WO2020244405A1 - 一种成像背板及其驱动方法、指纹识别面板 - Google Patents

一种成像背板及其驱动方法、指纹识别面板 Download PDF

Info

Publication number
WO2020244405A1
WO2020244405A1 PCT/CN2020/092106 CN2020092106W WO2020244405A1 WO 2020244405 A1 WO2020244405 A1 WO 2020244405A1 CN 2020092106 W CN2020092106 W CN 2020092106W WO 2020244405 A1 WO2020244405 A1 WO 2020244405A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging
sub
reset
signal line
column
Prior art date
Application number
PCT/CN2020/092106
Other languages
English (en)
French (fr)
Inventor
丁小梁
王海生
刘英明
王雷
曹学友
王佳斌
张平
李亚鹏
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/734,565 priority Critical patent/US11393241B2/en
Publication of WO2020244405A1 publication Critical patent/WO2020244405A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/709Circuitry for control of the power supply

Definitions

  • the present disclosure relates to, but is not limited to, the field of imaging technology, and particularly relates to an imaging backplane and a driving method thereof, and a fingerprint recognition panel.
  • Fingerprint recognition refers to identification by comparing the minutiae feature points of different fingerprints. Since each person's fingerprints are different, that is, between the ten fingers of the same person, the fingerprints are also different, so fingerprints can be used for identification.
  • Point light imaging is a way to realize fingerprint recognition.
  • Point light source imaging is mainly realized by two point light sources and photoelectric sensors.
  • the working principle is: time-sharing bright spot two point light sources, the light of the point light source is directed to the finger, and the photoelectric sensor receives the light reflected by the finger to identify the fingerprint.
  • the present disclosure provides an imaging backplane including: M rows and N columns of imaging structures, 2M rows of first signal lines, 2N columns of second signal lines, a first reset sub-circuit, and a second reset sub-circuit;
  • Each imaging structure includes: a first imaging unit and a second imaging unit; the first imaging unit of the imaging structure in the i-th row and j-th column is respectively connected to the first signal line in the 2i-1th row and the second signal line in the 2j-1th column , The second imaging unit of the imaging structure in the i-th row and j-th column is respectively connected to the first signal line in the 2i-th row and the second signal line in the 2j-th column, 1 ⁇ i ⁇ M, 1 ⁇ j ⁇ N;
  • the first reset sub-circuit is respectively connected to the first reset terminal, the low-level power terminal, and the second signal lines of all odd columns, and is set to transmit to the second signal lines of all odd columns under the control of the first reset terminal. Providing the signal of the low-level power terminal to reset the first imaging unit;
  • the second reset sub-circuit is respectively connected to the second reset terminal, the low-level power terminal and the second signal lines of all even-numbered columns, and is set to transmit to the second signal lines of all even-numbered columns under the control of the second reset terminal.
  • the signal of the low-level power terminal is provided to reset the second imaging unit.
  • the first imaging unit includes: P first sub-imaging units
  • the 2j-1th column second signal line includes: P column first sub-signal lines
  • the first sub-signal lines of the P column correspond to the P first sub-imaging units one to one;
  • Each first sub-imaging unit includes: a photoelectric sensor and a first switching element
  • the first switching element is respectively connected to the first signal line in the 2i-1th row, the first sub-signal line corresponding to the first sub-imaging unit, and the photoelectric sensor, and P ⁇ 1.
  • the second imaging unit includes: Q second sub-imaging units
  • the 2j-th column second signal line includes: Q column second sub-signal line, Q column
  • the second sub-signal lines correspond to the Q second sub-imaging units one-to-one;
  • Each second sub-imaging unit includes: a photoelectric sensor and a second switching element;
  • the second switching element is respectively connected to the first signal line in the 2i-th row, the second sub-signal line corresponding to the second sub-imaging unit, and the photoelectric sensor, and Q ⁇ 1.
  • the second signal line is multiplexed as a reading signal line, and is configured to read the electrical signal obtained by the photoelectric sensor according to the received light.
  • the first switching element is a first transistor
  • the control electrode of the first transistor is connected to the first signal line in row 2i-1, and the first electrode of the first transistor is connected to the first sub-signal line corresponding to the first sub-imaging unit where the first switching element is located Connected, the second pole of the first transistor is connected to the photo sensor.
  • the second switching element is a second transistor
  • the control electrode of the second transistor is connected to the first signal line in row 2i, and the first electrode of the second transistor is connected to the second sub-signal line corresponding to the second sub-imaging unit where the second switching element is located, so The second pole of the second transistor is connected to the photo sensor.
  • the first reset sub-circuit includes: N third transistors;
  • each third transistor is connected to the first reset terminal, the first electrode of each third transistor is connected to the low-level power terminal, and the second electrode of the jth third transistor is connected to the 2j-1th column
  • the second signal line is connected.
  • the second reset sub-circuit includes: N fourth transistors;
  • each fourth transistor is connected to the second reset terminal, the first electrode of each fourth transistor is connected to the low-level power supply terminal, and the second electrode of the jth fourth transistor is connected to the second terminal of the 2jth column. Signal wire connection.
  • the present disclosure also provides a fingerprint recognition panel, including the above-mentioned imaging backplane.
  • the present disclosure also provides a driving method of an imaging backplane, which is applied to the above imaging backplane, and the method includes:
  • the first reset sub-circuit Under the control of the first reset terminal, the first reset sub-circuit provides a low-level power terminal signal to the second signal lines of all odd columns to reset the first imaging unit;
  • the second reset sub-circuit Under the control of the second reset terminal, the second reset sub-circuit provides a low-level power terminal signal to the second signal lines of all even columns to reset the second imaging unit.
  • Fig. 1 is a schematic structural diagram of an imaging backplane provided by an embodiment of the disclosure
  • FIG. 2 is a schematic structural diagram of an imaging structure in the i-th row and j-th column provided by an exemplary embodiment
  • FIG. 3 is an equivalent circuit diagram of an imaging backplane provided by an exemplary embodiment
  • Fig. 4 is a working sequence diagram of an imaging panel provided by an exemplary embodiment
  • FIG. 5 is a flowchart of a driving method of an imaging backplane provided by an embodiment of the disclosure.
  • the source and drain of the transistor used in this disclosure are symmetrical, and the source and drain can be interchanged.
  • the gate is referred to as the control electrode.
  • the source can be referred to as the first electrode
  • the drain is referred to as the second electrode
  • the drain can be referred to as the first electrode.
  • the source is called the second pole.
  • the photoelectric sensor has the problem of image retention.
  • the second point light source is turned on after the afterimage generated after the first point light source is turned on has disappeared, so that the time interval between the two point light sources is longer and the fingerprint recognition time is too long.
  • FIG. 1 is a schematic structural diagram of an imaging backplane provided by an embodiment of the disclosure.
  • the imaging backplane provided by the embodiment of the present disclosure includes: M rows and N columns of imaging structures 10, 2M rows of first signal lines D(1) to D(2M), 2N columns of second signal lines S(1) ) To S(2N), the first reset sub-circuit and the second reset sub-circuit.
  • Each imaging structure 10 includes: a first imaging unit 11 and a second imaging unit 12.
  • the first imaging unit 11 of the imaging structure 10 in the i-th row and j-th column is respectively connected to the first signal line D(2i-1) in the 2i-1th row and the second signal line S(2j-1) in the 2j-1th column.
  • the second imaging unit 12 of the imaging structure of the i-th row and the j-th column is respectively connected to the 2i-th row first signal line D(2i) and the 2j-th column second signal line S(2j).
  • the first reset sub-circuit is respectively connected to the first reset terminal RESET1, the low-level power terminal VGL and the second signal lines of all odd columns, and is set to send to the second signal lines of all odd columns under the control of the first reset terminal RESET1.
  • the signal line provides the signal of the low-level power terminal VGL to reset the first imaging unit.
  • the second reset sub-circuit is connected to the second reset terminal RESET2, the low-level power terminal VGL, and the second signal lines of all even-numbered columns, respectively, and is set to send the second signal to all even-numbered columns under the control of the second reset terminal RESET2.
  • the line provides the signal of the low-level power terminal VGL to reset the second imaging unit.
  • 1 ⁇ i ⁇ M, 1 ⁇ j ⁇ N, and the values of M and N are determined according to fingerprint recognition accuracy.
  • the first signal lines D(1) to D(2M) in 2M rows are arranged parallel to each other, and the second signal lines S(1) to S(2N) in 2N columns are arranged parallel to each other.
  • the extension direction of the first signal line and the extension direction of the second signal line are perpendicular to each other.
  • the low-level power terminal VGL continuously provides a low-level signal, and the voltage value of the low-level signal may be 0V, or may be other values.
  • the first imaging unit and the second imaging unit in each imaging structure are connected to different first signal lines and controlled by different first signal lines.
  • the imaging backplane provided by the embodiments of the present disclosure can be applied to point light source imaging.
  • Different imaging units receive light in time sharing.
  • the first imaging unit receives the light emitted by the first point light source
  • the second reset sub-circuit resets the second imaging unit to prevent the second imaging unit from receiving the light emitted by the first point light source.
  • the light generates residual charges;
  • the second imaging unit receives the light emitted by the second point light source, and the first reset sub-circuit resets the first imaging unit to avoid the second
  • the light emitted by the point light source generates residual charge, which can eliminate the effect of residual image during fingerprint recognition.
  • the imaging backplane includes: M rows and N columns of imaging structures, 2M rows of first signal lines, 2N columns of second signal lines, first reset sub-circuits and second reset sub-circuits; each imaging structure includes: The first imaging unit and the second imaging unit; the first imaging unit of the imaging structure in the i-th row and j-th column is respectively connected to the first signal line in the 2i-1th row and the second signal line in the 2j-1th column, and the i-th row and j-th column
  • the second imaging unit of the imaging structure is respectively connected to the first signal line of the 2ith row and the second signal line of the 2jth column; the first reset sub-circuit is respectively connected to the first reset terminal, the low-level power terminal and the first signal line of all odd columns.
  • the two signal lines are connected, and are set to provide a low-level power terminal signal to the second signal lines of all odd columns under the control of the first reset terminal to reset the first imaging unit;
  • the second reset sub-circuit is connected with the second
  • the reset terminal and the low-level power terminal are connected to the second signal lines of all even-numbered columns, and are set to provide the low-level power terminal signals to the second signal lines of all even-numbered columns under the control of the second reset terminal to reset the first signal line.
  • different imaging units are arranged in each imaging structure, and different imaging units receive light in time sharing, and the first reset sub-circuit and the second reset sub-circuit are set to reset the imaging units that do not receive light globally, which can eliminate Afterimages, reduce the time interval between point light sources and reduce fingerprint recognition time.
  • Fig. 2 is a schematic structural diagram of an imaging structure in the i-th row and j-th column provided by an exemplary embodiment.
  • the first imaging unit 11 in the imaging backplane provided by an exemplary embodiment includes: P first sub-imaging units 110, and second signal lines S(2j-1) in the 2j-1th column Including: P columns of first sub signal lines S(2j-1)_1 to S(2j-1)_P.
  • the first sub-signal lines of the P column correspond to the P first sub-imaging units one-to-one, and the first sub-imaging units are connected to the corresponding first sub-signal lines.
  • each first sub-imaging unit 110 includes: a photo sensor 111 and a first switching element.
  • the first switching element is connected to the first signal line D in the 2i-1th row, respectively. (2i-1).
  • the first sub-signal line corresponding to the first sub-imaging unit is connected to the photoelectric sensor.
  • the first switching element is a first transistor M1.
  • the control electrode of the first transistor M1 is connected to the first signal line D(2i-1) in row 2i-1, and the first electrode of the first transistor M1 is connected to the first sub-imaging unit corresponding to the first sub-imaging unit where the first switching element is located.
  • the signal line is connected, and the second pole of the first transistor M1 is connected to the photo sensor 111.
  • P ⁇ 1.
  • the type of the first transistor M1 may be P-type, or may be N-type.
  • the second imaging unit 12 in the imaging backplane provided by an exemplary embodiment includes: Q second sub-imaging units 120, and the second signal line S(2j) in the 2jth column includes: Q column The second sub signal lines S(2j)_1 to S(2j)_Q.
  • the second sub-signal lines in the Q column correspond to the Q second sub-imaging units one-to-one, and the second sub-imaging units are connected to the corresponding second sub-signal lines.
  • each second sub-imaging unit 120 includes: a photo sensor 121 and a second switching element.
  • the second switching element is respectively connected to the first signal line D(2i) in the 2i-th row, the second sub-signal line corresponding to the second sub-imaging unit, and the photoelectric sensor.
  • the second switching element is a second transistor M2.
  • the control electrode of the second transistor M2 is connected to the first signal line D(2i) in the 2i-th row, and the first electrode of the second transistor M2 is connected to the second sub-signal line corresponding to the second sub-imaging unit where the second switching element is located.
  • the second pole of the two transistor M2 is connected to the photo sensor 121.
  • the type of the second transistor M2 may be P-type, or may be N-type.
  • the greater the number of P and Q the clearer the fingerprint image obtained and the higher the accuracy of fingerprint recognition.
  • the numbers of P and Q may be equal or unequal.
  • FIG. 2 uses the unequal numbers of P and Q as an example for illustration.
  • the second signal line may be multiplexed as a reading signal line, which is configured to read the electrical signal obtained by the photoelectric sensor according to the received light.
  • the second signal line is set to read the electrical signal obtained by the photoelectric sensor in the first imaging unit according to the received light when the first point light source is turned on, and when the second When the point light source is on, the photoelectric sensor in the second imaging unit is read to obtain an electrical signal according to the received light.
  • An exemplary embodiment provides a first reset sub-circuit in an imaging backplane including: N third transistors M3.
  • each third transistor M3 is connected to the first reset terminal RESET1, the first electrode of each third transistor M3 is connected to the low-level power supply terminal VGL; the second electrode of the j-th third transistor M3 is connected to The second signal line S(2j-1) in the 2j-1th column is connected.
  • the type of the third transistor M3 may be P-type, or may be N-type.
  • the second reset sub-circuit in the imaging backplane provided by an exemplary embodiment includes: N fourth transistors M4.
  • each fourth transistor M4 is connected to the second reset terminal RESET2, the first electrode of each fourth transistor M4 is connected to the low-level power supply terminal VGL, and the second electrode of the j-th fourth transistor M4 is connected to The second signal line S(2j) in the 2j-th column is connected.
  • the type of the fourth transistor M4 may be P-type, or may be N-type.
  • first reset sub-circuit and the second reset sub-circuit Exemplary structures of the first reset sub-circuit and the second reset sub-circuit are shown in FIG. 3. Those skilled in the art can easily understand that the implementation of the first reset sub-circuit and the second reset sub-circuit is not limited to this.
  • the types of the first transistor to the fourth transistor may be the same or may be different.
  • the manufacturing process of the imaging backplane can be simplified.
  • the following describes a technical solution of the imaging backplane provided by an exemplary embodiment through the working process of the imaging panel.
  • FIG. 4 is a working timing diagram of the imaging panel provided by an exemplary embodiment. As shown in FIGS. 3 and 4, the working process of the imaging panel includes:
  • the first signal lines of all even rows provide high-level signals, and all the second transistors M2 are turned on.
  • the second reset terminal RESET2 provides a high-level signal, and all the fourth transistors M4 are turned on to provide a low-level power terminal VGL signal to all the second imaging units to ensure that all the second imaging units are lit when the first point light source is on No charge is generated.
  • a high-level signal is provided to the first signal lines of the odd rows row by row, and all the first transistors M1 in the imaging structure of each row are turned on.
  • the first reset terminal RESET1 provides a high-level signal
  • all the third transistors M3 are turned on to provide a low-level signal to all the first imaging units, reset the first imaging unit, after resetting, stop the first signal to the odd rows
  • the line provides a high level signal.
  • the first signal lines of all even rows provide high-level signals
  • the second reset terminal RESET2 provides high-level signals
  • all fourth transistors M4 are turned on to provide low-level power terminals to all second imaging units
  • the signal of the VGL ensures that all the second imaging units do not generate charges when the first point light source is lit.
  • the first reset terminal RESET1 provides a low-level signal
  • all third transistors M3 are turned off, and the first imaging unit will not be pulled down by the low-level signal.
  • a high-level signal is provided row by row to the first signal lines of the odd rows, all the first transistors M1 in the imaging structure of each row are turned on, and the first imaging unit in the imaging structure of each row receives For light, the electric signal obtained by the photoelectric sensor according to the received light is collected through the second signal line in the odd column.
  • the first signal lines of all odd rows provide high-level signals, and all the first transistors M1 are turned on.
  • the first reset terminal RESET1 provides a high-level signal, all the third transistors M3 are turned on, and provide a low-level power supply terminal VGL signal to all the first imaging units, so that all the first imaging units are turned on when the second point light source is on. No charge is generated.
  • the first signal lines of the even-numbered rows are provided with high-level signals row by row, and all the second transistors M2 in the imaging structure of each row are turned on.
  • the second reset terminal RESET2 provides a high-level signal, all the fourth transistors M4 are turned on, provide a low-level signal to all the second imaging units, reset the second imaging unit, after resetting, stop the first signal to the even rows
  • the line provides a high level signal.
  • the first signal lines of all odd rows provide a high-level signal
  • the first reset terminal RESET1 provides a high-level signal
  • all the third transistors M3 are turned on to provide a low-level power supply terminal to all the first imaging units
  • the signal of VGL makes all the first imaging units do not generate electric charge when the second point light source is on.
  • the second reset terminal RESET2 provides a low-level signal
  • all the fourth transistors M4 are turned off, and the second imaging unit will not be pulled down by the low-level signal.
  • a high-level signal is provided row by row to the first signal line of the even-numbered row, all the second transistors M2 in the imaging structure of each row are turned on, and the second imaging unit in each row of the imaging structure receives For light, the electric signal obtained by the photoelectric sensor according to the received light is collected through the second signal line in the even-numbered column.
  • the imaging backplane When the imaging backplane is used as a one-time fingerprint recognition, after the electrical signal is acquired by the first imaging unit, it will not be collected for the second time. The residual image generated by the first imaging unit is irrelevant.
  • the imaging backplane may not include the second A reset sub-circuit includes only the second reset sub-circuit. The second reset sub-circuit is configured to ensure that all the second imaging units do not generate electric charges when the first point light source is turned on when the first point light source is turned on.
  • FIG. 5 is a flowchart of a driving method of an imaging backplane provided by an embodiment of the disclosure. As shown in FIG. 5, the driving method of the imaging backplane provided by the embodiment of the present disclosure includes the following steps:
  • Step 100 Under the control of the first reset terminal, the first reset sub-circuit provides a low-level power terminal signal to the second signal lines of all odd columns to reset the first imaging unit.
  • Step 200 Under the control of the second reset terminal, the second reset sub-circuit provides a low-level power terminal signal to the second signal lines of all even columns to reset the second imaging unit.
  • step 100 and step 200 depends on whether the first imaging unit or the second imaging unit receives light when the first point light source is turned on. When the first point light source is turned on, the first imaging unit receives light, and step 200 occurs before step 100. When the second imaging unit receives light, step 100 occurs before step 200.
  • the imaging backplane in this embodiment is the imaging backplane provided by any of the foregoing embodiments.
  • the implementation principle and the implementation effect are similar, and will not be repeated here.
  • the embodiment of the present disclosure also provides a fingerprint recognition panel.
  • the fingerprint recognition panel provided in the embodiment of the present disclosure includes a display panel, two point light sources and an imaging backplane.
  • the imaging backplane is the imaging backplane provided by any of the foregoing embodiments, and the implementation principle and effect are similar, and will not be repeated here.
  • the point light source is arranged on the display panel and configured to emit light.
  • the light is reflected back into the display panel by the finger on the interface between the substrate substrate and the mobile phone.
  • the imaging backplane is disposed on the display panel, and is configured to receive light reflected by the finger to recognize fingerprints.
  • the point light sources are set to light up sequentially according to a preset timing.
  • the imaging backboard receives the light reflected by the finger in the corresponding area to form a fingerprint image.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Image Input (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种成像背板及其驱动方法、指纹识别面板,成像背板包括:M行N列成像结构、2M行第一信号线、2N列第二信号线、第一复位子电路和第二复位子电路;每个成像结构包括:第一成像单元和第二成像单元;第i行j列成像结构的第一成像单元分别与第2i-1行第一信号线和第2j-1列第二信号线连接,第i行j列成像结构的第二成像单元分别与第2i行第一信号线和第2j列第二信号线连接;第一复位子电路,分别与第一复位端、低电平电源端和所有奇数列的第二信号线连接;第二复位子电路,分别与第二复位端、低电平电源端和所有偶数列的第二信号线连接。

Description

一种成像背板及其驱动方法、指纹识别面板
本申请要求于2019年6月5日提交中国专利局、申请号为201910487416.3、发明名称为“一种成像背板及其驱动方法、指纹识别面板”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及但不限于成像技术领域,特别涉及一种成像背板及其驱动方法、指纹识别面板。
背景技术
指纹识别是指通过比较不同指纹的细节特征点来进行身份鉴别。由于每个人的指纹不同,就是同一人的十指之间,指纹也有区别,因此指纹可进行身份鉴定。
点光源成像是指纹识别的一种实现方式。点光源成像主要采用两个点光源和光电传感器实现,工作原理为:分时亮点两个点光源,点光源的光线射向手指,光电传感器接收被手指反射的光线以识别指纹。
发明概述
以下是对本公开详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
第一方面,本公开提供了一种成像背板,包括:M行N列成像结构、2M行第一信号线、2N列第二信号线、第一复位子电路和第二复位子电路;
每个成像结构包括:第一成像单元和第二成像单元;第i行j列成像结构的第一成像单元分别与第2i-1行第一信号线和第2j-1列第二信号线连接,第i行j列成像结构的第二成像单元分别与第2i行第一信号线和第2j列第二信号线连接,1≤i≤M,1≤j≤N;
所述第一复位子电路,分别与第一复位端、低电平电源端和所有奇数列 的第二信号线连接,设置为在第一复位端的控制下,向所有奇数列的第二信号线提供所述低电平电源端的信号,以重置第一成像单元;
所述第二复位子电路,分别与第二复位端、低电平电源端和所有偶数列的第二信号线连接,设置为在第二复位端的控制下,向所有偶数列的第二信号线提供所述低电平电源端的信号,以重置第二成像单元。
在一些可能的实现方式中,对于第i行j列成像结构,第一成像单元包括:P个第一子成像单元,第2j-1列第二信号线包括:P列第一子信号线,P列第一子信号线与P个第一子成像单元一一对应;
每个第一子成像单元包括:光电传感器和第一开关元件;
所述第一开关元件,分别与第2i-1行第一信号线、所述第一子成像单元对应的第一子信号线和所述光电传感器连接,P≥1。
在一些可能的实现方式中,对于第i行j列成像结构,第二成像单元包括:Q个第二子成像单元,第2j列第二信号线包括:Q列第二子信号线,Q列第二子信号线与Q个第二子成像单元一一对应;
每个第二子成像单元包括:光电传感器和第二开关元件;
所述第二开关元件,分别与第2i行第一信号线、所述第二子成像单元对应的第二子信号线和所述光电传感器连接,Q≥1。
在一些可能的实现方式中,所述第二信号线复用为读取信号线,设置为读取所述光电传感器根据接收到的光线获得的电信号。
在一些可能的实现方式中,对于第i行j列成像结构,所述第一开关元件为第一晶体管;
所述第一晶体管的控制极与第2i-1行第一信号线连接,所述第一晶体管的第一极与所述第一开关元件所在的第一子成像单元对应的第一子信号线连接,所述第一晶体管的第二极与光电传感器连接。
在一些可能的实现方式中,对于第i行j列成像结构,所述第二开关元件为第二晶体管;
所述第二晶体管的控制极与第2i行第一信号线连接,所述第二晶体管的第一极与所述第二开关元件所在第二子成像单元对应的第二子信号线连接, 所述第二晶体管的第二极与光电传感器连接。
在一些可能的实现方式中,所述第一复位子电路包括:N个第三晶体管;
每个第三晶体管的控制极均与第一复位端连接,每个第三晶体管的第一极均与低电平电源端连接,第j个第三晶体管的第二极与第2j-1列第二信号线连接。
在一些可能的实现方式中,所述第二复位子电路包括:N个第四晶体管;
每个第四晶体管的控制极均与第二复位端连接,每个第四晶体管的第一极均与低电平电源端连接,第j个第四晶体管的第二极与第2j列第二信号线连接。
第二方面,本公开还提供了一种指纹识别面板,包括:上述成像背板。
第三方面,本公开还提供了一种成像背板的驱动方法,应用于上述成像背板中,所述方法包括:
在第一复位端的控制下,第一复位子电路向所有奇数列的第二信号线提供低电平电源端的信号,以重置第一成像单元;
在第二复位端的控制下,第二复位子电路向所有偶数列的第二信号线提供低电平电源端的信号,以重置第二成像单元。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
附图用来提供对本公开技术方案的理解,并且构成说明书的一部分,与本公开的实施例一起用于解释本公开的技术方案,并不构成对本公开技术方案的限制。
图1为本公开实施例提供的成像背板的结构示意图;
图2为一种示例性实施例提供的第i行j列成像结构的结构示意图;
图3为一种示例性实施例提供提供的成像背板的等效电路图;
图4为一种示例性实施例提供的成像面板的工作时序图;
图5为本公开实施例提供的成像背板的驱动方法的流程图。
详述
下文中将结合附图对本公开的实施例进行详细说明。在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互任意组合。
本公开描述了多个实施例,但是该描述是示例性的,而不是限制性的,并且对于本领域的普通技术人员来说,在本公开所描述的实施例包含的范围内可以有更多的实施例和实现方案。尽管在附图中示出了许多可能的特征组合,并在具体实施方式中进行了讨论,但是所公开的特征的许多其它组合方式也是可能的。除非特意加以限制的情况以外,任何实施例的任何特征或元件可以与任何其它实施例中的任何其他特征或元件结合使用,或可以替代任何其它实施例中的任何其他特征或元件。
本公开包括并设想了与本领域普通技术人员已知的特征和元件的组合。本公开已经公开的实施例、特征和元件也可以与任何常规特征或元件组合,以形成由权利要求限定的技术方案。任何实施例的任何特征或元件也可以与来自其它技术方案的特征或元件组合,以形成另一个由权利要求限定的技术方案。因此,应当理解,在本公开中示出和讨论的任何特征可以单独地或以任何适当的组合来实现。因此,除了根据所附权利要求及其等同替换所做的限制以外,实施例不受其它限制。此外,可以在所附权利要求的保护范围内进行各种修改和改变。
除非另外定义,本公开公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述的对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
本公开中采用的晶体管的源极、漏极是对称的,源极、漏极是可以互换 的。本公开中将栅极称为控制极,为区分晶体管除栅极之外的两极,可以将源极称为第一极,漏极称为第二极,或者可以将漏极称为第一极,源极称为第二极。
在点光源成像中,光电传感器存在残影问题。为了消除残影,在点亮第一个点光源之后产生的残影消失后点亮第二个点光源,使得两次点光源的点亮时间间隔较长,导致指纹识别时间过长。
图1为本公开实施例提供的成像背板的结构示意图。如图1所示,本公开实施例提供的成像背板包括:M行N列成像结构10、2M行第一信号线D(1)至D(2M)、2N列第二信号线S(1)至S(2N)、第一复位子电路和第二复位子电路。
每个成像结构10包括:第一成像单元11和第二成像单元12。第i行j列成像结构10的第一成像单元11分别与第2i-1行第一信号线D(2i-1)和第2j-1列第二信号线S(2j-1)连接,第i行j列成像结构的第二成像单元12分别与第2i行第一信号线D(2i)和第2j列第二信号线S(2j)连接。
第一复位子电路,分别与第一复位端RESET1、低电平电源端VGL和所有奇数列的第二信号线连接,设置为在第一复位端RESET1的控制下,向所有奇数列的第二信号线提供低电平电源端VGL的信号,以重置第一成像单元。
第二复位子电路,分别与第二复位端RESET2、低电平电源端VGL和所有偶数列的第二信号线连接设置为在第二复位端RESET2的控制下,向所有偶数列的第二信号线提供低电平电源端VGL的信号,以重置第二成像单元。
在一种示例性实施例中,1≤i≤M,1≤j≤N,M和N的数值根据指纹识别精度确定。
在一种示例性实施例中,2M行第一信号线D(1)至D(2M)相互平行设置,2N列第二信号线S(1)至S(2N)相互平行设置。第一信号线的延伸方向与第二信号线的延伸方向相互垂直。
在一种示例性实施例中,低电平电源端VGL持续提供低电平信号,低电平信号的电压值可以为0V,或者可以为其他数值。
每个成像结构中的第一成像单元和第二成像单元连接不同的第一信号线,由不同的第一信号线控制。
本公开实施例提供的成像背板可以应用于点光源成像中。不同成像单元分时接收光线。当点亮第一个点光源时,第一成像单元接收第一个点光源发射的光线,第二复位子电路重置第二成像单元,以避免第二成像单元接收第一个点光源发射的光线产生残留电荷;当点亮第二个点光源时,第二成像单元接收第二个点光源发射的光线,第一复位子电路重置第一成像单元,以避免第一成像单元第二个点光源发射的光线产生残留电荷,可以消除指纹识别时残影的影响。
本公开实施例提供的成像背板包括:M行N列成像结构、2M行第一信号线、2N列第二信号线、第一复位子电路和第二复位子电路;每个成像结构包括:第一成像单元和第二成像单元;第i行j列成像结构的第一成像单元分别与第2i-1行第一信号线和第2j-1列第二信号线连接,第i行j列成像结构的第二成像单元分别与第2i行第一信号线和第2j列第二信号线连接;第一复位子电路,分别与第一复位端、低电平电源端和所有奇数列的第二信号线连接,设置为在第一复位端的控制下,向所有奇数列的第二信号线提供低电平电源端的信号,以重置第一成像单元;第二复位子电路,分别与第二复位端、低电平电源端和所有偶数列的第二信号线连接,设置为在第二复位端的控制下,向所有偶数列的第二信号线提供低电平电源端的信号,以重置第二成像单元。本公开实施例通过每个成像结构中设置不同的成像单元,不同成像单元分时接收光线,设置第一复位子电路和第二复位子电路对不接收光线的成像单元进行全局重置,可以消除残影,减小点光源的点亮时间间隔,减小了指纹识别时间。
图2为一种示例性实施例提供的第i行j列成像结构的结构示意图。如图2所示,一种示例性实施例提供的成像背板中的第一成像单元11包括:P个第一子成像单元110,第2j-1列第二信号线S(2j-1)包括:P列第一子信号线S(2j-1)_1至S(2j-1)_P。
P列第一子信号线与P个第一子成像单元一一对应,第一子成像单元与对应的第一子信号线连接。
一种示例性实施例中,如图2所示,每个第一子成像单元110包括:光电传感器111和第一开关元件,第一开关元件,分别与第2i-1行第一信号线D(2i-1)、第一子成像单元对应的第一子信号线和光电传感器连接。
一种示例性实施例中,如图2所示,第一开关元件为第一晶体管M1。
第一晶体管M1的控制极与第2i-1行第一信号线D(2i-1)连接,第一晶体管M1的第一极与第一开关元件所在的第一子成像单元对应的第一子信号线连接,第一晶体管M1的第二极与光电传感器111连接。
一种示例性实施例中,P≥1。图2是以P=2为例进行说明的。
一种示例性实施例中,第一晶体管M1的类型可以为P型,或者可以为N型。
如图2所示,一种示例性实施例提供的成像背板中的第二成像单元12包括:Q个第二子成像单元120,第2j列第二信号线S(2j)包括:Q列第二子信号线S(2j)_1至S(2j)_Q。
Q列第二子信号线与Q个第二子成像单元一一对应,第二子成像单元与对应的第二子信号线连接。
一种示例性实施例中,如图2所示,每个第二子成像单元120包括:光电传感器121和与第二开关元件。
第二开关元件,分别与第2i行第一信号线D(2i)、第二子成像单元对应的第二子信号线和光电传感器连接。
一种示例性实施例中,如图2所示,第二开关元件为第二晶体管M2。
第二晶体管M2的控制极与第2i行第一信号线D(2i)连接,第二晶体管M2的第一极与第二开关元件所在第二子成像单元对应的第二子信号线连接,第二晶体管M2的第二极与光电传感器121连接。
一种示例性实施例中,Q≥1。图2是以Q=1为例进行说明的。
一种示例性实施例中,第二晶体管M2的类型可以为P型,或者可以为N型。
一种示例性实施例中,P和Q数量越多,得到的指纹图像越清晰,指纹 识别精度越高。
一种示例性实施例中,P和Q的数量可以相等,也可以不相等,图2是以P和Q的数量不相等为例进行说明的。
一种示例性实施例中,第二信号线可以复用为读取信号线,设置为读取光电传感器根据接收到的光线获得的电信号。
一种示例性实施例中,第二信号线设置为当在第一个点光源点亮时,读取第一成像单元中的光电传感器根据接收到的光线获得的电信号,当在第二个点光源点亮时,读取第二个成像单元中的光电传感器根据接收到的光线获得电信号。
图3为一种示例性实施例提供的成像背板的等效电路图。如图3所示,图3是以P=Q=1为例进行说明的,一种示例性实施例提供的成像背板中的第一复位子电路包括:N个第三晶体管M3。
每个第三晶体管M3的控制极均与第一复位端RESET1连接,每个第三晶体管M3的第一极均与低电平电源端VGL连接;第j个第三晶体管M3的第二极与第2j-1列第二信号线S(2j-1)连接。
一种示例性实施例中,第三晶体管M3的类型可以为P型,或者可以为N型。
如图3所示,一种示例性实施例提供的成像背板中的第二复位子电路包括:N个第四晶体管M4。
每个第四晶体管M4的控制极均与第二复位端RESET2连接,每个第四晶体管M4的第一极均与低电平电源端VGL连接,第j个第四晶体管M4的第二极与第2j列第二信号线S(2j)连接。
一种示例性实施例中,第四晶体管M4的类型可以为P型,或者可以为N型。
图3中示出了第一复位子电路和第二复位子电路的示例性结构。本领域技术人员容易理解是,第一复位子电路和第二复位子电路的实现方式不限于此。
在一种示例性实施例中,第一晶体管至第四晶体管的类型可相同,或者 可以不同。当第一晶体管至第四晶体管的类型相同时,可以简化成像背板的制作工艺。
下面通过成像面板的工作过程说明一种示例性实施例提供的成像背板的技术方案。
以成像面板中的晶体管均为N型薄膜晶体管为例,图4为一种示例性实施例提供的成像面板的工作时序图,如图3和图4所示,成像面板的工作过程包括:
第一阶段S1,当第一个点光源点亮时,所有偶数行的第一信号线提供高电平信号,所有第二晶体管M2导通。第二复位端RESET2提供高电平信号,所有第四晶体管M4导通,向所有第二成像单元提供低电平电源端VGL的信号,保证所有第二成像单元在第一个点光源点亮时不产生电荷。逐行向奇数行的第一信号线提供高电平信号,每行成像结构中的所有第一晶体管M1导通。第一复位端RESET1提供高电平信号,所有第三晶体管M3导通,向所有第一成像单元提供低电平信号,重置第一成像单元,重置之后,停止向奇数行的第一信号线提供高电平信号。
第二阶段S2,所有偶数行的第一信号线提供高电平信号,第二复位端RESET2提供高电平信号,所有第四晶体管M4导通,向所有第二成像单元提供低电平电源端VGL的信号,保证所有第二成像单元在第一个点光源点亮时不产生电荷。第一复位端RESET1提供低电平信号,所有第三晶体管M3截止,第一成像单元不会被低电平信号拉低。在经过预设曝光时间T之后,逐行向奇数行的第一信号线提供高电平信号,每行成像结构中的所有第一晶体管M1导通,每行成像结构中的第一成像单元接收光线,通过奇数列第二信号线采集光电传感器根据接收到的光线获得的电信号。
第三阶段S3、当第二个点光源点亮时,所有奇数行的第一信号线提供高电平信号,所有第一晶体管M1导通。第一复位端RESET1提供高电平信号,所有第三晶体管M3导通,向所有第一成像单元提供低电平电源端VGL的信号,使得所有第一成像单元在第二个点光源点亮时不产生电荷。逐行向偶数行的第一信号线提供高电平信号,每行成像结构中的所有第二晶体管M2导通。第二复位端RESET2提供高电平信号,所有第四晶体管M4导通,向所 有第二成像单元提供低电平信号,重置第二成像单元,重置之后,停止向偶数行的第一信号线提供高电平信号。
第四阶段S4,所有奇数行的第一信号线提供高电平信号,第一复位端RESET1提供高电平信号,所有第三晶体管M3导通,向所有第一成像单元提供低电平电源端VGL的信号,使得所有第一成像单元在第二个点光源点亮时不产生电荷。第二复位端RESET2提供低电平信号,所有第四晶体管M4截止,第二成像单元不会被低电平信号拉低。在经过预设曝光时间T之后,逐行向偶数行的第一信号线提供高电平信号,每行成像结构中的所有第二晶体管M2导通,每行成像结构中的第二成像单元接收光线,通过偶数列第二信号线采集光电传感器根据接收到的光线获得的电信号。
当成像背板用作一次性指纹识别时,在采集第一成像单元获得电信号之后,不会在采集第二次,第一成像单元产生的残影无关紧要,成像背板中可以不包括第一复位子电路,只包括第二复位子电路。第二复位子电路设置为在第一个点光源的点亮时,保证所有第二成像单元在第一个点光源点亮时不产生电荷。
图5为本公开实施例提供的成像背板的驱动方法的流程图。如图5所示,本公开实施例提供的成像背板的驱动方法包括以下步骤:
步骤100、在第一复位端的控制下,第一复位子电路向所有奇数列的第二信号线提供低电平电源端的信号,以重置第一成像单元。
步骤200、在第二复位端的控制下,第二复位子电路向所有偶数列的第二信号线提供低电平电源端的信号,以重置第二成像单元。
步骤100和步骤200的先后顺序取决于第一个点光源点亮时,接收光线的是第一成像单元,还是第二成像单元。当第一个点光源点亮时,接收光线的为第一成像单元,则步骤200发生在步骤100之前,当接收光线的为第二成像单元,则步骤100发生在步骤200之前。
本实施例中的成像背板为前述任一个实施例提供的成像背板中,实现原理和实现效果类似,在此不再赘述。
本公开实施例还提供一种指纹识别面板,本公开实施例提供的指纹识别 面板包括:显示面板,两个点光源和成像背板。
成像背板为前述任一个实施例提供的成像背板,实现原理和实现效果类似,在此不再赘述。
在一种示例性实施例中,点光源设置在显示面板上,设置为发射光线。当手指覆盖在显示面板上时,光线在衬底基板和手机的界面被手指反射回显示面板内。
在一种示例性实施例中,成像背板设置在显示面板上,且设置为接收被手指反射的光线以识别指纹。
点光源被设定为按照预设时序依次点亮。每个点光源点亮时,成像背板接收到相应区域手指反射的光线,形成指纹图像。
本公开中的附图只涉及本公开实施例涉及到的结构,其他结构可参考通常设计。
虽然本公开所揭露的实施方式如上,但所述的内容仅为便于理解本公开而采用的实施方式,并非用以限定本公开。任何本公开所属领域内的技术人员,在不脱离本公开所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本公开的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (10)

  1. 一种成像背板,包括:M行N列成像结构、2M行第一信号线、2N列第二信号线、第一复位子电路和第二复位子电路;
    每个成像结构包括:第一成像单元和第二成像单元;第i行j列成像结构的第一成像单元分别与第2i-1行第一信号线和第2j-1列第二信号线连接,第i行j列成像结构的第二成像单元分别与第2i行第一信号线和第2j列第二信号线连接,1≤i≤M,1≤j≤N;
    所述第一复位子电路,分别与第一复位端、低电平电源端和所有奇数列的第二信号线连接,设置为在第一复位端的控制下,向所有奇数列的第二信号线提供所述低电平电源端的信号,以重置第一成像单元;
    所述第二复位子电路,分别与第二复位端、低电平电源端和所有偶数列的第二信号线连接,设置为在第二复位端的控制下,向所有偶数列的第二信号线提供所述低电平电源端的信号,以重置第二成像单元。
  2. 根据权利要求1所述的成像背板,其中,对于第i行j列成像结构,第一成像单元包括:P个第一子成像单元,第2j-1列第二信号线包括:P列第一子信号线,P列第一子信号线与P个第一子成像单元一一对应;
    每个第一子成像单元包括:光电传感器和第一开关元件;
    所述第一开关元件,分别与第2i-1行第一信号线、第一子成像单元对应的第一子信号线和所述光电传感器连接,P≥1。
  3. 根据权利要求1所述的成像背板,其中,对于第i行j列成像结构,第二成像单元包括:Q个第二子成像单元,第2j列第二信号线包括:Q列第二子信号线,Q列第二子信号线与Q个第二子成像单元一一对应;
    每个第二子成像单元包括:光电传感器和第二开关元件;
    所述第二开关元件,分别与第2i行第一信号线、所述第二子成像单元对应的第二子信号线和所述光电传感器连接,Q≥1。
  4. 根据权利要求2或3所述的成像背板,其中,所述第二信号线复用为读取信号线,设置为读取所述光电传感器根据接收到的光线获得的电信号。
  5. 根据权利要求2所述的成像背板,其中,对于第i行j列成像结构,所述第一开关元件为第一晶体管;
    所述第一晶体管的控制极与第2i-1行第一信号线连接,所述第一晶体管的第一极与所述第一开关元件所在的第一子成像单元对应的第一子信号线连接,所述第一晶体管的第二极与光电传感器连接。
  6. 根据权利要求3所述的成像背板,其中,对于第i行j列成像结构,所述第二开关元件为第二晶体管;
    所述第二晶体管的控制极与第2i行第一信号线连接,所述第二晶体管的第一极与所述第二开关元件所在第二子成像单元对应的第二子信号线连接,所述第二晶体管的第二极与光电传感器连接。
  7. 根据权利要求1所述的成像背板,其中,所述第一复位子电路包括:N个第三晶体管;
    每个第三晶体管的控制极均与第一复位端连接,每个第三晶体管的第一极均与低电平电源端连接,第j个第三晶体管的第二极与第2j-1列第二信号线连接。
  8. 根据权利要求1或7所述的成像背板,其中,所述第二复位子电路包括:N个第四晶体管;
    每个第四晶体管的控制极均与第二复位端连接,每个第四晶体管的第一极均与低电平电源端连接,第j个第四晶体管的第二极与第2j列第二信号线连接。
  9. 一种指纹识别面板,包括:如权利要求1至8任一项所述的成像背板。
  10. 一种成像背板的驱动方法,应用于权利要求1至8任一项所述成像背板中,所述方法包括:
    在第一复位端的控制下,第一复位子电路向所有奇数列的第二信号线提供低电平电源端的信号,以重置第一成像单元;
    在第二复位端的控制下,第二复位子电路向所有偶数列的第二信号线提供低电平电源端的信号,以重置第二成像单元。
PCT/CN2020/092106 2019-06-05 2020-05-25 一种成像背板及其驱动方法、指纹识别面板 WO2020244405A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/734,565 US11393241B2 (en) 2019-06-05 2020-05-25 Imaging backplane, driving method thereof and fingerprint identification panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910487416.3A CN110210421B (zh) 2019-06-05 2019-06-05 一种成像背板及其驱动方法、指纹识别面板
CN201910487416.3 2019-06-05

Publications (1)

Publication Number Publication Date
WO2020244405A1 true WO2020244405A1 (zh) 2020-12-10

Family

ID=67791065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/092106 WO2020244405A1 (zh) 2019-06-05 2020-05-25 一种成像背板及其驱动方法、指纹识别面板

Country Status (3)

Country Link
US (1) US11393241B2 (zh)
CN (1) CN110210421B (zh)
WO (1) WO2020244405A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110210421B (zh) * 2019-06-05 2021-08-06 京东方科技集团股份有限公司 一种成像背板及其驱动方法、指纹识别面板

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106446763A (zh) * 2015-08-12 2017-02-22 三星电子株式会社 指纹传感器、具有其的电子装置及操作指纹传感器的方法
US20190102039A1 (en) * 2017-09-29 2019-04-04 Japan Display Inc. Detection apparatus and display apparatus
CN109845243A (zh) * 2016-10-26 2019-06-04 索尼半导体解决方案公司 固态成像器件及其控制方法,和电子装置
CN110210421A (zh) * 2019-06-05 2019-09-06 京东方科技集团股份有限公司 一种成像背板及其驱动方法、指纹识别面板

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1463306B8 (en) 2003-03-25 2009-11-11 Panasonic Corporation Imaging device that prevents loss of shadow detail
JP2005347793A (ja) * 2004-05-31 2005-12-15 Matsushita Electric Ind Co Ltd 撮像装置
KR101152136B1 (ko) * 2005-10-26 2012-06-15 삼성전자주식회사 접촉 감지 기능이 있는 표시 장치
JP4847202B2 (ja) * 2006-04-27 2011-12-28 キヤノン株式会社 撮像装置及び放射線撮像システム
JP4946601B2 (ja) 2006-05-15 2012-06-06 ソニー株式会社 撮像装置およびその駆動方法、表示装置、並びに、電子機器
CN101135821B (zh) * 2006-08-30 2012-11-07 奇美电子股份有限公司 液晶显示面板的驱动方法与系统
CN102214663B (zh) * 2010-04-09 2013-05-01 中国科学院微电子研究所 一种光学成像器件结构
JP5837937B2 (ja) 2011-10-25 2015-12-24 富士フイルム株式会社 放射線画像撮影システム及び放射線検出装置
JP5448208B2 (ja) 2011-12-13 2014-03-19 国立大学法人東北大学 固体撮像装置
CN103513808B (zh) * 2012-06-29 2016-09-07 上海天马微电子有限公司 触摸面板、触摸显示面板、触摸检测及显示方法
WO2014083730A1 (ja) * 2012-11-27 2014-06-05 パナソニック株式会社 固体撮像装置およびその駆動方法
JP5886806B2 (ja) * 2013-09-17 2016-03-16 キヤノン株式会社 固体撮像装置
CN105095877B (zh) * 2015-08-12 2018-09-04 京东方科技集团股份有限公司 有机发光二极管显示基板及其光反射表面结构识别方法
CN108776797A (zh) * 2018-07-03 2018-11-09 京东方科技集团股份有限公司 一种指纹识别电路及其驱动方法、显示装置
CN108922493A (zh) * 2018-09-21 2018-11-30 京东方科技集团股份有限公司 一种驱动电路及其驱动方法、显示装置
CN109509428B (zh) 2019-01-07 2021-01-08 京东方科技集团股份有限公司 像素驱动电路、像素驱动方法和显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106446763A (zh) * 2015-08-12 2017-02-22 三星电子株式会社 指纹传感器、具有其的电子装置及操作指纹传感器的方法
CN109845243A (zh) * 2016-10-26 2019-06-04 索尼半导体解决方案公司 固态成像器件及其控制方法,和电子装置
US20190102039A1 (en) * 2017-09-29 2019-04-04 Japan Display Inc. Detection apparatus and display apparatus
CN110210421A (zh) * 2019-06-05 2019-09-06 京东方科技集团股份有限公司 一种成像背板及其驱动方法、指纹识别面板

Also Published As

Publication number Publication date
CN110210421A (zh) 2019-09-06
US11393241B2 (en) 2022-07-19
CN110210421B (zh) 2021-08-06
US20210264127A1 (en) 2021-08-26

Similar Documents

Publication Publication Date Title
US9703440B2 (en) Self-capacitive touch display panel and array substrate thereof
US20120313913A1 (en) Display device
US10573225B2 (en) Gate drive circuit and display device using the same
US10860134B2 (en) Display device
US20120262384A1 (en) Display apparatus
US10055635B2 (en) Array substrate, method for driving same, display panel and display apparatus
CN110765888B (zh) 指纹识别显示模组及其控制方法
WO2020248674A1 (zh) 像素电路及其驱动方法、显示面板
US20170148409A1 (en) Liquid crystal display panel and driving method thereof
TWI688890B (zh) 顯示面板及其驅動方法
US8654110B2 (en) Display device and method for driving display device
WO2010038513A1 (ja) 表示装置
WO2020244405A1 (zh) 一种成像背板及其驱动方法、指纹识别面板
WO2018205653A1 (zh) 公共电压补偿电路单元、显示面板、显示装置和显示面板的公共电压补偿方法
US11200399B1 (en) Display panel and driving method of display panel
US20110063260A1 (en) Driving circuit for liquid crystal display
US9298315B2 (en) Display device including photo sensor and driving method thereof
JP2022521169A (ja) 奇偶影響を下げるマトリクス検出器
KR20100075328A (ko) 터치형 액정표시장치
TWI765381B (zh) 具有指紋感測功能的電子裝置
TW202141250A (zh) 具有指紋感測功能的電子裝置
US20180357956A1 (en) Method for driving array substrate
WO2023024027A1 (zh) 指纹识别驱动电路、指纹识别电路和及其驱动方法
TWI756098B (zh) 指紋畫素單元、指紋感測裝置及整合積體電路
TWI750991B (zh) 感測器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20818960

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20818960

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20818960

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26.07.2022)