WO2020245894A1 - User terminal and wireless communication method - Google Patents

User terminal and wireless communication method Download PDF

Info

Publication number
WO2020245894A1
WO2020245894A1 PCT/JP2019/022058 JP2019022058W WO2020245894A1 WO 2020245894 A1 WO2020245894 A1 WO 2020245894A1 JP 2019022058 W JP2019022058 W JP 2019022058W WO 2020245894 A1 WO2020245894 A1 WO 2020245894A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
priority
transmission
setting
lch
Prior art date
Application number
PCT/JP2019/022058
Other languages
French (fr)
Japanese (ja)
Inventor
翔平 吉岡
聡 永田
シャオホン ジャン
リフェ ワン
シャオツェン グオ
ギョウリン コウ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2019/022058 priority Critical patent/WO2020245894A1/en
Publication of WO2020245894A1 publication Critical patent/WO2020245894A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria

Definitions

  • the present disclosure relates to a user terminal and a wireless communication method in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • 3GPP Rel.10-14 LTE-Advanced (3GPP Rel.10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
  • a successor system to LTE for example, 5th generation mobile communication system (5G), 5G + (plus), New Radio (NR), 3GPP Rel.15 or later, etc.) is also being considered.
  • 5G 5th generation mobile communication system
  • 5G + plus
  • NR New Radio
  • 3GPP Rel.15 or later, etc. is also being considered.
  • a scheduling request (Scheduling Request (SR)) at a transmission opportunity (period) of a predetermined cycle.
  • the UE transmits uplink data using an uplink shared channel (for example, Physical Uplink Shared Channel (PUSCH)) scheduled by downlink control information (Downlink Control Information (DCI)) transmitted from the base station according to the SR.
  • PUSCH Physical Uplink Shared Channel
  • DCI Downlink Control Information
  • SR resources corresponding to different service types (for example, high-reliability and low-latency communications (URLLC) and enhanced Mobile Broad Band (eMBB), etc.) It is assumed that (also referred to as) collide in the same time unit (for example, slot).
  • URLLC high-reliability and low-latency communications
  • eMBB enhanced Mobile Broad Band
  • one of the purposes of the present disclosure is to provide a user terminal and a wireless communication method capable of appropriately controlling the prioritization of a plurality of SRs corresponding to different service types.
  • the user terminal can transmit a plurality of scheduling requests using a receiving unit that receives information on a plurality of scheduling request (SR) settings and a plurality of resources associated with the plurality of SR settings.
  • SR scheduling request
  • the control unit that controls the transmission of the plurality of scheduling requests based on the priority of each of the plurality of scheduling requests is provided.
  • the prioritization of a plurality of SRs corresponding to different service types can be appropriately controlled.
  • FIG. 1 is a diagram showing an example of SR setting set information.
  • FIG. 2 is a diagram showing an example of SR resource information.
  • FIG. 3 is a diagram showing an example of SR transmission control.
  • FIG. 4 is a diagram showing an example of LCH setting information.
  • FIG. 5 is a diagram showing an example of a plurality of SR transmissions associated with different service types.
  • FIG. 6 is a diagram showing an example of SR resource information according to the first aspect.
  • FIG. 7 is a diagram showing an example of SR setting information of the first aspect.
  • 8A and 8B are diagrams showing an example of SR priority information using the LCH priority information of the first aspect.
  • FIG. 9 is a diagram showing an example of determining SR priority information according to the second aspect.
  • FIG. 9 is a diagram showing an example of determining SR priority information according to the second aspect.
  • FIG. 10 is a diagram showing an example of prioritization based on SR priority information according to the third aspect.
  • 11A and 11B are diagrams showing an example of SR priority information notified from the MAC entity.
  • FIG. 12 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 13 is a diagram showing an example of the configuration of the base station according to the embodiment.
  • FIG. 14 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
  • FIG. 15 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
  • the base station allocates uplink resources to the UE in response to a request (Scheduling Request (SR)) from the user terminal (User Equipment (UE)).
  • the uplink resource is a resource (UL-SCH resource) for a logical uplink channel (for example, Uplink Shared Channel (UL-SCH)) or a physical uplink channel (for example, Physical Uplink). It may be paraphrased as a resource for Shared Channel)).
  • the UE may transmit the SR by using an uplink control channel (for example, Physical Uplink Control Channel (PUCCH)).
  • PUCCH format used for SR transmission may be, for example, PUCCH format (PUCCH format (PF)) 0 or 1.
  • PF0 may be composed of 1 or 2 symbols.
  • PF1 may be composed of 4 or more symbols.
  • a predetermined period for SR transmission using PUCCH (also referred to as transmission occasion, SR transmission opportunity, SR opportunity, transmission period, instance, etc.) may be provided at a predetermined cycle.
  • the SR opportunity may be configured uniquely to the UE.
  • the UE (or the Medium Access Control (MAC) entity of the UE) may be set (configured with) with the settings for SR of 0 or 1 or more (SR configuration).
  • One SR setting may configure (or be associated with) a set of resources (SR resources) for one or more SR transmissions.
  • the SR resource is set over at least one of one or more bandwidth portions (Bandwidth Part (BWP)) and one or more cells (also referred to as serving cells, component carriers (CC), carriers, etc.). May be done.
  • BWP Bandwidth Part
  • CC component carriers
  • Each SR setting may correspond to one or more logical channels (Logical Channel (LCH)). Each LCH may be mapped to 0 or 1 SR setting.
  • the SR setting may be set in the UE by higher layer signaling (for example, Radio Resource Control (RRC) signaling). Each LCH may have a priority value.
  • RRC Radio Resource Control
  • Each LCH may have a priority value.
  • the SR setting may be simply referred to as SR.
  • the UE may receive information about one or more sets of SR settings (SR setting set information).
  • the SR setting set information may be, for example, "SchedulingRequestConfig" of the RRC control element (Information Element (IE)).
  • the SR setting set information may be set for each cell group, and may be included in, for example, "MAC-Cell Group Config" of RRC IE. Further, the SR setting set information may be set as a MAC parameter.
  • the RRC IE may be referred to as an RRC parameter, an upper layer parameter, or the like.
  • FIG. 1 is a diagram showing an example of SR setting set information.
  • the SR setting set information is a list of information related to each SR setting to be added or updated (SR setting information, for example, "SchedulingRequestToAddMod" of RRC IE) (for example, "schedulingRequestToAddModList” of RRC IE). And at least one of the list of each SR setting information to be released (for example, "schedulingRequestToReleaseList" of RRC IE) may be included.
  • Each SR setting information may include at least one of the following parameters.
  • -SR setting information (or SR setting) identifier (SR-ID, for example, "schedulingRequestId” of RRC IE)
  • SR-ID for example, "schedulingRequestId” of RRC IE
  • PUCCH for example, "sr-Prohibit Timer” of RRC IE
  • Maximum number of SR transmissions for example, "sr-TransMax” of RRC IE
  • the SR-ID in each SR setting information may be used to identify an SR instance (SR setting) in the MAC layer.
  • the SR-ID may be included in the LCH setting information (LCH setting information, for example, "Logical Channel Config" of RRC IE). That is, the SR-ID may be used as an identifier for the SR setting associated with the LCH.
  • the UE may also receive information (SR resource information) regarding SR resources associated with each SR setting.
  • SR resource information may be, for example, "SchedulingRequestResourceConfig" of RRC IE.
  • the SR resource information may be set as a UE-specific PUCCH parameter.
  • the SR resource information may be included in the PUCCH setting information for each BWP (PUCCH setting information, for example, "PUCCH-Config" of RRC IE).
  • the PUCCH setting information may include a list of one or more SR resource information (for example, "schedulingRequestResourceToAddModList" of RRC IE).
  • FIG. 2 is a diagram showing an example of SR resource information.
  • the SR resource information may include, for example, at least one of the following parameters.
  • -SR resource information identifier SR resource ID, for example, "schedulingRequestResourceId" of RRC IE
  • SR resource ID for example, "schedulingRequestResourceId” of RRC IE
  • SR-ID for example, "schedulingRequestID” of RRC IE
  • SR-ID for example, "schedulingRequestID” of RRC IE
  • Information indicating at least one of the period and offset of the SR resource (also called SR opportunity, etc.)
  • period / offset information for example, "periodicityAndOffset" of RRC IE
  • -PUCCH resource identifier (PUCCH resource ID, for example, "PUCCH-ResourceId" of RRC IE)
  • the SR resource set by the SR resource information may be associated with the SR setting information (or SR setting) identified by the SR-ID.
  • the SR resource may include at least one of the above SR opportunity and PUCCH resource.
  • the cycle may be, for example, 2 or 7 symbols, 1, 2, 4, 5, 8, 10, 16, 20, 40, 80, 160, 320 or 640 slots.
  • a set of possible values may be defined for each subcarrier spacing (SCS).
  • the UE may transmit an SR using the PUCCH resource indicated by the PUCCH resource ID at the SR opportunity of a predetermined cycle determined based on the cycle / offset information.
  • the UE may control the transmission of the SR based on the SR setting information indicated by the SR-ID.
  • FIG. 3 is a diagram showing an example of SR transmission control.
  • FIG. 3 shows, for example, an example in which SR opportunities associated with SR-ID in the LCH setting information of LCH # 0 are provided in a 4-slot cycle.
  • the UE when the uplink data arrives, the UE (or the MAC entity of the UE) performs SR at the next SR opportunity of SR-ID associated with LCH # 0 corresponding to the uplink data. You may send it.
  • the SR opportunity of a predetermined cycle is reached until the maximum number of SR transmissions (for example, "sr-TransMax" of RRC IE) is reached.
  • SR may be transmitted every time.
  • the UE may transmit uplink data using an uplink shared channel (for example, Physical Uplink Shared Channel (PUSCH) or Uplink Shared Channel (UL-SCH)) assigned by the uplink grant.
  • PUSCH Physical Uplink Shared Channel
  • UL-SCH Uplink Shared Channel
  • the uplink grant is information used for PUSCH scheduling for the UE, and is called downlink control information (Downlink Control Information (DCI)), DCI format 0_0, 0_1, 0_x (x is an arbitrary character string), or the like. You may.
  • DCI Downlink Control Information
  • the UE receives the above LCH setting information (for example, "LogicalChannelConfig” or "mac-LogicalChannelConfig” of RRC IE).
  • the LCH setting information may be included in the information related to the radio link control (Radio Link Control (RLC)) (RLC setting information, for example, "RLC-BearerConfig" of RRC IE).
  • RLC Radio Link Control
  • the RLC setting information corresponds to the logical channel in the MAC and is used to set the RLC entity that links to the Packet Data Convergence Protocol (PDCP) entity.
  • PDCP Packet Data Convergence Protocol
  • FIG. 4 is a diagram showing an example of LCH setting information.
  • the LCH setting information may include at least one of the following parameters. -Information indicating the priority of LCH (LCH priority information, for example, "priority” of RRC IE) -Information indicating the preferred bit rate (for example, “prioritised BitRate” of RRC IE) -Information indicating the bucket size period (for example, "bucketSizeDuration" of RRC IE) -A list of serving cells to which the MAC Service Data Unit (SDU) generated from the LCH is mapped (eg, "allowedServingCells" in RRC IE).
  • LCH priority information for example, "priority” of RRC IE
  • the preferred bit rate for example, "prioritised BitRate” of RRC IE
  • bucket size period for example, "bucketSizeDuration” of RRC IE
  • SDU MAC Service Data Unit
  • SR-ID for example, "schedulingRequestId” of RRC IE
  • SR trigger control information when type 1 or 2 of the setting grant is set for example, "schedulingRequestId” of RRC IE
  • -Information indicating whether or not to apply the delay time for SR transmission for LCH for example, "logicalChannel SR-DelayTimerApplied" of RRC IE
  • the UE may prioritize the LCH based on the above LCH priority information. Specifically, the UE (the MAC entity of the UE) may control at least one such as mapping between the LCH and the transport channel, resource allocation, etc., based on the LCH priority information.
  • the LCH may be a channel for transmission in the RLC layer between the UE and the base station.
  • the LCH includes, for example, an individual traffic channel (Dedicated Traffic Channel (DTCH)), an individual control channel (Dedicated Control Channel (DCCH)), a common control channel (Common Control Channel (CCCH)), and a paging control channel (Paging Control Channel (DCCH)).
  • DTCH Dedicated Traffic Channel
  • DCCH Common Control Channel
  • DCCH paging Control Channel
  • PCCH Broadcast Control Channel
  • BCCH Broadcast Control Channel
  • the transport channel may be a channel that transmits in the MAC layer between the UE and the base station.
  • the transport channels include, for example, a paging channel (Paging Channel (PCH)), a broadcast channel (Broadcast Channel (BCH)), a downlink shared channel (Downlink Shared Channel (DL-SCH)), and an uplink shared channel (Uplink Shared Channel (Uplink Shared Channel).
  • PCH paging Channel
  • BCH Broadcast Channel
  • DL-SCH downlink shared channel
  • Uplink Shared Channel Uplink Shared Channel
  • UL-SCH uplink shared channel
  • RACH Random Access Channel
  • the MAC entity of the UE may map CCCH, DCCH, and DTCH to UL-SCH, respectively.
  • the MAC entity of the UE may separate the DL-SCH into CCCH, DCCH, and DTCH.
  • SR resources also referred to as SR resources
  • FIG. 5 is a diagram showing an example of a plurality of SR transmissions associated with different service types.
  • the SR opportunity for SR setting # 1 associated with the first service type eg, URLLC data
  • the second service type eg, eMBB data
  • the SR opportunity for SR setting # 2 is set in a cycle of 10 slots.
  • FIG. 5 is merely an example, and the service type, SR opportunity cycle, and the like are not limited to those shown.
  • the SR opportunity for SR setting # 1 is associated with the SR-ID “1” in the LCH setting information for LCH # 1 associated with the first service type (eg, URLLC data). It may be set based on the SR resource information.
  • the SR opportunity for SR setting # 2 is the SR resource information associated with SR-ID "2" in the above LCH setting information for LCH # 2 associated with the second service type (for example, eMBB data). It may be set based on.
  • the MAC entity of the UE is for LCH # 2 associated with the second service type.
  • the physical layer is instructed to transmit SR of SR setting # 2.
  • the MAC entity of the UE will have the next SR opportunity for LCH # 1 associated with that first service type (here). Then, the physical layer is instructed to transmit the SR of the SR setting # 1 in the PUCCH resources of the symbols # 7 and # 8 of the slot # n.
  • the first service type eg, URLLC data
  • the PUCCH resource # 1 for SR transmission of SR setting # 1 and the PUCCH resource # 2 for SR transmission of SR setting # 2 collide with each other in slot # n.
  • the problem is how to control the prioritization between the SR of SR setting # 1 (for example, URLLC SR) and the SR of SR setting # 2 (for example, eMBB SR).
  • the service type is recognized based on at least one of LCH, DCI format, Radio Network Temporary Identifier (RNTI), RLC bearer, PDCP layer, and Service Data Adaptation Protocol (SDAP) layer. It may be (decided, implicitly derived).
  • the protocol (layer) from the lower layer to the upper layer is arranged in the order of the PHY layer, the MAC layer, the RLC layer, the PDCP layer, and the SDAP layer. It may be specified. Further, in the control plane of the UE and the base station, the protocol from the lower level to the upper level may be defined in the order of the PHY layer, the MAC layer, the RLC layer, the PDCP layer, and the RRC layer.
  • RRC parameters eg, RRC IE
  • MAC parameters eg, MAC control elements, MAC Service Data Unit (SDU), etc.
  • SDU MAC Service Data Unit
  • PUCCH Physical channels
  • MAC signaling MAC parameter
  • RRC signaling RRC parameter
  • broadcast information for example, information transmitted by Physical Broadcast Channel (PBCH) (for example, Master Information Block (MIB)) or system information (for example, System Information).
  • PBCH Physical Broadcast Channel
  • MIB Master Information Block
  • SIB System Information
  • Broadcast information may be specified as an RRC parameter.
  • PHY signaling physical channel
  • lower layer signaling lower layer or the like.
  • the SR priority may be defined in the RRC layer, and the SR priority may be notified to the UE by RRC signaling (for example, RRC configuration or RRC re-configuration).
  • SR priority information Information indicating the SR priority of each SR setting may be determined based on at least one of the service type and the requirements of the service type.
  • the SR priority information may be, for example, X integers, and may indicate a lower priority (priority level) as the value increases (a higher priority level may be indicated as the value decreases). ).
  • an increasing value may indicate a higher priority (priority level) (a larger value may indicate a higher priority level).
  • the SR priority information is a parameter newly introduced for the SR priority of the SR setting having the SR-ID (for example, "SchedulingRequestID" of RRC IE) (for example, “SchedulingRequestPriority" of RRC IE). May be good.
  • the SR priority information may be, for example, reusing the above-mentioned LCH priority information indicating the priority of the logical channel (for example, "priority" in "Logical Channel Config" of RRC IE).
  • the SR priority information may be a newly introduced parameter (for example, "SchedulingRequestPriority" of RRC IE), or may be included in the SR resource information (for example, "SchedulingRequestResourceConfig" of RRC IE).
  • the SR priority information may be defined for each SR resource (for example, SR opportunity, at least one PUCCH resource for SR transmission). That is, SR priority information may be associated with the SR resource.
  • SR settings SR setting information
  • SR-IDs SR setting information
  • service types for example, URLLC and eMBB
  • the SR priority information associated with the SR resource used for transmitting the URLLC SR is the SR resource (SR resource used for transmitting the eMBB SR).
  • a priority for example, a smaller value
  • the SR priority information associated with the PUCCH resource # 2 may be shown.
  • FIG. 6 is a diagram showing an example of SR resource information according to the first aspect.
  • the SR resource information shown in FIG. 6 may differ from the SR resource information of FIG. 2 in that it includes SR priority information (for example, “SchedulingRequestPriority” of RRC IE).
  • the SR priority information in the SR resource information including the PUCCH resource ID “1” indicating the PUCCH resource # 1 is the PUCCH resource # 2 (here, for eMBB SR). ) May be higher than the SR priority information in the SR resource information including the PUCCH resource ID “2”.
  • the SR priority is associated with the SR resource. Therefore, when a plurality of SR resources associated with SRs of different service types are duplicated in the same time unit (for example, slot), the UE can appropriately prioritize the SRs.
  • the SR priority information may be a newly introduced parameter (for example, "SchedulingRequestPriority" of RRC IE), and is included in the above SR setting information (for example, each "SchedulingRequestToAddMod" in "SchedulingRequestConfig" of RRC IE). It may be.
  • the SR priority information may be determined for each SR setting identified by the SR-ID (for example, "SchedulingRequestId" of RRC IE). That is, the SR priority information may be associated with the SR setting (SR setting information) identified by the SR-ID.
  • SR settings SR setting information
  • different service types eg, URLLC and eMBB
  • SR setting information SR setting information
  • the SR priority information associated with the SR setting # 1 of the URLLC SR has a higher priority than the SR priority information associated with the SR setting # 2 of the eMBB SR (for example, Small value) may be indicated.
  • FIG. 7 is a diagram showing an example of SR setting information of the first aspect.
  • Each SR setting information for example, "SchedulingRequestToAddMod" of RRC IE
  • the SR setting set information for example, "SchedulingRequestConfig” of RRC IE
  • SR priority information for example, "SchedulingRequestPriority" of RRC IE. It may be different from the SR setting set information of FIG. 1 in that it includes.
  • the SR priority information in the SR setting information including the SR-ID "1" indicating the SR setting # 1 of the URLLC SR in FIG. 5 is the SR-ID "2" indicating the SR setting # 2 of the SR for eMBB. It may indicate a higher priority than the SR priority information in the SR setting information including.
  • the SR priority is associated with the SR setting. Therefore, when a UE duplicates a plurality of SR resources associated with SR settings of SRs of different service types within the same time unit (for example, slot), prioritize the SRs appropriately. Can be done.
  • the SR priority information may be derived (determined) from the LCH priority information of the LCH associated with the SR setting (for example, "priority" in the "Logical Channel Config" of the RRC IE).
  • the physical layer of the UE may determine the SR priority information from the LCH priority information set in the RRC layer.
  • the SR priority information may be the same as the LCH priority information indicating the priority of the logical channel associated with the SR setting, or the LCH priority information is mapped (converted) according to a predetermined rule. It may be.
  • the SR priority may be associated with the LCH.
  • SR settings SR setting information
  • the UE has SR priority information based on the LCH priority information associated with the different SR settings. It is possible to determine which SR resource is used to prioritize SR transmission based on.
  • the LCH priority information associated with the SR setting # 1 of the URLLC SR has a higher priority than the LCH priority information associated with the SR setting # 2 of the eMBB SR (for example, Small value) may be indicated.
  • the SR priority information of SR setting # 1 may indicate a higher priority than the SR priority information of SR setting # 2.
  • the LCH setting information (for example, "LogicalChannelConfig" of RRC IE) includes LCH priority information (for example, "priority” of RRC IE) and SR-ID (for example, "SchedulingRequestId” of RRC IE). )including. That is, an LCH having a predetermined LCH priority is associated with the SR setting identified by the SR-ID.
  • the SR priority information may be the same as the LCH priority information of the LCH associated with the SR setting identified by the SR-ID.
  • the LCH priority information having a predetermined value from the LCH priority information of the one or more LCHs is the SR priority information of the single SR setting. May be selected as.
  • the LCH priority information of the predetermined value is, for example, the minimum value LCH priority information (for example, the highest priority level LCH priority information) or the maximum value LCH priority information (for example, the lowest priority level). LCH priority information) may be used.
  • the UE can use the SR priority information of the SR setting # 1. May be determined as "2".
  • LCH # 3 of LCH priority information "5" and LCH # 4 of LCH priority information "7" are associated with SR setting # 2 identified by SR-ID "2".
  • the UE may determine, for example, the SR priority information of the SR setting as the LCH priority information “5” of the LCH # 3 having the highest priority level.
  • a mapping rule between LCH priority information and SR priority information may be predetermined.
  • the values in the first range of the LCH priority information for example, “1” to “8” are mapped to the first values of the SR priority information (for example, “1”), and the LCH priority is given.
  • Values in the second range of degree information eg, "9" to "16" are mapped to second values in SR priority information (eg, "2").
  • the mapping shown in FIG. 8B is only an example, and is not limited to this.
  • the number of SR priority information values may be 2 or more.
  • the UE sets the SR priority information of the SR setting # 1 to "" according to the above mapping rule. 1 "may be determined.
  • LCH # 3 of LCH priority information “10” and LCH # 4 of LCH priority information “12” are associated with SR setting # 2.
  • the UE may determine, for example, the SR priority information of the SR setting # 2 as "2" corresponding to the LCH priority information "10" of the LCH # 3 having the highest priority level.
  • the UE determines the SR priority information of the SR setting based on the LCH priority information of the LCH associated with the SR setting identified by the SR-ID.
  • the LCH priority information of LCH # 1 associated with SR setting # 1 of SR for URLLC is the LCH priority information of LCH # 2 associated with SR setting # 2 of SR for eMBB. It may indicate a higher priority level. Therefore, when a plurality of SR resources associated with SR settings of SRs of different service types are duplicated in the same time unit (for example, slot), the LCH priority information of the LCH associated with the SR settings is duplicated.
  • SR priority information can be determined based on the above, and prioritization based on the SR priority information can be appropriately controlled.
  • the UE transmits the SR having the highest SR priority indicated by the SR priority information included in the SR resource information or the SR setting information, or the SR priority information determined based on the LCH priority information. It may be transmitted using the PUCCH resource or PUSCH. For example, in slot # n of FIG. 5, the UE may transmit the SR of SR setting # 1 having a high SR priority by the PUCCH resource # 1.
  • the UE multiplexes one or more SRs whose SR priority information satisfies a predetermined condition (for example, some SRs satisfying the condition among all the SRs that collide) in one PUCCH resource or PUSCH. May be sent.
  • a predetermined condition for example, some SRs satisfying the condition among all the SRs that collide
  • the UE may multiplex both the SR of SR setting # 1 and the SR of SR setting # 2 in PUCCH resource # 1 or # 2 and transmit them.
  • the plurality of SRs can be properly controlled for prioritization.
  • the SR priority may be defined in the physical layer.
  • the UE may determine the SR priority of each SR setting based on the parameters for each SR setting.
  • the UE may determine the SR priority value as a function of the parameters for each SR setting. For example, the UE may determine the SR priority value based on at least one of the following parameters: -LCH priority information of LCH associated with SR setting-Period of SR resource (eg SR opportunity) associated with SR setting-Length of SR resource (eg PUCCH resource) associated with SR setting-Maximum SR setting SR transmission count
  • -LCH priority information of LCH associated with SR setting-Period of SR resource eg SR opportunity
  • SR setting-Length of SR resource eg PUCCH resource
  • one LCH includes an SR setting, an SR opportunity cycle corresponding to the SR setting, a PUCCH resource used for SR transmission corresponding to the SR setting, other SR setting information, and parameters in the SR setting information (for example, maximum).
  • SR transmission function or at least two combinations thereof may be associated with each other.
  • the UE may determine the SR priority P SR_ID using the following equation (1).
  • P SR_ID a ⁇ x LC_priority + b ⁇ x SR_periodicity + c ⁇ y PUCCH_length + d ⁇ z maxSR
  • a is a weighting factor for the LCH priority information of the LCH associated with the SR setting (for example, the value indicated by "priority" in the "Logical Channel Config" of RRC IE).
  • a may be, for example, a constant constant with a value between 0 and 1.
  • B is a coefficient for weighting the SR opportunity cycle associated with the SR setting (for example, the cycle indicated by "periodicityAndOffset" in "SchedulingRequestResourceConfig" of RRC IE).
  • b may be, for example, a predetermined constant having a value between 0 and 1.
  • c is a coefficient for weighting the length (number of symbols) of the PUCCH resource used for SR transmission associated with the SR setting (for example, the PUCCH resource indicated by "PUCCH-ResourceId" in "SchedulingRequestResourceConfig" of RRC IE).
  • .. c may be, for example, a predetermined constant having a value between 0 and 1.
  • D is a coefficient for weighting the maximum number of SR transmissions in the SR setting (for example, the number of SR transmissions indicated by "sr-TransMax" in "SchedulingRequestToAddMod" of RRC IE).
  • d may be, for example, a predetermined constant having a value between 0 and 1.
  • x LC_priority may be a value based on the LCH priority information of the logical channel associated with the SR setting (eg, a value based on "priority" in the "Logical Channel Config" of the RRC IE).
  • x SR_periodicity may be a value based on the cycle of SR opportunities associated with the SR settings (eg, a value based on the cycle indicated by "periodicityAndOffset" in "SchedulingRequestResourceConfig" of RRC IE).
  • y PUCCH_length is a value based on the length (number of symbols) of the PUCCH resource used for SR transmission associated with the SR setting (for example, based on the length of the PUCCH resource indicated by "PUCCH-ResourceId" in "SchedulingRequestResourceConfig" of RRC IE. Value) may be.
  • z maxSR may be a value based on the maximum number of SR transmissions in the SR setting (for example, a value based on the number of SR transmissions indicated by "sr-TransMax" in "SchedulingRequestToAddMod" of RRC IE).
  • equation (1) is merely an example, and the function used to determine the SR priority PSR_ID is not limited to equation (1).
  • the SR priority P SR_ID may be determined using at least one of the above parameters a, x LC_priority , b, x SR_periodicity , c, y PUCCH_length , d, z max SR .
  • the UE can be selected from any of the following (1) to (5). It may work.
  • One of the different SR settings may be selected and the SR of the selected SR settings may be transmitted. Which SR setting to select may depend on the implementation of the UE.
  • One of the different SR settings may be selected based on at least one of the start symbol and the length of the PUCCH resource used for SR transmission, and the SR of the selected SR setting may be transmitted. For example, an SR setting in which the start symbol of the PUCCH resource is early or late, an SR setting in which the length of the PUCCH resource is short, or the like may be selected.
  • One of the different SR settings may be selected based on the LCH priority information of the associated LCH, and the SR of the selected SR settings may be transmitted.
  • the SR setting may be selected in which the LCH priority information indicates the highest priority (for example, the lowest value).
  • One of the different SR settings may be selected based on the SR opportunity cycle, and the SR of the selected SR settings may be transmitted. For example, an SR setting with a short SR opportunity cycle may be selected.
  • FIG. 9 is a diagram showing an example of determining SR priority information according to the second aspect.
  • SR setting # 1 having SR-ID “1” (for example, SR setting for URLLC)
  • SR setting # 2 having SR-ID “2” (for example, SR setting for eMBB) are Shown.
  • at least one value of the parameters x LC_priority , x SR_periodicity , y PUCCH_length , and z maxSR related to the SR setting may be converted according to a predetermined rule.
  • the x LC_priority of SR settings # 1 and # 2 may be a value (here, 2 and 5) indicated by the LCH priority information of the logical channel associated with the SR setting.
  • the x SR_periodicity of SR settings # 1 and # 2 converts the SR opportunity cycle (here, 2 symbols and 1 slot (14 symbols)) associated with the SR setting so that the shorter the cycle, the higher the priority.
  • the values (here, 0 and 2) may be used. Here, it is assumed that the smaller the value, the higher the priority, but the priority is not limited to this.
  • y PUCCH_length of SR settings # 1 and # 2 sets the length of the PUCCH resource (here, 2 symbols and 6 symbols) used for SR transmission associated with the SR setting to be higher in priority as the length is shorter. It may be a converted value (here, 1 and 5). Here, it is assumed that the smaller the value, the higher the priority, but the priority is not limited to this.
  • the z maxSR of SR settings # 1 and # 2 is a value obtained by converting the maximum number of SR transmissions (here, 4 and 4) of the SR setting into a predetermined rule (here, 0 and 0). May be good.
  • the SR priority can be determined in the physical layer, when a plurality of SR resources associated with different SR settings collide within the same time unit, the priority can be appropriately performed.
  • the transmission control based on the SR priority information described in the first aspect can be applied.
  • the priority information of the first aspect may be replaced with the SR priority P SR_ID determined by the physical layer.
  • the SR priority may be determined in the MAC layer.
  • the MAC entity of the UE may deliver SR priority information indicating SR priority to the physical layer.
  • the SR priority information notified from the MAC layer to the physical layer is derived (determined) based on the LCH priority information of the LCH associated with the SR setting (for example, "priority" in "Logical Channel Config" of RRC IE). You may.
  • the "MAC entity” determines the SR priority information based on the LCH priority information
  • the "physical layer” determines the SR priority information based on the LCH priority information in the upper layer parameter. It may be different from the first aspect. More specifically, the third aspect may differ from the first aspect in that SR priority information notification occurs between the MAC entity and the physical layer of the UE.
  • FIG. 10 is a diagram showing an example of prioritization based on SR priority information according to the third aspect.
  • the SR opportunity for SR setting # 1 associated with the first service type eg, URLLC data
  • the second service type eg, URLLC data
  • the SR opportunity for SR setting # 2 associated with (eMBB data) is set in a 10-slot cycle.
  • the first service type for example, URLLC data
  • the second service type for example, eMBB data
  • LCH # 2 the service type, SR opportunity cycle, and the like are not limited to those shown.
  • the MAC entity of the UE is the next for SR configuration # 2 associated with LCH # 2. Instruct the physical layer to transmit the SR of the SR setting # 2 at the SR opportunity (here, the PUCCH resource of the symbols # 2 to # 8 of the slot # n), and physically obtain the SR priority information of the SR setting # 2. Notify the layer.
  • the MAC entity of the UE will have the next SR opportunity for SR setting # 1 associated with LCH # 1 (here).
  • the PUCCH resource of the symbols # 8 and # 9 of the slot # n) is instructed to transmit the SR of the SR setting # 1, and the SR priority information of the SR setting # 1 is notified to the physical layer.
  • the UE (physical layer of the UE) may control the prioritization of SR settings # 1 and # 2 in slot # n based on the SR priority information from the MAC entity.
  • 11A and 11B are diagrams showing an example of SR priority information notified from the MAC entity.
  • 11A and 11B show an example of SR priority information of SR settings # 1 and # 2 of FIG.
  • the LCH priority information of LCH # 1 associated with SR setting # 1 in FIG. 10 is "1"
  • the LCH priority information of LCH # 2 associated with SR setting # 2 is "8". To do. The smaller the value of the LCH priority information, the higher the priority.
  • the MA entity of the UE uses the LCH priority information of LCH # 1 and # 2 associated with SR settings # 1 and # 2 as the SR priority information of SR settings # 1 and # 2.
  • the physical layer may be notified.
  • the MA entity of the UE provides LCH priority information “1” and “8” for LCH # 1 and # 2 associated with SR settings # 1 and # 2, respectively, to SR settings # 1 and # 2, respectively.
  • the physical layer may be notified as the SR priority information of 2.
  • the MAC entity of the UE When a single SR setting is associated with one or more LCHs, the MAC entity of the UE has the LCH priority information of the one or more LCHs whose LCH priority information having a predetermined value is the single SR. It may be selected as SR priority information of the setting.
  • the LCH priority information of the predetermined value is, for example, the minimum value LCH priority information (for example, the highest priority level LCH priority information) or the maximum value LCH priority information (for example, the lowest priority level). LCH priority information) may be used.
  • the MAC entity of the UE sets a predetermined value derived from the LCH priority information of LCH # 1 and # 2 associated with SR settings # 1 and # 2 to SR # 1 and # 2.
  • the physical layer may be notified as SR priority information of.
  • a mapping rule between the LCH priority information and the SR priority information may be predetermined.
  • the MA entity of the UE is from the LCH priority information “1” and “8” of LCH # 1 and # 2 associated with SR settings # 1 and # 2, respectively, according to a predetermined mapping rule.
  • the SR priority information "1" and "2" of the SR settings # 1 and # 2 may be derived, and the derived SR priority information may be notified to the physical layer.
  • the MAC entity of the UE When a single SR setting is associated with one or more LCHs, the MAC entity of the UE has a predetermined value (eg, the smallest or largest value) from the LCH priority information of the one or more LCHs.
  • the SR priority information of the single SR setting may be derived from the LCH priority information according to the above mapping rule.
  • the UE (physical layer of the UE) is notified by the MAC entity when the PUCCH resources used for transmission of SR settings # 1 and # 2 collide in the same time unit (for example, slot # n in FIG. 10). Based on the SR priority information of # 1 and # 2, it may be determined which PUCCH resource is used for SR transmission.
  • the UE may transmit only the SR having the highest SR priority indicated by the SR priority information by the PUCCH resource for the SR transmission. For example, in FIG. 10, the UE uses the PUCCH resource # 1 corresponding to the SR setting # 1 based on the SR priority information of the SR settings # 1 and # 2 notified from the MAC entity, and uses the SR for URLLC. May be sent.
  • the UE may transmit one or more SRs whose SR priority indicated by the SR priority information satisfies a predetermined condition with the PUCCH resource.
  • the UE may transmit all the collided SRs with a PUCCH resource in which the SR priority indicated by the SR priority information satisfies a predetermined condition. For example, in FIG. 10, the UE sets both SRs corresponding to SR settings # 1 and # 2 to PUCCH resource # 1 based on the SR priority information of SR settings # 1 and # 2 notified from the MAC entity. Alternatively, it may be transmitted using # 2.
  • the UE when the PUSCH is scheduled in the same time unit (for example, slot # n in FIG. 10), the UE (physical layer of the UE) transmits at least one of the conflicting SRs in the PUSCH. May be good.
  • the MAC entity of the UE since the MAC entity of the UE notifies the SR priority information to the physical layer, it is appropriate to prioritize a plurality of SRs in which the physical layer of the UE collides in the same time unit. Can be controlled.
  • wireless communication system Wireless communication system
  • communication is performed using any one of the wireless communication methods according to each of the above-described embodiments of the present disclosure or a combination thereof.
  • FIG. 12 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • the wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by Third Generation Partnership Project (3GPP). ..
  • the wireless communication system 1 may support dual connectivity between a plurality of Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)).
  • MR-DC is dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and dual connectivity between NR and LTE (NR-E).
  • -UTRA Dual Connectivity (NE-DC) may be included.
  • the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)).
  • the NR base station (gNB) is MN
  • the LTE (E-UTRA) base station (eNB) is SN.
  • the wireless communication system 1 has dual connectivity between a plurality of base stations in the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )) May be supported.
  • a plurality of base stations in the same RAT for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )
  • NR-NR Dual Connectivity NR-DC
  • gNB NR base stations
  • the wireless communication system 1 includes a base station 11 that forms a macro cell C1 having a relatively wide coverage, and a base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. You may prepare.
  • the user terminal 20 may be located in at least one cell. The arrangement, number, and the like of each cell and the user terminal 20 are not limited to the mode shown in the figure.
  • the base stations 11 and 12 are not distinguished, they are collectively referred to as the base station 10.
  • the user terminal 20 may be connected to at least one of the plurality of base stations 10.
  • the user terminal 20 may use at least one of carrier aggregation (Carrier Aggregation (CA)) and dual connectivity (DC) using a plurality of component carriers (Component Carrier (CC)).
  • CA Carrier Aggregation
  • DC dual connectivity
  • CC Component Carrier
  • Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)).
  • the macro cell C1 may be included in FR1 and the small cell C2 may be included in FR2.
  • FR1 may be in a frequency band of 6 GHz or less (sub 6 GHz (sub-6 GHz)), and FR2 may be in a frequency band higher than 24 GHz (above-24 GHz).
  • the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a frequency band higher than FR2.
  • the user terminal 20 may perform communication using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • the plurality of base stations 10 may be connected by wire (for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication).
  • wire for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.
  • NR communication for example, when NR communication is used as a backhaul between base stations 11 and 12, the base station 11 corresponding to the upper station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to a relay station (relay) is IAB. It may be called a node.
  • IAB Integrated Access Backhaul
  • relay station relay station
  • the base station 10 may be connected to the core network 30 via another base station 10 or directly.
  • the core network 30 may include at least one such as Evolved Packet Core (EPC), 5G Core Network (5GCN), and Next Generation Core (NGC).
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the user terminal 20 may be a terminal that supports at least one of communication methods such as LTE, LTE-A, and 5G.
  • a wireless access method based on Orthogonal Frequency Division Multiplexing may be used.
  • OFDM Orthogonal Frequency Division Multiplexing
  • DL Downlink
  • UL Uplink
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple. Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the wireless access method may be called a waveform.
  • another wireless access system for example, another single carrier transmission system, another multi-carrier transmission system
  • the UL and DL wireless access systems may be used as the UL and DL wireless access systems.
  • downlink shared channels Physical Downlink Shared Channel (PDSCH)
  • broadcast channels Physical Broadcast Channel (PBCH)
  • downlink control channels Physical Downlink Control
  • Channel PDCCH
  • the uplink shared channel Physical Uplink Shared Channel (PUSCH)
  • the uplink control channel Physical Uplink Control Channel (PUCCH)
  • the random access channel shared by each user terminal 20 are used.
  • Physical Random Access Channel (PRACH) Physical Random Access Channel or the like may be used.
  • PDSCH User data, upper layer control information, System Information Block (SIB), etc. are transmitted by PDSCH.
  • User data, upper layer control information, and the like may be transmitted by the PUSCH.
  • MIB Master Information Block
  • PBCH Master Information Block
  • Lower layer control information may be transmitted by PDCCH.
  • the lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information of at least one of PDSCH and PUSCH.
  • DCI Downlink Control Information
  • the DCI that schedules PDSCH may be called DL assignment, DL DCI, etc.
  • the DCI that schedules PUSCH may be called UL grant, UL DCI, etc.
  • the PDSCH may be read as DL data
  • the PUSCH may be read as UL data.
  • a control resource set (COntrol REsource SET (CORESET)) and a search space (search space) may be used to detect the PDCCH.
  • CORESET corresponds to a resource that searches for DCI.
  • the search space corresponds to the search area and search method of PDCCH candidates (PDCCH candidates).
  • One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a search space based on the search space settings.
  • One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set.
  • the "search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. of the present disclosure may be read as each other.
  • channel state information (Channel State Information (CSI)
  • delivery confirmation information for example, it may be called Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK / NACK, etc.
  • scheduling request (Scheduling Request ( Uplink Control Information (UCI) including at least one of SR))
  • the PRACH may transmit a random access preamble for establishing a connection with the cell.
  • downlinks, uplinks, etc. may be expressed without “links”. Further, it may be expressed without adding "Physical" at the beginning of various channels.
  • a synchronization signal (Synchronization Signal (SS)), a downlink reference signal (Downlink Reference Signal (DL-RS)), and the like may be transmitted.
  • the DL-RS includes a cell-specific reference signal (Cell-specific Reference Signal (CRS)), a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), and a demodulation reference signal (DeModulation).
  • CRS Cell-specific Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • DeModulation Demodulation reference signal
  • Reference Signal (DMRS)), positioning reference signal (Positioning Reference Signal (PRS)), phase tracking reference signal (Phase Tracking Reference Signal (PTRS)), and the like may be transmitted.
  • PRS Positioning Reference Signal
  • PTRS Phase Tracking Reference Signal
  • the synchronization signal may be, for example, at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)) and a secondary synchronization signal (Secondary Synchronization Signal (SSS)).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be referred to as SS / PBCH block, SS Block (SSB) and the like.
  • SS, SSB and the like may also be called a reference signal.
  • a measurement reference signal Sounding Reference Signal (SRS)
  • a demodulation reference signal DMRS
  • UL-RS Uplink Reference Signal
  • UE-specific Reference Signal UE-specific Reference Signal
  • FIG. 13 is a diagram showing an example of the configuration of the base station according to the embodiment.
  • the base station 10 includes a control unit 110, a transmission / reception unit 120, a transmission / reception antenna 130, and a transmission line interface 140.
  • the control unit 110, the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140 may each be provided with one or more.
  • the functional blocks of the feature portion in the present embodiment are mainly shown, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
  • the control unit 110 controls the entire base station 10.
  • the control unit 110 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping) and the like.
  • the control unit 110 may control transmission / reception, measurement, and the like using the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
  • the control unit 110 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 120.
  • the control unit 110 may perform call processing (setting, release, etc.) of the communication channel, state management of the base station 10, management of radio resources, and the like.
  • the transmission / reception unit 120 may include a baseband unit 121, a Radio Frequency (RF) unit 122, and a measurement unit 123.
  • the baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212.
  • the transmission / reception unit 120 includes a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmission / reception circuit, and the like, which are described based on common recognition in the technical fields according to the present disclosure. be able to.
  • the transmission / reception unit 120 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122.
  • the receiving unit may be composed of a receiving processing unit 1212, an RF unit 122, and a measuring unit 123.
  • the transmitting / receiving antenna 130 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
  • the transmission / reception unit 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 120 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 120 processes, for example, Packet Data Convergence Protocol (PDCP) layer processing and Radio Link Control (RLC) layer processing (for example, RLC) for data, control information, etc. acquired from control unit 110.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control HARQ retransmission control
  • the transmission / reception unit 120 performs channel coding (may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (Discrete Fourier Transform (DFT)) for the bit string to be transmitted.
  • the base band signal may be output by performing processing (if necessary), inverse fast Fourier transform (IFFT) processing, precoding, digital-analog transform, and other transmission processing.
  • IFFT inverse fast Fourier transform
  • the transmission / reception unit 120 may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 130. ..
  • the transmission / reception unit 120 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 130.
  • the transmission / reception unit 120 (reception processing unit 1212) performs analog-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. )) Processing (if necessary), filtering, demapping, demodulation, decoding (may include error correction decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing are applied. User data and the like may be acquired.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • the transmission / reception unit 120 may perform measurement on the received signal.
  • the measuring unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, or the like based on the received signal.
  • the measuring unit 123 has received power (for example, Reference Signal Received Power (RSRP)) and reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)).
  • RSRP Reference Signal Received Power
  • RSSQ Reference Signal Received Quality
  • SINR Signal to Noise Ratio
  • Signal strength for example, Received Signal Strength Indicator (RSSI)
  • propagation path information for example, CSI
  • the measurement result may be output to the control unit 110.
  • the transmission line interface 140 transmits and receives signals (backhaul signaling) to and from devices included in the core network 30, other base stations 10, and the like, and user data (user plane data) and control plane for the user terminal 20. Data or the like may be acquired or transmitted.
  • the transmitting unit and the receiving unit of the base station 10 in the present disclosure may be composed of at least one of the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
  • the transmission / reception unit 120 may transmit information related to each scheduling request (SR) setting (SR setting information, for example, "SchedulingRequestToAddMod" of RRC IE).
  • SR setting information for example, "SchedulingRequestToAddMod" of RRC IE.
  • the transmission / reception unit 220 may transmit information regarding resources associated with each SR setting (SR resource information, for example, "SchedulingRequestResourceConfig" of RRC IE).
  • SR resource information for example, "SchedulingRequestResourceConfig" of RRC IE.
  • the transmission / reception unit 220 may transmit information regarding the logical channel associated with each SR setting (LCH setting information, for example, "Logical Channel Config" of RRC IE).
  • LCH setting information for example, "Logical Channel Config" of RRC IE.
  • the transmission / reception unit 220 may transmit downlink control information for scheduling PUSCH based on the SR from the user terminal 20.
  • FIG. 14 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
  • the user terminal 20 includes a control unit 210, a transmission / reception unit 220, and a transmission / reception antenna 230.
  • the control unit 210, the transmission / reception unit 220, and the transmission / reception antenna 230 may each be provided with one or more.
  • this example mainly shows the functional blocks of the feature portion in the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
  • the control unit 210 controls the entire user terminal 20.
  • the control unit 210 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
  • the control unit 210 may control signal generation, mapping, and the like.
  • the control unit 210 may control transmission / reception, measurement, and the like using the transmission / reception unit 220 and the transmission / reception antenna 230.
  • the control unit 210 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 220.
  • the transmission / reception unit 220 may include a baseband unit 221 and an RF unit 222, and a measurement unit 223.
  • the baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212.
  • the transmission / reception unit 220 can be composed of a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmission / reception circuit, and the like, which are described based on common recognition in the technical fields according to the present disclosure.
  • the transmission / reception unit 220 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222.
  • the receiving unit may be composed of a receiving processing unit 2212, an RF unit 222, and a measuring unit 223.
  • the transmitting / receiving antenna 230 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
  • the transmission / reception unit 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 220 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 220 processes, for example, PDCP layer processing, RLC layer processing (for example, RLC retransmission control), and MAC layer processing (for example, for data, control information, etc. acquired from the control unit 210). , HARQ retransmission control), etc., to generate a bit string to be transmitted.
  • the transmission / reception unit 220 (transmission processing unit 2211) performs channel coding (may include error correction coding), modulation, mapping, filtering processing, DFT processing (if necessary), and IFFT processing for the bit string to be transmitted. , Precoding, digital-to-analog conversion, and other transmission processing may be performed to output the baseband signal.
  • Whether or not to apply the DFT process may be based on the transform precoding setting.
  • the transmission / reception unit 220 transmission processing unit 2211 described above for transmitting a channel (for example, PUSCH) using the DFT-s-OFDM waveform when the transform precoding is enabled.
  • the DFT process may be performed as the transmission process, and if not, the DFT process may not be performed as the transmission process.
  • the transmission / reception unit 220 may perform modulation, filtering, amplification, etc. to the radio frequency band on the baseband signal, and transmit the signal in the radio frequency band via the transmission / reception antenna 230. ..
  • the transmission / reception unit 220 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 230.
  • the transmission / reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering processing, demapping, demodulation, and decoding (error correction) for the acquired baseband signal. Decoding may be included), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
  • the transmission / reception unit 220 may perform measurement on the received signal.
  • the measuring unit 223 may perform RRM measurement, CSI measurement, or the like based on the received signal.
  • the measuring unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like.
  • the measurement result may be output to the control unit 210.
  • the transmission unit and the reception unit of the user terminal 20 in the present disclosure may be composed of at least one of the transmission / reception unit 220, the transmission / reception antenna 230, and the transmission line interface 240.
  • the transmission / reception unit 220 may receive information related to each scheduling request (SR) setting (SR setting information, for example, "SchedulingRequestToAddMod" of RRC IE).
  • SR setting information for example, "SchedulingRequestToAddMod" of RRC IE.
  • the transmission / reception unit 220 may receive information regarding resources associated with each SR setting (SR resource information, for example, "SchedulingRequestResourceConfig" of RRC IE).
  • SR resource information for example, "SchedulingRequestResourceConfig" of RRC IE.
  • the transmission / reception unit 220 may receive information regarding the logical channel associated with each SR setting (LCH setting information, for example, "Logical Channel Config" of RRC IE).
  • LCH setting information for example, "Logical Channel Config" of RRC IE.
  • control unit 210 When the transmission of a plurality of scheduling requests using a plurality of resources associated with a plurality of SR settings conflicts within the same time unit, the control unit 210 describes the plurality of scheduling requests based on the priority of each of the plurality of scheduling requests. You may control the transmission of multiple scheduling requests.
  • the information indicating the priority may be included in the information (SR resource information) regarding the plurality of resources associated with the plurality of SR settings (first aspect).
  • the information indicating the priority may be included in the information regarding the plurality of SR settings (SR setting information) (first aspect).
  • the control unit 210 has information indicating the priority of each of the plurality of scheduling requests (SR priority) based on the information indicating the priority of the plurality of logical channels associated with the plurality of SR settings (LCH priority information). Degree information) may be determined (first and third aspects).
  • the control unit 210 may determine the SR priority information based on the LCH priority set in the RRC layer (first aspect).
  • the control unit 210 may be an entity of the physical layer.
  • the control unit 210 may control the transmission of a plurality of SRs based on the SR priority information.
  • the control unit 210 may include a Medium Access Control (MAC) layer, a physical layer entity, and a physical layer entity.
  • the entity of the MAC layer determines the information (SR priority information) indicating the priority of each of the plurality of scheduling requests based on the information (LCH priority information) indicating the priority of the plurality of logical channels.
  • the physical layer may be notified (third aspect).
  • the entity of the physical layer may control the transmission of a plurality of SRs based on the SR priority information.
  • the control unit 210 has information indicating the priority of the plurality of logical channels associated with the plurality of SR settings, the period of each of the plurality of resources, the length of each of the plurality of resources, and the maximum of each of the plurality of scheduling requests.
  • the information indicating the priority may be determined based on at least one of the number of transmissions of.
  • the control unit 210 may be an entity of the physical layer.
  • the transmission / reception unit 220 may detect downlink control information that schedules PUSCH based on SR from the user terminal 20, and control transmission of uplink data using the PUSCH.
  • each functional block is realized by using one physically or logically connected device, or directly or indirectly (for example, two or more physically or logically separated devices). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • the functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (constituent unit) for functioning transmission may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like.
  • the method of realizing each of them is not particularly limited.
  • the base station, user terminal, and the like in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure.
  • FIG. 15 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
  • the base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. ..
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
  • processor 1001 may be a plurality of processors. Further, the processing may be executed by one processor, or the processing may be executed simultaneously, sequentially, or by using other methods by two or more processors.
  • the processor 1001 may be mounted by one or more chips.
  • the processor 1001 For each function of the base station 10 and the user terminal 20, for example, by loading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, the processor 1001 performs an operation and communicates via the communication device 1004. It is realized by controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
  • predetermined software program
  • the processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, and the like.
  • CPU central processing unit
  • control unit 110 210
  • transmission / reception unit 120 220
  • the like may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • the control unit 110 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized in the same manner for other functional blocks.
  • the memory 1002 is a computer-readable recording medium, for example, at least a Read Only Memory (ROM), an Erasable Programmable ROM (EPROM), an Electrically EPROM (EEPROM), a Random Access Memory (RAM), or any other suitable storage medium. It may be composed of one.
  • the memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, or the like that can be executed to implement the wireless communication method according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disc (Compact Disc ROM (CD-ROM)), a digital versatile disk, etc.). At least one of Blu-ray® disks, removable disks, hard disk drives, smart cards, flash memory devices (eg cards, sticks, key drives), magnetic stripes, databases, servers, and other suitable storage media. It may be composed of.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (Frequency Division Duplex (FDD)) and time division duplex (Time Division Duplex (TDD)). It may be configured to include.
  • the transmission / reception unit 120 (220), the transmission / reception antenna 130 (230), and the like described above may be realized by the communication device 1004.
  • the transmission / reception unit 120 (220) may be physically or logically separated from the transmission unit 120a (220a) and the reception unit 120b (220b).
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that receives an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information.
  • the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
  • the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (Digital Signal Processor (DSP)), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), a Field Programmable Gate Array (FPGA), and the like. It may be configured to include hardware, and a part or all of each functional block may be realized by using the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the wireless frame may be composed of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting the wireless frame may be referred to as a subframe.
  • the subframe may be composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that is independent of numerology.
  • the numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel.
  • Numerology includes, for example, subcarrier spacing (SubCarrier Spacing (SCS)), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval (TTI)), number of symbols per TTI, and wireless frame configuration.
  • SCS subcarrier Spacing
  • TTI Transmission Time Interval
  • a specific filtering process performed by the transmitter / receiver in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
  • the slot may be composed of one or more symbols in the time domain (Orthogonal Frequency Division Multiple Access (OFDMA) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.). Further, the slot may be a time unit based on numerology.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. Further, the mini slot may be called a sub slot. A minislot may consist of a smaller number of symbols than the slot.
  • a PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as a PDSCH (PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (PUSCH) mapping type B.
  • the wireless frame, subframe, slot, mini slot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
  • the time units such as frames, subframes, slots, mini slots, and symbols in the present disclosure may be read as each other.
  • one subframe may be called TTI
  • a plurality of consecutive subframes may be called TTI
  • one slot or one minislot may be called TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. It may be.
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • the base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in 3GPP Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • TTIs shorter than normal TTIs may be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
  • the long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the RB may include one or more symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • One or more RBs are a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, and an RB. It may be called a pair or the like.
  • Physical RB Physical RB (PRB)
  • SCG sub-carrier Group
  • REG resource element group
  • the resource block may be composed of one or a plurality of resource elements (Resource Element (RE)).
  • RE Resource Element
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth Part (which may also be called partial bandwidth) represents a subset of consecutive common resource blocks (RBs) for a neurology in a carrier. May be good.
  • the common RB may be specified by the index of the RB with respect to the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
  • BWP UL BWP
  • BWP for DL DL BWP
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, mini slots, and symbols are merely examples.
  • the number of subframes contained in a wireless frame the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in the RB.
  • the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented. For example, radio resources may be indicated by a given index.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. may be voltage, current, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • information, signals, etc. can be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layers.
  • Information, signals, etc. may be input / output via a plurality of network nodes.
  • the input / output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information, signals, etc. can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to other devices.
  • the notification of information is not limited to the mode / embodiment described in the present disclosure, and may be performed by using another method.
  • the notification of information in the present disclosure includes physical layer signaling (for example, downlink control information (DCI)), uplink control information (Uplink Control Information (UCI))), and higher layer signaling (for example, Radio Resource Control). (RRC) signaling, broadcast information (master information block (MIB), system information block (SIB), etc.), medium access control (MAC) signaling), other signals or combinations thereof May be carried out by.
  • DCI downlink control information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • MIB master information block
  • SIB system information block
  • MAC medium access control
  • the physical layer signaling may be referred to as Layer 1 / Layer 2 (L1 / L2) control information (L1 / L2 control signal), L1 control information (L1 control signal), and the like.
  • the RRC signaling may be called an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
  • MAC signaling may be notified using, for example, a MAC control element (MAC Control Element (CE)).
  • CE MAC Control Element
  • the notification of predetermined information is not limited to the explicit notification, but implicitly (for example, by not notifying the predetermined information or another information). May be done (by notification of).
  • the determination may be made by a value represented by 1 bit (0 or 1), or by a boolean value represented by true or false. , May be done by numerical comparison (eg, comparison with a given value).
  • Software is an instruction, instruction set, code, code segment, program code, program, subprogram, software module, whether called software, firmware, middleware, microcode, hardware description language, or another name.
  • Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted to mean.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, a website where software uses at least one of wired technology (coaxial cable, fiber optic cable, twist pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.).
  • wired technology coaxial cable, fiber optic cable, twist pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • Network may mean a device (eg, a base station) included in the network.
  • precoding "precoding weight”
  • QCL Quality of Co-Co-Location
  • TCI state Transmission Configuration Indication state
  • space "Spatial relation”, “spatial domain filter”, “transmission power”, “phase rotation”, "antenna port”, “antenna port group”, “layer”, “number of layers”
  • Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, "antenna”, “antenna element", “panel” are compatible.
  • Base station BS
  • radio base station fixed station
  • NodeB NodeB
  • eNB eNodeB
  • gNB gNodeB
  • Access point "Transmission point (Transmission Point (TP))
  • RP Reception point
  • TRP Transmission / Reception Point
  • Panel , "Cell”, “sector”, “cell group”, “carrier”, “component carrier” and the like
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (for example, three) cells.
  • a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio)).
  • Communication services can also be provided by Head (RRH))).
  • RRH Head
  • the term "cell” or “sector” refers to part or all of the coverage area of at least one of the base stations and base station subsystems that provide communication services in this coverage.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , Handset, user agent, mobile client, client or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read by the user terminal.
  • communication between a base station and a user terminal has been replaced with communication between a plurality of user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the user terminal 20 may have the function of the base station 10 described above.
  • words such as "up” and “down” may be read as words corresponding to communication between terminals (for example, "side”).
  • the uplink, downlink, and the like may be read as side channels.
  • the user terminal in the present disclosure may be read as a base station.
  • the base station 10 may have the functions of the user terminal 20 described above.
  • the operation performed by the base station may be performed by its upper node (upper node) in some cases.
  • various operations performed for communication with a terminal are performed by the base station and one or more network nodes other than the base station (for example,).
  • Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. can be considered, but it is not limited to these), or it is clear that it can be performed by a combination thereof.
  • each aspect / embodiment described in the present disclosure may be used alone, in combination, or switched with execution.
  • the order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction.
  • the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • Future Radio Access FAA
  • New-Radio Access Technology RAT
  • NR New Radio
  • NX New radio access
  • Future generation radio access FX
  • GSM Global System for Mobile communications
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • a plurality of systems may be applied in combination (for example, a combination of LTE or LTE-A and 5G).
  • references to elements using designations such as “first”, “second”, etc. as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted or that the first element must somehow precede the second element.
  • determining may include a wide variety of actions.
  • judgment (decision) means judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry) ( For example, searching in a table, database or another data structure), ascertaining, etc. may be considered to be "judgment”.
  • judgment (decision) means receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), access (for example). It may be regarded as “judgment (decision)" of "accessing” (for example, accessing data in memory).
  • judgment (decision) is regarded as “judgment (decision)” of solving, selecting, choosing, establishing, comparing, and the like. May be good. That is, “judgment (decision)” may be regarded as “judgment (decision)” of some action.
  • the "maximum transmission power" described in the present disclosure may mean the maximum value of the transmission power, may mean the nominal UE maximum transmit power, or may mean the rated maximum transmission power (the). It may mean rated UE maximum transmit power).
  • connection are any direct or indirect connection or connection between two or more elements. Means, and can include the presence of one or more intermediate elements between two elements that are “connected” or “joined” to each other.
  • the connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection” may be read as "access”.
  • the radio frequency domain microwaves. It can be considered to be “connected” or “coupled” to each other using frequency, electromagnetic energy having wavelengths in the light (both visible and invisible) regions, and the like.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The user terminal according to the present disclosure is provided with: a reception unit that receives information related to a plurality of scheduling request (SR) settings; and a control unit that, when a plurality of scheduling request transmissions using a plurality of resources respectively associated with the plurality of SR settings collide in the same time unit, controls the plurality of scheduling request transmissions on the basis of a priority of each of the plurality of scheduling requests. This makes it possible to appropriately control prioritizing the plurality of SRs corresponding to different service types.

Description

ユーザ端末及び無線通信方法User terminal and wireless communication method
 本開示は、次世代移動通信システムにおけるユーザ端末及び無線通信方法に関する。 The present disclosure relates to a user terminal and a wireless communication method in a next-generation mobile communication system.
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。 In the Universal Mobile Telecommunications System (UMTS) network, Long Term Evolution (LTE) has been specified for the purpose of further high-speed data rate, low latency, etc. (Non-Patent Document 1). In addition, LTE-Advanced (3GPP Rel.10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。 A successor system to LTE (for example, 5th generation mobile communication system (5G), 5G + (plus), New Radio (NR), 3GPP Rel.15 or later, etc.) is also being considered.
 将来の無線通信システム(以下、NRともいう)では、UEは、上りデータが発生すると、所定周期の送信機会(期間)においてスケジューリング要求(Scheduling Request(SR))を送信する。UEは、当該SRに応じて基地局から送信される下り制御情報(Downlink Control Information(DCI))によりスケジューリングされる上り共有チャネル(例えば、Physical Uplink Shared Channel(PUSCH))を用いて上りデータを送信する。 In a future wireless communication system (hereinafter, also referred to as NR), when uplink data is generated, the UE transmits a scheduling request (Scheduling Request (SR)) at a transmission opportunity (period) of a predetermined cycle. The UE transmits uplink data using an uplink shared channel (for example, Physical Uplink Shared Channel (PUSCH)) scheduled by downlink control information (Downlink Control Information (DCI)) transmitted from the base station according to the SR. To do.
 NRでは、異なるサービスタイプ(例えば、高信頼かつ低遅延通信(Ultra-Reliable and Low-Latency Communications(URLLC))及びenhanced Mobile Broad Band(eMBB)等)に対応する複数のSRの送信(SRリソース等ともいう)が同一の時間ユニット(例えば、スロット)内で衝突することが想定される。 In NR, transmission of multiple SRs (SR resources, etc.) corresponding to different service types (for example, high-reliability and low-latency communications (URLLC) and enhanced Mobile Broad Band (eMBB), etc.) It is assumed that (also referred to as) collide in the same time unit (for example, slot).
 しかしながら、同一の時間ユニット内で異なるサービスタイプに対応する複数のSRの送信が衝突する場合、当該複数のSRの優先付けをどのように制御するかが問題となる。当該複数のSRの優先付けが適切に制御されない場合、異なるサービスタイプの要求条件を満たすことができない恐れがある。 However, when the transmissions of a plurality of SRs corresponding to different service types collide within the same time unit, how to control the prioritization of the plurality of SRs becomes a problem. If the prioritization of the plurality of SRs is not properly controlled, it may not be possible to meet the requirements of different service types.
 そこで、本開示は、異なるサービスタイプに対応する複数のSRの優先付けを適切に制御可能なユーザ端末及び無線通信方法を提供することを目的の1つとする。 Therefore, one of the purposes of the present disclosure is to provide a user terminal and a wireless communication method capable of appropriately controlling the prioritization of a plurality of SRs corresponding to different service types.
 本開示の一態様に係るユーザ端末は、複数のスケジューリング要求(SR)設定に関する情報を受信する受信部と、前記複数のSR設定にそれぞれ関連付けられる複数のリソースを用いた複数のスケジューリング要求の送信が同一の時間単位内において衝突する場合、前記複数のスケジューリング要求それぞれの優先度に基づいて、前記複数のスケジューリング要求の送信を制御する制御部と、を具備することを特徴とする。 The user terminal according to one aspect of the present disclosure can transmit a plurality of scheduling requests using a receiving unit that receives information on a plurality of scheduling request (SR) settings and a plurality of resources associated with the plurality of SR settings. When a collision occurs within the same time unit, the control unit that controls the transmission of the plurality of scheduling requests based on the priority of each of the plurality of scheduling requests is provided.
 本開示の一態様によれば、異なるサービスタイプに対応する複数のSRの優先付けを適切に制御できる。 According to one aspect of the present disclosure, the prioritization of a plurality of SRs corresponding to different service types can be appropriately controlled.
図1は、SR設定セット情報の一例を示す図である。FIG. 1 is a diagram showing an example of SR setting set information. 図2は、SRリソース情報の一例を示す図である。FIG. 2 is a diagram showing an example of SR resource information. 図3は、SRの送信制御の一例を示す図である。FIG. 3 is a diagram showing an example of SR transmission control. 図4は、LCH設定情報の一例を示す図である。FIG. 4 is a diagram showing an example of LCH setting information. 図5は、異なるサービスタイプにそれぞれ関連付けられる複数のSR送信の一例を示す図である。FIG. 5 is a diagram showing an example of a plurality of SR transmissions associated with different service types. 図6は、第1の態様に係るSRリソース情報の一例を示す図である。FIG. 6 is a diagram showing an example of SR resource information according to the first aspect. 図7は、第1の態様のSR設定情報の一例を示す図である。FIG. 7 is a diagram showing an example of SR setting information of the first aspect. 図8A及び8Bは、第1の態様のLCH優先度情報を利用するSR優先度情報の一例を示す図である。8A and 8B are diagrams showing an example of SR priority information using the LCH priority information of the first aspect. 図9は、第2の態様に係るSR優先度情報の決定の一例を示す図である。FIG. 9 is a diagram showing an example of determining SR priority information according to the second aspect. 図10は、第3の態様に係るSR優先度情報に基づく優先付けの一例を示す図である。FIG. 10 is a diagram showing an example of prioritization based on SR priority information according to the third aspect. 図11A及び11Bは、MACエンティティから通知されるSR優先度情報の一例を示す図である。11A and 11B are diagrams showing an example of SR priority information notified from the MAC entity. 図12は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。FIG. 12 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment. 図13は、一実施形態に係る基地局の構成の一例を示す図である。FIG. 13 is a diagram showing an example of the configuration of the base station according to the embodiment. 図14は、一実施形態に係るユーザ端末の構成の一例を示す図である。FIG. 14 is a diagram showing an example of the configuration of the user terminal according to the embodiment. 図15は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。FIG. 15 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
(スケジューリング要求)
 NRでは、基地局は、ユーザ端末(User Equipment(UE))からの要求(スケジューリング要求(Scheduling Request(SR)))に応じて、上りリソース(uplink resource)をUEに割り当てる。なお、上りリソースは、論理上りチャネル(例えば、上り共有チャネル(Uplink Shared Channel(UL-SCH)))用のリソース(UL-SCHリソース)又は、物理上りチャネル(例えば、物理上り共有チャネル(Physical Uplink Shared Channel))用のリソース等と言い換えられてもよい。
(Scheduling request)
In the NR, the base station allocates uplink resources to the UE in response to a request (Scheduling Request (SR)) from the user terminal (User Equipment (UE)). The uplink resource is a resource (UL-SCH resource) for a logical uplink channel (for example, Uplink Shared Channel (UL-SCH)) or a physical uplink channel (for example, Physical Uplink). It may be paraphrased as a resource for Shared Channel)).
 UEは、上り制御チャネル(例えば、Physical Uplink Control Channel(PUCCH))を用いて、当該SRを送信してもよい。SRの送信に用いるPUCCHのフォーマットは、例えば、PUCCHフォーマット(PUCCH format(PF))0又は1であってもよい。PF0は、1又は2シンボルで構成されてもよい。一方、PF1は、4シンボル以上で構成されてもよい。 The UE may transmit the SR by using an uplink control channel (for example, Physical Uplink Control Channel (PUCCH)). The PUCCH format used for SR transmission may be, for example, PUCCH format (PUCCH format (PF)) 0 or 1. PF0 may be composed of 1 or 2 symbols. On the other hand, PF1 may be composed of 4 or more symbols.
 PUCCHを用いたSR送信用の所定期間(送信機会(transmission occasion)、SR送信機会、SR機会、送信期間、インスタンス等ともいう)は、所定周期で設けられてもよい。当該SR機会は、UE固有に設定(configure)されてもよい。 A predetermined period for SR transmission using PUCCH (also referred to as transmission occasion, SR transmission opportunity, SR opportunity, transmission period, instance, etc.) may be provided at a predetermined cycle. The SR opportunity may be configured uniquely to the UE.
 UE(又は、UEのMedium Access Control(MAC)エンティティ)は、0又は1以上のSR用の設定(SR設定(SR configuration))で設定(configured with)されてもよい。一つのSR設定は、一以上のSR送信用のリソース(SRリソース)のセットを構成してもよい(又は当該セットに関連付けられてもよい)。当該SRリソースは、一以上の帯域幅部分(Bandwidth Part(BWP))及び一以上のセル(サービングセル、コンポーネントキャリア(Component Carrier(CC))、キャリア等とももいう)の少なくとも一つに渡って設定されてもよい。BWP毎に最大一つのSRリソースが一つの論理チャネル用に設定されてもよい。 The UE (or the Medium Access Control (MAC) entity of the UE) may be set (configured with) with the settings for SR of 0 or 1 or more (SR configuration). One SR setting may configure (or be associated with) a set of resources (SR resources) for one or more SR transmissions. The SR resource is set over at least one of one or more bandwidth portions (Bandwidth Part (BWP)) and one or more cells (also referred to as serving cells, component carriers (CC), carriers, etc.). May be done. A maximum of one SR resource may be set for one logical channel per BWP.
 各SR設定は、一以上の論理チャネル(Logical Channel(LCH))に対応してもよい。各LCHは、0又は一つのSR設定にマッピングされてもよい。当該SR設定は、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング)によりUEに設定されてもよい。各LCHは、優先度(priority)の値を有してもよい。なお、本開示において、SR設定は、単に、SRと呼ばれてもよい。 Each SR setting may correspond to one or more logical channels (Logical Channel (LCH)). Each LCH may be mapped to 0 or 1 SR setting. The SR setting may be set in the UE by higher layer signaling (for example, Radio Resource Control (RRC) signaling). Each LCH may have a priority value. In the present disclosure, the SR setting may be simply referred to as SR.
 UEは、一以上のSR設定のセットに関する情報(SR設定セット情報)を受信してもよい。当該SR設定セット情報は、例えば、RRC 制御要素(Information Element(IE))の「SchedulingRequestConfig」であってもよい。当該SR設定セット情報は、セルグループ毎に設定されてもよく、例えば、RRC IEの「MAC-CellGroupConfig」に含まれてもよい。また、当該SR設定セット情報は、MACパラメータとして設定されてもよい。なお、RRC IEは、RRCパラメータ又は上位レイヤパラメータ等と呼ばれてもよい。 The UE may receive information about one or more sets of SR settings (SR setting set information). The SR setting set information may be, for example, "SchedulingRequestConfig" of the RRC control element (Information Element (IE)). The SR setting set information may be set for each cell group, and may be included in, for example, "MAC-Cell Group Config" of RRC IE. Further, the SR setting set information may be set as a MAC parameter. The RRC IE may be referred to as an RRC parameter, an upper layer parameter, or the like.
 図1は、SR設定セット情報の一例を示す図である。図1に示すように、当該SR設定セット情報は、追加又は更新される各SR設定に関する情報(SR設定情報、例えば、RRC IEの「SchedulingRequestToAddMod」)のリスト(例えば、RRC IEの「schedulingRequestToAddModList」)及びリリースされる各SR設定情報のリスト(例えば、RRC IEの「schedulingRequestToReleaseList」)の少なくとも一つを含んでもよい。 FIG. 1 is a diagram showing an example of SR setting set information. As shown in FIG. 1, the SR setting set information is a list of information related to each SR setting to be added or updated (SR setting information, for example, "SchedulingRequestToAddMod" of RRC IE) (for example, "schedulingRequestToAddModList" of RRC IE). And at least one of the list of each SR setting information to be released (for example, "schedulingRequestToReleaseList" of RRC IE) may be included.
 各SR設定情報(例えば、RRC IEの「SchedulingRequestToAddMod」)は、以下の少なくとも一つのパラメータを含んでもよい。
・SR設定情報(又はSR設定)の識別子(SR-ID、例えば、RRC IEの「schedulingRequestId」)
・PUCCHでのSR送信用のタイマ(例えば、RRC IEの「sr-ProhibitTimer」)
・SR送信の最大数(例えば、RRC IEの「sr-TransMax」)
Each SR setting information (for example, "SchedulingRequestToAddMod" of RRC IE) may include at least one of the following parameters.
-SR setting information (or SR setting) identifier (SR-ID, for example, "schedulingRequestId" of RRC IE)
-Timer for SR transmission in PUCCH (for example, "sr-Prohibit Timer" of RRC IE)
-Maximum number of SR transmissions (for example, "sr-TransMax" of RRC IE)
 各SR設定情報内のSR-IDは、MACレイヤにおけるSRのインスタンス(instance)(SR設定)の識別に用いられてもよい。当該SR-IDは、LCHの設定情報(LCH設定情報、例えば、RRC IEの「LogicalChannelConfig」)に含まれてもよい。すなわち、SR-IDは、LCHに関連付けられるSR設定の識別子として用いられてもよい。 The SR-ID in each SR setting information may be used to identify an SR instance (SR setting) in the MAC layer. The SR-ID may be included in the LCH setting information (LCH setting information, for example, "Logical Channel Config" of RRC IE). That is, the SR-ID may be used as an identifier for the SR setting associated with the LCH.
 また、UEは、各SR設定に関連付けられるSRリソースに関する情報(SRリソース情報)を受信してもよい。SRリソース情報は、例えば、RRC IEの「SchedulingRequestResourceConfig」であってもよい。 The UE may also receive information (SR resource information) regarding SR resources associated with each SR setting. The SR resource information may be, for example, "SchedulingRequestResourceConfig" of RRC IE.
 当該SRリソース情報は、UE固有のPUCCHパラメータとして設定されてもよい。当該SRリソース情報は、BWP毎のPUCCHの設定情報(PUCCH設定情報、例えば、RRC IEの「PUCCH-Config」)に含まれてもよい。PUCCH設定情報には、1以上のSRリソース情報のリスト(例えば、RRC IEの「schedulingRequestResourceToAddModList」)が含まれてもよい。 The SR resource information may be set as a UE-specific PUCCH parameter. The SR resource information may be included in the PUCCH setting information for each BWP (PUCCH setting information, for example, "PUCCH-Config" of RRC IE). The PUCCH setting information may include a list of one or more SR resource information (for example, "schedulingRequestResourceToAddModList" of RRC IE).
 図2は、SRリソース情報の一例を示す図である。図2に示すように、SRリソース情報は、例えば、以下の少なくとも一つのパラメータを含んでもよい。
・SRリソース情報の識別子(SRリソースID、例えば、RRC IEの「schedulingRequestResourceId」)
・当該SRリソースを用いるSR設定情報(又はSR設定)の識別子(SR-ID、例えば、RRC IEの「schedulingRequestID」)
・SRリソース(SR機会等ともいう)の周期及びオフセットの少なくとも一つを示す情報(周期/オフセット情報、例えば、RRC IEの「periodicityAndOffset」)
・PUCCHリソースの識別子(PUCCHリソースID、例えば、RRC IEの「PUCCH-ResourceId」)
FIG. 2 is a diagram showing an example of SR resource information. As shown in FIG. 2, the SR resource information may include, for example, at least one of the following parameters.
-SR resource information identifier (SR resource ID, for example, "schedulingRequestResourceId" of RRC IE)
-Identifier of SR setting information (or SR setting) using the SR resource (SR-ID, for example, "schedulingRequestID" of RRC IE)
-Information indicating at least one of the period and offset of the SR resource (also called SR opportunity, etc.) (period / offset information, for example, "periodicityAndOffset" of RRC IE).
-PUCCH resource identifier (PUCCH resource ID, for example, "PUCCH-ResourceId" of RRC IE)
 当該SRリソース情報により設定されるSRリソースは、上記SR-IDにより識別されるSR設定情報(又はSR設定)に関連付けられてもよい。なお、SRリソースは、上記SR機会及びPUCCHリソース等の少なくとも一つを含んでもよい。 The SR resource set by the SR resource information may be associated with the SR setting information (or SR setting) identified by the SR-ID. The SR resource may include at least one of the above SR opportunity and PUCCH resource.
 また、上記周期は、例えば、2又は7シンボル、1、2、4、5、8、10、16、20、40、80、160、320又は640スロットであってもよい。当該周期は、サブキャリア間隔(Subcarrier Spacing(SCS))毎にとり得る値のセットが定められていてもよい。 Further, the cycle may be, for example, 2 or 7 symbols, 1, 2, 4, 5, 8, 10, 16, 20, 40, 80, 160, 320 or 640 slots. For the cycle, a set of possible values may be defined for each subcarrier spacing (SCS).
 UEは、上記周期/オフセット情報に基づいて決定される所定周期のSR機会において、上記PUCCHリソースIDによって示されるPUCCHリソースを用いて、SRを送信してもよい。UEは、当該SRの送信を、上記SR-IDが示すSR設定情報に基づいて制御してもよい。 The UE may transmit an SR using the PUCCH resource indicated by the PUCCH resource ID at the SR opportunity of a predetermined cycle determined based on the cycle / offset information. The UE may control the transmission of the SR based on the SR setting information indicated by the SR-ID.
 図3は、SRの送信制御の一例を示す図である。図3では、例えば、LCH#0のLCH設定情報内のSR-IDに関連付けられるSR機会が4スロット周期で設けられる一例が示される。 FIG. 3 is a diagram showing an example of SR transmission control. FIG. 3 shows, for example, an example in which SR opportunities associated with SR-ID in the LCH setting information of LCH # 0 are provided in a 4-slot cycle.
 図3に示すように、UE(又はUEのMACエンティティ)は、上りデータが到着(arrive)する場合、当該上りデータに対応するLCH#0に関連付けられるSR―IDの次のSR機会でSRを送信してもよい。 As shown in FIG. 3, when the uplink data arrives, the UE (or the MAC entity of the UE) performs SR at the next SR opportunity of SR-ID associated with LCH # 0 corresponding to the uplink data. You may send it.
 UE(又はUEのMACエンティティ)は、基地局からの上りグラントを受信していない場合、上記SR送信の最大数(例えば、RRC IEの「sr-TransMax」)に達するまで、所定周期のSR機会毎にSRを送信してもよい。UEは、上りグラントにより割り当てられる上り共有チャネル(例えば、Physical Uplink Shared Channel(PUSCH)又はUplink Shared Channel(UL-SCH))を用いて、上りデータを送信してもよい。 When the UE (or the MAC entity of the UE) has not received the uplink grant from the base station, the SR opportunity of a predetermined cycle is reached until the maximum number of SR transmissions (for example, "sr-TransMax" of RRC IE) is reached. SR may be transmitted every time. The UE may transmit uplink data using an uplink shared channel (for example, Physical Uplink Shared Channel (PUSCH) or Uplink Shared Channel (UL-SCH)) assigned by the uplink grant.
 なお、上りグラントは、UEに対するPUSCHのスケジューリングに用いられる情報であり、下り制御情報(Downlink Control Information(DCI))、DCIフォーマット0_0、0_1、0_x(xは、任意の文字列)等と呼ばれてもよい。 The uplink grant is information used for PUSCH scheduling for the UE, and is called downlink control information (Downlink Control Information (DCI)), DCI format 0_0, 0_1, 0_x (x is an arbitrary character string), or the like. You may.
(論理チャネル優先付け)
 UEは、上記LCH設定情報(例えば、RRC IEの「LogicalChannelConfig」又は「mac-LogicalChannelConfig」)を受信する。LCH設定情報は、無線リンク制御(Radio Link Control(RLC))に関する情報(RLC設定情報、例えば、RRC IEの「RLC-BearerConfig」)に含まれてもよい。なお、RLC設定情報は、MACにおける論理チャネルに対応し、Packet Data Convergence Protocol(PDCP)エンティティにリンキングするRLCエンティティの設定に用いられる。
(Logical channel priority)
The UE receives the above LCH setting information (for example, "LogicalChannelConfig" or "mac-LogicalChannelConfig" of RRC IE). The LCH setting information may be included in the information related to the radio link control (Radio Link Control (RLC)) (RLC setting information, for example, "RLC-BearerConfig" of RRC IE). The RLC setting information corresponds to the logical channel in the MAC and is used to set the RLC entity that links to the Packet Data Convergence Protocol (PDCP) entity.
 図4は、LCH設定情報の一例を示す図である。図4に示すように、LCH設定情報は、以下の少なくとも一つのパラメータを含んでもよい。
・LCHの優先度を示す情報(LCH優先度情報、例えば、RRC IEの「priority」)
・優先されるビットレートを示す情報(例えば、RRC IEの「prioritisedBitRate」)
・バケットサイズ期間を示す情報(例えば、RRC IEの「bucketSizeDuration」)
・LCHから生成されるMACサービスデータユニット(Service Data Unit(SDU))がマッピングされるサービングセルのリスト(例えば、RRC IEの「allowedServingCells」)
・LCHから生成されるMAC SDUがマッピングされるニューメロロジーを示す情報(例えば、RRC IEの「allowedSCS-List」)
・LCHから生成されるMAC SDUが送信されることになるPUSCHの期間(例えば、RRC IEの「maxPUSCH-Duration」)
・LCHが属するグループの識別子(例えば、RRC IEの「maxPUSCH-Duration」)
・LCHに適用されるSR設定情報の識別子(SR-ID、例えば、RRC IEの「schedulingRequestId」)
・設定グラントのタイプ1又は2が設定される場合におけるSRトリガの制御情報(例えば、RRC IEの「schedulingRequestId」)
・LCH用のSR送信用の遅延時間を適用するか否かを示す情報(例えば、RRC IEの「logicalChannelSR-DelayTimerApplied」)
FIG. 4 is a diagram showing an example of LCH setting information. As shown in FIG. 4, the LCH setting information may include at least one of the following parameters.
-Information indicating the priority of LCH (LCH priority information, for example, "priority" of RRC IE)
-Information indicating the preferred bit rate (for example, "prioritised BitRate" of RRC IE)
-Information indicating the bucket size period (for example, "bucketSizeDuration" of RRC IE)
-A list of serving cells to which the MAC Service Data Unit (SDU) generated from the LCH is mapped (eg, "allowedServingCells" in RRC IE).
-Information indicating the neurology to which the MAC SDU generated from the LCH is mapped (for example, "allowed SCS-List" of RRC IE).
-The period of PUSCH in which the MAC SDU generated from LCH will be transmitted (for example, "maxPUSCH-Duration" of RRC IE).
-Identifier of the group to which the LCH belongs (for example, "maxPUSCH-Duration" of RRC IE)
-Identifier of SR setting information applied to LCH (SR-ID, for example, "schedulingRequestId" of RRC IE)
-SR trigger control information when type 1 or 2 of the setting grant is set (for example, "schedulingRequestId" of RRC IE)
-Information indicating whether or not to apply the delay time for SR transmission for LCH (for example, "logicalChannel SR-DelayTimerApplied" of RRC IE).
 UE(UEのMACエンティティ)は、上記LCH優先度情報に基づいて、LCHの優先付けを行ってもよい。具体的には、UE(UEのMACエンティティ)は、上記LCH優先度情報に基づいて、LCHとトランスポートチャネルとのマッピング、リソースの割り当て等の少なくとも一つを制御してもよい。 The UE (the MAC entity of the UE) may prioritize the LCH based on the above LCH priority information. Specifically, the UE (the MAC entity of the UE) may control at least one such as mapping between the LCH and the transport channel, resource allocation, etc., based on the LCH priority information.
 なお、LCHは、UEと基地局との間でRLCレイヤにおける伝送を行うチャネルであってもよい。LCHには、例えば、個別トラフィックチャネル(Dedicated Traffic Channel(DTCH))、個別制御チャネル(Dedicated Control Channel(DCCH))、共通制御チャネル(Common Control Channel(CCCH))、ページング制御チャネル(Paging Control Channel(PCCH))、ブロードキャスト制御チャネル(Broadcast Control Channel(BCCH))の少なくとも一つが含まれてもよい。 The LCH may be a channel for transmission in the RLC layer between the UE and the base station. The LCH includes, for example, an individual traffic channel (Dedicated Traffic Channel (DTCH)), an individual control channel (Dedicated Control Channel (DCCH)), a common control channel (Common Control Channel (CCCH)), and a paging control channel (Paging Control Channel (DCCH)). PCCH))), at least one of the broadcast control channel (Broadcast Control Channel (BCCH)) may be included.
 トランスポートチャネルとは、UEと基地局との間でMACレイヤにおける伝送を行うチャネルであってもよい。トランスポートチャネルには、例えば、ページングチャネル(Paging Channel(PCH))、ブロードキャストチャネル(Broadcast Channel(BCH))、下り共有チャネル(Downlink Shared Channel(DL-SCH))、上り共有チャネル(Uplink Shared Channel(UL-SCH))、ランダムアクセスチャネル(Random Access Channel(RACH))の少なくとも一つが含まれてもよい。 The transport channel may be a channel that transmits in the MAC layer between the UE and the base station. The transport channels include, for example, a paging channel (Paging Channel (PCH)), a broadcast channel (Broadcast Channel (BCH)), a downlink shared channel (Downlink Shared Channel (DL-SCH)), and an uplink shared channel (Uplink Shared Channel (Uplink Shared Channel). UL-SCH))) and at least one of a random access channel (Random Access Channel (RACH)) may be included.
 例えば、上りリンク(Uplink(UL))では、UEのMACエンティティは、CCCH、DCCH、DTCHをそれぞれUL-SCHにマッピングしてもよい。一方、下りリンク(Downlink(DL))では、UEのMACエンティティは、DL-SCHをCCCH、DCCH、DTCHに分離してもよい。 For example, in the uplink (UPlink (UL)), the MAC entity of the UE may map CCCH, DCCH, and DTCH to UL-SCH, respectively. On the other hand, in the downlink (Downlink (DL)), the MAC entity of the UE may separate the DL-SCH into CCCH, DCCH, and DTCH.
 ところで、NRでは、モバイルブロードバンドのさらなる高度化(enhanced Mobile Broadband(eMBB))、多数同時接続を実現するマシンタイプ通信(massive Machine Type Communications(mMTC))、高信頼かつ低遅延通信(Ultra-Reliable and Low-Latency Communications(URLLC))、産業IoT(Industrial Internet of Things(IIoT))などのサービスタイプ(サービス、ユースケース、トラフィックタイプ等ともいう)が想定される。異なるサービスタイプ間では、遅延(Latency)、信頼性(reliability)、パケットサイズ等の少なくとも一つの要求条件(requirement)が異なってもよい。 By the way, in NR, further advancement of mobile broadband (enhanced Mobile Broadband (eMBB)), machine type communication (massive Machine Type Communications (mMTC)) that realizes multiple simultaneous connections, highly reliable and low latency communication (Ultra-Reliable and) Service types (also called services, use cases, traffic types, etc.) such as Low-Latency Communications (URLLC) and Industrial IoT (Industrial Internet of Things (IIoT)) are assumed. At least one requirement, such as latency, reliability, packet size, etc., may differ between different service types.
 NRでは、当該異なるサービスタイプに対応する複数のSRの送信(SRリソース等ともいう)が同一の時間ユニット(例えば、スロット)内で衝突することが想定される。 In NR, it is assumed that transmissions of a plurality of SRs (also referred to as SR resources) corresponding to the different service types collide in the same time unit (for example, a slot).
 しかしながら、同一の時間ユニット内で異なるサービスタイプに対応する複数のSRの送信(collide with)が衝突する場合、当該複数のSRの優先付けをどのように制御するかが問題となる。当該複数のSRの優先付けが適切に制御されない場合、異なるサービスタイプの要求条件(requirement)を満たす(satisfy)ことができない恐れがある。 However, when the transmissions (collide with) of a plurality of SRs corresponding to different service types collide within the same time unit, how to control the prioritization of the plurality of SRs becomes a problem. If the prioritization of the plurality of SRs is not properly controlled, it may not be possible to satisfy the requirements of different service types.
 図5は、異なるサービスタイプにそれぞれ関連付けられる複数のSR送信の一例を示す図である。図5では、例えば、第1のサービスタイプ(例えば、URLLCデータ)に関連付けられるSR設定#1用のSR機会が4スロット周期で設定され、第2のサービスタイプ(例えば、eMBBデータ)に関連付けられるSR設定#2用のSR機会が10スロット周期で設定されるものとする。なお、図5は例示にすぎず、サービスタイプ、SR機会の周期等は図示するものに限られない。 FIG. 5 is a diagram showing an example of a plurality of SR transmissions associated with different service types. In FIG. 5, for example, the SR opportunity for SR setting # 1 associated with the first service type (eg, URLLC data) is set in a 4-slot cycle and associated with the second service type (eg, eMBB data). It is assumed that the SR opportunity for SR setting # 2 is set in a cycle of 10 slots. Note that FIG. 5 is merely an example, and the service type, SR opportunity cycle, and the like are not limited to those shown.
 例えば、図5では、SR設定#1用のSR機会は、第1のサービスタイプ(例えば、URLLCデータ)に関連付けられるLCH#1用の上記LCH設定情報内のSR-ID「1」に関連付けられる上記SRリソース情報に基づいて設定されてもよい。また、SR設定#2用のSR機会は、第2のサービスタイプ(例えば、eMBBデータ)に関連付けられるLCH#2用の上記LCH設定情報内のSR-ID「2」に関連付けられるSRリソース情報に基づいて設定されてもよい。 For example, in FIG. 5, the SR opportunity for SR setting # 1 is associated with the SR-ID “1” in the LCH setting information for LCH # 1 associated with the first service type (eg, URLLC data). It may be set based on the SR resource information. Further, the SR opportunity for SR setting # 2 is the SR resource information associated with SR-ID "2" in the above LCH setting information for LCH # 2 associated with the second service type (for example, eMBB data). It may be set based on.
 図5に示すように、第2のサービスタイプのデータ(例えば、eMBBデータ)がスロット#n-6で発生する場合、UEのMACエンティティは、当該第2のサービスタイプに関連付けられるLCH#2用の次のSR機会(ここでは、スロット#nのシンボル#4~#10のPUCCHリソース)でSR設定#2のSRの送信を物理レイヤに指示する。 As shown in FIG. 5, when data of the second service type (eg, eMBB data) occurs in slot # n-6, the MAC entity of the UE is for LCH # 2 associated with the second service type. At the next SR opportunity (here, PUCCH resources of symbols # 4 to # 10 of slot # n), the physical layer is instructed to transmit SR of SR setting # 2.
 また、第1のサービスタイプ(例えば、URLLCデータ)がスロット#n-1で発生する場合、UEのMACエンティティは、当該第1のサービスタイプに関連付けられるLCH#1用の次のSR機会(ここでは、スロット#nのシンボル#7及び#8のPUCCHリソース)でのSR設定#1のSRの送信を物理レイヤに指示する。 Also, if the first service type (eg, URLLC data) occurs in slot # n-1, the MAC entity of the UE will have the next SR opportunity for LCH # 1 associated with that first service type (here). Then, the physical layer is instructed to transmit the SR of the SR setting # 1 in the PUCCH resources of the symbols # 7 and # 8 of the slot # n.
 図5に示す場合、スロット#nにおいて、SR設定#1のSR送信用のPUCCHリソース#1とSR設定#2のSR送信用のPUCCHリソース#2とが衝突する。この場合、SR設定#1のSR(例えば、URLLC SR)とSR設定#2のSR(例えば、eMBB SR)との間の優先付けをどのように制御するかが問題となる。 In the case shown in FIG. 5, the PUCCH resource # 1 for SR transmission of SR setting # 1 and the PUCCH resource # 2 for SR transmission of SR setting # 2 collide with each other in slot # n. In this case, the problem is how to control the prioritization between the SR of SR setting # 1 (for example, URLLC SR) and the SR of SR setting # 2 (for example, eMBB SR).
 例えば、図5のスロット#nにおいて、先にデータが発生しているSR設定#2のSR(例えば、eMBB SR)送信を優先する場合、SR設定#1のSR(例えば、URLLC SR)の送信が次のSR機会(ここでは、スロット#n+4)に遅延(delay)する。この結果、SR設定#1のSRに対応する第1のサービスタイプ(例えば、URLLC)の要求条件を満たすことができない恐れがある。 For example, in slot # n of FIG. 5, when priority is given to transmission of SR (for example, eMBB SR) of SR setting # 2 in which data is generated first, transmission of SR of SR setting # 1 (for example, URLLC SR) is given. Delays to the next SR opportunity (here, slot # n + 4). As a result, the requirements of the first service type (for example, URLLC) corresponding to the SR of SR setting # 1 may not be satisfied.
 そこで、本発明者らは、UEが、RRCレイヤ(第1の態様)、物理レイヤ(第2の態様)又はMACレイヤ(第3の態様)において、異なるサービスタイプに対応する複数のSR(又はSR設定)の優先度(SR優先度)を定める(define)することにより、当該SRの優先付けを適切に制御することを着想した。 Thus, we present a plurality of SRs (or) in which the UE corresponds to different service types in the RRC layer (first aspect), physical layer (second aspect) or MAC layer (third aspect). The idea was to appropriately control the prioritization of the SR by defining the priority (SR priority) of the SR setting).
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。 Hereinafter, embodiments according to the present disclosure will be described in detail with reference to the drawings.
 本実施形態において、サービスタイプは、LCH、DCIフォーマット、無線ネットワーク一時識別子(Radio Network Temporary Identifier(RNTI))、RLCベアラ、PDCPレイヤ、Service Data Adaptation Protocol(SDAP)レイヤの少なくとも一つに基づいて認識(決定、黙示的に導出)されてもよい。 In this embodiment, the service type is recognized based on at least one of LCH, DCI format, Radio Network Temporary Identifier (RNTI), RLC bearer, PDCP layer, and Service Data Adaptation Protocol (SDAP) layer. It may be (decided, implicitly derived).
 なお、本実施形態において、UE及び基地局のユーザプレーンでは、PHYレイヤ、MACレイヤ、RLCレイヤ、PDCPレイヤ、SDAPレイヤの順番に、下位(lower)から上位(higher)へのプロトコル(レイヤ)が規定されてもよい。また、UE及び基地局の制御プレーンでは、PHYレイヤ、MACレイヤ、RLCレイヤ、PDCPレイヤ、RRCレイヤの順番に、下位から上位へのプロコトルが規定されてもよい。 In the present embodiment, in the user plane of the UE and the base station, the protocol (layer) from the lower layer to the upper layer is arranged in the order of the PHY layer, the MAC layer, the RLC layer, the PDCP layer, and the SDAP layer. It may be specified. Further, in the control plane of the UE and the base station, the protocol from the lower level to the upper level may be defined in the order of the PHY layer, the MAC layer, the RLC layer, the PDCP layer, and the RRC layer.
 UEと基地局との間では、同一レイヤの情報が認識されてもよい。例えば、RRCパラメータ(例えば、RRC IE)は、UE及び基地局のRRCエンティティ間でシグナリングされてもよい。同様に、MACパラメータ(例えば、MAC制御要素、MAC Service Data Unit(SDU)等)は、UE及び基地局のMACエンティティ間でシグナリングされてもよい。また、物理チャネル(例えば、PUCCH、PUSCH等)は、UE及び基地局のPHYエンティティ間でシグナリングされてもよい。 Information of the same layer may be recognized between the UE and the base station. For example, RRC parameters (eg, RRC IE) may be signaled between the UE and base station RRC entities. Similarly, MAC parameters (eg, MAC control elements, MAC Service Data Unit (SDU), etc.) may be signaled between the UE and the MAC entity of the base station. Also, physical channels (eg, PUCCH, PUSCH, etc.) may be signaled between the UE and base station PHY entities.
 また、MACシグナリング(MACパラメータ)、RRCシグナリング(RRCパラメータ)、ブロードキャスト情報(例えば、Physical Broadcast Channel(PBCH)により伝送される情報(例えば、Master Information Block(MIB))又はシステム情報(例えば、System Information Block(SIB)))等の少なくとも一つは、上位レイヤシグナリング(上位レイヤパラメータ)等と呼ばれてもよい。ブロードキャスト情報は、RRCパラメータとして規定されてもよい。また、PHYシグナリング(物理チャネル)は、下位レイヤシグナリング(下位レイヤ)等と呼ばれてもよい。 In addition, MAC signaling (MAC parameter), RRC signaling (RRC parameter), broadcast information (for example, information transmitted by Physical Broadcast Channel (PBCH) (for example, Master Information Block (MIB)) or system information (for example, System Information). At least one of Block (SIB))) and the like may be referred to as upper layer signaling (upper layer parameter) and the like. Broadcast information may be specified as an RRC parameter. Further, the PHY signaling (physical channel) may be referred to as lower layer signaling (lower layer) or the like.
(第1の態様)
 第1の態様では、RRCレイヤにおいて、SR優先度が定められ、RRCシグナリング(例えば、RRC設定(configuration)又はRRC再設定(re-configuration))によりSR優先度がUEに通知されてもよい。
(First aspect)
In the first aspect, the SR priority may be defined in the RRC layer, and the SR priority may be notified to the UE by RRC signaling (for example, RRC configuration or RRC re-configuration).
 各SR設定のSR優先度を示す情報(SR優先度情報)は、サービスタイプ及び当該サービスタイプの要求条件の少なくとも一つに基づいて決定されてもよい。SR優先度情報は、例えば、X個の整数であってもよく、値が増加するほど低い優先度(優先度レベル)を示してもよい(値が小さくなるほど高い優先度レベルを示してもよい)。あるいは、値が増加するほど高い優先度(優先度レベル)を示してもよい(値が大きくなるほど高い優先度レベルを示してもよい)。 Information indicating the SR priority of each SR setting (SR priority information) may be determined based on at least one of the service type and the requirements of the service type. The SR priority information may be, for example, X integers, and may indicate a lower priority (priority level) as the value increases (a higher priority level may be indicated as the value decreases). ). Alternatively, an increasing value may indicate a higher priority (priority level) (a larger value may indicate a higher priority level).
 当該SR優先度情報は、上記SR-ID(例えば、RRC IEの「SchedulingRequestID」)を有するSR設定のSR優先度用に新たに導入されるパラメータ(例えば、RRC IEの「SchedulingRequestPriority」)であってもよい。或いは、当該SR優先度情報は、例えば、論理チャネルの優先度を示す上記LCH優先度情報(例えば、RRC IEの「LogicalChannelConfig」内の「priority」)を再利用するものであってもよい。 The SR priority information is a parameter newly introduced for the SR priority of the SR setting having the SR-ID (for example, "SchedulingRequestID" of RRC IE) (for example, "SchedulingRequestPriority" of RRC IE). May be good. Alternatively, the SR priority information may be, for example, reusing the above-mentioned LCH priority information indicating the priority of the logical channel (for example, "priority" in "Logical Channel Config" of RRC IE).
<SRリソース情報に含まれるSR優先度情報>
 SR優先度情報は、新たに導入されるパラメータ(例えば、RRC IEの「SchedulingRequestPriority」)であってもよく、上記SRリソース情報(例えば、RRC IEの「SchedulingRequestResourceConfig」)に含まれてもよい。
<SR priority information included in SR resource information>
The SR priority information may be a newly introduced parameter (for example, "SchedulingRequestPriority" of RRC IE), or may be included in the SR resource information (for example, "SchedulingRequestResourceConfig" of RRC IE).
 当該SR優先度情報は、SRリソース(例えば、SR機会、SR送信用のPUCCHリソースの少なくとも一つ)毎に定められてもよい。すなわち、SRリソースにSR優先度情報を関連付けられてもよい。 The SR priority information may be defined for each SR resource (for example, SR opportunity, at least one PUCCH resource for SR transmission). That is, SR priority information may be associated with the SR resource.
 異なるサービスタイプ(例えば、URLLC及びeMBB)に関連付けられる複数のSR-IDのSR設定(SR設定情報)は、異なるSRリソースに関連付けられることが想定される。このため、UEは、同一の時間ユニット(例えば、スロット)内で複数のSRリソースが重複する場合、当該複数のSRリソースに関連付けられるSR優先度情報に基づいて、どのSRリソースを用いたSR送信を優先するかを決定できる。 It is assumed that SR settings (SR setting information) of a plurality of SR-IDs associated with different service types (for example, URLLC and eMBB) are associated with different SR resources. Therefore, when a plurality of SR resources are duplicated in the same time unit (for example, a slot), the UE transmits SR using which SR resource based on the SR priority information associated with the plurality of SR resources. Can be decided whether to prioritize.
 例えば、図5のスロット#nにおいて、URLLC用SRの送信に用いられるSRリソース(図5では、PUCCHリソース#1)に関連付けられるSR優先度情報は、eMBB用SRの送信に用いられるSRリソース(図5では、PUCCHリソース#2)に関連付けられるSR優先度情報よりも高い優先度(例えば、小さい値)を示してもよい。 For example, in slot # n of FIG. 5, the SR priority information associated with the SR resource used for transmitting the URLLC SR (PUCCH resource # 1 in FIG. 5) is the SR resource (SR resource used for transmitting the eMBB SR). In FIG. 5, a priority (for example, a smaller value) higher than the SR priority information associated with the PUCCH resource # 2) may be shown.
 図6は、第1の態様に係るSRリソース情報の一例を示す図である。図6に示すSRリソース情報(例えば、RRC IEの「SchedulingRequestResourceConfig」)は、SR優先度情報(例えば、RRC IEの「SchedulingRequestPriority」)を含む点で、図2のSRリソース情報と異なってもよい。 FIG. 6 is a diagram showing an example of SR resource information according to the first aspect. The SR resource information shown in FIG. 6 (for example, “SchedulingRequestResourceConfig” of RRC IE) may differ from the SR resource information of FIG. 2 in that it includes SR priority information (for example, “SchedulingRequestPriority” of RRC IE).
 例えば、図5において、PUCCHリソース#1(ここでは、URLLC SR用)を示すPUCCHリソースID「1」を含むSRリソース情報内のSR優先度情報は、PUCCHリソース#2(ここでは、eMBB SR用)を示すPUCCHリソースID「2」を含むSRリソース情報内のSR優先度情報よりも高い優先度を示してもよい。 For example, in FIG. 5, the SR priority information in the SR resource information including the PUCCH resource ID “1” indicating the PUCCH resource # 1 (here, for URLLC SR) is the PUCCH resource # 2 (here, for eMBB SR). ) May be higher than the SR priority information in the SR resource information including the PUCCH resource ID “2”.
 このように、SRリソース情報がSR優先度情報を含む場合、SRリソースにSR優先度が関連付けられる。このため、UEが、同一の時間ユニット(例えば、スロット)内で異なるサービスタイプのSRに関連付けられる複数のSRリソースが重複する場合に、当該SR間の優先付けを適切に行うことができる。 In this way, when the SR resource information includes the SR priority information, the SR priority is associated with the SR resource. Therefore, when a plurality of SR resources associated with SRs of different service types are duplicated in the same time unit (for example, slot), the UE can appropriately prioritize the SRs.
<SR設定情報に含まれるSR優先度情報>
 SR優先度情報は、新たに導入されるパラメータ(例えば、RRC IEの「SchedulingRequestPriority」)であってもよく、上記SR設定情報(例えば、RRC IEの「SchedulingRequestConfig」内の各「SchedulingRequestToAddMod」)に含まれてもよい。
<SR priority information included in SR setting information>
The SR priority information may be a newly introduced parameter (for example, "SchedulingRequestPriority" of RRC IE), and is included in the above SR setting information (for example, each "SchedulingRequestToAddMod" in "SchedulingRequestConfig" of RRC IE). It may be.
 当該SR優先度情報は、上記SR-ID(例えば、RRC IEの「SchedulingRequestId」)で識別されるSR設定毎に定められてもよい。すなわち、SR優先度情報は、SR-IDによって識別されるSR設定(SR設定情報)に関連付けられてもよい。 The SR priority information may be determined for each SR setting identified by the SR-ID (for example, "SchedulingRequestId" of RRC IE). That is, the SR priority information may be associated with the SR setting (SR setting information) identified by the SR-ID.
 異なるサービスタイプ(例えば、URLLC及びeMBB)は、異なるSR-IDのSR設定(SR設定情報)に関連付けられることが想定される。このため、UEは、同一の時間ユニット(例えば、スロット)内で異なるSR設定に関連付けられる複数のSRリソースが重複する場合、当該異なるSR設定にそれぞれ関連付けられるSR優先度情報に基づいて、どのSRリソースを用いたSR送信を優先するかを決定できる。 It is assumed that different service types (eg, URLLC and eMBB) are associated with SR settings (SR setting information) of different SR-IDs. Therefore, when a plurality of SR resources associated with different SR settings are duplicated in the same time unit (for example, slot), which SR is based on the SR priority information associated with each of the different SR settings. It is possible to decide whether to prioritize SR transmission using resources.
 例えば、図5のスロット#nにおいて、URLLC用SRのSR設定#1に関連付けられるSR優先度情報は、eMBB用SRのSR設定#2に関連付けられるSR優先度情報よりも高い優先度(例えば、小さい値)を示してもよい。 For example, in slot # n of FIG. 5, the SR priority information associated with the SR setting # 1 of the URLLC SR has a higher priority than the SR priority information associated with the SR setting # 2 of the eMBB SR (for example, Small value) may be indicated.
 図7は、第1の態様のSR設定情報の一例を示す図である。図7に示すSR設定セット情報(例えば、RRC IEの「SchedulingRequestConfig」)内の各SR設定情報(例えば、RRC IEの「SchedulingRequestToAddMod」)は、SR優先度情報(例えば、RRC IEの「SchedulingRequestPriority」)を含む点で、図1のSR設定セット情報と異なってもよい。 FIG. 7 is a diagram showing an example of SR setting information of the first aspect. Each SR setting information (for example, "SchedulingRequestToAddMod" of RRC IE) in the SR setting set information (for example, "SchedulingRequestConfig" of RRC IE) shown in FIG. 7 is SR priority information (for example, "SchedulingRequestPriority" of RRC IE). It may be different from the SR setting set information of FIG. 1 in that it includes.
 例えば、図5のURLLC用SRのSR設定#1を示すSR-ID「1」を含むSR設定情報内のSR優先度情報は、eMBB用SRのSR設定#2を示すSR-ID「2」を含むSR設定情報内のSR優先度情報よりも高い優先度を示してもよい。 For example, the SR priority information in the SR setting information including the SR-ID "1" indicating the SR setting # 1 of the URLLC SR in FIG. 5 is the SR-ID "2" indicating the SR setting # 2 of the SR for eMBB. It may indicate a higher priority than the SR priority information in the SR setting information including.
 このように、SR設定情報がSR優先度情報を含む場合、SR設定にSR優先度が関連付けられる。このため、UEが、同一の時間ユニット(例えば、スロット)内で異なるサービスタイプのSRそれぞれのSR設定に関連付けられる複数のSRリソースが重複する場合に、当該SR間の優先付けを適切に行うことができる。 In this way, when the SR setting information includes the SR priority information, the SR priority is associated with the SR setting. Therefore, when a UE duplicates a plurality of SR resources associated with SR settings of SRs of different service types within the same time unit (for example, slot), prioritize the SRs appropriately. Can be done.
<LCH優先度情報を利用するSR優先度情報>
 SR優先度情報は、SR設定に関連付けられるLCHのLCH優先度情報(例えば、RRC IEの「LogicalChannelConfig」内の「priority」)から導出(決定)されてもよい。例えば、UEの物理レイヤは、RRCレイヤで設定されるLCH優先度情報からSR優先度情報を決定してもよい。
<SR priority information using LCH priority information>
The SR priority information may be derived (determined) from the LCH priority information of the LCH associated with the SR setting (for example, "priority" in the "Logical Channel Config" of the RRC IE). For example, the physical layer of the UE may determine the SR priority information from the LCH priority information set in the RRC layer.
 SR優先度情報は、SR設定に関連付けられる論理チャネルの優先度を示すLCH優先度情報と同一であってもよいし、又は、当該LCH優先度情報を所定のルールに従ってマッピング(変換)された情報であってもよい。SR優先度は、LCHに関連付けられてもよい。 The SR priority information may be the same as the LCH priority information indicating the priority of the logical channel associated with the SR setting, or the LCH priority information is mapped (converted) according to a predetermined rule. It may be. The SR priority may be associated with the LCH.
 異なるサービスタイプ(例えば、URLLC及びeMBB)は、異なるLCHに関連付けられ、当該異なるLCHは、異なるSR-IDのSR設定(SR設定情報)に関連付けられることが想定される。このため、UEは、同一の時間ユニット(例えば、スロット)内で異なるSR設定に関連付けられる複数のSRリソースが重複する場合、当該異なるSR設定にそれぞれ関連付けられるLCH優先度情報に基づくSR優先度情報に基づいて、どのSRリソースを用いたSR送信を優先するかを決定できる。 It is assumed that different service types (eg, URLLC and eMBB) are associated with different LCH, and the different LCH is associated with SR settings (SR setting information) of different SR-IDs. Therefore, when a plurality of SR resources associated with different SR settings are duplicated in the same time unit (for example, slot), the UE has SR priority information based on the LCH priority information associated with the different SR settings. It is possible to determine which SR resource is used to prioritize SR transmission based on.
 例えば、図5のスロット#nにおいて、URLLC用SRのSR設定#1に関連付けられるLCH優先度情報は、eMBB用SRのSR設定#2に関連付けられるLCH優先度情報よりも高い優先度(例えば、小さい値)を示してもよい。これにより、SR設定#1のSR優先度情報は、SR設定#2のSR優先度情報よりも高い優先度を示してもよい。 For example, in slot # n of FIG. 5, the LCH priority information associated with the SR setting # 1 of the URLLC SR has a higher priority than the LCH priority information associated with the SR setting # 2 of the eMBB SR (for example, Small value) may be indicated. As a result, the SR priority information of SR setting # 1 may indicate a higher priority than the SR priority information of SR setting # 2.
 図8A及び8Bは、第1の態様のLCH優先度情報を利用するSR優先度情報の一例を示す図である。図4で説明したように、LCH設定情報(例えば、RRC IEの「LogicalChannelConfig」)は、LCH優先度情報(例えば、RRC IEの「priority」)及びSR-ID(例えば、RRC IEの「SchedulingRequestId」)を含む。すなわち、所定のLCH優先度を有するLCHは、SR-IDにより識別されるSR設定に関連付けられる。 8A and 8B are diagrams showing an example of SR priority information using the LCH priority information of the first aspect. As described with reference to FIG. 4, the LCH setting information (for example, "LogicalChannelConfig" of RRC IE) includes LCH priority information (for example, "priority" of RRC IE) and SR-ID (for example, "SchedulingRequestId" of RRC IE). )including. That is, an LCH having a predetermined LCH priority is associated with the SR setting identified by the SR-ID.
 図8Aでは、SR優先度情報は、SR-IDにより識別されるSR設定に関連付けられるLCHのLCH優先度情報と同一であってもよい。単一のSR設定が一以上のLCHに関連付けられる場合、当該一以上のLCHのLCH優先度情報の中から、所定の値を有するLCH優先度情報が当該単一のSR設定のSR優先度情報として選択されてもよい。 In FIG. 8A, the SR priority information may be the same as the LCH priority information of the LCH associated with the SR setting identified by the SR-ID. When a single SR setting is associated with one or more LCHs, the LCH priority information having a predetermined value from the LCH priority information of the one or more LCHs is the SR priority information of the single SR setting. May be selected as.
 当該所定値のLCH優先度情報は、例えば、最小値のLCH優先度情報(例えば、最も優先レベルが高いLCH優先度情報)、又は、最大値のLCH優先度情報(例えば、最も優先レベルが低いLCH優先度情報)であってもよい。 The LCH priority information of the predetermined value is, for example, the minimum value LCH priority information (for example, the highest priority level LCH priority information) or the maximum value LCH priority information (for example, the lowest priority level). LCH priority information) may be used.
 図8Aでは、例えば、SR-ID「1」で識別されるSR設定#1にLCH優先度情報「2」のLCH#1が関連付けられるので、UEは、当該SR設定#1のSR優先度情報を「2」と決定してもよい。 In FIG. 8A, for example, since the SR setting # 1 identified by the SR-ID “1” is associated with the LCH # 1 of the LCH priority information “2”, the UE can use the SR priority information of the SR setting # 1. May be determined as "2".
 また、図8Aでは、SR-ID「2」で識別されるSR設定#2にはLCH優先度情報「5」のLCH#3及びLCH優先度情報「7」のLCH#4が関連付けられる。この場合、UEは、例えば、当該SR設定のSR優先度情報を、優先レベルが最も高いLCH#3のLCH優先度情報「5」と決定してもよい。 Further, in FIG. 8A, LCH # 3 of LCH priority information "5" and LCH # 4 of LCH priority information "7" are associated with SR setting # 2 identified by SR-ID "2". In this case, the UE may determine, for example, the SR priority information of the SR setting as the LCH priority information “5” of the LCH # 3 having the highest priority level.
 図8Bでは、LCH優先度情報とSR優先度情報とのマッピングルールが予め定められてもよい。図8Bでは、LCH優先度情報の第1の範囲の値(例えば、「1」~「8」)は、SR優先度情報の第1の値(例えば、「1」)にマッピングされ、LCH優先度情報の第2の範囲の値(例えば、「9」~「16」)は、SR優先度情報の第2の値(例えば、「2」)にマッピングされる。なお、図8Bに示すマッピングは一例にすぎず、これに限られない。例えば、SR優先度情報の値の数は2以上であってもよい。 In FIG. 8B, a mapping rule between LCH priority information and SR priority information may be predetermined. In FIG. 8B, the values in the first range of the LCH priority information (for example, “1” to “8”) are mapped to the first values of the SR priority information (for example, “1”), and the LCH priority is given. Values in the second range of degree information (eg, "9" to "16") are mapped to second values in SR priority information (eg, "2"). The mapping shown in FIG. 8B is only an example, and is not limited to this. For example, the number of SR priority information values may be 2 or more.
 図8Bに示すように、例えば、SR設定#1にLCH優先度情報「2」のLCH#1が関連付けられる場合、UEは、上記マッピングルールに従い、当該SR設定#1のSR優先度情報を「1」と決定してもよい。 As shown in FIG. 8B, for example, when LCH # 1 of LCH priority information "2" is associated with SR setting # 1, the UE sets the SR priority information of the SR setting # 1 to "" according to the above mapping rule. 1 "may be determined.
 また、図8Bでは、SR設定#2にはLCH優先度情報「10」のLCH#3及びLCH優先度情報「12」のLCH#4が関連付けられる。この場合、UEは、例えば、当該SR設定#2のSR優先度情報を、優先レベルが最も高いLCH#3のLCH優先度情報「10」に対応する「2」と決定してもよい。 Further, in FIG. 8B, LCH # 3 of LCH priority information “10” and LCH # 4 of LCH priority information “12” are associated with SR setting # 2. In this case, the UE may determine, for example, the SR priority information of the SR setting # 2 as "2" corresponding to the LCH priority information "10" of the LCH # 3 having the highest priority level.
 以上のように、UEは、SR-IDで識別されるSR設定に関連付けられるLCHのLCH優先度情報に基づいて、当該SR設定のSR優先度情報を決定する。 As described above, the UE determines the SR priority information of the SR setting based on the LCH priority information of the LCH associated with the SR setting identified by the SR-ID.
 例えば、図5のスロット#nにおいて、URLLC用SRのSR設定#1に関連付けられるLCH#1のLCH優先度情報は、eMBB用SRのSR設定#2に関連付けられるLCH#2のLCH優先度情報よりも高い優先レベルを示してもよい。このため、UEが同一の時間ユニット(例えば、スロット)内で異なるサービスタイプのSRそれぞれのSR設定に関連付けられる複数のSRリソースが重複する場合に、当該SR設定に関連付けられるLCHのLCH優先度情報に基づいてSR優先度情報を決定でき、当該SR優先度情報に基づく優先付けを適切に制御できる。 For example, in slot # n of FIG. 5, the LCH priority information of LCH # 1 associated with SR setting # 1 of SR for URLLC is the LCH priority information of LCH # 2 associated with SR setting # 2 of SR for eMBB. It may indicate a higher priority level. Therefore, when a plurality of SR resources associated with SR settings of SRs of different service types are duplicated in the same time unit (for example, slot), the LCH priority information of the LCH associated with the SR settings is duplicated. SR priority information can be determined based on the above, and prioritization based on the SR priority information can be appropriately controlled.
<SR優先度情報に基づく送信制御>
 UEは、SRリソース情報又はSR設定情報に含まれるSR優先度情報、又は、LCH優先度情報に基づいて決定されるSR優先度情報が示すSR優先度が最も高いSRを、当該SR送信用のPUCCHリソース又はPUSCHを用いて送信してもよい。例えば、図5のスロット#nでは、UEは、SR優先度が高いSR設定#1のSRを、PUCCHリソース#1で送信してもよい。
<Transmission control based on SR priority information>
The UE transmits the SR having the highest SR priority indicated by the SR priority information included in the SR resource information or the SR setting information, or the SR priority information determined based on the LCH priority information. It may be transmitted using the PUCCH resource or PUSCH. For example, in slot # n of FIG. 5, the UE may transmit the SR of SR setting # 1 having a high SR priority by the PUCCH resource # 1.
 或いは、UEは、当該SR優先度情報が所定の条件を満たす一以上のSR(例えば、衝突する全てのSRの中で条件を満たす一部のSR)を、一つのPUCCHリソース又はPUSCHに多重して送信してもよい。 Alternatively, the UE multiplexes one or more SRs whose SR priority information satisfies a predetermined condition (for example, some SRs satisfying the condition among all the SRs that collide) in one PUCCH resource or PUSCH. May be sent.
 或いは、UEが同一の時間ユニット(例えば、スロット)内で異なるサービスタイプのSRそれぞれのSR設定に関連付けられる複数のSRリソースが重複する場合に、重複する全てのSRを単一のPUCCHリソース又はPUSCHを用いて送信してもよい。例えば、図5のスロット#nでは、UEは、SR設定#1のSR及びSR設定#2のSRの双方を、PUCCHリソース#1又は#2に多重して、送信してもよい。 Alternatively, if the UE overlaps multiple SR resources associated with SR settings for SRs of different service types within the same time unit (eg, slot), all overlapping SRs can be combined into a single PUCCH resource or PUSCH. May be transmitted using. For example, in slot # n of FIG. 5, the UE may multiplex both the SR of SR setting # 1 and the SR of SR setting # 2 in PUCCH resource # 1 or # 2 and transmit them.
 以上のように、第1の態様では、RRCレイヤで規定されるSR優先度に基づいて、同一の時間ユニット内で異なるサービスタイプに対応する複数のSRの送信が衝突する場合、当該複数のSRの優先付けを適切に制御できる。 As described above, in the first aspect, when the transmissions of a plurality of SRs corresponding to different service types collide within the same time unit based on the SR priority defined by the RRC layer, the plurality of SRs Can be properly controlled for prioritization.
(第2の態様)
 第2の態様では、物理レイヤにおいて、SR優先度が定められてもよい。UEは、各SR設定に関するパラメータに基づいて、各SR設定のSR優先度を決定してもよい。
(Second aspect)
In the second aspect, the SR priority may be defined in the physical layer. The UE may determine the SR priority of each SR setting based on the parameters for each SR setting.
 具体的には、UEは、各SR設定に関するパラメータの関数として、SR優先度の値を決定してもよい。例えば、UEは、以下の少なくとも一つのパラメータに基づいて、SR優先度の値を決定してもよい。
・SR設定に関連付けられるLCHのLCH優先度情報
・SR設定に関連付けられるSRリソース(例えば、SR機会)の周期
・SR設定に関連付けられるSRリソース(例えば、PUCCHリソース)の長さ
・SR設定の最大のSR送信回数
Specifically, the UE may determine the SR priority value as a function of the parameters for each SR setting. For example, the UE may determine the SR priority value based on at least one of the following parameters:
-LCH priority information of LCH associated with SR setting-Period of SR resource (eg SR opportunity) associated with SR setting-Length of SR resource (eg PUCCH resource) associated with SR setting-Maximum SR setting SR transmission count
 なお、一つのLCHには、SR設定、当該SR設定に対応するSR機会の周期、SR設定に対応するSR送信に用いるPUCCHリソース、他のSR設定情報及びSR設定情報内のパラメータ(例えば、最大のSR送信関数)のいずれか、又は、これらの少なくとも2つの組み合わせが関連付けられてもよい。 It should be noted that one LCH includes an SR setting, an SR opportunity cycle corresponding to the SR setting, a PUCCH resource used for SR transmission corresponding to the SR setting, other SR setting information, and parameters in the SR setting information (for example, maximum). SR transmission function), or at least two combinations thereof may be associated with each other.
 例えば、UEは、以下の式(1)を用いて、SR優先度PSR_IDを決定してもよい。
(式1)
 PSR_ID=a・xLC_priority+b・xSR_periodicity+c・yPUCCH_length+d・zmaxSR
For example, the UE may determine the SR priority P SR_ID using the following equation (1).
(Equation 1)
P SR_ID = a · x LC_priority + b · x SR_periodicity + c · y PUCCH_length + d · z maxSR
 ここで、aは、SR設定に関連付けられるLCHのLCH優先度情報(例えば、RRC IEの「LogicalChannelConfig」内の「priority」が示す値)に対する重みづけ用の係数(weighting factor)である。aは、例えば、0~1の間の値の所定の定数(constant)であってもよい。 Here, a is a weighting factor for the LCH priority information of the LCH associated with the SR setting (for example, the value indicated by "priority" in the "Logical Channel Config" of RRC IE). a may be, for example, a constant constant with a value between 0 and 1.
 bは、SR設定に関連付けられるSR機会の周期(例えば、RRC IEの「SchedulingRequestResourceConfig」内の「periodicityAndOffset」が示す周期)に対する重みづけ用の係数である。bは、例えば、0~1の間の値の所定の定数であってもよい。 B is a coefficient for weighting the SR opportunity cycle associated with the SR setting (for example, the cycle indicated by "periodicityAndOffset" in "SchedulingRequestResourceConfig" of RRC IE). b may be, for example, a predetermined constant having a value between 0 and 1.
 cは、SR設定に関連付けられるSR送信に用いるPUCCHリソース(例えば、RRC IEの「SchedulingRequestResourceConfig」内の「PUCCH-ResourceId」が示すPUCCHリソース)の長さ(シンボル数)に対する重みづけ用の係数である。cは、例えば、0~1の間の値の所定の定数であってもよい。 c is a coefficient for weighting the length (number of symbols) of the PUCCH resource used for SR transmission associated with the SR setting (for example, the PUCCH resource indicated by "PUCCH-ResourceId" in "SchedulingRequestResourceConfig" of RRC IE). .. c may be, for example, a predetermined constant having a value between 0 and 1.
 dは、SR設定の最大のSR送信回数(例えば、RRC IEの「SchedulingRequestToAddMod」内の「sr-TransMax」が示すSR送信回数)に対する重みづけ用の係数である。dは、例えば、0~1の間の値の所定の定数であってもよい。 D is a coefficient for weighting the maximum number of SR transmissions in the SR setting (for example, the number of SR transmissions indicated by "sr-TransMax" in "SchedulingRequestToAddMod" of RRC IE). d may be, for example, a predetermined constant having a value between 0 and 1.
 xLC_priorityは、SR設定に関連付けられる論理チャネルのLCH優先度情報に基づく値(例えば、RRC IEの「LogicalChannelConfig」内の「priority」に基づく値)であってもよい。 x LC_priority may be a value based on the LCH priority information of the logical channel associated with the SR setting (eg, a value based on "priority" in the "Logical Channel Config" of the RRC IE).
 xSR_periodicityは、SR設定に関連付けられるSR機会の周期に基づく値(例えば、RRC IEの「SchedulingRequestResourceConfig」内の「periodicityAndOffset」が示す周期に基づく値)であってもよい。 x SR_periodicity may be a value based on the cycle of SR opportunities associated with the SR settings (eg, a value based on the cycle indicated by "periodicityAndOffset" in "SchedulingRequestResourceConfig" of RRC IE).
 yPUCCH_lengthは、SR設定に関連付けられるSR送信に用いるPUCCHリソースの長さ(シンボル数)に基づく値(例えば、RRC IEの「SchedulingRequestResourceConfig」内の「PUCCH-ResourceId」が示すPUCCHリソースの長さに基づく値)であってもよい。 y PUCCH_length is a value based on the length (number of symbols) of the PUCCH resource used for SR transmission associated with the SR setting (for example, based on the length of the PUCCH resource indicated by "PUCCH-ResourceId" in "SchedulingRequestResourceConfig" of RRC IE. Value) may be.
 zmaxSRは、SR設定の最大のSR送信回数に基づく値(例えば、RRC IEの「SchedulingRequestToAddMod」内の「sr-TransMax」が示すSR送信回数に基づく値)であってもよい。 z maxSR may be a value based on the maximum number of SR transmissions in the SR setting (for example, a value based on the number of SR transmissions indicated by "sr-TransMax" in "SchedulingRequestToAddMod" of RRC IE).
 なお、式(1)は、例示にすぎず、SR優先度PSR_IDの決定に用いる関数は、式(1)に限られない。SR優先度PSR_IDは、上記パラメータa、xLC_priority、b、xSR_periodicity、c、yPUCCH_length、d、zmaxSRの少なくとも一つを用いて決定されればよい。 Note that equation (1) is merely an example, and the function used to determine the SR priority PSR_ID is not limited to equation (1). The SR priority P SR_ID may be determined using at least one of the above parameters a, x LC_priority , b, x SR_periodicity , c, y PUCCH_length , d, z max SR .
 上記のように決定される異なるSR設定の複数のSR優先度PSR_ID(SR優先度情報ともいう)が同一の値である場合、UEは、以下の(1)~(5)のいずれかで動作してもよい。 When a plurality of SR priority P SR_ID (also referred to as SR priority information) of different SR settings determined as described above have the same value, the UE can be selected from any of the following (1) to (5). It may work.
 (1)エラーケースとして、異なるSR設定の複数のSR全ての送信を中止してもよい。 (1) As an error case, transmission of all multiple SRs with different SR settings may be stopped.
 (2)異なるSR設定の一つを選択し、選択されたSR設定のSRを送信してもよい。どのSR設定を選択するかは、UEのインプリ次第であってもよい。 (2) One of the different SR settings may be selected and the SR of the selected SR settings may be transmitted. Which SR setting to select may depend on the implementation of the UE.
 (3)SRの送信に用いるPUCCHリソースの開始シンボル及び長さの少なくとも一つに基づいて、異なるSR設定の一つを選択し、選択されたSR設定のSRを送信してもよい。例えば、PUCCHリソースの開始シンボルが早い又は遅いSR設定、当該PUCCHリソースの長さが短いSR設定等が選択されてもよい。 (3) One of the different SR settings may be selected based on at least one of the start symbol and the length of the PUCCH resource used for SR transmission, and the SR of the selected SR setting may be transmitted. For example, an SR setting in which the start symbol of the PUCCH resource is early or late, an SR setting in which the length of the PUCCH resource is short, or the like may be selected.
 (4)関連付けられるLCHのLCH優先度情報に基づいて、異なるSR設定の一つを選択し、選択されたSR設定のSRを送信してもよい。例えば、LCH優先度情報が最も高い優先度(例えば、最も小さい値)を示すSR設定が選択されてもよい。 (4) One of the different SR settings may be selected based on the LCH priority information of the associated LCH, and the SR of the selected SR settings may be transmitted. For example, the SR setting may be selected in which the LCH priority information indicates the highest priority (for example, the lowest value).
 (5)SR機会の周期に基づいて、異なるSR設定の一つを選択し、選択されたSR設定のSRを送信してもよい。例えば、SR機会の周期が短いSR設定等が選択されてもよい。 (5) One of the different SR settings may be selected based on the SR opportunity cycle, and the SR of the selected SR settings may be transmitted. For example, an SR setting with a short SR opportunity cycle may be selected.
 図9は、第2の態様に係るSR優先度情報の決定の一例を示す図である。図9では、SR-ID「1」を有するSR設定#1(例えば、URLLC用のSR設定)と、SR-ID「2」を有するSR設定#2(例えば、eMBB用のSR設定)とが示される。図9に示すように、SR設定に関するパラメータxLC_priority、xSR_periodicity、yPUCCH_length、zmaxSRの少なくとも一つの値は、所定のルールに従って変換されてもよい。 FIG. 9 is a diagram showing an example of determining SR priority information according to the second aspect. In FIG. 9, SR setting # 1 having SR-ID “1” (for example, SR setting for URLLC) and SR setting # 2 having SR-ID “2” (for example, SR setting for eMBB) are Shown. As shown in FIG. 9, at least one value of the parameters x LC_priority , x SR_periodicity , y PUCCH_length , and z maxSR related to the SR setting may be converted according to a predetermined rule.
 例えば、図9では、SR設定#1及び#2のxLC_priorityは、SR設定に関連付けられる論理チャネルのLCH優先度情報が示す値(ここでは、2及び5)であってもよい。 For example, in FIG. 9, the x LC_priority of SR settings # 1 and # 2 may be a value (here, 2 and 5) indicated by the LCH priority information of the logical channel associated with the SR setting.
 また、SR設定#1及び#2のxSR_periodicityは、SR設定に関連付けられるSR機会の周期(ここでは、2シンボル及び1スロット(14シンボル))を、短い周期ほど優先度が高くなるように変換した値(ここでは、0及び2)であってもよい。なお、ここでは、値が小さいほど高い優先度を示すものとするが、これに限られない。 In addition, the x SR_periodicity of SR settings # 1 and # 2 converts the SR opportunity cycle (here, 2 symbols and 1 slot (14 symbols)) associated with the SR setting so that the shorter the cycle, the higher the priority. The values (here, 0 and 2) may be used. Here, it is assumed that the smaller the value, the higher the priority, but the priority is not limited to this.
 また、SR設定#1及び#2のyPUCCH_lengthは、SR設定に関連付けられるSR送信に用いるPUCCHリソースの長さ(ここでは、2シンボル及び6シンボル)を、短い長さほど優先度が高くなるように変換した値(ここでは、1及び5)であってもよい。なお、ここでは、値が小さいほど高い優先度を示すものとするが、これに限られない。 Further, y PUCCH_length of SR settings # 1 and # 2 sets the length of the PUCCH resource (here, 2 symbols and 6 symbols) used for SR transmission associated with the SR setting to be higher in priority as the length is shorter. It may be a converted value (here, 1 and 5). Here, it is assumed that the smaller the value, the higher the priority, but the priority is not limited to this.
 また、SR設定#1及び#2のzmaxSRは、SR設定の最大のSR送信回数(ここでは、4及び4)を、所定のルールに変換した値(ここでは、0及び0)であってもよい。  Further, the z maxSR of SR settings # 1 and # 2 is a value obtained by converting the maximum number of SR transmissions (here, 4 and 4) of the SR setting into a predetermined rule (here, 0 and 0). May be good.
 図9に示すように、定数a=0、b=0.5、c=0.5、d=0である場合、SR設定#1及び#2のSR優先度PSR_IDは、上記式(1)を用いると、0.5及び3.5であってもよい。SR優先度PSR_IDの値が小さいほど高い優先度となる場合、UEは、SR設定#1を優先してもよい。 As shown in FIG. 9, when the constants a = 0, b = 0.5, c = 0.5, d = 0, the SR priority P SR_ID of the SR settings # 1 and # 2 is the above equation (1). ) May be 0.5 and 3.5. SR priority P If the smaller the value of SR_ID, the higher the priority, the UE may give priority to SR setting # 1.
 例えば、図5のスロット#nにおいてSR設定#1及び#2それぞれに対応するPUCCHリソースが衝突する場合、SR設定#1に対応するPUCCHリソース#1を用いたURLLC用のSRを送信してもよい。この場合、PUCCHリソース#2を用いたeMBB用のSRをドロップしてもよいし、次のSR機会に延期してもよい。或いは、SR設定#1及び#2双方のSRを、PUCCHリソース#1又は#2を用いて送信してもよい。 For example, when PUCCH resources corresponding to SR settings # 1 and # 2 collide with each other in slot # n of FIG. 5, even if SR for URLLC using PUCCH resource # 1 corresponding to SR setting # 1 is transmitted. Good. In this case, the SR for eMBB using PUCCH resource # 2 may be dropped or postponed to the next SR opportunity. Alternatively, SRs of both SR settings # 1 and # 2 may be transmitted using PUCCH resources # 1 or # 2.
 第2の態様では、物理レイヤでSR優先度を決定できるので、同一の時間単位内で異なるSR設定に関連付けられる複数のSRリソースが衝突する場合に、適切に優先付けを行うことができる。 In the second aspect, since the SR priority can be determined in the physical layer, when a plurality of SR resources associated with different SR settings collide within the same time unit, the priority can be appropriately performed.
 なお、第2の態様においても、第1の態様で説明したSR優先度情報に基づく送信制御を適用できる。この場合、第1の態様の優先度情報は、物理レイヤで決定される上記SR優先度PSR_IDに置き換えられればよい。 Also in the second aspect, the transmission control based on the SR priority information described in the first aspect can be applied. In this case, the priority information of the first aspect may be replaced with the SR priority P SR_ID determined by the physical layer.
(第3の態様)
 第3の態様では、MACレイヤにおいて、SR優先度が定められてもよい。UEのMACエンティティは、SR優先度を示すSR優先度情報を物理レイヤに伝達(deliver)してもよい。
(Third aspect)
In the third aspect, the SR priority may be determined in the MAC layer. The MAC entity of the UE may deliver SR priority information indicating SR priority to the physical layer.
 MACレイヤから物理レイヤに通知されるSR優先度情報は、SR設定に関連付けられるLCHのLCH優先度情報(例えば、RRC IEの「LogicalChannelConfig」内の「priority」)に基づいてから導出(決定)されてもよい。 The SR priority information notified from the MAC layer to the physical layer is derived (determined) based on the LCH priority information of the LCH associated with the SR setting (for example, "priority" in "Logical Channel Config" of RRC IE). You may.
 第3の態様では、「MACエンティティ」がLCH優先度情報に基づいてSR優先度情報を決定する点で、「物理レイヤ」が上位レイヤパラメータにおけるLCH優先度情報に基づいてSR優先度情報を決定する第1の態様と異なってもよい。より具体的には、第3の態様では、UEのMACエンティティ及び物理レイヤ間においてSR優先度情報の通知が発生する点で、第1の態様と異なってもよい。 In the third aspect, the "MAC entity" determines the SR priority information based on the LCH priority information, and the "physical layer" determines the SR priority information based on the LCH priority information in the upper layer parameter. It may be different from the first aspect. More specifically, the third aspect may differ from the first aspect in that SR priority information notification occurs between the MAC entity and the physical layer of the UE.
 図10は、第3の態様に係るSR優先度情報に基づく優先付けの一例を示す図である。図10では、図5と同様に、例えば、第1のサービスタイプ(例えば、URLLCデータ)に関連付けられるSR設定#1用のSR機会が4スロット周期で設定され、第2のサービスタイプ(例えば、eMBBデータ)に関連付けられるSR設定#2用のSR機会が10スロット周期で設定されるものとする。 FIG. 10 is a diagram showing an example of prioritization based on SR priority information according to the third aspect. In FIG. 10, as in FIG. 5, for example, the SR opportunity for SR setting # 1 associated with the first service type (eg, URLLC data) is set in a 4-slot cycle and the second service type (eg, URLLC data) is set. It is assumed that the SR opportunity for SR setting # 2 associated with (eMBB data) is set in a 10-slot cycle.
 また、図10では、第1のサービスタイプ(例えば、URLLCデータ)がLCH#1に関連付けられ、第2のサービスタイプ(例えば、eMBBデータ)がLCH#2に関連付けられるものとする。なお、図10は例示にすぎず、サービスタイプ、SR機会の周期等は図示するものに限られない。 Further, in FIG. 10, it is assumed that the first service type (for example, URLLC data) is associated with LCH # 1 and the second service type (for example, eMBB data) is associated with LCH # 2. Note that FIG. 10 is merely an example, and the service type, SR opportunity cycle, and the like are not limited to those shown.
 図10に示すように、LCH#2用のデータ(例えば、eMBBデータ)がスロット#n-6で発生する場合、UEのMACエンティティは、LCH#2に関連付けられるSR設定#2用の次のSR機会(ここでは、スロット#nのシンボル#2~#8のPUCCHリソース)でのSR設定#2のSRの送信を物理レイヤに指示するとともに、当該SR設定#2のSR優先度情報を物理レイヤに通知する。 As shown in FIG. 10, when data for LCH # 2 (eg, eMBB data) occurs in slot # n-6, the MAC entity of the UE is the next for SR configuration # 2 associated with LCH # 2. Instruct the physical layer to transmit the SR of the SR setting # 2 at the SR opportunity (here, the PUCCH resource of the symbols # 2 to # 8 of the slot # n), and physically obtain the SR priority information of the SR setting # 2. Notify the layer.
 また、LCH#1用のデータ(例えば、URLLCデータ)がスロット#n-1で発生する場合、UEのMACエンティティは、LCH#1に関連付けられるSR設定#1用の次のSR機会(ここでは、スロット#nのシンボル#8及び#9のPUCCHリソース)でのSR設定#1のSRの送信を物理レイヤに指示するとともに、当該SR設定#1のSR優先度情報を物理レイヤに通知する。 Also, if the data for LCH # 1 (eg, URLLC data) occurs in slot # n-1, the MAC entity of the UE will have the next SR opportunity for SR setting # 1 associated with LCH # 1 (here). , The PUCCH resource of the symbols # 8 and # 9 of the slot # n) is instructed to transmit the SR of the SR setting # 1, and the SR priority information of the SR setting # 1 is notified to the physical layer.
 UE(UEの物理レイヤ)は、MACエンティティからのSR優先度情報に基づいて、スロット#nにおけるSR設定#1及び#2の優先付けを制御してもよい。 The UE (physical layer of the UE) may control the prioritization of SR settings # 1 and # 2 in slot # n based on the SR priority information from the MAC entity.
 図11A及び11Bは、MACエンティティから通知されるSR優先度情報の一例を示す図である。図11A及び11Bでは、図10のSR設定#1及び#2のSR優先度情報の一例が示される。なお、図10のSR設定#1に関連付けられるLCH#1のLCH優先度情報は「1」であり、SR設定#2に関連付けられるLCH#2のLCH優先度情報は「8」であるものとする。なお、LCH優先度情報は値が小さいほど高い優先度を示してもよい。 11A and 11B are diagrams showing an example of SR priority information notified from the MAC entity. 11A and 11B show an example of SR priority information of SR settings # 1 and # 2 of FIG. The LCH priority information of LCH # 1 associated with SR setting # 1 in FIG. 10 is "1", and the LCH priority information of LCH # 2 associated with SR setting # 2 is "8". To do. The smaller the value of the LCH priority information, the higher the priority.
 図11Aに示すように、UEのMAエンティティは、SR設定#1及び#2に関連付けられるLCH#1及び#2のLCH優先度情報を、SR設定#1及び#2のSR優先度情報として、物理レイヤに通知してもよい。例えば、図11Aでは、UEのMAエンティティは、SR設定#1及び#2に関連付けられるLCH#1及び#2のLCH優先度情報「1」及び「8」を、それぞれ、SR設定#1及び#2のSR優先度情報として、物理レイヤに通知してもよい。 As shown in FIG. 11A, the MA entity of the UE uses the LCH priority information of LCH # 1 and # 2 associated with SR settings # 1 and # 2 as the SR priority information of SR settings # 1 and # 2. The physical layer may be notified. For example, in FIG. 11A, the MA entity of the UE provides LCH priority information “1” and “8” for LCH # 1 and # 2 associated with SR settings # 1 and # 2, respectively, to SR settings # 1 and # 2, respectively. The physical layer may be notified as the SR priority information of 2.
 単一のSR設定が一以上のLCHに関連付けられる場合、UEのMACエンティティは、当該一以上のLCHのLCH優先度情報の中から、所定の値を有するLCH優先度情報が当該単一のSR設定のSR優先度情報として選択してもよい。 When a single SR setting is associated with one or more LCHs, the MAC entity of the UE has the LCH priority information of the one or more LCHs whose LCH priority information having a predetermined value is the single SR. It may be selected as SR priority information of the setting.
 当該所定値のLCH優先度情報は、例えば、最小値のLCH優先度情報(例えば、最も優先レベルが高いLCH優先度情報)、又は、最大値のLCH優先度情報(例えば、最も優先レベルが低いLCH優先度情報)であってもよい。 The LCH priority information of the predetermined value is, for example, the minimum value LCH priority information (for example, the highest priority level LCH priority information) or the maximum value LCH priority information (for example, the lowest priority level). LCH priority information) may be used.
 或いは、図11Bに示すように、UEのMACエンティティは、SR設定#1及び#2に関連付けられるLCH#1及び#2のLCH優先度情報から導出される所定値を、SR#1及び#2のSR優先度情報として、物理レイヤに通知してもよい。 Alternatively, as shown in FIG. 11B, the MAC entity of the UE sets a predetermined value derived from the LCH priority information of LCH # 1 and # 2 associated with SR settings # 1 and # 2 to SR # 1 and # 2. The physical layer may be notified as SR priority information of.
 図11Bでは、例えば、図8Bで説明したように、LCH優先度情報とSR優先度情報とのマッピングルールが予め定められてもよい。例えば、図11Bでは、UEのMAエンティティは、所定のマッピングルールに従って、SR設定#1及び#2に関連付けられるLCH#1及び#2のLCH優先度情報「1」及び「8」から、それぞれ、SR設定#1及び#2のSR優先度情報「1」及び「2」を導出し、導出したSR優先度情報を物理レイヤに通知してもよい。 In FIG. 11B, for example, as described in FIG. 8B, a mapping rule between the LCH priority information and the SR priority information may be predetermined. For example, in FIG. 11B, the MA entity of the UE is from the LCH priority information “1” and “8” of LCH # 1 and # 2 associated with SR settings # 1 and # 2, respectively, according to a predetermined mapping rule. The SR priority information "1" and "2" of the SR settings # 1 and # 2 may be derived, and the derived SR priority information may be notified to the physical layer.
 単一のSR設定が一以上のLCHに関連付けられる場合、UEのMACエンティティは、当該一以上のLCHのLCH優先度情報の中から、所定の値(例えば、最も小さい又は最も大きい値)を有するLCH優先度情報から、上記マッピングルールに従って当該単一のSR設定のSR優先度情報を導出してもよい。 When a single SR setting is associated with one or more LCHs, the MAC entity of the UE has a predetermined value (eg, the smallest or largest value) from the LCH priority information of the one or more LCHs. The SR priority information of the single SR setting may be derived from the LCH priority information according to the above mapping rule.
 UE(UEの物理レイヤ)は、同一の時間ユニット(例えば、図10のスロット#n)内でSR設定#1及び#2の送信に用いるPUCCHリソースが衝突する場合、MACエンティティから通知されるSR#1及び#2のSR優先度情報に基づいて、どちらのPUCCHリソースを用いたSR送信を行うかを決定してもよい。 The UE (physical layer of the UE) is notified by the MAC entity when the PUCCH resources used for transmission of SR settings # 1 and # 2 collide in the same time unit (for example, slot # n in FIG. 10). Based on the SR priority information of # 1 and # 2, it may be determined which PUCCH resource is used for SR transmission.
 UE(UEの物理レイヤ)は、SR優先度情報が示すSR優先度が最も高いSRだけを、当該SR送信用のPUCCHリソースで送信してもよい。例えば、図10では、UEは、MACエンティティから通知されるSR設定#1及び#2のSR優先度情報に基づいて、SR設定#1に対応するPUCCHリソース#1を用いて、URLLC用のSRを送信してもよい。 The UE (physical layer of the UE) may transmit only the SR having the highest SR priority indicated by the SR priority information by the PUCCH resource for the SR transmission. For example, in FIG. 10, the UE uses the PUCCH resource # 1 corresponding to the SR setting # 1 based on the SR priority information of the SR settings # 1 and # 2 notified from the MAC entity, and uses the SR for URLLC. May be sent.
 或いは、UE(UEの物理レイヤ)は、SR優先度情報が示すSR優先度が所定の条件を満たす一以上のSRを、当該PUCCHリソースで送信してもよい。 Alternatively, the UE (physical layer of the UE) may transmit one or more SRs whose SR priority indicated by the SR priority information satisfies a predetermined condition with the PUCCH resource.
 或いは、UE(UEの物理レイヤ)は、衝突した全てのSRを、SR優先度情報が示すSR優先度が所定の条件を満たすPUCCHリソースで送信してもよい。例えば、図10では、UEは、MACエンティティから通知されるSR設定#1及び#2のSR優先度情報に基づいて、SR設定#1及び#2に対応するSRの双方を、PUCCHリソース#1又は#2を用いて送信してもよい。 Alternatively, the UE (physical layer of the UE) may transmit all the collided SRs with a PUCCH resource in which the SR priority indicated by the SR priority information satisfies a predetermined condition. For example, in FIG. 10, the UE sets both SRs corresponding to SR settings # 1 and # 2 to PUCCH resource # 1 based on the SR priority information of SR settings # 1 and # 2 notified from the MAC entity. Alternatively, it may be transmitted using # 2.
 或いは、UE(UEの物理レイヤ)は、当該同一の時間ユニット(例えば、図10のスロット#n)内にPUSCHがスケジューリングされる場合、衝突したSRの少なくとも一つを、当該PUSCHで送信してもよい。 Alternatively, when the PUSCH is scheduled in the same time unit (for example, slot # n in FIG. 10), the UE (physical layer of the UE) transmits at least one of the conflicting SRs in the PUSCH. May be good.
 以上のように、第3の態様では、UEのMACエンティティは、SR優先度情報を物理レイヤに通知するので、UEの物理レイヤが同一の時間ユニット内で衝突する複数のSRの優先付けを適切に制御できる。 As described above, in the third aspect, since the MAC entity of the UE notifies the SR priority information to the physical layer, it is appropriate to prioritize a plurality of SRs in which the physical layer of the UE collides in the same time unit. Can be controlled.
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
(Wireless communication system)
Hereinafter, the configuration of the wireless communication system according to the embodiment of the present disclosure will be described. In this wireless communication system, communication is performed using any one of the wireless communication methods according to each of the above-described embodiments of the present disclosure or a combination thereof.
 図12は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。 FIG. 12 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment. The wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by Third Generation Partnership Project (3GPP). ..
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。 Further, the wireless communication system 1 may support dual connectivity between a plurality of Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)). MR-DC is dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and dual connectivity between NR and LTE (NR-E). -UTRA Dual Connectivity (NE-DC)) may be included.
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。 In EN-DC, the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)). In NE-DC, the NR base station (gNB) is MN, and the LTE (E-UTRA) base station (eNB) is SN.
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。 The wireless communication system 1 has dual connectivity between a plurality of base stations in the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )) May be supported.
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。 The wireless communication system 1 includes a base station 11 that forms a macro cell C1 having a relatively wide coverage, and a base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. You may prepare. The user terminal 20 may be located in at least one cell. The arrangement, number, and the like of each cell and the user terminal 20 are not limited to the mode shown in the figure. Hereinafter, when the base stations 11 and 12 are not distinguished, they are collectively referred to as the base station 10.
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。 The user terminal 20 may be connected to at least one of the plurality of base stations 10. The user terminal 20 may use at least one of carrier aggregation (Carrier Aggregation (CA)) and dual connectivity (DC) using a plurality of component carriers (Component Carrier (CC)).
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。 Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)). The macro cell C1 may be included in FR1 and the small cell C2 may be included in FR2. For example, FR1 may be in a frequency band of 6 GHz or less (sub 6 GHz (sub-6 GHz)), and FR2 may be in a frequency band higher than 24 GHz (above-24 GHz). The frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a frequency band higher than FR2.
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。 Further, the user terminal 20 may perform communication using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。 The plurality of base stations 10 may be connected by wire (for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication). For example, when NR communication is used as a backhaul between base stations 11 and 12, the base station 11 corresponding to the upper station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to a relay station (relay) is IAB. It may be called a node.
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。 The base station 10 may be connected to the core network 30 via another base station 10 or directly. The core network 30 may include at least one such as Evolved Packet Core (EPC), 5G Core Network (5GCN), and Next Generation Core (NGC).
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。 The user terminal 20 may be a terminal that supports at least one of communication methods such as LTE, LTE-A, and 5G.
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。 In the wireless communication system 1, a wireless access method based on Orthogonal Frequency Division Multiplexing (OFDM) may be used. For example, at least one of the downlink (Downlink (DL)) and the uplink (Uplink (UL)), Cyclic Prefix OFDM (CP-OFDM), Discrete Fourier Transform Spread OFDM (DFT-s-OFDM), Orthogonal Frequency Division Multiple. Access (OFDMA), Single Carrier Frequency Division Multiple Access (SC-FDMA), etc. may be used.
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。 The wireless access method may be called a waveform. In the wireless communication system 1, another wireless access system (for example, another single carrier transmission system, another multi-carrier transmission system) may be used as the UL and DL wireless access systems.
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。 In the wireless communication system 1, as downlink channels, downlink shared channels (Physical Downlink Shared Channel (PDSCH)), broadcast channels (Physical Broadcast Channel (PBCH)), and downlink control channels (Physical Downlink Control) shared by each user terminal 20 are used. Channel (PDCCH)) and the like may be used.
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。 Further, in the wireless communication system 1, as the uplink channel, the uplink shared channel (Physical Uplink Shared Channel (PUSCH)), the uplink control channel (Physical Uplink Control Channel (PUCCH)), and the random access channel shared by each user terminal 20 are used. (Physical Random Access Channel (PRACH)) or the like may be used.
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。 User data, upper layer control information, System Information Block (SIB), etc. are transmitted by PDSCH. User data, upper layer control information, and the like may be transmitted by the PUSCH. In addition, Master Information Block (MIB) may be transmitted by PBCH.
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。 Lower layer control information may be transmitted by PDCCH. The lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information of at least one of PDSCH and PUSCH.
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。 The DCI that schedules PDSCH may be called DL assignment, DL DCI, etc., and the DCI that schedules PUSCH may be called UL grant, UL DCI, etc. The PDSCH may be read as DL data, and the PUSCH may be read as UL data.
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。 A control resource set (COntrol REsource SET (CORESET)) and a search space (search space) may be used to detect the PDCCH. CORESET corresponds to a resource that searches for DCI. The search space corresponds to the search area and search method of PDCCH candidates (PDCCH candidates). One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a search space based on the search space settings.
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。 One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels. One or more search spaces may be referred to as a search space set. The "search space", "search space set", "search space setting", "search space set setting", "CORESET", "CORESET setting", etc. of the present disclosure may be read as each other.
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。 Depending on the PUCCH, channel state information (Channel State Information (CSI)), delivery confirmation information (for example, it may be called Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK / NACK, etc.) and scheduling request (Scheduling Request ( Uplink Control Information (UCI) including at least one of SR)) may be transmitted. The PRACH may transmit a random access preamble for establishing a connection with the cell.
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。 In this disclosure, downlinks, uplinks, etc. may be expressed without "links". Further, it may be expressed without adding "Physical" at the beginning of various channels.
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。 In the wireless communication system 1, a synchronization signal (Synchronization Signal (SS)), a downlink reference signal (Downlink Reference Signal (DL-RS)), and the like may be transmitted. In the wireless communication system 1, the DL-RS includes a cell-specific reference signal (Cell-specific Reference Signal (CRS)), a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), and a demodulation reference signal (DeModulation). Reference Signal (DMRS)), positioning reference signal (Positioning Reference Signal (PRS)), phase tracking reference signal (Phase Tracking Reference Signal (PTRS)), and the like may be transmitted.
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。 The synchronization signal may be, for example, at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)) and a secondary synchronization signal (Secondary Synchronization Signal (SSS)). The signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be referred to as SS / PBCH block, SS Block (SSB) and the like. In addition, SS, SSB and the like may also be called a reference signal.
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。 Further, in the wireless communication system 1, even if a measurement reference signal (Sounding Reference Signal (SRS)), a demodulation reference signal (DMRS), or the like is transmitted as an uplink reference signal (Uplink Reference Signal (UL-RS)). Good. The DMRS may be called a user terminal specific reference signal (UE-specific Reference Signal).
(基地局)
 図13は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
(base station)
FIG. 13 is a diagram showing an example of the configuration of the base station according to the embodiment. The base station 10 includes a control unit 110, a transmission / reception unit 120, a transmission / reception antenna 130, and a transmission line interface 140. The control unit 110, the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140 may each be provided with one or more.
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。 Note that, in this example, the functional blocks of the feature portion in the present embodiment are mainly shown, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。 The control unit 110 controls the entire base station 10. The control unit 110 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。 The control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping) and the like. The control unit 110 may control transmission / reception, measurement, and the like using the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140. The control unit 110 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 120. The control unit 110 may perform call processing (setting, release, etc.) of the communication channel, state management of the base station 10, management of radio resources, and the like.
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。 The transmission / reception unit 120 may include a baseband unit 121, a Radio Frequency (RF) unit 122, and a measurement unit 123. The baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212. The transmission / reception unit 120 includes a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmission / reception circuit, and the like, which are described based on common recognition in the technical fields according to the present disclosure. be able to.
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。 The transmission / reception unit 120 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit. The transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122. The receiving unit may be composed of a receiving processing unit 1212, an RF unit 122, and a measuring unit 123.
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。 The transmitting / receiving antenna 130 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。 The transmission / reception unit 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like. The transmission / reception unit 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。 The transmission / reception unit 120 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。 The transmission / reception unit 120 (transmission processing unit 1211) processes, for example, Packet Data Convergence Protocol (PDCP) layer processing and Radio Link Control (RLC) layer processing (for example, RLC) for data, control information, etc. acquired from control unit 110. RLC retransmission control), Medium Access Control (MAC) layer processing (for example, HARQ retransmission control), etc. may be performed to generate a bit string to be transmitted.
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transmission / reception unit 120 (transmission processing unit 1211) performs channel coding (may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (Discrete Fourier Transform (DFT)) for the bit string to be transmitted. The base band signal may be output by performing processing (if necessary), inverse fast Fourier transform (IFFT) processing, precoding, digital-analog transform, and other transmission processing.
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。 The transmission / reception unit 120 (RF unit 122) may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 130. ..
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。 On the other hand, the transmission / reception unit 120 (RF unit 122) may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 130.
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transmission / reception unit 120 (reception processing unit 1212) performs analog-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. )) Processing (if necessary), filtering, demapping, demodulation, decoding (may include error correction decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing are applied. User data and the like may be acquired.
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。 The transmission / reception unit 120 (measurement unit 123) may perform measurement on the received signal. For example, the measuring unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, or the like based on the received signal. The measuring unit 123 has received power (for example, Reference Signal Received Power (RSRP)) and reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)). , Signal strength (for example, Received Signal Strength Indicator (RSSI)), propagation path information (for example, CSI), and the like may be measured. The measurement result may be output to the control unit 110.
 伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。 The transmission line interface 140 transmits and receives signals (backhaul signaling) to and from devices included in the core network 30, other base stations 10, and the like, and user data (user plane data) and control plane for the user terminal 20. Data or the like may be acquired or transmitted.
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。 The transmitting unit and the receiving unit of the base station 10 in the present disclosure may be composed of at least one of the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
 なお、送受信部120は、各スケジューリング要求(SR)設定に関する情報(SR設定情報、例えば、RRC IEの「SchedulingRequestToAddMod」)を送信してもよい。 Note that the transmission / reception unit 120 may transmit information related to each scheduling request (SR) setting (SR setting information, for example, "SchedulingRequestToAddMod" of RRC IE).
 また、送受信部220は、各SR設定に関連付けられるリソースに関する情報(SRリソース情報、例えば、RRC IEの「SchedulingRequestResourceConfig」)を送信してもよい。 Further, the transmission / reception unit 220 may transmit information regarding resources associated with each SR setting (SR resource information, for example, "SchedulingRequestResourceConfig" of RRC IE).
 また、送受信部220は、各SR設定に関連付けられる論理チャネルに関する情報(LCH設定情報、例えば、RRC IEの「LogicalChannelConfig」)を送信してもよい。 Further, the transmission / reception unit 220 may transmit information regarding the logical channel associated with each SR setting (LCH setting information, for example, "Logical Channel Config" of RRC IE).
 また、送受信部220は、ユーザ端末20からのSRに基づいて、PUSCHをスケジューリングする下り制御情報を送信してもよい。 Further, the transmission / reception unit 220 may transmit downlink control information for scheduling PUSCH based on the SR from the user terminal 20.
(ユーザ端末)
 図14は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
(User terminal)
FIG. 14 is a diagram showing an example of the configuration of the user terminal according to the embodiment. The user terminal 20 includes a control unit 210, a transmission / reception unit 220, and a transmission / reception antenna 230. The control unit 210, the transmission / reception unit 220, and the transmission / reception antenna 230 may each be provided with one or more.
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。 Note that this example mainly shows the functional blocks of the feature portion in the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。 The control unit 210 controls the entire user terminal 20. The control unit 210 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。 The control unit 210 may control signal generation, mapping, and the like. The control unit 210 may control transmission / reception, measurement, and the like using the transmission / reception unit 220 and the transmission / reception antenna 230. The control unit 210 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 220.
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。 The transmission / reception unit 220 may include a baseband unit 221 and an RF unit 222, and a measurement unit 223. The baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212. The transmission / reception unit 220 can be composed of a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmission / reception circuit, and the like, which are described based on common recognition in the technical fields according to the present disclosure.
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。 The transmission / reception unit 220 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit. The transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222. The receiving unit may be composed of a receiving processing unit 2212, an RF unit 222, and a measuring unit 223.
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。 The transmitting / receiving antenna 230 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。 The transmission / reception unit 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like. The transmission / reception unit 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。 The transmission / reception unit 220 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。 The transmission / reception unit 220 (transmission processing unit 2211) processes, for example, PDCP layer processing, RLC layer processing (for example, RLC retransmission control), and MAC layer processing (for example, for data, control information, etc. acquired from the control unit 210). , HARQ retransmission control), etc., to generate a bit string to be transmitted.
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transmission / reception unit 220 (transmission processing unit 2211) performs channel coding (may include error correction coding), modulation, mapping, filtering processing, DFT processing (if necessary), and IFFT processing for the bit string to be transmitted. , Precoding, digital-to-analog conversion, and other transmission processing may be performed to output the baseband signal.
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。 Whether or not to apply the DFT process may be based on the transform precoding setting. The transmission / reception unit 220 (transmission processing unit 2211) described above for transmitting a channel (for example, PUSCH) using the DFT-s-OFDM waveform when the transform precoding is enabled. The DFT process may be performed as the transmission process, and if not, the DFT process may not be performed as the transmission process.
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。 The transmission / reception unit 220 (RF unit 222) may perform modulation, filtering, amplification, etc. to the radio frequency band on the baseband signal, and transmit the signal in the radio frequency band via the transmission / reception antenna 230. ..
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。 On the other hand, the transmission / reception unit 220 (RF unit 222) may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 230.
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transmission / reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering processing, demapping, demodulation, and decoding (error correction) for the acquired baseband signal. Decoding may be included), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。 The transmission / reception unit 220 (measurement unit 223) may perform measurement on the received signal. For example, the measuring unit 223 may perform RRM measurement, CSI measurement, or the like based on the received signal. The measuring unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like. The measurement result may be output to the control unit 210.
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220、送受信アンテナ230及び伝送路インターフェース240の少なくとも1つによって構成されてもよい。 The transmission unit and the reception unit of the user terminal 20 in the present disclosure may be composed of at least one of the transmission / reception unit 220, the transmission / reception antenna 230, and the transmission line interface 240.
 なお、送受信部220は、各スケジューリング要求(SR)設定に関する情報(SR設定情報、例えば、RRC IEの「SchedulingRequestToAddMod」)を受信してもよい。 Note that the transmission / reception unit 220 may receive information related to each scheduling request (SR) setting (SR setting information, for example, "SchedulingRequestToAddMod" of RRC IE).
 また、送受信部220は、各SR設定に関連付けられるリソースに関する情報(SRリソース情報、例えば、RRC IEの「SchedulingRequestResourceConfig」)を受信してもよい。 Further, the transmission / reception unit 220 may receive information regarding resources associated with each SR setting (SR resource information, for example, "SchedulingRequestResourceConfig" of RRC IE).
 また、送受信部220は、各SR設定に関連付けられる論理チャネルに関する情報(LCH設定情報、例えば、RRC IEの「LogicalChannelConfig」)を受信してもよい。 Further, the transmission / reception unit 220 may receive information regarding the logical channel associated with each SR setting (LCH setting information, for example, "Logical Channel Config" of RRC IE).
 制御部210は、複数のSR設定にそれぞれ関連付けられる複数のリソースを用いた複数のスケジューリング要求の送信が同一の時間単位内において衝突する場合、前記複数のスケジューリング要求それぞれの優先度に基づいて、前記複数のスケジューリング要求の送信を制御してもよい。 When the transmission of a plurality of scheduling requests using a plurality of resources associated with a plurality of SR settings conflicts within the same time unit, the control unit 210 describes the plurality of scheduling requests based on the priority of each of the plurality of scheduling requests. You may control the transmission of multiple scheduling requests.
 前記優先度を示す情報は、前記複数のSR設定にそれぞれ関連付けられる前記複数のリソースに関する情報(SRリソース情報)に含まれてもよい(第1の態様)。又は、前記優先度を示す情報は、前記複数のSR設定に関する情報(SR設定情報)に含まれてもよい(第1の態様)。 The information indicating the priority may be included in the information (SR resource information) regarding the plurality of resources associated with the plurality of SR settings (first aspect). Alternatively, the information indicating the priority may be included in the information regarding the plurality of SR settings (SR setting information) (first aspect).
 制御部210は、前記複数のSR設定にそれぞれ関連付けられる複数の論理チャネルの優先度を示す情報(LCH優先度情報)に基づいて、前記複数のスケジューリング要求それぞれの前記優先度を示す情報(SR優先度情報)を決定してもよい(第1、第3の態様)。 The control unit 210 has information indicating the priority of each of the plurality of scheduling requests (SR priority) based on the information indicating the priority of the plurality of logical channels associated with the plurality of SR settings (LCH priority information). Degree information) may be determined (first and third aspects).
 制御部210は、RRCレイヤで設定されるLCH優先度に基づいて、上記SR優先度情報を決定してもよい(第1の態様)。当該制御部210は、物理レイヤのエンティティであってもよい。当該制御部210は、当該SR優先度情報に基づいて、複数のSRの送信を制御してもよい。 The control unit 210 may determine the SR priority information based on the LCH priority set in the RRC layer (first aspect). The control unit 210 may be an entity of the physical layer. The control unit 210 may control the transmission of a plurality of SRs based on the SR priority information.
 制御部210は、Medium Access Control(MAC)レイヤ及び物理レイヤのエンティティ及び物理レイヤのエンティティを含んでもよい。当該MACレイヤのエンティティは、前記複数の論理チャネルの優先度を示す情報(LCH優先度情報)に基づいて前記複数のスケジューリング要求それぞれの前記優先度を示す情報(SR優先度情報)を決定して、前記物理レイヤに通知してもよい(第3の態様)。当該物理レイヤのエンティティは、当該SR優先度情報に基づいて、複数のSRの送信を制御してもよい。 The control unit 210 may include a Medium Access Control (MAC) layer, a physical layer entity, and a physical layer entity. The entity of the MAC layer determines the information (SR priority information) indicating the priority of each of the plurality of scheduling requests based on the information (LCH priority information) indicating the priority of the plurality of logical channels. , The physical layer may be notified (third aspect). The entity of the physical layer may control the transmission of a plurality of SRs based on the SR priority information.
 制御部210は、前記複数のSR設定にそれぞれ関連付けられる複数の論理チャネルの優先度を示す情報、前記複数のリソースそれぞれの周期、前記複数のリソースそれぞれの長さ、前記複数のスケジューリング要求それぞれの最大の送信回数の少なくとも一つに基づいて、前記優先度を示す情報を決定してもよい。当該制御部210は、物理レイヤのエンティティであってもよい。 The control unit 210 has information indicating the priority of the plurality of logical channels associated with the plurality of SR settings, the period of each of the plurality of resources, the length of each of the plurality of resources, and the maximum of each of the plurality of scheduling requests. The information indicating the priority may be determined based on at least one of the number of transmissions of. The control unit 210 may be an entity of the physical layer.
 送受信部220は、ユーザ端末20からのSRに基づいてPUSCHをスケジューリングする下り制御情報を検出し、当該PUSCHを用いた上りデータの送信を制御してもよい。 The transmission / reception unit 220 may detect downlink control information that schedules PUSCH based on SR from the user terminal 20, and control transmission of uplink data using the PUSCH.
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
(Hardware configuration)
The block diagram used in the description of the above embodiment shows a block of functional units. These functional blocks (components) are realized by any combination of at least one of hardware and software. Further, the method of realizing each functional block is not particularly limited. That is, each functional block may be realized by using one physically or logically connected device, or directly or indirectly (for example, two or more physically or logically separated devices). , Wired, wireless, etc.) and may be realized using these plurality of devices. The functional block may be realized by combining the software with the one device or the plurality of devices.
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。 Here, the functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. Not limited. For example, a functional block (constituent unit) for functioning transmission may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like. As described above, the method of realizing each of them is not particularly limited.
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図15は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, the base station, user terminal, and the like in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure. FIG. 15 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment. The base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. ..
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the present disclosure, the terms of devices, circuits, devices, sections, units, etc. can be read as each other. The hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。 For example, although only one processor 1001 is shown, there may be a plurality of processors. Further, the processing may be executed by one processor, or the processing may be executed simultaneously, sequentially, or by using other methods by two or more processors. The processor 1001 may be mounted by one or more chips.
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 For each function of the base station 10 and the user terminal 20, for example, by loading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, the processor 1001 performs an operation and communicates via the communication device 1004. It is realized by controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。 The processor 1001 operates, for example, an operating system to control the entire computer. The processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, and the like. For example, at least a part of the above-mentioned control unit 110 (210), transmission / reception unit 120 (220), and the like may be realized by the processor 1001.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。 Further, the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used. For example, the control unit 110 (210) may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized in the same manner for other functional blocks.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, for example, at least a Read Only Memory (ROM), an Erasable Programmable ROM (EPROM), an Electrically EPROM (EEPROM), a Random Access Memory (RAM), or any other suitable storage medium. It may be composed of one. The memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like. The memory 1002 can store a program (program code), a software module, or the like that can be executed to implement the wireless communication method according to the embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。 The storage 1003 is a computer-readable recording medium, for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disc (Compact Disc ROM (CD-ROM)), a digital versatile disk, etc.). At least one of Blu-ray® disks, removable disks, hard disk drives, smart cards, flash memory devices (eg cards, sticks, key drives), magnetic stripes, databases, servers, and other suitable storage media. It may be composed of. The storage 1003 may be referred to as an auxiliary storage device.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。 The communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like. The communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (Frequency Division Duplex (FDD)) and time division duplex (Time Division Duplex (TDD)). It may be configured to include. For example, the transmission / reception unit 120 (220), the transmission / reception antenna 130 (230), and the like described above may be realized by the communication device 1004. The transmission / reception unit 120 (220) may be physically or logically separated from the transmission unit 120a (220a) and the reception unit 120b (220b).
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that receives an input from the outside. The output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside. The input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Further, each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information. The bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 Further, the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (Digital Signal Processor (DSP)), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), a Field Programmable Gate Array (FPGA), and the like. It may be configured to include hardware, and a part or all of each functional block may be realized by using the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
(Modification example)
The terms described in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings. For example, channels, symbols and signals (signals or signaling) may be read interchangeably. Also, the signal may be a message. The reference signal can also be abbreviated as RS, and may be called a pilot, a pilot signal, or the like depending on the applied standard. Further, the component carrier (Component Carrier (CC)) may be referred to as a cell, a frequency carrier, a carrier frequency, or the like.
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 The wireless frame may be composed of one or more periods (frames) in the time domain. Each of the one or more periods (frames) constituting the wireless frame may be referred to as a subframe. Further, the subframe may be composed of one or more slots in the time domain. The subframe may have a fixed time length (eg, 1 ms) that is independent of numerology.
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 Here, the numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel. Numerology includes, for example, subcarrier spacing (SubCarrier Spacing (SCS)), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval (TTI)), number of symbols per TTI, and wireless frame configuration. , A specific filtering process performed by the transmitter / receiver in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。 The slot may be composed of one or more symbols in the time domain (Orthogonal Frequency Division Multiple Access (OFDMA) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.). Further, the slot may be a time unit based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。 The slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. Further, the mini slot may be called a sub slot. A minislot may consist of a smaller number of symbols than the slot. A PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as a PDSCH (PUSCH) mapping type A. The PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。 The wireless frame, subframe, slot, mini slot and symbol all represent the time unit when transmitting a signal. The radio frame, subframe, slot, minislot and symbol may have different names corresponding to each. The time units such as frames, subframes, slots, mini slots, and symbols in the present disclosure may be read as each other.
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called TTI, a plurality of consecutive subframes may be called TTI, and one slot or one minislot may be called TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. It may be. The unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum time unit of scheduling in wireless communication. For example, in the LTE system, the base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units. The definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation. When a TTI is given, the time interval (for example, the number of symbols) to which the transport block, code block, code word, etc. are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 When one slot or one mini slot is called TTI, one or more TTIs (that is, one or more slots or one or more mini slots) may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in 3GPP Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like. TTIs shorter than normal TTIs may be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 The long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 A resource block (Resource Block (RB)) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain. The number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12. The number of subcarriers contained in the RB may be determined based on numerology.
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。 Further, the RB may include one or more symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe or 1 TTI. Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。 One or more RBs are a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, and an RB. It may be called a pair or the like.
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Further, the resource block may be composed of one or a plurality of resource elements (Resource Element (RE)). For example, 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 Bandwidth Part (BWP) (which may also be called partial bandwidth) represents a subset of consecutive common resource blocks (RBs) for a neurology in a carrier. May be good. Here, the common RB may be specified by the index of the RB with respect to the common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 The BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL). One or more BWPs may be set in one carrier for the UE.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP. In addition, "cell", "carrier" and the like in this disclosure may be read as "BWP".
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。 Note that the above-mentioned structures such as wireless frames, subframes, slots, mini slots, and symbols are merely examples. For example, the number of subframes contained in a wireless frame, the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in the RB. The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。 Further, the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented. For example, radio resources may be indicated by a given index.
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for parameters, etc. in this disclosure are not limited in any respect. Further, mathematical formulas and the like using these parameters may differ from those explicitly disclosed in this disclosure. Since the various channels (PUCCH, PDCCH, etc.) and information elements can be identified by any suitable name, the various names assigned to these various channels and information elements are not limiting in any way. ..
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may be voltage, current, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。 In addition, information, signals, etc. can be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layers. Information, signals, etc. may be input / output via a plurality of network nodes.
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。 The input / output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information, signals, etc. can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to other devices.
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。 The notification of information is not limited to the mode / embodiment described in the present disclosure, and may be performed by using another method. For example, the notification of information in the present disclosure includes physical layer signaling (for example, downlink control information (DCI)), uplink control information (Uplink Control Information (UCI))), and higher layer signaling (for example, Radio Resource Control). (RRC) signaling, broadcast information (master information block (MIB), system information block (SIB), etc.), medium access control (MAC) signaling), other signals or combinations thereof May be carried out by.
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。 Note that the physical layer signaling may be referred to as Layer 1 / Layer 2 (L1 / L2) control information (L1 / L2 control signal), L1 control information (L1 control signal), and the like. Further, the RRC signaling may be called an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like. Further, MAC signaling may be notified using, for example, a MAC control element (MAC Control Element (CE)).
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。 In addition, the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit notification, but implicitly (for example, by not notifying the predetermined information or another information). May be done (by notification of).
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be made by a value represented by 1 bit (0 or 1), or by a boolean value represented by true or false. , May be done by numerical comparison (eg, comparison with a given value).
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software is an instruction, instruction set, code, code segment, program code, program, subprogram, software module, whether called software, firmware, middleware, microcode, hardware description language, or another name. , Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted to mean.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 In addition, software, instructions, information, etc. may be transmitted and received via a transmission medium. For example, a website where software uses at least one of wired technology (coaxial cable, fiber optic cable, twist pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.). When transmitted from a server, or other remote source, at least one of these wired and wireless technologies is included within the definition of transmission medium.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。 The terms "system" and "network" used in this disclosure may be used interchangeably. "Network" may mean a device (eg, a base station) included in the network.
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。 In the present disclosure, "precoding", "precoder", "weight (precoding weight)", "pseudo-colocation (Quasi-Co-Location (QCL))", "Transmission Configuration Indication state (TCI state)", "space". "Spatial relation", "spatial domain filter", "transmission power", "phase rotation", "antenna port", "antenna port group", "layer", "number of layers", Terms such as "rank", "resource", "resource set", "resource group", "beam", "beam width", "beam angle", "antenna", "antenna element", "panel" are compatible. Can be used for
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In the present disclosure, "base station (BS)", "radio base station", "fixed station", "NodeB", "eNB (eNodeB)", "gNB (gNodeB)", "Access point", "Transmission point (Transmission Point (TP))", "Reception point (Reception Point (RP))", "Transmission / reception point (Transmission / Reception Point (TRP))", "Panel" , "Cell", "sector", "cell group", "carrier", "component carrier" and the like can be used interchangeably. Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 The base station can accommodate one or more (for example, three) cells. When a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio)). Communication services can also be provided by Head (RRH))). The term "cell" or "sector" refers to part or all of the coverage area of at least one of the base stations and base station subsystems that provide communication services in this coverage.
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。 In this disclosure, terms such as "mobile station (MS)", "user terminal", "user equipment (UE)", and "terminal" are used interchangeably. Can be done.
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。 Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , Handset, user agent, mobile client, client or some other suitable term.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like. At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like. The moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be. It should be noted that at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation. For example, at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」、「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Further, the base station in the present disclosure may be read by the user terminal. For example, communication between a base station and a user terminal has been replaced with communication between a plurality of user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.). Each aspect / embodiment of the present disclosure may be applied to the configuration. In this case, the user terminal 20 may have the function of the base station 10 described above. In addition, words such as "up" and "down" may be read as words corresponding to communication between terminals (for example, "side"). For example, the uplink, downlink, and the like may be read as side channels.
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。 Similarly, the user terminal in the present disclosure may be read as a base station. In this case, the base station 10 may have the functions of the user terminal 20 described above.
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。 In the present disclosure, the operation performed by the base station may be performed by its upper node (upper node) in some cases. In a network including one or more network nodes having a base station, various operations performed for communication with a terminal are performed by the base station and one or more network nodes other than the base station (for example,). Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. can be considered, but it is not limited to these), or it is clear that it can be performed by a combination thereof.
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 Each aspect / embodiment described in the present disclosure may be used alone, in combination, or switched with execution. In addition, the order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。 Each aspect / embodiment described in the present disclosure includes Long Term Evolution (LTE), LTE-Advanced (LTE-A), LTE-Beyond (LTE-B), SUPER 3G, IMT-Advanced, 4th generation mobile communication system ( 4G), 5th generation mobile communication system (5G), Future Radio Access (FRA), New-Radio Access Technology (RAT), New Radio (NR), New radio access (NX), Future generation radio access (FX), Global System for Mobile communications (GSM (registered trademark)), CDMA2000, Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), LTE 802. 20, Ultra-WideBand (UWB), Bluetooth®, other systems that utilize suitable wireless communication methods, next-generation systems extended based on these, and the like. In addition, a plurality of systems may be applied in combination (for example, a combination of LTE or LTE-A and 5G).
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 The phrase "based on" as used in this disclosure does not mean "based on" unless otherwise stated. In other words, the statement "based on" means both "based only" and "at least based on".
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to elements using designations such as "first", "second", etc. as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted or that the first element must somehow precede the second element.
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。 The term "determining" as used in this disclosure may include a wide variety of actions. For example, "judgment (decision)" means judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry) ( For example, searching in a table, database or another data structure), ascertaining, etc. may be considered to be "judgment".
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。 In addition, "judgment (decision)" means receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), access (for example). It may be regarded as "judgment (decision)" of "accessing" (for example, accessing data in memory).
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。 In addition, "judgment (decision)" is regarded as "judgment (decision)" of solving, selecting, choosing, establishing, comparing, and the like. May be good. That is, "judgment (decision)" may be regarded as "judgment (decision)" of some action.
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 In addition, "judgment (decision)" may be read as "assuming", "expecting", "considering", and the like.
 本開示に記載の「最大送信電力」は送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。 The "maximum transmission power" described in the present disclosure may mean the maximum value of the transmission power, may mean the nominal UE maximum transmit power, or may mean the rated maximum transmission power (the). It may mean rated UE maximum transmit power).
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。 The terms "connected", "coupled", or any variation thereof, as used herein, are any direct or indirect connection or connection between two or more elements. Means, and can include the presence of one or more intermediate elements between two elements that are "connected" or "joined" to each other. The connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection" may be read as "access".
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 In the present disclosure, when two elements are connected, using one or more wires, cables, printed electrical connections, etc., and as some non-limiting and non-comprehensive examples, the radio frequency domain, microwaves. It can be considered to be "connected" or "coupled" to each other using frequency, electromagnetic energy having wavelengths in the light (both visible and invisible) regions, and the like.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other". The term may mean that "A and B are different from C". Terms such as "separate" and "combined" may be interpreted in the same way as "different".
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 When "include", "including" and variations thereof are used in the present disclosure, these terms are as comprehensive as the term "comprising". Is intended. Furthermore, the term "or" used in the present disclosure is intended not to be an exclusive OR.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In the present disclosure, if articles are added by translation, for example, a, an and the in English, the disclosure may include that the nouns following these articles are in the plural.
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。 Although the invention according to the present disclosure has been described in detail above, it is clear to those skilled in the art that the invention according to the present disclosure is not limited to the embodiments described in the present disclosure. The invention according to the present disclosure can be implemented as a modified or modified mode without departing from the spirit and scope of the invention determined based on the description of the claims. Therefore, the description of the present disclosure is for purposes of illustration and does not bring any limiting meaning to the invention according to the present disclosure.

Claims (6)

  1.  複数のスケジューリング要求(SR)設定に関する情報を受信する受信部と、
     前記複数のSR設定にそれぞれ関連付けられる複数のリソースを用いた複数のスケジューリング要求の送信が同一の時間単位内において衝突する場合、前記複数のスケジューリング要求それぞれの優先度に基づいて、前記複数のスケジューリング要求の送信を制御する制御部と、
    を具備することを特徴とするユーザ端末。
    A receiver that receives information about multiple scheduling request (SR) settings,
    When the transmission of a plurality of scheduling requests using a plurality of resources associated with the plurality of SR settings conflicts within the same time unit, the plurality of scheduling requests are based on the priority of each of the plurality of scheduling requests. Control unit that controls the transmission of
    A user terminal characterized by comprising.
  2.  前記優先度を示す情報は、前記複数のSR設定にそれぞれ関連付けられる前記複数のリソースに関する情報、又は、前記複数のSR設定に関する情報に含まれることを特徴とする請求項1に記載のユーザ端末。 The user terminal according to claim 1, wherein the information indicating the priority is included in the information related to the plurality of resources associated with the plurality of SR settings or the information related to the plurality of SR settings.
  3.  前記制御部は、前記複数のSR設定にそれぞれ関連付けられる複数の論理チャネルの優先度を示す情報に基づいて、前記複数のスケジューリング要求それぞれの前記優先度を示す情報を決定することを特徴とする請求項1に記載のユーザ端末。 The claim is characterized in that the control unit determines the information indicating the priority of each of the plurality of scheduling requests based on the information indicating the priority of the plurality of logical channels associated with the plurality of SR settings. Item 1. The user terminal according to item 1.
  4.  前記制御部は、Medium Access Control(MAC)レイヤのエンティティ及び物理レイヤのエンティティを含み、
     前記MACレイヤのエンティティは、前記複数の論理チャネルの優先度を示す情報に基づいて前記複数のスケジューリング要求それぞれの前記優先度を示す情報を決定して、前記物理レイヤに通知することを特徴とする請求項3に記載のユーザ端末。
    The control unit includes a medium access control (MAC) layer entity and a physical layer entity.
    The entity of the MAC layer determines the information indicating the priority of each of the plurality of scheduling requests based on the information indicating the priority of the plurality of logical channels, and notifies the physical layer. The user terminal according to claim 3.
  5.  前記制御部は、前記複数のSR設定にそれぞれ関連付けられる複数の論理チャネルの優先度を示す情報、前記複数のリソースそれぞれの周期、前記複数のリソースそれぞれの長さ、前記複数のスケジューリング要求それぞれの最大の送信回数の少なくとも一つに基づいて、前記優先度を示す情報を決定することを特徴とする請求項1に記載のユーザ端末。 The control unit has information indicating the priority of the plurality of logical channels associated with the plurality of SR settings, the period of each of the plurality of resources, the length of each of the plurality of resources, and the maximum of each of the plurality of scheduling requests. The user terminal according to claim 1, wherein the information indicating the priority is determined based on at least one of the transmission times of the above.
  6.  複数のスケジューリング要求(SR)設定に関する情報を受信する工程と、
     前記複数のSR設定にそれぞれ関連付けられる複数のリソースを用いた複数のスケジューリング要求の送信が同一の時間単位内において衝突する場合、前記複数のスケジューリング要求それぞれの優先度に基づいて、前記複数のスケジューリング要求の送信を制御する工程と、
    を有することを特徴とするユーザ端末の無線通信方法。
    The process of receiving information about multiple scheduling request (SR) settings, and
    When the transmission of a plurality of scheduling requests using a plurality of resources associated with the plurality of SR settings conflicts within the same time unit, the plurality of scheduling requests are based on the priority of each of the plurality of scheduling requests. And the process of controlling the transmission of
    A wireless communication method of a user terminal, characterized in that it has.
PCT/JP2019/022058 2019-06-03 2019-06-03 User terminal and wireless communication method WO2020245894A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/022058 WO2020245894A1 (en) 2019-06-03 2019-06-03 User terminal and wireless communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/022058 WO2020245894A1 (en) 2019-06-03 2019-06-03 User terminal and wireless communication method

Publications (1)

Publication Number Publication Date
WO2020245894A1 true WO2020245894A1 (en) 2020-12-10

Family

ID=73652338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022058 WO2020245894A1 (en) 2019-06-03 2019-06-03 User terminal and wireless communication method

Country Status (1)

Country Link
WO (1) WO2020245894A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113747562A (en) * 2021-08-30 2021-12-03 上海擎昆信息科技有限公司 SR prohibit timer duration setting method, system, intelligent device and storage medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3413672A2 (en) * 2017-06-08 2018-12-12 ASUSTek Computer Inc. Method and apparatus of multiple sr (scheduling request) configurations in a wireless communication system
WO2018232034A1 (en) * 2017-06-15 2018-12-20 Sharp Laboratories Of America, Inc. Systems and methods for an enhanced scheduling request for 5g nr

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3413672A2 (en) * 2017-06-08 2018-12-12 ASUSTek Computer Inc. Method and apparatus of multiple sr (scheduling request) configurations in a wireless communication system
WO2018232034A1 (en) * 2017-06-15 2018-12-20 Sharp Laboratories Of America, Inc. Systems and methods for an enhanced scheduling request for 5g nr

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
INTERDIGITAL INC: "UCI Enhancements for eURLLC", 3GPP TSG RAN WG1 #97 R1-1907194, 4 May 2019 (2019-05-04), XP051709220 *
NOKIA ET AL.: "On UCI Enhancements for NR URLLC", 3GPP TSG RAN WG1 #97 R1-1906752, 4 May 2019 (2019-05-04), XP051708788 *
NTT DOCOMO; INC: "UCI enhancements for URLLC", 3GPP TSG RAN WG1 #97 R1-1906212, 4 May 2019 (2019-05-04), XP051708251 *
NTT DOCOMO; INC: "UCI enhancements for URLLC", 3GPP TSG RAN WG1 #98 R1-1909194, 17 August 2019 (2019-08-17), XP051765799 *
OPPO: "Summary#2 on UCI enhancements for URLLC", 3GPP TSG RAN WG1 #97 R1-1907777, 17 May 2019 (2019-05-17), XP051740050 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113747562A (en) * 2021-08-30 2021-12-03 上海擎昆信息科技有限公司 SR prohibit timer duration setting method, system, intelligent device and storage medium
CN113747562B (en) * 2021-08-30 2024-03-19 上海擎昆信息科技有限公司 SR prohibit timer duration setting method, system, intelligent device and storage medium

Similar Documents

Publication Publication Date Title
JP7089047B2 (en) Terminals, wireless communication methods, base stations and systems
JPWO2020090093A1 (en) User terminal
JPWO2020066025A1 (en) Terminals, wireless communication methods, base stations and systems
WO2020217408A1 (en) User terminal and wireless communication method
WO2020255263A1 (en) Terminal and wireless communication method
WO2020209281A1 (en) User terminal and wireless communication method
WO2020261510A1 (en) Terminal and wireless communication method
WO2020217309A1 (en) User terminal and wireless communication method
JPWO2020144824A1 (en) User terminal and wireless communication method
WO2020144780A1 (en) User terminal and wireless communication method
WO2020065724A1 (en) User terminal and wireless communication method
JPWO2020059148A1 (en) Terminals, wireless communication methods, base stations and systems
WO2022102605A1 (en) Terminal, wireless communication method, and base station
WO2022039164A1 (en) Terminal, wirless communication method, and base station
WO2020217515A1 (en) User terminal and wireless communication method
WO2020188821A1 (en) User terminal and wireless communication method
WO2020217514A1 (en) User terminal and wireless communication method
WO2020065733A1 (en) User terminal and wireless communication method
WO2022024379A1 (en) Terminal, wireless communication method, and base station
WO2021166036A1 (en) Terminal, wireless communication method, and base station
JP7367028B2 (en) Terminals, wireless communication methods and systems
WO2021100099A1 (en) Terminal and wireless communication method
WO2020255270A1 (en) Terminal and wireless communication method
WO2020202448A1 (en) User terminal and wireless communication method
WO2020245894A1 (en) User terminal and wireless communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19931621

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19931621

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP