WO2020244471A1 - 一种基于链路误码的处理方法和装置 - Google Patents

一种基于链路误码的处理方法和装置 Download PDF

Info

Publication number
WO2020244471A1
WO2020244471A1 PCT/CN2020/093625 CN2020093625W WO2020244471A1 WO 2020244471 A1 WO2020244471 A1 WO 2020244471A1 CN 2020093625 W CN2020093625 W CN 2020093625W WO 2020244471 A1 WO2020244471 A1 WO 2020244471A1
Authority
WO
WIPO (PCT)
Prior art keywords
error rate
network device
transmission path
bit error
link state
Prior art date
Application number
PCT/CN2020/093625
Other languages
English (en)
French (fr)
Inventor
王九明
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20818586.8A priority Critical patent/EP3955531A4/en
Priority to KR1020217039922A priority patent/KR20220006095A/ko
Priority to JP2021571726A priority patent/JP7292433B2/ja
Publication of WO2020244471A1 publication Critical patent/WO2020244471A1/zh
Priority to US17/541,052 priority patent/US11863303B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • H04L1/203Details of error rate determination, e.g. BER, FER or WER
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0033Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the transmitter
    • H04L1/0035Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the transmitter evaluation of received explicit signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0654Management of faults, events, alarms or notifications using network fault recovery
    • H04L41/0663Performing the actions predefined by failover planning, e.g. switching to standby network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0654Management of faults, events, alarms or notifications using network fault recovery
    • H04L41/0668Management of faults, events, alarms or notifications using network fault recovery by dynamic selection of recovery network elements, e.g. replacement by the most appropriate element after failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0823Errors, e.g. transmission errors
    • H04L43/0847Transmission error
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/16Threshold monitoring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery
    • H04L45/04Interdomain routing, e.g. hierarchical routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/12Shortest path evaluation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/12Shortest path evaluation
    • H04L45/121Shortest path evaluation by minimising delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/12Shortest path evaluation
    • H04L45/123Evaluation of link metrics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/12Shortest path evaluation
    • H04L45/124Shortest path evaluation using a combination of metrics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/22Alternate routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/28Routing or path finding of packets in data switching networks using route fault recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0097Relays

Definitions

  • This application relates to the field of communication technology, and in particular to a method and device for link error-based control.
  • the signal transmitted on this physical link often has bit errors when it is received compared to when it was sent. This kind of bit error is called link error. Because the link error code is too serious, it may cause serious problems such as the base station stopping service or lowering the service level. Therefore, it is necessary to detect the link error code in the network so that the forwarding path of the service flow avoids the physical link with serious code error.
  • the transmission path of the service flow may be a multi-hop path containing multiple physical links.
  • the error code of each physical link on the transmission path of the service flow is at a possible level. Acceptable level, but serious errors occurred after the service flow passed through the multi-hop transmission path.
  • the embodiments of the present application provide a method and device for processing link errors based on the accumulation of the error rates of all outgoing ports on a multi-hop path, and try to avoid using multi-hops with serious accumulated error rates. Path to transport business flow.
  • the embodiments of the present application provide a processing method based on link errors.
  • the controller receives the first link state information sent by the first network device, determines the first cumulative bit error rate of the first transmission path according to the first link state information, and when the first cumulative bit error rate is determined If it is greater than the first bit error rate threshold, the service flow is switched from the first transmission path to the second transmission path.
  • the first link state information includes first egress port information and a first bit error rate
  • the first egress port information indicates the first egress port of the first network device
  • the first network device uses When sending data traffic to the next-hop network device of the first network device through the first outgoing port along the first transmission path, the first error rate indicates the error code of the data traffic sent by the first outgoing port
  • the first cumulative bit error rate is the weighted sum of the bit error rates of all outgoing ports used to send data traffic on the first transmission path, and the first node network device of the first transmission path and the second
  • the first node network device of the two transmission paths is the same network device, and the tail node network device of the first transmission path and the tail node network device of the second transmission path are the same network device.
  • the controller can collect and accumulate the bit error rate of the data traffic sent by all the outgoing ports on the first transmission path in a manner reported by the network device, thereby obtaining the cumulative bit error rate of the first transmission path. In this way, the controller can determine whether to switch the service flow on the first transmission path to the second transmission path according to the accumulated bit error rate of the first transmission path. Therefore, the controller can switch the service stream that is transmitted on the transmission path with excessive accumulated error rate to other transmission paths with lower accumulated error rate for transmission, thereby avoiding the use of multiple hops with serious accumulated error rate The path to forward the service flow improves the stability of service flow transmission.
  • the controller determines the first cumulative error of the first transmission path according to the first link state information
  • the bit rate includes: when the first bit error rate is less than the second bit error rate threshold, the controller clears the value of the first bit error rate to zero; wherein, the first bit error rate threshold Greater than the second bit error rate threshold. It can be seen that if the first bit error rate of the first out port reported by the first network device is too small, the controller can ignore the bit error rate of the first out port, thereby reducing the bit error rate of the out port to be processed by the controller , To reduce the processing burden of the controller.
  • the method further includes: the controller receives second link state information sent by the second network device, and according to the The second link state information determines the second accumulated error rate of the second transmission path, and when it is determined that the first accumulated error rate is greater than the first error rate threshold and the second accumulated error rate The rate is less than the first error rate threshold, and the service flow is switched from the first transmission path to the second transmission path.
  • the second link state information includes second egress port information and a second bit error rate
  • the second egress port information indicates the second egress port of the second network device
  • the second network device uses When sending data traffic to the next-hop network device of the second network device through the second outgoing port along the second transmission path, the second error rate indicates that the second outgoing port sends data traffic
  • the bit error rate, the second cumulative bit error rate is a weighted sum of the bit error rates of all outgoing ports used to send data traffic on the second transmission path. It can be seen that the controller can switch the service flow from the first transmission path to the second transmission path when it is determined that the cumulative error rate of the first transmission path is too large and the cumulative error rate of the second transmission path is low. Therefore, it is possible to avoid using a multi-hop path with a serious accumulated error rate to forward the service stream, and improve the stability of the service stream transmission.
  • the The method further includes: the controller acquires other transmission paths between the first node network device of the first transmission path and the tail node network device of the first transmission path in addition to the first transmission path, and, The second transmission path is determined from the other transmission paths according to the cumulative error rate of each transmission path of the other transmission paths. It can be seen that when the cumulative bit error rate of the first transmission path is too high, the controller can select from multiple other transmission paths that have the same head node and the same tail node as the first transmission path according to the cumulative bit error rate. Switch the second transmission path of the service flow, so that not only the service flow can be switched to a transmission path with a more suitable cumulative bit error rate, but the data traffic carried by each transmission path can also be more balanced.
  • the method further includes: after switching the service flow from the first transmission path to the second transmission path, The controller receives the third link state information sent by the third network device, determines the third cumulative bit error rate of the first transmission path according to the third link state information, and when the controller determines If the first accumulated bit error rate is less than a first bit error rate threshold, the controller switches the service flow from the second transmission path back to the first transmission path.
  • the third link state information includes third egress port information and a third bit error rate
  • the third egress port information indicates the third egress port of the third network device
  • the third network device uses When sending data traffic to the next-hop network device of the third network device through the third outgoing port along the first transmission path, the third error rate indicates that the third outgoing port sends data traffic Bit error rate, the third cumulative bit error rate is a weighted sum of the bit error rates of all outgoing ports used to send data traffic on the first transmission path.
  • the controller can also switch the service flow from the second transmission path back to more suitable for transmission The first transmission path of the service flow, so that the service flow can be transmitted on a more suitable transmission path.
  • the controller receiving the first link state information sent by the first network device includes: the controller receiving The Border Routing Protocol BGP Update message, the BGP Update message carries the first link state information sent by the first network device; the controller obtains the BGP Update message from the The first link state information. It can be seen that the first bit error rate used by the first egress port to send data traffic can be carried in the BGP Update message and reported to the controller.
  • the first link state information is specifically carried in the multi-protocol reachable network layer in the BGP Update message Reachability information MP REACH NLRI field or multi-protocol unreachable network layer reachability information MP UNREACH NLRI field. It can be seen that the first bit error rate used by the first egress port to send data traffic can be carried in the NLRI field and reported to the controller.
  • the first link state information is carried in the type
  • the length value is in the TLV information. It can be seen that the first bit error rate used by the first egress port to send data traffic can be carried in the TLV information and reported to the controller.
  • the first link state information is directly sent by the first network device to the controller.
  • the first link state information is first sent by the first network device to the fourth network device and then directly sent by the fourth network device to the controller. It can be seen that the first network device can directly or indirectly report the first bit error rate of the first outgoing port for sending data traffic to the controller.
  • the first bit error rate threshold is specifically a bit error rate threshold set corresponding to the service type of the service flow . It can be seen that, because different service streams of different service types have different bit error rate thresholds, the controller can use different bit error rate thresholds to determine whether the cumulative bit error rate of the transmission path is too large for service streams of different service types. In this way, it is determined whether to switch the transmission path of the service flow. Therefore, the service flow of different service types can switch the transmission path under the affected condition.
  • the embodiments of the present application provide a processing method based on link errors.
  • the first network device detects the first bit error rate of the data traffic sent by the first out port and sends the first link state information to the controller, wherein the first network device is used to pass along the first transmission path
  • the first egress port sends data traffic to the next hop network device of the first network device, the first link state information includes first egress port information and the first bit error rate, and the first The egress port information is used to indicate the first egress port.
  • the first link state information is used to determine a first cumulative bit error rate of the first transmission path, where the first cumulative bit error rate is all egress ports on the first transmission path used to send data traffic
  • the first cumulative error rate is used to determine whether to switch the service flow from the first transmission path to the second transmission path, the first node network device of the first transmission path and all
  • the first node network device of the second transmission path is the same network device, and the tail node network device of the first transmission path and the tail node network device of the second transmission path are the same network device.
  • the network device can report to the controller the bit error rate of the outgoing port used to send data traffic, so that the controller can collect and accumulate the bit error rate of all outgoing ports on the transmission path to send the data traffic, so as to obtain the transmission The cumulative bit error rate of the path. Therefore, the controller can switch the service stream that is transmitted on the transmission path with excessive accumulated error rate to other transmission paths with lower accumulated error rate for transmission, thereby avoiding the use of multiple hops with serious accumulated error rate
  • the path to forward the service flow improves the stability of service flow transmission.
  • the first link state information is sent to the controller through a BGP Update message.
  • the first bit error rate of the first egress port used to send data traffic can be carried in the BGP Update message and reported to the controller.
  • the first link state information is specifically carried in the multi-protocol reachable network layer in the BGP Update message Reachability information MP REACH NLRI field or multi-protocol unreachable network layer reachability information MP UNREACH NLRI field. It can be seen that the first bit error rate used by the first egress port to send data traffic can be carried in the NLRI field and reported to the controller.
  • the first link state information in the BGP Update message is carried in the type
  • the length value is in the TLV information. It can be seen that the first bit error rate used by the first egress port to send data traffic can be carried in the TLV information and reported to the controller.
  • the first link state information is directly sent by the first network device to the controller. It can be seen that the first network device can directly report to the controller the first bit error rate of the first egress port for sending data traffic.
  • the method further includes: the first network device receives the second link state information sent by the second network device and sends it to all The controller sends second link state information, where the second link state information includes second egress port information and a second bit error rate, and the second egress port information indicates the second network device Two outgoing ports, the second network device is used to send data traffic to the next-hop network device of the second network device via the second outgoing port along the third transmission path, and the second bit error rate indicates The bit error rate of the data traffic sent by the second output port is described.
  • the second link state information is used to determine a second cumulative bit error rate of the third transmission path, and the second cumulative bit error rate is all outgoing ports on the third transmission path used to send data traffic
  • the second cumulative error rate is used to determine whether to switch the service flow from the third transmission path to the fourth transmission path, the first node network device of the third transmission path and all
  • the first node network device of the fourth transmission path is the same network device, and the tail node network device of the third transmission path and the tail node network device of the fourth transmission path are the same network device. It can be seen that the second network device can indirectly report the second bit error rate of the second outgoing port for sending data traffic to the controller through the first network device.
  • the first link state information is first sent by the first network device to the third network device, and then by The third network device directly sends to the controller. It can be seen that the first network device can indirectly report the first bit error rate of the first outgoing port for sending data traffic to the controller through the third network device.
  • an embodiment of the present application provides a processing device based on link errors.
  • the device is a controller, including a receiving unit and a processing unit.
  • the receiving unit is configured to receive first link state information sent by a first network device, where the first link state information includes first egress port information and a first bit error rate, and the first egress port information indicates The first outgoing port of the first network device, the first network device is used to send data traffic to the next-hop network device of the first network device via the first outgoing port along the first transmission path, so
  • the first bit error rate indicates the bit error rate of the data traffic sent by the first egress port.
  • a processing unit configured to determine a first cumulative bit error rate of the first transmission path according to the first link state information, determine whether the first cumulative bit error rate is greater than a first bit error rate threshold, and when It is determined that the first cumulative bit error rate is greater than a first bit error rate threshold, and the service flow is switched from the first transmission path to the second transmission path.
  • the first cumulative bit error rate is the weighted sum of the bit error rates of all outgoing ports used to send data traffic on the first transmission path, and the first node network device of the first transmission path and the first transmission path
  • the first node network device of the two transmission paths is the same network device, and the tail node network device of the first transmission path and the tail node network device of the second transmission path are the same network device.
  • the processing unit is further configured to: when the first error rate is less than the second error rate threshold , Clear the value of the first bit error rate to zero; wherein, the first bit error rate threshold is greater than the second bit error rate threshold.
  • the receiving unit is further configured to receive second link state information sent by a second network device, where: The second link state information includes second egress port information and a second bit error rate, the second egress port information indicates a second egress port of the second network device, and the second network device is used to The second transmission path sends data traffic to the next-hop network device of the second network device via the second egress port, and the second error rate indicates the error rate of the data traffic sent by the second egress port .
  • the processing unit is further configured to determine a second accumulated error rate of the second transmission path according to the second link state information, and determine whether the second accumulated error rate is less than the first error rate Threshold, and, when it is determined that the first cumulative bit error rate is greater than the first bit error rate threshold and the second cumulative bit error rate is less than the first bit error rate threshold, change the service flow from the first bit error rate The transmission path is switched to the second transmission path.
  • the second cumulative bit error rate is a weighted sum of the bit error rates of all outgoing ports used to send data traffic on the second transmission path.
  • the processing unit is further configured to switch the service flow from the first transmission path to the second transmission path Previously, other transmission paths between the first node network device of the first transmission path and the tail node network device of the first transmission path other than the first transmission path are acquired, and according to the other transmission path The cumulative bit error rate of each transmission path is determined from the other transmission paths to determine the second transmission path.
  • the receiving unit is further configured to switch the service flow from the first transmission path to the second transmission path Afterwards, the third link state information sent by the third network device is received, where the third link state information includes third egress port information and a third bit error rate, and the third egress port information indicates the first Three third outgoing ports of a network device, the third network device is configured to send data traffic to the next-hop network device of the third network device via the third outgoing port along the first transmission path, the The third error rate indicates the error rate of the data traffic sent by the third outgoing port.
  • the processing unit is further configured to determine a third cumulative error rate of the first transmission path according to the third link state information, and determine whether the third cumulative error rate is less than the first error rate Threshold, and, when it is determined that the first cumulative bit error rate is less than the first bit error rate threshold, switch the service flow from the second transmission path back to the first transmission path.
  • the third cumulative bit error rate is a weighted sum of the bit error rates of all outgoing ports used to send data traffic on the first transmission path.
  • the receiving unit is further configured to receive a Border Routing Protocol BGP Update message, in the BGP Update message Carrying the first link state information sent by the first network device; the processing unit is further configured to obtain the first link state information from the BGP Update message.
  • the first link state information is specifically carried in the multi-protocol reachable network layer in the BGP Update message Reachability information MP REACH NLRI field or multi-protocol unreachable network layer reachability information MP UNREACH NLRI field.
  • the first link state information in the BGP Update message is carried in the type
  • the length value is in the TLV information.
  • the first link state information is directly sent by the first network device to the controller.
  • the first link state information is first sent by the first network device to the fourth network device and then directly sent by the fourth network device to the controller.
  • the first bit error rate threshold is specifically a bit error rate threshold set corresponding to the service type of the service flow .
  • the device provided in the third aspect corresponds to the method provided in the first aspect, so the technical effects of each implementation manner of the third aspect can be referred to the introduction of each implementation manner of the first aspect.
  • an embodiment of the present application provides a processing device based on link errors.
  • the device is the first network device and includes a processing unit and a sending unit.
  • the processing unit is configured to detect a first bit error rate of the data traffic sent by the first output port, wherein the first network device is configured to transmit data to the first network device via the first output port along the first transmission path.
  • the next hop network device sends data traffic.
  • the sending unit is configured to send first link state information to the controller, where the first link state information includes first egress port information and the first bit error rate, and the first egress port information is used to indicate all Describe the first out port.
  • the first link state information is used to determine a first cumulative bit error rate of the first transmission path, where the first cumulative bit error rate is all egress ports on the first transmission path used to send data traffic
  • the first cumulative error rate is used to determine whether to switch the service flow from the first transmission path to the second transmission path, the first node network device of the first transmission path and all
  • the first node network device of the second transmission path is the same network device, and the tail node network device of the first transmission path and the tail node network device of the second transmission path are the same network device.
  • the first link state information is sent to the controller through a BGP Update message.
  • the first link state information is specifically carried in the multi-protocol reachable network layer in the BGP Update message Reachability information MP REACH NLRI field or multi-protocol unreachable network layer reachability information MP UNREACH NLRI field.
  • the first link state information is carried in the type
  • the length value is in the TLV information.
  • the first link state information is directly sent by the first network device to the controller.
  • the apparatus further includes a receiving unit.
  • the receiving unit is configured to receive second link state information sent by a second network device, where the second link state information includes second egress port information and a second bit error rate, and the second egress port information indicates The second outgoing port of the second network device, the second network device is used to send data traffic to the next-hop network device of the second network device via the second outgoing port along the third transmission path, so The second bit error rate indicates the bit error rate of the data traffic sent by the second egress port.
  • the sending unit is further configured to send second link state information to the controller.
  • the second link state information is used to determine a second cumulative bit error rate of the third transmission path, and the second cumulative bit error rate is all outgoing ports on the third transmission path used to send data traffic
  • the second cumulative error rate is used to determine whether to switch the service flow from the third transmission path to the fourth transmission path, the first node network device of the third transmission path and all
  • the first node network device of the fourth transmission path is the same network device, and the tail node network device of the third transmission path and the tail node network device of the fourth transmission path are the same network device.
  • the first link state information is first sent by the first network device to the third network device and then The third network device directly sends to the controller.
  • the device provided in the fourth aspect corresponds to the method provided in the second aspect, so the technical effects of each implementation manner of the fourth aspect can be referred to the introduction of each implementation manner of the second aspect.
  • an embodiment of the present application also provides a controller.
  • the controller includes a processor and a memory.
  • the memory stores instructions.
  • the processor executes the instructions
  • the network device executes any of the foregoing first aspects.
  • the embodiments of the present application also provide a network device.
  • the network device includes a processor and a memory.
  • the memory stores instructions.
  • the processor executes the instructions, the network device executes any of the foregoing second aspect.
  • the embodiments of the present application also provide a computer program product, which when running on a computer, causes the computer to execute the method described in any one of the implementations of the first aspect or any one of the implementations of the second aspect. Way described method.
  • the embodiments of the present application also provide a computer-readable storage medium that stores instructions in the computer-readable storage medium, and when it runs on a computer or processor, the computer or processor executes the foregoing The method described in any implementation manner on the one hand or the method described in any implementation manner of the foregoing second aspect.
  • Figure 1 is a schematic diagram of a network system framework involved in an application scenario in an embodiment of the application
  • FIG. 2 is a schematic flowchart of a processing method 200 based on link errors in an embodiment of the application;
  • FIG. 3 is a schematic diagram of an example of a TLV definition in an embodiment of this application.
  • FIG. 4 is a schematic diagram of an example of a TLV definition in an embodiment of the application.
  • FIG. 5 is a schematic diagram of an example of a TLV definition in an embodiment of this application.
  • FIG. 6 is a schematic flowchart of a processing method 600 based on link errors in an embodiment of the application
  • FIG. 7 is a schematic flowchart of a processing method 700 based on link errors in an embodiment of this application;
  • FIG. 8 is a schematic structural diagram of a processing device based on link error codes in an embodiment of the application.
  • FIG. 9 is a schematic structural diagram of a processing device based on link error codes in an embodiment of the application.
  • the transmission path of the service flow may be a multi-hop path including multiple physical links.
  • the bit error rate of each physical link on the transmission path of the service flow is at Acceptable level, but after the service flow passes through the multi-hop transmission path, a serious bit error rate appears, which affects the stability of service flow transmission.
  • the transmission path of the service flow is from the base station side gateway (English: cell site gateway, referred to as: CSG) through the aggregation side gateway (English: aggregation site gateway, referred to as: ASG) to the wireless service side gateway (English: radio service gateway, Abbreviation: RSG), the bit error rate of the physical link between CSG and ASG and the bit error rate of the physical link between ASG and RSG alone have not reached the level of affecting service flow transmission, but the transmission from CSG to RSG The cumulative bit error rate on the path has reached a level that affects service flow transmission.
  • CSG cell site gateway
  • ASG aggregation site gateway
  • RSG radio service gateway
  • the network device may report the error rate of the data traffic sent along the first transmission path via its outgoing port to the controller, and the outgoing port is used to send the error rate of the data traffic It can be regarded as the bit error rate of the physical link between the network device and the next-hop network device in the first transmission path.
  • the controller can collect and accumulate the bit error rate of all outgoing ports on the first transmission path, so that the controller can transmit the first bit error rate when the accumulated bit error rate is too large. The service flow on the path is switched to the second transmission path.
  • the controller can switch the service stream that is transmitted on the transmission path with excessive accumulated error rate to other transmission paths with lower accumulated error rate for transmission, thereby avoiding the use of multiple hops with serious accumulated error rate
  • the path to forward the service flow improves the stability of service flow transmission.
  • the network 110 that can be used to transmit service flows between the base station 101 and the core network equipment 102 includes a base station side gateway (English: cell site gateway, abbreviated as: CSG) 103, CSG 104, CSG 105, and aggregation side gateway (English: aggregation site gateway) , Abbreviation: ASG) 106, ASG 107, wireless service side gateway (English: radio service gateway, abbreviation: RSG) 108 and RSG 109 and other network equipment.
  • a base station side gateway (English: cell site gateway, abbreviated as: CSG) 103, CSG 104, CSG 105, and aggregation side gateway (English: aggregation site gateway)
  • ASG ASG
  • ASG wireless service side gateway
  • RSG radio service gateway
  • the base station 101 may be an evolved base station (English: evolved NodeB, abbreviated as: eNB), a new radio (English: new radio, abbreviated as: NR) base station, etc.
  • the core network device 102 may be a serving gateway (English: serving gateway, referred to as SGW), a mobility management entity (English: mobility management entity, referred to as MME), etc.
  • Each network device in the network 110 may report the bit error rate of the data traffic sent by its respective outgoing port to a network controller (English: network control engineering, NCE for short) 120.
  • NCE network control engineering
  • the ASG 106 may report the bit error rate of the data traffic sent by the egress port 116 to the NCE 120, where the egress port 116 is used by the ASG 106 to send data traffic to the RSG 108.
  • the CSG 104 can report the bit error rate of the data traffic sent by the outgoing port 113 to the NCE 120 through the ASG 106, where the outgoing port 113 is used for the CSG 104 to send data traffic to the ASG 106.
  • the RSG 108 may report the bit error rate of the data traffic sent by the out port 119 to the NCE 120, where the out port 119 is used by the ASG 108 to send data traffic to the core network device 102.
  • the NCE 120 can collect and accumulate the bit error rate of all outgoing ports on a transmission path for sending data traffic, and obtain the cumulative bit error rate of the transmission path.
  • the first transmission path is a transmission path from CSG 103 to RSG 108, which passes through CSG 103, CSG 104, ASG 106, and RSG 108.
  • NCE 120 can collect the bit error rate of outgoing port 111 used for CSG 103 to send data to CSG 104, outgoing port 113 used for CSG 104 to send data to ASG 106, and outgoing port 116 used for ASG 106 to RSG 108
  • the bit error rate of the transmitted data flow is accumulated and accumulated to obtain the accumulated bit error rate of the first transmission path.
  • the NCE 120 determines that the cumulative bit error rate of the first transmission path is greater than the bit error rate threshold, it can switch the service flow from the first transmission path to the second transmission path.
  • the second transmission path is another transmission path from CSG 103 to RSG 108, for example, it may be a transmission path passing CSG 103, CSG 105, ASG 107, RSG 109, and RSG 108.
  • FIG. 2 is a schematic flowchart of a processing method 200 based on link errors in an embodiment of this application.
  • the method 200 may include:
  • the controller receives first link state information sent by a first network device, where the first link state information includes first egress port information and a first bit error rate, and the first egress port information indicates The first outgoing port of the first network device, where the first network device is configured to send data traffic to the next-hop network device of the first network device via the first outgoing port along a first transmission path, and The first bit error rate indicates the bit error rate of the data traffic sent by the first egress port.
  • the first network device may detect the first error rate of the data traffic sent by the first network device to the next hop network device of the first network device via the first outgoing port along the first transmission path, based on the first error code
  • the first egress port information used to indicate the first egress port generates the first link state information and sends the first link state information to the controller, so as to report the first error rate to the controller.
  • the first bit error rate can be regarded as the bit error rate of the physical link from the first network device to the second network device on the first transmission path
  • the first egress port information can be regarded as the physical link.
  • the controller can receive the bit error rate of any outgoing port on any network device for sending data traffic by reporting link state information by the network device, that is, the first network device can be For any network device in the network that is used to send data traffic, the first outgoing port can be any outgoing port on the first network device, and the next hop network device of the first network device can indicate that the first network device passes the first network device.
  • An adjacent network device connected to an out port For example, in the example of the network structure shown in FIG. 1, the first network device may be any network device in the network 110. Assuming that the first network device is ASG 106, the first egress port can be egress port 116, egress port 123, or egress port 125.
  • the next hop network device of the first network device is RSG 108. If the first outgoing port is 123, the next hop network device of the first network device is CSG 104. If the first outgoing port is 125, the next hop network device of the first network device is ASG 107.
  • the first error rate may be determined by the first network device performing error detection on the message received through the first outgoing port.
  • the first network device determines the error bits in the message by performing error detection on the message received through the first outgoing port, and then calculates the first error according to the number of error bits in the message and the total number of bits.
  • Bit rate For example, the first bit error rate may be the proportion of the number of error bits in the total number of bits in the message received by the first network device through the first egress port.
  • the first network device may use an error correction algorithm to detect error bits in the message. For the symbol in the message received by the first network device through the first outgoing port, if the symbol can be corrected by the error correction algorithm, the bit in the symbol is determined to be the correct bit, if the symbol cannot be corrected Error correction algorithm error correction, the bit in the symbol is determined as the number of error bits.
  • the error correction algorithm used to detect erroneous bits for example, may be a cyclic redundancy check (English: Cyclic Redundancy Check, abbreviated as: CRC) algorithm.
  • CRC Cyclic Redundancy Check
  • the first network device receives the message through the first outgoing interface
  • the symbols in can be CRC codes.
  • the encoding method of the CRC code may include: expressing the K-bit information to be encoded as a polynomial M(x), and shifting M(x) to the left by R bits Obtain M(x)*xR, divide M(x)*xR by the generator polynomial G(x) of R+1 bit to obtain the remainder R(x), and perform the modulo 2 of M(x)*xR and R(x) The addition operation gets the CRC code.
  • multiple reporting methods can be used for the first network device to report the first link state information to the controller.
  • the first network device and the controller can communicate with each other, and the first link state information can be directly sent by the first network device to the controller.
  • each ASG can communicate with the NCE 120, and each RSG can communicate with the NCE 120. Therefore, ASG can directly send link state information to NCE 120, and RSG can also send link state information to NCE 120, that is, if the first network device is ASG or RSG, the first link state information can be directly sent from The first network device sends to the controller.
  • the first link state information may be first sent by the first network device to the fourth network device, and then directly sent by the fourth network device to the controller.
  • the fourth network device may be first sent by the first network device to the fourth network device, and then directly sent by the fourth network device to the controller.
  • each CSG and NCE 120 cannot communicate with each other, but each ASG and each RSG can communicate with NCE 120.
  • the CSG can first send the link status information to the ASG or RSG, and the ASG or RSG directly sends the link status information to the NCE 120, that is, if the first network device is a CSG, the first link status information can be sent first
  • the first network device sends to the fourth network device and then the fourth network device directly sends it to the controller, where the fourth network device may be ASG or RSG.
  • the first link state information can also be first sent by the first network device to the fourth network device and then directly by the fourth network device. Send to the controller.
  • each ASG and each RSG can communicate with the NCE 120.
  • the ASG may first send the link state information to the RSG, and the RSG directly sends the link state information to the NCE 120, that is, if the first network device is an ASG, the first link state information may be sent by the first network device to The fourth network device is then directly sent to the controller by the fourth network device, where the fourth network device may be an RSG.
  • the controller may receive the first link state information through a Border Gateway Protocol (English: Border Gateway Protocol, abbreviation: BGP) link state (English: link state, abbreviation: LS).
  • BGP Border Gateway Protocol
  • LS link state
  • the first link state information may be carried in a BGP update (English: Update) message and reported to the controller, that is, the controller may receive a BGP Update message carrying the first link state information and send it from BGP Update. Read the first link status information in the message.
  • the first link state information can be carried in the multi-protocol reachable network layer reachability information (English: Multiprotocol Reachable Network Layer Reachability Information, referred to as MP REACH NLRI) field in the BGP Update message or multi-protocol not available Reach the network layer reachability information (English: Multiprotocol Unreachable Network Layer Reachability Information, abbreviated as: MP UNREACH NLRI) field.
  • MP REACH NLRI Multiprotocol Unreachable Network Layer Reachability Information
  • the first network device may encapsulate the first link state information into a BGP Update message, and then encapsulate the first link state information.
  • the link status information is sent to the controller.
  • the first network device may send the first link state information to the fourth network device, and the fourth network device The device encapsulates the first link state information into a BGP Update message and then sends it to the controller.
  • the first link state information may be carried in TLV information for transmission.
  • the first network device may send the first link state information to the controller through the TLV information of the BGP Update message.
  • the first network device can carry the first link status information to the fourth through the type length value (English: type length value, abbreviation: TLV) information of the interior gateway protocol (English: Interior Gateway Protocol, abbreviation: IGP)
  • TLV type length value
  • IGP Interior Gateway Protocol
  • the IGP protocol is an intermediate system to intermediate system (English: intermediate system to intermediate system, abbreviation: ISIS) protocol, according to the request protocol (English: Request For Comments, abbreviation: RFC) 5305, it can be included in the ISIS protocol
  • a link attribute (English: link attribute) TLV is added, and the link attribute TLV can be used to carry the first link state information sent by the first network device to the fourth network device.
  • the TLV definition example shown in Figure 3 the link attribute TLV is sub-TLV (English: Sub-TLV), the type (English: type) is 19, the length (Length) is 4octets, and the name (English: name) is described as Error detection (English: bit-error detect).
  • the TLV of the LSA can be used to carry the first link state information sent by the first network device to the fourth network device.
  • the TLV code point (English: code point) is 32768, and the Length is 4 octets, then it is described as bit-error detection (English: bit-error detection).
  • a link description (English: link descriptor)-related TLV can be added to the BGP LS protocol.
  • the link descriptor-related TLV can be used to carry the first link state information by the first network device or The fourth network device sends to the controller.
  • the TLV code point is 266, the description (English: description) is error detection (English: bit-error detection), ISIS TLV is 22, Sub -The TLV is 19.
  • the controller determines a first cumulative bit error rate of the first transmission path according to the first link state information, where the first cumulative bit error rate is all data used for transmission on the first transmission path The weighted sum of the bit error rate of the outgoing port of the data traffic.
  • the controller can read the first egress port information and the first error rate from the first link status information, and compare the first egress port information according to the first error rate The indicated error rate of the first egress port is updated, so that the controller can update the error rate of the first egress port to the first error rate.
  • the controller may determine to update the bit error rate of the first outgoing port to the first bit error rate or clear it to zero according to the size of the first bit error rate, so that when the first bit error rate is too small
  • the lower controller can ignore the bit error rate of the first output port, that is, the first output port can be regarded as having no bit error.
  • the controller can determine whether the first bit error rate is less than the second bit error rate threshold. If the first bit error rate is less than the second bit error rate threshold, the controller can clear the value of the first bit error rate to zero, that is, the controller clears the bit error rate of the first outgoing port to zero. The bit error rate of the port is ignored. If the first error rate is greater than the second error rate threshold, the controller may not clear the value of the first error rate and update the error rate of the first output port to the first error rate. The bit error rate of a port is not ignored.
  • the controller determines that the first egress port is the egress port on the first transmission path for sending data traffic, so that the bit error rate of the first egress port can be used to calculate the first transmission The first cumulative bit error rate of the path.
  • the first cumulative bit error rate is the weighted sum of the bit error rates of all outgoing ports used to send data traffic on the first transmission path.
  • the first transmission path is a path from CSG 103 to core network device 102, which passes through CSG 103, CSG 104, ASG 106, and RSG 108
  • the above outgoing ports used to send data traffic include outgoing port 111 for CSG 103 to send data traffic to CSG 104, outgoing port 113 for CSG 104 to send data traffic to ASG 106, and ASG 116 to send data traffic to RSG 108
  • the first cumulative bit error rate of the first transmission path is the sum of the bit error rate of the egress port 111, the bit error rate of the egress port 113, and the bit error rate of the egress port 116.
  • the controller may update the bit error rate of the first outgoing port to the first bit error rate and record it.
  • the controller can obtain the bit error rate of all the outgoing ports on the first transmission path including the bit error rate of the first outgoing port from the record and calculate the weighting And to obtain the first cumulative bit error rate of the first transmission path.
  • the controller records The bit error rate A of the egress port A and the bit error rate B of the egress port B.
  • the controller can calculate the weighted sum of the bit error rate A and the bit error rate B As the cumulative error rate of transmission path A.
  • the controller has calculated and recorded the fourth cumulative bit error rate of the first transmission path before receiving the first link state information, where the fourth cumulative bit error rate is used when the controller receives The fourth error rate of the first outgoing port recorded before the first link state information is calculated, then when the controller receives the first link state information sent by the first network device, the controller can be based on the first error
  • the code rate updates the fourth cumulative bit error rate of the first transmission path, so that the fourth bit error rate of the first output port in the fourth cumulative bit error rate is replaced with the first bit error rate, thereby obtaining the first transmission
  • the first cumulative bit error rate of the path is recorded.
  • the transmission path A includes outgoing port A and outgoing port B.
  • the outgoing port When the bit error rate of outgoing port A and the bit error rate of outgoing port B have not been reported to the controller, the outgoing port The bit error rate of A and the bit error rate of the outgoing port B are both regarded as zero, and the controller can record the cumulative bit error rate A of the transmission path A as zero. After that, if the error rate A of the outgoing port A is reported to the controller, since the error rate of the outgoing port A in the accumulated error rate A is zero, the controller can add the weighted value of the error rate A to the accumulated error rate Therefore, the cumulative bit error rate B is obtained and recorded as the cumulative bit error rate of the transmission path A, that is, the cumulative bit error rate B is the weighted value of the bit error rate A.
  • the controller can add the weighted value of the error rate B to the accumulated error rate Therefore, the cumulative bit error rate C is obtained and recorded as the cumulative bit error rate of the transmission path A, that is, the cumulative bit error rate C is the weighted sum of the bit error rate A and the bit error rate B.
  • the controller can calculate the error rate in the accumulated error rate A
  • the weighted value of the rate A is replaced with the weighted value of the bit error rate C, so that the cumulative bit error rate D is obtained and recorded as the cumulative bit error rate of the transmission path A, that is, the cumulative bit error rate D is the bit error rate C and the bit error rate The weighted sum of rate B.
  • the controller determines whether the first cumulative bit error rate is greater than a first bit error rate threshold.
  • the controller determines that the first cumulative bit error rate is greater than the first bit error rate threshold, the controller switches the service flow from the first transmission path to the second transmission path, wherein the first The head node network equipment of a transmission path and the head node network equipment of the second transmission path are the same network equipment, and the tail node network equipment of the first transmission path and the tail node network equipment of the second transmission path are the same Internet equipment.
  • the first bit error rate threshold is used to determine whether the cumulative bit error rate of the transmission path exceeds an acceptable level.
  • the first accumulated error rate is less than the first error rate threshold, the first accumulated error rate is at an acceptable level, that is, the error generated by the service flow on the first transmission path is acceptable.
  • the controller may not perform a transmission path switching operation on the service stream transmitted on the first transmission path.
  • the first cumulative error rate is greater than the first error rate threshold, the first cumulative error rate is at an unacceptable level, that is, the error generated by the service flow on the first transmission path is unacceptable, and control The device can switch the service flow transmitted on the first transmission path to the second transmission path for transmission.
  • first transmission path and the second transmission path are two different transmission paths between the same head node network device and the same tail node network device.
  • the first transmission path and the second transmission path may be, for example, segment routing traffic engineering. (English: Segment Routing-Traffic Engineering, SR-TE for short) tunnel.
  • the controller may set different first bit error rate thresholds for different service types.
  • the controller can select different first bit error rate thresholds according to different service types to judge the cumulative bit error rate of the transmission path used to transmit the service stream of the service type, so as to determine whether the service stream of the service type needs to be switched. To other transmission paths.
  • the controller can determine the service flow transmitted on the first transmission path and the service type of the service flow. If the first cumulative bit error rate of the first transmission path is greater than the first bit error rate threshold set corresponding to the service type, the controller may switch the service flow to the second transmission path for transmission.
  • the voice service is not sensitive to the bit error rate relative to the data service. Therefore, the first bit error rate threshold corresponding to the voice service may be greater than the first bit error rate threshold corresponding to the data service. For example, since the voice service will be affected when the bit error rate exceeds 4E-2, the first bit error rate threshold corresponding to the voice service may be 4E-2. For another example, since the video service will be affected when the bit error rate exceeds 1E-5, the first bit error rate threshold corresponding to the video service may be 1E-5. For another example, since the data service will be affected when the bit error rate exceeds 1E-6, the first bit error rate threshold corresponding to the data service may be 1E-6.
  • the first bit error rate threshold is used to determine whether the cumulative bit error rate of the transmission path exceeds the bit error rate requirement for service stream transmission, and the aforementioned second bit error rate threshold is used to determine whether the transmission path is Whether the bit error rate of a single outgoing port can be ignored, therefore, the first bit error rate threshold is usually greater than the second bit error rate threshold.
  • the controller may determine that the first cumulative error rate of the first transmission path is greater than the first error rate threshold and the second cumulative error rate of the second transmission path is less than the first error rate threshold.
  • step 204 may specifically be: when the controller determines that the first cumulative bit error rate is greater than the first bit error rate threshold And the second cumulative bit error rate is less than the first bit error rate threshold, and the controller switches the service flow from the first transmission path to the second transmission path.
  • the controller may not switch the service flow from the first transmission path to the second transmission path.
  • the controller may determine the second cumulative bit error rate of the second transmission path in the following manner: the controller receives the second link state information sent by the second network device and determines the second link state information according to the second link state information.
  • the second cumulative bit error rate of the second transmission path wherein the second link state information includes second egress port information and a second bit error rate, and the second egress port information indicates the second network device A second outgoing port, where the second network device is used to send data traffic to the next-hop network device of the second network device via the second outgoing port along the second transmission path, and the second error code
  • the rate indicates the bit error rate of the data traffic sent by the second outgoing port, and the second accumulated bit error rate is a weighted sum of the bit error rates of all the outgoing ports used to send the data traffic on the second transmission path.
  • the method for determining the second cumulative bit error rate can be referred to the aforementioned introduction of the first cumulative bit error rate, and the implementation of the second link state information can also refer to the aforementioned description of the first link state information. , I won’t repeat it here.
  • the transmission path between the head node network device and the tail node network device of the first transmission path has multiple other transmission paths in addition to the first transmission path. Therefore, in some embodiments, when the controller determines that the first cumulative bit error rate of the first transmission path is greater than the first bit error rate threshold, the controller may determine from the performance of each transmission path of the multiple transmission paths. The second transmission path is determined from the multiple other paths, thereby switching the service flow from the first transmission path to the second transmission path. In this way, the service flow can be switched to a transmission path with better performance, so that the transmission efficiency of the service flow is higher.
  • the controller may use the cumulative bit error rate of each transmission path of the other transmission path from other transmission paths.
  • the second transmission path is determined from the path.
  • the second transmission path may be the transmission path with the smallest accumulated bit error rate among other transmission paths.
  • the controller may determine the performance of the second transmission path according to each other transmission path.
  • the COST value of the transmission path determines the second transmission path from other transmission paths.
  • the second transmission path may be the transmission path with the smallest COST value among other transmission paths.
  • the controller may determine the second transmission path from other transmission paths according to the bandwidth of each transmission path of the other transmission paths.
  • the second transmission path may be a transmission path with the largest bandwidth among other transmission paths.
  • the controller may determine from other transmission paths according to the delay of each transmission path of the other transmission paths Out the second transmission path.
  • the second transmission path may be a transmission path with the smallest delay among other transmission paths.
  • determining the performance of the second transmission path from other transmission paths it may be a combination of any multiple performances among the accumulated bit error rate, COST value, bandwidth, and delay.
  • the controller may generate a label stack for instructing the transmission of the service flow on the second transmission path and pass the label stack through the path calculation unit communication protocol (English: Path Computation Element Protocol, PCEP for short) is sent to the first node network device of the second transmission path, and the first node network device can encapsulate the label stack of the service flow in the packet of the service flow, so that the second Each network device on the transmission path sends the packet of the service flow to its next-hop network device according to the label stack encapsulated in the packet of the service flow.
  • the path calculation unit communication protocol English: Path Computation Element Protocol, PCEP for short
  • the first transmission path is the main path of the service flow and the second transmission path is the backup path of the service flow
  • the first transmission path is The bit error rate of a certain outgoing port on the path is reduced so that the cumulative bit error rate of the first transmission path drops below the first bit error rate threshold, and the service flow can also be switched from the second transmission path back to the first transmission path.
  • the controller may also receive third link state information sent by a third network device, and determine the third cumulative bit error rate of the first transmission path according to the third link state information When it is determined that the first cumulative bit error rate is less than the first bit error rate threshold, the service flow is switched from the second transmission path back to the first transmission path.
  • the third link state information includes third egress port information and a third bit error rate
  • the third egress port information indicates the third egress port of the third network device
  • the third network device uses When sending data traffic to the next-hop network device of the third network device through the third outgoing port along the first transmission path, the third error rate indicates that the third outgoing port sends data traffic Bit error rate, the third cumulative bit error rate is a weighted sum of the bit error rates of all outgoing ports used to send data traffic on the first transmission path.
  • the third egress port may be the aforementioned first egress port, or any other egress port on the first transmission path except the first egress port.
  • the method for determining the third cumulative bit error rate can refer to the related introduction of the aforementioned first cumulative bit error rate, and the relevant implementation manners of the third link state information can also refer to the related introduction of the aforementioned third link state information. , I won’t repeat it here.
  • the service flow is switched from the first transmission path to the second transmission path, if the cumulative bit error rate of the first transmission path is always above the first bit error rate threshold and the second transmission path The accumulated bit error rate also exceeds the first bit error rate threshold, and the service stream can continue to be transmitted on the second transmission path without switching back to the first transmission path.
  • the controller can collect and accumulate the bit error rate of the data traffic sent by all the outgoing ports on the first transmission path through the method of reporting by the network device, so that the controller can check the accumulated bit error rate.
  • the controller can switch the service stream that is transmitted on the transmission path with excessive accumulated error rate to other transmission paths with lower accumulated error rate for transmission, thereby avoiding the use of multiple hops with serious accumulated error rate
  • the path to forward the service flow improves the stability of service flow transmission.
  • FIG. 6 is a schematic flowchart of a processing method 600 based on link errors in an embodiment of this application.
  • the method 600 may include:
  • the first network device detects the first bit error rate of the data traffic sent by the first outgoing port, where the first network device is configured to send data to the first network device via the first outgoing port along the first transmission path.
  • the next hop network device sends data traffic;
  • the first network device sends first link state information to the controller, where the first link state information includes first egress port information and the first bit error rate, and the first egress port information is used for To indicate the first outgoing port;
  • the first link state information is used to determine a first cumulative bit error rate of the first transmission path, where the first cumulative bit error rate is all data used to send data traffic on the first transmission path.
  • the weighted sum of the bit error rate of the egress port, the first cumulative bit error rate is used to determine whether to switch the service flow from the first transmission path to the second transmission path, and the first node network device of the first transmission path.
  • the first node network device of the second transmission path is the same network device, and the tail node network device of the first transmission path and the tail node network device of the second transmission path are the same network device.
  • the first link state information is sent to the controller through a BGP Update message.
  • the first link state information is specifically carried in the multi-protocol reachable network layer reachability information MP REACH NLRI field or multi-protocol unreachable network layer reachable in the BGP Update message.
  • the first link state information in the BGP Update message is carried in type length value TLV information.
  • the first link state information is directly sent by the first network device to the controller.
  • the first link state information is first sent by the first network device to the third network device, and then sent by the third network device directly to the controller.
  • the first network device mentioned in method 600 may be the first network device mentioned in method 200, and the first link state information mentioned in method 600 may be the first network device mentioned in method 200. And the first link state information.
  • the first network device mentioned in the method 600 may be the second network device mentioned in the method 200, and the first link state information mentioned in the method 600 may be the second network device mentioned in the method 200.
  • the mentioned second link state information As another example, the first network device mentioned in the method 600 may be the second network device mentioned in the method 200, and the first link state information mentioned in the method 600 may be the second network device mentioned in the method 200.
  • the mentioned second link state information may be the first link state information in the method 600. Therefore, for various implementation manners of the first link state information in the method 600, reference may be made to the related introduction of the method 200, which will not be repeated here.
  • the method further includes:
  • the first network device receives the second link state information sent by the second network device, where the second link state information includes second egress port information and a second bit error rate, and the second egress port information Indicating a second outgoing port of the second network device, where the second network device is used to send data traffic to a next-hop network device of the second network device via the second outgoing port along a third transmission path,
  • the second bit error rate indicates the bit error rate of the data traffic sent by the second egress port;
  • the second link state information is used to determine a second cumulative bit error rate of the third transmission path, and the second cumulative bit error rate is all outgoing ports on the third transmission path used to send data traffic
  • the second cumulative error rate is used to determine whether to switch the service flow from the third transmission path to the fourth transmission path, the first node network device of the third transmission path and all
  • the first node network device of the fourth transmission path is the same network device, and the tail node network device of the third transmission path and the tail node network device of the fourth transmission path are the same network device.
  • the first network device mentioned in the method 600 may be the fourth network device mentioned in the method 200
  • the second link state information mentioned in the method 600 may be the fourth network device mentioned in the method 200.
  • the first mentioned link state information Therefore, various implementation manners of the second link state information in the method 600 can be referred to the related introduction of the method 200, which will not be repeated here.
  • the network device can report the bit error rate of the outgoing port to the controller, so that the controller can collect and accumulate the bit error rate of the data traffic sent by all outgoing ports on the first transmission path, so that the controller It is possible to switch the service flow on the first transmission path to the second transmission path when the accumulated bit error rate is too large. Therefore, the service stream transmitted on the transmission path with excessive accumulated bit error rate can be switched to other transmission paths with lower accumulated bit error rate for transmission, thereby avoiding the use of multi-hop paths with serious accumulated bit error rate. Forwarding the service stream improves the stability of service stream transmission.
  • This specific scenario example can use the network structure shown in Figure 1, where the first transmission path and the second transmission path are two transmission paths from CSG 103 to RSG 108, and the first transmission path passes through CSG 103, CSG 104, ASG 106 and RSG 108, the second transmission path passes through CSG 103, CSG 105, ASG 107, RSG 109, and RSG 108.
  • the processing method 700 based on link errors may include, for example:
  • the CSG 103 sends the first link state information to the ASG 106.
  • the first link state information includes the outgoing port information used to indicate the outgoing port 111 and the bit error rate a1, where a1 is the bit error rate of the port 111 detected by the CSG 103 for sending data traffic.
  • the link state information can be carried in the TLV information of the IGP protocol and sent by the CSG 103 to the ASG 106.
  • the CSG 103 reports the bit error rate of the port 111 as an example.
  • any network device in the network 110 can report the bit error rate of any outgoing port on the network device.
  • the ASG 106 sends the first link state information to the NCE 120.
  • the first link state information may be carried in the MP REACH NLRI or MP UNREACH NLRI field of the BGP Update message and sent by the ASG 106 to the NCE 120.
  • the NCE 120 updates the bit error rate of the output port 111 according to the first link state information.
  • the NCE 120 may update the bit error rate of the egress port 111 according to the magnitude relationship between a1 and the second bit error rate threshold N. If a1 is less than N, NCE 120 can update the bit error rate of the outgoing port 111 to zero. If a1 is greater than N, NCE 120 can update the bit error rate of the outgoing port 111 to a1.
  • bit error rate of the egress port 111 After the bit error rate of the egress port 111 is updated, if the bit error rate of the egress port 111 is greater than the first bit error rate threshold M, go to step 705, and if the bit error rate of the egress port 111 is less than the first bit error rate threshold M, then go to Step 704. Among them, M is greater than N.
  • the NCE 120 updates the cumulative bit error rate of the first transmission path according to the bit error rate of the outgoing port 111.
  • a0 is the bit error rate of the outgoing port 111 reported by the CSG 103 before the first link state information is reported, or, if the CSG 103 has not reported the bit error rate of the port 111 before the first link state information is reported, then a0 is 0.
  • b0 is the bit error rate of the outgoing port 113 reported by the CSG 104 before the first link state information is reported, or if the CSG 104 has not reported the bit error rate of the port 113 before the first link state information is reported, b0 is 0.
  • step 705 After the cumulative bit error rate of the first transmission path is updated, if the cumulative bit error rate of the first transmission path is greater than M, go to step 705, if the cumulative bit error rate of the first transmission path is less than M, the subsequent path switching may not be performed operating.
  • the NCE 120 switches the service flow from the first transmission path to the second transmission path.
  • the NCE 120 may determine the service flow transmitted on the first transmission path, generate a label stack for indicating transmission of the service flow on the second transmission path, and send it to the CSG 103 through the ASG 104.
  • the label stack includes labels for indicating CSG 103, CSG 105, ASG 107, RSG 109, and RSG 108.
  • CSG 103 receives the label stack, it can encapsulate the label stack in the message of the service flow.
  • CSG 103, CSG 105, ASG 107, RSG 109, and RSG 108 can report the service flow according to the label stack.
  • the message is sent to its next-hop network device on the second transmission path, so that the service flow message is transmitted on the second transmission path.
  • any network device in the network 110 can report the bit error rate of any egress port on the network device to the NCE 120, so that the NCE 120 can collect the egress port 111, the egress port 113, and the egress port 116.
  • the error rate of the first transmission path is accumulated and the cumulative error rate of the first transmission path is obtained, so that NCE 120 can switch the service flow on the first transmission path to the second transmission path when the cumulative error rate of the first transmission path is too large . Therefore, the service stream transmitted on the transmission path with excessive accumulated bit error rate can be switched to other transmission paths with lower accumulated bit error rate for transmission, thereby avoiding the use of multi-hop paths with serious accumulated bit error rate. Forwarding the service stream improves the stability of service stream transmission.
  • FIG. 8 is a schematic structural diagram of a processing device based on link error codes in an embodiment of the application.
  • the device is a controller 800 and may specifically include a receiving unit 801 and a processing unit 802.
  • the receiving unit 801 is configured to receive first link state information sent by a first network device, where the first link state information includes first egress port information and a first bit error rate, and the first egress port information Indicating the first outgoing port of the first network device, where the first network device is used to send data traffic to the next-hop network device of the first network device via the first outgoing port along the first transmission path,
  • the first bit error rate indicates the bit error rate of the data traffic sent by the first egress port.
  • the processing unit 802 is configured to determine a first cumulative bit error rate of the first transmission path according to the first link state information, determine whether the first cumulative bit error rate is greater than a first bit error rate threshold, and, When it is determined that the first cumulative error rate is greater than the first error rate threshold, the service flow is switched from the first transmission path to the second transmission path; wherein, the first cumulative error rate is the first
  • the weighted sum of the bit error rates of all the outgoing ports used to send data traffic on the transmission path, the first node network device of the first transmission path and the first node network device of the second transmission path are the same network device,
  • the tail node network device of the first transmission path and the tail node network device of the second transmission path are the same network device.
  • the processing unit 802 is further configured to clear the value of the first error rate to zero when the first error rate is less than the second error rate threshold; wherein, the The first bit error rate threshold is greater than the second bit error rate threshold.
  • the receiving unit 801 is further configured to receive second link state information sent by a second network device, where the second link state information includes second egress port information and second error codes
  • the second outgoing port information indicates the second outgoing port of the second network device, and the second network device is used to communicate to the second network via the second outgoing port along the second transmission path.
  • the next hop network device of the device sends data traffic, and the second error rate indicates the error rate of the data traffic sent by the second outgoing port.
  • the processing unit 802 is further configured to determine a second accumulated error rate of the second transmission path according to the second link state information, and determine whether the second accumulated error rate is less than the first error rate Rate threshold, and when it is determined that the first cumulative bit error rate is greater than the first bit error rate threshold and the second cumulative bit error rate is less than the first bit error rate threshold, the service flow is removed from the first bit error rate threshold.
  • a transmission path is switched to the second transmission path.
  • the second cumulative bit error rate is a weighted sum of the bit error rates of all outgoing ports used to send data traffic on the second transmission path.
  • the processing unit 802 is further configured to obtain the first transmission path in addition to the first transmission path before switching the service flow from the first transmission path to the second transmission path Other transmission paths between the first node network device of the first transmission path and the tail node network device of the first transmission path, and, according to the cumulative bit error rate of each transmission path of the other transmission path, from the other transmission path Determine the second transmission path.
  • the receiving unit 801 is further configured to receive the third link state information sent by the third network device after the service flow is switched from the first transmission path to the second transmission path, where:
  • the third link state information includes third egress port information and a third bit error rate, the third egress port information indicates the third egress port of the third network device, and the third network device is used to The first transmission path sends data traffic to the next-hop network device of the third network device via the third egress port, and the third error rate indicates the error code of the data traffic sent by the third egress port rate.
  • the processing unit 802 is further configured to determine a third cumulative error rate of the first transmission path according to the third link state information, and determine whether the third cumulative error rate is less than the first error rate And, when it is determined that the first cumulative bit error rate is less than the first bit error rate threshold, the service flow is switched from the second transmission path back to the first transmission path.
  • the third cumulative bit error rate is a weighted sum of the bit error rates of all outgoing ports used to send data traffic on the first transmission path.
  • the receiving unit 801 is further configured to receive a Border Routing Protocol BGP Update Update message, where the BGP Update message carries the first link state information sent by the first network device
  • the processing unit 802 is further configured to obtain the first link state information from the BGP Update message.
  • the first link state information is specifically carried in the multi-protocol reachable network layer reachability information MP REACH NLRI field or multi-protocol unreachable network layer reachability information contained in the BGP Update message MP UNREACH NLRI field.
  • the first link state information in the BGP Update message is carried in type length value TLV information.
  • the first link state information is directly sent by the first network device to the controller, or the first link state information is first sent by the first network device It is sent to the fourth network device and then sent directly to the controller by the fourth network device.
  • the first bit error rate threshold is specifically a bit error rate threshold set corresponding to the service type of the service flow.
  • controller 800 is the controller mentioned in the method 200. Therefore, for various specific embodiments of the controller 800, please refer to the description of the controller in the method 200, which will not be repeated in this embodiment.
  • FIG. 9 is a schematic structural diagram of a processing apparatus based on link error codes in an embodiment of the application.
  • the apparatus is a first network device 900 and may specifically include a processing unit 901 and a receiving unit 902.
  • the processing unit 901 is configured to detect the first bit error rate of the data traffic sent by the first egress port, where the first network device is configured to send data to the first network device along the first transmission path via the first egress port.
  • the next hop network device sends data traffic.
  • the sending unit 902 is configured to send first link state information to the controller, where the first link state information includes first egress port information and the first bit error rate, and the first egress port information is used to indicate The first outgoing port.
  • the first link state information is used to determine a first cumulative bit error rate of the first transmission path, where the first cumulative bit error rate is all egress ports on the first transmission path used to send data traffic
  • the first cumulative error rate is used to determine whether to switch the service flow from the first transmission path to the second transmission path, the first node network device of the first transmission path and all
  • the first node network device of the second transmission path is the same network device, and the tail node network device of the first transmission path and the tail node network device of the second transmission path are the same network device.
  • the first link state information is sent to the controller through a BGP Update message.
  • the first link state information is specifically carried in the multi-protocol reachable network layer reachability information MP REACH NLRI field or multi-protocol unreachable network layer reachability information contained in the BGP Update message MP UNREACH NLRI field.
  • the first link state information in the BGP Update message is carried in type length value TLV information.
  • the first link state information is directly sent by the first network device to the controller.
  • the first network device 900 further includes a receiving unit 903.
  • the receiving unit 903 is configured to receive second link state information sent by a second network device, where the second link state information includes second egress port information and a second bit error rate, and the second egress port information Indicating a second outgoing port of the second network device, where the second network device is used to send data traffic to a next-hop network device of the second network device via the second outgoing port along a third transmission path,
  • the second bit error rate indicates the bit error rate of the data traffic sent by the second egress port.
  • the sending unit is further configured to send second link state information to the controller.
  • the second link state information is used to determine a second cumulative bit error rate of the third transmission path, and the second cumulative bit error rate is all outgoing ports on the third transmission path used to send data traffic
  • the second cumulative error rate is used to determine whether to switch the service flow from the third transmission path to the fourth transmission path, the first node network device of the third transmission path and all
  • the first node network device of the fourth transmission path is the same network device, and the tail node network device of the third transmission path and the tail node network device of the fourth transmission path are the same network device.
  • the first link state information is first sent by the first network device to the third network device, and then sent by the third network device directly to the controller.
  • the first network device 900 is the first network device mentioned in the method 200. Therefore, for various specific embodiments of the first network device 900, please refer to the introduction of the first network device in the method 200. This embodiment will not be repeated.
  • an embodiment of the present application also provides a controller, which includes a processor and a memory, the memory stores an instruction, and when the processor executes the instruction, the network device is caused to execute the aforementioned method 200.
  • an embodiment of the present application also provides a network device including a processor and a memory.
  • the memory stores instructions.
  • the processor executes the instructions, the network device is caused to execute the aforementioned method 600.
  • embodiments of the present application also provide a computer program product, which when running on a computer, causes the computer to execute the foregoing method 200 or the foregoing method 600.
  • the embodiments of the present application also provide a computer-readable storage medium that stores instructions in the computer-readable storage medium, and when it runs on a computer or a processor, the computer or the processor executes the aforementioned method 200 or The foregoing method 600.
  • the “first network device”, “first link state information”, “first outgoing port”, “first bit error rate”, “first transmission path”, and “first accumulation” mentioned in the embodiments of this application The “first” in names such as “bit error rate” is only used for name identification, and does not mean first in order. This rule also applies to "second” and so on.
  • the computer software product can be stored in a storage medium, such as read-only memory (English: read-only memory, ROM)/RAM, magnetic disk, An optical disc, etc., includes a number of instructions to enable a computer device (which may be a personal computer, a server, or a network communication device such as a router) to execute the method described in each embodiment of the application or some parts of the embodiment.
  • a computer device which may be a personal computer, a server, or a network communication device such as a router
  • the various embodiments in this specification are described in a progressive manner, and the same or similar parts between the various embodiments can be referred to each other, and each embodiment focuses on the differences from other embodiments.
  • the description is relatively simple, and for related parts, please refer to the partial description of the method embodiment.
  • the above-described device and system embodiments are merely illustrative.
  • the modules described as separate components may or may not be physically separated, and the components displayed as modules may or may not be physical modules, that is, they may be located in One place, or it can be distributed to multiple network units. Some or all of the modules may be selected according to actual needs to achieve the objectives of the solutions of the embodiments. Those of ordinary skill in the art can understand and implement it without creative work.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Environmental & Geological Engineering (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

本申请公开了一种基于链路误码的处理方法及装置。其中,网络设备可以向控制器上报网络设备上的出端口用于发送数据流量的误码率,从而使得控制器可以收集一条传输路径上所有出端口发送数据流量的误码率并进行累计,从而得到该传输路径的累计误码率。这样,控制器就可以根据该传输路径的累计误码率来确定是否将该传输路径上的业务流切换到其他传输路径上。因此,控制器可以将在累计误码率过大的传输路径上进行传输的业务流切换到累计误码率较低的其他传输路径上进行传输,从而能够避免使用累计误码率严重的多跳路径来转发业务流,提高了业务流传输的稳定性。

Description

一种基于链路误码的处理方法和装置
本申请要求于2019年06月03日提交国家知识产权局、申请号为201910476860.5、发明名称为“一种基于链路误码的处理方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,特别是涉及一种基于链路误码的控制方法和装置。
背景技术
当连接通信设备之间的物理链路出现诸如光缆老化、线路受损、激光器接触不良等线路问题时,在这段物理链路上传输的信号往往被接收时与发出时相比会存在比特误差,这种比特误差被称之为链路误码。由于链路误码过于严重可能导致基站停止服务或降低服务等级等严重问题,因此需要对网络中的链路误码进行检测,以使得业务流的转发路径避开误码严重的物理链路。
在许多场景下,业务流的传输路径可能是包含多段物理链路的多跳路径,此时往往会出现这样一种情形:虽然业务流的传输路径上每段物理链路的误码都处于可接受的程度,但业务流经过多跳的传输路径之后却出现了严重的误码。
发明内容
基于此,本申请实施例提供了一种基于链路误码的处理方法和装置,以通过对多跳路径上所有出端口的误码率进行累计,尽量避免使用累计误码率严重的多跳路径来传输业务流。
第一方面,本申请实施例提供了一种基于链路误码的处理方法。根据该方法,控制器接收第一网络设备发送的第一链路状态信息,根据第一链路状态信息确定第一传输路径的第一累计误码率,以及,当确定第一累计误码率大于第一误码率阈值,将业务流从第一传输路径切换到第二传输路径。其中,所述第一链路状态信息包括第一出端口信息和第一误码率,所述第一出端口信息指示所述第一网络设备的第一出端口,所述第一网络设备用于沿第一传输路径经由所述第一出端口向所述第一网络设备的下一跳网络设备发送数据流量,所述第一误码率指示所述第一出端口发送数据流量的误码率,所述第一累计误码率是所述第一传输路径上所有用于发送数据流量的出端口的误码率的加权和,所述第一传输路径的首节点网络设备和所述第二传输路径的首节点网络设备为同一网络设备,所述第一传输路径的尾节点网络设备和所述第二传输路径的尾节点网络设备为同一网络设备。由此可见,控制器可以通过网络设备上报的方式收集第一传输路径上所有出端口发送数据流量的误码率并进行累计,从而得到第一传输路径的累计误码率。这样,控制器就可以根据第一传输路径的累计误码率来确定是否将第一传输路径上的业务流切换到第二传输路径上。因此,控制器可以将在累计误码率过大的传输路径上进行传输的业务流切换到累计误码率较低的其他传输路径上进行传输,从而能够避免使用累计误码率严重的多跳路径来转发业务流,提高了业务流传输的稳定性。
结合第一方面的任何一种实现方式,在第一方面的第一种可能的实现方式中,所述控制器根据所述第一链路状态信息确定所述第一传输路径的第一累计误码率,包括:当所述第一误码率小于所述第二误码率阈值,所述控制器将所述第一误码率的值清零;其中,所述第一误码率阈值大于所述第二误码率阈值。由此可见,对于第一网络设备上报的第一出 端口的第一误码率过小时,控制器可以忽略第一出端口的误码率,从而减少控制器所要处理的出端口的误码率,减轻控制器的处理负担。
结合第一方面的任何一种实现方式,在第一方面的第二种可能的实现方式中,所述方法还包括:控制器接收第二网络设备发送的第二链路状态信息,根据所述第二链路状态信息确定所述第二传输路径的第二累计误码率,以及,当确定所述第一累计误码率大于所述第一误码率阈值且所述第二累计误码率小于所述第一误码率阈值,将业务流从所述第一传输路径切换到所述第二传输路径。其中,所述第二链路状态信息包括第二出端口信息和第二误码率,所述第二出端口信息指示所述第二网络设备的第二出端口,所述第二网络设备用于沿所述第二传输路径经由所述第二出端口向所述第二网络设备的下一跳网络设备发送数据流量,所述第二误码率指示所述第二出端口发送数据流量的误码率,所述第二累计误码率是所述第二传输路径上所有用于发送数据流量的出端口的误码率的加权和。由此可见,控制器可以在确定第一传输路径的累计误码率过大而第二传输路径的累计误码率较低的情况下将业务流从第一传输路径切换到第二传输路径,从而能够避免使用累计误码率严重的多跳路径来转发业务流,提高了业务流传输的稳定性。
结合第一方面的任何一种实现方式,在第一方面的第三种可能的实现方式中,在所述控制器将业务流从所述第一传输路径切换到第二传输路径之前,所述方法还包括:所述控制器获取除所述第一传输路径之外所述第一传输路径的首节点网络设备与所述第一传输路径的尾节点网络设备之间的其他传输路径,以及,根据所述其他传输路径的每条传输路径的累计误码率,从所述其他传输路径中确定出所述第二传输路径。由此可见,在第一传输路径的累计误码率过高时,控制器可以从与第一传输路径具有相同首节点和相同尾节点的多条其他传输路径中根据累计误码率选择用于切换业务流的第二传输路径,这样不仅业务流能够切换到累计误码率更合适的传输路径,而且各传输路径承载的数据流量也能够更均衡。
结合第一方面的任何一种实现方式,在第一方面的第四种可能的实现方式中,所述方法还包括:在将业务流从所述第一传输路径切换到第二传输路径之后,所述控制器接收第三网络设备发送的第三链路状态信息,根据所述第三链路状态信息确定所述第一传输路径的第三累计误码率,以及,当所述控制器确定所述第一累计误码率小于第一误码率阈值,所述控制器将业务流从所述第二传输路径切回到所述第一传输路径。其中,所述第三链路状态信息包括第三出端口信息和第三误码率,所述第三出端口信息指示所述第三网络设备的第三出端口,所述第三网络设备用于沿所述第一传输路径经由所述第三出端口向所述第三网络设备的下一跳网络设备发送数据流量,所述第三误码率指示所述第三出端口发送数据流量的误码率,所述第三累计误码率是所述第一传输路径上所有用于发送数据流量的出端口的误码率的加权和。由此可见,在业务流已切换到第二传输路径之后,当第一传输路径的累计误码率降低至可接受的程度,控制器还可以将业务流从第二传输路径切换回更适合传输业务流的第一传输路径,这样可以使得业务流能够在更适合的传输路径上传输。
结合第一方面的任何一种实现方式,在第一方面的第五种可能的实现方式中,所述控制器接收第一网络设备发送的第一链路状态信息,包括:所述控制器接收边界路由协议BGP更新Update报文,所述BGP Update报文中携带有所述第一网络设备发送的所述第一 链路状态信息;所述控制器从所述BGP Update报文中获取所述第一链路状态信息。由此可见,第一出端口用于发送数据流量的第一误码率可以携带在BGP Update报文中上报给控制器。
结合第一方面的第五种实现方式,在第一方面的第六种可能的实现方式中,所述第一链路状态信息具体携带在所述BGP Update报文中的多协议可达网络层可达性信息MP REACH NLRI字段或多协议不可达网络层可达性信息MP UNREACH NLRI字段。由此可见,第一出端口用于发送数据流量的第一误码率可以携带在NLRI字段中上报给控制器。
结合第一方面的第五种实现方式或第六种实现方式,在第一方面的第七种可能的实现方式中,在所述BGP Update报文中所述第一链路状态信息携带在类型长度数值TLV信息中。由此可见,第一出端口用于发送数据流量的第一误码率可以携带在TLV信息中上报给控制器。
结合第一方面的任何一种实现方式,在第一方面的第八种可能的实现方式中,所述第一链路状态信息是由所述第一网络设备直接向所述控制器发送的,或者,所述第一链路状态信息是先由所述第一网络设备向第四网络设备发送再由第四网络设备直接向所述控制器发送的。由此可见,第一网络设备可以通过直接或间接将第一出端口用于发送数据流量的第一误码率上报给控制器。
结合第一方面的任何一种实现方式,在第一方面的第八种可能的实现方式中,所述第一误码率阈值具体为与所述业务流的业务类型对应设置的误码率阈值。由此可见,由于不同业务类型的业务流受影响的误码率临界值不同,控制器可以采用不同的误码率阈值对不同业务类型的业务流判断传输路径的累计误码率是否过大,从而确定是否切换业务流的传输路径,因此,不同业务类型的业务流能够在受影响的情况下切换传输路径。
第二方面,本申请实施例提供了一种基于链路误码的处理方法。根据该方法,第一网络设备检测第一出端口发送数据流量的第一误码率并向控制器发送第一链路状态信息,其中,所述第一网络设备用于沿第一传输路径经由所述第一出端口向所述第一网络设备的下一跳网络设备发送数据流量,所述第一链路状态信息包括第一出端口信息和所述第一误码率,所述第一出端口信息用于指示所述第一出端口。所述第一链路状态信息用于确定所述第一传输路径的第一累计误码率,所述第一累计误码率是所述第一传输路径上所有用于发送数据流量的出端口的误码率的加权和,所述第一累计误码率用于确定是否将业务流从所述第一传输路径切换到第二传输路径,所述第一传输路径的首节点网络设备和所述第二传输路径的首节点网络设备为同一网络设备,所述第一传输路径的尾节点网络设备和所述第二传输路径的尾节点网络设备为同一网络设备。由此可见,网络设备可以向控制器上报出端口用于发送数据流量的误码率,这样就使得控制器能够收集传输路径上所有出端口发送数据流量的误码率并进行累计,从而得到传输路径的累计误码率。因此,控制器可以将在累计误码率过大的传输路径上进行传输的业务流切换到累计误码率较低的其他传输路径上进行传输,从而能够避免使用累计误码率严重的多跳路径来转发业务流,提高了业务流传输的稳定性。
结合第二方面的任何一种实现方式,在第二方面的第一种可能的实现方式中,所述第一链路状态信息通过BGP Update报文向所述控制器发送。第一出端口用于发送数据流量 的第一误码率可以携带在BGP Update报文中上报给控制器。
结合第二方面的第一种实现方式,在第二方面的第二种可能的实现方式中,所述第一链路状态信息具体携带在所述BGP Update报文中的多协议可达网络层可达性信息MP REACH NLRI字段或多协议不可达网络层可达性信息MP UNREACH NLRI字段。由此可见,第一出端口用于发送数据流量的第一误码率可以携带在NLRI字段中上报给控制器。
结合第二方面的第一种实现方式或第二种实现方式,在第二方面的第三种可能的实现方式中,在所述BGP Update报文中所述第一链路状态信息携带在类型长度数值TLV信息中。由此可见,第一出端口用于发送数据流量的第一误码率可以携带在TLV信息中上报给控制器。
结合第二方面的任何一种实现方式,在第二方面的第四种可能的实现方式中,所述第一链路状态信息是由所述第一网络设备直接向所述控制器发送的。由此可见,第一网络设备可以直接向控制器上报第一出端口用于发送数据流量的第一误码率。
结合第二方面的第四种实现方式,在第二方面的第五种可能的实现方式中,还包括:所述第一网络设备接收第二网络设备发送的第二链路状态信息并向所述控制器发送第二链路状态信息,其中,所述第二链路状态信息包括第二出端口信息和第二误码率,所述第二出端口信息指示所述第二网络设备的第二出端口,所述第二网络设备用于沿第三传输路径经由所述第二出端口向所述第二网络设备的下一跳网络设备发送数据流量,所述第二误码率指示所述第二出端口发送数据流量的误码率。所述第二链路状态信息用于确定所述第三传输路径的第二累计误码率,所述第二累计误码率是所述第三传输路径上所有用于发送数据流量的出端口的误码率的加权和,所述第二累计误码率用于确定是否将业务流从所述第三传输路径切换到第四传输路径,所述第三传输路径的首节点网络设备和所述第四传输路径的首节点网络设备为同一网络设备,所述第三传输路径的尾节点网络设备和所述第四传输路径的尾节点网络设备为同一网络设备。由此可见,第二网络设备可以通过第一网络设备间接向控制器上报第二出端口用于发送数据流量的第二误码率。
结合第二方面的任何一种实现方式,在第二方面的第六种可能的实现方式中,所述第一链路状态信息是先由所述第一网络设备向第三网络设备发送再由所述第三网络设备直接向所述控制器发送的。由此可见,第一网络设备可以通过第三网络设备间接向控制器上报第一出端口用于发送数据流量的第一误码率。
第三方面,本申请实施例提供了一种基于链路误码的处理装置。该装置为控制器,包括接收单元和处理单元。接收单元,用于接收第一网络设备发送的第一链路状态信息,其中,所述第一链路状态信息包括第一出端口信息和第一误码率,所述第一出端口信息指示所述第一网络设备的第一出端口,所述第一网络设备用于沿第一传输路径经由所述第一出端口向所述第一网络设备的下一跳网络设备发送数据流量,所述第一误码率指示所述第一出端口发送数据流量的误码率。处理单元,用于根据所述第一链路状态信息确定所述第一传输路径的第一累计误码率,确定所述第一累计误码率是否大于第一误码率阈值,以及,当确定所述第一累计误码率大于第一误码率阈值,将业务流从所述第一传输路径切换到第二传输路径。其中,所述第一累计误码率是所述第一传输路径上所有用于发送数据流量的出端口的误码率的加权和,所述第一传输路径的首节点网络设备和所述第二传输路径的首 节点网络设备为同一网络设备,所述第一传输路径的尾节点网络设备和所述第二传输路径的尾节点网络设备为同一网络设备。
结合第三方面的任何一种实现方式,在第三方面的第一种可能的实现方式中,所述处理单元,还用于当所述第一误码率小于所述第二误码率阈值,将所述第一误码率的值清零;其中,所述第一误码率阈值大于所述第二误码率阈值。
结合第三方面的任何一种实现方式,在第三方面的第二种可能的实现方式中,所述接收单元,还用于接收第二网络设备发送的第二链路状态信息,其中,所述第二链路状态信息包括第二出端口信息和第二误码率,所述第二出端口信息指示所述第二网络设备的第二出端口,所述第二网络设备用于沿所述第二传输路径经由所述第二出端口向所述第二网络设备的下一跳网络设备发送数据流量,所述第二误码率指示所述第二出端口发送数据流量的误码率。所述处理单元,还用于根据所述第二链路状态信息确定所述第二传输路径的第二累计误码率,确定所述第二累计误码率是否小于所述第一误码率阈值,以及,当确定所述第一累计误码率大于所述第一误码率阈值且所述第二累计误码率小于所述第一误码率阈值,将业务流从所述第一传输路径切换到所述第二传输路径。其中,所述第二累计误码率是所述第二传输路径上所有用于发送数据流量的出端口的误码率的加权和。
结合第三方面的任何一种实现方式,在第三方面的第三种可能的实现方式中,所述处理单元,还用于在将业务流从所述第一传输路径切换到第二传输路径之前,获取除所述第一传输路径之外所述第一传输路径的首节点网络设备与所述第一传输路径的尾节点网络设备之间的其他传输路径,以及,根据所述其他传输路径的每条传输路径的累计误码率,从所述其他传输路径中确定出所述第二传输路径。
结合第三方面的任何一种实现方式,在第三方面的第四种可能的实现方式中,所述接收单元,还用于在将业务流从所述第一传输路径切换到第二传输路径之后,接收第三网络设备发送的第三链路状态信息,其中,所述第三链路状态信息包括第三出端口信息和第三误码率,所述第三出端口信息指示所述第三网络设备的第三出端口,所述第三网络设备用于沿所述第一传输路径经由所述第三出端口向所述第三网络设备的下一跳网络设备发送数据流量,所述第三误码率指示所述第三出端口发送数据流量的误码率。所述处理单元,还用于根据所述第三链路状态信息确定所述第一传输路径的第三累计误码率,确定所述第三累计误码率是否小于所述第一误码率阈值,以及,当确定所述第一累计误码率小于第一误码率阈值,将业务流从所述第二传输路径切回到所述第一传输路径。其中,所述第三累计误码率是所述第一传输路径上所有用于发送数据流量的出端口的误码率的加权和。
结合第三方面的任何一种实现方式,在第三方面的第五种可能的实现方式中,所述接收单元,还用于接收边界路由协议BGP更新Update报文,所述BGP Update报文中携带有所述第一网络设备发送的所述第一链路状态信息;所述处理单元,还用于从所述BGP Update报文中获取所述第一链路状态信息。
结合第三方面的第五种实现方式,在第三方面的第六种可能的实现方式中,所述第一链路状态信息具体携带在所述BGP Update报文中的多协议可达网络层可达性信息MP REACH NLRI字段或多协议不可达网络层可达性信息MP UNREACH NLRI字段。
结合第三方面的第五种实现方式或第六种实现方式,在第三方面的第七种可能的实现方式中,在所述BGP Update报文中所述第一链路状态信息携带在类型长度数值TLV信息中。
结合第三方面的任何一种实现方式,在第三方面的第八种可能的实现方式中,所述第一链路状态信息是由所述第一网络设备直接向所述控制器发送的,或者,所述第一链路状态信息是先由所述第一网络设备向第四网络设备发送再由第四网络设备直接向所述控制器发送的。
结合第三方面的任何一种实现方式,在第三方面的第八种可能的实现方式中,所述第一误码率阈值具体为与所述业务流的业务类型对应设置的误码率阈值。
可以理解的是,第三方面提供的装置对应于第一方面提供的方法,故第三方面各实现方式的技术效果可参见第一方面各实现方式的介绍。
第四方面,本申请实施例提供了一种基于链路误码的处理装置。该装置为第一网络设备,包括处理单元和发送单元。处理单元,用于检测第一出端口发送数据流量的第一误码率,其中,所述第一网络设备用于沿第一传输路径经由所述第一出端口向所述第一网络设备的下一跳网络设备发送数据流量。发送单元,用于向控制器发送第一链路状态信息,所述第一链路状态信息包括第一出端口信息和所述第一误码率,所述第一出端口信息用于指示所述第一出端口。所述第一链路状态信息用于确定所述第一传输路径的第一累计误码率,所述第一累计误码率是所述第一传输路径上所有用于发送数据流量的出端口的误码率的加权和,所述第一累计误码率用于确定是否将业务流从所述第一传输路径切换到第二传输路径,所述第一传输路径的首节点网络设备和所述第二传输路径的首节点网络设备为同一网络设备,所述第一传输路径的尾节点网络设备和所述第二传输路径的尾节点网络设备为同一网络设备。
结合第四方面的任何一种实现方式,在第四方面的第一种可能的实现方式中,所述第一链路状态信息通过BGP Update报文向所述控制器发送。
结合第四方面的第一种实现方式,在第四方面的第二种可能的实现方式中,所述第一链路状态信息具体携带在所述BGP Update报文中的多协议可达网络层可达性信息MP REACH NLRI字段或多协议不可达网络层可达性信息MP UNREACH NLRI字段。
结合第四方面的第一种实现方式或第二种实现方式,在第四方面的第三种可能的实现方式中,在所述BGP Update报文中所述第一链路状态信息携带在类型长度数值TLV信息中。
结合第四方面的任何一种实现方式,在第四方面的第四种可能的实现方式中,所述第一链路状态信息是由所述第一网络设备直接向所述控制器发送的。
结合第四方面的第四种实现方式,在第二方面的第五种可能的实现方式中,所述装置还包括接收单元。接收单元,用于接收第二网络设备发送的第二链路状态信息,其中,所述第二链路状态信息包括第二出端口信息和第二误码率,所述第二出端口信息指示所述第二网络设备的第二出端口,所述第二网络设备用于沿第三传输路径经由所述第二出端口向所述第二网络设备的下一跳网络设备发送数据流量,所述第二误码率指示所述第二出端口 发送数据流量的误码率。所述发送单元,还用于向所述控制器发送第二链路状态信息。所述第二链路状态信息用于确定所述第三传输路径的第二累计误码率,所述第二累计误码率是所述第三传输路径上所有用于发送数据流量的出端口的误码率的加权和,所述第二累计误码率用于确定是否将业务流从所述第三传输路径切换到第四传输路径,所述第三传输路径的首节点网络设备和所述第四传输路径的首节点网络设备为同一网络设备,所述第三传输路径的尾节点网络设备和所述第四传输路径的尾节点网络设备为同一网络设备。
结合第四方面的任何一种实现方式,在第四方面的第六种可能的实现方式中,所述第一链路状态信息是先由所述第一网络设备向第三网络设备发送再由所述第三网络设备直接向所述控制器发送的。
可以理解的是,第四方面提供的装置对应于第二方面提供的方法,故第四方面各实现方式的技术效果可参见第二方面各实现方式的介绍。
第五方面,本申请实施例还提供了一种控制器,该控制器包括处理器和存储器,所述存储器存储有指令,当处理器执行该指令时,使得该网络设备执行前述第一方面任意一种实现方式所述的方法。
第六方面,本申请实施例还提供了一种网络设备,该网络设备包括处理器和存储器,所述存储器存储有指令,当处理器执行该指令时,使得该网络设备执行前述第二方面任意一种实现方式所述的方法。
第七方面,本申请实施例还提供了一种计算机程序产品,当其在计算机上运行时,使得计算机执行前述第一方面任意一种实现方式所述的方法或前述第二方面任意一种实现方式所述的方法。
第八方面,本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机或处理器上运行时,使得该计算机或处理器执行前述第一方面任意一种实现方式所述的方法或前述第二方面任意一种实现方式所述的方法。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。
图1为本申请实施例中一应用场景所涉及的网络系统框架示意图;
图2为本申请实施例中一种基于链路误码的处理方法200的流程示意图;
图3为本申请实施例中一种TLV定义示例的示意图;
图4为本申请实施例中一种TLV定义示例的示意图;
图5为本申请实施例中一种TLV定义示例的示意图;
图6为本申请实施例中一种基于链路误码的处理方法600的流程示意图;
图7为本申请实施例中一种基于链路误码的处理方法700的流程示意图;
图8为本申请实施例中一种基于链路误码的处理装置的结构示意图;
图9为本申请实施例中一种基于链路误码的处理装置的结构示意图。
具体实施方式
在许多场景下,业务流的传输路径可能是包含多段物理链路的多跳路径,此时往往会出现这样一种情形:虽然业务流的传输路径上每段物理链路的误码率都处于可接受的程度,但业务流经过多跳的传输路径之后却出现了严重的误码率,从而影响业务流传输的稳定性。例如,业务流的传输路径是从基站侧网关(英文:cell site gateway,简称:CSG)经汇聚侧网关(英文:aggregation site gateway,简称:ASG)到无线业务侧网关(英文:radio service gateway,简称:RSG),CSG与ASG之间物理链路的误码率以及ASG与RSG之间物理链路的误码率单独来看都没有达到影响业务流传输的程度,但从CSG到RSG的传输路径上的累计误码率却已经达到了影响业务流传输的程度。
为了解决上述问题,在本申请实施例中,网络设备可以将其沿第一传输路径经由其出端口发送数据流量的误码率上报给控制器,该出端口用于发送数据流量的误码率可以被视为第一传输路径中该网络设备与其下一跳网路设备之间物理链路的误码率。通过网络设备上报的方式,控制器可以收集到第一传输路径上所有出端口发送数据流量的误码率并进行累计,从而控制器就可以在累计得到的误码率过大时将第一传输路径上的业务流切换到第二传输路径上。因此,控制器可以将在累计误码率过大的传输路径上进行传输的业务流切换到累计误码率较低的其他传输路径上进行传输,从而能够避免使用累计误码率严重的多跳路径来转发业务流,提高了业务流传输的稳定性。
举例来说,本申请实施例的场景之一,可以是应用到如图1所示的网络结构中。可用于在基站101与核心网设备102之间传输业务流的网络110包括基站侧网关(英文:cell site gateway,简称:CSG)103、CSG 104、CSG 105、汇聚侧网关(英文:aggregation site gateway,简称:ASG)106、ASG 107、无线业务侧网关(英文:radio service gateway,简称:RSG)108和RSG 109等网络设备。其中,基站101可以是演进型基站(英文:evolved NodeB,简称:eNB)、新无线(英文:new radio,简称:NR)基站等。核心网设备102可以是服务网关(英文:serving gateway,简称:SGW)、移动性管理实体(英文:mobility management entity,简称:MME)等。
网络110中的各网络设备可以将各自出端口发送数据流量的误码率上报给网络控制器(英文:network control engineering,简称:NCE)120。例如,ASG 106可以将出端口116发送数据流量的误码率上报给NCE 120,其中,出端口116用于ASG 106向RSG 108发送数据流量。又如,CSG 104可以将出端口113发送数据流量的误码率通过ASG 106上报给NCE 120,其中,出端口113用于CSG 104向ASG 106发送数据流量。再如,RSG 108可以将出端口119发送数据流量的误码率上报给NCE 120其中,出端口119用于ASG 108向核心网设备102发送数据流量。
通过网络110中各网络设备上报的方式,NCE 120可以收集到一条传输路径上所有出端口用于发送数据流量的误码率并进行累计,得到该条传输路径的累计误码率。例如,第一传输路径是从CSG 103到RSG 108的一条传输路径,其经过CSG 103、CSG 104、ASG106和RSG 108。NCE 120可以收集到出端口111用于CSG 103向CSG 104发送数据流量的误码率、出端口113用于CSG 104向ASG 106发送数据流量的误码率以及出端口116 用于ASG 106向RSG 108发送数据流量的误码率并进行累计,从而得到第一传输路径的累计误码率。当NCE 120确定第一传输路径的累计误码率大于误码率阈值,可以将业务流从第一传输路径切换到第二传输路径。其中,第二传输路径是从CSG 103到RSG 108的另一条传输路径,例如可以是经过CSG 103、CSG 105、ASG 107、RSG 109和RSG 108的传输路径。
可以理解的是,上述场景仅是本申请实施例提供的一个场景示例,本申请实施例并不限于此场景。
下面结合附图,通过实施例来详细说明本申请实施例中基于链路误码的处理方法和装置的具体实现方式。
图2为本申请实施例中一种基于链路误码的处理方法200的流程示意图。该方法200可以包括:
201、控制器接收第一网络设备发送的第一链路状态信息,其中,所述第一链路状态信息包括第一出端口信息和第一误码率,所述第一出端口信息指示所述第一网络设备的第一出端口,所述第一网络设备用于沿第一传输路径经由所述第一出端口向所述第一网络设备的下一跳网络设备发送数据流量,所述第一误码率指示所述第一出端口发送数据流量的误码率。
具体实现时,第一网络设备可以检测第一网络设备沿第一传输路径经由第一出端口向第一网络设备的下一跳网络设备发送数据流量的第一误码率,基于第一误码率和用于指示第一出端口的第一出端口信息生成第一链路状态信息,并向控制器发送第一链路状态信息,从而实现向控制器上报第一误码率。其中,第一误码率可以被视为第一传输路径上从第一网络设备到第二网络设备这段物理链路的误码率,第一出端口信息可以被视为这段物理链路的标识。
可以理解的是,通过网络设备上报链路状态信息的方式,控制器可以接收任意一个网络设备上的任意一个出端口用于发送数据流量的误码率,也就是说,第一网络设备可以是网络中任意一个用于发送数据流量的网络设备,第一出端口可以是第一网络设备上的任意一个出端口,所述第一网络设备的下一跳网络设备可以表示第一网络设备通过第一出端口连接到的相邻网络设备。例如,在图1所示的网络结构示例中,所述第一网络设备可以是网络110中的任意一个网络设备。假设第一网络设备为ASG 106,则第一出端口可以是出端口116,也可以是出端口123,还可以是出端口125。若第一出端口为116,则第一网络设备的下一跳网络设备为RSG 108。若第一出端口为123,则第一网络设备的下一跳网络设备为CSG 104。若第一出端口为125,则第一网络设备的下一跳网络设备为ASG 107。
其中,第一误码率可以通过第一网络设备对通过第一出端口接收到的报文进行误码检测来确定。第一网络设备通过对通过第一出端口接收到的报文进行误码检测来确定该报文中的错误比特,然后根据该报文中错误比特的数量和总比特的数量计算出第一误码率。例如,第一误码率可以是,在第一网络设备通过第一出端口接收到的报文中,错误比特的数量在总比特的数量中的占比。
其中,第一网络设备可以采用纠错算法来检测报文中的错误比特。对于第一网络设备通过第一出端口接收到的报文中的码元,若该码元能够被纠错算法纠错则该码元中的比特被确定为正确比特,若该码元无法被纠错算法纠错则该码元中的比特被确定为错误比特的数量。其中,用于检测错误比特的纠错算法,例如可以是循环冗余校验(英文:Cyclic Redundancy Check,简称:CRC)算法,相应的,第一网络设备通过第一出接口接收到的报文中的码元可以是CRC码。以在K位信息后拼接R位校验位生成CRC码为例,CRC码的编码方式可以包括:将待编码的K位信息表示成多项式M(x),将M(x)左移R位得到M(x)*xR,将M(x)*xR除以R+1位的生成多项式G(x)得到余数R(x),将M(x)*xR与R(x)进行模2相加运算得到CRC码。
在本实施例中,多种上报方式可以用于第一网络设备向控制器上报第一链路状态信息。
作为一种示例,第一网络设备与控制器之间可以进行互通,则第一链路状态信息可以由第一网络设备直接发送给控制器。例如,在图1所示的网络结构示例中,各ASG可以与NCE 120之间进行互通,各RSG可以与NCE 120之间进行互通。因此,ASG可以将链路状态信息直接发送给NCE 120,RSG也可以将链路状态信息发送给NCE 120,也即,若第一网络设备为ASG或RSG,第一链路状态信息可以直接由第一网络设备向控制器发送。
作为另一种示例,第一网络设备与控制器之间不能进行互通,则第一链路状态信息可以先由第一网络设备发送给第四网络设备再由第四网络设备直接发送给控制器。例如,在图1所述的网络结构示例中,各CSG与NCE 120之间不能进行互通,但各ASG及各RSG可以与NCE 120之间进行互通。因此,CSG可以先将链路状态信息发送给ASG或RSG,ASG或RSG将链路状态信息直接发送给NCE 120,也即,若第一网络设备为CSG,第一链路状态信息可以先由第一网络设备发送给第四网络设备再由第四网络设备直接发送给控制器,其中,第四网络设备可以是ASG或RSG。
作为又一种示例,在第一网络设备与控制器之间可以进行互通的情况下,第一链路状态信息也可以先由第一网络设备发送给第四网络设备再由第四网络设备直接发送给控制器。例如,在图1所示的网络结构示例中,各ASG及各RSG都可以与NCE 120之间进行互通。ASG可以先将链路状态信息发送给RSG,RSG将链路状态信息直接发送给NCE 120,也即,若第一网络设备为ASG,第一链路状态信息可以先由第一网络设备发送给第四网络设备再由第四网络设备直接发送给控制器,其中,第四网络设备可以是RSG。
可以理解的是,控制器可以通过边界网关协议(英文:Border Gateway Protocol,简称:BGP)链路状态(英文:link state,简称:LS)来接收第一链路状态信息。例如,第一链路状态信息可以携带在BGP更新(英文:Update)报文中上报给控制器,也即,控制器可以接收携带有第一链路状态信息的BGP Update报文并从BGP Update报文中读取第一链路状态信息。举例来说,第一链路状态信息可以携带在BGP Update报文中的多协议可达网络层可达性信息(英文:Multiprotocol Reachable Network Layer Reachability Information,简称:MP REACH NLRI)字段或多协议不可达网络层可达性信息(英文:Multiprotocol Unreachable Network Layer Reachability Information,简称:MP UNREACH NLRI)字段中。
作为一种示例,假设第一网络设备直接将第一链路状态信息发送给控制器,则第一网络设备可以将第一链路状态信息封装到BGP Update报文中,然后将封装了第一链路状态 信息发送给控制器。
作为另一种示例,假设第一网络设备通过第四网络设备向控制器发送第一链路状态信息,则第一网络设备可以将第一链路状态信息发送给第四网络设备,第四网络设备将第一链路状态信息封装到BGP Update报文中再发送给控制器。
可以理解的是,第一链路状态信息可以携带在TLV信息中进行传输。例如,第一网络设备可以通过BGP Update报文的TLV信息来携带第一链路状态信息向控制器发送。又如,第一网络设备可以通过内部网关协议(英文:Interior Gateway Protocol,简称:IGP)的类型长度数值(英文:type length value,简称:TLV)信息来携带第一链路状态信息向第四网络设备发送,第四网络设备再通过BGP Update报文的TLV信息来携带第一链路状态信息向控制器发送。
作为一种示例,若IGP协议为中间系统到中间系统(英文:intermediate system to intermediate system,简称:ISIS)协议,依据请求协议(英文:Request For Comments,简称:RFC)5305,可以在ISIS协议中增加一种链路属性(英文:link attribute)TLV,该链路属性TLV可以用于携带第一链路状态信息由第一网络设备向第四网络设备发送。如图3所示的TLV定义示例,该链路属性TLV为子TLV(英文:Sub-TLV),类型(英文:type)为19,长度(Length)为4octets,名字(英文:name)描述为误码探测(英文:bit-error detect)。
作为另一种示例,若IGP协议为开放最短路径优先(英文:open shortest path first,简称:OSPF)协议,依据RFC7770,可以在OSPF协议中增加一种链路状态广播(英文:link state advertisement,简称:LSA)的TLV,该LSA的TLV可以用于携带第一链路状态信息由第一网络设备向第四网络设备发送。如图4所示的TLV定义示例,在该LSA的TLV中,TLV编码点(英文:code point)为32768,Length为4octets,那么描述为误码探测(英文:bit-error detection)。
再如,依据RFC7752,可以在BGP LS协议中增加一种链路描述(英文:link descriptors)相关的TLV,该link descriptors相关的TLV可以用于携带第一链路状态信息由第一网络设备或第四网络设备向控制器发送。如图5所示的TLV定义示例,在该link descriptors相关的TLV中,TLV code point为266,描述(英文:description)为误码探测(英文:bit-error detection),ISIS TLV为22,Sub-TLV为19。
202、所述控制器根据所述第一链路状态信息确定所述第一传输路径的第一累计误码率,所述第一累计误码率是所述第一传输路径上所有用于发送数据流量的出端口的误码率的加权和。
在控制器接收第一链路状态信息之后,控制器可以从第一链路状态信息中读取第一出端口信息和第一误码率,并根据第一误码率对第一出端口信息所指示的第一出端口进行误码率更新,从而,控制器可以将第一出端口的误码率更新为第一误码率。
在一些实施方式中,控制器可以根据第一误码率的大小来确定将第一出端口的误码率更新为第一误码率或清零,从而在第一误码率过小的情况下控制器可以忽略第一出端口的误码率,也即,第一出端口可以被视为没有误码。具体实现时,控制器可以判断第一误码率是否小于第二误码率阈值。若第一误码率小于第二误码率阈值,控制器可以将第一误码 率的值清零,也即,控制器将第一出端口的误码率清零,此时第一出端口的误码率被忽略。若第一误码率大于第二误码率阈值,控制器可以不对第一误码率的值进行清零处理并将第一出端口的误码率更新为第一误码率,此时第一出端口的误码率没有被忽略。
在第一出端口的误码率被更新之后,控制器确定第一出端口为第一传输路径上用于发送数据流量的出端口,从而可以利用第一出端口的误码率计算第一传输路径的第一累计误码率。
其中,第一累计误码率是第一传输路径上所有用于发送数据流量的出端口的误码率的加权和。例如,在图1所示的网络结构示例中,假设第一传输路径是从CSG 103到核心网设备102的一条路径,其经过CSG 103、CSG 104、ASG 106和RSG 108,则第一传输路径上用于发送数据流量的出端口包括用于CSG 103向CSG 104发送数据流量的出端口111、用于CSG 104向ASG 106发送数据流量的出端口113、用于ASG 116向RSG 108发送数据流量的出端口116,第一传输路径的第一累计误码率为出端口111的误码率、出端口113的误码率和出端口116的误码率之和。
作为一种示例,当控制器接收到第一网络设备发送的第一链路状态信息时,控制器可以将第一出端口的误码率更新为第一误码率并记录。当需要计算第一传输路径的第一累计误码率时,控制器可以从记录中获取包括第一出端口的误码率在内的第一传输路径上所有出端口的误码率并计算加权和,从而得到第一传输路径的第一累计误码率。在一个具体的示例中,假设传输路径A上包括出端口A和出端口B,出端口A的误码率A和出端口B的误码率B已被上报到控制器,则控制器记录了出端口A的误码率A以及出端口B的误码率B,此时,若需要计算传输路径A的累计误码率,则控制器可以计算误码率A和误码率B的加权和作为传输路径A的累计误码率。
作为另一种示例,假设控制器在接收到第一链路状态信息之前已计算过并记录了第一传输路径的第四累计误码率,其中第四累计误码率是利用控制器在接收到第一链路状态信息之前记录的第一出端口的第四误码率计算的,则当控制器接收到第一网络设备发送的第一链路状态信息时,控制器可以根据第一误码率对第一传输路径的第四累计误码率进行更新,以使得第四累计误码率中第一出端口的第四误码率被替换为第一误码率,从而得到第一传输路径的第一累计误码率并记录。在一个具体的示例中,假设传输路径A上包括出端口A和出端口B,在出端口A的误码率和出端口B的误码率均未曾上报到控制器过的情况下,出端口A的误码率和出端口B的误码率均被视为零,控制器可以记录传输路径A的累计误码率A为零。此后,若出端口A的误码率A被上报到控制器,由于累计误码率A中出端口A的误码率为零,控制器可以将误码率A的加权值累加到累计误码率A,从而得到累计误码率B并记录为传输路径A的累计误码率,也即,累计误码率B是误码率A的加权值。此后,若出端口B的误码率B被上报到控制器,由于累计误码率B中出端口B的误码率为零,控制器可以将误码率B的加权值累加到累计误码率B,从而得到累计误码率C并记录为传输路径A的累计误码率,也即,累计误码率C是误码率A和误码率B的加权和。此后,若出端口A的误码率C又被上报到控制器,由于累计误码率C中出端口A的误码率为误码率A,控制器可以将累计误码率A中误码率A的加权值替换为误码率C的加权值,从而得到累计误码率D并记录为传输路径A的累计误码率,也即,累计误码率 D是误码率C和误码率B的加权和。
203、所述控制器确定所述第一累计误码率是否大于第一误码率阈值。
204、当所述控制器确定所述第一累计误码率大于第一误码率阈值,所述控制器将业务流从所述第一传输路径切换到第二传输路径,其中,所述第一传输路径的首节点网络设备和所述第二传输路径的首节点网络设备为同一网络设备,所述第一传输路径的尾节点网络设备和所述第二传输路径的尾节点网络设备为同一网络设备。
其中,第一误码率阈值用于确定传输路径的累计误码率是否超过可接受的程度。当第一累计误码率小于第一误码率阈值时,则第一累计误码率处于可接受的程度,也即,业务流在第一传输路径上所产生的误码是可接受的,控制器可以不对第一传输路径上传输的业务流进行传输路径的切换操作。当第一累计误码率大于第一误码率阈值,则第一累计误码率处于不可接受的程度,也即,业务流在第一传输路径上所产生的误码是不可接受的,控制器可以将第一传输路径上传输的业务流切换到第二传输路径上进行传输。其中,第一传输路径与第二传输路径是同一首节点网络设备和同一尾节点网络设备之间的两条不同的传输路径,第一传输路径与第二传输路径例如可以是分段路由流量工程(英文:Segment Routing-Traffic Engineering,简称:SR-TE)隧道。
在一些实施方式中,考虑到不同的业务类型往往对业务流传输时产生的误码率有不同的需求,控制器可以为不同的业务类型对应设置不同的第一误码率阈值,此时,控制器可以根据不同的业务类型选择不同的第一误码率阈值来对用于传输该业务类型的业务流的传输路径的累计误码率进行判断,从而确定该业务类型的业务流是否要切换到其他传输路径。具体实现时,控制器可以确定第一传输路径上传输的业务流以及该业务流的业务类型。若第一传输路径的第一累计误码率大于与该业务类型对应设置的第一误码率阈值,控制器可以将该业务流切换到第二传输路径上进行传输。具体到实际应用时,语音业务相对于数据业务来说对误码率不敏感,因此,语音业务对应设置的第一误码率阈值可以大于数据业务对应设置的第一误码率阈值。例如,由于语音业务在误码率超过4E-2的情况下就会受到影响,语音业务对应设置的第一误码率阈值可以为4E-2。又如,由于视频业务在误码率超过1E-5的情况下就会受到影响,视频业务对应设置的第一误码率阈值可以为1E-5。再如,由于数据业务在误码率超过1E-6的情况下就会受到影响,数据业务对应设置的第一误码率阈值可以为1E-6。
可以理解的是,第一误码率阈值用于判断对传输路径的累计误码率是否超过业务流传输的误码率要求,前述提及的第二误码率阈值用于判断传输路径上的单个出端口的误码率是否可以忽略,因此,第一误码率阈值通常要大于第二误码率阈值。
需要说明的是,业务流从第一传输路径切换到第二传输路径,是为了将业务流从累计误码率较大的传输路径切换到累计误码率较小的传输路径。因此,在一些实施方式中,控制器可以在确定第一传输路径的第一累计误码率大于第一误码率阈值且第二传输路径的第二累计误码率小于第一误码率阈值的情况下将业务流从第一传输路径切换到第二传输路径,也即,步骤204可以具体为:当所述控制器确定所述第一累计误码率大于所述第一误码率阈值且所述第二累计误码率小于所述第一误码率阈值,所述控制器将业务流从所述第一传输路径切换到所述第二传输路径。此外,当控制器确定第一累计误码率和第二累计 误码率均大于第一误码率阈值,控制器可以不将业务流从第一传输路径切换到第二传输路径。
其中,控制器可以通过以下方式来确定第二传输路径的第二累计误码率:控制器接收第二网络设备发送的第二链路状态信息并根据所述第二链路状态信息确定所述第二传输路径的第二累计误码率,其中,所述第二链路状态信息包括第二出端口信息和第二误码率,所述第二出端口信息指示所述第二网络设备的第二出端口,所述第二网络设备用于沿所述第二传输路径经由所述第二出端口向所述第二网络设备的下一跳网络设备发送数据流量,所述第二误码率指示所述第二出端口发送数据流量的误码率,所述第二累计误码率是所述第二传输路径上所有用于发送数据流量的出端口的误码率的加权和。可以理解的是,第二累计误码率的确定方式可以参见前述第一累计误码率的相关介绍,第二链路状态信息相关的实施方式也可以参见前述第一链路状态信息的相关介绍,在此不再赘述。
在有些情况下,第一传输路径的首节点网络设备与尾节点网络设备之间的传输路径除了第一传输路径之外还有多条其他传输路径。因此,在一些实施方式中,当控制器确定第一传输路径的第一累计误码率大于第一误码率阈值时,控制器可以根据该多条传输路径的每条传输路径的性能从该多条其他路径中确定出第二传输路径,从而将业务流从第一传输路径切换到第二传输路径。这样,业务流可以被切换到性能较优的传输路径上,从而使得业务流的传输效率更高。
作为一种示例,用于从其他传输路径中确定第二传输路径的性能,可以是累计误码率,也即,控制器可以根据其他传输路径的每条传输路径的累计误码率从其他传输路径中确定出第二传输路径。其中,第二传输路径可以是其他传输路径中累计误码率最小的传输路径。
作为另一种示例,用于从其他传输路径中确定第二传输路径的性能,可以是链路代价(英文:link cost,简称:COST),也即,控制器可以根据其他传输路径的每条传输路径的COST值从其他传输路径中确定出第二传输路径。其中,第二传输路径可以是其他传输路径中COST值最小的传输路径。
作为又一种示例,用于从其他传输路径中确定第二传输路径的性能,可以是带宽,也即,控制器可以根据其他传输路径的每条传输路径的带宽从其他传输路径中确定出第二传输路径。其中,第二传输路径可以是其他传输路径中带宽最大的传输路径。
作为又一种示例,用于从其他传输路径中确定第二传输路径的性能,可以是时延,也即,控制器可以根据其他传输路径的每条传输路径的时延从其他传输路径中确定出第二传输路径。其中,第二传输路径可以是其他传输路径中时延最小的传输路径。
此外,用于从其他传输路径中确定第二传输路径的性能,可以是累计误码率、COST值、带宽、时延中任意多种性能的组合。
为了实现业务流从第一传输路径切换到第二传输路径,控制器可以生成用于指示在第二传输路径上传输该业务流的标签栈并将该标签栈通过路径计算单元通信协议(英文:Path Computation Element Protocol,简称:PCEP)报文发送给第二传输路径的首节点网络设备,首节点网络设备可以在该业务流的报文中封装该业务流的标签栈,从而就可以使得第二传输路径上的每个网络设备根据该业务流的报文中封装的标签栈向其下一跳网络设备发送 该业务流的报文。
在一些实施方式中,若第一传输路径为业务流的主路径,第二传输路径为业务流的备路径,则在业务流从第一传输路径切换到第二传输路径之后,当第一传输路径上某出端口的误码率降低而使得第一传输路径的累计误码率降至第一误码率阈值以下,业务流还可以从第二传输路径切回第一传输路径。具体实现时,在步骤204之后,控制器还可以接收第三网络设备发送的第三链路状态信息,根据所述第三链路状态信息确定所述第一传输路径的第三累计误码率,当确定所述第一累计误码率小于第一误码率阈值则将业务流从所述第二传输路径切回到所述第一传输路径。其中,所述第三链路状态信息包括第三出端口信息和第三误码率,所述第三出端口信息指示所述第三网络设备的第三出端口,所述第三网络设备用于沿所述第一传输路径经由所述第三出端口向所述第三网络设备的下一跳网络设备发送数据流量,所述第三误码率指示所述第三出端口发送数据流量的误码率,所述第三累计误码率是所述第一传输路径上所有用于发送数据流量的出端口的误码率的加权和。需要说明的是,第三出端口可以是前述的第一出端口,也可以是第一传输路径上除第一出端口之外其他任意一个出端口。可以理解的是,第三累计误码率的确定方式可以参见前述第一累计误码率的相关介绍,第三链路状态信息相关的实施方式也可以参见前述第三链路状态信息的相关介绍,在此不再赘述。
此外,在一些实施方式中,在业务流从第一传输路径切换到第二传输路径之后,若在第一传输路径的累计误码率一直在第一误码率阈值以上而第二传输路径的累计误码率也超过了第一误码率阈值,则业务流可以继续在第二传输路径上传输而不必切回到第一传输路径。
在本实施例中,通过网络设备上报的方式,控制器可以收集到第一传输路径上所有出端口发送数据流量的误码率并进行累计,从而控制器就可以在累计得到的误码率过大时将第一传输路径上的业务流切换到第二传输路径上。因此,控制器可以将在累计误码率过大的传输路径上进行传输的业务流切换到累计误码率较低的其他传输路径上进行传输,从而能够避免使用累计误码率严重的多跳路径来转发业务流,提高了业务流传输的稳定性。
图6为本申请实施例中一种基于链路误码的处理方法600的流程示意图。该方法600可以包括:
601、第一网络设备检测第一出端口发送数据流量的第一误码率,其中,所述第一网络设备用于沿第一传输路径经由所述第一出端口向所述第一网络设备的下一跳网络设备发送数据流量;
602、所述第一网络设备向控制器发送第一链路状态信息,所述第一链路状态信息包括第一出端口信息和所述第一误码率,所述第一出端口信息用于指示所述第一出端口;
603、所述第一链路状态信息用于确定所述第一传输路径的第一累计误码率,所述第一累计误码率是所述第一传输路径上所有用于发送数据流量的出端口的误码率的加权和,所述第一累计误码率用于确定是否将业务流从所述第一传输路径切换到第二传输路径,所述第一传输路径的首节点网络设备和所述第二传输路径的首节点网络设备为同一网络设 备,所述第一传输路径的尾节点网络设备和所述第二传输路径的尾节点网络设备为同一网络设备。
在一些可能的实现方式中,所述第一链路状态信息通过BGP Update报文向所述控制器发送。
在一些可能的实现方式中,所述第一链路状态信息具体携带在所述BGP Update报文中的多协议可达网络层可达性信息MP REACH NLRI字段或多协议不可达网络层可达性信息MP UNREACH NLRI字段。
在一些可能的实现方式中,在所述BGP Update报文中所述第一链路状态信息携带在类型长度数值TLV信息中。
在一些可能的实现方式中,所述第一链路状态信息是由所述第一网络设备直接向所述控制器发送的。
在一些可能的实现方式中,所述第一链路状态信息是先由所述第一网络设备向第三网络设备发送再由所述第三网络设备直接向所述控制器发送的。
作为一种示例,方法600中所提及的第一网络设备可以是方法200中所提及的第一网络设备,方法600中所提及的第一链路状态信息可以是方法200中所提及的第一链路状态信息。作为另一种示例,方法600中所提及的第一网络设备可以是方法200中所提及的第二网络设备,方法600中所提及的第一链路状态信息可以是方法200中所提及的第二链路状态信息。作为又一种示例,方法600中所提及的第一网络设备可以是方法200中所提及的第二网络设备,方法600中所提及的第一链路状态信息可以是方法200中所提及的第二链路状态信息。因此,方法600中第一链路状态信息的各种实施方式,可以参见方法200的相关介绍,在此不再赘述。
在一些可能的实现方式中,所述方法还包括:
所述第一网络设备接收第二网络设备发送的第二链路状态信息,其中,所述第二链路状态信息包括第二出端口信息和第二误码率,所述第二出端口信息指示所述第二网络设备的第二出端口,所述第二网络设备用于沿第三传输路径经由所述第二出端口向所述第二网络设备的下一跳网络设备发送数据流量,所述第二误码率指示所述第二出端口发送数据流量的误码率;
所述第一网络设备向所述控制器发送第二链路状态信息;
所述第二链路状态信息用于确定所述第三传输路径的第二累计误码率,所述第二累计误码率是所述第三传输路径上所有用于发送数据流量的出端口的误码率的加权和,所述第二累计误码率用于确定是否将业务流从所述第三传输路径切换到第四传输路径,所述第三传输路径的首节点网络设备和所述第四传输路径的首节点网络设备为同一网络设备,所述第三传输路径的尾节点网络设备和所述第四传输路径的尾节点网络设备为同一网络设备。
在该实现方式中,方法600中所提及的第一网络设备可以是方法200中所提及的第四网络设备,方法600中所提及的第二链路状态信息可以是方法200中所提及的第一链路状态信息。因此,方法600中第二链路状态信息的各种实施方式,可以参见方法200的相关 介绍,在此不再赘述。
在本实施例中,网络设备可以将出端口的误码率上报给控制器,以使得控制器可以收集到第一传输路径上所有出端口发送数据流量的误码率并进行累计,从而控制器就可以在累计得到的误码率过大时将第一传输路径上的业务流切换到第二传输路径上。因此,在累计误码率过大的传输路径上进行传输的业务流可以被切换到累计误码率较低的其他传输路径上进行传输,从而避免了使用累计误码率严重的多跳路径来转发业务流,提高了业务流传输的稳定性。
下面通过一个具体场景示例,介绍本申请实施例在具体场景中的应用示例。该具体场景示例可以采用如图1所示的网络结构,其中,第一传输路径和第二传输路径分别是从CSG103到RSG 108的两条传输路径,第一传输路径经过CSG 103、CSG 104、ASG 106和RSG108,第二传输路径经过CSG 103、CSG 105、ASG 107、RSG 109和RSG 108。在该具体场景示例下,如图7所示,基于链路误码的处理方法700例如可以包括:
701、CSG 103向ASG 106发送第一链路状态信息。
其中,第一链路状态信息包括用于指示出端口111的出端口信息以及误码率a1,其中,a1是CSG 103检测到的端口111用于发送数据流量的误码率。链路状态信息具体可以携带在IGP协议的TLV信息中由CSG 103向ASG 106发送。
可以理解的是,本实施例是以CSG 103上报端口111的误码率为例进行说明,实际上网络110中任意一个网络设备可以上报该网络设备上任意一个出端口的误码率。
702、ASG 106向NCE 120发送第一链路状态信息。
其中,第一链路状态信息可以携带在BGP Update报文的MP REACH NLRI或MP UNREACH NLRI字段中由ASG 106向NCE 120发送。
703、NCE 120根据第一链路状态信息更新出端口111的误码率。
其中,NCE 120可以根据a1与第二误码率阈值N的大小关系来对出端口111的误码率进行更新。若a1小于N,NCE 120可以将出端口111的误码率更新为零。若a1大于N,NCE 120可以将出端口111的误码率更新为a1。
在出端口111的误码率更新之后,若出端口111的误码率大于第一误码率阈值M则进入步骤705,若出端口111的误码率小于第一误码率阈值M则进入步骤704。其中,M大于N。
704、NCE 120根据出端口111的误码率更新第一传输路径的累计误码率。
在出端口111的误码率更新前,第一传输路径的累计误码率为q0=a0+b0+c0。其中,a0为在第一链路状态信息上报之前CSG 103上报的出端口111的误码率,或者,在第一链路状态信息上报之前CSG 103未上报过端口111的误码率则a0为0。b0为在第一链路状态信息上报之前CSG 104上报的出端口113的误码率,或者,在第一链路状态信息上报之前CSG 104未上报过端口113的误码率则b0为0。c0为在第一链路状态信息上报之前CSG 104上报的出端口116的误码率,或者,在第一链路状态信息上报之前ASG 106未上报过端口116的误码率则c0为0。若出端口111的误码率被更新为a1,则第一传输路径的累计误码率被更新为q1=a1+b0+c0。若出端口111的误码率被更新为零,则第一传输路径的累计误码率被更新为q2=0+b0+c0。
在第一传输路径的累计误码率更新之后,若第一传输路径的累计误码率大于M则进入步骤705,若第一传输路径的累计误码率小于M则可以不进行后续的路径切换操作。
705、NCE 120将业务流从第一传输路径切换到第二传输路径。
具体实现时,NCE 120可以确定在第一传输路径上传输的业务流,生成用于指示在第二传输路径上传输该业务流的标签栈并通过ASG 104向CSG 103发送。该标签栈包括用于指示CSG 103、CSG 105、ASG 107、RSG 109和RSG 108的标签。CSG 103在接收到标签栈之后,可以在该业务流的报文中封装该标签栈,则CSG 103、CSG 105、ASG 107、RSG 109和RSG 108分别可以根据该标签栈将该业务流的报文发送给其在第二传输路径上的下一跳网络设备,从而使得该业务流的报文在第二传输路径上进行传输。
在本实施例中,网络110中的任意一个网络设备可以向NCE 120上报该网络设备上任意一个出端口的误码率,以使得NCE 120可以收集到出端口111、出端口113和出端口116的误码率并累计得到第一传输路径的累计误码,从而NCE 120就可以在第一传输路径的累计误码率过大时将第一传输路径上的业务流切换到第二传输路径上。因此,在累计误码率过大的传输路径上进行传输的业务流可以被切换到累计误码率较低的其他传输路径上进行传输,从而避免了使用累计误码率严重的多跳路径来转发业务流,提高了业务流传输的稳定性。
图8为本申请实施例中一种基于链路误码的处理装置的结构示意图,该装置为控制器800,具体可以包括接收单元801和处理单元802。接收单元801,用于接收第一网络设备发送的第一链路状态信息,其中,所述第一链路状态信息包括第一出端口信息和第一误码率,所述第一出端口信息指示所述第一网络设备的第一出端口,所述第一网络设备用于沿第一传输路径经由所述第一出端口向所述第一网络设备的下一跳网络设备发送数据流量,所述第一误码率指示所述第一出端口发送数据流量的误码率。处理单元802,用于根据所述第一链路状态信息确定所述第一传输路径的第一累计误码率,确定所述第一累计误码率是否大于第一误码率阈值,以及,当确定所述第一累计误码率大于第一误码率阈值,将业务流从所述第一传输路径切换到第二传输路径;其中,所述第一累计误码率是所述第一传输路径上所有用于发送数据流量的出端口的误码率的加权和,所述第一传输路径的首节点网络设备和所述第二传输路径的首节点网络设备为同一网络设备,所述第一传输路径的尾节点网络设备和所述第二传输路径的尾节点网络设备为同一网络设备。
在一些实施方式中,所述处理单元802,还用于当所述第一误码率小于所述第二误码率阈值,将所述第一误码率的值清零;其中,所述第一误码率阈值大于所述第二误码率阈值。
在一些实施方式中,所述接收单元801,还用于接收第二网络设备发送的第二链路状 态信息,其中,所述第二链路状态信息包括第二出端口信息和第二误码率,所述第二出端口信息指示所述第二网络设备的第二出端口,所述第二网络设备用于沿所述第二传输路径经由所述第二出端口向所述第二网络设备的下一跳网络设备发送数据流量,所述第二误码率指示所述第二出端口发送数据流量的误码率。所述处理单元802,还用于根据所述第二链路状态信息确定所述第二传输路径的第二累计误码率,确定所述第二累计误码率是否小于所述第一误码率阈值,以及,当确定所述第一累计误码率大于所述第一误码率阈值且所述第二累计误码率小于所述第一误码率阈值,将业务流从所述第一传输路径切换到所述第二传输路径。其中,所述第二累计误码率是所述第二传输路径上所有用于发送数据流量的出端口的误码率的加权和。
在一些实施方式中,所述处理单元802,还用于在将业务流从所述第一传输路径切换到第二传输路径之前,获取除所述第一传输路径之外所述第一传输路径的首节点网络设备与所述第一传输路径的尾节点网络设备之间的其他传输路径,以及,根据所述其他传输路径的每条传输路径的累计误码率,从所述其他传输路径中确定出所述第二传输路径。
在一些实施方式中,所述接收单元801,还用于在将业务流从所述第一传输路径切换到第二传输路径之后,接收第三网络设备发送的第三链路状态信息,其中,所述第三链路状态信息包括第三出端口信息和第三误码率,所述第三出端口信息指示所述第三网络设备的第三出端口,所述第三网络设备用于沿所述第一传输路径经由所述第三出端口向所述第三网络设备的下一跳网络设备发送数据流量,所述第三误码率指示所述第三出端口发送数据流量的误码率。所述处理单元802,还用于根据所述第三链路状态信息确定所述第一传输路径的第三累计误码率,确定所述第三累计误码率是否小于所述第一误码率阈值,以及,当确定所述第一累计误码率小于第一误码率阈值,将业务流从所述第二传输路径切回到所述第一传输路径。其中,所述第三累计误码率是所述第一传输路径上所有用于发送数据流量的出端口的误码率的加权和。
在一些实施方式中,所述接收单元801,还用于接收边界路由协议BGP更新Update报文,所述BGP Update报文中携带有所述第一网络设备发送的所述第一链路状态信息;所述处理单元802,还用于从所述BGP Update报文中获取所述第一链路状态信息。
在一些实施方式中,所述第一链路状态信息具体携带在所述BGP Update报文中的多协议可达网络层可达性信息MP REACH NLRI字段或多协议不可达网络层可达性信息MP UNREACH NLRI字段。
在一些实施方式中,在所述BGP Update报文中所述第一链路状态信息携带在类型长度数值TLV信息中。
在一些实施方式中,所述第一链路状态信息是由所述第一网络设备直接向所述控制器发送的,或者,所述第一链路状态信息是先由所述第一网络设备向第四网络设备发送再由第四网络设备直接向所述控制器发送的。
在一些实施方式中,所述第一误码率阈值具体为与所述业务流的业务类型对应设置的误码率阈值。
可以理解的是,控制器800即是方法200中提及的控制器,因此,控制器800的各种 具体实施例方式,可以参见方法200对控制器的介绍,本实施例不再赘述。
图9为本申请实施例中一种基于链路误码的处理装置的结构示意图,该装置为第一网络设备900,具体可以包括处理单元901和接收单元902。处理单元901,用于检测第一出端口发送数据流量的第一误码率,其中,所述第一网络设备用于沿第一传输路径经由所述第一出端口向所述第一网络设备的下一跳网络设备发送数据流量。发送单元902,用于向控制器发送第一链路状态信息,所述第一链路状态信息包括第一出端口信息和所述第一误码率,所述第一出端口信息用于指示所述第一出端口。所述第一链路状态信息用于确定所述第一传输路径的第一累计误码率,所述第一累计误码率是所述第一传输路径上所有用于发送数据流量的出端口的误码率的加权和,所述第一累计误码率用于确定是否将业务流从所述第一传输路径切换到第二传输路径,所述第一传输路径的首节点网络设备和所述第二传输路径的首节点网络设备为同一网络设备,所述第一传输路径的尾节点网络设备和所述第二传输路径的尾节点网络设备为同一网络设备。
在一些实施方式中,所述第一链路状态信息通过BGP Update报文向所述控制器发送。
在一些实施方式中,所述第一链路状态信息具体携带在所述BGP Update报文中的多协议可达网络层可达性信息MP REACH NLRI字段或多协议不可达网络层可达性信息MP UNREACH NLRI字段。
在一些实施方式中,在所述BGP Update报文中所述第一链路状态信息携带在类型长度数值TLV信息中。
在一些实施方式中,所述第一链路状态信息是由所述第一网络设备直接向所述控制器发送的。
在一些实施方式中,第一网络设备900还包括接收单元903。接收单元903,用于接收第二网络设备发送的第二链路状态信息,其中,所述第二链路状态信息包括第二出端口信息和第二误码率,所述第二出端口信息指示所述第二网络设备的第二出端口,所述第二网络设备用于沿第三传输路径经由所述第二出端口向所述第二网络设备的下一跳网络设备发送数据流量,所述第二误码率指示所述第二出端口发送数据流量的误码率。所述发送单元,还用于向所述控制器发送第二链路状态信息。所述第二链路状态信息用于确定所述第三传输路径的第二累计误码率,所述第二累计误码率是所述第三传输路径上所有用于发送数据流量的出端口的误码率的加权和,所述第二累计误码率用于确定是否将业务流从所述第三传输路径切换到第四传输路径,所述第三传输路径的首节点网络设备和所述第四传输路径的首节点网络设备为同一网络设备,所述第三传输路径的尾节点网络设备和所述第四传输路径的尾节点网络设备为同一网络设备。
在一些实施方式中,所述第一链路状态信息是先由所述第一网络设备向第三网络设备发送再由所述第三网络设备直接向所述控制器发送的。
可以理解的是,第一网络设备900即是方法200中提及的第一网络设备,因此,第一网络设备900的各种具体实施例方式,可以参见方法200对第一网络设备的介绍,本实施例不再赘述。
此外,本申请实施例还提供了一种控制器,该控制器包括处理器和存储器,所述存储器存储有指令,当处理器执行该指令时,使得该网络设备执行前述方法200。
此外,本申请实施例还提供了一种网络设备,该网络设备包括处理器和存储器,所述存储器存储有指令,当处理器执行该指令时,使得该网络设备执行前述方法600。
此外,本申请实施例还提供了一种计算机程序产品,当其在计算机上运行时,使得计算机执行前述方法200或前述方法600。
此外,本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机或处理器上运行时,使得该计算机或处理器执行前述方法200或前述方法600。
本申请实施例中提到的“第一网络设备”、“第一链路状态信息”、“第一出端口”、“第一误码率”、“第一传输路径”、“第一累计误码率”等名称中的“第一”只是用来做名字标识,并不代表顺序上的第一。该规则同样适用于“第二”等。
通过以上的实施方式的描述可知,本领域的技术人员可以清楚地了解到上述实施例方法中的全部或部分步骤可借助软件加通用硬件平台的方式来实现。基于这样的理解,本申请的技术方案可以以软件产品的形式体现出来,该计算机软件产品可以存储在存储介质中,如只读存储器(英文:read-only memory,ROM)/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者诸如路由器等网络通信设备)执行本申请各个实施例或者实施例的某些部分所述的方法。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于装置实施例而言,由于其基本相似于方法实施例,所以描述得比较简单,相关之处参见方法实施例的部分说明即可。以上所描述的设备及系统实施例仅仅是示意性的,其中作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
以上所述仅是本申请示例性的实施方式,并非用于限定本申请的保护范围。

Claims (34)

  1. 一种基于链路误码的处理方法,其特征在于,包括:
    控制器接收第一网络设备发送的第一链路状态信息,其中,所述第一链路状态信息包括第一出端口信息和第一误码率,所述第一出端口信息指示所述第一网络设备的第一出端口,所述第一网络设备用于沿第一传输路径经由所述第一出端口向所述第一网络设备的下一跳网络设备发送数据流量,所述第一误码率指示所述第一出端口发送数据流量的误码率;
    所述控制器根据所述第一链路状态信息确定所述第一传输路径的第一累计误码率,所述第一累计误码率是所述第一传输路径上所有用于发送数据流量的出端口的误码率的加权和;
    所述控制器确定所述第一累计误码率是否大于第一误码率阈值;
    当所述控制器确定所述第一累计误码率大于第一误码率阈值,所述控制器将业务流从所述第一传输路径切换到第二传输路径,其中,所述第一传输路径的首节点网络设备和所述第二传输路径的首节点网络设备为同一网络设备,所述第一传输路径的尾节点网络设备和所述第二传输路径的尾节点网络设备为同一网络设备。
  2. 根据权利要求1所述的方法,其特征在于,所述控制器根据所述第一链路状态信息确定所述第一传输路径的第一累计误码率,包括:
    当所述第一误码率小于所述第二误码率阈值,所述控制器将所述第一误码率的值清零;
    其中,所述第一误码率阈值大于所述第二误码率阈值。
  3. 根据权利要求1或2所述的方法,其特征在于,还包括:控制器接收第二网络设备发送的第二链路状态信息,其中,所述第二链路状态信息包括第二出端口信息和第二误码率,所述第二出端口信息指示所述第二网络设备的第二出端口,所述第二网络设备用于沿所述第二传输路径经由所述第二出端口向所述第二网络设备的下一跳网络设备发送数据流量,所述第二误码率指示所述第二出端口发送数据流量的误码率;
    所述控制器根据所述第二链路状态信息确定所述第二传输路径的第二累计误码率,所述第二累计误码率是所述第二传输路径上所有用于发送数据流量的出端口的误码率的加权和;所述控制器确定所述第二累计误码率是否小于所述第一误码率阈值;
    相应的,所述当所述控制器确定所述第一累计误码率大于第一误码率阈值,所述控制器将业务流从所述第一传输路径切换到第二传输路径,具体为:当所述控制器确定所述第一累计误码率大于所述第一误码率阈值且所述第二累计误码率小于所述第一误码率阈值,所述控制器将业务流从所述第一传输路径切换到所述第二传输路径。
  4. 根据权利要求1至3任意一项所述的方法,其特征在于,在所述控制器将业务流从所述第一传输路径切换到第二传输路径之前,还包括:
    所述控制器获取除所述第一传输路径之外所述第一传输路径的首节点网络设备与所述第一传输路径的尾节点网络设备之间的其他传输路径;
    所述控制器根据所述其他传输路径的每条传输路径的累计误码率,从所述其他传输路 径中确定出所述第二传输路径。
  5. 根据权利要求1至4任意一项所述的方法,其特征在于,在所述控制器将业务流从所述第一传输路径切换到第二传输路径之后,还包括:
    所述控制器接收第三网络设备发送的第三链路状态信息,其中,所述第三链路状态信息包括第三出端口信息和第三误码率,所述第三出端口信息指示所述第三网络设备的第三出端口,所述第三网络设备用于沿所述第一传输路径经由所述第三出端口向所述第三网络设备的下一跳网络设备发送数据流量,所述第三误码率指示所述第三出端口发送数据流量的误码率;
    所述控制器根据所述第三链路状态信息确定所述第一传输路径的第三累计误码率,所述第三累计误码率是所述第一传输路径上所有用于发送数据流量的出端口的误码率的加权和;
    所述控制器确定所述第三累计误码率是否小于所述第一误码率阈值;
    当所述控制器确定所述第一累计误码率小于第一误码率阈值,所述控制器将业务流从所述第二传输路径切回到所述第一传输路径。
  6. 根据权利要求1至5任意一项所述的方法,其特征在于,所述控制器接收第一网络设备发送的第一链路状态信息,包括:
    所述控制器接收边界路由协议BGP更新Update报文,所述BGP Update报文中携带有所述第一网络设备发送的所述第一链路状态信息;
    所述控制器从所述BGP Update报文中获取所述第一链路状态信息。
  7. 根据权利要求6所述的方法,其特征在于,所述第一链路状态信息具体携带在所述BGP Update报文中的多协议可达网络层可达性信息MP REACH NLRI字段或多协议不可达网络层可达性信息MP UNREACH NLRI字段。
  8. 根据权利要求6或7所述的方法,其特征在于,在所述BGP Update报文中所述第一链路状态信息携带在类型长度数值TLV信息中。
  9. 根据权利要求1至8任意一项所述的方法,其特征在于,所述第一链路状态信息是由所述第一网络设备直接向所述控制器发送的,或者,所述第一链路状态信息是先由所述第一网络设备向第四网络设备发送再由第四网络设备直接向所述控制器发送的。
  10. 根据权利要求1至9任意一项所述的方法,其特征在于,所述第一误码率阈值具体为与所述业务流的业务类型对应设置的误码率阈值。
  11. 一种基于链路误码的处理方法,其特征在于,包括:
    第一网络设备检测第一出端口发送数据流量的第一误码率,其中,所述第一网络设备用于沿第一传输路径经由所述第一出端口向所述第一网络设备的下一跳网络设备发送数据流量;
    所述第一网络设备向控制器发送第一链路状态信息,所述第一链路状态信息包括第一出端口信息和所述第一误码率,所述第一出端口信息用于指示所述第一出端口;
    所述第一链路状态信息用于确定所述第一传输路径的第一累计误码率,所述第一累计误码率是所述第一传输路径上所有用于发送数据流量的出端口的误码率的加权和,所述第一累计误码率用于确定是否将业务流从所述第一传输路径切换到第二传输路径,所述第一传输路径的首节点网络设备和所述第二传输路径的首节点网络设备为同一网络设备,所述第一传输路径的尾节点网络设备和所述第二传输路径的尾节点网络设备为同一网络设备。
  12. 根据权利要求11所述的方法,其特征在于,所述第一链路状态信息通过BGP Update报文向所述控制器发送。
  13. 根据权利要求12所述的方法,其特征在于,所述第一链路状态信息具体携带在所述BGP Update报文中的多协议可达网络层可达性信息MP REACH NLRI字段或多协议不可达网络层可达性信息MP UNREACH NLRI字段。
  14. 根据权利要求12或13所述的方法,其特征在于,在所述BGP Update报文中所述第一链路状态信息携带在类型长度数值TLV信息中。
  15. 根据权利要求11至14任意一项所述的方法,其特征在于,所述第一链路状态信息是由所述第一网络设备直接向所述控制器发送的。
  16. 根据权利要求15所述的方法,其特征在于,还包括:
    所述第一网络设备接收第二网络设备发送的第二链路状态信息,其中,所述第二链路状态信息包括第二出端口信息和第二误码率,所述第二出端口信息指示所述第二网络设备的第二出端口,所述第二网络设备用于沿第三传输路径经由所述第二出端口向所述第二网络设备的下一跳网络设备发送数据流量,所述第二误码率指示所述第二出端口发送数据流量的误码率;
    所述第一网络设备向所述控制器发送第二链路状态信息;
    所述第二链路状态信息用于确定所述第三传输路径的第二累计误码率,所述第二累计误码率是所述第三传输路径上所有用于发送数据流量的出端口的误码率的加权和,所述第二累计误码率用于确定是否将业务流从所述第三传输路径切换到第四传输路径,所述第三传输路径的首节点网络设备和所述第四传输路径的首节点网络设备为同一网络设备,所述第三传输路径的尾节点网络设备和所述第四传输路径的尾节点网络设备为同一网络设备。
  17. 根据权利要求11至14任意一项所述的方法,其特征在于,所述第一链路状态信息是先由所述第一网络设备向第三网络设备发送再由所述第三网络设备直接向所述控制器发送的。
  18. 一种基于链路误码的处理装置,其特征在于,所述装置为控制器,包括:
    接收单元,用于接收第一网络设备发送的第一链路状态信息,其中,所述第一链路状态信息包括第一出端口信息和第一误码率,所述第一出端口信息指示所述第一网络设备的第一出端口,所述第一网络设备用于沿第一传输路径经由所述第一出端口向所述第一网络设备的下一跳网络设备发送数据流量,所述第一误码率指示所述第一出端口发送数据流量的误码率;
    处理单元,用于根据所述第一链路状态信息确定所述第一传输路径的第一累计误码率, 确定所述第一累计误码率是否大于第一误码率阈值,以及,当确定所述第一累计误码率大于第一误码率阈值,将业务流从所述第一传输路径切换到第二传输路径;
    其中,所述第一累计误码率是所述第一传输路径上所有用于发送数据流量的出端口的误码率的加权和,所述第一传输路径的首节点网络设备和所述第二传输路径的首节点网络设备为同一网络设备,所述第一传输路径的尾节点网络设备和所述第二传输路径的尾节点网络设备为同一网络设备。
  19. 根据权利要求18所述的装置,其特征在于,所述处理单元,还用于当所述第一误码率小于所述第二误码率阈值,将所述第一误码率的值清零;
    其中,所述第一误码率阈值大于所述第二误码率阈值。
  20. 根据权利要求18或19所述的装置,其特征在于,
    所述接收单元,还用于接收第二网络设备发送的第二链路状态信息,其中,所述第二链路状态信息包括第二出端口信息和第二误码率,所述第二出端口信息指示所述第二网络设备的第二出端口,所述第二网络设备用于沿所述第二传输路径经由所述第二出端口向所述第二网络设备的下一跳网络设备发送数据流量,所述第二误码率指示所述第二出端口发送数据流量的误码率;
    所述处理单元,还用于根据所述第二链路状态信息确定所述第二传输路径的第二累计误码率,确定所述第二累计误码率是否小于所述第一误码率阈值,以及,当确定所述第一累计误码率大于所述第一误码率阈值且所述第二累计误码率小于所述第一误码率阈值,将业务流从所述第一传输路径切换到所述第二传输路径;
    其中,所述第二累计误码率是所述第二传输路径上所有用于发送数据流量的出端口的误码率的加权和。
  21. 根据权利要求18至20任意一项所述的装置,其特征在于,
    所述处理单元,还用于在将业务流从所述第一传输路径切换到第二传输路径之前,获取除所述第一传输路径之外所述第一传输路径的首节点网络设备与所述第一传输路径的尾节点网络设备之间的其他传输路径,以及,根据所述其他传输路径的每条传输路径的累计误码率,从所述其他传输路径中确定出所述第二传输路径。
  22. 根据权利要求18至21任意一项所述的装置,其特征在于,
    所述接收单元,还用于在将业务流从所述第一传输路径切换到第二传输路径之后,接收第三网络设备发送的第三链路状态信息,其中,所述第三链路状态信息包括第三出端口信息和第三误码率,所述第三出端口信息指示所述第三网络设备的第三出端口,所述第三网络设备用于沿所述第一传输路径经由所述第三出端口向所述第三网络设备的下一跳网络设备发送数据流量,所述第三误码率指示所述第三出端口发送数据流量的误码率;
    所述处理单元,还用于根据所述第三链路状态信息确定所述第一传输路径的第三累计误码率,确定所述第三累计误码率是否小于所述第一误码率阈值,以及,当确定所述第一累计误码率小于第一误码率阈值,将业务流从所述第二传输路径切回到所述第一传输路径;
    其中,所述第三累计误码率是所述第一传输路径上所有用于发送数据流量的出端口的误码率的加权和。
  23. 根据权利要求18至22任意一项所述的装置,其特征在于,
    所述接收单元,还用于接收边界路由协议BGP更新Update报文,所述BGP Update报文中携带有所述第一网络设备发送的所述第一链路状态信息;
    所述处理单元,还用于从所述BGP Update报文中获取所述第一链路状态信息。
  24. 根据权利要求23所述的装置,其特征在于,所述第一链路状态信息具体携带在所述BGP Update报文中的多协议可达网络层可达性信息MP REACH NLRI字段或多协议不可达网络层可达性信息MP UNREACH NLRI字段。
  25. 根据权利要求23或24所述的控制器,其特征在于,在所述BGP Update报文中所述第一链路状态信息携带在类型长度数值TLV信息中。
  26. 根据权利要求18至25任意一项所述的装置,其特征在于,所述第一链路状态信息是由所述第一网络设备直接向所述控制器发送的,或者,所述第一链路状态信息是先由所述第一网络设备向第四网络设备发送再由第四网络设备直接向所述控制器发送的。
  27. 根据权利要求18至26任意一项所述的装置,其特征在于,所述第一误码率阈值具体为与所述业务流的业务类型对应设置的误码率阈值。
  28. 一种基于链路误码的处理装置,其特征在于,所述处理装置为第一网络设备,包括:
    处理单元,用于检测第一出端口发送数据流量的第一误码率,其中,所述第一网络设备用于沿第一传输路径经由所述第一出端口向所述第一网络设备的下一跳网络设备发送数据流量;
    发送单元,用于向控制器发送第一链路状态信息,所述第一链路状态信息包括第一出端口信息和所述第一误码率,所述第一出端口信息用于指示所述第一出端口;
    所述第一链路状态信息用于确定所述第一传输路径的第一累计误码率,所述第一累计误码率是所述第一传输路径上所有用于发送数据流量的出端口的误码率的加权和,所述第一累计误码率用于确定是否将业务流从所述第一传输路径切换到第二传输路径,所述第一传输路径的首节点网络设备和所述第二传输路径的首节点网络设备为同一网络设备,所述第一传输路径的尾节点网络设备和所述第二传输路径的尾节点网络设备为同一网络设备。
  29. 根据权利要求28所述的装置,其特征在于,所述第一链路状态信息通过BGP Update报文向所述控制器发送。
  30. 根据权利要求29所述的装置,其特征在于,所述第一链路状态信息具体携带在所述BGP Update报文中的多协议可达网络层可达性信息MP REACH NLRI字段或多协议不可达网络层可达性信息MP UNREACH NLRI字段。
  31. 根据权利要求28或29所述的装置,其特征在于,在所述BGP Update报文中所述第一链路状态信息携带在类型长度数值TLV信息中。
  32. 根据权利要求28至31任意一项所述的装置,其特征在于,所述第一链路状态信息是由所述第一网络设备直接向所述控制器发送的。
  33. 根据权利要求32所述的装置,其特征在于,还包括:
    接收单元,用于接收第二网络设备发送的第二链路状态信息,其中,所述第二链路状态信息包括第二出端口信息和第二误码率,所述第二出端口信息指示所述第二网络设备的第二出端口,所述第二网络设备用于沿第三传输路径经由所述第二出端口向所述第二网络设备的下一跳网络设备发送数据流量,所述第二误码率指示所述第二出端口发送数据流量的误码率;
    所述发送单元,还用于向所述控制器发送第二链路状态信息;
    所述第二链路状态信息用于确定所述第三传输路径的第二累计误码率,所述第二累计误码率是所述第三传输路径上所有用于发送数据流量的出端口的误码率的加权和,所述第二累计误码率用于确定是否将业务流从所述第三传输路径切换到第四传输路径,所述第三传输路径的首节点网络设备和所述第四传输路径的首节点网络设备为同一网络设备,所述第三传输路径的尾节点网络设备和所述第四传输路径的尾节点网络设备为同一网络设备。
  34. 根据权利要求28至31任意一项所述的装置,其特征在于,所述第一链路状态信息是先由所述第一网络设备向第三网络设备发送再由所述第三网络设备直接向所述控制器发送的。
PCT/CN2020/093625 2019-06-03 2020-05-30 一种基于链路误码的处理方法和装置 WO2020244471A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20818586.8A EP3955531A4 (en) 2019-06-03 2020-05-30 PROCESSING METHOD AND DEVICE BASED ON A CONNECTION ERROR CODE
KR1020217039922A KR20220006095A (ko) 2019-06-03 2020-05-30 링크 비트 에러 기반 처리 방법 및 디바이스
JP2021571726A JP7292433B2 (ja) 2019-06-03 2020-05-30 リンクビットエラーベースの処理方法および装置
US17/541,052 US11863303B2 (en) 2019-06-03 2021-12-02 Link bit error-based processing method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910476860.5 2019-06-03
CN201910476860.5A CN112039771A (zh) 2019-06-03 2019-06-03 一种基于链路误码的处理方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/541,052 Continuation US11863303B2 (en) 2019-06-03 2021-12-02 Link bit error-based processing method and apparatus

Publications (1)

Publication Number Publication Date
WO2020244471A1 true WO2020244471A1 (zh) 2020-12-10

Family

ID=73575965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/093625 WO2020244471A1 (zh) 2019-06-03 2020-05-30 一种基于链路误码的处理方法和装置

Country Status (6)

Country Link
US (1) US11863303B2 (zh)
EP (1) EP3955531A4 (zh)
JP (1) JP7292433B2 (zh)
KR (1) KR20220006095A (zh)
CN (1) CN112039771A (zh)
WO (1) WO2020244471A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023119576A1 (ja) * 2021-12-23 2023-06-29 楽天モバイル株式会社 通信経路制御システム及び通信経路制御方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103023776A (zh) * 2012-11-16 2013-04-03 华为技术有限公司 路径选择方法、装置及存储区域网络
CN103874159A (zh) * 2014-03-26 2014-06-18 江苏博悦物联网技术有限公司 无线传感器网络
US20150023202A1 (en) * 2002-05-14 2015-01-22 Genghiscomm Holdings, LLC Cooperative Wireless Networks
CN106856453A (zh) * 2015-12-09 2017-06-16 中国电信股份有限公司 路由切换方法和系统以及路由设备
CN109150761A (zh) * 2018-10-24 2019-01-04 新华三技术有限公司 一种隧道切换的方法及装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4037640B2 (ja) 2001-11-15 2008-01-23 日本電気株式会社 無線端末
US7107498B1 (en) * 2002-04-16 2006-09-12 Methnetworks, Inc. System and method for identifying and maintaining reliable infrastructure links using bit error rate data in an ad-hoc communication network
CN100583726C (zh) * 2004-05-29 2010-01-20 华为技术有限公司 传输技术选择方法
FI20045318A0 (fi) * 2004-09-01 2004-09-01 Nokia Corp Kommunikointijärjestelmä, vastaanotin, ja menetelmä arvioida vastaanotetun signaalin laatua
CN101146328B (zh) * 2006-09-12 2011-04-20 华为技术有限公司 媒体无关切换中链路参数阈值的配置方法和装置
CN102035718B (zh) * 2009-09-27 2013-10-30 中国移动通信集团公司 一种分组传送网保护倒换的方法、装置和系统
JP2013098706A (ja) 2011-10-31 2013-05-20 Nec Corp ネットワーク管理システムにおけるネットワーク切替制御方法および装置
CN102457914B (zh) * 2012-01-11 2017-11-10 中兴通讯股份有限公司 上行数据及上行调度信息的传输方法、装置
US9225624B2 (en) * 2012-12-20 2015-12-29 Dell Products L.P. Systems and methods for topology discovery and application in a border gateway protocol based data center
CN104104601A (zh) * 2013-04-01 2014-10-15 华为技术有限公司 数据传输方法、设备及系统
WO2015003299A1 (zh) * 2013-07-08 2015-01-15 华为技术有限公司 一种误码率检测的方法及网络设备
CN104579770A (zh) 2014-12-30 2015-04-29 华为技术有限公司 一种管理数据传输通道的方法及装置
CN105827419B (zh) 2015-01-05 2020-03-10 华为技术有限公司 一种转发设备故障处理的方法、设备和控制器
US10277505B2 (en) * 2016-03-30 2019-04-30 Juniper Networks, Inc. Routing inter-AS LSPs with centralized controller
US10038494B1 (en) 2017-02-02 2018-07-31 Infinera Corporation Proactive multi-layer mechanisms to protect packet-optical transport networks
US10542336B2 (en) * 2017-02-02 2020-01-21 Infinera Corporation Multi-layer mechanisms to optimize optical transport network margin allocation
CN108430086A (zh) * 2017-02-13 2018-08-21 中国移动通信集团贵州有限公司 一种切换网络链路的方法和装置
CN109547279B (zh) 2017-09-22 2023-04-07 中兴通讯股份有限公司 一种信号劣化故障的处理方法和系统
US10778724B1 (en) * 2018-06-29 2020-09-15 Juniper Networks, Inc. Scalable port range management for security policies

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150023202A1 (en) * 2002-05-14 2015-01-22 Genghiscomm Holdings, LLC Cooperative Wireless Networks
CN103023776A (zh) * 2012-11-16 2013-04-03 华为技术有限公司 路径选择方法、装置及存储区域网络
CN103874159A (zh) * 2014-03-26 2014-06-18 江苏博悦物联网技术有限公司 无线传感器网络
CN106856453A (zh) * 2015-12-09 2017-06-16 中国电信股份有限公司 路由切换方法和系统以及路由设备
CN109150761A (zh) * 2018-10-24 2019-01-04 新华三技术有限公司 一种隧道切换的方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3955531A4

Also Published As

Publication number Publication date
US20220094486A1 (en) 2022-03-24
EP3955531A1 (en) 2022-02-16
US11863303B2 (en) 2024-01-02
KR20220006095A (ko) 2022-01-14
CN112039771A (zh) 2020-12-04
JP7292433B2 (ja) 2023-06-16
EP3955531A4 (en) 2022-06-01
JP2022535397A (ja) 2022-08-08

Similar Documents

Publication Publication Date Title
CN111587580B (zh) 内部网关协议洪泛最小化
US7978682B2 (en) Methods, systems, and computer-readable media for optimizing the communication of data packets in a data network
EP2260620B1 (en) Constructing repair paths around multiple non-available links in a data communications network
US7471669B1 (en) Routing of protocol data units within a communication network
US8456982B2 (en) System and method for fast network restoration
EP3958536A1 (en) Loop detection in ethernet packets
US20120039164A1 (en) System And Method Of Implementing Lightweight Not-Via IP Fast Reroutes In A Telecommunications Network
US20230231798A1 (en) Conditional routing delivery in a compromised network
WO2016106482A1 (zh) 误码信息传递方法和网络设备及通信系统
US10447589B2 (en) Transport segment OAM routing mechanisms
WO2021109997A1 (zh) 分段路由隧道的防断纤方法、装置,入口节点及存储介质
US20220103312A1 (en) Method for Advertising Bit Error and Related Devices
WO2020244471A1 (zh) 一种基于链路误码的处理方法和装置
CN113366804A (zh) 防止网络拓扑改变期间的微环路的方法和系统
CN102006240B (zh) 一种在mpls网络中转发报文的方法、装置及系统
WO2023173989A1 (zh) 转发表的生成方法及装置、存储介质、电子装置
WO2023077894A1 (zh) 标签处理方法、系统、装置和计算机存储介质
CN116208542A (zh) 路径通告方法、路径计算方法、电子设备和可读存储介质
CN117439923A (zh) 一种链路误码的处理方法和相关网络设备
CN113169934A (zh) 用于备份泛洪拓扑分离的系统和方法
Li et al. Fast Local Rerouting using Source-Based Tree Failure Recovery
Qiaoqin et al. Fast Local Rerouting using Source-Based Tree Failure Recovery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20818586

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020818586

Country of ref document: EP

Effective date: 20211111

ENP Entry into the national phase

Ref document number: 2021571726

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217039922

Country of ref document: KR

Kind code of ref document: A