can be obtained.
  • the upper limit of the aspect ratio of the structure 3B is preferably 2 or less, more preferably 1.46 or less. This is because when the aspect ratio is 2 or less, the master can be easily separated from the first concavo-convex structure layer 3 when the first concavo-convex structure layer 3 is formed.
  • the aspect ratio of the structure 3B means the aspect ratio R1 of the structure 3B in the inter-row direction D1 and the aspect ratio R2 of the structure 3B in the column direction (extending direction of the rows) D2.
  • the aspect ratio R1 of the structure 3B in the inter-row direction D1 means the ratio (H / W1) of the height H of the structure 3B to the width W1 of the structure 3B in the inter-row direction D1 in the column direction (row).
  • the aspect ratio R2 of the structure 3B in the extending direction (extending direction) D2 means the ratio (H / W2) of the height H of the structure 3B to the width W2 of the structure 3B in the row direction (extending direction of the row) D2.
  • the first disc 10 is manufactured as follows.
  • the substrate 11 having the uneven surface formed on one main surface is molded.
  • a method for molding the substrate 11 for example, an injection molding method or a photopolymerization method (2P method: Photopolymerization) can be used.
  • the information signal layer L0 is formed by sequentially laminating the protective layer 15, the recording layer 13, and the protective layer 14 on the substrate 11 by, for example, a sputtering method.
  • the ultraviolet curable resin is uniformly applied onto the information signal layer L0 by a spin coating method. Then, the uneven pattern of the stamper is pressed against the ultraviolet curable resin uniformly applied on the information signal layer L0, the ultraviolet curable resin is irradiated with ultraviolet rays to cure it, and then the stamper is peeled off. As a result, the uneven pattern of the stamper is transferred to the ultraviolet curable resin, and for example, the spacer layer S1 provided with the land Ld and the groove Gv is formed on the information signal layer L0.
  • a photosensitive resin such as an ultraviolet curable resin (UV resin) is spin-coated on the information signal layer Ln by a spin coating method, and then the photosensitive resin is irradiated with light such as ultraviolet rays to be cured. As a result, the light transmitting layer 12 is formed on the information signal layer Ln.
  • UV resin ultraviolet curable resin
  • the first uneven structure layer 3 is formed on the first light irradiation surface C1 of the optical recording medium main body 2 by UV nanoimprint.
  • an ultraviolet curable resin is applied to the first light irradiation surface C1 of the optical recording medium main body 2 by a spin coating method, a master (mold) is pressed against the ultraviolet curable resin, and then ultraviolet rays are applied to the ultraviolet curable resin. Is irradiated to cure the ultraviolet curable resin. After curing, the master is released from the UV curable resin. As a result, the first uneven structure layer 3 is formed. As described above, the first disc 10 is produced.
  • the ultraviolet curable resin as an adhesive is stretched between the first and second discs 10 and 20 produced as described above by, for example, a spin coating method as follows. First, an ultraviolet curable resin is applied in a ring shape along the peripheral edge of the center hole on the main surface of both main surfaces of the second disc 20 opposite to the second light irradiation surface C2. Next, the main surface of both main surfaces of the first disk 10 opposite to the first light irradiation surface C1 and the second light irradiation surface C2 of both main surfaces of the second disk 20 The first disc 10 is pressed against the second disc 20 via the ultraviolet curable resin so that the main surface on the opposite side faces the second disc 20.
  • the first and second discs 10 and 20 are rotated, and the ultraviolet curable resin is stretched in the radial direction of the first and second discs 10 and 20 between the first and second discs 10 and 20. To do. At this time, the thickness of the ultraviolet curable resin is adjusted to a predetermined thickness by the rotation speed. As a result, the ultraviolet curable resin is spread between the first and second discs 10 and 20 from the inner peripheral portion to the outer peripheral portion of the first and second discs 10 and 20. As described above, the optical recording medium main body 2 having the bonded layer 30 in the uncured state can be obtained.
  • the stretching step of the ultraviolet curable resin it is preferable to irradiate the outer peripheral portions of the first and second discs 10 and 20 with ultraviolet rays to temporarily cure the ultraviolet curable resin stretched to the outer peripheral portions. As a result, it is possible to suppress the occurrence of opening in the outer peripheral portions of the first and second discs 10 and 20.
  • the bonded layer 30 is cured by irradiating ultraviolet rays from both sides of the optical recording medium main body 2 with an ultraviolet lamp. As a result, the target optical recording medium 1 can be obtained.
  • the optical recording medium 1 according to the first embodiment described above is provided with first and second uneven structure layers 3 and 4, respectively, on the first and second light irradiation surfaces C1 and C2.
  • first and second uneven structure layers 3 and 4 respectively, on the first and second light irradiation surfaces C1 and C2.
  • the first and second uneven structure layers 3 and 4 are composed of structures arranged at a pitch equal to or lower than the wavelength of laser light (for example, 350 nm or less) for recording or reproducing an information signal. As a result, the amount of reflected light can be reduced as compared with a flat light irradiation surface.
  • the uneven shape is formed. It is difficult to control. When the uneven shape of the first and second uneven structure layers cannot be controlled, optical interference is caused in a region having a large uneven shape, and the signal quality is deteriorated.
  • the uneven shape of the master is transferred to the ultraviolet curable resin to transfer the first and second light irradiation surfaces C1 of the optical recording medium 1.
  • first and second concavo-convex structure layers 3 and 4 are formed on C2, respectively, it is easy to control the concavo-convex shape of the first and second concavo-convex structure layers 3 and 4. Therefore, interlayer interference can be stably reduced over the entire surface of the optical recording medium 1.
  • the optical recording medium 101 according to the second embodiment of the present disclosure is a so-called multi-layer write-once optical recording medium, in which the optical recording medium main body 102 and the first uneven structure layer 3 are formed. Be prepared.
  • the same reference numerals are given to the same parts as those in the first embodiment, and the description thereof will be omitted.
  • the information signal layer L0, the spacer layer S1, the information signal layer L1, ..., The spacer layer Sn, the information signal layer Ln, and the light transmission layer 12 which is the cover layer are one of the substrates 11A in this order. It has a structure laminated on the main surface.
  • the optical recording medium 101 has a light irradiation surface C on one side, which is irradiated with light for recording or reproducing an information signal.
  • the information signal layer L0 is located at the innermost position with respect to the light irradiation surface C, and the information signal layers L1 to Ln are located in front of the information signal layer L0. Therefore, the information signal layers L1 to Ln are configured to be capable of transmitting laser light used for recording or reproduction.
  • information signals are recorded or reproduced by irradiating each information signal layer L0 to Ln with laser light from the light irradiation surface C on the light transmission layer 12 side. ..
  • laser light having a wavelength in the range of 400 nm or more and 415 nm or less is focused by an objective lens having a numerical aperture in the range of 0.84 or more and 0.86 or less, and each information signal layer L0 is focused from the light transmitting layer 12 side.
  • ⁇ Ln information signals are recorded or reproduced.
  • Examples of such an optical recording medium 101 include a multi-layer Blu-ray disc (BD: Blu-ray (registered trademark) Disc).
  • the optical recording medium 101 is typically a groove recording type optical recording medium, but may be an optical recording medium such as a land / groove recording type.
  • the diameter (diameter) of the substrate 11A is selected to be, for example, 120 mm.
  • the thickness of the substrate 11A is selected in consideration of rigidity, preferably 0.3 mm or more and 1.3 mm or less, more preferably 0.6 mm or more and 1.3 mm or less, for example, 1.1 mm.
  • the diameter (diameter) of the center hole is selected to be, for example, 15 mm.
  • the material of the substrate 11A is the same as that of the substrate 11 in the first embodiment described above.
  • the optical recording medium main body 102 is manufactured in the same manner as in the "first disk manufacturing step" in the first embodiment described above.
  • the first concave-convex structure layer 3 is formed on the light irradiation surface C of the optical recording medium main body 102 by UV nanoimprint. As a result, the target optical recording medium 101 can be obtained.
  • the optical recording medium 101 according to the second embodiment described above can obtain the same effect as that of the first embodiment. For example, by reducing the amount of reflected light as compared with a flat light irradiation surface, it is possible to provide four or more information signal layers L within the range of the thickness (100 ⁇ m) of the light transmission layer 12 of the BD standard.
  • the information signal layer L is provided adjacent to the recording layer 13, the protective layer 14 provided adjacent to the upper surface of the recording layer 13, and the lower surface of the recording layer 13.
  • the configuration including the protective layer 15 has been described, the configuration of the information signal layer L is not limited to this.
  • the protective layer may be provided only on either the upper surface or the lower surface of the recording layer 13.
  • the information signal layer L may be composed of only the recording layer 13 single layer.
  • the case where all the multilayer information signal layers L have the same layer structure (three-layer structure) has been described, but the characteristics (for example, optics) required for each information signal layer L have been described.
  • the layer structure may be changed according to the characteristics, durability, etc.). However, from the viewpoint of productivity, it is preferable that all the information signal layers L have the same layer structure.
  • the optical recording medium to which the present disclosure is applicable is not limited to those having the configurations according to the first and second embodiments.
  • a plurality of layers of information signal layers and protective layers are laminated in this order on a substrate, and information signals can be recorded or reproduced by irradiating the plurality of layers of information signal layers with laser light from the substrate side.
  • It has a configuration in which a plurality of layers of information signal layers are provided between an optical recording medium (for example, a CD (Compact Disc)) or two substrates, and a plurality of layers of laser light are emitted from the side of at least one substrate.
  • an optical recording medium for example, a DVD (Digital Versatile Disc)
  • an optical recording medium for example, a DVD (Digital Versatile Disc)
  • first and second disks 10 and 20 each include a plurality of layers of information signal layers L has been described, but the first and second disks 10 and 20 have single layers, respectively.
  • the information signal layer L of the above may be provided.
  • the optical recording medium 101 includes a plurality of layers of information signal layers L has been described, but the optical recording medium 101 may include a single layer information signal layer L.
  • a concavo-convex structure layer may be provided on either the first light irradiation surface C1 or the second light irradiation surface C2 of the main body 2.
  • the first light recording medium main body 2 It is preferable that the uneven structure layer is provided on both the light irradiation surface C1 and the second light irradiation surface C2.
  • the structure 3B has a convex shape with respect to the first light irradiation surface C1
  • the structure 3C has the first light irradiation surface. It may have a concave shape with respect to C1.
  • the absolute value of the depth D of the concave structure 3C can be treated in the same manner as the absolute value of the height H of the convex structure 3B in the first embodiment.
  • the structure 3B may have a concave shape with respect to the light irradiation surface C.
  • the recording layer 13 is an inorganic recording layer
  • the recording layer 13 may be an organic recording layer
  • optical recording media 1 and 101 are write-once type has been described, but the optical recording media 1 and 101 may be play-only type or rewritable type.
  • the optical recording medium 101 has a configuration capable of recording or reproducing the information signal from only one side
  • the optical recording medium 101 records the information signal from both sides.
  • it may have a configuration that can be reproduced.
  • a plurality of layers of information signal layers L and light transmitting layers 12 are provided on both sides of the substrate 11A.
  • the uneven structure layer may be provided on both sides.
  • the first uneven structure layer 3 is a hard coat layer including the basal layer 3A and the plurality of structures 3B has been described, but the first uneven structure layer 3 has been described. May not include the basal layer 3A and may be composed of only a plurality of structures 3B.
  • the structures 3B and 3C included in the first and second concavo-convex structure layers 3 and 4 (specifically, the first and second concavo-convex structure layers 3 and 4). ) May have information.
  • information may be provided to the first and second uneven structure layers 3 and 4 by thinning out moth eyes, BD pits, or the like, or by CD pits themselves.
  • the information given to the first and second concave-convex structure layers 3 and 4 includes disc-specific information such as that given to BCA (Burst Cutting Area) and two-dimensional barcodes, and for piracy prevention and copy protection. Encrypted information, security information such as bootlegs, etc. can be mentioned.
  • an optical system for signal detection of the information signal layer L may be used, or an optical system using a light source having a wavelength different from that may be used. Further, after the images of the first and second uneven structure layers 3 and 4 are acquired by using an image sensor or the like, the images may be detected by image recognition of the images.
  • one of the first light irradiation surface C1 and the second light irradiation surface C2 has a concavo-convex structure layer, while the other is a surface (smooth surface) without the concavo-convex structure layer.
  • the front and back sides of the optical recording medium 1 depending on the presence or absence of the uneven structure layer.
  • the specifications (for example, the structure) of the first concavo-convex structure layer 3 of the first light irradiation surface C1 and the second concavo-convex structure layer 4 of the second light irradiation surface C2 may be different.
  • the front and back surfaces of the optical recording medium 1 can be discriminated by the difference in specifications between the first concavo-convex structure layer 3 and the second concavo-convex structure layer 4.
  • a concavo-convex structure layer having different specifications may be provided on the light irradiation surface C and the back surface on the opposite side to the light irradiation surface C.
  • the front and back of the optical recording medium 1 may be discriminated by using an optical system or image recognition, as in the case of detecting the information of the first and second uneven structure layers 3 and 4.
  • the first and second concavo-convex structure layers 3 are formed on the first and second light irradiation surfaces C1 and C2 of the first and second disks 10 and 20, respectively, before the bonding step.
  • the first and second uneven structure layers 3 and 4 are formed on the first and second light irradiation surfaces C1 and C2 of the optical recording medium main body 2 after the bonding step, respectively. You may try to do it.
  • Example 1 By UV nanoimprint, a fine concavo-convex structure (Mosseye) consisting of a concave structure on both light irradiation surfaces (both signal surfaces) of the optical disc body (BD-DSD, same specifications as the recording capacity of 200 GB except for the formation of concavo-convex structure by UV nanoimprint) Structure) was formed.
  • the pitches P1 and P2 of the structure, the widths W1 and W2 of the structure, and the depth D of the structure were set to the values shown in Table 1.
  • the pitches P1 and P2 are set to be equal to or lower than the wavelength of the laser beam for recording or reproducing the information signal. From the above, the target optical disc was obtained.
  • BD2T pits (2T pits on a 3-layer 100GB disc of ULTRA HD Blu-ray (registered trademark) arranged at predetermined intervals) were formed as a fine concavo-convex structure.
  • the pitches P1 and P2 of the concave-convex structure, the widths W1 and W2 of the structure, and the height H of the structure were set to the values shown in Table 1.
  • the pitches P1 and P2 are set to be equal to or lower than the wavelength of the laser beam for recording or reproducing the information signal.
  • An optical disk was obtained in the same manner as in Example 1 except for the above.
  • Comparative Example 1 The optical disc of Comparative Example 1 was used as it was without forming a fine uneven structure on both light irradiation surfaces (both signal surfaces) of the optical disc body (BD-DSD, recording capacity 200 GB).
  • a CD pit (pit used in a CD-ROM substrate) is formed as a fine uneven structure, and the pitches P1 and P2 of the uneven structure, the widths W1 and W2 of the structure, and the height H of the structure H (see FIG. 3). was set to the values shown in Table 1.
  • the pitches P1 and P2 are set to be larger than the wavelength of the laser light for recording or reproducing the information signal.
  • An optical disk was obtained in the same manner as in Example 1 except for the above.
  • the integrated value of the raw data of the group having the pixel contrast lower than the intersection P was defined as the area of the concave portion, and the integrated value of the raw data of the group having the pixel contrast higher than the intersection P was defined as the area of the convex portion.
  • the ratio of the area of the convex portion to the sum of the area of the concave portion and the area of the convex portion was obtained, and this ratio was defined as the area ratio R [%] of the convex portion on the light irradiation surface (signal surface) of the optical disk.
  • the reflectance of the light-irradiated surface of the optical disk was obtained using the acquired surface voltage value with reference to the reflectance of the L2 layer (voltage value of the total signal) acquired by applying the focus servo in advance.
  • the reflectance based on the voltage value on the surface is slightly deviated because the spherical aberration is optimal for the L2 layer, but since the conditions are the same in all of the above Examples and Comparative Examples, there is no problem in relative comparison.
  • FIG. 8 is a schematic view for explaining a method of measuring the sticking force.
  • two optical discs obtained as described above were prepared and superposed on a measuring table so that the light irradiation surface (signal surface) was on the upper surface and a part of them overlapped.
  • a load of 30 to 40 kg was applied to the two superposed optical disks, and then the load was released.
  • the optical disc located on the upper side is pulled by a force gauge in a direction horizontal to the surface of the measuring table, and the tensile force at which the optical discs start to move is measured.
  • the maximum value of the force was taken as the sticking force.
  • FIG. 9A shows the relationship between the area ratio of the convex portion and the sticking force.
  • FIG. 9B shows the relationship between the area ratio of the convex portion and the sliding force.
  • An optical disc (Examples 1 and 2 and Comparative Example 2) in which a fine uneven structure is formed on a light irradiation surface (signal surface) is pasted as compared with an optical disc (Comparative Example 1) in which the light irradiation surface (signal surface) is smooth. Attaching force and sliding force are reduced.
  • An optical disk (Examples 1 and 2) in which a plurality of structures are provided on a light irradiation surface (signal surface) at a pitch equal to or lower than the wavelength of laser light for recording or reproducing an information signal records or reproduces an information signal. The sticking force and the sliding force are reduced as compared with an optical disk (Comparative Example 2) in which a plurality of structures are provided on a light irradiation surface (signal surface) at a pitch larger than the wavelength of the laser beam for the purpose.
  • Example 1 In an optical disk (Examples 1 and 2) in which a plurality of structures are provided on an optical irradiation surface (signal surface) at a pitch equal to or lower than the wavelength of laser light for recording or reproducing an information signal, the light irradiation surface (signal surface) The reflectance is reduced as compared with an optical disc having a smooth surface (Comparative Example 1).
  • the light irradiation surface (signal surface) in which a plurality of structures are provided on the light irradiation surface (signal surface) at a pitch larger than the wavelength of the laser light for recording or reproducing the information signal
  • the light irradiation surface (signal surface) The reflectance may be increased depending on the state of diffraction on the light irradiation surface (signal surface) as compared with the smooth disk (Comparative Example 1).
  • An optical disk in which a fine uneven structure was formed on a light irradiation surface (signal surface) was produced as follows, and the influence of the uneven structure on the signal characteristics was evaluated.
  • Example 3 By UV nanoimprint, the same fine concavo-convex structure (moth-eye structure) as in Example 1 is applied to both light irradiation surfaces (both signal surfaces) of the optical disc body (AD, the same specifications as the recording capacity of 300 GB except for the formation of concavo-convex structure by UV nanoimprint). Was formed. From the above, the target optical disc was obtained.
  • Example 4 A three-layer 100GB disc with a fine concavo-convex structure (BD2T pit (ULTRA HD Blu-ray (registered trademark)) similar to that in Example 2 on both light irradiation surfaces (both signal surfaces) of the optical disc body (AD, recording capacity 300 GB).
  • An optical disk was obtained in the same manner as in Example 3 except that the 2T pits in (1) were formed at predetermined intervals.
  • Comparative Example 3 The optical disc of Comparative Example 3 was used as it was without forming a fine uneven structure on both light irradiation surfaces (both signal surfaces) of the optical disc body (AD, recording capacity 300 GB).
  • Examples 5 and 6, Comparative Example 4 An optical disc was obtained in the same manner as in Examples 3 and 4 and Comparative Example 4 except that an AD having a recording capacity of 500 GB was used as the optical disc main body.
  • the upper limit value or the lower limit value of the numerical range of one step may be replaced with the upper limit value or the lower limit value of the numerical range of another step.
  • the present disclosure may also adopt the following configuration.
  • An optical recording medium body having a first surface and a second surface, It is provided with a first concavo-convex structure layer provided on the first surface.
  • the first concavo-convex structure layer includes a plurality of first structures provided at a pitch equal to or lower than the wavelength of light for recording or reproducing an information signal.
  • the area ratio of the convex portion of the first concave-convex structure layer is 80% or less.
  • An optical recording medium in which the light is irradiated from the first surface side.
  • the optical recording medium according to (2) wherein the area ratio of the convex portion of the first concave-convex structure layer is 20% or less.
  • the optical recording medium body is The first disc and With a second disc
  • the first disk and the second disk are With the board
  • the information signal layer provided on the substrate and A cover layer that covers the information signal layer is provided.
  • the optical recording medium body is With the board The information signal layer provided on the substrate and A cover layer that covers the information signal layer is provided.
  • the optical recording medium according to any one of (1) to (6), wherein the first surface is a surface on the cover layer side.
  • Second uneven structure layer 3A Base layer 3B, 3C structure 10 First disk 20 Second disk 30 Laminated layer 11 , 11A, 21 Substrates 12, 22 Light transmission layer 13 Recording layer 14, 15 Protective layer L0 to Ln, L0 to Lm Information signal layer S1 to Sn, S1 to Sm Spacer layer C Light irradiation surface C1 First light irradiation surface C2 Second light irradiation surface Gv groove Ld land Tp track pitch

Abstract

This optical recording medium comprises an optical recording medium main body having a first surface and a second surface, and a first uneven structural layer provided on the first surface. The first uneven structural layer includes a plurality of first structural bodies provided at a pitch equal to or less than the wavelength of light for recording or playing back an information signal. The area ratio of protrusions in the first uneven structural layer is 80% or less, and light is radiated from the first-surface side.

Description

光記録媒体Optical recording medium
 本開示は、光記録媒体に関する。 This disclosure relates to an optical recording medium.
 光記録媒体は、ハードディスクドライブ(HDD)やフラッシュメモリ等と比べて、その記録再生原理から保存信頼性が高いと一般的に言われている。このため、近年では、アーカイバルメディアとしての光記録媒体の需要が高くなっている。光記録媒体では、一般的に表面の平滑性を確保することが要求されている。 It is generally said that optical recording media have higher storage reliability than hard disk drives (HDD), flash memories, etc. due to their recording / playback principle. For this reason, in recent years, the demand for optical recording media as archival media has increased. Optical recording media are generally required to ensure surface smoothness.
 光記録媒体では、媒体表面の保護を目的としてハードコート層が広く用いられている。ハードコート層を用いると、媒体表面の平滑性が損なわれ易いため、平滑なハードコート層を形成するための技術が検討されている。例えば特許文献1には、耐傷つき性、防塵性、防汚性等の耐久性に優れ、かつ塗工時の表面平滑性に優れたハードコート層が形成された光記録媒体の開示されている。 In optical recording media, a hard coat layer is widely used for the purpose of protecting the surface of the medium. When a hard coat layer is used, the smoothness of the surface of the medium is likely to be impaired. Therefore, a technique for forming a smooth hard coat layer has been studied. For example, Patent Document 1 discloses an optical recording medium on which a hard coat layer having excellent durability such as scratch resistance, dust resistance, and stain resistance, and excellent surface smoothness at the time of coating is formed. ..
特開2009-96927号公報JP-A-2009-96927
 しかしながら、表面が平滑な光記録媒体では、複数の光記録媒体を重ねた場合に、光記録媒体同士が貼り付いてしまうという問題がある。 However, with an optical recording medium having a smooth surface, there is a problem that the optical recording media stick to each other when a plurality of optical recording media are stacked.
 本開示の目的は、複数の光記録媒体を重ねた場合に、光記録媒体同士の貼り付きを抑制することができる光記録媒体を提供することにある。 An object of the present disclosure is to provide an optical recording medium capable of suppressing sticking between optical recording media when a plurality of optical recording media are stacked.
 上述の課題を解決するために、本開示は、第1の面および第2の面を有する光記録媒体本体と、第1の面に設けられた第1の凹凸構造層とを備え、第1の凹凸構造層は、情報信号を記録または再生するための光の波長以下のピッチで設けられた複数の第1の構造体を含み、第1の凹凸構造層の凸部の面積比率が、80%以下であり、第1の面側から光が照射される光記録媒体である。 In order to solve the above-mentioned problems, the present disclosure includes an optical recording medium main body having a first surface and a second surface, and a first concavo-convex structure layer provided on the first surface. The concavo-convex structure layer includes a plurality of first structures provided at a pitch equal to or lower than the wavelength of light for recording or reproducing an information signal, and the area ratio of the convex portion of the first concavo-convex structure layer is 80. % Or less, and is an optical recording medium in which light is irradiated from the first surface side.
図1Aは、本開示の第1の実施形態に係る光記録媒体の外観の一例を示す斜視図である。図1Bは、本開示の第1の実施形態に係る光記録媒体の構成の一例を示す断面図である。FIG. 1A is a perspective view showing an example of the appearance of the optical recording medium according to the first embodiment of the present disclosure. FIG. 1B is a cross-sectional view showing an example of the configuration of the optical recording medium according to the first embodiment of the present disclosure. 図2は、図1に示した各情報信号層の構成の一例を示す断面図である。FIG. 2 is a cross-sectional view showing an example of the configuration of each information signal layer shown in FIG. 図3は、複数の構造体の配置の一例を示す平面図である。FIG. 3 is a plan view showing an example of arrangement of a plurality of structures. 図4は、本開示の第2の実施形態に係る光記録媒体の構成の一例を示す断面図である。FIG. 4 is a cross-sectional view showing an example of the configuration of the optical recording medium according to the second embodiment of the present disclosure. 図5は、変形例に係る光記録媒体の構成の一例を示す断面図である。FIG. 5 is a cross-sectional view showing an example of the configuration of the optical recording medium according to the modified example. 図6Aは、実施例1の光ディスクの凹凸構造のSEM像である。図6Bは、実施例2の光ディスクの凹凸構造のSEM像である。図6Cは、比較例2の光ディスクの凹凸構造のSEM像である。FIG. 6A is an SEM image of the uneven structure of the optical disc of the first embodiment. FIG. 6B is an SEM image of the uneven structure of the optical disc of the second embodiment. FIG. 6C is an SEM image of the uneven structure of the optical disc of Comparative Example 2. 図7は、実施例1の光ディスクの凹凸構造の度数分布を示すグラフである。FIG. 7 is a graph showing the frequency distribution of the uneven structure of the optical disk of the first embodiment. 図8は、貼り付き力の測定方法を説明するための概略図である。FIG. 8 is a schematic view for explaining a method of measuring the sticking force. 図9Aは、凸部の面積比率と貼り付き力の関係を示すグラフである。図9Bに、凸部の面積比率と滑り力の関係を示すグラフである。FIG. 9A is a graph showing the relationship between the area ratio of the convex portion and the sticking force. FIG. 9B is a graph showing the relationship between the area ratio of the convex portion and the sliding force. 図10Aは、実施例3の光ディスクの信号特性の評価結果を示すグラフである。図10Bは、実施例4の光ディスクの信号特性の評価結果を示すグラフである。図10Cは、比較例3の光ディスクの信号特性の評価結果を示すグラフである。FIG. 10A is a graph showing the evaluation results of the signal characteristics of the optical disc of the third embodiment. FIG. 10B is a graph showing the evaluation results of the signal characteristics of the optical disc of the fourth embodiment. FIG. 10C is a graph showing the evaluation results of the signal characteristics of the optical disc of Comparative Example 3.
 本開示の実施形態について以下の順序で説明する。
1 第1の実施形態
 1.1 光記録媒体の構成
 1.2 光記録媒体の製造方法
 1.3 効果
2 第2の実施形態
 2.1 光記録媒体の構成
 2.2 光記録媒体の製造方法
 2.3 効果
3 変形例
The embodiments of the present disclosure will be described in the following order.
1 First embodiment 1.1 Configuration of optical recording medium 1.2 Manufacturing method of optical recording medium 1.3 Effect 2 Second embodiment 2.1 Configuration of optical recording medium 2.2 Manufacturing method of optical recording medium 2.3 Effect 3 Modification example
<1 第1の実施形態>
[1.1 光記録媒体の構成]
 本開示の第1の実施形態に係る光記録媒体1は、図1Aに示すように、中央に開口(以下「センターホール」という。)が設けられた円盤形状を有する。なお、光記録媒体1の形状はこの例に限定されるものではなく、例えばカード状等とすることも可能である。光記録媒体1は、いわゆる多層の追記型光記録媒体(例えばAD(Archival Disc))であり、図1Bに示すように、光記録媒体本体2と、第1の凹凸構造層3と、第2の凹凸構造層4とを備える。光記録媒体1は、グルーブトラックおよびランドトラックの両方にデータを記録する方式(以下「ランド/グルーブ記録方式」という。)の光記録媒体である。
<1 First Embodiment>
[1.1 Configuration of optical recording medium]
As shown in FIG. 1A, the optical recording medium 1 according to the first embodiment of the present disclosure has a disk shape having an opening (hereinafter referred to as “center hole”) at the center. The shape of the optical recording medium 1 is not limited to this example, and may be, for example, a card shape. The optical recording medium 1 is a so-called multilayer write-once optical recording medium (for example, AD (Archival Disc)), and as shown in FIG. 1B, the optical recording medium main body 2, the first concave-convex structure layer 3, and the second The concavo-convex structure layer 4 is provided. The optical recording medium 1 is an optical recording medium of a method of recording data on both a groove track and a land track (hereinafter referred to as a “land / groove recording method”).
(光記録媒体本体)
 光記録媒体本体2は、第1のディスク10と、第2のディスク20と、貼合層30とを備える。第1のディスク10は、情報信号層L0、スペーサ層S1、情報信号層L1、・・・、スペーサ層Sn、情報信号層Ln、カバー層である光透過層12がこの順序で基板11の一主面に積層された構成を有する。第2のディスク20は、情報信号層L0、スペーサ層S1、情報信号層L1、・・・、スペーサ層Sm、情報信号層Lm、カバー層である光透過層22がこの順序で基板21の一主面に積層された構成を有する。但し、n、mはそれぞれ独立して2以上の整数であり、記録容量の向上の観点からすると、好ましくは3以上の整数、より好ましくは4以上の整数、さらにより好ましくは5以上の整数である。なお、以下の説明において、情報信号層L0~Ln、L0~Lmを特に区別しない場合には、情報信号層Lという。
(Optical recording medium body)
The optical recording medium main body 2 includes a first disc 10, a second disc 20, and a bonding layer 30. In the first disk 10, the information signal layer L0, the spacer layer S1, the information signal layer L1, ..., The spacer layer Sn, the information signal layer Ln, and the light transmitting layer 12 which is a cover layer are one of the substrates 11 in this order. It has a structure laminated on the main surface. In the second disk 20, the information signal layer L0, the spacer layer S1, the information signal layer L1, ..., The spacer layer Sm, the information signal layer Lm, and the light transmitting layer 22 as the cover layer are one of the substrates 21 in this order. It has a structure laminated on the main surface. However, n and m are independently integers of 2 or more, and from the viewpoint of improving the recording capacity, they are preferably an integer of 3 or more, more preferably an integer of 4 or more, and even more preferably an integer of 5 or more. is there. In the following description, when the information signal layers L0 to Ln and L0 to Lm are not particularly distinguished, they are referred to as the information signal layer L.
 光記録媒体本体2は、情報信号を記録または再生するためのレーザー光が照射される光照射面を両面に有する。より具体的には、第1のディスク10の情報信号の記録または再生を行うためのレーザー光が照射される第1の光照射面C1と、第2のディスク20の情報信号の記録または再生を行うためのレーザー光が照射される第2の光照射面C2とを有する。 The optical recording medium main body 2 has light irradiation surfaces on both sides to which laser light for recording or reproducing an information signal is irradiated. More specifically, the recording or reproduction of the information signal of the first disk 10 and the first light irradiation surface C1 irradiated with the laser beam for recording or reproducing the information signal of the first disk 10 and the information signal of the second disk 20. It has a second light irradiation surface C2 to be irradiated with a laser beam for performing.
 第1のディスク10では、情報信号層L0が第1の光照射面C1を基準として最も奥に位置し、その手前に情報信号層L1~Lnが位置している。このため、情報信号層L1~Lnは、記録または再生に用いられるレーザー光を透過可能に構成されている。一方、第2のディスク20では、情報信号層L0が第2の光照射面C2を基準として最も奥に位置し、その手前に情報信号層L1~Lmが位置している。このため、情報信号層L1~Lmは、記録または再生に用いられるレーザー光を透過可能に構成されている。 In the first disk 10, the information signal layer L0 is located at the innermost position with respect to the first light irradiation surface C1, and the information signal layers L1 to Ln are located in front of the first light irradiation surface C1. Therefore, the information signal layers L1 to Ln are configured to be capable of transmitting laser light used for recording or reproduction. On the other hand, in the second disk 20, the information signal layer L0 is located at the innermost position with respect to the second light irradiation surface C2, and the information signal layers L1 to Lm are located in front of the second light irradiation surface C2. Therefore, the information signal layers L1 to Lm are configured to be capable of transmitting laser light used for recording or reproduction.
 光記録媒体1では、第1のディスク10の情報信号の記録または再生は以下のようにして行われる。すなわち、光透過層12側の第1の光照射面C1からレーザー光を、第1のディスク10に含まれる各情報信号層L0~Lnに照射することにより、第1のディスク10の情報信号の記録または再生が行われる。例えば、350nm以上415nm以下の範囲の波長を有するレーザー光を、0.84以上0.95以下の範囲の開口数を有する対物レンズにより集光し、光透過層12の側から、第1のディスク10に含まれる各情報信号層L0~Lnに照射することにより、情報信号の記録または再生が行われる。 In the optical recording medium 1, the information signal of the first disk 10 is recorded or reproduced as follows. That is, by irradiating the information signal layers L0 to Ln included in the first disk 10 with laser light from the first light irradiation surface C1 on the light transmitting layer 12 side, the information signal of the first disk 10 can be obtained. Recording or playback takes place. For example, laser light having a wavelength in the range of 350 nm or more and 415 nm or less is focused by an objective lens having a numerical aperture in the range of 0.84 or more and 0.95 or less, and the first disk is displayed from the light transmitting layer 12 side. By irradiating each of the information signal layers L0 to Ln included in 10, the information signal is recorded or reproduced.
 一方、第2のディスク20の情報信号の記録または再生は以下のようにして行われる。すなわち、光透過層22側の第2の光照射面C2からレーザー光を、第2のディスク20に含まれる各情報信号層L0~Lmに照射することにより、第2のディスク20の情報信号の記録または再生が行われる。例えば、350nm以上415nm以下の範囲の波長を有するレーザー光を、0.84以上0.95以下の範囲の開口数を有する対物レンズにより集光し、光透過層22の側から、第2のディスク20に含まれる各情報信号層L0~Lmに照射することにより、情報信号の記録または再生が行われる。 On the other hand, the recording or reproduction of the information signal of the second disc 20 is performed as follows. That is, by irradiating each information signal layer L0 to Lm included in the second disk 20 with laser light from the second light irradiation surface C2 on the light transmitting layer 22 side, the information signal of the second disk 20 can be obtained. Recording or playback takes place. For example, laser light having a wavelength in the range of 350 nm or more and 415 nm or less is focused by an objective lens having a numerical aperture in the range of 0.84 or more and 0.95 or less, and a second disk is displayed from the light transmitting layer 22 side. By irradiating each information signal layer L0 to Lm included in 20, the information signal is recorded or reproduced.
 以下、光記録媒体本体2を構成する基板11、21、貼合層30、情報信号層L0~Ln、L0~Lm、スペーサ層S1~Sn、S1~Smおよび光透過層12、22について順次説明する。 Hereinafter, the substrates 11 and 21, the bonding layer 30, the information signal layers L0 to Ln, L0 to Lm, the spacer layers S1 to Sn, S1 to Sm, and the light transmitting layers 12 and 22 constituting the optical recording medium main body 2 will be sequentially described. To do.
(基板)
 基板11、21は、例えば、中央にセンターホールが設けられた円盤形状を有する。この基板11、21の一主面は、例えば、凹凸面となっており、この凹凸面上に情報信号層L0が形成される。以下では、凹凸面のうち凹部をランドLdといい、凸部をグルーブGvという。
(substrate)
The substrates 11 and 21 have, for example, a disk shape having a center hole provided in the center. One main surface of the substrates 11 and 21 is, for example, an uneven surface, and the information signal layer L0 is formed on the uneven surface. In the following, the concave portion of the uneven surface is referred to as a land Ld, and the convex portion is referred to as a groove Gv.
 ランドLdおよびグルーブGvの形状としては、例えば、スパイラル状、同心円状等の各種形状が挙げられる。また、ランドLdおよび/またはグルーブGvが、線速度の安定化やアドレス情報付加等のためにウォブル(蛇行)されていてもよい。 Examples of the shapes of the land Ld and the groove Gv include various shapes such as a spiral shape and a concentric circle shape. Further, the land Ld and / or the groove Gv may be wobbled (meandering) for stabilizing the linear velocity, adding address information, and the like.
 なお、第1のディスク10と第2のディスク20のスパイラル方向は逆であってもよい。この場合、第1のディスク10と第2のディスク20を貼り合わせた光記録媒体(両面ディスク)1の同時記録再生が可能となるため、記録や再生時のデータ転送速度を約2倍に高めることができる。 The spiral directions of the first disc 10 and the second disc 20 may be opposite to each other. In this case, the optical recording medium (double-sided disc) 1 in which the first disc 10 and the second disc 20 are bonded can be simultaneously recorded and played back, so that the data transfer speed during recording and playback is approximately doubled. be able to.
 基板11、21の外径(直径)は、例えば120mmに選ばれる。基板11、21の内径(直径)は、例えば15mmに選ばれる。基板11の厚さは、剛性を考慮して選ばれ、好ましくは0.3mm以上0.545mm以下、より好ましくは0.445mm以上0.545mm以下である。 The outer diameter (diameter) of the substrates 11 and 21 is selected to be, for example, 120 mm. The inner diameter (diameter) of the substrates 11 and 21 is selected to be, for example, 15 mm. The thickness of the substrate 11 is selected in consideration of rigidity, and is preferably 0.3 mm or more and 0.545 mm or less, and more preferably 0.445 mm or more and 0.545 mm or less.
 基板11、21の材料としては、例えば、プラスチック材料またはガラスを用いることができ、成形性の観点から、プラスチック材料を用いることが好ましい。プラスチック材料としては、例えば、ポリカーボネート系樹脂、ポリオレフィン系樹脂またはアクリル系樹脂等を用いることができ、コストの観点からすると、ポリカーボネート系樹脂を用いることが好ましい。 As the materials of the substrates 11 and 21, for example, a plastic material or glass can be used, and it is preferable to use a plastic material from the viewpoint of moldability. As the plastic material, for example, a polycarbonate resin, a polyolefin resin, an acrylic resin, or the like can be used, and from the viewpoint of cost, it is preferable to use a polycarbonate resin.
(貼合層)
 貼合層30は、第1のディスク10と第2のディスク20との間に設けられている。貼合層30により、第1のディスク10と第2のディスク20とが貼り合わされる。より具体的には、光透過層12、22がそれぞれ表面側となるようにして、第1のディスク10の基板11側の面と第2のディスク基板の基板21側の面とが貼り合わされる。
(Lated layer)
The bonding layer 30 is provided between the first disc 10 and the second disc 20. The bonding layer 30 attaches the first disk 10 and the second disk 20 to each other. More specifically, the surface of the first disk 10 on the substrate 11 side and the surface of the second disk substrate on the substrate 21 side are bonded so that the light transmitting layers 12 and 22 are on the front side, respectively. ..
 貼合層30は、硬化した紫外線硬化樹脂により構成されている。この貼合層30の厚さは、例えば0.01mm以上0.22mm以下である。紫外線硬化樹脂は、例えば、ラジカル重合型の紫外線硬化樹脂である。 The bonding layer 30 is made of a cured ultraviolet curable resin. The thickness of the bonded layer 30 is, for example, 0.01 mm or more and 0.22 mm or less. The ultraviolet curable resin is, for example, a radical polymerization type ultraviolet curable resin.
(情報信号層)
 情報信号層Lは、凹状のトラック(以下「ランドトラック」という。)および凸状のトラック(以下「グルーブトラック」という。)を有している。第1の実施形態に係る光記録媒体1は、ランドトラックおよびグルーブトラックの両方に情報信号を記録可能に構成されている。ランドトラックとグルーブトラックとのトラックピッチTpが、高記録密度の観点からすると、好ましくは0.225μm以下、より好ましくは0.225μm未満であることが好ましい。トラックピッチTpの下限値は特に限定されるものではないが、例えば0.12μm以上である。
(Information signal layer)
The information signal layer L has a concave track (hereinafter referred to as “land track”) and a convex track (hereinafter referred to as “groove track”). The optical recording medium 1 according to the first embodiment is configured to be capable of recording an information signal on both a land track and a groove track. From the viewpoint of high recording density, the track pitch Tp of the land track and the groove track is preferably 0.225 μm or less, more preferably less than 0.225 μm. The lower limit of the track pitch Tp is not particularly limited, but is, for example, 0.12 μm or more.
 図2に示すように、情報信号層L0~Lnは、上面(第1の主面)および下面(第2の主面)を有する無機記録層(以下単に「記録層」という。)13と、記録層13の上面に隣接して設けられた保護層14と、記録層13の下面に隣接して設けられた保護層15とを備える。このような構成とすることで、記録層13の耐久性を向上することができる。ここで、上面とは、記録層13の両主面のうち、情報信号を記録または再生するためのレーザー光が照射される側の主面をいい、下面とは、上述のレーザー光が照射される側とは反対側の主面、すなわち基板11側の主面をいう。なお、情報信号層L0~Lmの構成は、情報信号層L0~Lnと同様とすることができるので、説明を省略する。 As shown in FIG. 2, the information signal layers L0 to Ln include an inorganic recording layer (hereinafter, simply referred to as “recording layer”) 13 having an upper surface (first main surface) and a lower surface (second main surface). A protective layer 14 provided adjacent to the upper surface of the recording layer 13 and a protective layer 15 provided adjacent to the lower surface of the recording layer 13 are provided. With such a configuration, the durability of the recording layer 13 can be improved. Here, the upper surface refers to the main surface of both main surfaces of the recording layer 13 on the side irradiated with the laser light for recording or reproducing the information signal, and the lower surface means the main surface irradiated with the above-mentioned laser light. The main surface on the opposite side to the side, that is, the main surface on the substrate 11 side. Since the configuration of the information signal layers L0 to Lm can be the same as that of the information signal layers L0 to Ln, the description thereof will be omitted.
(記録層)
 記録層13は、レーザー光の照射により情報信号を記録可能に構成されている。具体的には、記録層13は、レーザー光の照射により記録マークを形成可能に構成されている。記録層13は、無機記録層であり、無機記録材料として金属酸化物を主成分として含む。金属酸化物は、例えば、酸化マンガンを含む無機記録材料(MnO系材料)、酸化パラジウムを含む無機記録材料(PdO系材料)、酸化銅を含む無機記録材料(CuO系材料)または酸化銀を含む無機記録材料(AgO系材料)である。
(Recording layer)
The recording layer 13 is configured to be able to record an information signal by irradiating the laser beam. Specifically, the recording layer 13 is configured so that a recording mark can be formed by irradiating a laser beam. The recording layer 13 is an inorganic recording layer and contains a metal oxide as a main component as an inorganic recording material. The metal oxide includes, for example, an inorganic recording material containing manganese oxide (MnO-based material), an inorganic recording material containing palladium oxide (PdO-based material), an inorganic recording material containing copper oxide (CuO-based material), or silver oxide. It is an inorganic recording material (AgO-based material).
 MnO系材料は、酸化マンガン以外に、酸化タングステンおよび酸化モリブデンの一方または両方と、酸化ジルコニウムとをさらに含んでいることが好ましい。MnO系材料が、酸化マンガン以外のこれらの酸化物と共に、または酸化マンガン以外のこれらの酸化物を含まずに、酸化ニッケルおよび酸化マグネシウムの一方または両方をさらに含んでいてもよい。 The MnO-based material preferably further contains one or both of tungsten oxide and molybdenum oxide and zirconium oxide in addition to manganese oxide. The MnO-based material may further contain one or both of nickel oxide and magnesium oxide with or without these oxides other than manganese oxide.
 PdO系材料は、酸化パラジウム以外に、酸化タングステンおよび酸化銅をさらに含んでいることが好ましく、酸化タングステン、酸化銅および酸化亜鉛をさらに含んでいることがより好ましい。 The PdO-based material preferably further contains tungsten oxide and copper oxide in addition to palladium oxide, and more preferably further contains tungsten oxide, copper oxide, and zinc oxide.
 記録層13の厚さは、好ましくは25nm以上60nm以下、より好ましくは30nm以上50nm以下の範囲内である。記録層13の厚さが25nm以上であると、優れた信号特性を得ることが可能である。一方、記録層13の厚さが60nm以下であると、広い記録パワーマージンを確保することができる。 The thickness of the recording layer 13 is preferably in the range of 25 nm or more and 60 nm or less, more preferably 30 nm or more and 50 nm or less. When the thickness of the recording layer 13 is 25 nm or more, excellent signal characteristics can be obtained. On the other hand, when the thickness of the recording layer 13 is 60 nm or less, a wide recording power margin can be secured.
(保護層)
 保護層14、15は、酸素バリア層として機能を有する。これにより、記録層13の耐久性を向上することができる。また、保護層14、15は、記録層13の酸素の逃避を抑制する機能を有する。これにより、記録層13の膜質の変化(主に反射率の低下として検出)を抑制することができ、記録層13として好ましい膜質を確保することができる。また、保護層14、15は、記録特性を向上させる機能も有する。
(Protective layer)
The protective layers 14 and 15 have a function as an oxygen barrier layer. Thereby, the durability of the recording layer 13 can be improved. In addition, the protective layers 14 and 15 have a function of suppressing the escape of oxygen in the recording layer 13. As a result, changes in the film quality of the recording layer 13 (detected mainly as a decrease in reflectance) can be suppressed, and a preferable film quality as the recording layer 13 can be secured. The protective layers 14 and 15 also have a function of improving recording characteristics.
 保護層14、15は、誘電体を含む。誘電体は、例えば、酸化物、窒化物、硫化物、炭化物およびフッ化物からなる群より選ばれる少なくとも1種以上を含む。保護層14、15の材料としては、互いに同一または異なる材料を用いることができる。酸化物としては、例えば、In、Zn、Sn、Al、Si、Ge、Ti、Ga、Ta、Nb、Hf、Zr、Cr、BiおよびMgからなる群から選ばれる1種以上の元素の酸化物が挙げられる。窒化物としては、例えば、In、Sn、Ge、Cr、Si、Al、Nb、Mo、Ti、Nb、Mo、Ti、W、TaおよびZnからなる群から選ばれる1種以上の元素の窒化物、好ましくはSi、GeおよびTiからなる群から選ばれる1種以上の元素の窒化物が挙げられる。硫化物としては、例えば、Zn硫化物が挙げられる。炭化物としては、例えば、In、Sn、Ge、Cr、Si、Al、Ti、Zr、TaおよびWからなる群より選ばれる1種以上の元素の炭化物、好ましくはSi、TiおよびWからなる群より選ばれる1種以上の元素の炭化物が挙げられる。フッ化物としては、例えば、Si、Al、Mg、CaおよびLaからなる群より選ばれる1種以上の元素のフッ化物が挙げられる。これらの混合物の具体例としては、ZnS-SiO、SiO-In-ZrO(SIZ)、SiO-Cr-ZrO(SCZ)、In-SnO(ITO)、In-CeO(ICO)、In-Ga(IGO)、In-Ga-ZnO(IGZO)、Sn-Ta(TTO)、TiO-SiO、Al-ZnO、Al-BaO等が挙げられる。 The protective layers 14 and 15 contain a dielectric. The dielectric comprises, for example, at least one selected from the group consisting of oxides, nitrides, sulfides, carbides and fluorides. As the materials of the protective layers 14 and 15, the same or different materials can be used. As the oxide, for example, an oxide of one or more elements selected from the group consisting of In, Zn, Sn, Al, Si, Ge, Ti, Ga, Ta, Nb, Hf, Zr, Cr, Bi and Mg. Can be mentioned. As the nitride, for example, a nitride of one or more elements selected from the group consisting of In, Sn, Ge, Cr, Si, Al, Nb, Mo, Ti, Nb, Mo, Ti, W, Ta and Zn. , Preferably a nitride of one or more elements selected from the group consisting of Si, Ge and Ti. Examples of the sulfide include Zn sulfide. The carbides include, for example, carbides of one or more elements selected from the group consisting of In, Sn, Ge, Cr, Si, Al, Ti, Zr, Ta and W, preferably from the group consisting of Si, Ti and W. Carbides of one or more selected elements can be mentioned. Examples of the fluoride include fluorides of one or more elements selected from the group consisting of Si, Al, Mg, Ca and La. Specific examples of these mixtures, ZnS-SiO 2, SiO 2 -In 2 O 3 -ZrO 2 (SIZ), SiO 2 -Cr 2 O 3 -ZrO 2 (SCZ), In 2 O 3 -SnO 2 ( ITO), In 2 O 3- CeO 2 (ICO), In 2 O 3- Ga 2 O 3 (IGO), In 2 O 3- Ga 2 O 3- ZnO (IGZO), Sn 2 O 3- Ta 2 O 5 (TTO), TiO 2 -SiO 2, Al 2 O 3 -ZnO, Al 2 O 3 -BaO , and the like.
 保護層15の厚さは、好ましくは2nm以上30nm以下の範囲内である。保護層15の厚さが2nm以上であると、良好なバリア効果を得ることができる。一方、保護層15の厚さが30nm以下であると、記録パワーマージンの低下を抑制することができる。 The thickness of the protective layer 15 is preferably in the range of 2 nm or more and 30 nm or less. When the thickness of the protective layer 15 is 2 nm or more, a good barrier effect can be obtained. On the other hand, when the thickness of the protective layer 15 is 30 nm or less, it is possible to suppress a decrease in the recording power margin.
 保護層14の厚さは、好ましくは2nm以上50nm以下の範囲内である。保護層14の厚さが2nm以上であると、良好なバリア効果を得ることができる。一方、保護層14の厚さが50nm以下であると、記録パワーマージンの低下を抑制することができる。 The thickness of the protective layer 14 is preferably in the range of 2 nm or more and 50 nm or less. When the thickness of the protective layer 14 is 2 nm or more, a good barrier effect can be obtained. On the other hand, when the thickness of the protective layer 14 is 50 nm or less, it is possible to suppress a decrease in the recording power margin.
(スペーサ層)
 スペーサ層S1~Sn、S1~Smはそれぞれ、情報信号層L0~Ln、L0~Lmを物理的および光学的に十分な距離をもって離間させる役割を有し、その表面には凹凸面が設けられている。その凹凸面は、例えば、同心円状または螺旋状のランドLdおよびグルーブGvを形成している。スペーサ層S1~Sn、S1~Smの厚みは、好ましくは9μm以上50μm以下である。スペーサ層S1~Sn、S1~Smの材料は特に限定されるものではないが、紫外線硬化性アクリル樹脂を用いることが好ましい。また、スペーサ層S1~Sn、S1~Smは奥層へのデータの記録および再生のためのレーザー光の光路となることから、十分に高い光透過性を有していることが好ましい。
(Spacer layer)
The spacer layers S1 to Sn and S1 to Sm have a role of physically and optically separating the information signal layers L0 to Ln and L0 to Lm with sufficient distances, respectively, and the surface thereof is provided with an uneven surface. There is. The uneven surface forms, for example, concentric or spiral land Ld and groove Gv. The thickness of the spacer layers S1 to Sn and S1 to Sm is preferably 9 μm or more and 50 μm or less. The materials of the spacer layers S1 to Sn and S1 to Sm are not particularly limited, but it is preferable to use an ultraviolet curable acrylic resin. Further, since the spacer layers S1 to Sn and S1 to Sm serve as optical paths for laser light for recording and reproducing data in the inner layer, it is preferable that the spacer layers have sufficiently high light transmission.
(光透過層)
 光透過層12、22は、例えば、紫外線硬化樹脂等の感光性樹脂を硬化してなる樹脂層である。紫外線硬化樹脂としては、例えば、紫外線硬化型のアクリル系樹脂が挙げられる。また、光透過層12、22が、円環形状を有する光透過性シートと、この光透過性シートを情報信号層Ln、Lmに対して貼り合わせるための接着層とにより構成されていてもよい。光透過性シートは、記録および再生に用いられるレーザー光に対して、吸収能が低い材料からなることが好ましく、具体的には透過率90パーセント以上の材料からなることが好ましい。光透過性シートの材料としては、例えば、ポリカーボネート系樹脂またはポリオレフィン系樹脂(例えばゼオネックス(登録商標))等を用いることができる。接着層の材料としては、例えば、紫外線硬化樹脂または感圧性粘着剤(PSA:Pressure Sensitive Adhesive)等を用いることができる。
(Light transmitting layer)
The light transmitting layers 12 and 22 are resin layers obtained by curing a photosensitive resin such as an ultraviolet curable resin. Examples of the ultraviolet curable resin include an ultraviolet curable acrylic resin. Further, the light transmitting layers 12 and 22 may be composed of a light transmitting sheet having a ring shape and an adhesive layer for adhering the light transmitting sheet to the information signal layers Ln and Lm. .. The light-transmitting sheet is preferably made of a material having a low absorption ability with respect to the laser light used for recording and reproduction, and specifically, it is preferably made of a material having a transmittance of 90% or more. As the material of the light transmissive sheet, for example, a polycarbonate resin or a polyolefin resin (for example, Zeonex (registered trademark)) or the like can be used. As the material of the adhesive layer, for example, an ultraviolet curable resin or a pressure-sensitive adhesive (PSA: Pressure Sensitive Adhesive) can be used.
 光透過層12、22の厚さは、好ましくは10μm以上177μm以下の範囲内から選ばれ、例えば57μmに選ばれる。このような薄い光透過層12、22と、例えば0.85程度の高NA(numerical aperture)化された対物レンズとを組み合わせることによって、高密度記録を実現することができる。 The thickness of the light transmitting layers 12 and 22 is preferably selected from the range of 10 μm or more and 177 μm or less, for example, 57 μm. High-density recording can be realized by combining such thin light transmitting layers 12 and 22 with an objective lens having a high NA (numerical aperture) of, for example, about 0.85.
(第1、第2の凹凸構造層)
 第1、第2の凹凸構造層3、4はそれぞれ、第1、第2の光照射面C1、C2に耐擦傷性を付与する。また、第1、第2の凹凸構造層3、4はそれぞれ、情報信号を記録または再生するためのレーザー光の反射を抑制する反射抑制機能を第1、第2の光照射面C1、C2に付与する。第1の凹凸構造層3は、光記録媒体本体2の第1の光照射面C1に設けられている。第2の凹凸構造層4は、光記録媒体本体2の第2の光照射面C2に設けられている。
(First and second uneven structure layers)
The first and second uneven structure layers 3 and 4 impart scratch resistance to the first and second light irradiation surfaces C1 and C2, respectively. Further, the first and second uneven structure layers 3 and 4 have reflection suppression functions for suppressing the reflection of laser light for recording or reproducing an information signal on the first and second light irradiation surfaces C1 and C2, respectively. Give. The first uneven structure layer 3 is provided on the first light irradiation surface C1 of the optical recording medium main body 2. The second uneven structure layer 4 is provided on the second light irradiation surface C2 of the optical recording medium main body 2.
 第1、第2の凹凸構造層3、4の材料としては、例えば、アクリル系樹脂、シリコーン系樹脂、フッ素系樹脂または有機無機ハイブリッド系樹脂等を用いることができる。第1、第2の凹凸構造層3、4が、機械的強度の向上のために、シリカ粒子等の金属酸化物粒子の微粉末を含んでいてもよい。 As the materials of the first and second concave-convex structure layers 3 and 4, for example, an acrylic resin, a silicone resin, a fluororesin, an organic-inorganic hybrid resin, or the like can be used. The first and second uneven structure layers 3 and 4 may contain fine powder of metal oxide particles such as silica particles in order to improve the mechanical strength.
 第1、第2の凹凸構造層3、4における凸部の面積比率Rの上限値は、重ね合わされた光記録媒体1同士の貼り付きを抑制する観点から、80%以下、好ましくは60%以下、より好ましくは50%以下、さらにより好ましくは40%以下、特に好ましくは20%以下である。一方、面積比率Rの下限値は、反射抑制効果を向上する観点から、好ましくは10%以上、より好ましくは20%以上、さらにより好ましくは30%以上である。ここで、凸部とは、第1、第2の凹凸構造層3、4が凸状の構造体を有している場合には凸部そのものを指し、第1、第2の凹凸構造層3、4が凹状の構造体を有している場合には、凹部を基準にして凸部とみなされる凹状構造体がない部分を指すものとする。第1、第2の凹凸構造層3、4における凸部の面積比率Rは、具体的には、凹凸構造形成領域の面積Saに対する凸部形成領域の面積Sbの割合(=(Sb/Sa)×100)を意味する。面積比率Rの測定方法について、実施例において説明する。 The upper limit of the area ratio R of the convex portions in the first and second concave-convex structure layers 3 and 4 is 80% or less, preferably 60% or less from the viewpoint of suppressing the adhesion between the superimposed optical recording media 1. , More preferably 50% or less, even more preferably 40% or less, and particularly preferably 20% or less. On the other hand, the lower limit of the area ratio R is preferably 10% or more, more preferably 20% or more, and even more preferably 30% or more from the viewpoint of improving the reflection suppressing effect. Here, the convex portion refers to the convex portion itself when the first and second concave-convex structure layers 3 and 4 have a convex structure, and the first and second concave-convex structure layers 3 When 4 has a concave structure, it refers to a portion without a concave structure which is regarded as a convex portion with reference to the concave portion. Specifically, the area ratio R of the convex portion in the first and second uneven structure layers 3 and 4 is the ratio of the area Sb of the convex portion forming region to the area Sa of the uneven structure forming region (= (Sb / Sa)). It means × 100). The method of measuring the area ratio R will be described in Examples.
 第1の凹凸構造層3は、表面に微細な凹凸構造(モスアイ構造)が設けられたハードコート層である。具体的には、第1の凹凸構造層3は、基底層3Aと複数の構造体3Bとを備える。基底層3Aと複数の構造体3Bは、同一の材料により構成されていてもよいし、異なる材料により構成されていてもよい。なお、第2の凹凸構造層4は第1の凹凸構造層3と同様の構成を有するため、第2の凹凸構造層4の構成についての説明を省略する。 The first uneven structure layer 3 is a hard coat layer provided with a fine uneven structure (moss eye structure) on the surface. Specifically, the first concavo-convex structure layer 3 includes a base layer 3A and a plurality of structures 3B. The basal layer 3A and the plurality of structures 3B may be made of the same material or may be made of different materials. Since the second concavo-convex structure layer 4 has the same structure as the first concavo-convex structure layer 3, the description of the structure of the second concavo-convex structure layer 4 will be omitted.
 基底層3Aは、ハードコート層の本体であり、第1の光照射面C1上に設けられている。複数の構造体3Bは、基底層3A上に設けられている。構造体3Bは、いわゆるモスアイ構造体(サブ波長構造体)であり、第1の光照射面C1に対して凸状を有している。構造体3Bが、再生専用型の光記録媒体にて情報信号の記録に用いられる凹部または凸部(例えばピット)と同様の形状を有していてもよい。この場合、第1の凹凸構造層3(すなわち複数の構造体3B)を形成するための原盤(モールド)として再生専用型の光記録媒体の基板形成用の原盤を用いることができる。したがって、第1の凹凸構造層3を形成するための原盤を別途作製する工程を省くことができる。 The basal layer 3A is the main body of the hard coat layer and is provided on the first light irradiation surface C1. The plurality of structures 3B are provided on the basal layer 3A. The structure 3B is a so-called moth-eye structure (sub-wavelength structure), and has a convex shape with respect to the first light irradiation surface C1. The structure 3B may have a shape similar to a concave portion or a convex portion (for example, a pit) used for recording an information signal on a reproduction-only optical recording medium. In this case, as a master (mold) for forming the first concave-convex structure layer 3 (that is, a plurality of structures 3B), a master for forming a substrate of a reproduction-only optical recording medium can be used. Therefore, it is possible to omit the step of separately producing the master for forming the first concave-convex structure layer 3.
 複数の構造体3Bが、例えば、第1の光照射面C1の表面において複数の列をなすように配列されている。その列は、例えば直線状、同心円状または曲線状を有している。これらの形状が2以上組み合わされていてもよい。曲線としては、周期的または非周期的に蛇行する曲線が挙げられる。このような曲線の具体例としては、サイン波、三角波等の波形を挙げることができるが、これに限定されるものではない。 A plurality of structures 3B are arranged so as to form a plurality of rows on the surface of the first light irradiation surface C1, for example. The row has, for example, a linear, concentric or curved shape. Two or more of these shapes may be combined. Examples of the curve include a curve that meanders periodically or aperiodically. Specific examples of such a curve include, but are not limited to, waveforms such as a sine wave and a triangular wave.
 第1の光照射面C1における複数の構造体3Bの配置は、規則的配置および不規則的配置のいずれであってもよい。規則的配置としては、四方格子、準四方格子、六方格子、準六方格子等の格子状の配置が好ましい。なお、図3では、複数の構造体3Bを六方格子状に配置した例が示されている。ここで、四方格子とは、正四角形状の格子のことをいう。準四方格子とは、四方格子を歪ませたものをいう。六方格子とは、正六角形状の格子のことをいう。準六方格子とは、六方格子を歪ませたものをいう。 The arrangement of the plurality of structures 3B on the first light irradiation surface C1 may be either a regular arrangement or an irregular arrangement. As a regular arrangement, a grid-like arrangement such as a four-sided lattice, a quasi-four-sided lattice, a six-way lattice, or a quasi-hexagonal lattice is preferable. Note that FIG. 3 shows an example in which a plurality of structures 3B are arranged in a hexagonal grid pattern. Here, the four-sided grid means a square-shaped grid. A quasi-square grid is a distorted four-way grid. A hexagonal grid is a regular hexagonal grid. A quasi-hexagonal grid is a distorted hexagonal grid.
 構造体3Bの具体的な形状としては、例えば、錐体状、柱状、針状、半球体状、半楕円体状、多角形状等が挙げられるが、これらの形状に限定されるものではなく、他の形状を採用するようにしてもよい。錐体状としては、例えば、頂部が尖った錐体形状、頂部が平坦な錐体形状(いわゆる錐台形状)、頂部に凸状または凹状の曲面を有する錐体形状が挙げられるが、これらの形状に限定されるものではない。頂部に凸状の曲面を有する錐体形状としては、例えば、放物面状等の2次曲面状等が挙げられる。また、錐体状の錐面を凹状または凸状に湾曲させるようにしてもよい。 Specific shapes of the structure 3B include, for example, a cone shape, a columnar shape, a needle shape, a hemispherical shape, a semi-elliptical shape, a polygonal shape, and the like, but the shape is not limited to these shapes. Other shapes may be adopted. Examples of the cone shape include a cone shape having a sharp top, a cone shape having a flat top (so-called frustum shape), and a cone shape having a convex or concave curved surface at the top. It is not limited to the shape. Examples of the cone shape having a convex curved surface at the top include a quadric curved surface such as a parabolic surface. Further, the conical surface may be curved in a concave or convex shape.
 第1の光照射面C1に設けられた複数の構造体3Bはすべて、同一の大きさ、形状および高さを有していてもよいし、複数の構造体3Bが、異なる大きさ、形状または高さを有するものを含んでいてもよい。また、複数の構造体3Bが、下部同士を重ね合うようにして繋がっているものを含んでいてもよい。 The plurality of structures 3B provided on the first light irradiation surface C1 may all have the same size, shape and height, and the plurality of structures 3B may have different sizes, shapes or different sizes. Those having a height may be included. Further, a plurality of structures 3B may be included in which the lower parts are connected so as to overlap each other.
 複数の構造体3Bは、図3に示すように、情報信号を記録または再生するためのレーザー光の波長以下(例えば350nm以下)のピッチP1、P2で配置されている。構造体3Bの高さの絶対値Hは、例えば40nm以上450nm以下の範囲内に設定されるが、これに限定されるものではない。ここで、ピッチP1は、列間方向D1における構造体3Bのピッチを意味する。また、ピッチP2は、列方向(列の延在方向)D2における構造体3Bのピッチを意味する。 As shown in FIG. 3, the plurality of structures 3B are arranged at pitches P1 and P2 below the wavelength of the laser beam (for example, 350 nm or less) for recording or reproducing an information signal. The absolute value H of the height of the structure 3B is set, for example, in the range of 40 nm or more and 450 nm or less, but is not limited thereto. Here, the pitch P1 means the pitch of the structure 3B in the inter-row direction D1. Further, the pitch P2 means the pitch of the structure 3B in the row direction (row extending direction) D2.
 構造体3Bのアスペクト比は、好ましくは1以上である。アスペクト比が1以上であると、優れた反射抑制機能および透過特性が得られるからである。構造体3Bのアスペクト比の上限値は、好ましくは2以下、より好ましくは1.46以下である。アスペクト比が2以下であると、第1の凹凸構造層3の形成時に原盤を第1の凹凸構造層3から容易に剥離することが可能となるからである。ここで、構造体3Bのアスペクト比とは、列間方向D1における構造体3Bのアスペクト比R1、および列方向(列の延在方向)D2における構造体3Bのアスペクト比R2を意味する。列間方向D1における構造体3Bのアスペクト比R1とは、列間方向D1における構造体3Bの幅W1に対する構造体3Bの高さHの割合(H/W1)を意味し、列方向(列の延在方向)D2における構造体3Bのアスペクト比R2とは、列方向(列の延在方向)D2における構造体3Bの幅W2に対する構造体3Bの高さHの割合(H/W2)を意味する。 The aspect ratio of the structure 3B is preferably 1 or more. This is because when the aspect ratio is 1 or more, an excellent reflection suppression function and transmission characteristics can be obtained. The upper limit of the aspect ratio of the structure 3B is preferably 2 or less, more preferably 1.46 or less. This is because when the aspect ratio is 2 or less, the master can be easily separated from the first concavo-convex structure layer 3 when the first concavo-convex structure layer 3 is formed. Here, the aspect ratio of the structure 3B means the aspect ratio R1 of the structure 3B in the inter-row direction D1 and the aspect ratio R2 of the structure 3B in the column direction (extending direction of the rows) D2. The aspect ratio R1 of the structure 3B in the inter-row direction D1 means the ratio (H / W1) of the height H of the structure 3B to the width W1 of the structure 3B in the inter-row direction D1 in the column direction (row). The aspect ratio R2 of the structure 3B in the extending direction (extending direction) D2 means the ratio (H / W2) of the height H of the structure 3B to the width W2 of the structure 3B in the row direction (extending direction of the row) D2. To do.
[1.2 光記録媒体の製造方法]
 次に、本開示の第1の実施形態に係る光記録媒体1の製造方法の一例について説明する。
[1.2 Manufacturing method of optical recording medium]
Next, an example of the method for manufacturing the optical recording medium 1 according to the first embodiment of the present disclosure will be described.
(第1のディスクの作製工程)
 はじめに、第1のディスク10を以下のようにして作製する。
(Making process of the first disc)
First, the first disc 10 is manufactured as follows.
(基板の成形工程)
 まず、一主面に凹凸面が形成された基板11を成形する。基板11の成形の方法としては、例えば、射出成形(インジェクション)法またはフォトポリマー法(2P法:Photo Polymerization)等を用いることができる。
(Substrate molding process)
First, the substrate 11 having the uneven surface formed on one main surface is molded. As a method for molding the substrate 11, for example, an injection molding method or a photopolymerization method (2P method: Photopolymerization) can be used.
(情報信号層の形成工程)
 次に、例えばスパッタリング法により、基板11上に、保護層15、記録層13、保護層14を順次積層することにより、情報信号層L0を形成する。
(Process of forming information signal layer)
Next, the information signal layer L0 is formed by sequentially laminating the protective layer 15, the recording layer 13, and the protective layer 14 on the substrate 11 by, for example, a sputtering method.
(スペーサ層の形成工程)
 次に、例えばスピンコート法により紫外線硬化樹脂を情報信号層L0上に均一に塗布する。その後、情報信号層L0上に均一に塗布された紫外線硬化樹脂に対してスタンパの凹凸パターンを押し当て、紫外線硬化樹脂に対して紫外線を照射して硬化させたのち、スタンパを剥離する。これにより、スタンパの凹凸パターンが紫外線硬化樹脂に転写され、例えばランドLdおよびグルーブGvが設けられたスペーサ層S1が情報信号層L0上に形成される。
(Process of forming spacer layer)
Next, for example, the ultraviolet curable resin is uniformly applied onto the information signal layer L0 by a spin coating method. Then, the uneven pattern of the stamper is pressed against the ultraviolet curable resin uniformly applied on the information signal layer L0, the ultraviolet curable resin is irradiated with ultraviolet rays to cure it, and then the stamper is peeled off. As a result, the uneven pattern of the stamper is transferred to the ultraviolet curable resin, and for example, the spacer layer S1 provided with the land Ld and the groove Gv is formed on the information signal layer L0.
(情報信号層の形成工程およびスペーサ層の形成工程)
 次に、上述の“情報信号層の形成工程”および“スペーサ層の形成工程”と同様にして、情報信号層L1、スペーサ層S2、情報信号層L3、・・・、スペーサ層Sn、情報信号層Lnをこの順序でスペーサ層S1上に積層する。
(Information signal layer forming process and spacer layer forming process)
Next, in the same manner as the above-mentioned "information signal layer forming step" and "spacer layer forming step", the information signal layer L1, the spacer layer S2, the information signal layer L3, ..., The spacer layer Sn, the information signal Layers Ln are laminated on the spacer layer S1 in this order.
(光透過層の形成工程)
 次に、例えばスピンコート法により、紫外線硬化樹脂(UVレジン)等の感光性樹脂を情報信号層Ln上にスピンコートしたのち、紫外線等の光を感光性樹脂に照射し硬化する。これにより、情報信号層Ln上に光透過層12が形成される。
(Step of forming a light transmitting layer)
Next, for example, a photosensitive resin such as an ultraviolet curable resin (UV resin) is spin-coated on the information signal layer Ln by a spin coating method, and then the photosensitive resin is irradiated with light such as ultraviolet rays to be cured. As a result, the light transmitting layer 12 is formed on the information signal layer Ln.
(第1の凹凸構造層の形成工程)
 次に、UVナノインプリントにより、光記録媒体本体2の第1の光照射面C1に第1の凹凸構造層3を形成する。具体的には、スピンコート法により、光記録媒体本体2の第1の光照射面C1に紫外線硬化樹脂を塗布し、紫外線硬化樹脂に原盤(モールド)を押し当てたのち、紫外線硬化樹脂に紫外線を照射し、紫外線硬化樹脂を硬化させる。硬化後、紫外線硬化樹脂から原盤を離型する。これにより、第1の凹凸構造層3が形成される。以上により、第1のディスク10が作製される。
(Step of forming the first uneven structure layer)
Next, the first uneven structure layer 3 is formed on the first light irradiation surface C1 of the optical recording medium main body 2 by UV nanoimprint. Specifically, an ultraviolet curable resin is applied to the first light irradiation surface C1 of the optical recording medium main body 2 by a spin coating method, a master (mold) is pressed against the ultraviolet curable resin, and then ultraviolet rays are applied to the ultraviolet curable resin. Is irradiated to cure the ultraviolet curable resin. After curing, the master is released from the UV curable resin. As a result, the first uneven structure layer 3 is formed. As described above, the first disc 10 is produced.
(第2のディスクの作製工程)
 “第2のディスクの作製工程”は、上述の“第1のディスクの作製工程”と同様であるので、説明を省略する。
(Production process of the second disc)
Since the "second disc manufacturing step" is the same as the above-mentioned "first disc manufacturing step", the description thereof will be omitted.
(貼り合わせ工程)
 次に、以下のようにして、例えばスピンコート法により、上述のようにして作製された第1、第2のディスク10、20の間に接着剤としての紫外線硬化樹脂を延伸させる。まず、第2のディスク20の両主面のうち第2の光照射面C2とは反対側の主面に、センターホールの周縁に沿って紫外線硬化樹脂をリング状に塗布する。次に、第1のディスク10の両主面のうち第1の光照射面C1とは反対側の主面と、第2のディスク20の両主面のうち第2の光照射面C2とは反対側の主面とが対向するようにして、第1のディスク10を紫外線硬化樹脂を介して第2のディスク20に対して押し付ける。
(Lasting process)
Next, the ultraviolet curable resin as an adhesive is stretched between the first and second discs 10 and 20 produced as described above by, for example, a spin coating method as follows. First, an ultraviolet curable resin is applied in a ring shape along the peripheral edge of the center hole on the main surface of both main surfaces of the second disc 20 opposite to the second light irradiation surface C2. Next, the main surface of both main surfaces of the first disk 10 opposite to the first light irradiation surface C1 and the second light irradiation surface C2 of both main surfaces of the second disk 20 The first disc 10 is pressed against the second disc 20 via the ultraviolet curable resin so that the main surface on the opposite side faces the second disc 20.
 次に、第1、第2のディスク10、20を回転させて、第1、第2のディスク10、20間において、紫外線硬化樹脂を第1、第2のディスク10、20の半径方向に延伸する。この際、回転速度により紫外線硬化樹脂の厚さが所定の厚さになるように調整される。これにより、第1、第2のディスク10、20間において、紫外線硬化樹脂が第1、第2のディスク10、20の内周部から外周部まで行きわたされる。以上により、未硬化状態の貼合層30を有する光記録媒体本体2が得られる。 Next, the first and second discs 10 and 20 are rotated, and the ultraviolet curable resin is stretched in the radial direction of the first and second discs 10 and 20 between the first and second discs 10 and 20. To do. At this time, the thickness of the ultraviolet curable resin is adjusted to a predetermined thickness by the rotation speed. As a result, the ultraviolet curable resin is spread between the first and second discs 10 and 20 from the inner peripheral portion to the outer peripheral portion of the first and second discs 10 and 20. As described above, the optical recording medium main body 2 having the bonded layer 30 in the uncured state can be obtained.
 なお、上記の紫外線硬化樹脂の延伸工程において、第1、第2のディスク10、20の外周部に対して紫外線を照射し、外周部まで延伸された紫外線硬化樹脂を仮硬化させることが好ましい。これにより、第1、第2のディスク10、20の外周部における開きの発生を抑制できる。 In the above-mentioned stretching step of the ultraviolet curable resin, it is preferable to irradiate the outer peripheral portions of the first and second discs 10 and 20 with ultraviolet rays to temporarily cure the ultraviolet curable resin stretched to the outer peripheral portions. As a result, it is possible to suppress the occurrence of opening in the outer peripheral portions of the first and second discs 10 and 20.
 次に、紫外線ランプにより、光記録媒体本体2の両面側から紫外線を照射して、貼合層30を硬化する。これにより、目的とする光記録媒体1が得られる。 Next, the bonded layer 30 is cured by irradiating ultraviolet rays from both sides of the optical recording medium main body 2 with an ultraviolet lamp. As a result, the target optical recording medium 1 can be obtained.
[1.3 効果]
 上述の第1の実施形態に係る光記録媒体1は、第1、第2の光照射面C1、C2にそれぞれ、第1、第2の凹凸構造層3、4が設けられている。これにより、複数の光記録媒体1が重ね合わされた場合に、重ね合わされた光記録媒体1の接触面積を小さくできる。したがって、重ね合わされた光記録媒体1同士の貼り付きを抑制することができる。また、重ね合わされた光記録媒体1の滑り力を低減することができる。
[1.3 Effect]
The optical recording medium 1 according to the first embodiment described above is provided with first and second uneven structure layers 3 and 4, respectively, on the first and second light irradiation surfaces C1 and C2. As a result, when a plurality of optical recording media 1 are superposed, the contact area of the superposed optical recording media 1 can be reduced. Therefore, sticking of the superimposed optical recording media 1 to each other can be suppressed. In addition, the sliding force of the superimposed optical recording media 1 can be reduced.
 第1、第2の凹凸構造層3、4は、情報信号を記録または再生するためのレーザー光の波長以下(例えば350nm以下)のピッチで配置された構造体により構成されている。これにより、フラットな光照射面に比べて反射光量を低減させることができる。 The first and second uneven structure layers 3 and 4 are composed of structures arranged at a pitch equal to or lower than the wavelength of laser light (for example, 350 nm or less) for recording or reproducing an information signal. As a result, the amount of reflected light can be reduced as compared with a flat light irradiation surface.
 ナノ粒子等の微粒子が添加された紫外線硬化樹脂を用いて、光記録媒体本体の第1、第2の光照射面にそれぞれ第1、第2の凹凸構造層を形成する方法では、凹凸形状を制御することは困難である。第1、第2の凹凸構造層の凹凸形状の制御できない場合、凹凸形状の大きな領域では光学的な干渉が引き起こされ、信号品質が悪化する。これに対して、第1の実施形態に係る光記録媒体1の製造方法では、原盤の凹凸形状を紫外線硬化樹脂に転写することにより光記録媒体1の第1、第2の光照射面C1、C2にそれぞれ第1、第2の凹凸構造層3、4を形成するので、第1、第2の凹凸構造層3、4の凹凸形状を制御することが容易である。したがって、光記録媒体1の全面にわたって層間干渉を安定して低減させることができる。 In the method of forming the first and second uneven structure layers on the first and second light irradiation surfaces of the optical recording medium main body by using the ultraviolet curable resin to which fine particles such as nanoparticles are added, the uneven shape is formed. It is difficult to control. When the uneven shape of the first and second uneven structure layers cannot be controlled, optical interference is caused in a region having a large uneven shape, and the signal quality is deteriorated. On the other hand, in the method for manufacturing the optical recording medium 1 according to the first embodiment, the uneven shape of the master is transferred to the ultraviolet curable resin to transfer the first and second light irradiation surfaces C1 of the optical recording medium 1. Since the first and second concavo-convex structure layers 3 and 4 are formed on C2, respectively, it is easy to control the concavo-convex shape of the first and second concavo-convex structure layers 3 and 4. Therefore, interlayer interference can be stably reduced over the entire surface of the optical recording medium 1.
<2 第2の実施形態>
[2.1 光記録媒体の構成]
 図4に示すように、本開示の第2の実施形態に係る光記録媒体101は、いわゆる多層の追記型光記録媒体であり、光記録媒体本体102と、第1の凹凸構造層3とを備える。なお、第2の実施形態において第1の実施形態と同様の箇所には同一の符号を付して説明を省略する。
<2 Second embodiment>
[2.1 Configuration of optical recording medium]
As shown in FIG. 4, the optical recording medium 101 according to the second embodiment of the present disclosure is a so-called multi-layer write-once optical recording medium, in which the optical recording medium main body 102 and the first uneven structure layer 3 are formed. Be prepared. In the second embodiment, the same reference numerals are given to the same parts as those in the first embodiment, and the description thereof will be omitted.
 光記録媒体本体102は、情報信号層L0、スペーサ層S1、情報信号層L1、・・・、スペーサ層Sn、情報信号層Ln、カバー層である光透過層12がこの順序で基板11Aの一主面に積層された構成を有する。 In the optical recording medium main body 102, the information signal layer L0, the spacer layer S1, the information signal layer L1, ..., The spacer layer Sn, the information signal layer Ln, and the light transmission layer 12 which is the cover layer are one of the substrates 11A in this order. It has a structure laminated on the main surface.
 光記録媒体101は、情報信号を記録または再生するための光が照射される光照射面Cを片面に有する。情報信号層L0が光照射面Cを基準として最も奥に位置し、その手前に情報信号層L1~Lnが位置している。このため、情報信号層L1~Lnは、記録または再生に用いられるレーザー光を透過可能に構成されている。 The optical recording medium 101 has a light irradiation surface C on one side, which is irradiated with light for recording or reproducing an information signal. The information signal layer L0 is located at the innermost position with respect to the light irradiation surface C, and the information signal layers L1 to Ln are located in front of the information signal layer L0. Therefore, the information signal layers L1 to Ln are configured to be capable of transmitting laser light used for recording or reproduction.
 この第2の実施形態に係る光記録媒体101では、光透過層12側の光照射面Cからレーザー光を各情報信号層L0~Lnに照射することにより、情報信号の記録または再生が行われる。例えば、400nm以上415nm以下の範囲の波長を有するレーザー光を、0.84以上0.86以下の範囲の開口数を有する対物レンズにより集光し、光透過層12の側から各情報信号層L0~Lnに照射することにより、情報信号の記録または再生が行われる。このような光記録媒体101としては、例えば多層のブルーレイディスク(BD:Blu-ray(登録商標) Disc)が挙げられる。 In the optical recording medium 101 according to the second embodiment, information signals are recorded or reproduced by irradiating each information signal layer L0 to Ln with laser light from the light irradiation surface C on the light transmission layer 12 side. .. For example, laser light having a wavelength in the range of 400 nm or more and 415 nm or less is focused by an objective lens having a numerical aperture in the range of 0.84 or more and 0.86 or less, and each information signal layer L0 is focused from the light transmitting layer 12 side. By irradiating ~ Ln, information signals are recorded or reproduced. Examples of such an optical recording medium 101 include a multi-layer Blu-ray disc (BD: Blu-ray (registered trademark) Disc).
 光記録媒体101は、典型的には、グルーブ記録方式の光記録媒体であるが、ランド/グルーブ記録方式等の光記録媒体であってもよい。 The optical recording medium 101 is typically a groove recording type optical recording medium, but may be an optical recording medium such as a land / groove recording type.
 基板11Aの径(直径)は、例えば120mmに選ばれる。基板11Aの厚さは、剛性を考慮して選ばれ、好ましくは0.3mm以上1.3mm以下、より好ましくは0.6mm以上1.3mm以下、例えば1.1mmに選ばれる。また、センターホールの径(直径)は、例えば15mmに選ばれる。基板11Aの材料は、上述の第1の実施形態における基板11と同様である。 The diameter (diameter) of the substrate 11A is selected to be, for example, 120 mm. The thickness of the substrate 11A is selected in consideration of rigidity, preferably 0.3 mm or more and 1.3 mm or less, more preferably 0.6 mm or more and 1.3 mm or less, for example, 1.1 mm. The diameter (diameter) of the center hole is selected to be, for example, 15 mm. The material of the substrate 11A is the same as that of the substrate 11 in the first embodiment described above.
[2.2 光記録媒体の製造方法]
 本開示の第2の実施形態に係る光記録媒体101の製造方法の一例について説明する。
[2.2 Manufacturing method of optical recording medium]
An example of the method for manufacturing the optical recording medium 101 according to the second embodiment of the present disclosure will be described.
 まず、上述の第1の実施形態における“第1のディスクの作製工程”と同様にして、光記録媒体本体102を作製する。次に、UVナノインプリントにより、光記録媒体本体102の光照射面Cに第1の凹凸構造層3を形成する。これにより、目的とする光記録媒体101が得られる。 First, the optical recording medium main body 102 is manufactured in the same manner as in the "first disk manufacturing step" in the first embodiment described above. Next, the first concave-convex structure layer 3 is formed on the light irradiation surface C of the optical recording medium main body 102 by UV nanoimprint. As a result, the target optical recording medium 101 can be obtained.
[2.3 効果]
 上述の第2の実施形態に係る光記録媒体101では、第1の実施形態と同様の効果を得ることができる。例えば、フラットな光照射面に比べて反射光量を低減させることで、BD規格の光透過層12の厚み(100μm)の範囲で4層以上の情報信号層Lを備えることが可能になる。
[2.3 effect]
The optical recording medium 101 according to the second embodiment described above can obtain the same effect as that of the first embodiment. For example, by reducing the amount of reflected light as compared with a flat light irradiation surface, it is possible to provide four or more information signal layers L within the range of the thickness (100 μm) of the light transmission layer 12 of the BD standard.
<3 変形例>
 上述の第1、第2の実施形態では、情報信号層Lが、記録層13と、記録層13の上面に隣接して設けられた保護層14と、記録層13の下面に隣接して設けられた保護層15とを備える構成について説明したが、情報信号層Lの構成はこれに限定されるものではない。例えば、記録層13の上面および下面のいずれか一方にのみ保護層を設けるようにしてもよい。また、情報信号層Lを記録層13単層のみから構成するようにしてもよい。このような単純な構成とすることで、光記録媒体1、101を低廉化し、かつ、その生産性を向上することができる。この効果は、情報信号層Lの層数が多い媒体ほど、顕著となる。
<3 Modification example>
In the first and second embodiments described above, the information signal layer L is provided adjacent to the recording layer 13, the protective layer 14 provided adjacent to the upper surface of the recording layer 13, and the lower surface of the recording layer 13. Although the configuration including the protective layer 15 has been described, the configuration of the information signal layer L is not limited to this. For example, the protective layer may be provided only on either the upper surface or the lower surface of the recording layer 13. Further, the information signal layer L may be composed of only the recording layer 13 single layer. With such a simple configuration, the optical recording media 1 and 101 can be reduced in cost and their productivity can be improved. This effect becomes more remarkable as the number of layers of the information signal layer L is larger.
 上述の第1、第2の実施形態では、多層の情報信号層Lがすべて、同一の層構成(3層構成)を有する場合について説明したが、情報信号層Lごとに求められる特性(例えば光学特性や耐久性等)に応じて層構成を変えるようにしてもよい。但し、生産性の観点からすると、全ての情報信号層Lを同一の層構成とすることが好ましい。 In the first and second embodiments described above, the case where all the multilayer information signal layers L have the same layer structure (three-layer structure) has been described, but the characteristics (for example, optics) required for each information signal layer L have been described. The layer structure may be changed according to the characteristics, durability, etc.). However, from the viewpoint of productivity, it is preferable that all the information signal layers L have the same layer structure.
 本開示を適用可能な光記録媒体は、第1、第2の実施形態における構成を有するものに限定されるわけではない。例えば、基板上に複数層の情報信号層、保護層がこの順序で積層された構成を有し、基板側からレーザー光を複数層の情報信号層に照射することにより情報信号の記録または再生が行われる光記録媒体(例えばCD(Compact Disc))、または2枚の基板の間に複数層の情報信号層が設けられた構成を有し、少なくとも一方の基板の側からレーザー光を複数層の情報信号層に照射することにより情報信号の記録または再生が行われる光記録媒体(例えばDVD(Digital Versatile Disc))に対しても本開示は適用可能である。 The optical recording medium to which the present disclosure is applicable is not limited to those having the configurations according to the first and second embodiments. For example, a plurality of layers of information signal layers and protective layers are laminated in this order on a substrate, and information signals can be recorded or reproduced by irradiating the plurality of layers of information signal layers with laser light from the substrate side. It has a configuration in which a plurality of layers of information signal layers are provided between an optical recording medium (for example, a CD (Compact Disc)) or two substrates, and a plurality of layers of laser light are emitted from the side of at least one substrate. The present disclosure is also applicable to an optical recording medium (for example, a DVD (Digital Versatile Disc)) in which an information signal is recorded or reproduced by irradiating the information signal layer.
 上述の第1の実施形態では、第1、第2のディスク10、20がそれぞれ複数層の情報信号層Lを備える場合について説明したが、第1、第2のディスク10、20がそれぞれ単層の情報信号層Lを備えるようにしてもよい。 In the first embodiment described above, the case where the first and second disks 10 and 20 each include a plurality of layers of information signal layers L has been described, but the first and second disks 10 and 20 have single layers, respectively. The information signal layer L of the above may be provided.
 上述の第2の実施形態では、光記録媒体101が複数層の情報信号層Lを備える場合について説明したが、光記録媒体101が単層の情報信号層Lを備えるようにしてもよい。 In the second embodiment described above, the case where the optical recording medium 101 includes a plurality of layers of information signal layers L has been described, but the optical recording medium 101 may include a single layer information signal layer L.
 上述の第1の実施形態では、光記録媒体本体2の第1の光照射面C1および第2の光照射面C2の両方に凹凸構造層が設けられている場合について説明したが、光記録媒体本体2の第1の光照射面C1および第2の光照射面C2うちのいずれかに凹凸構造層が設けられていてもよい。但し、第1の光照射面C1および第2の光照射面C2の反射率および透過率を同一とするためには、上述の第1の実施形態におけるように光記録媒体本体2の第1の光照射面C1および第2の光照射面C2の両方に凹凸構造層が設けられていることが好ましい。 In the above-described first embodiment, the case where the uneven structure layer is provided on both the first light irradiation surface C1 and the second light irradiation surface C2 of the optical recording medium main body 2 has been described, but the optical recording medium. A concavo-convex structure layer may be provided on either the first light irradiation surface C1 or the second light irradiation surface C2 of the main body 2. However, in order to make the reflectance and the transmittance of the first light irradiation surface C1 and the second light irradiation surface C2 the same, as in the first embodiment described above, the first light recording medium main body 2 It is preferable that the uneven structure layer is provided on both the light irradiation surface C1 and the second light irradiation surface C2.
 上述の第1の実施形態では、構造体3Bが第1の光照射面C1に対して凸状を有する場合について説明したが、図5に示すように、構造体3Cが第1の光照射面C1に対して凹状を有していてもよい。この場合、凹状の構造体3Cの深さDの絶対値を、第1の実施形態における凸状の構造体3Bの高さHの絶対値と同様に扱うことが可能である。同様に、上述の第2の実施形態において、構造体3Bが光照射面Cに対して凹状を有していてもよい。 In the above-described first embodiment, the case where the structure 3B has a convex shape with respect to the first light irradiation surface C1 has been described, but as shown in FIG. 5, the structure 3C has the first light irradiation surface. It may have a concave shape with respect to C1. In this case, the absolute value of the depth D of the concave structure 3C can be treated in the same manner as the absolute value of the height H of the convex structure 3B in the first embodiment. Similarly, in the second embodiment described above, the structure 3B may have a concave shape with respect to the light irradiation surface C.
 上述の第1、第2の実施形態では、記録層13が無機記録層である場合について説明したが、記録層13が有機記録層であってもよい。 In the first and second embodiments described above, the case where the recording layer 13 is an inorganic recording layer has been described, but the recording layer 13 may be an organic recording layer.
 上述の第1、第2の実施形態では、光記録媒体1、101が追記型である場合について説明したが、光記録媒体1、101が再生専用型または書換可能型であってもよい。 In the first and second embodiments described above, the case where the optical recording media 1 and 101 are write-once type has been described, but the optical recording media 1 and 101 may be play-only type or rewritable type.
 上述の第2の実施形態では、光記録媒体101が、片面のみから情報信号を記録または再生することが可能な構成を有する場合について説明したが、光記録媒体101が、両面から情報信号を記録または再生することが可能な構成を有していてもよい。この場合、基板11Aの両面に、複数層の情報信号層Lと光透過層12とが備えられる。また、両面に凹凸構造層が備えられていてもよい。 In the second embodiment described above, the case where the optical recording medium 101 has a configuration capable of recording or reproducing the information signal from only one side has been described, but the optical recording medium 101 records the information signal from both sides. Alternatively, it may have a configuration that can be reproduced. In this case, a plurality of layers of information signal layers L and light transmitting layers 12 are provided on both sides of the substrate 11A. Further, the uneven structure layer may be provided on both sides.
 上述の第1、第2の実施形態では、第1の凹凸構造層3が基底層3Aと複数の構造体3Bとを備えるハードコート層である場合について説明したが、第1の凹凸構造層3が基底層3Aを備えず、複数の構造体3Bのみにより構成されていてもよい。 In the first and second embodiments described above, the case where the first uneven structure layer 3 is a hard coat layer including the basal layer 3A and the plurality of structures 3B has been described, but the first uneven structure layer 3 has been described. May not include the basal layer 3A and may be composed of only a plurality of structures 3B.
 第1の実施形態および第2の実施形態において、第1、第2の凹凸構造層3、4(具体的には第1、第2の凹凸構造層3、4に含まれる構造体3B、3C)に情報を持たせるようにしてもよい。例えば、モスアイやBDピット等の間引き、またはCDピットそのもの等によって、第1、第2の凹凸構造層3、4に情報を持たせるようにしてもよい。第1、第2の凹凸構造層3、4に持たせる情報としては、BCA(Burst Cutting Area)や2次元バーコードに持たせているようなディスク固有の情報、海賊版防止やコピー防止等のための暗号情報、すかし等のセキュリティ情報等が挙げられる。 In the first embodiment and the second embodiment, the structures 3B and 3C included in the first and second concavo-convex structure layers 3 and 4 (specifically, the first and second concavo-convex structure layers 3 and 4). ) May have information. For example, information may be provided to the first and second uneven structure layers 3 and 4 by thinning out moth eyes, BD pits, or the like, or by CD pits themselves. The information given to the first and second concave-convex structure layers 3 and 4 includes disc-specific information such as that given to BCA (Burst Cutting Area) and two-dimensional barcodes, and for piracy prevention and copy protection. Encrypted information, security information such as bootlegs, etc. can be mentioned.
 上記情報の検出には、情報信号層Lの信号検出用の光学系が用いられてもよいし、それとは異なる波長の光源を用いた光学系が用いられてもよい。また、イメージセンサー等を用いて第1、第2の凹凸構造層3、4の画像が取得されたのち、その画像の画像認識により検出されるようにしてもよい。 For the detection of the above information, an optical system for signal detection of the information signal layer L may be used, or an optical system using a light source having a wavelength different from that may be used. Further, after the images of the first and second uneven structure layers 3 and 4 are acquired by using an image sensor or the like, the images may be detected by image recognition of the images.
 第1の実施形態において、第1の光照射面C1および第2の光照射面C2のうちの一方が凹凸構造層を有するのに対して、他方が凹凸構造層のない表面(平滑面)であってもよい。この場合、凹凸構造層の有無により、光記録媒体1の表裏を判別することが可能である。第1の光照射面C1の第1の凹凸構造層3と第2の光照射面C2の第2の凹凸構造層4との仕様(例えば構造)が異なっていてもよい。この場合、第1の凹凸構造層3と第2の凹凸構造層4の仕様の違いにより、光記録媒体1の表裏を判別することが可能である。同様に、上述の第2の実施形態において、光照射面Cとそれとは反対側の裏面とに、仕様が異なる凹凸構造層が設けられていてもよい。 In the first embodiment, one of the first light irradiation surface C1 and the second light irradiation surface C2 has a concavo-convex structure layer, while the other is a surface (smooth surface) without the concavo-convex structure layer. There may be. In this case, it is possible to determine the front and back sides of the optical recording medium 1 depending on the presence or absence of the uneven structure layer. The specifications (for example, the structure) of the first concavo-convex structure layer 3 of the first light irradiation surface C1 and the second concavo-convex structure layer 4 of the second light irradiation surface C2 may be different. In this case, the front and back surfaces of the optical recording medium 1 can be discriminated by the difference in specifications between the first concavo-convex structure layer 3 and the second concavo-convex structure layer 4. Similarly, in the second embodiment described above, a concavo-convex structure layer having different specifications may be provided on the light irradiation surface C and the back surface on the opposite side to the light irradiation surface C.
 上記光記録媒体1の表裏の判別は、第1、第2の凹凸構造層3、4の情報の検出と同様に、光学系が用いられてもよいし、画像認識が用いられてもよい。 The front and back of the optical recording medium 1 may be discriminated by using an optical system or image recognition, as in the case of detecting the information of the first and second uneven structure layers 3 and 4.
 上述の第1の実施形態では、貼り合わせ工程前に、第1、第2のディスク10、20の第1、第2の光照射面C1、C2にそれぞれ第1、第2の凹凸構造層3、4を形成する場合について説明したが、貼り合わせ工程後に、光記録媒体本体2の第1、第2の光照射面C1、C2にそれぞれ第1、第2の凹凸構造層3、4を形成するようにしてもよい。 In the first embodiment described above, the first and second concavo-convex structure layers 3 are formed on the first and second light irradiation surfaces C1 and C2 of the first and second disks 10 and 20, respectively, before the bonding step. Although the case of forming 4 and 4 has been described, the first and second uneven structure layers 3 and 4 are formed on the first and second light irradiation surfaces C1 and C2 of the optical recording medium main body 2 after the bonding step, respectively. You may try to do it.
 以下、実施例により本開示を具体的に説明するが、本開示はこれらの実施例のみに限定されるものではない。 Hereinafter, the present disclosure will be specifically described with reference to Examples, but the present disclosure is not limited to these Examples.
 本開示の実施例について以下の順序で説明する。
i 貼り付き力および滑り力を評価した実施例、比較例
ii 信号特性に対する凹凸構造の影響を評価した実施例、比較例
Examples of the present disclosure will be described in the following order.
i Examples and comparative examples in which sticking force and sliding force are evaluated
ii Examples and Comparative Examples for Evaluating the Effect of Concavo-convex Structure on Signal Characteristics
<i 貼り付き力および滑り力を評価した実施例、比較例>
 以下のようにして、微細な凹凸構造が光照射面に形成された光ディスクを作製し、貼り付き力および滑り力を評価した。
<Examples and Comparative Examples in which Sticking Force and Sliding Force were Evaluated>
An optical disc having a fine uneven structure formed on the light irradiation surface was produced as follows, and the sticking force and the sliding force were evaluated.
[実施例1]
 UVナノインプリントにより、光ディスク本体(UVナノインプリントによる凹凸構造形成以外はBD-DSD、記録容量200GBと同じ仕様)の両光照射面(両信号面)に、凹状の構造体からなる微細な凹凸構造(モスアイ構造)を形成した。この際、構造体のピッチP1、P2、構造体の幅W1、W2および構造体の深さD(図5参照)を表1に示す値に設定した。なお、ピッチP1、P2は、情報信号を記録または再生するためのレーザー光の波長以下とした。以上により、目的とする光ディスクが得られた。
[Example 1]
By UV nanoimprint, a fine concavo-convex structure (Mosseye) consisting of a concave structure on both light irradiation surfaces (both signal surfaces) of the optical disc body (BD-DSD, same specifications as the recording capacity of 200 GB except for the formation of concavo-convex structure by UV nanoimprint) Structure) was formed. At this time, the pitches P1 and P2 of the structure, the widths W1 and W2 of the structure, and the depth D of the structure (see FIG. 5) were set to the values shown in Table 1. The pitches P1 and P2 are set to be equal to or lower than the wavelength of the laser beam for recording or reproducing the information signal. From the above, the target optical disc was obtained.
[実施例2]
 微細な凹凸構造としてBD2Tピット(ULTRA HD Blu-ray(登録商標)の3層100GBディスクにおける2Tピットを所定の間隔で並べたもの)を形成した。この際、凹凸構造のピッチP1、P2、構造体の幅W1、W2および構造体の高さH(図3参照)を表1に示す値に設定した。なお、ピッチP1、P2は、情報信号を記録または再生するためのレーザー光の波長以下とした。上記以外のこと以外は実施例1と同様にして光ディスクを得た。
[Example 2]
BD2T pits (2T pits on a 3-layer 100GB disc of ULTRA HD Blu-ray (registered trademark) arranged at predetermined intervals) were formed as a fine concavo-convex structure. At this time, the pitches P1 and P2 of the concave-convex structure, the widths W1 and W2 of the structure, and the height H of the structure (see FIG. 3) were set to the values shown in Table 1. The pitches P1 and P2 are set to be equal to or lower than the wavelength of the laser beam for recording or reproducing the information signal. An optical disk was obtained in the same manner as in Example 1 except for the above.
[比較例1]
 光ディスク本体(BD-DSD、記録容量200GB)の両光照射面(両信号面)に微細な凹凸構造を形成せずに、そのままの状態のものを比較例1の光ディスクとした。
[Comparative Example 1]
The optical disc of Comparative Example 1 was used as it was without forming a fine uneven structure on both light irradiation surfaces (both signal surfaces) of the optical disc body (BD-DSD, recording capacity 200 GB).
[比較例2]
 微細な凹凸構造としてCDピット(CD-ROMの基板で使用されるピット)を形成し、凹凸構造のピッチP1、P2、構造体の幅W1、W2および構造体の高さH(図3参照)を表1に示す値に設定した。なお、ピッチP1、P2は、情報信号を記録または再生するためのレーザー光の波長より大きく設定した。上記以外のこと以外は実施例1と同様にして光ディスクを得た。
[Comparative Example 2]
A CD pit (pit used in a CD-ROM substrate) is formed as a fine uneven structure, and the pitches P1 and P2 of the uneven structure, the widths W1 and W2 of the structure, and the height H of the structure H (see FIG. 3). Was set to the values shown in Table 1. The pitches P1 and P2 are set to be larger than the wavelength of the laser light for recording or reproducing the information signal. An optical disk was obtained in the same manner as in Example 1 except for the above.
(凸部の面積比率)
 まず、上述のようにして得られた光ディスクの光照射面(信号面)のSEM像を取得した。図6A、図6B、図6Cにそれぞれ、実施例1、2、比較例2の凹凸構造のSEM像を示す。次に、取得したSEM像よりピクセルごとのコントラストデータを取得し、度数分布を作成した。図7に、実施例1の光ディスクの凹凸構造の度数分布を示す。次に、低コントラスト(凹部)の集団と高コントラストの集団(凸部)のそれぞれを最適な関数(ガウス関数)にてフィッティング(ガウシアンフィッティング)し、フィッティング関数の交点Pを求めた。上記交点Pよりピクセルコントラストが低い集団の生データの積分値を凹部の面積とし、上記交点Pよりピクセルコントラストが高い集団の生データの積分値を凸部の面積とした。次に、凹部の面積と凸部の面積の総和に対する、凸部の面積の割合を求め、この割合を光ディスクの光照射面(信号面)における凸部の面積比率R[%]とした。
(Area ratio of convex parts)
First, an SEM image of the light irradiation surface (signal surface) of the optical disc obtained as described above was acquired. 6A, 6B, and 6C show SEM images of the uneven structure of Examples 1, 2 and Comparative Example 2, respectively. Next, the contrast data for each pixel was acquired from the acquired SEM image, and the frequency distribution was created. FIG. 7 shows the frequency distribution of the uneven structure of the optical disk of Example 1. Next, each of the low contrast (concave) group and the high contrast group (convex) was fitted (Gaussian fitting) with an optimum function (Gaussian function), and the intersection P of the fitting function was obtained. The integrated value of the raw data of the group having the pixel contrast lower than the intersection P was defined as the area of the concave portion, and the integrated value of the raw data of the group having the pixel contrast higher than the intersection P was defined as the area of the convex portion. Next, the ratio of the area of the convex portion to the sum of the area of the concave portion and the area of the convex portion was obtained, and this ratio was defined as the area ratio R [%] of the convex portion on the light irradiation surface (signal surface) of the optical disk.
(反射率)
 上述のようにして得られた光ディスクの光照射面(信号面)の反射率を、パルステック社製評価機(ODU-1000、波長λ=405nm、対物レンズNA=0.85)を用いて以下のようにして簡易的に測定した。まず、エキスパンダー位置を球面収差がL2層の付近に最適となるように合わせた。次に、対物レンズを光軸方向にサーチし、光ディスクからの反射戻り光の総和信号を取得した。取得した総和信号にて、始めに現れるピークが光ディスクの表面に相当するので、そのピークの電圧値を取得した。次に、予めフォーカスサーボをかけて取得したL2層の反射率(総和信号の電圧値)を基準とし、取得した表面の電圧値を用いて光ディスクの光照射面の反射率を求めた。表面の電圧値をもとにした反射率は、球面収差がL2層に最適であるため若干ずれるが、上記の実施例および比較例全てにおいて同一条件であるため、相対比較としては問題ない。
(Reflectance)
The reflectance of the light irradiation surface (signal surface) of the optical disc obtained as described above is measured using an evaluation machine manufactured by Pulsetec Co., Ltd. (ODU-1000, wavelength λ = 405 nm, objective lens NA = 0.85) as follows. It was measured simply as follows. First, the expander position was adjusted so that the spherical aberration was optimized near the L2 layer. Next, the objective lens was searched in the optical axis direction, and the total signal of the reflected return light from the optical disk was acquired. In the acquired sum signal, the peak that appears first corresponds to the surface of the optical disc, so the voltage value of that peak was acquired. Next, the reflectance of the light-irradiated surface of the optical disk was obtained using the acquired surface voltage value with reference to the reflectance of the L2 layer (voltage value of the total signal) acquired by applying the focus servo in advance. The reflectance based on the voltage value on the surface is slightly deviated because the spherical aberration is optimal for the L2 layer, but since the conditions are the same in all of the above Examples and Comparative Examples, there is no problem in relative comparison.
(貼り付き力)
 図8は、貼り付き力の測定方法を説明するための概略図である。まず、上述のようにして得られた光ディスクを2枚準備し、光照射面(信号面)が上面となり、かつ、一部が重なるように、測定台上で重ね合わせた。次に、重ね合わされた2枚の光ディスクに30~40kgの荷重を加えたのち、荷重を解除した。続いて、重ね合わされた2枚の光ディスクに290gの荷重を加えつつ、上側に位置する光ディスクを測定台の表面と水平な方向に、フォースゲージにより引っ張り、光ディスクが動き出す引張力を測定し、この引張力の最大値を貼り付き力とした。図9Aに、凸部の面積比率と貼り付き力の関係を示す。
(Attachment force)
FIG. 8 is a schematic view for explaining a method of measuring the sticking force. First, two optical discs obtained as described above were prepared and superposed on a measuring table so that the light irradiation surface (signal surface) was on the upper surface and a part of them overlapped. Next, a load of 30 to 40 kg was applied to the two superposed optical disks, and then the load was released. Subsequently, while applying a load of 290 g to the two superposed optical discs, the optical disc located on the upper side is pulled by a force gauge in a direction horizontal to the surface of the measuring table, and the tensile force at which the optical discs start to move is measured. The maximum value of the force was taken as the sticking force. FIG. 9A shows the relationship between the area ratio of the convex portion and the sticking force.
(滑り力)
 まず、上述の貼り付き力の評価と同様にして、2枚の光ディスクを測定台上で重ね合わせた。次に、重ね合わされた2枚の光ディスクに290gの荷重を加えつつ、上側に位置する光ディスクを測定台の表面と水平な方向に、フォースゲージにより引っ張り、引張力を測定し、この引張力の最大値をすべり力とした。図9Bに、凸部の面積比率と滑り力の関係を示す。
(Sliding power)
First, two optical discs were superposed on the measuring table in the same manner as in the evaluation of the sticking force described above. Next, while applying a load of 290 g to the two superposed optical discs, the optical disc located on the upper side is pulled by a force gauge in a direction horizontal to the surface of the measuring table, and the tensile force is measured, and the maximum of this tensile force is measured. The value was used as the sliding force. FIG. 9B shows the relationship between the area ratio of the convex portion and the sliding force.
 実施例1、2、比較例1、2の光ディスクの凹凸構造の構成および評価結果を示す。
Figure JPOXMLDOC01-appb-T000001
The configuration and evaluation result of the concave-convex structure of the optical discs of Examples 1 and 2 and Comparative Examples 1 and 2 are shown.
Figure JPOXMLDOC01-appb-T000001
 図9A、図9Bおよび表1から以下のことがわかる。
 光照射面(信号面)に微細な凹凸構造を形成した光ディスク(実施例1、2、比較例2)では、光照射面(信号面)が平滑な光ディスク(比較例1)に比べて、貼り付き力および滑り力が低減される。
 情報信号を記録または再生するためのレーザー光の波長以下のピッチで複数の構造体が光照射面(信号面)に設けられた光ディスク(実施例1、2)では、情報信号を記録または再生するためのレーザー光の波長より大きいピッチで複数の構造体が光照射面(信号面)に設けられた光ディスク(比較例2)に比べて貼り付き力および滑り力が低減される。
The following can be seen from FIGS. 9A, 9B and Table 1.
An optical disc (Examples 1 and 2 and Comparative Example 2) in which a fine uneven structure is formed on a light irradiation surface (signal surface) is pasted as compared with an optical disc (Comparative Example 1) in which the light irradiation surface (signal surface) is smooth. Attaching force and sliding force are reduced.
An optical disk (Examples 1 and 2) in which a plurality of structures are provided on a light irradiation surface (signal surface) at a pitch equal to or lower than the wavelength of laser light for recording or reproducing an information signal records or reproduces an information signal. The sticking force and the sliding force are reduced as compared with an optical disk (Comparative Example 2) in which a plurality of structures are provided on a light irradiation surface (signal surface) at a pitch larger than the wavelength of the laser beam for the purpose.
 情報信号を記録または再生するためのレーザー光の波長以下のピッチで複数の構造体が光照射面(信号面)に設けられた光ディスク(実施例1、2)では、光照射面(信号面)が平滑な光ディスク(比較例1)に比べて、反射率が低減される。一方、情報信号を記録または再生するためのレーザー光の波長より大きいピッチで複数の構造体が光照射面(信号面)に設けられた光ディスク(比較例2)では、光照射面(信号面)が平滑な光ディスク(比較例1)に比べて、光照射面(信号面)における回折の状態によって、反射率が増加される場合がある。 In an optical disk (Examples 1 and 2) in which a plurality of structures are provided on an optical irradiation surface (signal surface) at a pitch equal to or lower than the wavelength of laser light for recording or reproducing an information signal, the light irradiation surface (signal surface) The reflectance is reduced as compared with an optical disc having a smooth surface (Comparative Example 1). On the other hand, in the optical disk (Comparative Example 2) in which a plurality of structures are provided on the light irradiation surface (signal surface) at a pitch larger than the wavelength of the laser light for recording or reproducing the information signal, the light irradiation surface (signal surface) The reflectance may be increased depending on the state of diffraction on the light irradiation surface (signal surface) as compared with the smooth disk (Comparative Example 1).
<ii 信号特性に対する凹凸構造の影響を評価した実施例、比較例>
 以下のようにして、微細な凹凸構造が光照射面(信号面)に形成された光ディスクを作製し、凹凸構造による信号特性に対する影響を評価した。
<Examples and comparative examples in which the influence of the uneven structure on the signal characteristics is evaluated>
An optical disk in which a fine uneven structure was formed on a light irradiation surface (signal surface) was produced as follows, and the influence of the uneven structure on the signal characteristics was evaluated.
[実施例3]
 UVナノインプリントにより、光ディスク本体(UVナノインプリントによる凹凸構造形成以外はAD、記録容量300GBと同じ仕様)の両光照射面(両信号面)に、実施例1と同様の微細な凹凸構造(モスアイ構造)を形成した。以上により、目的とする光ディスクが得られた。
[Example 3]
By UV nanoimprint, the same fine concavo-convex structure (moth-eye structure) as in Example 1 is applied to both light irradiation surfaces (both signal surfaces) of the optical disc body (AD, the same specifications as the recording capacity of 300 GB except for the formation of concavo-convex structure by UV nanoimprint). Was formed. From the above, the target optical disc was obtained.
[実施例4]
 光ディスク本体(AD、記録容量300GB)の両光照射面(両信号面)に、実施例2と同様の微細な凹凸構造(BD2Tピット(ULTRA HD Blu-ray(登録商標))の3層100GBディスクにおける2Tピットを所定の間隔で並べたもの)を形成したこと以外は実施例3と同様にして光ディスクを得た。
[Example 4]
A three-layer 100GB disc with a fine concavo-convex structure (BD2T pit (ULTRA HD Blu-ray (registered trademark)) similar to that in Example 2 on both light irradiation surfaces (both signal surfaces) of the optical disc body (AD, recording capacity 300 GB). An optical disk was obtained in the same manner as in Example 3 except that the 2T pits in (1) were formed at predetermined intervals.
[比較例3]
 光ディスク本体(AD、記録容量300GB)の両光照射面(両信号面)に微細な凹凸構造を形成せずに、そのままの状態のものを比較例3の光ディスクとした。
[Comparative Example 3]
The optical disc of Comparative Example 3 was used as it was without forming a fine uneven structure on both light irradiation surfaces (both signal surfaces) of the optical disc body (AD, recording capacity 300 GB).
(信号特性)
 上述のようにして得られた実施例3、4、比較例3の光ディスクの信号特性を以下のようにして評価した。記録容量300GBのADを記録再生可能なドライブを用いて、光ディスクを0.1mmおきに64RUB(Recording Unit Block)ずつ再生した。そして、64RUB再生時のSER(Symbol Error Rate)の最大値Max、最小値Minおよび平均値Aveを0.1mmおきに全面に亘って取得し、最大値Max、最小値Minおよび平均値Aveそれぞれの平均値を求めた。その結果を図10A、図10B、図10Cに示す。この評価結果から、微細な凹凸構造(モスアイ構造およびBDピット)を記録容量300GBのADの光照射面(信号面)に設けても、SERが悪化することはないことがわかった。
(Signal characteristics)
The signal characteristics of the optical discs of Examples 3, 4 and Comparative Example 3 obtained as described above were evaluated as follows. Using a drive capable of recording and reproducing AD with a recording capacity of 300 GB, optical discs were reproduced by 64 RUBs (Recording Unit Blocks) at intervals of 0.1 mm. Then, the maximum value Max, the minimum value Min, and the average value Ave of the SER (Symbol Error Rate) at the time of 64RUB reproduction are acquired over the entire surface at intervals of 0.1 mm, and the maximum value Max, the minimum value Min, and the average value Ave are respectively obtained. The average value was calculated. The results are shown in FIGS. 10A, 10B and 10C. From this evaluation result, it was found that even if a fine uneven structure (moss eye structure and BD pit) is provided on the light irradiation surface (signal surface) of AD having a recording capacity of 300 GB, the SER does not deteriorate.
 また、記録容量300GBのADを記録再生可能なドライブを用いて、光ディスクを0.1mmおきに64RUBずつ再生し、i-MLSE(Integrated-Maximum Likelihood. Sequence Error)を評価した。この評価結果から、微細な凹凸構造(モスアイ構造およびBDピット)を記録容量300GBのADの光照射面(信号面)に設けても、i-MLSEが悪化することはないことがわかった。 In addition, using a drive capable of recording and reproducing AD with a recording capacity of 300 GB, optical discs were reproduced by 64 RUB at 0.1 mm intervals, and i-MLSE (Integrated-Maximum Likelihood. Sequence Error) was evaluated. From this evaluation result, it was found that even if a fine uneven structure (moth-eye structure and BD pit) was provided on the light irradiation surface (signal surface) of AD having a recording capacity of 300 GB, i-MLSE did not deteriorate.
[実施例5、6、比較例4]
 光ディスク本体として記録容量500GBのADを用いたこと以外は実施例3、4、比較例4と同様にして光ディスクを得た。
[Examples 5 and 6, Comparative Example 4]
An optical disc was obtained in the same manner as in Examples 3 and 4 and Comparative Example 4 except that an AD having a recording capacity of 500 GB was used as the optical disc main body.
[実施例7、8、比較例5]
 実施例1、2、比較例1と同様にして光ディスクを得た。
[Examples 7 and 8, Comparative Example 5]
An optical disk was obtained in the same manner as in Examples 1 and 2 and Comparative Example 1.
(信号特性)
 上述のようにして得られた実施例5~8、比較例4、5の光ディスクの信号特性を、実施例3、4、比較例3の光ディスクの信号特性と同様にして評価した。その結果、微細な凹凸構造(モスアイ構造およびBDピット)を記録容量500GBのADおよび記録容量200GBのBD-DSDの光照射面(信号面)に設けても、信号特性(SER、i-MLSE)が悪化することはないことがわかった。
(Signal characteristics)
The signal characteristics of the optical discs of Examples 5 to 8 and Comparative Examples 4 and 5 obtained as described above were evaluated in the same manner as the signal characteristics of the optical discs of Examples 3, 4 and Comparative Example 3. As a result, even if a fine uneven structure (moth-eye structure and BD pit) is provided on the light irradiation surface (signal surface) of an AD having a recording capacity of 500 GB and a BD-DSD having a recording capacity of 200 GB, the signal characteristics (SER, i-MLSE) It turns out that does not get worse.
 以上、本開示の実施形態について具体的に説明したが、本開示は、上述の実施形態に限定されるものではなく、本開示の技術的思想に基づく各種の変形が可能である。 Although the embodiments of the present disclosure have been specifically described above, the present disclosure is not limited to the above-described embodiments, and various modifications based on the technical idea of the present disclosure are possible.
 上述の実施形態において挙げた構成、方法、工程、形状、材料および数値等はあくまでも例に過ぎず、必要に応じてこれと異なる構成、方法、工程、形状、材料および数値等を用いてもよい。 The configurations, methods, processes, shapes, materials, numerical values, etc. mentioned in the above-described embodiments are merely examples, and different configurations, methods, processes, shapes, materials, numerical values, etc. may be used as necessary. ..
 上述の実施形態の構成、方法、工程、形状、材料および数値等は、本開示の主旨を逸脱しない限り、互いに組み合わせることが可能である。 The configurations, methods, processes, shapes, materials, numerical values, etc. of the above-described embodiments can be combined with each other as long as they do not deviate from the gist of the present disclosure.
 上述の実施形態で段階的に記載された数値範囲において、ある段階の数値範囲の上限値または下限値は、他の段階の数値範囲の上限値または下限値に置き換えてもよい。 In the numerical range described stepwise in the above embodiment, the upper limit value or the lower limit value of the numerical range of one step may be replaced with the upper limit value or the lower limit value of the numerical range of another step.
 上述の実施形態に例示した材料は、特に断らない限り、1種を単独でまたは2種以上を組み合わせて用いることができる。 Unless otherwise specified, the materials exemplified in the above-described embodiments can be used alone or in combination of two or more.
 また、本開示は以下の構成を採用することもできる。
(1)
 第1の面および第2の面を有する光記録媒体本体と、
 前記第1の面に設けられた第1の凹凸構造層と
 を備え、
 前記第1の凹凸構造層は、情報信号を記録または再生するための光の波長以下のピッチで設けられた複数の第1の構造体を含み、
 前記第1の凹凸構造層の凸部の面積比率が、80%以下であり、
 前記第1の面側から前記光が照射される光記録媒体。
(2)
 前記第1の凹凸構造層の凸部の面積比率が、50%以下である(1)に記載の光記録媒体。
(3)
 前記第1の凹凸構造層の凸部の面積比率が、20%以下である(2)に記載の光記録媒体。
(4)
 前記第1の凹凸構造層は、ハードコート層である(1)から(3)のいずれかに記載の光記録媒体。
(5)
 前記第1の構造体は、光記録媒体にて信号の記録に用いられる凹部または凸部と同様の形状を有している(1)から(4)のいずれかに記載の光記録媒体。
(6)
 前記第2の面に設けられた第2の凹凸構造層をさらに備え、
 前記第2の凹凸構造層は、前記光の波長以下のピッチで設けられた複数の第2の構造体を含み、
 前記第2の面側から前記光が照射される(1)から(5)のいずれかに記載の光記録媒体。
(7)
 前記光記録媒体本体は、
 第1のディスクと、
 第2のディスクと
 を備え、
 前記第1のディスクおよび前記第2のディスクは、
 基板と、
 前記基板上に設けられた情報信号層と、
 前記情報信号層を覆うカバー層と
 を備え、
 前記第1のディスクの前記基板側の面と前記第2のディスクの前記基板側の面とが、貼り合わされている(1)から(6)のいずれかに記載の光記録媒体。
(8)
 前記光記録媒体本体は、
 基板と、
 前記基板上に設けられた情報信号層と、
 前記情報信号層を覆うカバー層と
 を備え、
 前記第1の面は、前記カバー層側の面である(1)から(6)のいずれかに記載の光記録媒体。
The present disclosure may also adopt the following configuration.
(1)
An optical recording medium body having a first surface and a second surface,
It is provided with a first concavo-convex structure layer provided on the first surface.
The first concavo-convex structure layer includes a plurality of first structures provided at a pitch equal to or lower than the wavelength of light for recording or reproducing an information signal.
The area ratio of the convex portion of the first concave-convex structure layer is 80% or less.
An optical recording medium in which the light is irradiated from the first surface side.
(2)
The optical recording medium according to (1), wherein the area ratio of the convex portion of the first concave-convex structure layer is 50% or less.
(3)
The optical recording medium according to (2), wherein the area ratio of the convex portion of the first concave-convex structure layer is 20% or less.
(4)
The optical recording medium according to any one of (1) to (3), wherein the first uneven structure layer is a hard coat layer.
(5)
The optical recording medium according to any one of (1) to (4), wherein the first structure has a shape similar to a concave portion or a convex portion used for recording a signal on an optical recording medium.
(6)
Further provided with a second concavo-convex structure layer provided on the second surface,
The second concavo-convex structure layer includes a plurality of second structures provided at a pitch equal to or lower than the wavelength of the light.
The optical recording medium according to any one of (1) to (5), wherein the light is irradiated from the second surface side.
(7)
The optical recording medium body is
The first disc and
With a second disc
The first disk and the second disk are
With the board
The information signal layer provided on the substrate and
A cover layer that covers the information signal layer is provided.
The optical recording medium according to any one of (1) to (6), wherein the surface of the first disk on the substrate side and the surface of the second disk on the substrate side are bonded to each other.
(8)
The optical recording medium body is
With the board
The information signal layer provided on the substrate and
A cover layer that covers the information signal layer is provided.
The optical recording medium according to any one of (1) to (6), wherein the first surface is a surface on the cover layer side.
 1、101  光記録媒体
 2、102  光記録媒体本体
 3  第1の凹凸構造層
 4  第2の凹凸構造層
 3A  基底層
 3B、3C  構造体
 10  第1のディスク
 20  第2のディスク
 30 貼合層
 11、11A、21  基板
 12、22  光透過層
 13  記録層
 14、15  保護層
 L0~Ln、L0~Lm  情報信号層
 S1~Sn、S1~Sm  スペーサ層
 C  光照射面
 C1  第1の光照射面
 C2  第2の光照射面
 Gv  グルーブ
 Ld  ランド
 Tp  トラックピッチ
1,101 Optical recording medium 2,102 Optical recording medium body 3 First uneven structure layer 4 Second uneven structure layer 3A Base layer 3B, 3C structure 10 First disk 20 Second disk 30 Laminated layer 11 , 11A, 21 Substrates 12, 22 Light transmission layer 13 Recording layer 14, 15 Protective layer L0 to Ln, L0 to Lm Information signal layer S1 to Sn, S1 to Sm Spacer layer C Light irradiation surface C1 First light irradiation surface C2 Second light irradiation surface Gv groove Ld land Tp track pitch

Claims (8)

  1.  第1の面および第2の面を有する光記録媒体本体と、
     前記第1の面に設けられた第1の凹凸構造層と
     を備え、
     前記第1の凹凸構造層は、情報信号を記録または再生するための光の波長以下のピッチで設けられた複数の第1の構造体を含み、
     前記第1の凹凸構造層の凸部の面積比率が、80%以下であり、
     前記第1の面側から前記光が照射される光記録媒体。
    An optical recording medium body having a first surface and a second surface,
    It is provided with a first concavo-convex structure layer provided on the first surface.
    The first concavo-convex structure layer includes a plurality of first structures provided at a pitch equal to or lower than the wavelength of light for recording or reproducing an information signal.
    The area ratio of the convex portion of the first concave-convex structure layer is 80% or less.
    An optical recording medium in which the light is irradiated from the first surface side.
  2.  前記第1の凹凸構造層の凸部の面積比率が、50%以下である請求項1に記載の光記録媒体。 The optical recording medium according to claim 1, wherein the area ratio of the convex portion of the first uneven structure layer is 50% or less.
  3.  前記第1の凹凸構造層の凸部の面積比率が、20%以下である請求項2に記載の光記録媒体。 The optical recording medium according to claim 2, wherein the area ratio of the convex portion of the first uneven structure layer is 20% or less.
  4.  前記第1の凹凸構造層は、ハードコート層である請求項1に記載の光記録媒体。 The optical recording medium according to claim 1, wherein the first uneven structure layer is a hard coat layer.
  5.  前記第1の構造体は、光記録媒体にて信号の記録に用いられる凹部または凸部と同様の形状を有している請求項1に記載の光記録媒体。 The optical recording medium according to claim 1, wherein the first structure has a shape similar to a concave portion or a convex portion used for recording a signal on an optical recording medium.
  6.  前記第2の面に設けられた第2の凹凸構造層をさらに備え、
     前記第2の凹凸構造層は、前記光の波長以下のピッチで設けられた複数の第2の構造体を含み、
     前記第2の面側から前記光が照射される請求項1に記載の光記録媒体。
    Further provided with a second concavo-convex structure layer provided on the second surface,
    The second concavo-convex structure layer includes a plurality of second structures provided at a pitch equal to or lower than the wavelength of the light.
    The optical recording medium according to claim 1, wherein the light is irradiated from the second surface side.
  7.  前記光記録媒体本体は、
     第1のディスクと、
     第2のディスクと
     を備え、
     前記第1のディスクおよび前記第2のディスクは、
     基板と、
     前記基板上に設けられた情報信号層と、
     前記情報信号層を覆うカバー層と
     を備え、
     前記第1のディスクの前記基板側の面と前記第2のディスクの前記基板側の面とが、貼り合わされている請求項1に記載の光記録媒体。
    The optical recording medium body is
    The first disc and
    With a second disc
    The first disk and the second disk are
    With the board
    The information signal layer provided on the substrate and
    A cover layer that covers the information signal layer is provided.
    The optical recording medium according to claim 1, wherein the surface of the first disk on the substrate side and the surface of the second disk on the substrate side are bonded to each other.
  8.  前記光記録媒体本体は、
     基板と、
     前記基板上に設けられた情報信号層と、
     前記情報信号層を覆うカバー層と
     を備え、
     前記第1の面は、前記カバー層側の面である請求項1に記載の光記録媒体。
    The optical recording medium body is
    With the board
    The information signal layer provided on the substrate and
    A cover layer that covers the information signal layer is provided.
    The optical recording medium according to claim 1, wherein the first surface is a surface on the cover layer side.
PCT/JP2020/016025 2019-06-05 2020-04-09 Optical recording medium WO2020246135A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021524685A JP7468521B2 (en) 2019-06-05 2020-04-09 Optical recording media
CN202080038506.5A CN113874939A (en) 2019-06-05 2020-04-09 Optical recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019105650 2019-06-05
JP2019-105650 2019-06-05

Publications (1)

Publication Number Publication Date
WO2020246135A1 true WO2020246135A1 (en) 2020-12-10

Family

ID=73652762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/016025 WO2020246135A1 (en) 2019-06-05 2020-04-09 Optical recording medium

Country Status (3)

Country Link
JP (1) JP7468521B2 (en)
CN (1) CN113874939A (en)
WO (1) WO2020246135A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007226932A (en) * 2006-01-27 2007-09-06 Sony Disc & Digital Solutions Inc Manufacturing method of disk, and disk recording medium
JP2009187625A (en) * 2008-02-06 2009-08-20 Taiyo Yuden Co Ltd Optical information recording medium and manufacturing method thereof
JP2012164383A (en) * 2011-02-04 2012-08-30 Sony Corp Optical information recording medium and manufacturing method thereof
JP2017174487A (en) * 2016-03-17 2017-09-28 パナソニックIpマネジメント株式会社 Optical disk recording medium

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10302314A (en) * 1997-04-23 1998-11-13 Hitachi Ltd Multilayer structure optical information medium
JP2001035006A (en) * 1999-07-26 2001-02-09 Matsushita Electric Ind Co Ltd Optical disk and its production
JP2004130557A (en) 2002-10-08 2004-04-30 Dainippon Printing Co Ltd Manufacturing process for fine unevenness
JP4165287B2 (en) * 2003-05-12 2008-10-15 ソニー株式会社 Optical recording medium, optical recording / reproducing apparatus, and optical recording / reproducing method
JP2009223942A (en) * 2008-03-14 2009-10-01 Ricoh Co Ltd Optical information recording medium
US9028941B2 (en) * 2012-09-25 2015-05-12 Lintec Corporation Sheet for producing multilayer optical recording medium, multilayer optical recording medium, and adhesive
JP2015197936A (en) * 2014-03-31 2015-11-09 ソニー株式会社 Optical recording medium and manufacturing method of the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007226932A (en) * 2006-01-27 2007-09-06 Sony Disc & Digital Solutions Inc Manufacturing method of disk, and disk recording medium
JP2009187625A (en) * 2008-02-06 2009-08-20 Taiyo Yuden Co Ltd Optical information recording medium and manufacturing method thereof
JP2012164383A (en) * 2011-02-04 2012-08-30 Sony Corp Optical information recording medium and manufacturing method thereof
JP2017174487A (en) * 2016-03-17 2017-09-28 パナソニックIpマネジメント株式会社 Optical disk recording medium

Also Published As

Publication number Publication date
JPWO2020246135A1 (en) 2020-12-10
JP7468521B2 (en) 2024-04-16
CN113874939A (en) 2021-12-31

Similar Documents

Publication Publication Date Title
JPWO2007099835A1 (en) MULTILAYER INFORMATION RECORDING MEDIUM, INFORMATION RECORDING / REPRODUCING DEVICE, AND MULTILAYER INFORMATION RECORDING MEDIUM MANUFACTURING METHOD
JP2011170935A (en) Optical recording and reproducing method, and optical recording medium
TWI410968B (en) Optical recording medium and method for manufacturing the same
TWI524339B (en) Optical information recording medium
JP4458027B2 (en) Multilayer optical recording medium and information recording method for multilayer optical recording medium
JP5407923B2 (en) Optical recording media series
WO2020246135A1 (en) Optical recording medium
JP5381795B2 (en) Optical recording medium and optical recording / reproducing method
KR20050016549A (en) Dual stack optical data storage medium and use of such medium
US9105278B2 (en) Optical information recording medium having super-resolution film
JP2006351120A (en) Read only memory disk, its manufacturing method and optical disk
JP4729125B2 (en) Optical information recording medium
JPWO2019172081A1 (en) Recording layer for optical recording medium and optical recording medium
WO2006028051A1 (en) Method for producing optical information recording medium and optical information recording medium
WO2023007838A1 (en) Optical recording medium
US10204652B2 (en) Optical recording medium having a plurality of recording layers capable of suppressing off-track
JP2006040530A (en) Manufacturing method for optical recording medium
JP2004303351A (en) Test disk
JP2013122805A (en) Optical information recording medium, reference reproduction light power determination method, optical information recording medium reproduction method and optical information recording medium reproduction device
TW201435865A (en) Guide-layer separation type optical recording medium
JP2009295268A (en) Playback method of optical recording medium, and playback device of optical recording medium
JP2010033712A (en) Optical disk and method for manufacturing optical disk
JP2009295267A (en) Playback method of optical recording medium, and playback device of optical recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20818201

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021524685

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20818201

Country of ref document: EP

Kind code of ref document: A1