WO2020245921A1 - Method for manufacturing sqirrel-cage rotor - Google Patents

Method for manufacturing sqirrel-cage rotor Download PDF

Info

Publication number
WO2020245921A1
WO2020245921A1 PCT/JP2019/022193 JP2019022193W WO2020245921A1 WO 2020245921 A1 WO2020245921 A1 WO 2020245921A1 JP 2019022193 W JP2019022193 W JP 2019022193W WO 2020245921 A1 WO2020245921 A1 WO 2020245921A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor core
rotor
twisting
cage
aluminum bar
Prior art date
Application number
PCT/JP2019/022193
Other languages
French (fr)
Japanese (ja)
Inventor
宏織 寺西
晋也 大石
岡田 順二
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021524548A priority Critical patent/JPWO2020245921A1/en
Priority to PCT/JP2019/022193 priority patent/WO2020245921A1/en
Publication of WO2020245921A1 publication Critical patent/WO2020245921A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/24Rotor cores with salient poles ; Variable reluctance rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/16Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors

Definitions

  • the present invention relates to a method for manufacturing a cage rotor.
  • the squirrel-cage rotor of an induction motor is equipped with a rotor core that rotates around a rotation axis and a secondary conductor.
  • a plurality of slots are formed in the rotor core by arranging them in the circumferential direction.
  • the secondary conductor is configured to include an aluminum bar formed by filling the slots with aluminum by die casting.
  • Induction motor losses include iron loss, primary copper loss, secondary copper loss, and mechanical loss, which can be reduced by using high-performance materials or by optimizing the core shape or coil. Efforts are being made to reduce it. In addition to these losses, there is a cross flow loss in which an unnecessary current flows through the rotor. Cross-flow loss is a loss caused by the flow of a current that should not flow due to a potential difference between the aluminum bar of the secondary conductor formed by aluminum die casting and the rotor core.
  • Patent Document 1 the aluminum bar twists the rotor core formed in the slot to insulate between the aluminum bar and the rotor core, and the efficiency of the induction motor can be improved.
  • a method for producing a child is disclosed.
  • the rotor core is twisted to the extent that it is evenly distributed in the extending direction of the rotating shaft, it may not be possible to improve the efficiency of the induction motor as intended.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a method for manufacturing a squirrel-cage rotor capable of improving the efficiency of an induction motor.
  • the present invention is a method for manufacturing a cage rotor that rotates about a rotation axis, and aluminum is placed in a slot formed in a rotor core by an aluminum die cast.
  • the first step of filling to form an aluminum bar the second step of twisting the rotor core with the aluminum bar formed in the slot around the rotation axis while pulling it in the extending direction of the rotation axis, and twisting the rotor core around the rotation axis. It includes a third step of twisting in the direction opposite to the second step while compressing in the stretching direction.
  • the second step one end and the other end of the outer peripheral surface of the rotor core in the extending direction of the rotating shaft are gripped, and the central portion of the rotor core in the extending direction of the rotating shaft is locally twisted.
  • the method for manufacturing a squirrel-cage rotor according to the present invention has the effect that the efficiency of the induction motor can be improved.
  • FIG. 1 Cross-sectional view of an induction motor including a squirrel-cage rotor manufactured by the manufacturing method according to the first embodiment of the present invention.
  • External perspective view of the cage rotor according to the first embodiment Schematic diagram of the die-cast portion extracted from the cage rotor according to the first embodiment.
  • Schematic diagram for explaining the untwisting process of the cage rotor according to the first embodiment Schematic diagram for explaining the method of twisting the rotor core according to the first embodiment. Schematic diagram showing the state after the twisting process of the rotor core according to the first embodiment.
  • FIG. 15 Schematic diagram showing a state in which the die-cast portion of the cage rotor shown in FIG. 15 is twisted as a whole.
  • FIG. 1 is a cross-sectional view of an induction motor including a cage rotor manufactured by the manufacturing method according to the first embodiment of the present invention.
  • the induction motor 50 shown in FIG. 1 is fixed to the squirrel-cage rotor 30, the stator 40 arranged at positions where the inner circumferences of the squirrel-cage rotor 30 face each other at intervals from the outer circumference, and the squirrel-cage rotor 30.
  • the shaft 11 is provided.
  • the cage rotor 30 is formed by filling a rotor core 1 formed by arranging a plurality of slots 6 along the circumferential direction, a plurality of slots 6 formed in the rotor core 1, and a skew 5. It is equipped with an aluminum bar 7. A through hole 8 is formed in the center of the rotor core 1, and the shaft 11 is inserted into the through hole 8. The cage rotor 30 can rotate with the axis of the shaft 11 as the rotation axis C.
  • FIG. 2 is a diagram showing a configuration example of a rotor core included in the cage rotor according to the first embodiment.
  • the rotor core 1 is formed by laminating a plurality of electromagnetic steel sheets 2 punched into the same shape. Holes forming the slots 6 and the through holes 8 are formed in each of the electrical steel sheets 2. Further, in the electromagnetic steel plate 2, a groove is formed from the hole forming the slot 6 to the outer periphery of the electromagnetic steel plate 2.
  • a skew 5 is formed in the rotor core 1 so as to extend the above-mentioned grooves diagonally with respect to the rotation axis C.
  • the electromagnetic steel sheets 2 are connected to each other by caulking. Teeth 3 are formed between slots 6 of the rotor core 1.
  • FIG. 3 is an external perspective view of the cage rotor according to the first embodiment.
  • the squirrel-cage rotor 30 includes the rotor core 1 and the die-cast portion 17 described above.
  • the die-cast portion 17 is formed by performing aluminum die-casting on the rotor core 1.
  • the die casting portion 17 includes the above-mentioned aluminum bar 7 and first end rings 15 and second end rings 16 provided on both sides of the rotor core 1 in the direction of the rotation axis C.
  • the second end ring 16 is hidden behind the rotor core 1 and is invisible.
  • the cross flow loss will be explained. Since there is no insulating film on the fracture surface of the rotor core 1, the rotor core 1 and the aluminum bar 7 are in a conductive state by aluminum die casting. Therefore, when a potential difference occurs between the aluminum bars 7 which are secondary conductors, a part of the current flows through the rotor core 1 and a cross flow loss occurs. It is known that such cross flow loss occurs locally in the vicinity of the center in the vertical direction of the rotor core in the induction motor. In the induction motor 50, the vertical direction is the stacking direction of the electromagnetic steel sheets 2 on the rotor core 1 and the stretching direction of the rotating shaft C.
  • the laminating direction of the electromagnetic steel sheet 2 may be described as the laminating direction of the rotor core 1.
  • FIG. 4 is a schematic view of a die-cast portion extracted from the cage rotor according to the first embodiment.
  • the die casting portion 17 includes a plurality of aluminum bars 7, a first end ring 15 connected to one end of each aluminum bar 7, and a second end connected to the other end of each aluminum bar 7. It includes a ring 16.
  • an induced magnetic field is generated in the rotor core 1. Due to such an induced magnetic field, an induced current flows through the aluminum bar 7 which is a secondary conductor. As shown in FIG. 4, the induced current is applied to one of the two adjacent aluminum bars 7 by the aluminum bar 7, the first end ring 15, the other aluminum bar 7, the second end ring 16, and one aluminum bar 7. It flows in a loop in the order of.
  • FIG. 5 is a diagram showing an example of an induced current flowing through the die casting portion when the rotor core and the aluminum bar are in electrical contact with each other near the center in the vertical direction of the rotor core according to the first embodiment. ..
  • the rotor core 1 is twisted to peel off the aluminum bar 7 which is a secondary conductor from the rotor core 1, and the electrical resistance between the rotor core 1 and the aluminum bar 7 is increased. By doing so, the generation of short loop current is suppressed.
  • the short loop current is generated when the current of the stator winding is switched between positive and negative, and is likely to be generated vertically symmetrically, and the lateral current is likely to be generated near the center of the rotor core 1 in the stacking direction. Therefore, it is desirable that the aluminum bar 7 is peeled off from the rotor core 1 mainly in the vicinity of the center in the vertical direction of the rotor core 1.
  • the aluminum bar 7 from the rotor core 1 is located near the center of the rotor core 1 in the vertical direction. Focus on peeling off.
  • the eddy current loss and the drifting load loss of the induction motor 50 incorporating the squirrel-cage rotor 30 can be suppressed, and the characteristics of the induction motor 50 can be improved.
  • an insulation treatment can be applied between the rotor core 1 and the aluminum bar 7 by a simple procedure of applying an impact due to twisting to the rotor core 1.
  • the peeling process consists of a twisting process in which the central portion of the rotor core 1 in the vertical direction is locally twisted in a state where the aluminum bar 7 is solid after aluminum die casting, and a twisting process in which the rotor core 1 is twisted after the twisting process. Includes untwisting step.
  • the twisting process may include the processing in the twisting process and the processing in the untwisting process.
  • FIG. 6 is a schematic diagram for explaining the twisting process of the cage rotor according to the first embodiment.
  • FIG. 7 is a schematic view for explaining the untwisting step of the squirrel-cage rotor according to the first embodiment.
  • FIG. 8 is a schematic view for explaining a method of twisting the rotor core according to the first embodiment.
  • FIG. 9 is a schematic view showing a state after the twisting step of the rotor core according to the first embodiment.
  • the skew 5 is positioned along the rotation axis C at one end and the other end of the rotor core 1 of the cage rotor 30. This is done by rotating the rotation axis C in opposite directions with respect to each other. Further, in the untwisting step of the cage rotor 30, as shown in FIG. 7, a direction in which one end and the other end of the outer peripheral surface of the rotor core 1 of the cage rotor 30 are rotated in the twisting step. It is done by rotating in the opposite direction.
  • one end 1a and the other end 1b of the outer peripheral surface of the rotor core 1 are gripped by gripping portions 61 and 62 such as chucks. It is performed by rotating one grip portion 61 and the other grip portion 62 in opposite directions with respect to the rotation axis C. Since the rotor core 1 can be gripped and twisted by the gripping portions 61 and 62 such as chucks, the production line for manufacturing the squirrel-cage rotor 30 can be miniaturized and in-lined.
  • One grip portion 61 may be fixed and only the other grip portion 62 may be rotated around the rotation shaft C, or the other grip portion 62 may be fixed and one grip may be centered on the rotation shaft C. Only the portion 61 may be rotated.
  • the central portion 1c of the rotor core 1 in the vertical direction which is greatly affected by the transverse flow loss, is locally and the skew 5 is along the rotation axis C.
  • the position where the skew 5 is along the rotation axis C is, for example, a position where the skew angle is 90 degrees, and can be rephrased as a position where the skew 5 disappears.
  • the skew angle is the angle of the skew 5 with respect to the direction perpendicular to the rotation axis C.
  • the rotor core 1 extends in the stretching direction of the rotating shaft C, so that a force is applied to the aluminum bar 7 to separate it from the electromagnetic steel sheet 2 in the vertical direction. Therefore, in the twisting process of the cage rotor 30, the rotor core 1 is twisted while pulling the rotor core 1 in the extending direction of the rotation shaft C. As a result, it is possible to prevent an excessive load from being applied to the aluminum bar 7, and it is possible to prevent damage to the aluminum bar 7.
  • FIG. 10 is a schematic view showing a state change of a region including skew of a cage rotor in the twisting step according to the first embodiment.
  • the twisting process causes the aluminum bar 7 to tilt in the rotational direction, and a gap is created between the aluminum bar 7 and the electromagnetic steel sheet 2.
  • the gap between the aluminum bar 7 and the electromagnetic steel plate 2 increases the contact resistance between the aluminum bar 7 and the electromagnetic steel plate 2, and it is possible to suppress an unnecessary current flowing from the aluminum bar 7 to the rotor core 1. ..
  • the rotor core 1 is twisted until the skew 5 exceeds the position along the rotation axis C in the twisting process, the aluminum bar 7 may be damaged and the aluminum bar 7 may be cracked. is there.
  • the rotor core 1 contracts in the extending direction of the rotating shaft C, contrary to the twisting process. Therefore, in the untwisting step, the rotor core 1 is twisted in the direction opposite to the twisting step while compressing the rotor core 1 in the extending direction of the rotating shaft C. As a result, it is possible to return to the same skew angle as before the twisting process.
  • FIG. 11 is a diagram showing a state change due to a twisting process of a region including an aluminum bar in the central portion in the vertical direction of the cage rotor according to the first embodiment.
  • a gap 9 is created between the aluminum bar 7 and the electrical steel sheet 2 by the twisting process of the cage rotor 30.
  • the gap 9 generated between the aluminum bar 7 and the electromagnetic steel plate 2 is, for example, in the range of 0.1 mm to 0.2 mm. Note that hatching is omitted in FIG.
  • FIG. 12 is a side view of a squirrel-cage rotor in a state where the shaft according to the first embodiment is connected.
  • the shaft 11 shown in FIG. 12 may be connected to the cage rotor 30 either before the twisting process or after the twisting process, but when the twisting process is performed after the shaft 11 is connected, the shaft It is desirable to pay attention to the decrease in the connection strength between the 11 and the cage rotor 30.
  • FIG. 13 is a diagram showing the relationship between the rotation speed and the torque of the induction motor using the squirrel-cage rotor according to the first embodiment.
  • the horizontal axis represents the rotation speed of the induction motor 50
  • the vertical axis represents the torque of the induction motor 50.
  • the torque curve 20 of the induction motor 50 having the twisted squirrel-cage rotor 30 is more than the torque curve 21 of the induction motor having the untwisted squirrel-cage rotor. It is possible to confirm a larger torque increase.
  • FIG. 14 is a diagram showing the relationship between the rotation speed and the efficiency of the induction motor using the squirrel-cage rotor according to the first embodiment.
  • the horizontal axis represents the rotation speed of the induction motor 50
  • the vertical axis represents the efficiency of the induction motor 50.
  • the efficiency curve 22 of the induction motor 50 having the twisted squirrel-cage rotor 30 is higher than the efficiency curve 23 of the induction motor having the untwisted squirrel-cage rotor. It can be confirmed that the efficiency is improved.
  • FIG. 15 is a schematic view showing a side surface of the squirrel-cage rotor before the twisting process according to the first embodiment.
  • FIG. 16 is a schematic view showing a state in which the die-cast portion of the cage rotor shown in FIG. 15 is twisted as a whole. Since the die-cast portion 17 is a rigid body, if only the die-cast portion 17 is used, as shown in FIG. 16, the aluminum bar 7 can be straightened by twisting so that the skew 5 portion is absent.
  • FIG. 17 is a schematic view showing a state in which both ends of the outer peripheral surface of the rotor core in the state before aluminum die casting according to the first embodiment are gripped by gripping portions and the rotor core is twisted.
  • the rotor core 1 is composed of a plurality of electromagnetic steel plates 2 laminated, and if slip occurs between specific electromagnetic steel plates 2 when the rotor core 1 is twisted, the dynamic friction force is lower than the static friction force. , As shown in FIG. 17, it may rotate only between the sliding electromagnetic steel sheets 2 and not rotate at other positions. Note that in FIG. 17, for convenience of explanation, only one skew 5 is shown.
  • FIG. 18 is a schematic view showing a state in which the cage rotor according to the first embodiment is twisted as a whole. Since the cage rotor 30 has a structure in which the rotor core 1 and the aluminum bar 7 are integrated, the state change due to the twisting process only for the aluminum bar 7 and the state change due to the twisting process for only the rotor core 1 can occur. The state changes as if it were synthesized.
  • the cage rotor 30 is brought into the state as shown in FIG. 18 by the twisting process of the rotor core 1.
  • the slip between the electromagnetic steel sheets 2 is small in the central portion 1c of the rotor core 1
  • the aluminum bar 7 and the rotor core 1 are formed in the central portion 1c of the rotor core 1 which is greatly affected by the cross flow loss. The peeling is insufficient.
  • FIG. 19 is a schematic view showing a state in which one end and the other end of the squirrel-cage rotor according to the first embodiment are gripped
  • FIG. 20 is a state in which the twisting step according to the first embodiment is completed. It is a schematic diagram which shows the side surface of a cage rotor.
  • one end 1a and the other end 1b of the outer peripheral surface of the rotor core 1 are gripped by the grips 61 and 62. It is desirable that the length L2 of the rotor core 1 in the stacking direction of the central portion 1c of the central portion 1c to be twisted be in the range of 30% to 40% of the total length in the stacking direction of the rotor core 1. Therefore, it is desirable that the length L1 of one end portion 1a and the other end portion 1b in the stacking direction of the rotor core 1 is, for example, in the range of 30% to 35% of the total length in the stacking direction of the rotor core 1. As a result, the peeling at a position where the cross flow loss is large can be sufficiently performed.
  • the rotor core 1 of the central portion 1c of the rotor core 1 to be twisted can be locally twisted, and the length L1 of one end 1a and the other end 1b is a stack of the rotor cores 1. It is not limited to the range of 30% to 35% of the total length in the direction.
  • the cage rotor 30 is twisted so that the skew 5 is located along the rotation axis C. However, in the state where the skew 5 is located along the rotation axis C, FIG. The state shown in is included.
  • the method for manufacturing the cage rotor 30 that rotates around the rotating shaft C according to the first embodiment includes an aluminum bar forming step, a twisting step, and a twisting back step.
  • the slot 6 formed in the rotor core 1 is filled with aluminum by aluminum die casting to form the aluminum bar 7.
  • the twisting step the rotor core 1 having the aluminum bar 7 formed in the slot 6 is twisted around the rotating shaft C while being pulled in the extending direction of the rotating shaft C.
  • the untwisting step the rotor core 1 is compressed in the extending direction of the rotating shaft C and twisted in the direction opposite to the twisting step.
  • one end 1a and the other end 1b of the outer peripheral surface of the rotor core 1 in the stretching direction of the rotating shaft C are gripped, and the central portion 1c of the rotor core 1 in the stretching direction of the rotating shaft C is localized. Twist to.
  • By locally twisting the central portion 1c of the rotor core 1 in this way it is possible to accurately twist the central portion 1c of the rotor core 1 which is greatly affected by cross flow loss, resulting in eddy current loss and stray load loss. It is possible to improve the efficiency of the induction motor 50 by suppressing the above.
  • an insulation treatment can be applied between the rotor core 1 and the aluminum bar 7 by a simple procedure of applying an impact due to twisting to the rotor core 1.
  • the length of the central portion 1c in the extending direction of the rotating shaft C is in the range of 30% to 40% of the total length of the rotor core 1 in the extending direction of the rotating shaft C.
  • a gap 9 is formed between the rotor core 1 and the aluminum bar 7 by twisting the rotor core 1.
  • the gap 9 is in the range of 0.1 mm to 0.2 mm.
  • a skew 5 is formed on the rotor core 1, and the twisting step twists the rotor core 1 until the skew 5 is located along the rotation axis C.
  • the configuration shown in the above-described embodiment shows an example of the content of the present invention, can be combined with another known technique, and is one of the configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Induction Machinery (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

This method for manufacturing a squirrel-cage rotor (30) includes: a first step of forming an aluminum bar by filling aluminum into a slot formed in a rotor core (1) by aluminum die casting; a second step of twisting around the rotation axis (C) while pulling, in the extension direction of the rotation axis (C), the rotor core (1) in which the aluminum bar is formed in the slot; and a third step of twisting in a direction opposite to that in the second step while compressing the rotor core (1) in the extension direction of the rotation axis (C). In the second step, the central portion (1c) of the rotor core (1) in the extension direction of the rotation axis (C) is locally twisted while grasping one end portion (1a) and the other end portion (1b) of the outer circumferential surface of the rotor core (1) in the extension direction of the rotation axis (C).

Description

かご形回転子の製造方法Manufacturing method of cage rotor
 本発明は、かご形回転子の製造方法に関する。 The present invention relates to a method for manufacturing a cage rotor.
 誘導電動機のかご形回転子は、回転軸を中心に回転する回転子鉄心と二次導体とを備える。回転子鉄心には、周方向に並べて複数のスロットが形成されている。二次導体は、アルミダイカストによってスロットにアルミニウムが充填されて形成されるアルミバーを含んで構成される。 The squirrel-cage rotor of an induction motor is equipped with a rotor core that rotates around a rotation axis and a secondary conductor. A plurality of slots are formed in the rotor core by arranging them in the circumferential direction. The secondary conductor is configured to include an aluminum bar formed by filling the slots with aluminum by die casting.
 省資源化および高効率化の要求の高まりによって、誘導電動機の損失を減らすことが課題となっている。誘導電動機の損失には、鉄損、一次銅損、二次銅損、および機械損などがあり、高性能の材料を用いたり、鉄心形状またはコイルの最適化設計を行ったりすることにより損失を減らす努力がなされている。これらの損失以外にも回転子に不要な電流が流れる横流損がある。横流損とは、アルミダイカストで形成した二次導体のアルミバーと回転子鉄心との間に電位差が生じることで、本来流れるべきではない電流が流れることにより生じる損失である。 Due to the increasing demand for resource saving and high efficiency, reducing the loss of induction motors has become an issue. Induction motor losses include iron loss, primary copper loss, secondary copper loss, and mechanical loss, which can be reduced by using high-performance materials or by optimizing the core shape or coil. Efforts are being made to reduce it. In addition to these losses, there is a cross flow loss in which an unnecessary current flows through the rotor. Cross-flow loss is a loss caused by the flow of a current that should not flow due to a potential difference between the aluminum bar of the secondary conductor formed by aluminum die casting and the rotor core.
 特許文献1には、アルミバーがスロットに形成された回転子鉄心をねじることで、アルミバーと回転子鉄心との間の絶縁を図って誘導電動機の効率の向上を図ることができるかご形回転子の製造方法が開示されている。 In Patent Document 1, the aluminum bar twists the rotor core formed in the slot to insulate between the aluminum bar and the rotor core, and the efficiency of the induction motor can be improved. A method for producing a child is disclosed.
国際公開第2014/102942号International Publication No. 2014/102942
 しかしながら、回転子鉄心を回転軸の延伸方向で全体的に均等になる程度にねじろうとした場合、誘導電動機の効率の向上を意図したように図れない可能性がある。 However, if the rotor core is twisted to the extent that it is evenly distributed in the extending direction of the rotating shaft, it may not be possible to improve the efficiency of the induction motor as intended.
 本発明は、上記に鑑みてなされたものであって、誘導電動機の効率を向上させることができるかご形回転子の製造方法を得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to obtain a method for manufacturing a squirrel-cage rotor capable of improving the efficiency of an induction motor.
 上述した課題を解決し、目的を達成するために、本発明は、回転軸を中心に回転するかご形回転子の製造方法であって、回転子鉄心に形成されたスロットにアルミダイカストによってアルミニウムを充填させてアルミバーを形成する第1ステップと、スロットにアルミバーが形成された回転子鉄心を回転軸の延伸方向に引っ張りながら回転軸回りにねじる第2ステップと、回転子鉄心を回転軸の延伸方向に圧縮しながら第2ステップとは逆方向にねじる第3ステップとを含む。第2ステップは、回転軸の延伸方向における回転子鉄心の外周面の一端部と他端部とを把持して回転軸の延伸方向における回転子鉄心の中央部を局所的にねじる。 In order to solve the above-mentioned problems and achieve the object, the present invention is a method for manufacturing a cage rotor that rotates about a rotation axis, and aluminum is placed in a slot formed in a rotor core by an aluminum die cast. The first step of filling to form an aluminum bar, the second step of twisting the rotor core with the aluminum bar formed in the slot around the rotation axis while pulling it in the extending direction of the rotation axis, and twisting the rotor core around the rotation axis. It includes a third step of twisting in the direction opposite to the second step while compressing in the stretching direction. In the second step, one end and the other end of the outer peripheral surface of the rotor core in the extending direction of the rotating shaft are gripped, and the central portion of the rotor core in the extending direction of the rotating shaft is locally twisted.
 本発明にかかるかご形回転子の製造方法は、誘導電動機の効率を向上させることができる、という効果を奏する。 The method for manufacturing a squirrel-cage rotor according to the present invention has the effect that the efficiency of the induction motor can be improved.
本発明の実施の形態1にかかる製造方法で製造されたかご形回転子を備える誘導電動機の断面図Cross-sectional view of an induction motor including a squirrel-cage rotor manufactured by the manufacturing method according to the first embodiment of the present invention. 実施の形態1にかかるかご形回転子が備える回転子鉄心の構成例を示す図The figure which shows the structural example of the rotor core provided in the cage rotor which concerns on Embodiment 1. 実施の形態1にかかるかご形回転子の外観斜視図External perspective view of the cage rotor according to the first embodiment 実施の形態1にかかるかご形回転子から抜き出したダイカスト部の模式図Schematic diagram of the die-cast portion extracted from the cage rotor according to the first embodiment. 実施の形態1にかかる回転子鉄心における縦方向の中心付近で回転子鉄心とアルミバーとが電気的に接触している場合にダイカスト部に流れる誘導電流の一例を示す図The figure which shows an example of the induced current which flows in the die casting part when the rotor core and the aluminum bar are in electrical contact with each other near the center in the vertical direction in the rotor core which concerns on Embodiment 1. 実施の形態1にかかるかご形回転子のねじり工程を説明するための模式図Schematic diagram for explaining the twisting process of the cage rotor according to the first embodiment. 実施の形態1にかかるかご形回転子のねじり戻し工程を説明するための模式図Schematic diagram for explaining the untwisting process of the cage rotor according to the first embodiment. 実施の形態1にかかる回転子鉄心をねじる方法を説明するための模式図Schematic diagram for explaining the method of twisting the rotor core according to the first embodiment. 実施の形態1にかかる回転子鉄心のねじり工程後の状態を示す模式図Schematic diagram showing the state after the twisting process of the rotor core according to the first embodiment. 実施の形態1にかかるねじり工程におけるかご形回転子のスキューを含む領域の状態変化を示す模式図The schematic diagram which shows the state change of the region including the skew of a cage rotor in the twisting process which concerns on Embodiment 1. 実施の形態1にかかるかご形回転子の縦方向における中央部のアルミバーを含む領域のねじり工程による状態変化を示す図The figure which shows the state change by the twisting process of the region including the aluminum bar in the central part in the vertical direction of the cage rotor which concerns on Embodiment 1. 実施の形態1にかかるシャフトを連結された状態のかご形回転子の側面図Side view of a cage rotor in a state where the shaft according to the first embodiment is connected. 実施の形態1にかかるかご形回転子を用いた誘導電動機の回転数とトルクとの関係を示す図The figure which shows the relationship between the rotation speed and torque of the induction motor using the squirrel-cage rotor which concerns on Embodiment 1. 実施の形態1にかかるかご形回転子を用いた誘導電動機の回転数と効率との関係を示す図The figure which shows the relationship between the rotation speed and efficiency of the induction motor using the squirrel-cage rotor which concerns on Embodiment 1. 実施の形態1にかかるねじり処理を行う前のかご形回転子の側面を示す模式図Schematic diagram showing the side surface of the squirrel-cage rotor before the twisting process according to the first embodiment. 図15に示すかご形回転子のうちダイカスト部を全体的にねじった状態を示す模式図A schematic view showing a state in which the die-cast portion of the cage rotor shown in FIG. 15 is twisted as a whole. 実施の形態1にかかるアルミダイカスト前の状態の回転子鉄心の外周面の両端を把持部で把持して回転子鉄心をねじった状態を示す模式図Schematic diagram showing a state in which both ends of the outer peripheral surface of the rotor core in the state before aluminum die casting according to the first embodiment are gripped by gripping portions and the rotor core is twisted. 実施の形態1にかかるかご形回転子を全体的にねじった状態を示す模式図Schematic diagram showing a state in which the cage rotor according to the first embodiment is twisted as a whole. 実施の形態1にかかるかご形回転子の一端部と他端部とを把持した状態を示す模式図Schematic diagram showing a state in which one end and the other end of the cage rotor according to the first embodiment are gripped. 実施の形態1にかかるねじり工程が完了した状態のかご形回転子の側面を示す模式図Schematic diagram showing the side surface of the squirrel-cage rotor in the state where the twisting step according to the first embodiment is completed.
 以下に、本発明の実施の形態にかかるかご形回転子の製造方法を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 The method for manufacturing a cage rotor according to the embodiment of the present invention will be described in detail below with reference to the drawings. The present invention is not limited to this embodiment.
実施の形態1.
 図1は、本発明の実施の形態1にかかる製造方法で製造されたかご形回転子を備える誘導電動機の断面図である。図1に示す誘導電動機50は、かご形回転子30と、かご形回転子30の外周と間隔を空けて内周が対向する位置に配置された固定子40と、かご形回転子30に固定されたシャフト11とを備える。
Embodiment 1.
FIG. 1 is a cross-sectional view of an induction motor including a cage rotor manufactured by the manufacturing method according to the first embodiment of the present invention. The induction motor 50 shown in FIG. 1 is fixed to the squirrel-cage rotor 30, the stator 40 arranged at positions where the inner circumferences of the squirrel-cage rotor 30 face each other at intervals from the outer circumference, and the squirrel-cage rotor 30. The shaft 11 is provided.
 かご形回転子30は、複数のスロット6が周方向に沿って並べて形成された回転子鉄心1と、回転子鉄心1に形成された複数のスロット6およびスキュー5に充填されて形成される複数のアルミバー7とを備える。回転子鉄心1には、中心に貫通孔8が形成されており、かかる貫通孔8にシャフト11が挿入される。かご形回転子30は、シャフト11の軸心を回転軸Cとして回転可能である。 The cage rotor 30 is formed by filling a rotor core 1 formed by arranging a plurality of slots 6 along the circumferential direction, a plurality of slots 6 formed in the rotor core 1, and a skew 5. It is equipped with an aluminum bar 7. A through hole 8 is formed in the center of the rotor core 1, and the shaft 11 is inserted into the through hole 8. The cage rotor 30 can rotate with the axis of the shaft 11 as the rotation axis C.
 図2は、実施の形態1にかかるかご形回転子が備える回転子鉄心の構成例を示す図である。図2に示すように、回転子鉄心1は、同じ形状に打ち抜かれた複数の電磁鋼板2が積層されて構成される。各電磁鋼板2には、スロット6および貫通孔8を形成する穴が形成される。また、電磁鋼板2には、スロット6を形成する穴から電磁鋼板2の外周にわたって溝が形成される。 FIG. 2 is a diagram showing a configuration example of a rotor core included in the cage rotor according to the first embodiment. As shown in FIG. 2, the rotor core 1 is formed by laminating a plurality of electromagnetic steel sheets 2 punched into the same shape. Holes forming the slots 6 and the through holes 8 are formed in each of the electrical steel sheets 2. Further, in the electromagnetic steel plate 2, a groove is formed from the hole forming the slot 6 to the outer periphery of the electromagnetic steel plate 2.
 電磁鋼板2を周方向にずらしながら積層することで、上述した溝が回転軸Cに対して斜めに延びるように連なるスキュー5が回転子鉄心1に形成される。電磁鋼板2同士は、カシメにより連結される。回転子鉄心1のうちスロット6の間には、ティース3が形成される。 By laminating the electromagnetic steel plates 2 while shifting them in the circumferential direction, a skew 5 is formed in the rotor core 1 so as to extend the above-mentioned grooves diagonally with respect to the rotation axis C. The electromagnetic steel sheets 2 are connected to each other by caulking. Teeth 3 are formed between slots 6 of the rotor core 1.
 図3は、実施の形態1にかかるかご形回転子の外観斜視図である。図3に示すように、かご形回転子30は、上述した回転子鉄心1とダイカスト部17とを備える。ダイカスト部17は、回転子鉄心1に対してアルミダイカストを行うことで形成される。かかるダイカスト部17は、上述したアルミバー7と、回転軸C方向における回転子鉄心1の両側に設けられる第1エンドリング15および第2エンドリング16とを備える。なお、図3では、第2エンドリング16は、回転子鉄心1に隠れて見えない位置にある。 FIG. 3 is an external perspective view of the cage rotor according to the first embodiment. As shown in FIG. 3, the squirrel-cage rotor 30 includes the rotor core 1 and the die-cast portion 17 described above. The die-cast portion 17 is formed by performing aluminum die-casting on the rotor core 1. The die casting portion 17 includes the above-mentioned aluminum bar 7 and first end rings 15 and second end rings 16 provided on both sides of the rotor core 1 in the direction of the rotation axis C. In FIG. 3, the second end ring 16 is hidden behind the rotor core 1 and is invisible.
 ここで、横流損について説明する。回転子鉄心1の破断面には絶縁皮膜がないため、アルミダイカストによって、回転子鉄心1とアルミバー7とが導通状態にある。このため、二次導体であるアルミバー7間で電位差が生じると、電流の一部が回転子鉄心1を介して流れて横流損が生じる。かかる横流損は、誘導電動機においては、回転子鉄心のうち縦方向の中心付近に局所的に発生することが知られている。縦方向とは、誘導電動機50では、回転子鉄心1における電磁鋼板2の積層方向であり、回転軸Cの延伸方向である。以下、電磁鋼板2の積層方向を回転子鉄心1の積層方向と記載する場合がある。 Here, the cross flow loss will be explained. Since there is no insulating film on the fracture surface of the rotor core 1, the rotor core 1 and the aluminum bar 7 are in a conductive state by aluminum die casting. Therefore, when a potential difference occurs between the aluminum bars 7 which are secondary conductors, a part of the current flows through the rotor core 1 and a cross flow loss occurs. It is known that such cross flow loss occurs locally in the vicinity of the center in the vertical direction of the rotor core in the induction motor. In the induction motor 50, the vertical direction is the stacking direction of the electromagnetic steel sheets 2 on the rotor core 1 and the stretching direction of the rotating shaft C. Hereinafter, the laminating direction of the electromagnetic steel sheet 2 may be described as the laminating direction of the rotor core 1.
 図4は、実施の形態1にかかるかご形回転子から抜き出したダイカスト部の模式図である。図4に示すように、ダイカスト部17は、複数のアルミバー7と、各アルミバー7の一端に接続される第1エンドリング15と、各アルミバー7の他端に接続される第2エンドリング16とを備える。 FIG. 4 is a schematic view of a die-cast portion extracted from the cage rotor according to the first embodiment. As shown in FIG. 4, the die casting portion 17 includes a plurality of aluminum bars 7, a first end ring 15 connected to one end of each aluminum bar 7, and a second end connected to the other end of each aluminum bar 7. It includes a ring 16.
 固定子40に設けられた固定子巻線に電流が流れると、回転子鉄心1に誘導磁界が発生する。かかる誘導磁界によって、二次導体であるアルミバー7に誘導電流が流れる。図4に示すように、誘導電流は、隣接する2つのアルミバー7のうち一方のアルミバー7、第1エンドリング15、他方のアルミバー7、第2エンドリング16、および一方のアルミバー7の順にループ状に流れる。 When a current flows through the stator winding provided on the stator 40, an induced magnetic field is generated in the rotor core 1. Due to such an induced magnetic field, an induced current flows through the aluminum bar 7 which is a secondary conductor. As shown in FIG. 4, the induced current is applied to one of the two adjacent aluminum bars 7 by the aluminum bar 7, the first end ring 15, the other aluminum bar 7, the second end ring 16, and one aluminum bar 7. It flows in a loop in the order of.
 固定子巻線には交流電流が印加されているため、固定子巻線に流れる電流の方向は時間の経過に伴って繰り返し反転する。固定子巻線に流れる電流に対応して誘導電流が流れる方向も時間の経過に伴って繰り返し反転する。 Since an alternating current is applied to the stator winding, the direction of the current flowing through the stator winding is repeatedly reversed with the passage of time. The direction in which the induced current flows corresponding to the current flowing in the stator winding also repeatedly reverses with the passage of time.
 回転子鉄心1における縦方向の中心付近で回転子鉄心1とアルミバー7とが電気的に接触している場合、縦方向の中心付近に横電流が発生して、回転トルクが減少する場合がある。図5は、実施の形態1にかかる回転子鉄心における縦方向の中心付近で回転子鉄心とアルミバーとが電気的に接触している場合にダイカスト部に流れる誘導電流の一例を示す図である。 When the rotor core 1 and the aluminum bar 7 are in electrical contact near the center of the rotor core 1 in the vertical direction, a lateral current may be generated near the center in the vertical direction and the rotational torque may decrease. is there. FIG. 5 is a diagram showing an example of an induced current flowing through the die casting portion when the rotor core and the aluminum bar are in electrical contact with each other near the center in the vertical direction of the rotor core according to the first embodiment. ..
 固定子巻線が形成する磁界が図5における上側と下側とで不均一に形成されていて電位差が発生すると、固定子巻線の電流の正負の切換え時に、上側と下側とで正負の反転タイミングがずれる。そのため、図5に示すように、回転子鉄心1の積層方向である縦方向の中心付近に横電流が発生して、上側と下側とで逆方向の短ループ電流が流れる。これらの短ループ電流が流れることによって、回転トルクが減少する場合がある。 When the magnetic field formed by the stator winding is non-uniformly formed between the upper side and the lower side in FIG. 5 and a potential difference occurs, the positive and negative values are positive and negative between the upper side and the lower side when the current of the stator winding is switched between positive and negative. The inversion timing shifts. Therefore, as shown in FIG. 5, a lateral current is generated near the center in the vertical direction, which is the stacking direction of the rotor core 1, and a short loop current in the opposite direction flows between the upper side and the lower side. The rotation torque may decrease due to the flow of these short loop currents.
 そこで、実施の形態1では、回転子鉄心1をねじることで回転子鉄心1から二次導体であるアルミバー7を引きはがし、回転子鉄心1とアルミバー7との間の電気的抵抗を大きくすることにより、短ループ電流の発生を抑制する。短ループ電流は固定子巻線の電流の正負の切換え時に発生し、上下対称に発生しやすく、横電流は回転子鉄心1の積層方向の中心付近に発生しやすい。そのため、回転子鉄心1からのアルミバー7の引きはがしは、回転子鉄心1における縦方向の中心付近を重点的に行うことが望ましい。 Therefore, in the first embodiment, the rotor core 1 is twisted to peel off the aluminum bar 7 which is a secondary conductor from the rotor core 1, and the electrical resistance between the rotor core 1 and the aluminum bar 7 is increased. By doing so, the generation of short loop current is suppressed. The short loop current is generated when the current of the stator winding is switched between positive and negative, and is likely to be generated vertically symmetrically, and the lateral current is likely to be generated near the center of the rotor core 1 in the stacking direction. Therefore, it is desirable that the aluminum bar 7 is peeled off from the rotor core 1 mainly in the vicinity of the center in the vertical direction of the rotor core 1.
 そこで、実施の形態1では、横流損の影響が大きい回転子鉄心1の中央部を局所的にねじることによって、回転子鉄心1における縦方向の中心付近において、回転子鉄心1からのアルミバー7の引きはがしを重点的に行う。これにより、かご形回転子30を組み込んだ誘導電動機50の渦電流損および漂遊負荷損などを抑えることができ、誘導電動機50の特性改善を図ることができる。また、回転子鉄心1にねじりによる衝撃を加えるという簡単な手順で回転子鉄心1とアルミバー7との間に絶縁処理を施すことができる。 Therefore, in the first embodiment, by locally twisting the central portion of the rotor core 1 which is greatly affected by the transverse flow loss, the aluminum bar 7 from the rotor core 1 is located near the center of the rotor core 1 in the vertical direction. Focus on peeling off. As a result, the eddy current loss and the drifting load loss of the induction motor 50 incorporating the squirrel-cage rotor 30 can be suppressed, and the characteristics of the induction motor 50 can be improved. Further, an insulation treatment can be applied between the rotor core 1 and the aluminum bar 7 by a simple procedure of applying an impact due to twisting to the rotor core 1.
 引きはがしの工程は、アルミダイカスト後にアルミバー7が固体となっている状態で、縦方向における回転子鉄心1の中央部を局所的にねじるねじり工程と、ねじり工程後に回転子鉄心1のねじれを戻すねじり戻し工程を含む。以下において、ねじり工程での処理とねじり戻し工程での処理を含めてねじり処理と記載する場合がある。 The peeling process consists of a twisting process in which the central portion of the rotor core 1 in the vertical direction is locally twisted in a state where the aluminum bar 7 is solid after aluminum die casting, and a twisting process in which the rotor core 1 is twisted after the twisting process. Includes untwisting step. In the following, the twisting process may include the processing in the twisting process and the processing in the untwisting process.
 図6は、実施の形態1にかかるかご形回転子のねじり工程を説明するための模式図である。図7は、実施の形態1にかかるかご形回転子のねじり戻し工程を説明するための模式図である。図8は、実施の形態1にかかる回転子鉄心をねじる方法を説明するための模式図である。図9は、実施の形態1にかかる回転子鉄心のねじり工程後の状態を示す模式図である。 FIG. 6 is a schematic diagram for explaining the twisting process of the cage rotor according to the first embodiment. FIG. 7 is a schematic view for explaining the untwisting step of the squirrel-cage rotor according to the first embodiment. FIG. 8 is a schematic view for explaining a method of twisting the rotor core according to the first embodiment. FIG. 9 is a schematic view showing a state after the twisting step of the rotor core according to the first embodiment.
 かご形回転子30のねじり工程は、図6に示すように、かご形回転子30のうち回転子鉄心1の一端部と他端部とを、スキュー5が回転軸Cに沿った位置になるように回転軸Cを中心に互いに逆方向に回転させることによって行われる。また、かご形回転子30のねじり戻し工程は、図7に示すように、かご形回転子30のうち回転子鉄心1の外周面の一端部と他端部とを、ねじり工程において回転させる方向とは逆方向に回転させることによって行われる。 In the twisting process of the cage rotor 30, as shown in FIG. 6, the skew 5 is positioned along the rotation axis C at one end and the other end of the rotor core 1 of the cage rotor 30. This is done by rotating the rotation axis C in opposite directions with respect to each other. Further, in the untwisting step of the cage rotor 30, as shown in FIG. 7, a direction in which one end and the other end of the outer peripheral surface of the rotor core 1 of the cage rotor 30 are rotated in the twisting step. It is done by rotating in the opposite direction.
 図8に示すように、かご形回転子30のねじり工程およびねじり戻し工程は、回転子鉄心1の外周面の一端部1aと他端部1bとをチャックなどの把持部61,62で把持し、回転軸Cを中心として一方の把持部61と他方の把持部62とを互いに逆方向に回転することによって行われる。チャックなどの把持部61,62で回転子鉄心1を把持し、ねじるといった単純な工程で済むため、かご形回転子30を製造する製造ラインの小型化およびインライン化などを図ることができる。なお、一方の把持部61を固定し、回転軸Cを中心に他方の把持部62のみを回転してもよく、また、他方の把持部62を固定し、回転軸Cを中心に一方の把持部61のみを回転してもよい。 As shown in FIG. 8, in the twisting step and the untwisting step of the cage rotor 30, one end 1a and the other end 1b of the outer peripheral surface of the rotor core 1 are gripped by gripping portions 61 and 62 such as chucks. It is performed by rotating one grip portion 61 and the other grip portion 62 in opposite directions with respect to the rotation axis C. Since the rotor core 1 can be gripped and twisted by the gripping portions 61 and 62 such as chucks, the production line for manufacturing the squirrel-cage rotor 30 can be miniaturized and in-lined. One grip portion 61 may be fixed and only the other grip portion 62 may be rotated around the rotation shaft C, or the other grip portion 62 may be fixed and one grip may be centered on the rotation shaft C. Only the portion 61 may be rotated.
 かご形回転子30のねじり工程は、図9に示すように、回転子鉄心1のうち横流損の影響が大きい縦方向の中央部1cを局所的に、かつスキュー5が回転軸Cに沿った位置になるまでねじることでアルミバー7と回転子鉄心1との積極的な剥離を促す。スキュー5が回転軸Cに沿った位置とは、例えば、スキュー角が90度になる位置であり、スキュー5が無くなる位置と言い換えることもできる。スキュー角とは、回転軸Cと垂直な方向に対するスキュー5の角度である。 In the twisting process of the cage rotor 30, as shown in FIG. 9, the central portion 1c of the rotor core 1 in the vertical direction, which is greatly affected by the transverse flow loss, is locally and the skew 5 is along the rotation axis C. By twisting until it reaches the position, the aluminum bar 7 and the rotor core 1 are actively peeled off. The position where the skew 5 is along the rotation axis C is, for example, a position where the skew angle is 90 degrees, and can be rephrased as a position where the skew 5 disappears. The skew angle is the angle of the skew 5 with respect to the direction perpendicular to the rotation axis C.
 ねじり工程中において、回転子鉄心1は回転軸Cの延伸方向に伸びるため、アルミバー7には縦方向において電磁鋼板2と離間する力が加わる。そのため、かご形回転子30のねじり工程において、回転子鉄心1を回転軸Cの延伸方向に引っ張りつつ回転子鉄心1をねじる。これにより、アルミバー7に過度な負荷が加わることを避けることができ、アルミバー7の損傷を防ぐことができる。 During the twisting process, the rotor core 1 extends in the stretching direction of the rotating shaft C, so that a force is applied to the aluminum bar 7 to separate it from the electromagnetic steel sheet 2 in the vertical direction. Therefore, in the twisting process of the cage rotor 30, the rotor core 1 is twisted while pulling the rotor core 1 in the extending direction of the rotation shaft C. As a result, it is possible to prevent an excessive load from being applied to the aluminum bar 7, and it is possible to prevent damage to the aluminum bar 7.
 図10は、実施の形態1にかかるねじり工程におけるかご形回転子のスキューを含む領域の状態変化を示す模式図である。図10に示すように、ねじり工程によって、アルミバー7が回転方向に傾き、アルミバー7と電磁鋼板2との間に空隙が生じる。アルミバー7と電磁鋼板2との間の空隙により、アルミバー7と電磁鋼板2との間の接触抵抗が増大し、アルミバー7から回転子鉄心1へ流れる不要な電流を抑制することができる。ねじり工程において、スキュー5が回転軸Cに沿った位置を超えるまで回転子鉄心1をねじると、アルミバー7が損傷し、アルミバー7にクラックが発生する可能性があるため、留意が必要である。 FIG. 10 is a schematic view showing a state change of a region including skew of a cage rotor in the twisting step according to the first embodiment. As shown in FIG. 10, the twisting process causes the aluminum bar 7 to tilt in the rotational direction, and a gap is created between the aluminum bar 7 and the electromagnetic steel sheet 2. The gap between the aluminum bar 7 and the electromagnetic steel plate 2 increases the contact resistance between the aluminum bar 7 and the electromagnetic steel plate 2, and it is possible to suppress an unnecessary current flowing from the aluminum bar 7 to the rotor core 1. .. Note that if the rotor core 1 is twisted until the skew 5 exceeds the position along the rotation axis C in the twisting process, the aluminum bar 7 may be damaged and the aluminum bar 7 may be cracked. is there.
 かご形回転子30のねじり戻し工程中には、ねじり工程中とは逆に回転子鉄心1が回転軸Cの延伸方向に縮む動きをする。そのため、ねじり戻し工程では、回転子鉄心1を回転軸Cの延伸方向に圧縮しつつねじり工程とは逆方向に回転子鉄心1をねじる。これにより、ねじり工程前と同様のスキュー角への復帰を図ることができる。 During the untwisting process of the cage rotor 30, the rotor core 1 contracts in the extending direction of the rotating shaft C, contrary to the twisting process. Therefore, in the untwisting step, the rotor core 1 is twisted in the direction opposite to the twisting step while compressing the rotor core 1 in the extending direction of the rotating shaft C. As a result, it is possible to return to the same skew angle as before the twisting process.
 図11は、実施の形態1にかかるかご形回転子の縦方向における中央部のアルミバーを含む領域のねじり工程による状態変化を示す図である。図11に示すように、かご形回転子30のねじり工程によって、アルミバー7と電磁鋼板2の間に隙間9が生じる。アルミバー7と電磁鋼板2の間に生じる隙間9は、例えば、0.1mmから0.2mmの範囲である。なお、図11においてハッチングは省略している。 FIG. 11 is a diagram showing a state change due to a twisting process of a region including an aluminum bar in the central portion in the vertical direction of the cage rotor according to the first embodiment. As shown in FIG. 11, a gap 9 is created between the aluminum bar 7 and the electrical steel sheet 2 by the twisting process of the cage rotor 30. The gap 9 generated between the aluminum bar 7 and the electromagnetic steel plate 2 is, for example, in the range of 0.1 mm to 0.2 mm. Note that hatching is omitted in FIG.
 図12は、実施の形態1にかかるシャフトを連結された状態のかご形回転子の側面図である。図12に示すシャフト11のかご形回転子30への連結は、ねじり処理を行う前またはねじり処理を行った後のいずれでもよいが、シャフト11を連結した後にねじり処理を行う場合には、シャフト11とかご形回転子30との連結強度の低下に留意することが望ましい。 FIG. 12 is a side view of a squirrel-cage rotor in a state where the shaft according to the first embodiment is connected. The shaft 11 shown in FIG. 12 may be connected to the cage rotor 30 either before the twisting process or after the twisting process, but when the twisting process is performed after the shaft 11 is connected, the shaft It is desirable to pay attention to the decrease in the connection strength between the 11 and the cage rotor 30.
 図13は、実施の形態1にかかるかご形回転子を用いた誘導電動機の回転数とトルクとの関係を示す図である。図13において、横軸は、誘導電動機50の回転数を示し、縦軸は、誘導電動機50のトルクを示す。図13に示すように、ねじり処理が加えられていないかご形回転子を備える誘導電動機のトルクカーブ21よりも、ねじり処理が加えられたかご形回転子30を備える誘導電動機50のトルクカーブ20の方が大きなトルク上昇を確認することができる。 FIG. 13 is a diagram showing the relationship between the rotation speed and the torque of the induction motor using the squirrel-cage rotor according to the first embodiment. In FIG. 13, the horizontal axis represents the rotation speed of the induction motor 50, and the vertical axis represents the torque of the induction motor 50. As shown in FIG. 13, the torque curve 20 of the induction motor 50 having the twisted squirrel-cage rotor 30 is more than the torque curve 21 of the induction motor having the untwisted squirrel-cage rotor. It is possible to confirm a larger torque increase.
 図14は、実施の形態1にかかるかご形回転子を用いた誘導電動機の回転数と効率との関係を示す図である。図14において、横軸は、誘導電動機50の回転数を示し、縦軸は、誘導電動機50の効率を示す。図14に示すように、ねじり処理が加えられていないかご形回転子を備える誘導電動機の効率カーブ23よりも、ねじり処理が加えられたかご形回転子30を備える誘導電動機50の効率カーブ22の方が効率の向上を確認することができる。 FIG. 14 is a diagram showing the relationship between the rotation speed and the efficiency of the induction motor using the squirrel-cage rotor according to the first embodiment. In FIG. 14, the horizontal axis represents the rotation speed of the induction motor 50, and the vertical axis represents the efficiency of the induction motor 50. As shown in FIG. 14, the efficiency curve 22 of the induction motor 50 having the twisted squirrel-cage rotor 30 is higher than the efficiency curve 23 of the induction motor having the untwisted squirrel-cage rotor. It can be confirmed that the efficiency is improved.
 ここで、回転子鉄心1の縦方向における中央部1cを局所的にねじることの効果をより具体的に説明する。図15は、実施の形態1にかかるねじり処理を行う前のかご形回転子の側面を示す模式図である。図16は、図15に示すかご形回転子のうちダイカスト部を全体的にねじった状態を示す模式図である。ダイカスト部17は剛体であるため、ダイカスト部17のみであれば、図16に示すように、ねじりによってアルミバー7を直線状にして、スキュー5の部分が無い状態にすることができる。 Here, the effect of locally twisting the central portion 1c of the rotor core 1 in the vertical direction will be described more specifically. FIG. 15 is a schematic view showing a side surface of the squirrel-cage rotor before the twisting process according to the first embodiment. FIG. 16 is a schematic view showing a state in which the die-cast portion of the cage rotor shown in FIG. 15 is twisted as a whole. Since the die-cast portion 17 is a rigid body, if only the die-cast portion 17 is used, as shown in FIG. 16, the aluminum bar 7 can be straightened by twisting so that the skew 5 portion is absent.
 図17は、実施の形態1にかかるアルミダイカスト前の状態の回転子鉄心の外周面の両端を把持部で把持して回転子鉄心をねじった状態を示す模式図である。回転子鉄心1は複数の電磁鋼板2が積層されて構成されており、回転子鉄心1をねじったときに特定の電磁鋼板2間で滑りが発生すると、静摩擦力より動摩擦力の方が低いので、図17に示すように、滑り出した電磁鋼板2間のみでまわって、他の位置では回らない場合がある。なお、図17では、説明の便宜上、1つのスキュー5のみ図示している。 FIG. 17 is a schematic view showing a state in which both ends of the outer peripheral surface of the rotor core in the state before aluminum die casting according to the first embodiment are gripped by gripping portions and the rotor core is twisted. The rotor core 1 is composed of a plurality of electromagnetic steel plates 2 laminated, and if slip occurs between specific electromagnetic steel plates 2 when the rotor core 1 is twisted, the dynamic friction force is lower than the static friction force. , As shown in FIG. 17, it may rotate only between the sliding electromagnetic steel sheets 2 and not rotate at other positions. Note that in FIG. 17, for convenience of explanation, only one skew 5 is shown.
 図18は、実施の形態1にかかるかご形回転子を全体的にねじった状態を示す模式図である。かご形回転子30は、回転子鉄心1とアルミバー7とが一体となった構造であるため、アルミバー7のみに対するねじり処理による状態変化と回転子鉄心1のみに対するねじり処理による状態変化とが合成されたような状態変化になる。 FIG. 18 is a schematic view showing a state in which the cage rotor according to the first embodiment is twisted as a whole. Since the cage rotor 30 has a structure in which the rotor core 1 and the aluminum bar 7 are integrated, the state change due to the twisting process only for the aluminum bar 7 and the state change due to the twisting process for only the rotor core 1 can occur. The state changes as if it were synthesized.
 すなわち、回転子鉄心1は、縦方向における把持部61,62の把持部分において電磁鋼板2間のすべりが大きく、中央部1cにおいて電磁鋼板2間の滑りが小さい。そのため、回転子鉄心1のねじり処理によって、かご形回転子30は、図18に示すような状態になる。図18に示す状態では、回転子鉄心1の中央部1cで電磁鋼板2間の滑りが少ないため、横流損の影響が大きい回転子鉄心1の中央部1cにおいてアルミバー7と回転子鉄心1との剥離が不十分になっている。 That is, in the rotor core 1, the slip between the electromagnetic steel plates 2 is large in the grip portions of the grip portions 61 and 62 in the vertical direction, and the slip between the electromagnetic steel plates 2 is small in the central portion 1c. Therefore, the cage rotor 30 is brought into the state as shown in FIG. 18 by the twisting process of the rotor core 1. In the state shown in FIG. 18, since the slip between the electromagnetic steel sheets 2 is small in the central portion 1c of the rotor core 1, the aluminum bar 7 and the rotor core 1 are formed in the central portion 1c of the rotor core 1 which is greatly affected by the cross flow loss. The peeling is insufficient.
 そこで、実施の形態1のねじり工程では、回転子鉄心1の外周面のうち横流損の影響が小さい一端部1aと他端部1bとを把持部61,62で把持し、横流損の影響が大きい回転子鉄心1の中央部1cを局所的にねじるようにしている。図19は、実施の形態1にかかるかご形回転子の一端部と他端部とを把持した状態を示す模式図であり、図20は、実施の形態1にかかるねじり工程が完了した状態のかご形回転子の側面を示す模式図である。 Therefore, in the twisting step of the first embodiment, the one end 1a and the other end 1b of the outer peripheral surface of the rotor core 1 which are less affected by the cross flow loss are gripped by the gripping portions 61 and 62, and the influence of the cross flow loss is exerted. The central portion 1c of the large rotor core 1 is locally twisted. FIG. 19 is a schematic view showing a state in which one end and the other end of the squirrel-cage rotor according to the first embodiment are gripped, and FIG. 20 is a state in which the twisting step according to the first embodiment is completed. It is a schematic diagram which shows the side surface of a cage rotor.
 図19および図20に示すように、実施の形態1にかかるねじり工程では、回転子鉄心1の外周面の一端部1aと他端部1bとが把持部61,62によって把持される。回転子鉄心1のうちねじる対象である中央部1cの回転子鉄心1の積層方向における長さL2を、回転子鉄心1の積層方向における全長の30%から40%の範囲にすることが望ましい。そのため、回転子鉄心1の積層方向における一端部1aおよび他端部1bの長さL1は、例えば、回転子鉄心1の積層方向における全長の30%から35%の範囲とすることが望ましい。これにより、横流損の大きい位置での引きはがしを十分に行うことができる。 As shown in FIGS. 19 and 20, in the twisting step according to the first embodiment, one end 1a and the other end 1b of the outer peripheral surface of the rotor core 1 are gripped by the grips 61 and 62. It is desirable that the length L2 of the rotor core 1 in the stacking direction of the central portion 1c of the central portion 1c to be twisted be in the range of 30% to 40% of the total length in the stacking direction of the rotor core 1. Therefore, it is desirable that the length L1 of one end portion 1a and the other end portion 1b in the stacking direction of the rotor core 1 is, for example, in the range of 30% to 35% of the total length in the stacking direction of the rotor core 1. As a result, the peeling at a position where the cross flow loss is large can be sufficiently performed.
 なお、回転子鉄心1のうちねじる対象である中央部1cの回転子鉄心1を局所的にねじることができればよく、一端部1aおよび他端部1bの長さL1は、回転子鉄心1の積層方向における全長の30%から35%の範囲に限定されない。また、ねじり工程では、スキュー5が回転軸Cに沿った位置になるようにかご形回転子30にねじりが加えられるが、スキュー5が回転軸Cに沿った位置になる状態には、図20に示す状態が含まれる。 It is sufficient that the rotor core 1 of the central portion 1c of the rotor core 1 to be twisted can be locally twisted, and the length L1 of one end 1a and the other end 1b is a stack of the rotor cores 1. It is not limited to the range of 30% to 35% of the total length in the direction. Further, in the twisting step, the cage rotor 30 is twisted so that the skew 5 is located along the rotation axis C. However, in the state where the skew 5 is located along the rotation axis C, FIG. The state shown in is included.
 以上のように、実施の形態1にかかる回転軸Cを中心に回転するかご形回転子30の製造方法は、アルミバー形成ステップと、ねじりステップと、ねじり戻しステップとを含む。アルミバー形成ステップは、回転子鉄心1に形成されたスロット6にアルミダイカストによってアルミニウムを充填させてアルミバー7を形成する。ねじりステップは、スロット6にアルミバー7が形成された回転子鉄心1を回転軸Cの延伸方向に引っ張りながら回転軸C回りにねじる。ねじり戻しステップは回転子鉄心1を回転軸Cの延伸方向に圧縮しながらねじりステップとは逆方向にねじる。ねじりステップは、回転軸Cの延伸方向における回転子鉄心1の外周面の一端部1aと他端部1bとを把持して回転軸Cの延伸方向における回転子鉄心1の中央部1cを局所的にねじる。このように、回転子鉄心1の中央部1cを局所的にねじることによって、横流損の影響が大きい回転子鉄心1の中央部1cを精度よくねじることができ、渦電流損および漂遊負荷損などを抑えることで、誘導電動機50の効率の向上を図ることができる。また、回転子鉄心1にねじりによる衝撃を加えるという簡単な手順で回転子鉄心1とアルミバー7との間に絶縁処理を施すことができる。 As described above, the method for manufacturing the cage rotor 30 that rotates around the rotating shaft C according to the first embodiment includes an aluminum bar forming step, a twisting step, and a twisting back step. In the aluminum bar forming step, the slot 6 formed in the rotor core 1 is filled with aluminum by aluminum die casting to form the aluminum bar 7. In the twisting step, the rotor core 1 having the aluminum bar 7 formed in the slot 6 is twisted around the rotating shaft C while being pulled in the extending direction of the rotating shaft C. In the untwisting step, the rotor core 1 is compressed in the extending direction of the rotating shaft C and twisted in the direction opposite to the twisting step. In the twisting step, one end 1a and the other end 1b of the outer peripheral surface of the rotor core 1 in the stretching direction of the rotating shaft C are gripped, and the central portion 1c of the rotor core 1 in the stretching direction of the rotating shaft C is localized. Twist to. By locally twisting the central portion 1c of the rotor core 1 in this way, it is possible to accurately twist the central portion 1c of the rotor core 1 which is greatly affected by cross flow loss, resulting in eddy current loss and stray load loss. It is possible to improve the efficiency of the induction motor 50 by suppressing the above. Further, an insulation treatment can be applied between the rotor core 1 and the aluminum bar 7 by a simple procedure of applying an impact due to twisting to the rotor core 1.
 また、回転軸Cの延伸方向における中央部1cの長さは、回転軸Cの延伸方向における回転子鉄心1の全長の30%から40%の範囲である。これにより、横流損の影響が大きい領域で回転子鉄心1とアルミバー7との間の絶縁を図ることができ、誘導電動機50の効率の向上を適切に図ることができる。 Further, the length of the central portion 1c in the extending direction of the rotating shaft C is in the range of 30% to 40% of the total length of the rotor core 1 in the extending direction of the rotating shaft C. As a result, insulation between the rotor core 1 and the aluminum bar 7 can be achieved in a region where the influence of cross flow loss is large, and the efficiency of the induction motor 50 can be appropriately improved.
 また、ねじりステップは、回転子鉄心1をねじることによって回転子鉄心1とアルミバー7との間に隙間9を形成する。これにより、回転子鉄心1の中央部1cにおいて、アルミバー7と電磁鋼板2との間の接触抵抗が増大し、アルミバー7から回転子鉄心1へ流れる不要な電流を抑制することができる。 Further, in the twisting step, a gap 9 is formed between the rotor core 1 and the aluminum bar 7 by twisting the rotor core 1. As a result, the contact resistance between the aluminum bar 7 and the electromagnetic steel plate 2 increases in the central portion 1c of the rotor core 1, and unnecessary current flowing from the aluminum bar 7 to the rotor core 1 can be suppressed.
 また、隙間9は、0.1mmから0.2mmの範囲である。これにより、回転子鉄心1の中央部1cにおいて、アルミバー7から回転子鉄心1へ流れる不要な電流を精度よく抑制することができる。 The gap 9 is in the range of 0.1 mm to 0.2 mm. As a result, the unnecessary current flowing from the aluminum bar 7 to the rotor core 1 can be accurately suppressed in the central portion 1c of the rotor core 1.
 また、回転子鉄心1には、スキュー5が形成されており、ねじりステップは、スキュー5が回転軸Cに沿った位置になるまで回転子鉄心1をねじる。これにより、回転子鉄心1の中央部1cにおいて、横流損の大きい位置での引きはがしを十分に行うことができる。 Further, a skew 5 is formed on the rotor core 1, and the twisting step twists the rotor core 1 until the skew 5 is located along the rotation axis C. As a result, in the central portion 1c of the rotor core 1, the peeling at a position where the cross flow loss is large can be sufficiently performed.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration shown in the above-described embodiment shows an example of the content of the present invention, can be combined with another known technique, and is one of the configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 1 回転子鉄心、1a 一端部、1b 他端部、1c 中央部、2 電磁鋼板、3 ティース、5 スキュー、6 スロット、7 アルミバー、8 貫通孔、9 隙間、11 シャフト、15 第1エンドリング、16 第2エンドリング、17 ダイカスト部、20,21 トルクカーブ、22,23 効率カーブ、30 かご形回転子、40 固定子、50 誘導電動機、61,62 把持部、C 回転軸。 1 rotor core, 1a one end, 1b other end, 1c center, 2 electromagnetic steel plate, 3 teeth, 5 skew, 6 slots, 7 aluminum bars, 8 through holes, 9 gaps, 11 shafts, 15 1st end ring , 16 2nd end ring, 17 die cast part, 20, 21 torque curve, 22, 23 efficiency curve, 30 cage rotor, 40 stator, 50 induction motor, 61, 62 grip part, C rotation shaft.

Claims (5)

  1.  回転軸を中心に回転するかご形回転子の製造方法であって、
     回転子鉄心に形成されたスロットにアルミダイカストによってアルミニウムを充填させてアルミバーを形成する第1ステップと、
     前記スロットに前記アルミバーが形成された前記回転子鉄心を前記回転軸の延伸方向に引っ張りながら前記回転軸回りにねじる第2ステップと、
     前記回転子鉄心を前記回転軸の延伸方向に圧縮しながら前記第2ステップとは逆方向にねじる第3ステップと、を含み、
     前記第2ステップは、
     前記回転軸の延伸方向における前記回転子鉄心の外周面の一端部と他端部とを把持して前記回転軸の延伸方向における前記回転子鉄心の中央部を局所的にねじる
     ことを特徴とするかご形回転子の製造方法。
    A method for manufacturing a cage rotor that rotates around a rotation axis.
    The first step of forming an aluminum bar by filling a slot formed in a rotor core with aluminum by die casting,
    A second step of twisting the rotor core having the aluminum bar formed in the slot around the rotation axis while pulling the rotor core in the extending direction of the rotation axis.
    A third step of twisting the rotor core in the direction opposite to the second step while compressing the rotor core in the extending direction of the rotating shaft is included.
    The second step is
    It is characterized in that one end and the other end of the outer peripheral surface of the rotor core in the extending direction of the rotating shaft are gripped and the central portion of the rotor core in the extending direction of the rotating shaft is locally twisted. How to manufacture a cage rotor.
  2.  前記回転軸の延伸方向における前記中央部の長さは、
     前記回転軸の延伸方向における前記回転子鉄心の全長の30%から40%の範囲である
     ことを特徴とする請求項1に記載のかご形回転子の製造方法。
    The length of the central portion in the extending direction of the rotating shaft is
    The method for manufacturing a cage rotor according to claim 1, wherein the range is 30% to 40% of the total length of the rotor core in the extending direction of the rotating shaft.
  3.  前記第2ステップは、
     前記回転子鉄心をねじることによって前記回転子鉄心と前記アルミバーとの間に隙間を形成する
     ことを特徴とする請求項1または2に記載のかご形回転子の製造方法。
    The second step is
    The method for manufacturing a cage rotor according to claim 1 or 2, wherein a gap is formed between the rotor core and the aluminum bar by twisting the rotor core.
  4.  前記隙間は、0.1mmから0.2mmの範囲である
     ことを特徴とする請求項3に記載のかご形回転子の製造方法。
    The method for manufacturing a cage rotor according to claim 3, wherein the gap is in the range of 0.1 mm to 0.2 mm.
  5.  前記回転子鉄心には、スキューが形成されており、
     前記第2ステップは、
     前記スキューが前記回転軸に沿った位置になるまで前記回転子鉄心をねじる
     ことを特徴とする請求項1から4のいずれか一つに記載のかご形回転子の製造方法。
    A skew is formed on the rotor core.
    The second step is
    The method for manufacturing a cage rotor according to any one of claims 1 to 4, wherein the rotor core is twisted until the skew is located along the rotation axis.
PCT/JP2019/022193 2019-06-04 2019-06-04 Method for manufacturing sqirrel-cage rotor WO2020245921A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021524548A JPWO2020245921A1 (en) 2019-06-04 2019-06-04 Manufacturing method of cage rotor
PCT/JP2019/022193 WO2020245921A1 (en) 2019-06-04 2019-06-04 Method for manufacturing sqirrel-cage rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/022193 WO2020245921A1 (en) 2019-06-04 2019-06-04 Method for manufacturing sqirrel-cage rotor

Publications (1)

Publication Number Publication Date
WO2020245921A1 true WO2020245921A1 (en) 2020-12-10

Family

ID=73652018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022193 WO2020245921A1 (en) 2019-06-04 2019-06-04 Method for manufacturing sqirrel-cage rotor

Country Status (2)

Country Link
JP (1) JPWO2020245921A1 (en)
WO (1) WO2020245921A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5843980B2 (en) * 1974-07-05 1983-09-30 三菱電機株式会社 Doki Kenshiyutsu Sochi
JP2015139319A (en) * 2014-01-23 2015-07-30 三菱電機株式会社 Rotor, electric motor, manufacturing method of rotor and manufacturing method of electric motor
JP2017184379A (en) * 2016-03-29 2017-10-05 三菱電機株式会社 Manufacturing method of rotor of squirrel-cage induction motor and manufacturing method of squirrel-cage induction motor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014102942A1 (en) * 2012-12-26 2014-07-03 三菱電機株式会社 Method for manufacturing squirrel-cage rotor, method for manufacturing induction motor, and squirrel-cage rotor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5843980B2 (en) * 1974-07-05 1983-09-30 三菱電機株式会社 Doki Kenshiyutsu Sochi
JP2015139319A (en) * 2014-01-23 2015-07-30 三菱電機株式会社 Rotor, electric motor, manufacturing method of rotor and manufacturing method of electric motor
JP2017184379A (en) * 2016-03-29 2017-10-05 三菱電機株式会社 Manufacturing method of rotor of squirrel-cage induction motor and manufacturing method of squirrel-cage induction motor

Also Published As

Publication number Publication date
JPWO2020245921A1 (en) 2021-10-21

Similar Documents

Publication Publication Date Title
JP6129966B2 (en) Rotating electric machine and manufacturing method thereof
JP7330661B2 (en) Synchronous reluctance machine and traction motor
JP7241289B2 (en) Manufacturing method of rotor core and manufacturing method of rotor
WO2021139455A1 (en) Permanent magnet brushless electric motor, robot joint, servo steering engine actuator, and robot
WO2014102942A1 (en) Method for manufacturing squirrel-cage rotor, method for manufacturing induction motor, and squirrel-cage rotor
JP5440423B2 (en) Rotating electric machine
JP2011019398A (en) Stator, hermetically sealed compressor and rotating machine
CN110445335A (en) Self-starting synchronous magnetic resistance motor
JP5531841B2 (en) Electric motor
JP6132989B1 (en) Three-phase induction motor and its secondary conductor
WO2020245921A1 (en) Method for manufacturing sqirrel-cage rotor
JP6403672B2 (en) Rotating electric machine and elevator hoisting machine
JP6566905B2 (en) Method for manufacturing rotor of cage induction motor and method for manufacturing cage induction motor
WO2011132250A1 (en) Rotor for an embedded-magnet synchronous motor
JP3466864B2 (en) Rotor of cage induction motor and method of manufacturing the same
JP2015139319A (en) Rotor, electric motor, manufacturing method of rotor and manufacturing method of electric motor
KR20100046654A (en) Squirrel cage rotor of induction motor
CN214479907U (en) Permanent magnet synchronous motor
WO2013150645A1 (en) Double-cage rotor
KR20130056980A (en) Squirrel cage rotor of induction motor
KR101660893B1 (en) Rotor of electric motor
JP5900319B2 (en) Induction motor
KR100434289B1 (en) rotor of squirrel cage induction motor
JP5152957B2 (en) Stator core and motor stator and motor
CN217010454U (en) Self-starting synchronous reluctance motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19931551

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021524548

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19931551

Country of ref document: EP

Kind code of ref document: A1