WO2020246058A1 - 筋収縮による筋音を検出可能な装置 - Google Patents
筋収縮による筋音を検出可能な装置 Download PDFInfo
- Publication number
- WO2020246058A1 WO2020246058A1 PCT/JP2019/045481 JP2019045481W WO2020246058A1 WO 2020246058 A1 WO2020246058 A1 WO 2020246058A1 JP 2019045481 W JP2019045481 W JP 2019045481W WO 2020246058 A1 WO2020246058 A1 WO 2020246058A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- muscle
- signal
- peak
- mechanomyogram
- time
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B7/00—Instruments for auscultation
- A61B7/02—Stethoscopes
- A61B7/04—Electric stethoscopes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
Definitions
- the present invention relates to a device that can detect muscle sounds due to muscle contraction by giving an electrical stimulus to a living body.
- Muscles act in response to electrical stimuli, but until now, as a method of detecting this activity status, it has been common to detect electrical signals generated by muscle contraction, so-called myoelectricity.
- myoelectricity the electrical stimulation required to contract muscles is several hundred volts (volts) for an electrical signal of several mV (millimeter volts), and the magnitude of the voltage differs by up to five orders of magnitude. Since both need to measure the potential on the skin surface, it was very difficult to measure them at the same time.
- This pressure wave generated when the muscle contracts is attracting attention in order to know the activity status of the muscle.
- This pressure wave is called a mechanomyogram or a mechanomyogram (MMG) (see, for example, Non-Patent Document 1).
- the inventor of the present application has focused on mechanomyogram as a quantitative qualitative evaluation of muscle, and has announced a method of applying an electrical stimulation signal to the skin surface by electrodes to analyze the high-frequency component of mechanomyogram associated with muscle contraction. (See, for example, Non-Patent Document 2.).
- An object of the present invention is to provide a device capable of giving an electrical stimulus to a muscle and evaluating the state of the muscle based on the muscle sound generated by the muscle contraction.
- the present invention is a device capable of detecting muscle sound due to muscle contraction by applying an electrical stimulus to a muscle, and the muscle sound generated in the muscle to be measured to which an electrical stimulus signal is given is used.
- the state of the muscle is evaluated based on the input means for receiving the corresponding muscle sound signal, the reaction time from the time when the stimulation signal is given to the time when the peak of the muscle sound signal is received, or the peak value of the peak.
- the above-mentioned apparatus including an analysis means is provided.
- the peak of the muscle sound signal is obtained from the time when the muscle sound signal corresponding to the muscle sound generated in the muscle to be measured to which the electrical stimulation signal is given is received and the stimulation signal is given by the analysis means.
- the muscle condition is evaluated based on the reaction time up to the time of reception or the voltage value of the peak of the mechanomyogram signal.
- FIG. 1 is a schematic configuration diagram of an active mechanomyogram sensing device according to an embodiment of the present invention.
- the active muscle sound sensing device 10 includes two electrodes 11, a muscle sound sensor 12, an electrical stimulation signal supply unit 13, signal input units 14 and 15, an analysis unit 16, and a display unit. It has 18 and a control unit 20.
- the active muscle sound sensing device 10 applies a pulsed voltage from the electrical stimulation signal supply unit 13 between the two electrodes 11 to electrically stimulate the muscle of the measurement target (for example, the upper arm) MO to which the electrodes 11 are attached. It causes muscle contraction by giving a signal.
- the muscle sound sensor 12 detects a pressure wave generated when the muscle contracts and converts it into an electric signal (muscle sound signal).
- the muscle sound signal is input to the signal input unit 14.
- the electrical stimulation signal itself or the timing signal generated from the electrical stimulation signal supply unit 13 at the same timing as the electrical stimulation signal is input to the signal input unit 15 (hereinafter, collectively referred to as "timing signal", the electrical stimulation signal itself. In the case of, it may also be referred to as an “electric stimulation signal”).
- the analysis unit 16 measures the time difference between the timing signal (that is, the electrical stimulation signal) and the muscle sound signal, the peak value of the muscle sound signal, and the like, and analyzes the state of the muscle.
- a gel electrode can be used as the electrode 11.
- the gel electrode is, for example, formed by forming a conductive gel or a gel in which a conductive material is dispersed on a conductive thin film formed on a flexible substrate.
- the electrode 11 may be one in which a large number of conductive fibers are flocked on the surface of a flexible base material. The two electrodes 11 are brought into contact with the skin on the muscle surface of the MO to be measured and connected to the electrical stimulation signal supply unit 13.
- the control unit 20 is connected to the electrical stimulation signal supply unit 13 and can set a training recipe to be given to the measurement target MO, that is, a recipe for the electrical stimulation signal, and the voltage value and pulse of the electrical stimulation signal are set based on the setting.
- a recipe such as width, pulse time interval, number of pulses, and supply time is sent to the electrical stimulation signal supply unit 13.
- the control unit 20 may be connected to the analysis unit 16 to send a training recipe and control the analysis unit 16 and the active muscle sound sensing device 10 as a whole.
- the electrical stimulation signal supply unit 13 supplies the electrical stimulation signal to the electrode 11 based on the recipe from the control unit 20.
- the electrical stimulation signal supply unit 13 can use, for example, a power source capable of repeatedly generating a one-cycle rectangular wave having a voltage of, for example, ⁇ 50V and a pulse width of both positive and negative poles of, for example, 150 ⁇ sec as an electrical stimulation signal.
- the electrical stimulation signal supply unit 13 is connected to the two electrodes 11 and applies an electrical stimulation signal between the two electrodes 11.
- an acoustic sensor As the muscle sound sensor 12, an acoustic sensor, an acceleration sensor or a laser range finder can be used.
- the acoustic sensor has a piezoelectric element such as lead zirconate titanate (PZT) and is brought into contact with the skin on the surface of the muscle to be measured to detect the muscle sound.
- PZT lead zirconate titanate
- the muscle sound sensor 12 it is preferable to use an acoustic sensor because the sensitivity is good.
- the muscle sound sensor 12 can be used in contact with the skin on the muscle surface of the measurement target MO sandwiched between the two electrodes 11.
- the analysis unit 16 includes signal input units 14 and 15, measurement unit 21, determination unit 22, muscle sound data storage unit 23, and muscle sound-muscle composition data storage unit 24.
- the output unit of the muscle sound sensor 12 is connected to the signal input unit 14, and the muscle sound signal is input from the muscle sound sensor 12.
- the signal input unit 15 is connected to the electrical stimulation signal supply unit 13, and a timing signal when the electrical stimulation signal is applied to the electrode 11 is input.
- the measurement unit 21 is connected to the signal input units 14 and 15, and the timing signal of the electrical stimulation signal and the muscle sound signal are input.
- the measuring unit 21 at least measures the timing signal of the electrical stimulation signal, that is, the time from the electrical stimulation signal to the peak of the muscle sound signal and the peak value of the peak of the muscle sound signal. This time is the time from when the electrical stimulation signal is given until the muscle contracts. In the present specification and claims, it is referred to as "reaction time".
- FIG. 2 is a diagram showing an example of measuring a muscle sound signal by the active muscle sound sensing device according to the embodiment of the present invention.
- the horizontal axis of FIG. 2 represents time, and the vertical axis is the electrical stimulation signal on the left side and the mechanomyogram signal on the right side.
- a negative first signal portion S1 having two relatively sharp peaks after several tens of msec as a muscle sound signal with reference to the time when the electrical stimulation signal is given.
- the second signal portion S2 having a negative value having a gentle peak appears after several hundred msec.
- the muscle sound signal is a negative value, it means that the muscle is raised by the contraction of the muscle and the receiving surface of the muscle sound sensor 12 is pressed.
- the first signal portion S1 is due to the contraction of the fast muscle. Fast muscles contract fast and large.
- the peak PA that appears first corresponds to the muscle contraction of fast muscle type A (relatively many whitish muscle fibers), and the peak PB that appears next corresponds to fast muscle type B (relatively many pink muscle fibers). ) Is considered to be muscle contraction.
- the second signal portion S2 is due to the muscle contraction of the slow muscle (many red muscle fibers).
- a gentle peak PC indicates that the slow muscles contract slowly and can be sustained.
- the measuring unit 21 measures the time (reaction time) from the time when the electrical stimulation signal is given to the peaks PA, PB and PC.
- the measuring unit 21 measures the voltage value of the muscle sound signal with respect to time, and also measures the peak values (voltage values) of the peaks PA, PB, and PC.
- the measuring unit 21 may send the muscle sound data which is these measured values to the muscle sound data storage unit 23 and store them, or may send them to the determination unit 22.
- the measuring unit 21 may measure the voltage value with respect to the time of the electrical stimulation signal.
- the peak values of peak PA, PB, and PC are negative values, they may be expressed as absolute values for the convenience of the following explanation.
- the reaction time of the peak PA and PB of the first signal portion S1 is 5 ms to 70 ms, and the reaction time of the peak PC of the second signal portion S2 is 70 ms to 200 ms. Based on this reaction time, the determination unit 22 may determine whether each peak of the muscle sound signal is due to the muscle contraction of the fast muscle or the muscle contraction of the slow muscle.
- the display unit 18 is connected to the analysis unit 16 and analyzes the training recipe, the waveforms of the electrical stimulation signal and the mechanomyogram signal, the reaction time of each peak, the peak value and its time change, etc. as shown in FIG. It can be received from 16 and displayed.
- FIG. 3 is a diagram showing an example of measuring muscle sounds of different parts of the body by the active muscle sound sensing device according to the embodiment of the present invention.
- (a) of a subject is a measurement example of the upper right arm
- (b) is a measurement example of the right thigh. Comparing the corresponding peaks of peak PA, peak PB and peak PC with reference to FIGS. 3 (a) and 3 (b), the peak value of the upper right arm is larger than that of the right thigh, and the reaction The time is shorter in the upper right arm than in the right thigh.
- the ratio of biceps femoris slow muscle fast muscle is generally 60%: 40% for fast muscle: slow muscle.
- the ratio of quadriceps femoris slow muscle fast muscle is 30%: 70% for fast muscle: slow muscle.
- Data in which such muscle composition data is associated with muscle sound data (referred to as “muscle sound-muscle composition data”) is stored in advance in the muscle sound-muscle composition data storage unit 24, and the determination unit 22 determines.
- the muscle composition of the subject is estimated based on the muscle sound data by referring to the peak peak value and reaction time of the muscle sound signal and the muscle sound-muscle composition data from the muscle sound-muscle composition data storage unit 24. be able to.
- FIG. 4 is a diagram showing an example of measuring the muscle sound of different subjects by the active muscle sound sensing device according to the embodiment of the present invention.
- (a) is a measurement example of subject A
- (b) is a measurement example of subject B with respect to the muscle sound (first signal portion) of the fast muscle of the upper right arm.
- the ratio of the peak values of the peak PA and the peak PB is clearly different between the subject A and the subject B, and the fast muscle type A and the fast muscle type B It can be seen that the muscle mass ratio is different. Since the peak PA is larger than the peak PB as shown in FIG. 4A, the determination unit 22 determines that the fast muscle type A has more muscle mass than the type B.
- the determination unit 22 determines that the peak PA and the peak PB have substantially the same peak value, and therefore the fast muscle types A and B have the same muscle mass.
- the determination unit 22 may identify the subjects based on the ratio of the peak values of the peak PA and the peak PB, or may determine the change in the muscle mass ratio of each subject due to, for example, training.
- the active muscle sound sensing device 10 analyzes the muscle sound signal from the muscle sound sensor 12 by the analysis unit 16 in parallel with giving the electrical stimulation signal from the electrical stimulation signal supply unit 13 to the muscle of the measurement target MO by the electrode 11. By doing so, the warm-up effect and the degree of fatigue of the muscle of the MO to be measured may be evaluated.
- the determination unit 22 determines the time average of the muscle sound signal, the peak PA, PB or PC peak value of the muscle sound signal for each stimulation signal, or the difference between the maximum value and the minimum value of the muscle sound signal for each stimulation signal (that is,
- the muscle condition, for example, the warm-up effect, the degree of fatigue, etc. may be evaluated based on the change over time in the average value of the peak indicating the peak and the peak indicating the valley and the peak value).
- FIG. 5 is a diagram showing an example of measuring muscle sound before and after warming up by the active muscle sound sensing device according to the embodiment of the present invention.
- Electrodes 11 were attached to the soleus muscle of the right leg of the subject, and FIG. 5 (a) shows the initial stage of warming up when an electrical stimulation signal was given, and FIG. 5 (b) shows the electrical stimulation signal to the soleus muscle of the right leg at 1-second intervals.
- This is an example of measurement after warming up by giving a pulse (referred to as “after warming up”).
- the analysis unit 16 stores the waveform of the muscle sound signal during warm-up and the reaction times and peak values of the peaks PA, PB, and PC from the measurement unit 21 in the muscle sound data storage unit 23.
- the determination unit 22 determines the degree of muscle warm-up based on the change in the measured values during the warm-up with respect to the reaction times and peak values of the peaks PA, PB, and PC at the initial stage of warm-up.
- the peak PA it is presumed that the peak PBs overlap
- the peak PA became ⁇ 0.307V and the peak PB was ⁇ 0.156V, and the peak values increased 5.4 times and 2.7 times, respectively.
- the peak PC also changed from -0.050V to -0.074V, and the peak value increased 1.5 times.
- the determination unit 22 may determine the degree of the warm-up effect based on the ratio of these peak values, or may determine when the warm-up is completed based on the degree of saturation of the peak value.
- FIG. 6 is a diagram showing an example of measuring muscle sound during training by the active muscle sound sensing device according to the embodiment of the present invention.
- FIG. 6A is a measurement example during training using an electrical stimulation signal
- FIG. 6B is a measurement example after 145 seconds of (a).
- the measurement example, (c) is the measurement example after 150.5 seconds of (b), and the electrical stimulation signal was given at intervals of 50 ms at ⁇ 40 V.
- the arrangement of the electrodes and the operation of the analysis unit were performed in the same manner as in the case of FIG.
- the difference (that is, the maximum amplitude) between the maximum value (the peak PA peak value of the highest peak PA as a peak) and the minimum value (the peak PA'the peak value of the deepest peak PA'as a valley) for each electrical stimulation signal is 1 second each. On average, it was 0.053V at the time of FIG. 6A, 0.036V at the time of FIG. 6B, and 0.031V at the time of FIG. 6C, and the muscle contraction amplitude gradually decreased. Is declining.
- the determination unit 22 determines that muscle fatigue is increasing based on at least one of these results.
- the determination unit 22 may be configured to be able to instruct the stimulation signal supply unit 13 to adjust the time interval for giving the electrical stimulation signal via the control unit 20 in order to appropriately evaluate the muscle condition. For example, when the reaction time of the muscle to the electrical stimulation signal becomes long, the determination unit 22 can measure the peak PA (maximum value) indicating the peak of the first signal portion S1 and the minimum value indicating the continuous valley. The determination unit 22 may instruct the stimulation signal supply unit 13 to give an electrical stimulation signal to the stimulation signal supply unit 13 via the control unit 20 for a longer time interval.
- control unit 20 and the determination unit 22 can use a CPU (central processing unit, processor).
- the muscle sound data storage unit 23 and the muscle sound-muscle composition data storage unit 24 can use a memory, for example, a RAM (random access memory), a ROM (read-only memory), or a hard disk drive.
- the memory may be a chip connected to the CPU by a bus, or may be a memory included in the CPU.
- the measurement unit 21 may use an oscilloscope or measurement software running on a CPU.
- a display can be used as the display unit 18.
- the analysis unit 16 and the control unit 20 may be a device in which a CPU, a memory, and an oscilloscope are integrated, or may be separate units, and are not particularly limited.
- the user interface 55 is an interface for a device for user operation, and a keyboard for input (not shown), a mouse for operation (not shown), and the like are connected to the control unit 20 or the analysis unit 16.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Physics & Mathematics (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Heart & Thoracic Surgery (AREA)
- Molecular Biology (AREA)
- Acoustics & Sound (AREA)
- Surgery (AREA)
- Medical Informatics (AREA)
- Physiology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Dentistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Electrotherapy Devices (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
本開示では、電気的な刺激を筋肉に与えて筋収縮による筋音を検出可能な装置(10)であって、電気的な刺激信号を与えた測定対象の筋肉において発生した筋音に応じた筋音信号を受信する入力手段(14)と、上記刺激信号を与えた時点から上記筋音信号のピークを受信した時点までの反応時間またはそのピークの波高値に基づいて上記筋肉の状態を評価する解析手段(16)と、を備える、上記装置が提供される。
Description
本発明は、生体に電気的な刺激を与えそれに応じた筋収縮による筋音を検出可能な装置に関する。
近年、健康管理や医療技術の進展に伴い、人やペットの平均寿命が伸びている。しかし、筋力低下が原因で歩行中の転倒により骨折して歩行が困難になると体力低下や認知症の誘発等、健康上重大な問題が生じる。また、スポーツ界では、好成績を残すために様々な筋力トレーニングが行われている。
他方、運動トレーニングや傷病後のリハビリテーションでは、対象者の意思の強弱が運動機能や筋力、筋疲労等の結果に影響して、運動トレーニングやリハビリテーションの客観的な困難である。
筋肉は電気的な刺激に応じて活動するが、この活動状況を検知する方法としてこれまでは、筋肉の収縮によって生じる電気的な信号、いわゆる筋電を検知するのが一般的であった。しかし、筋電は数mV(ミリボルト)の電気信号に対して、筋肉を収縮させるために必要な電気刺激は数百V(ボルト)であり、最大で5桁も電圧の大きさが異なり、かつ両方とも皮膚表面の電位を計測する必要があるため、同時に計測することは非常に困難であった。
このような状況において、筋肉の活動状況を知るために、筋肉が収縮する際に発生する圧力波が注目されている。この圧力波は、筋音図、あるいは筋音(Mechanomyogram(MMG))と呼ばれている(例えば、非特許文献1参照。)。
本願発明者は、筋肉の定量的な質的評価として筋音に着目し、電気刺激信号を電極により皮膚表面に与えて、筋収縮に伴う筋音の高周波成分を解析する手法を発表している(例えば、非特許文献2参照。)。
R. Aoki, Y. Takei, N. Minh-Dung, T. Takahata, K. Matsumoto, I. Shimoyama, Proc. MEMS2016, pp.356-358
竹井裕介ら、日本機械学会 シンポジウム:スポーツ工学・ヒューマンダイナミクス 2017 講演論文集, No.17-43, 2017
本発明の目的は、電気的な刺激を筋肉に与えて筋収縮により生じた筋音に基づいて筋肉の状態の評価を行うことが可能な装置を提供することである。
本発明の一態様によれば、電気的な刺激を筋肉に与えて筋収縮による筋音を検出可能な装置であって、電気的な刺激信号を与えた測定対象の筋肉において発生した筋音に応じた筋音信号を受信する入力手段と、上記刺激信号を与えた時点から上記筋音信号のピークを受信した時点までの反応時間またはそのピークの波高値に基づいて上記筋肉の状態を評価する解析手段と、を備える、上記装置が提供される。
上記態様によれば、電気的な刺激信号を与えた測定対象の筋肉において発生した筋音に応じた筋音信号を受信して、解析手段により刺激信号を与えた時点から筋音信号のピークを受信した時点までの反応時間または筋音信号のピークの電圧値に基づいて筋肉の状態を評価する。これにより、筋肉をコンピュータ断層撮影法(CT)や磁気共鳴画像装置(MRI)を直接用いずとも筋肉の状態を評価でき、非侵襲でかつ簡便に評価できる。
以下、図面に基づいて本発明の一実施形態を説明する。なお、複数の図面間において共通する要素については同じ符号を付し、その要素の詳細な説明の繰り返しを省略する。
図1は、本発明の一実施形態に係るアクティブ筋音センシング装置の概略構成図である。図1を参照するに、アクティブ筋音センシング装置10は、2つの電極11と、筋音センサ12と、電気刺激信号供給部13と、信号入力部14、15と、解析部16と、表示部18と、制御部20とを有する。アクティブ筋音センシング装置10は、電気刺激信号供給部13からパルス状の電圧を2つの電極11間に印加して、電極11が貼り付けられた測定対象(例えば上腕部)MOの筋肉に電気刺激信号を与えることで筋肉の収縮を発生させる。筋音センサ12は、筋肉の収縮時に発生する圧力波を検知して電気信号(筋音信号)に変換する。筋音信号は信号入力部14に入力される。電気刺激信号供給部13から電気刺激信号自体または電気刺激信号と同じタイミングで生成されたタイミング信号が信号入力部15に入力される(以下、総称して「タイミング信号」と称し、電気刺激信号自体の場合は、「電気刺激信号」と称することもある。)。解析部16においてタイミング信号(つまり電気刺激信号)と筋音信号との時間差、筋音信号の波高値等を計測して筋肉の状態の解析を行う。
電極11は、ゲル電極を用いることができる。ゲル電極は、例えば、フレキシブル基板上に形成された導電性薄膜に導電性のゲルまたは導電材料を分散させたゲルを形成したものである。電極11は、柔軟な基材の表面に多数の導電性繊維を植毛したものでもよい。2つの電極11は、測定対象MOの筋肉表面の皮膚に接触させ、電気刺激信号供給部13に接続される。
制御部20は、電気刺激信号供給部13に接続され、測定対象MOに与えるトレーニングのレシピ、すなわち、電気刺激信号のレシピを設定可能であり、その設定に基づいて電気刺激信号の電圧値、パルス幅、パルス時間間隔、パルス個数、供給時間等のレシピを電気刺激信号供給部13に送る。制御部20は、解析部16に接続され、トレーニングのレシピを送るとともに、解析部16およびアクティブ筋音センシング装置10全体の制御を行ってもよい。
電気刺激信号供給部13は、制御部20からのレシピに基づいて、電極11に電気刺激信号を供給する。電気刺激信号供給部13は、例えば、電圧が例えば±50V、パルス幅が正負両極とも例えば150μ秒の1サイクルの矩形波を電気刺激信号として繰り返し発生可能な電源を用いることができる。電気刺激信号供給部13は、2つの電極11に接続され、2つの電極11間に電気刺激信号を印加する。
筋音センサ12は、音響センサ、加速度センサまたはレーザ距離計を用いることができる。音響センサは、チタン酸ジルコン酸鉛(PZT)等の圧電素子を有し、測定対象の筋肉の表面の皮膚に接触させて筋音を検出する。筋音センサ12は、感度が良好な点で、音響センサを用いることが好ましい。筋音センサ12は、2つの電極11に挟まれた測定対象MOの筋肉表面の皮膚に接触させて用いることができる。
解析部16は、信号入力部14、15、計測部21、判定部22、筋音データ記憶部23、筋音-筋組成データ蓄積部24を有する。信号入力部14は、筋音センサ12の出力部が接続され、筋音センサ12から筋音信号が入力される。信号入力部15は、電気刺激信号供給部13に接続され、電気刺激信号が電極11に印加される時のタイミング信号が入力される。
計測部21は、信号入力部14、15に接続され、電気刺激信号のタイミング信号と筋音信号とが入力される。計測部21は、電気刺激信号のタイミング信号、すなわち電気刺激信号から筋音信号のピークまでの時間および筋音信号のピークの波高値を少なくとも計測する。この時間は、電気刺激信号が与えられてから筋肉の収縮が行われるまでの時間である。本願明細書および特許請求の範囲では「反応時間」と称する。
図2は、本発明の一実施形態に係るアクティブ筋音センシング装置による筋音信号の測定例を示す図である。図2の横軸は時間を表し、縦軸は、左側が電気刺激信号であり、右側が筋音信号である。図2を図1と合わせて参照するに、電気刺激信号が与えられた時点を基準として、筋音信号として、数十m秒後に比較的鋭い2つのピークを有する負値の第1信号部分S1と、数百m秒後になだらかなピークを有する負値の第2信号部分S2とが表れる。なお、筋音信号が負値のときは筋肉の収縮により筋肉が盛り上がり筋音センサ12の受信面が押されることを表している。第1信号部分S1は速筋の収縮によるものである。速筋は速く大きく収縮する。最初に表れるピークPAは速筋タイプA(白っぽい色の筋繊維が比較的多い。)の筋収縮に相当し、次に表れるピークPBは速筋タイプB(ピンク色の筋繊維が比較的多い。)の筋収縮と考えられる。第2信号部分S2は遅筋(赤色の筋繊維が多い)の筋収縮によるものである。なだらかなピークPCは、遅筋がゆっくりと収縮し、持続的な収縮ができることを示している。計測部21は、電気刺激信号が与えられた時点からピークPA、PBおよびPCまでの時間(反応時間)を計測する。計測部21は、時間に対する筋音信号の電圧値を計測し、また、ピークPA、PBおよびPCの波高値(電圧値)を計測する。計測部21はこれらの計測値である筋音データを筋音データ記憶部23に送って記憶してもよく、判定部22に送ってもよい。計測部21は、電気刺激信号の時間に対する電圧値を計測してもよい。なお、ピークPA、PBおよびPCの波高値は負値であるが、以下説明の便宜のため絶対値で表現することもある。
第1信号部分S1のピークPAおよびPBの反応時間は5ミリ秒~70ミリ秒であり、第2信号部分S2のピークPCの反応時間は、70ミリ秒~200ミリ秒である。判定部22は、この反応時間に基づいて、筋音信号の各々のピークが速筋の筋収縮によるものか遅筋の筋収縮によるものかを判定してもよい。
表示部18は、解析部16に接続され、トレーニングのレシピ、図2に示したような、電気刺激信号および筋音信号の波形、各ピークの反応時間、波高値およびその時間変化等を解析部16から受信して表示することができる。
図3は、本発明の一実施形態に係るアクティブ筋音センシング装置による身体の異なる部位の筋音の測定例を示す図である。図3は、ある被験者の(a)が右上腕部の測定例であり、(b)が右大腿部の測定例である。図3(a)および(b)を参照するに、ピークPA、ピークPBおよびピークPCの各々対応するピークを比較すると、波高値が右上腕部は右大腿部よりも大きくなっており、反応時間が右上腕部は右大腿部よりも短くなっている。コンピュータ断層撮影法(CT)や磁気共鳴画像装置(MRI)等の調査によれば、一般的に、上腕二頭筋遅筋速筋比率は、速筋:遅筋が60%:40%であり、大腿四頭筋遅筋速筋比率は、速筋:遅筋が30%:70%である。このような筋組成データを筋音データと関係づけたデータ(「筋音-筋組成データ」と称する。)を筋音-筋組成データ蓄積部24に予め記憶しておき、判定部22において、筋音信号のピークの波高値と反応時間と、筋音-筋組成データ蓄積部24からの筋音-筋組成データを参照することによって、筋音データに基づいて、被験者の筋組成を推測することができる。
図4は、本発明の一実施形態に係るアクティブ筋音センシング装置による異なる被検者の筋音の測定例を示す図である。図4は、右上腕部の速筋の筋音(第1信号部分)について、(a)が被験者A、(b)が被験者Bの測定例である。図4(a)および(b)を参照するに、ピークPAとピークPBの波高値の比率が、被験者Aと被験者Bとでは明らかに異なっており、速筋タイプAと速筋タイプBとの筋量比が異なっていることが分かる。判定部22は、図4(a)に示すようにピークPAがピークPBよりも大きいので、速筋のタイプAがタイプBよりも筋量が多いと判定する。判定部22は、図4(b)に示すようにピークPAとピークPBとがほぼ波高値が等しいので、速筋のタイプAおよびタイプBは筋量が等しいと判定する。判定部22は、ピークPAおよびピークPBの波高値の比率に基づいて、被験者の識別を行ってもよく、各被験者の例えばトレーニングによる筋量比の変化を判定してもよい。
アクティブ筋音センシング装置10は、電気刺激信号供給部13から電極11によって測定対象MOの筋肉に電気刺激信号を与えるのと並行して、筋音センサ12からの筋音信号を解析部16で解析することで、測定対象MOの筋肉のウォーミングアップ効果や疲労度を評価してもよい。判定部22は、筋音信号の時間平均、各刺激信号に対する筋音信号のピークPA、PBまたはPCの波高値、あるいは各刺激信号に対する筋音信号の最大値と最小値との差(すなわち、山を示すピークと谷を示すピークと波高値の差)の平均値の経時的な変化に基づいて筋肉の状態、例えばウォーミングアップ効果、疲労度等を評価してもよい。
図5は、本発明の一実施形態に係るアクティブ筋音センシング装置によるウォーミングアップ前後の筋音の測定例を示す図である。
被験者の右脚のヒラメ筋に電極11を貼付し、図5(a)は電気刺激信号を与えたウォーミングアップ初期と、図5(b)は電気刺激信号を右脚のヒラメ筋に1秒間隔でパルスを与えてウォーミングアップを行った後(「ウォーミングアップ後」と称する。)に、測定した例である。解析部16は、ウォーミングアップ中の筋音信号の波形と、計測部21からのピークPA、PB、およびPCの反応時間および波高値を筋音データ記憶部23に記憶する。判定部22は、ウォーミングアップ初期のピークPA、PB、およびPCの反応時間および波高値に対して、ウォーミングアップ中の測定値の変化に基づいて、筋肉のウォーミングアップの度合いを判定する。図5(a)および(b)を参照するに、ウォーミングアップ初期では、速筋の筋音(第1信号部分S1)について、ピークPA(ピークPBが重なっていると推察される。)の波高値が-0.057Vであったが、ウォーミングアップ後では、ピークPAが-0.307V、ピークPB-0.156Vとなり、波高値が各々5.4倍、2.7倍に増加している。ピークPCも-0.050Vから-0.074Vとなり、波高値が1.5倍に増加している。判定部22は、これらの波高値の比率に基づいて、ウォーミングアップ効果の度合いを判定してもよく、波高値の飽和の度合いに基づいて、ウォーミングアップの完了時を判定してもよい。
図6は、本発明の一実施形態に係るアクティブ筋音センシング装置によるトレーニング中の筋音の測定例を示す図である。図6(a)は電気刺激信号によるトレーニング中の測定例であり、所定の間隔の電気刺激信号を1分間与えた後の測定例であり、(b)は、(a)の145秒後の測定例、(c)は、(b)の150.5秒後の測定例であり、電気刺激信号は、±40Vの50m秒の間隔で与えた。電極の配置および解析部の動作は、図5の場合と同様に行った。
図6(a)~(c)を参照するに、筋音信号の時間平均を算出すると、図6(a)の時点では0.0090V、図6(b)の時点では0.0038V、図6(c)の時点では0.0028Vとなり、筋音信号の平均が次第に減少している。
各電気刺激信号に対する筋音信号の最大値(山として最も高いピークPAの波高値)の各々1秒間分を平均すると、図6(a)の時点では0.020V、図6(b)の時点では0.015V、図6(c)の時点では0.012Vとなり、次第に減少しており、筋収縮振幅が低下している。
各電気刺激信号に対する筋音信号の最大値(山として最も高いピークPAの波高値)の各々1秒間分を平均すると、図6(a)の時点では0.020V、図6(b)の時点では0.015V、図6(c)の時点では0.012Vとなり、次第に減少しており、筋収縮振幅が低下している。
各電気刺激信号に対する筋音信号の最大値(山として最も高いピークPAの波高値)と最小値(谷として最も深いピークPA’の波高値)との差(すなわち最大振幅)の各々1秒間分を平均すると、図6(a)の時点では0.053V、図6(b)の時点では0.036V、図6(c)の時点では0.031Vとなり、次第に減少しており、筋収縮振幅が低下している。判定部22は、これらの結果の少なくとも一つに基づいて、筋疲労が増加していると判定する。
判定部22は、筋肉の状態を適切に評価するため、制御部20を介して刺激信号供給部13に電気刺激信号を与える時間間隔を調整するように指示できる構成としてもよい。判定部22は、例えば、電気刺激信号に対して筋肉の反応時間が長くなる場合は、第1信号部分S1の山を示すピークPA(最大値)と引き続く谷を示す最小値が計測できるように、判定部22は、制御部20を介して刺激信号供給部13に電気刺激信号を与える時間間隔をより長くするように指示してもよい。
図1に戻り、制御部20および判定部22は、CPU(central processing unit、プロセッサ)を用いることができる。筋音データ記憶部23および筋音-筋組成データ蓄積部24は、メモリを用いることができ、例えば、RAM(ランダムアクセスメモリ)、ROM(リードオンリーメモリ)、ハードディスクドライブを用いることができる。メモリは、CPUにバスにより接続されたチップでもよく、CPUに含まれるメモリでもよい。計測部21は、オシロスコープを用いてもよく、CPU上で動作する計測ソフトウェアでもよい。表示部18は、ディスプレイを用いることができる。解析部16および制御部20は、CPU、メモリ、オシロスコープが一体化された装置でもよく、別々のユニットでもよく、特に限定されない。
ユーザインタフェース55は、ユーザの操作用のデバイスのためのインタフェースで、入力用のキーボード(不図示)や操作用のマウス(不図示)等が制御部20または解析部16に接続される。
以上、本発明の好ましい実施形態について詳述したが、本発明は係る特定の実施形態に限定されるものではなく、請求の範囲に記載された本発明の範囲内において、種々の変形・変更が可能である。
10 アクティブ筋音センシング装置
11 電極
12 筋音センサ
13 電気刺激信号供給部
14、15 信号入力部
16 解析部
18 表示部
20 制御部
11 電極
12 筋音センサ
13 電気刺激信号供給部
14、15 信号入力部
16 解析部
18 表示部
20 制御部
Claims (10)
- 電気的な刺激を筋肉に与えて筋収縮による筋音を検出可能な装置であって、
電気的な刺激信号を与えた測定対象の筋肉において発生した筋音に応じた筋音信号を受信する入力手段と、
前記刺激信号を与えた時点から前記筋音信号のピークを受信した時点までの反応時間または該ピークの波高値に基づいて前記筋肉の状態を評価する解析手段と、
を備える、前記装置。 - 前記測定対象に装着する電極と、
前記電極に接続され、前記刺激信号を供給可能な信号供給手段と、
前記入力手段に接続され、前記筋肉の筋音を検出して前記筋音信号を該入力手段に出力する検出手段と、
前記信号供給手段に接続され、前記刺激信号を供給するタイミングを制御する制御手段と、を更に備える、請求項1記載の装置。 - 前記検出手段は、音響センサ、加速度センサおよびレーザ距離計のいずれかである、請求項2記載の装置。
- 前記解析手段は、前記刺激信号を与えた時点から最初に受信する前記測定対象の速筋の筋収縮に対応する第1の筋音信号部分と、該第1の筋音信号部分よりも後に受信する前記測定対象の遅筋の筋収縮に対応する該第1の筋音信号部分よりもなだらかな変化を示す第2の筋音信号部分とを解析する、請求項1~3のうちいずれか一項記載の装置。
- 前記解析手段は、前記第1の筋音信号部分のピークと前記第2の筋音信号部分のピークとの波高値または前記反応時間に基づいて筋組成を判定する、請求項4記載の装置。
- 前記解析手段は、前記第1の筋音信号部分において、前記反応時間の短い第1のピークと該第1のピークよりも反応時間の長い第2のピークとの波高値の比率または該第1および第2のピークの各々の反応時間に基づいて速筋の筋組成を判定する、請求項4または5記載の装置。
- 前記第1の筋音信号部分の前記反応時間は請求項4~6のうちいずれか一項記載の装置。
- 前記解析手段は、前記刺激信号を所定の間隔で連続的に与えた前記測定対象の筋肉から並行して取得した前記筋音信号の平均値、各刺激信号に対する前記筋音信号のピークの波高値、または各刺激信号に対する前記筋音信号の最大値と最小値との差の平均値の経時的な変化に基づいて前記筋肉のウォーミングアップ効果または疲労度を評価する、請求項1~7のうちいずれか一項記載の装置。
- 前記解析手段は、前記筋音信号の前記経時的な変化が増加している場合は前記ウォーミングアップ効果が表れていると判定する、請求項8記載の装置。
- 前記解析手段は、前記筋音信号の前記経時的な変化が減少している場合は疲労度が増加していると判定する、請求項8記載の装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-105299 | 2019-06-05 | ||
JP2019105299A JP7288663B2 (ja) | 2019-06-05 | 2019-06-05 | 筋収縮による筋音を検出可能な装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020246058A1 true WO2020246058A1 (ja) | 2020-12-10 |
Family
ID=73647542
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/045481 WO2020246058A1 (ja) | 2019-06-05 | 2019-11-20 | 筋収縮による筋音を検出可能な装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7288663B2 (ja) |
WO (1) | WO2020246058A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004141223A (ja) * | 2002-10-22 | 2004-05-20 | Tanita Corp | 筋肉測定装置 |
JP2015066401A (ja) * | 2013-10-01 | 2015-04-13 | 公益財団法人ヒューマンサイエンス振興財団 | 興奮収縮連関の障害の有無の判定補助方法 |
JP2017217443A (ja) * | 2016-06-07 | 2017-12-14 | 学校法人梅村学園 | 筋状態測定シート |
-
2019
- 2019-06-05 JP JP2019105299A patent/JP7288663B2/ja active Active
- 2019-11-20 WO PCT/JP2019/045481 patent/WO2020246058A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004141223A (ja) * | 2002-10-22 | 2004-05-20 | Tanita Corp | 筋肉測定装置 |
JP2015066401A (ja) * | 2013-10-01 | 2015-04-13 | 公益財団法人ヒューマンサイエンス振興財団 | 興奮収縮連関の障害の有無の判定補助方法 |
JP2017217443A (ja) * | 2016-06-07 | 2017-12-14 | 学校法人梅村学園 | 筋状態測定シート |
Non-Patent Citations (3)
Title |
---|
EMILIANO CE ET AL.: "Changes in the electromechanical delay components during a fatiguing stimulation in human skeletal muscle: an EMG, MMG and force combined approach", EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY, vol. 117, no. 1, January 2017 (2017-01-01), pages 95 - 107, XP036151240, DOI: 10.1007/s00421-016- 3502-z * |
TAKEI, YUSUKE ET AL.: "Wearable Muscle Training and Monitoring Device", PROCEEDINGS OF JIEP ANNUAL MEETING, 6 March 2018 (2018-03-06), pages 188 * |
UCHIYAMA, T. ET AL.: "System Identification of Mechanomyograms Detected with an Acceleration Sensor and a Laser Displacement Meter", 33RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE EMBS, 30 August 2011 (2011-08-30), pages 7131 - 7134, XP032320369, DOI: 10.1109/IEMBS.2011.6091802 * |
Also Published As
Publication number | Publication date |
---|---|
JP2020195719A (ja) | 2020-12-10 |
JP7288663B2 (ja) | 2023-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yang et al. | Effects of neuromuscular electrical stimulation on gait performance in chronic stroke with inadequate ankle control-A randomized controlled trial | |
Iglesias-Soler et al. | Inter-repetition rest training and traditional set configuration produce similar strength gains without cortical adaptations | |
Frigon et al. | Ankle position and voluntary contraction alter maximal M waves in soleus and tibialis anterior | |
Nordez et al. | Electromechanical delay revisited using very high frame rate ultrasound | |
KR101700883B1 (ko) | 통증 조절 및 근육 강화를 위한 저강도 집속 초음파 자극 장치 | |
Stein et al. | Quantifying the effects of voluntary contraction and inter-stimulus interval on the human soleus H-reflex | |
Ding et al. | A mathematical model that predicts the force–frequency relationship of human skeletal muscle | |
US11426580B2 (en) | Systems and methods for low intensity high efficiency electrical stimulation | |
JP6653639B2 (ja) | 評価システムと評価システムに用いられる筋状態測定シート | |
van Asseldonk et al. | Reliability and agreement of intramuscular coherence in tibialis anterior muscle | |
JPH06508999A (ja) | 神経系の自律部位の状態の決定に使用する専用装置 | |
Mezzarane et al. | Experimental and simulated EMG responses in the study of the human spinal cord | |
US20150305644A1 (en) | Sympathetic skin response measuring method | |
WO2020246058A1 (ja) | 筋収縮による筋音を検出可能な装置 | |
JP2017063971A (ja) | 運動努力をトリガとした同期的磁気刺激を行うリハビリテーションシステム | |
Ng et al. | Mechanomyography sensors for detection of muscle activities and fatigue during Fes-evoked contraction | |
KR102021977B1 (ko) | 말초 운동 신경신호 측정 시스템 및 이를 이용한 말초 운동 신경신호 판별 방법 | |
Sato et al. | Teeth clenching reduces arm abduction force | |
Parsnejad et al. | Inciting high fidelity tactile sensations using a single electrotactile electrode pair | |
US20120053440A1 (en) | Method for Reflex Threshold Estimation in Spastic Muscles | |
Miura et al. | Potential of M‐Wave Elicited by Double Pulse for Muscle Fatigue Evaluation in Intermittent Muscle Activation by Functional Electrical Stimulation for Motor Rehabilitation | |
JP6935660B2 (ja) | 脳活動計測装置の評価システム、評価方法、プログラム、及び非一時的記録媒体 | |
JP2020074917A (ja) | 電気刺激支援システム及び電気刺激支援方法 | |
US20190133494A1 (en) | Apparatus and Method for Use in Determining Sensitivity to an Applied Stimulus | |
WO2020239626A1 (en) | Sensor system for monitoring a sedation of a patient |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19932181 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19932181 Country of ref document: EP Kind code of ref document: A1 |