WO2020244354A1 - 收发装置及收发设备 - Google Patents

收发装置及收发设备 Download PDF

Info

Publication number
WO2020244354A1
WO2020244354A1 PCT/CN2020/088992 CN2020088992W WO2020244354A1 WO 2020244354 A1 WO2020244354 A1 WO 2020244354A1 CN 2020088992 W CN2020088992 W CN 2020088992W WO 2020244354 A1 WO2020244354 A1 WO 2020244354A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
coils
antenna
receiving
transmitting antenna
Prior art date
Application number
PCT/CN2020/088992
Other languages
English (en)
French (fr)
Inventor
于天航
张公正
李榕
孔垂丽
周悦
王俊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020244354A1 publication Critical patent/WO2020244354A1/zh
Priority to US17/540,832 priority Critical patent/US12028104B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B15/00Suppression or limitation of noise or interference
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/44Transmit/receive switching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/40Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by components specially adapted for near-field transmission
    • H04B5/48Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1461Suppression of signals in the return path, i.e. bidirectional control circuits

Definitions

  • This application relates to the field of communication technology, and in particular to transceiver devices and transceiver equipment in communication products.
  • Magnetic induction communication has the advantages of high security, low cost, and low power consumption. However, compared with traditional radio frequency communication, it often works in a lower frequency band, such as 13.56MHz, which in turn causes system efficiency and throughput to be restricted by bandwidth , The transmission rate is low, which limits the application scenarios of magnetic communication.
  • the purpose of this application is to provide a transceiver and transceiver device, which can improve the communication efficiency between the transceiver devices and can effectively suppress self-interference signals.
  • an embodiment of the present application discloses a transceiver device, including a transmitting antenna and a receiving antenna.
  • the transmitting antenna is used to transmit the local signal to the receiving antenna of the opposite end.
  • the receiving antenna is used to receive useful signals transmitted by the transmitting antenna of the opposite end.
  • one of the transmitting antenna and the receiving antenna is on the interference elimination surface of the other of the transmitting antenna and the receiving antenna; wherein, the interference elimination surface refers to the interference caused by the transmitting antenna The surface where the interference signal is canceled.
  • the local signal refers to a signal that is generated by the transceiver device itself and needs to be sent to another transceiver device.
  • the opposite terminal refers to another transceiver that communicates with the transceiver.
  • the technical solution described in the first aspect because it includes a transmitting antenna and a receiving antenna, adopts a full-duplex technology, thereby improving the communication efficiency of the transceiver device.
  • one of the transmitting antenna and the receiving antenna is arranged on the interference elimination surface of the other of the transmitting antenna and the receiving antenna, thereby effectively eliminating the interference signal generated by the local transmitting antenna, Realize the effective suppression of self-interference signals.
  • one of the transmitting antenna and the receiving antenna is a coil having a figure-eight shape; the other of the transmitting antenna and the receiving antenna is a coil having an axisymmetric shape; The center of the axisymmetrical coil is located on the interference cancellation surface of the 8-shaped coil.
  • both the transmitting antenna and the receiving antenna are coils and do not need to be separated by a long distance, the size requirement of the transceiver device is smaller.
  • the figure-eight coil in this scheme is actually one coil. That is, only one transmission path is needed, which is simpler to implement.
  • the plane on which the axially symmetrical coil is located is parallel to the line connecting the center points of the two coils of the figure-eight coil. In this way, the effect of eliminating interference signals generated by the transmitting antenna can be guaranteed. In another embodiment, it can also be defined that the plane on which the axisymmetric coil is located is parallel to the plane on which the eight-shaped coil is located.
  • the axisymmetric coil is also a figure-eight coil. At least one of the two 8-shaped coils is on the interference cancellation surface of the other. In this way, the problem of pairing between the transceiver devices can be avoided, and the applicability of the transceiver devices is improved.
  • the eight-shaped coils are symmetrically distributed at the center point of the figure-eight, and the number of turns of the coils on both sides of the center point is the same.
  • the interference cancellation surface of the figure-eight coil is a vertical bisecting plane connecting the center points of the two coils of the figure-eight coil. In this way, the design and location of the antenna can be facilitated, and the assembly efficiency during production can be improved.
  • one of the transmitting antenna and the receiving antenna is a pair of coils arranged side by side and spaced apart; the pair of coils arranged side by side and spaced apart are axisymmetrical to each other; the transmitting antenna and the Another independent coil of the receiving antenna; the center of the independent coil is located on the interference cancellation surface of the pair of parallel and spaced coils.
  • the pair of coils arranged side by side and spaced apart are on the same plane.
  • one of the transmitting antenna and the receiving antenna is a pair of coils arranged side by side and spaced apart, that is, two separate coils, it is convenient to place the antennas and make the applicability of the transceiver device Even better, the position of each coil can be adjusted according to the specific space conditions of the installation environment.
  • the independent coil is axially symmetrical, and the plane on which the independent coil is located is parallel to the line connecting the center points of the two coils in the pair of parallel and spaced coils. In this way, the effect of eliminating interference signals generated by the transmitting antenna can be guaranteed.
  • it can be further defined that the independent coil is axially symmetrical, and the plane on which the independent coil is located is parallel to the plane on which the pair of parallel and spaced coils are located. In this way, the thickness of the transceiver device can be reduced, which is beneficial to the development of the transceiver device toward a lighter and thinner direction.
  • the plane on which the independent coil is located is perpendicular to the line connecting the center points of the two coils in the pair of parallel and spaced coils.
  • the shape of the independent coil can be any shape and is not required to be symmetrical, which facilitates the diversified design of the antenna and makes the transceiving device more applicable.
  • each of the pair of side-by-side and spaced-apart coils has the same number of turns and passes through each of the coils.
  • the currents of the coils have the same magnitude but opposite directions.
  • the receiving antenna is the pair of side-by-side and spaced apart coils
  • the number of turns of each coil in the pair of side-by-side and spaced apart coils is the same, and the electrical signal generated by the receiving antenna It is the sum of the electrical signal generated by one coil and the electrical signal generated by the other coil after a phase shift of 180°. In this way, the interference signal generated by the transmitting antenna can be eliminated, and the design and installation of the antenna can be facilitated.
  • each of the pair of side-by-side and spaced-apart coils has the same number of turns and passes through each of the coils.
  • the currents of the coils have the same magnitude and the same direction.
  • the receiving antenna is the pair of coils arranged side by side and spaced apart
  • the number of turns of each coil in the pair of side-by-side and spaced apart coils is the same
  • the electrical signal generated by the receiving antenna is The sum of electrical signals generated by each of the pair of coils arranged side by side and spaced apart. In this way, the interference signal generated by the transmitting antenna can be eliminated, and the design and installation of the antenna can be facilitated.
  • the center point of the independent coil is on a straight line with the center point of each coil in the pair of parallel and spaced coils.
  • the size of the independent coil is not limited, and the size of each coil in a pair of coils arranged side by side and spaced apart and the magnitude and direction of the energizing current are also not limited, which better improves the applicability of the transceiver.
  • the interference cancellation surface is a vertical bisecting plane connecting the center points of each coil in the pair of parallel and spaced coils. In this way, it is convenient to install the antenna.
  • the transmitting antenna is a transmitting coil; the receiving antenna is a receiving coil; the center point of one of the transmitting coil and the receiving coil is at the other of the transmitting coil and the receiving coil.
  • the mid-vertical line; the plane where the transmitting coil is located is perpendicular to the plane where the receiving coil is located; wherein, the mid-vertical line of the transmitting coil passes through the center point of the transmitting coil and is at the same position as the transmitting coil
  • a straight line perpendicular to the plane; the vertical line of the receiving coil is a straight line passing through the center point of the receiving coil and perpendicular to the plane where the receiving coil is located.
  • the transmitting antenna and the receiving antenna are independent coils, and the transmitting antenna will not cause interference to the receiving antenna, the size and shape of the coil are not limited, and the applicability of the transceiver device is improved. And the structure is simple.
  • the transceiver device further includes an analog cancellation module for analog cancellation of the useful signal received by the receiving antenna; the analog cancellation module
  • the test includes a gain control module and an adder module; the gain control module is used to perform gain control on the transmitted analog signal; the adder module is electrically connected to the gain control module, and is used to receive the analog form of the When a useful signal is used, the analog signal transmitted by the transmitting antenna is eliminated.
  • the transceiver device further includes a digital cancellation module; the digital cancellation module is used to perform digital digital control on the useful signal received by the receiving antenna and converted from analog to digital. Cancellation; the digital cancellation module includes a channel estimation module and an algorithm module; the channel estimation module is used to estimate the channel response; the algorithm module is used to cancel the signal transmitted by the transmitting antenna when the useful signal in digital form is received The residual interference signal of the signal.
  • an embodiment of the present application discloses a transceiving device, the transceiving device includes a processor, the transceiving device further includes the transceiving device described in any one of the above embodiments, and the transceiving device is electrically connected to the processor. connection.
  • an embodiment of the present application discloses a transceiver device, including a transmitting antenna and a receiving antenna.
  • the transmitting antenna is arranged on the interference cancellation surface of the receiving antenna, and/or the receiving antenna is arranged on the interference cancellation surface of the transmitting antenna, so as to cancel the interference signal generated by the transmitting antenna.
  • the transmitting antenna has a figure-eight coil structure.
  • the receiving antenna has an axially symmetrical coil structure; the center of the transmitting antenna is located on the symmetry axis of the receiving antenna, and the transmitting antennas are symmetrically distributed on both sides of the symmetry axis, so that the receiving antenna Located on the interference cancellation surface of the transmitting antenna.
  • the transmitting antenna is a pair of side-by-side and spaced-apart coil structures, and the pair of side-by-side and spaced-apart coils are axisymmetric to each other.
  • the receiving antenna is an independent coil structure. The center of the independent coil is located on the interference cancellation surface of the transmitting antenna.
  • the transmitting antenna is a transmitting coil.
  • the receiving antenna is a receiving coil.
  • the center point of the transmitting coil is on the vertical line of the receiving coil; the plane where the transmitting coil is located is perpendicular to the plane where the receiving coil is located.
  • the mid-perpendicular line of the receiving coil is a straight line passing through the center point of the receiving coil and perpendicular to the plane where the receiving coil is located.
  • the architecture of the transmitting antenna and the architecture of the receiving antenna may also be interchanged. That is, the architecture of the transmitting antenna in the transceiver device of each embodiment in the third aspect may also be the architecture of the receiving antenna, and the architecture of the receiving antenna may also be the architecture of the transmitting antenna.
  • an embodiment of the present application discloses a communication system.
  • the communication system includes a network device and the foregoing transceiver device.
  • an embodiment of the present application discloses a communication system.
  • the communication system includes a mobile terminal and the foregoing transceiver device.
  • Figure 1 is a schematic diagram of magnetic communication.
  • Figure 2 shows the equivalent circuit of the sending and receiving ends of magnetic induction communication.
  • FIG. 3A is a schematic diagram of the architecture of a communication system in an embodiment of this application.
  • FIG. 3B is a schematic diagram of the architecture of a communication system in another embodiment of the application.
  • Figure 4 is a structural block diagram of a transceiver device in an embodiment of the application.
  • FIG. 5 is a structural block diagram of a transceiver device in an embodiment of the application.
  • FIG. 6A is a schematic structural diagram of a transmitting antenna and a receiving antenna in the first embodiment of this application.
  • FIG. 6B is a schematic structural diagram of a transmitting antenna and a receiving antenna in the second embodiment of this application.
  • Fig. 7 is a schematic diagram of parameters of the transmitting antenna and the receiving antenna in Fig. 6A.
  • FIG. 8A is a schematic diagram of the three-dimensional structure of the transmitting antenna and the receiving antenna in the third embodiment of this application.
  • FIG. 8B is a top view of the transmitting antenna and the receiving antenna in the third embodiment of the application.
  • FIG. 9A is a schematic structural diagram of a transmitting antenna and a receiving antenna in the fourth embodiment of this application.
  • FIG. 9B is a schematic structural diagram of a transmitting antenna and a receiving antenna in the fifth embodiment of this application.
  • Fig. 10 is a schematic diagram of interference analysis between the transmitting antenna and the receiving antenna in Fig. 9B.
  • FIG. 11A is a schematic structural diagram of a transmitting antenna and a receiving antenna in the sixth embodiment of this application.
  • FIG. 11B is a schematic structural diagram of a transmitting antenna and a receiving antenna in the seventh embodiment of this application.
  • FIG. 12A is a schematic structural diagram of a transmitting antenna and a receiving antenna in the eighth embodiment of this application.
  • FIG. 12B is a schematic diagram of the structure of the transmitting antenna and the receiving antenna in the ninth embodiment of this application.
  • FIG. 13A is a schematic structural diagram of a transmitting antenna and a receiving antenna in the tenth embodiment of this application.
  • FIG. 13B is a schematic structural diagram of a transmitting antenna and a receiving antenna in the eleventh embodiment of this application.
  • FIG. 14 is a structural block diagram of a transceiver device in another embodiment of the application.
  • Fig. 15 is a structural block diagram of the analog elimination module in Fig. 14.
  • FIG. 16 is a block diagram of the structure of the digital cancellation module in FIG. 14.
  • the present application provides a transceiver device and a transceiver device applied to the transceiver device.
  • a transceiver device By combining magnetic induction communication and full-duplex communication technology, the communication efficiency between the transceiver devices is improved and the self-interference signal in the full-duplex technology is improved. Achieve effective suppression.
  • Magnetic Induction is a near-field communication technology that uses magnetic fields to transmit information. It is used in underwater wireless sensor networks (Underwater Sensor Networks, UWSNs) and underground wireless sensor networks (Wireless Underground Sensor Networks, WUSNs). ) Exhibits channel invariance (not affected by space-time channel environment parameter transformation), negligible delay and long-range coverage. Among them, the magnetic induction communication relies on the magnetic field changes in the near field, while the traditional radio frequency communication relies on the far field radiation of electromagnetic waves.
  • UWSNs Underwater Sensor Networks
  • WUSNs Wireless Underground Sensor Networks
  • the characteristic change of the electromagnetic field depends on the distance from the antenna, and is usually divided into two parts: the near field and the far field.
  • the near-field zone can also be called the reaction zone. In the reaction zone, the electric and magnetic fields are the strongest and can be measured separately. Depending on the type of antenna, a certain type of field will become dominant.
  • the near-field area of the coil commonly used in magnetic induction communication mainly exists in the magnetic field, while the electric field is extremely weak.
  • the far-field area can also be called the radiation area. In the radiation area, the electromagnetic field begins to radiate outward, and the electric field and the magnetic field are coupled together and mutually support each other.
  • the boundary between the near field and the far field is not abrupt, so the boundary between the near field and the far field is not clearly defined.
  • the range of the near-field region is wavelength-level, and can be within a range of several wavelengths.
  • Full duplex (FD) technology as the key technology of the 5th Generation Mobile Networks (5G), can achieve simultaneous transmission and reception of the same frequency, improve system efficiency, reduce system delay, and achieve throughput Doubled. Therefore, the use of full-duplex technology in the magnetic induction communication scene can not only retain the advantages of magnetic induction communication, but also achieve an increase in system throughput.
  • the full-duplex technology has the same frequency for receiving and sending at the same time, and the distance between the transmitting and receiving antennas of the full-duplex communication node is much smaller than the propagation path of the effective signal, which results in strong self-interference of the local transmission signal on the local reception signal. Therefore, how to suppress strong self-interference to ensure the performance and throughput of the full-duplex communication system is the primary task of the full-duplex communication technology.
  • Figure 1 is a schematic diagram of magnetic communication.
  • energy mainly exists in the form of a magnetic field, and the characteristics of the near-field magnetic field are similar to the static magnetic field of a magnetic dipole.
  • both the transmitting antenna 10 and the receiving antenna 20 can use inductance coils. Loading the alternating current of the modulated signal on the transmitting coil will produce a changing magnetic field in the near field range of the transmitting coil, as shown by the dotted line in Figure 1.
  • the changing magnetic field will produce a changing magnetic flux at the receiving coil.
  • the coil has a closed loop, and the changing magnetic flux causes the receiving coil to generate induced electromotive force and induced current, which are then received and demodulated.
  • Figure 2 is the equivalent circuit of the transmitter and receiver of the magnetic induction communication.
  • Us is the power supply voltage, which can be understood as the adjusted electric signal to be sent.
  • Zt and Zr are the self-impedances of the transmitting coil and the receiving coil.
  • Z't and Z'r are equivalent impedances produced by the mutual influence of the receiving coil and the transmitting coil.
  • ZL is the load impedance.
  • UM is the induction of the receiving coil
  • the electromotive force can be regarded as the received electrical signal.
  • the relationship between them is as follows:
  • Rt and Lt are the resistance and self-inductance of the transmitting coil
  • Rr and Lr are the resistance and self-inductance of the receiving coil
  • M is the mutual inductance
  • Nt and Nr are the turns of the transmitting coil and the receiving coil
  • at and ar are the transmitting coil and The radius of the receiving coil
  • r is the distance between the sending coil and the receiving coil
  • w is the AC frequency.
  • FIG. 3A is a schematic structural diagram of a communication system in an embodiment of the application.
  • the communication system 900 includes a plurality of transceiver devices 200. Among them, multiple transceiver devices 200 can communicate with each other.
  • the multiple transceiving devices 200 include multiple mobile terminals S and one network device W.
  • the plurality of transceiving devices 200 includes one mobile terminal S and a plurality of network devices W. Therefore, in the embodiment of the present application, the types of the multiple transceiving devices 200 and the number of each type are not limited, as long as the multiple transceiving devices 200 can communicate with each other.
  • the network device W may be a device deployed in a wireless access network to provide wireless communication functions for terminal devices.
  • the network device W may include various forms of macro base stations, micro base stations (also referred to as small stations), relay stations, access points, and so on.
  • BTS Base Transceiver Station, base station transceiver station
  • WCDMA Wideband Code Division Multiple Access
  • GSM Global System for Mobile Communication
  • CDMA Code Division Multiple Access
  • NB NodeB
  • eNB or eNodeB Evolutional NodeB
  • LTE Long Term Evolution
  • the network device W may also be a wireless controller in a CRAN (Cloud Radio Access Network) scenario, a base station device in a future 5G network, or a network in a future evolved PLMN network Devices, Transmission and Reception Point (TRP), and even wearable devices and vehicle-mounted devices, etc., are not limited here.
  • CRAN Cloud Radio Access Network
  • TRP Transmission and Reception Point
  • the mobile terminal S may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to a wireless modem.
  • the mobile terminal S may also be a mobile station (Mobile Station, MS), subscriber unit (subscriber unit), cellular phone (cellular phone), smart phone (smart phone), wireless data card, personal digital assistant (Personal Digital Assistant) Assistant (PDA) computers, tablet computers, wireless modems (modem), handheld devices (handsets), laptop computers (laptop computers), machine type communication (Machine Type Communication, MTC) terminals, etc., are not limited here.
  • transceiver device 200 is only for describing the transceiver device 200, and does not limit the transceiver device 200, as long as the device with receiving function and sending function belongs to the above-mentioned transceiver device 200.
  • the transceiving device 200 includes a transceiving device 100 and a processor 300 communicatively connected to the transceiving device 100.
  • the transceiving device 100 is used to send and receive communication signals to enable communication between the transceiving device 200 and other transceiving devices 200.
  • the processor 300 is used to generate a corresponding communication signal and send it through the transceiver device 100, and the processor 300 is also used to analyze the communication signal received by the transceiver device 100, and control the The transceiver device 200 executes corresponding actions.
  • the processor 300 may include one or more processing units.
  • the processor 300 may include an application processor (AP), a modem processor, a graphics processing unit (GPU), and an image signal processor. (image signal processor, ISP), controller, memory, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural-network processing unit (NPU) Wait.
  • AP application processor
  • modem processor graphics processing unit
  • GPU graphics processing unit
  • image signal processor image signal processor
  • ISP image signal processor
  • controller memory
  • video codec digital signal processor
  • DSP digital signal processor
  • NPU neural-network processing unit
  • the different processing units may be independent devices or integrated in one or more processors.
  • the transceiver device 200 may also include one or more processors 300.
  • the controller may be the nerve center and command center of the transceiver 200.
  • the controller can generate operation control signals according to the instruction operation code and timing signals to complete the control of fetching and executing instructions.
  • a memory may also be provided in the processor 300 to store instructions and data.
  • the memory in the processor 300 is a cache memory.
  • the memory can store instructions or data that have just been used or recycled by the processor 300. If the processor 300 needs to use the instruction or data again, it can be directly called from the memory. Repeated access is avoided, the waiting time of the processor 300 is reduced, and the efficiency of the transceiver 200 is improved.
  • the processor 300 may include one or more interfaces.
  • the interface may include an integrated circuit (inter-integrated circuit, I2C) interface, an integrated circuit built-in audio (inter-integrated circuit sound, I2S) interface, a pulse code modulation (PCM) interface, and a universal asynchronous transmitter receiver/transmitter, UART) interface, mobile industry processor interface (MIPI), general-purpose input/output (GPIO) interface, subscriber identity module (SIM) interface, and / Or Universal Serial Bus (USB) interface, etc.
  • I2C integrated circuit
  • I2S integrated circuit built-in audio
  • PCM pulse code modulation
  • UART universal asynchronous transmitter receiver/transmitter
  • MIPI mobile industry processor interface
  • GPIO general-purpose input/output
  • SIM subscriber identity module
  • USB Universal Serial Bus
  • the structure illustrated in the embodiment of the present application does not constitute a specific limitation on the transceiver device 200.
  • the transceiver device 200 may include more or fewer components than shown, or combine certain components, or split certain components, or arrange different components.
  • the illustrated components can be implemented in hardware, software, or a combination of software and hardware.
  • the transceiver device 100 includes a transmitting antenna 10, a receiving antenna 20, a digital-to-analog conversion module 30, a first amplifying module 40, a second amplifying module 50, and an analog-to-digital conversion module 60.
  • the processor 300 is used to generate a digital signal in response to a specific instruction.
  • the specific instruction is determined according to the current state of use of the transceiver 200. For example, when the transceiving device 200 is a mobile terminal (such as a mobile phone) and the current user is using instant messaging software (such as WeChat) to communicate with another user, the specific instruction may be the text input by the user or the user input Voice.
  • the processor 300 responds to a specific instruction input by the user and converts the instruction into a corresponding digital signal for output.
  • the digital-to-analog conversion module 30 is used to convert a digital signal into an analog signal.
  • the digital-to-analog conversion module 30 may be a digital-to-analog converter (D/A converter).
  • the first amplifying module 40 is used for amplifying the analog signal converted by the digital-to-analog conversion module 30.
  • the transmitting antenna 10 is used for transmitting the analog signal amplified by the first amplifying module 40, that is, the transmitting antenna 10 is used for transmitting the local signal to the receiving antenna of the opposite end.
  • the receiving antenna 20 is used to receive communication signals sent by other transceiver devices 200, that is, the receiving antenna 20 is used to receive useful signals transmitted by the transmitting antenna of the opposite end.
  • the receiving antenna 20 receives the local signal transmitted by the transmitting antenna 10 while receiving the useful signal transmitted by the transmitting antenna of the opposite end, that is, the useful signal received by the receiving antenna 20 has a local interference signal.
  • the local signal refers to a signal that is generated by the transceiver device itself and needs to be sent to another transceiver device.
  • the opposite terminal refers to another transceiver that communicates with the transceiver.
  • the second amplifying module 50 is used to amplify the useful signal received by the receiving antenna 20.
  • the analog-to-digital conversion module 60 is in communication connection with the second amplifying module 50, and is used for converting the amplified useful signal into a digital signal.
  • the analog-to-digital conversion module 60 may be an analog-to-digital converter (A/D converter).
  • one of the transmitting antenna 10 and the receiving antenna 20 is set in the transmitting antenna 10 and the receiving antenna 20 on the other interference cancellation surface.
  • the interference cancellation surface refers to a surface where the interference signal generated by the transmitting antenna 10 is cancelled.
  • FIG. 6A is a schematic structural diagram of a transmitting antenna and a receiving antenna in the first embodiment of this application.
  • the transmitting antenna 10A is a coil in the shape of a figure of eight.
  • the receiving antenna 20A is an axisymmetric coil.
  • the center of the receiving antenna 20A is located on the interference cancellation plane X of the transmitting antenna 10A.
  • the shape of the axisymmetric coil is not limited, as long as the coil itself is axisymmetric.
  • the receiving antenna 20A may be a circular coil, a square coil, a triangular coil, a trapezoidal coil, etc., which are axially symmetrical.
  • the interference cancellation surface X is the difference between the two coils of the figure-eight coil
  • the vertical bisecting plane connecting the center points that is, the interference cancellation plane X is a plane composed of points with equal distances from the center points of the coils on both sides of the 8-shaped coil. It can be understood that when the coils on both sides of the transmitting antenna 10 have different turns or sizes, the interference cancellation surface may be a curved surface.
  • FIG. 6B is a schematic structural diagram of a transmitting antenna and a receiving antenna in the second embodiment of this application.
  • the transmitting antenna 10B is an axisymmetric coil.
  • the receiving antenna 20B is a coil in the shape of a figure of eight.
  • the center of the transmitting antenna 10B is located on the interference cancellation plane X of the receiving antenna 20B.
  • the structural parameters of the transmitting antenna 10B and the receiving antenna 20A in the first embodiment are similar, and the structural parameters of the receiving antenna 20B and the transmitting antenna 10A in the first embodiment are similar. Repeat.
  • antenna Transmitting antenna 10A Receiving antenna 20A shape Figure eight Round radius r1 r2 Number of turns N1 N2 Current I1 ——
  • the number of turns of the coils on both sides of the center of the 8-shaped coil of the transmitting antenna 10A is N1
  • the radius is r1
  • the current passing through the transmitting antenna 10 is I1.
  • the currents flowing through the coils on both sides of the center of the figure-eight coil are equal in magnitude but opposite in direction.
  • the magnetic flux generated by each coil in the transmitting antenna 10A on the receiving antenna 20A is:
  • the magnetic flux generated by each of the eight-shaped coils of the transmitting antenna 10A on the receiving antenna 20 is ⁇ 1 and ⁇ 2, respectively. Since the directions of ⁇ 1 and ⁇ 2 are opposite, the The magnetic flux generated by the transmitting antenna 10A on the receiving antenna 20A is constantly zero, so that the receiving antenna 20A does not generate induced electromotive force, that is, the transmitting antenna 10A does not generate interference signals to the receiving antenna 20A.
  • the transmitting antenna 10B and the receiving antenna 20B are the structures in the second embodiment, the transmitting antenna 10B generates two equal magnetic fluxes on the receiving antenna 20B, and the change in the magnetic flux makes them generate equal Since the receiving antenna 20B is a figure-of-eight coil, the direction of the induced electromotive force generated by each induction coil is opposite, and the two equal and opposite induced electromotive forces cancel each other, so the transmitting antenna 10B is also opposite to the receiving antenna 20B. No interfering signals are generated.
  • the isolation between the antennas can be achieved by setting one of the transmitting antenna 10 and the receiving antenna 20 on the other interference cancellation surface.
  • this The application only needs to ensure that the circular coil is located on the interference cancellation surface of the figure-of-eight coil, and the two do not need to be separated by a long distance, so that the size of the transceiver 100 is less required.
  • the isolation method based on antenna cancellation in the radio frequency system requires the use of two transmitting antennas, and the distance between the two and the receiving antenna is half a wavelength.
  • the figure-eight coil in this solution is actually one coil, and only one transmission path is needed, which is simpler to implement.
  • the antenna of the transceiver device of the communication peer needs to be paired with the antenna of the local transceiver device 200.
  • the transmitting antenna 10 of the local transceiver device 200 is a figure-eight coil
  • the receiving antenna 20 of the opposite transceiver device is required to be a figure eight coil. If the transmitting antenna of the opposite transceiver device is a figure eight coil, Therefore, mutual communication cannot be performed, which limits the application scenarios of the transceiver 200.
  • FIG. 8A is a schematic diagram of the three-dimensional structure of the transmitting antenna and the receiving antenna in the third embodiment of the application.
  • the transmitting antenna 10C and the receiving antenna 20C are both 8-shaped coils, that is, the symmetrical coils in the first embodiment and the second embodiment are also 8-shaped coils.
  • the transmitting antenna 10C is on the interference cancellation surface of the receiving antenna 20C; or, the receiving antenna 20C is on the interference cancellation surface of the transmitting antenna 10C; or, the transmitting antenna 10C is on the interference cancellation surface of the transmitting antenna 10C.
  • the interference cancellation surface of the receiving antenna 20C, and the receiving antenna 20C is on the interference cancellation surface of the transmitting antenna 10C.
  • the principle of interference cancellation in this embodiment is similar to the principle of interference cancellation in the first embodiment, and will not be repeated here. In this embodiment, since both antennas are 8-shaped coils, the problem of pairing between transceiver devices can be avoided, thereby improving the applicability of transceiver devices.
  • the transmission antenna 10 can be generated on the receiving antenna 20.
  • the antenna is placed in a three-dimensional space, if the position of the axially symmetrical coil relative to the figure-eight coil is changed arbitrarily, the interference signal generated by the transmitting antenna 10 will be eliminated up to Less than ideal results, that is, there will still be interference signals. Therefore, in order to ensure the effect of eliminating interference signals generated by the transmitting antenna 10, in one embodiment, the plane where the axisymmetric coil is located is connected to the center points of the two coils of the figure-8 coil. The lines are parallel; or, the plane where the axisymmetric coil is located is parallel to the plane where the eight-shaped coil is located.
  • the coils located on both sides of the center point of the 8-shaped coil are axisymmetric with each other, and the number of turns of the coils located on both sides of the center point is the same.
  • the interference cancellation surface of the figure-eight coil is a vertical bisecting plane connecting the center points of the two coils of the figure-eight coil. In this way, it is easy to design and place the antenna.
  • FIG. 9A is a schematic structural diagram of a transmitting antenna and a receiving antenna in a fourth embodiment of this application.
  • the transmitting antenna 10D is a pair of coils arranged side by side and spaced apart. Among them, a pair of coils arranged side by side and spaced apart are on the same plane.
  • the receiving antenna 20D is an independent coil. The center of the receiving antenna 20D is located on the interference cancellation plane X of the transmitting antenna 10D.
  • the independent coils are axially symmetrical, the parameters of the pair of side-by-side and spaced-apart coils are the same, and the currents passing through the pair of side-by-side and spaced-apart coils have the same magnitude but opposite directions.
  • the same parameters of the coils include the same number of turns and the same radius of each coil. In this way, the interference signal generated by the transmitting antenna 10D on the receiving antenna 20D can be eliminated.
  • the principle of interference cancellation is similar to the principle of interference cancellation in the first embodiment, and will not be repeated here.
  • the receiving antenna of the opposite end needs to correspond to the structure of the local transmitting antenna 10D
  • the sending antenna of the opposite end needs to correspond to the structure of the local receiving antenna 20D.
  • FIG. 9B is a schematic structural diagram of the transmitting antenna and the receiving antenna in the fifth embodiment of this application.
  • the receiving antenna 20E is a pair of coils arranged side by side and spaced apart.
  • the transmitting antenna 10E is an independent coil.
  • the center of the transmitting antenna 10E is located on the interference cancellation plane X of the receiving antenna 20E.
  • the number of turns and radius of the pair of coils arranged side by side and spaced apart are the same.
  • the independent coils are axially symmetrical.
  • FIG. 10 is a schematic diagram of interference analysis of the transmitting antenna and the receiving antenna in FIG. 9B.
  • the receiving antenna 20E is a pair of coils arranged side by side and spaced apart, it is necessary to explain how to use the dual coils to eliminate interference and obtain the target signal. Among them, the receiving coil of the receiving antenna 20E is affected by each transmitting coil as shown in FIG. 10.
  • ⁇ 1 M 11 ⁇ I 1 +M 21 ⁇ I 2 +M 31 ⁇ I 3
  • ⁇ 2 M 22 ⁇ I 2 +M 12 ⁇ I 1 +M 22 ⁇ I 3
  • one of the electrical signals received by the two coils in the receiving antenna 20E can be phase-shifted by 180° and added, thereby eliminating the interference signal of the transmitting antenna 10E, thereby achieving the effect of isolating the transmitting antenna 10E from the receiving antenna 20E .
  • one of the transmitting antenna 10 and the receiving antenna 20 is set as a pair of coils arranged side by side and spaced apart, and the transmitting antenna 10 and the receiving antenna
  • the other of the antennas 20 is an axisymmetric coil, and the pair of coils arranged side by side and spaced apart are axisymmetric with each other. Then, the center of the axisymmetric coil is located on the interference cancellation surface of the pair of parallel and spaced coils, which can also eliminate the interference signal generated by the transmitting antenna 10.
  • the plane where the independent coil is located is connected to the two coils of the pair of parallel and spaced coils.
  • the lines of the center points are parallel.
  • the plane on which the independent coils are located is parallel to the plane on which the pair of parallel and spaced coils are located.
  • the symmetry axis of each coil in the pair of side by side and spaced apart coils is on the same straight line. In this way, the thickness of the transceiver device can be reduced, which is beneficial to the development of the transceiver device toward a lighter and thinner direction.
  • the transmitting antenna is the pair of side by side and spaced apart coils
  • the number of turns of each coil in the pair of side by side and spaced apart coils is the same, and the magnitude of the current passing through each coil The same but the opposite direction can eliminate the interference signal generated by the transmitting antenna 10.
  • the receiving antenna is the pair of side by side and spaced apart coils
  • the number of turns of each coil in the pair of side by side and spaced apart coils is the same, and the electrical signal generated by the receiving antenna is The electrical signal generated by one coil and the electrical signal generated by the other coil are phase-shifted by the sum of 180°, so that the interference signal generated by the transmitting antenna 10E can be eliminated.
  • FIG. 11A is a schematic structural diagram of a transmitting antenna and a receiving antenna in the sixth embodiment of this application.
  • the difference from the fifth embodiment (FIG. 9B) is that the plane where the transmitting antenna 10F is located is perpendicular to the line connecting the center points of the two coils in the receiving antenna 20F, and the The center point of the independent coil is on a straight line with the center point of each coil in the pair of coils arranged side by side and spaced apart.
  • the transmitting antenna 10F and the receiving antenna 20F are placed orthogonally rather than in parallel, the magnetic flux generated by each coil of the transmitting antenna 10F in the receiving antenna 20F is the same as the magnetic induction intensity.
  • the integral on the projected area of the coil on the plane perpendicular to the line direction is as follows:
  • B is the magnetic induction intensity at the receiving antenna 20F
  • S is the area of each coil in the receiving antenna 20F
  • is the angle between the transmitting and receiving coils. Therefore, the placement angle of the coil determines the size of the magnetic flux through itself.
  • the independent coils may not be restricted to be axially symmetrical, which facilitates the diversified development of antennas.
  • the symmetry axis of each coil of the receiving antenna 20F is on a straight line, for example, the symmetry of each coil coincides with the y-axis, and each coil can also rotate around the y-axis.
  • FIG. 11B is a schematic structural diagram of the transmitting antenna and the receiving antenna in the seventh embodiment of this application.
  • the difference from the fourth embodiment (FIG. 9A) is that the plane where the receiving antenna 20G is located and the transmitting antenna
  • the line connecting the center points of the two coils in 10G is perpendicular, and the center point of the independent coil is on a straight line with the center point of each coil in the pair of parallel and spaced coils.
  • the principle of eliminating the interference signal generated by the transmitting antenna 10G in this embodiment is similar to that of the sixth embodiment (FIG. 11A), and will not be repeated here.
  • the transmitting antenna 10G since the transmitting antenna 10G does not cause interference to the receiving antenna 20G, the magnitude and direction of the current applied to the two coils of the transmitting antenna 10G are not limited.
  • FIG. 12A is a schematic structural diagram of the transmitting antenna and the receiving antenna in the eighth embodiment of this application.
  • the difference from the seventh embodiment (FIG. 11B) is that the plane where the receiving antenna 20H is located is the same as the pair of antennas.
  • the line of the center points of the two coils of the coils arranged side by side and spaced apart is perpendicular, but the center point of the receiving antenna 20H is not on a straight line with the center points of the two coils of the transmitting antenna 10H.
  • FIG. 12B is a schematic structural diagram of the transmitting antenna and the receiving antenna in the ninth embodiment of this application.
  • the difference from the sixth embodiment (FIG. 11A) is that the plane where the transmitting antenna 10I is located is the same as that of the receiving antenna.
  • the line connecting the center points of the two coils of 20H is perpendicular, but the center point of the transmitting antenna 10I is not on a straight line with the center points of the two coils of the receiving antenna 20I.
  • the number of turns of each coil in the receiving antenna 20I is the same, and the electrical signal generated by the receiving antenna 20I is the sum of the electrical signals generated by each coil in the receiving antenna 20I.
  • the magnetic flux generated by the transmitting antenna 10I in each coil of the receiving antenna 20I is the same, when the directions are opposite, that is, the electrical signals generated by the two coils have the same magnitude but opposite directions, so that the receiving antenna 20I is caused by the transmitting antenna.
  • the electrical signals generated by 10I are cancelled out, that is, the interference generated by the transmitting antenna 10I can be eliminated.
  • the interference cancellation surface is a vertical bisecting plane connecting the center points of each coil in the pair of coils arranged side by side and spaced apart, thereby facilitating antenna design and Place.
  • FIG. 13A is a schematic structural diagram of a transmitting antenna and a receiving antenna in the tenth embodiment of this application.
  • the transmitting antenna 10J is a transmitting coil.
  • the receiving antenna 20J is a receiving coil.
  • the center point of the receiving coil is on the vertical line of the transmitting coil.
  • the plane where the transmitting coil is located is perpendicular to the plane where the receiving coil is located.
  • the mid-perpendicular line of the transmitting coil is a straight line passing through the center point of the transmitting coil and perpendicular to the plane where the transmitting coil is located.
  • the principle of eliminating the interference signal generated by the transmitting antenna 10J in this embodiment is similar to that of the sixth embodiment (FIG. 11A), and will not be repeated here.
  • FIG. 13B is a schematic structural diagram of a transmitting antenna and a receiving antenna in an eleventh embodiment of this application.
  • the transmitting antenna 10K is a transmitting coil.
  • the receiving antenna 20K is a receiving coil.
  • the center point of the transmitting coil is on the vertical line of the receiving coil.
  • the plane where the transmitting coil is located is perpendicular to the plane where the receiving coil is located.
  • the vertical line of the receiving coil is a straight line passing through the center point of the receiving coil and perpendicular to the plane where the receiving coil is located.
  • the principle of eliminating the interference signal generated by the transmitting antenna 10K in this embodiment is similar to that of the sixth embodiment (FIG. 11A), and will not be repeated here.
  • the interference signal generated by the transmitting antenna 10 can be eliminated.
  • the shapes of the transmitting antenna 10 and the receiving antenna 20 are not limited.
  • the transmitting antenna 10 and the transmitting antenna 20 can be designed and positioned to eliminate the interference generated by the transmitting antenna 10 to the receiving antenna 20, in practical applications, There are some interference signals. Therefore, referring to FIG. 14, in some embodiments, in order to further eliminate the interference signal generated by the local transmitting antenna 10 to the local receiving antenna 20, the transceiver device 100 further includes an analog cancellation module 70 and a digital cancellation module 80.
  • the analog cancellation module 70 is used to perform analog cancellation on the useful signal received by the receiving antenna 20.
  • the digital cancellation module 80 is used to digitally cancel the useful signal received by the receiving antenna 20 and converted from analog to digital.
  • the analog cancellation module 70 includes a gain control module 71 and an adder module 72.
  • the gain control module 71 is configured to perform gain control on the analog signal sent by the transmitting antenna 10.
  • the adder module 72 is electrically connected to the gain control module 71, and is used to eliminate the sent analog signal when the useful signal in analog form is received.
  • the digital cancellation module 80 includes a channel estimation module 81 and an algorithm module 82.
  • the channel estimation module 81 is used to estimate the channel response.
  • the algorithm module 82 is used to eliminate the residual interference signal of the signal transmitted by the transmitting antenna 10 when the useful signal in digital form is received.
  • the transceiving device 200 and the transceiving device 100 in the embodiments of the present application combine full-duplex technology and magnetic induction communication, which not only utilizes the advantages of magnetic induction communication, but also improves the communication efficiency of magnetic induction communication.
  • the position, angle and attitude of the receiving and sending coils the self-interference problem in the full-duplex technology is eliminated, which makes the realization of the full-duplex technology in the magnetic induction communication easier and can achieve better isolation effects .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Transceivers (AREA)

Abstract

本申请实施例提供一种收发设备及应用在该收发设备中的收发装置,收发装置包括发送天线和接收天线。发送天线用于将本地信号发送至对端的接收天线。接收天线用于接收对端发送天线发射的有用信号。所述发送天线和所述接收天线其中之一在所述发送天线和所述接收天线其中另一的干扰消除面上。其中,所述干扰消除面是指使得所述发送天线所产生的干扰信号得到抵消的面。本申请将全双工通信技术与磁感通信相结合,提高了磁感通信的吞吐,且能够避免自干扰。

Description

收发装置及收发设备
本申请要求于2019年06月05日提交中国专利局、申请号为201910486718.9、申请名称为“收发装置及收发设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及通信产品中的收发装置及收发设备。
背景技术
磁感通信具有安全性高、成本低、功耗小等优点,但相比于传统的射频通信,常工作于频率较低的频段,如13.56MHz,进而导致系统效率和吞吐受到了带宽的约束,传输速率较低,从而限制了磁感通信的应用场景。
将磁感通信与全双工技术相结合,可以提升系统吞吐。但全双工技术中会存在信号自干扰的问题,即本地接收天线在接收通信对端发送天线的有用信号时,也接收本地发送天线发射的信号。因此,如何有效地抑制自干扰信号而保证全双工的正常通信,是业界一直追求的目标。
发明内容
本申请的目的在于提供一种收发装置以及收发设备,可以提高收发设备之间的通信效率且能够对自干扰信号实现有效的抑制。
上述目标和其他目标将通过独立权利要求中的特征来达成。进一步的实现方式在从属权利要求、说明书和附图中体现。
第一方面,本申请实施例公开一种收发装置,包括发送天线和接收接天。所述发送天线用于将本地信号发送至对端的接收天线。所述接收天线用于接收对端发送天线发射的有用信号。其中,所述发送天线和所述接收天线其中之一在所述发送天线和所述接收天线其中另一的干扰消除面上;其中,所述干扰消除面是指使得所述发送天线所产生的干扰信号得到抵消的面。
这里,本地信号是指收发设备本身产生的且需要发送至另一收发设备的信号。对端是指与该收发设备相通信的另一收发设备。
第一方面所描述的技术方案,由于包括发送天线和接收天线,即采用全双工技术,进而可以提升收发设备的通信效率。此外,还将所述发送天线和所述接收天线其中之一设置在所述发送天线和所述接收天线其中另一的干扰消除面上,进而可以有效的消除本地发送天线所产生的干扰信号,实现了对自干扰信号的有效抑制。
根据第一方面,在一实施方式中,所述发送天线和所述接收天线其中之一为呈8字形的线圈;所述发送天线和所述接收天线其中另一为呈轴对称状的线圈;所述呈轴对称状的线圈的中心位于所述呈8字形的线圈的干扰消除面上。本实施方式中,由于发送天线和接收天线都是线圈,且不需要间隔较远的距离,进而对收发装置尺寸的要求较小。此外,相 较于射频系统中基于天线消除的隔离方法,即需要采用两根发送天线,且二者与接收天线的距离相差半个波长的方案,本方案中的8字形线圈实则为一个线圈,即仅需要一条发射通路,实现上更加简单。
在一实施方式中,所述呈轴对称状的线圈所在的平面与所述呈8字形线圈的两个线圈的中心点的连线平行。如此,可以保证对所述发送天线所产生的干扰信号的消除效果。在另一实施方式中,还可以限定为,所述呈轴对称状的线圈所在的平面与所述呈8字形线圈所在的平面平行。
上述实施例中,由于收发设备之间的线圈结构互相对应但不同,因此相互通信的两个收发设备需要进行配对,即具有相同结构的收发设备之间不能相互通信。因此,在一实施方式中,所述呈轴对称状的线圈也为8字形线圈。两个所述8字形线圈中的至少一个在另一个的干扰消除面上。如此,可以避免收发设备之间需要配对的问题,提高了收发设备的适用性。
在一实施方式中,所述呈8字形的线圈以8字的中心点对称分布,且位于中心点两侧的线圈的匝数相同。所述8字形线圈的干扰消除面为所述8字形线圈的两个线圈的中心点连线的垂直平分面。这样,可以方便天线的设计以及位置摆放,提高生产生时的装配效率。
在一实施方式中,所述发送天线和所述接收天线其中之一为一对并排且间隔设置的线圈;所述一对并排且间隔设置的线圈互为轴对称;所述发送天线和所述接收天线其中另一独立线圈;所述独立线圈的中心位于所述一对并排且间隔设置的线圈的干扰消除面上。其中,所述一对并排且间隔设置的线圈在同一平面上。本实施方式中,由于所述发送天线和所述接收天线之一为一对并排且间隔设置的线圈,即为两个单独的线圈,这样可以方便天线的位置摆放,使得收发装置的适用性更好,可以根据安装环境具体的空间情况,来调节每个线圈的位置。
在一实施方式中,所述独立线圈呈轴对称状,且所述独立线圈所在的平面与所述一对并排且间隔设置的线圈中的两个线圈的中心点的连线平行。如此,可以保证对发送天线所产生干扰信号的消除效果。此外,在另一实施方式中,还可限定,所述独立线圈呈轴对称状,且所述独立线圈所在的平面与所述一对并排且间隔设置的线圈所在的平面平行。如此,可以降低收发装置的厚度,有利于收发设备朝着轻薄化的方向发展。
在一实施方式中,所述独立线圈所在的平面与所述一对并排且间隔设置的线圈中的两个线圈的中心点的连线垂直。在本实施方式中,所述独立线圈的形状可以是任意形状且不要求是对称状的,这样便于天线的多样化设计,使得收发装置的适用性更高。
在一实施方式中,当所述发送天线为所述一对并排且间隔设置的线圈时,所述一对并排且间隔设置的线圈中的每个线圈的匝数相同,且通过所述每个线圈的电流的大小值相同但方向相反。或者,当所述接收天线为所述一对并排且间隔设置的线圈时,所述一对并排且间隔设置的线圈中的每个线圈的匝数相同,且所述接收天线所产生的电信号为其中一个线圈所产生的电信号与另一个线圈所产生的电信号移相180°之后的和。这样可以将所述发送天线所产生的干扰信号消除,且便于天线的设计和安装。
在一实施方式中,当所述发送天线为所述一对并排且间隔设置的线圈时,所述一对并排且间隔设置的线圈中的每个线圈的匝数相同,且通过所述每个线圈的电流的大小相同且 方向相同。或者,当所述接收天线为所述一对并排且间隔设置的线圈时,所述一对并排且间隔设置的线圈中的每个线圈的匝数相同,且接收天线所产生的电信号为所述一对并排且间隔设置的线圈中的每个线圈所产生的电信号之和。这样可以将所述发送天线所产生的干扰信号消除,且便于天线的设计和安装。
在一实施方式中,所述独立线圈的中心点与所述一对并排且间隔设置的线圈中的每个线圈的中心点在一条直线上。这样使得独立线圈的尺寸不受限制,且一对并排且间隔设置的线圈中的每个线圈的尺寸及通电电流的大小及方向也不受限制,更好的提高了收发装置的适用性。
在一实施方式中,所述干扰消除面为所述一对并排且间隔设置的线圈中的每个线圈的中心点连线的垂直平分面。如此,可方便天线的安装。
在一实施方式中,所述发送天线为发送线圈;所述接收天线为接收线圈;所述发送线圈和所述接收线圈之一的中心点在所述发送线圈和所述接收线圈其中另一的中垂线上;所述发送线圈所在的平面和所述接收线圈所在的平面相垂直;其中,所述发送线圈的中垂线为经过所述发送线圈的中心点且与所述发送线圈所在的平面垂直的直线;所述接收线圈的中垂线为经过所述接收线圈的中心点且与所述接收线圈所在的平面垂直的直线。本实施方式中,由于发送天线和接收天线均为独立的线圈,且发送天线不会对所述接收天线产生干扰,因此,线圈的尺寸和形状不会受到限制,提高了收发装置的适用性,且结构简单。
理想情况下,通过上述各个实施例中的天线的摆放可以消除发送天线所产生的干扰信号,但在实际应用中,还会存在部分干扰信号。因此,为了对干扰信号达到更好的消除效果,在一实施方式中,所述收发装置还包括用于对所述接收天线接收到的有用信号进行模拟消除的模拟消除模块;所述模拟消除模考包括增益控制模块和加法器模块;所述增益控制模块用于对发送的模拟信号进行增益控制;所述加法器模块与所述增益控制模块电连接,用于在接收到模拟形式的所述有用信号时消除所述发送天线所发送的模拟信号。
为了对残留的干扰信号进一步消除,在一实施方式中,所述收发装置还包括数字消除模块;所述数字消除模块用于对所述接收天线接收到且经模数转换后的有用信号进行数字消除;所述数字消除模块包括信道估计模块及算法模块;所述信道估计模块用于估计信道响应;所述算法模块用于在接收到数字形式的所述有用信号时消除所述发送天线所发送信号的残留干扰信号。
第二方面,本申请实施例公开一种收发设备,所述收发设备包括处理器,所述收发设备还包括上述任意一实施例中所述的收发装置,所述收发装置与所述处理器电连接。
第三方面,本申请实施例公开一种收发装置,包括发送天线和接收天线。所述发送天线设置在所述接收天线的干扰消除面上,和/或所述接收天线设置在所述发送天线的干扰消除面上,以抵消所述发送天线所产生的干扰信号。
在一实施方式中,所述发送天线呈8字形的线圈架构。所述接收天线呈轴对称状的线圈架构;所述发送天线的中心位于所述接收天线的对称轴上,且所述发送天线对称分布在所述对称轴的两侧,以使所述接收天线位于所述发送天线的干扰消除面上。
在一实施方式中,所述发送天线呈一对并排且间隔设置的线圈架构,且所述一对并排且间隔设置的线圈互为轴对称。所述接收天线为独立线圈架构。所述独立线圈的中心位于所述发送天线的干扰消除面上。
在一实施方式中,所述发送天线为发送线圈。所述接收天线为接收线圈。所述发送线圈中心点在所述接收线圈的中垂线上;所述发送线圈所在的平面和所述接收线圈所在的平面相垂直。所述接收线圈的中垂线为经过所述接收线圈的中心点且与所述接收线圈所在的平面垂直的直线。
其中,在所述第三方面所记载的方案中,所述发送天线的架构和所述接收天线的架构也可以互换。即,第三方面中各个实施例的收发装置中的发送天线的架构也可以是接收天线的架构,接收天线的架构也可以是发送天线的架构。
第四方面,本申请实施例公开一种通信系统,所述通信系统包括网络设备和上述的收发设备。
第五方面,本申请实施例公开一种通信系统,所述通信系统包括移动终端和上述的收发设备。
附图说明
为了说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1为磁感通信的原理图。
图2为磁感通信发送与接收端的等效电路。
图3A为本申请一实施例中的通信系统的架构示意图。
图3B为本申请另一实施例中的通信系统的架构示意图。
图4为本申请一实施例中的收发设备的结构框图。
图5为本申请一实施例中的收发装置的结构框图。
图6A为本申请第一实施方式中的发送天线和接收天线的结构示意图。
图6B为本申请第二实施方式中的发送天线和接收天线的结构示意图。
图7为图6A中发送天线和接收天线的参数示意图。
图8A为本申请第三实施例中的发送天线和接收天线的立体结构示意图。
图8B为本申请第三实施例中的发送天线和接收天线的俯视图。
图9A为本申请第四实施例中的发送天线和接收天线的结构示意图。
图9B为本申请第五实施例中的发送天线和接收天线的结构示意图。
图10为图9B中的发送天线和接收天线的干扰分析原理图。
图11A为本申请第六实施例中的发送天线和接收天线的结构示意图。
图11B为本申请第七实施例中的发送天线和接收天线的结构示意图。
图12A为本申请第八实施例中的发送天线和接收天线的结构示意图。
图12B为本申请第九实施例中的发送天线和接收天线的结构示意图。
图13A为本申请第十实施例中的发送天线和接收天线的结构示意图。
图13B为本申请第十一实施例中的发送天线和接收天线的结构示意图。
图14为本申请另一实施例中的收发设备的结构框图。
图15为图14中的模拟消除模块的结构框图。
图16为图14中的数字消除模块的结构框图。
具体实施方式
本申请提供一种收发设备以及应用于收发设备中的收发装置,通过将磁感通信和全双工通信技术结合来提高收发设备之间的通信效率且能够对全双工技术中的自干扰信号实现有效的抑制。
磁感通信(Magnetic Induction,MI)是一种利用磁场来传递信息的近场通信技术,其在水下无线传感器网络(Underwater Sensor Networks,UWSNs)和地下无线传感器网络中(Wireless Underground Sensor Networks,WUSNs)展现出信道不变性(不受空-时信道环境参数变换影响)、时延可忽略性及远覆盖距离性。其中,磁感通信依靠近场的磁场变化,而传统的射频通信,则依靠的是电磁波的远场辐射。
电磁场的特性变化取决于与天线的距离,通常分为两个部分:近场和远场。近场区又可以称为反应区,在反应区中,电场和磁场是最强的,并且可以单独测量。根据天线的种类,某一种场会成为主导,例如磁感通信中通常采用的线圈近场区能量主要存在于磁场中,而电场极其微弱。远场区又可以称为辐射区,在辐射区内,电磁场开始向外辐射,电场和磁场耦合在一起,相互支持相互产生。近场和远场的交界并不是突变的,因此近场和远场的边界也没有明确的定义。通常,近场区范围是波长级的,可以为数个波长以内的范围。
全双工(full duplex,FD)技术作为第五代移动网络(5th Generation Mobile Networks,5G)的关键技术,可以实现同时同频的发送和接收,提升系统效率,减小系统时延,实现吞吐的加倍。因此,在磁感通信场景中采用全双工技术,既可以保留磁感通信的优点,又可以实现系统吞吐的提升。但全双工技术由于收发同时同频,且全双工通信节点的收发天线相隔的距离远小于有效信号的传播路径,进而导致本地发送信号会对本地接收信号产生强烈的自干扰。因此,如何抑制强自干扰以保证全双工通信系统性能和吞吐是采用全双工通信技术的首要任务。
下面结合附图,对本申请的实施例进行描述。
请参阅图1,图1为磁感通信的原理图。在电感线圈周围的近场区,能量主要以磁场的形式存在,近场磁场的特性与磁偶极子的静态磁场相似。如图1所示,发送天线10和接收天线20均可采用电感线圈。在发送线圈上加载已调制信号的交变电流,会在发送线圈近场范围产生一个变化的磁场,如图1中虚线表示的区域,变化的磁场在接收线圈处会产生变化的磁通量,由于接收线圈具有一个闭合回路,变化的磁通量使得接收线圈产生感应电动势和感应电流,进而被接收和解调。
请参阅图2,图2为磁感通信发送端与接收端的等效电路。如图2所示,Us为电源电压,可以理解为待发送的已调电信号。Zt和Zr为发送线圈和接收线圈的自阻抗。Z’t和Z’r为接收线圈与发送线圈相互影响产生的等效阻抗。ZL为负载阻抗。UM为接收线圈的感应
电动势,可以看做接收的电信号。它们之间的关系如下式:
Z t=R t+jωL t
Z r=R r+jωL r
Figure PCTCN2020088992-appb-000001
Figure PCTCN2020088992-appb-000002
Figure PCTCN2020088992-appb-000003
Figure PCTCN2020088992-appb-000004
其中,Rt和Lt为发送线圈的电阻和自感,Rr和Lr为接收线圈的电阻和自感,M为互感,Nt和Nr为发送线圈和接收线圈的匝数,at和ar为发送线圈和接收线圈的半径,r为发送线圈与接收线圈之间的距离,w为交流电频率。
请参阅图3A,图3A为本申请一实施例中的通信系统的架构示意图。如图3A所示,通信系统900包括多个收发设备200。其中,多个收发设备200之间能够相互通信。在本申请实施例中,所述多个收发设备200中包括多个移动终端S及一个网路设备W。
请参阅图3B,在另一实施例中,所述多个收发设备200包括一个移动终端S和多个网络设备W。因此,在本申请实施例中,所述多个收发设备200的类型以及各个类型的数量不做限定,只要多个收发设备200之间能够进行通信即可。
在一些实施方式中,所述网络设备W可以是一种部署在无线接入网中为终端设备提供无线通信功能的装置。所述网络设备W可以包括各种形式的宏基站,微基站(也称为小站),中继站,接入点等。例如GSM(Global System for Mobile Communication,全球移动通信系统)或CDMA(Code Division Multiple Access,码分多址)网络中的BTS(Base Transceiver Station,基站收发信台),WCDMA(Wideband Code Division Multiple Access,宽带码分多址)中的NB(NodeB),LTE(Long Term Evolution,长期演进)中的eNB或eNodeB(Evolutional NodeB)。在其他实施方式中,所述网络设备W还可以是CRAN(Cloud Radio Access Network,云无线接入网络)场景下的无线控制器,未来5G网络中的基站设备或者未来演进的PLMN网络中的网络设备,传输接收节点(Transmission and Reception Point,TRP),甚至可以是可穿戴设备及车载设备等,在此并不限定。
需要说明的是,在采用不同的无线接入技术的系统中,网络设备的名称可能会有所不同。
在一些实施例中,所述移动终端S可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。例如,所述移动 终端S还可以是移动站(Mobile Station,MS)、用户单元(subscriber unit)、蜂窝电话(cellular phone)、智能电话(smart phone)、无线数据卡、个人数字助理(Personal Digital Assistant,PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handset)、膝上型电脑(laptop computer)、机器类型通信(Machine Type Communication,MTC)终端等,在此并不限定。
需要说明的是,上述举例只是为了对收发设备200进行说明,并不对收发设备200进行限定,只要具有接收功能和发送功能的设备均属于以上所述的收发设备200。
请参阅图4,图4为本申请一实施例中的收发设备的结构框图。如图4所示,收发设备200包括收发装置100以及与所述收发装置100通信连接的处理器300。所述收发装置100用于发送和接收通信信号以使得所述收发设备200和其他收发设备200之间实现通信。所述处理器300用于产生相应的通信信号并通过所述收发装置100进行发送,且所述处理器300还用于对所述收发装置100所接收到的通信信号进行解析,并控制所述收发设备200执行相应的动作。
处理器300可以包括一个或多个处理单元,例如:处理器300可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,存储器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。在一些实施例中,收发设备200也可以包括一个或多个处理器300。
其中,控制器可以是收发设备200的神经中枢和指挥中心。控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器300中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器300中的存储器为高速缓冲存储器。该存储器可以保存处理器300刚用过或循环使用的指令或数据。如果处理器300需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器300的等待时间,因而提高了收发设备200的效率。
在一些实施例中,处理器300可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或通用串行总线(universal serial bus,USB)接口等。
需要说明的是,本申请实施例示意的结构并不构成对收发设备200的具体限定。在本申请另一些实施例中,收发设备200可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
请参阅图5,图5为本申请一实施例中的收发装置的结构框图。如图5所示,所述收发装置100包括发送天线10、接收天线20、数模转换模块30、第一放大模块40、第二放 大模块50以及模数转换模块60。
在本实施方式中,所述处理器300用于响应特定的的指令而产生数字信号。其中,所述特定的指令根据收发设备200当前的使用状态而确定。例如,当收发设备200为一移动终端(如手机)时,且当前用户正在使用即时通信软件(如微信)与另一用户进行通信时,所述特定指令可以是用户输入的文字或者用户所输入的语音。所述处理器300响应该用户输入的特定指令并将该指令转化成相应的数字信号而输出。
所述数模转换模块30用于将数字信号转换成模拟信号。其中,所述数模转换模块30可以是一数字模拟转换器(D/A转换器)。
所述第一放大模块40用于对经所述数模转换模块30所转换的模拟信号进行放大。
所述发送天线10用于对经所述第一放大模块40放大后的模拟信号进行发送,即所述发送天线10用于将本地信号发送至对端的接收天线。
所述接收天线20用于接收其他收发设备200所发送的通信信号,即接收天线20用于接收对端发送天线发射的有用信号。此外,所述接收天线20在接收对端发送天线发射的有用信号的同时还接收所述发送天线10所发送的本地信号,即所述接收天线20所接收到的有用信号存在本地的干扰信号。
其中,本地信号是指收发设备本身产生的且需要发送至另一收发设备的信号。对端是指与该收发设备相通信的另一收发设备。
所述第二放大模块50用于对所述接收天线20所接收到的有用信号进行放大。
所述模数转换模块60与所述第二放大模块50通信连接,用于将放大后的有用信号转换成数字信号。其中,所述模数转换模块60可以是一模数转换器(A/D转换器)。
本申请实施例中,为了消除发送天线10所发送的本地信号对接收天线20所接收到的有用信号的干扰,将所述发送天线10和所述接收天线20其中之一设置在所述发送天线10和所述接收天线20其中另一的干扰消除面上。其中,所述干扰消除面是指使得所述发送天线10所产生的干扰信号得到抵消的面。
下面将结合具体的实施例对如何将所述发送天线10和所述接收天线20其中之一放置于所述发送天线10和所述接收天线20其中另一的干扰消除面上,以及干扰消除的原理进行说明。其中,为了说明干扰消除的机制,以下各实施例不考虑其他收发设备200发送的有用信号,仅考虑本地发送天线10所产生的干扰信号。
请参阅图6A,图6A为本申请第一实施方式中的发送天线和接收天线的结构示意图。在本实施方式中,所述发送天线10A为一为呈8字形的线圈。所述接收天线20A为一呈轴对称状的线圈。所述接收天线20A的中心位于所述发送天线10A的干扰消除面X上。其中,所述呈轴对称状的线圈的形状不做限定,只要线圈本身呈轴对称状即可。例如,接收天线20A可以是呈轴对称状的圆形线圈、方形线圈、三角形线圈及梯形线圈等。
当位于8字形线圈的中心点两侧的两个线圈互为轴对称,且位于中心点两侧的线圈的匝数相同时,所述干扰消除面X为所述8字形线圈的两个线圈的中心点连线的垂直平分面,即所述干扰消除面X为由到所述呈8字形的线圈的两侧的线圈的中心点的距离相等的点所组成的平面。可以理解,当所述发送天线10的两侧的线圈的匝数或者尺寸不同时,所述干扰消除面可能呈一曲面。
请参阅图6B,图6B为本申请第二实施方式中的发送天线和接收天线的结构示意图。在本实施方式中,所述发送天线10B为一呈轴对称状的线圈。所述接收天线20B为一为呈8字形的线圈。所述发送天线10B的中心位于所述接收天线20B的干扰消除面X上。在本实施方式中,所述发送天线10B和第一实施方式中的接收天线20A的结构参数类似,所述接收天线20B和第一实施方式中的发送天线10A的结构参数类似,在此不再赘述。
下面以图6A中的发送天线10A和接收天线20A的结构为例,对发送天线10A所产生的干扰信号的消除原理进行说明。
表1
天线 发送天线10A 接收天线20A
形状 8字形 圆形
半径 r1 r2
匝数 N1 N2
电流 I1 ——
如上表1所示,假设发送天线10A的8字形线圈的中心的两侧的线圈的匝数为N1,半径为r1,通过所述发送天线10的电流为I1。其中,流过8字形线圈的中心的两侧的线圈的电流的大小相等但方向相反。假设接收天线20A的线圈的匝数为N2,半径为r2,具体如图7所示,则所述发送天线10A中的每个线圈在所述接收天线20A上所产生的磁通量分别为:
Figure PCTCN2020088992-appb-000005
Figure PCTCN2020088992-appb-000006
φ=φ 12=0
由以上公式可以看出,所述发送天线10A的8字形线圈中的每个线圈在所述接收天线20上所产生的磁通量分别为φ1和φ2,由于φ1和φ2的方向相反,因此,所述发送天线10A在所述接收天线20A上所产生的磁通量恒为0,进而使得所述接收天线20A不会产生感应电动势,即发送天线10A对所述接收天线20A不产生干扰信号。
同理,当所述发送天线10B和所述接收天线20B为第二实施方式中的结构时,所述发送天线10B在所述接收天线20B产生两部分相等的磁通量,磁通量的变化使它们产生相等的感应电动势,而由于接收天线20B为8字形线圈,其中每个感应线圈所产生的感应电动势方向是相反的,两个等值反向的感应电动势相互抵消,因此发送天线10B对接收天线20B也不产生干扰信号。
由以上分析可知,理想情况下只要对发送天线10和接收天线20其中之设置在其中另一的干扰消除面上即可实现天线之间的隔离,相比于射频全双工天线隔离方案,本申请只需保证圆形线圈位于8字形线圈的干扰消除面上,且二者不需要间隔较远的距离,进而对收发装置100的尺寸的要求较小。而射频系统中基于天线消除的隔离方法,则需要采用两根发送天线,且二者与接收天线的距离相差半个波长。此外,本方案中的8字形线圈实则为一个线圈,仅需要一条发射通路,实现上更加简单。
上述第一实施例和第二实施例中,当收发设备200需要与其他收设备进行通信时,需要通信对端的收发设备的天线与本地收发设备200中的天线进行配对。例如,当本地收发设备200的发送天线10为呈8字形的线圈,则要求对端的收发设备的接收天线20为呈8字形的线圈,若对端收发设备的发送天线为呈8字形的线圈,则不能进行相互通信,进而限制了收发设备200的应用场景。
为解决上述问题,本申请还提供第三实施例,请参阅图8A及图8B,其中图8A为本申请第三实施例中的发送天线和接收天线的立体结构示意图,图8B为本申请第三实施例中的发送天线和接收天线的俯视图。在本实施方式中,所述发送天线10C和所述接收天线20C均为8字形的线圈,即第一实施例和第二实施例中的呈对称状的线圈也为8字形线圈。本实施方式中,所述发送天线10C在所述接收天线20C的干扰消除面上;或者,所述接收天线20C在所述发送天线10C的干扰消除面上;或者,所述发送天线10C在所述接收天线20C的干扰消除面上,且所述接收天线20C在所述发送天线10C的干扰消除面上。本实施例中的干扰消除的原理与第一实施方式中的干扰消除原理类似,在此不再赘述。本实施方式中,由于两个天线均为8字形线圈,可以避免收发设备之间需要配对的问题,进而提高了收发设备的适用性。
虽然,上述各实施例中将所述呈轴对称状的线圈的中心放置于所述呈8字形的线圈的干扰消除面上,可将所述发送天线10在所述接收天线20上所产生的的干扰信号消除,但是由于天线是摆放在立体空间内的,若呈轴对称状的线圈相对于呈8字形线圈的位置状态任意变化,将导致对发送天线10所产生的干扰信号的消除达不到理想效果,即还是会存在干扰信号。因此,为了保证对发送天线10所产生的干扰信号的消除效果,在一实施方式中,所述呈轴对称状的线圈所在的平面与所述呈8字形线圈的两个线圈的中心点的连线平行;或者,所述呈轴对称状的线圈所在的平面与所述呈8字形线圈所在的平面平行。
此外,在一实施方式中,位于所述呈8字形的线圈的中心点两侧的线圈互为轴对称且位于中心点两侧的线圈的匝数相同。所述8字形线圈的干扰消除面为所述8字形线圈的两个线圈的中心点连线的垂直平分面。如此,便于对天线的设计以及摆放。
请参阅图9A,图9A为本申请第四实施例中的发送天线和接收天线的结构示意图。如图9A所示,在本实施方式中,所述发送天线10D为一对并排且间隔设置的线圈。其中,一对并排且间隔设置的线圈在同一平面上。所述接收天线20D为一独立线圈。所述接收天线20D的中心位于所述发送天线10D的干扰消除面X上。其中,所述独立线圈呈轴对称状,所述一对并排且间隔设置的线圈的参数相同,且通过所述一对并排且间隔设置的线圈的电流的大小相等但方向相反。其中,所述线圈的参数相同包括每个线圈的匝数以及半径相同。如此,可以将发送天线10D在接收天线20D上所产生的干扰信号消除。在本实施方式中, 干扰消除的原理与第一实施例中的干扰消除原理类似,在此不再赘述。
需要说明的是,在本实施方式中,对端的接收天线需要和本地的发送天线10D的结构对应,且对端的发送天线需要和本地的接收天线20D的结构相对应。
请再参阅图9B,其为本申请第五实施例中的发送天线和接收天线的结构示意图。如图9B所示,所述接收天线20E为一对并排且间隔设置的线圈。所述发送天线10E为一独立线圈。所述发送天线10E的中心位于所述接收天线20E的干扰消除面X上。其中,所述一对并排且间隔设置的线圈的匝数和半径相同。且所述独立线圈呈轴对称状。
请参阅图10,其为图9B中的发送天线和接收天线的干扰分析原理图。在本实施方式中,由于接收天线20E为一对并排且间隔设置的线圈,因此需要对如何利用双线圈消除干扰,得到目标信号做出说明。其中,接收天线20E的接收线圈受各个发送线圈的影响如图10所示。M11为对端发送天线的一个线圈与本地接收天线20E中的一个线圈之间的互感;M12为对端发送天线的该一个线圈与本地接收天线20E中的另一个线圈之间的互感;M21为对端发送天线的另一个线圈与本地接收天线20E中的该一个线圈之间的互感;M22为对端发送天线的另一个线圈与本地接收天线20E中的另一个线圈之间的互感;M31为本地发送天线10E与本地接收天线20E中的一个线圈之间的互感;M32为本地发送天线10E与本地接收天线20E中的另一个线圈之间的互感,因此,本地接收天线20E的两个接收线圈感应的磁通量分别为:
φ 1=M 11·I 1+M 21·I 2+M 31·I 3
φ 2=M 22·I 2+M 12·I 1+M 22·I 3
其中,M11=M12,M12=M21,M31=M32,且I2=-I1。则接收天线20E的两个线圈产生的感应电动势分别为:
Figure PCTCN2020088992-appb-000007
Figure PCTCN2020088992-appb-000008
将E2的相位旋转180°并与E1相加,可得总的感应电动势为:
Figure PCTCN2020088992-appb-000009
因此,可以将接收天线20E中的两个线圈接收的电信号其中之一移相180°并相加,从而可以消除发送天线10E的干扰信号,进而达到将发送天线10E与接收天线20E隔离的效果。
从上述第四和第五实施例可以看出,将所述发送天线10和所述接收天线20其中之一设置为一对并排且间隔设置的线圈,并将所述发送天线10和所述接收天线20其中另一设置为为呈轴对称状的线圈,且所述一对并排且间隔设置的线圈互为轴对称。然后将所述呈轴对称状的线圈的中心位于所述一对并排且间隔设置的线圈的干扰消除面上,也可消除发送天线10所产生的干扰信号。
为了保证对发送天线10所产生的干扰信号的消除效果以及方便天线的设计,在一实施方式中,所述独立线圈所在的平面与所述一对并排且间隔设置的线圈中的两个线圈的中心点的连线平行。此外,在另一实施方式中,还可限定,所述独立线圈所在的平面与所述一 对并排且间隔设置的线圈所在的平面平行。其中,所述一对并排且间隔设置的线圈中的每个线圈的对称轴在同一条直线上。如此,可以降低收发装置的厚度,有利于收发设备朝着轻薄化的方向发展。
当所述发送天线为所述一对并排且间隔设置的线圈时,所述一对并排且间隔设置的线圈中的每个线圈的匝数相同,且通过所述每个线圈的电流的大小值相同但方向相反,即可消除发送天线10所产生的干扰信号。当所述接收天线为所述一对并排且间隔设置的线圈时,所述一对并排且间隔设置的线圈中的每个线圈的匝数相同,且所述接收天线所产生的电信号为其中一个线圈所产生的电信号与另一个线圈所产生的电信号移相180°之后的和,如此即可消除发送天线10E所产生的干扰信号。
请参阅图11A,其为本申请第六实施例中的发送天线和接收天线的结构示意图。在本实施方式中,与第五实施例(图9B)中不同的是,所述发送天线10F所在的平面和所述接收天线20F中的两个线圈的中心点的连线垂直,且所述独立线圈的中心点与所述一对并排且间隔设置的线圈中的每个线圈的中心点在一条直线上。
需要说明的是,在本实施方式中,由于发送天线10F和接收天线20F正交放置而非平行放置,发送天线10F在接收天线20F中的每个线圈所产生的磁通量为磁感应强度在与磁感线方向垂直平面上的线圈投影面积上的积分,如下式:
φ=NBS cosθ
其中,B为接收天线20F处的磁感应强度,S为接收天线20F中每个线圈的面积,θ为收发线圈之间的角度。因此线圈的摆放角度决定了通过其自身磁通量的大小。当两个天线正交放置时(即上式中的θ=90°),发送天线10F产生的磁感线无法通过接收天线20F的线圈,因此,接收天线20F处受发送天线10F影响的感应电动势为0,即不受发送天线10F的干扰。因此,在本实施方式中,可以不限定所述独立线圈呈轴对称状,进而便于天线朝多样化发展。其中,接收天线20F的每个线圈的对称轴在一条直线上,例如,每个线圈的对称抽与y轴重合,且每个线圈还可以绕y轴转动。
请参阅图11B,其为本申请第七实施例中的发送天线和接收天线的结构示意图,与第四实施例(图9A)不同的是,所述接收天线20G所在的平面和所述发送天线10G中的两个线圈的中心点的连线垂直,且所述独立线圈的中心点与所述一对并排且间隔设置的线圈中的每个线圈的中心点在一条直线上。本实施例中的对发送天线10G所产生的干扰信号的消除原理与第六实施例(图11A)类似,在此不再赘述。
需要说明的是,在第七实施例中,由于发送天线10G对接收天线20G不产生干扰,因此,对施加于发送天线10G的两个线圈的电流的大小和方向不做限定。
请参阅图12A,其为本申请第八实施例中的发送天线和接收天线的结构示意图,与第七实施例(图11B)不同的是,所述接收天线20H所在的平面与所述一对并排且间隔设置的线圈中的两个线圈的中心点的连线垂直,但所述接收天线20H的中心点并未与发送天线10H的两个线圈的中心点在一条直线上。在本实施方式中,为了使垂直于接收天线20H方向的磁感应强度相互抵消,则需要所述发送天线10H的每个线圈的匝数相同,且通过所述每个线圈的电流的大小相同且方向相同。
请参阅图12B,其为本申请第九实施例中的发送天线和接收天线的结构示意图,与第 六实施例(图11A)不同的是,所述发送天线10I所在的平面与所述接收天线20H的两个线圈的中心点的连线垂直,但所述发送天线10I的中心点并未与接收天线20I的两个线圈的中心点在一条直线上。所述接收天线20I中的每个线圈的匝数相同,且接收天线20I所产生的电信号为所述接收天线20I中每个线圈所产生的电信号之和。本实施例中由于发送天线10I在接收天线20I的每个线圈所产生的磁通量相同,当方向相反,即两个线圈所产生的电信号的大小相同但方向相反,进而使得接收天线20I因发送天线10I所产生的电信号相抵消,即能够将所述发送天线10I所产生的干扰消除。
在上述第四至第九实施例中,所述干扰消除面为所所述一对并排且间隔设置的线圈中的每个线圈的中心点连线的垂直平分面,进而可方便天线的设计及摆放。
请参阅图13A,其为本申请第十实施例中的发送天线和接收天线的结构示意图。如图13A所示,在本实施方式中,所述发送天线10J为发送线圈。所述接收天线20J为接收线圈。所述接收线圈的中心点在所述发送线圈的中垂线上。所述发送线圈所在的平面和所述接收线圈所在的平面相垂直。其中,所述发送线圈的中垂线为经过所述发送线圈的中心点且与所述发送线圈所在的平面垂直的直线。本实施例中的发送天线10J的所产生的干扰信号的消除原理与第六实施例(图11A)类似,在此不再赘述。
请参阅图13B,其为本申请第十一实施例中的发送天线和接收天线的结构示意图。如图13B所示,在本实施方式中,所述发送天线10K为发送线圈。所述接收天线20K为接收线圈。所述发送线圈的中心点在所述接收线圈的中垂线上。所述发送线圈所在的平面和所述接收线圈所在的平面相垂直。其中,所述接收线圈的中垂线为经过所述接收线圈的中心点且与所述接收线圈所在的平面垂直的直线。本实施例中的发送天线10K的所产生的干扰信号的消除原理与第六实施例(图11A)类似,在此不再赘述。
从第十实施例和第十一实施例可以看出,只要所述发送线圈和所述接收线圈之一的中心点在所述发送线圈和所述接收线圈其中另一的中垂线上,且所述发送线圈所在的平面和所述接收线圈所在的平面相垂直,即可消除发送天线10所产生的干扰信号。在该两个实施例中,所述发送天线10和所述接收天线20的形状不做限定。
上述第一至第十一实施例中,虽然可以通过对发送天线10和发送天线20的设计及位置摆放来消除发送天线10对接收天线20所产生的干扰,但在实际应用中,还会存在部分干扰信号。因此,请参阅图14,在一些实施例中,为了对本地发送天线10对本地接收天线20所产生的干扰信号的进一步消除,所述收发装置100还包括模拟消除模块70和数字消除模块80。其中,所述模拟消除模块70用于对所述接收天线20接收到的有用信号进行模拟消除。所述数字消除模块80用于对所述接收天线20接收到且经模数转换后的有用信号进行数字消除。
请参阅图15,其为本申请一实施例中的模拟消除模块的结构框图。具体地,所述模拟消除模70包括增益控制模块71和加法器模块72。所述增益控制模块71用于对所述发送天线10所发送的模拟信号进行增益控制。所述加法器模块72与所述增益控制模块71电连接,用于在接收到模拟形式的所述有用信号时消除所述发送的模拟信号。
请参阅图16,其为本申请一实施例中的数字消除模块的结构框图。所述数字消除模块80包括信道估计模块81及算法模块82。所述信道估计模块81用于估计信道响应。所述算 法模块82用于在接收到数字形式的所述有用信号时消除所述发送天线10所发送信号的残留干扰信号。
本申请实施例中的收发设备200及收发装置100将全双工技术和磁感通信相结合,不仅利用了磁感通信的优点,还提高了磁感通信的通信效率。此外,还通过对收发线圈的位置、角度和姿态进行设计,消除了全双工技术中的自干扰问题,这样使得在磁感通信中实现全双工技术更加简单且能达到更好的隔离效果。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (16)

  1. 一种收发装置,其特征在于,包括:
    发送天线,用于将本地信号发送至对端的接收天线;
    接收天线,用于接收对端发送天线发射的有用信号;
    其中,所述发送天线和所述接收天线其中之一在所述发送天线和所述接收天线其中另一的干扰消除面上;其中,所述干扰消除面是指使得所述发送天线所产生的干扰信号得到抵消的面。
  2. 如权利要求1所述的收发装置,其特征在于,所述发送天线和所述接收天线其中之一为呈8字形的线圈;所述发送天线和所述接收天线其中另一为呈轴对称状的线圈;所述呈轴对称状的线圈的中心位于所述呈8字形的线圈的干扰消除面上。
  3. 如权利要求2所述的收发装置,其特征在于,所述呈轴对称状的线圈所在的平面与所述呈8字形线圈的两个线圈的中心点的连线平行。
  4. 如权利要求2所述的收发装置,其特征在于,所述呈轴对称状的线圈也为8字形线圈;两个所述8字形线圈中的至少一个在另一个的干扰消除面上。
  5. 如权利要求2所述的收发装置,其特征在于,位于所述呈8字形的线圈的中心点两侧的线圈互为轴对称,且位于中心点两侧的线圈的匝数相同;所述8字形线圈的干扰消除面为所述8字形线圈的两个线圈的中心点连线的垂直平分面。
  6. 如权利要求1所述的收发装置,其特征在于,所述发送天线和所述接收天线其中之一为一对并排且间隔设置的线圈;所述一对并排且间隔设置的线圈互为轴对称;所述发送天线和所述接收天线其中另一为独立线圈;所述独立线圈的中心位于所述一对并排且间隔设置的线圈的干扰消除面上。
  7. 如权利要求6所述的收发装置,其特征在于,所述独立线圈呈轴对称状,且所述独立线圈所在的平面与所述一对并排且间隔设置的线圈中的两个线圈的中心点的连线平行。
  8. 如权利要求6所述的收发装置,其特征在于,所述独立线圈所在的平面与所述一对并排且间隔设置的线圈中的两个线圈的中心点的连线垂直。
  9. 如权利要求7所述的收发装置,其特征在于,当所述发送天线为所述一对并排且间隔设置的线圈时,所述一对并排且间隔设置的线圈中的每个线圈的匝数相同,且通过所述每个线圈的电流的大小值相同但方向相反;或者,
    当所述接收天线为所述一对并排且间隔设置的线圈时,所述一对并排且间隔设置的线 圈中的每个线圈的匝数相同,且所述接收天线所产生的电信号为其中一个线圈所产生的电信号与另一个线圈所产生的电信号移相180°之后的和。
  10. 如权利要求8所述的收发装置,其特征在于,当所述发送天线为所述一对并排且间隔设置的线圈时,所述一对并排且间隔设置的线圈中的每个线圈的匝数相同,且通过所述每个线圈的电流的大小相同且方向相同;或者,
    当所述接收天线为所述一对并排且间隔设置的线圈时,所述一对并排且间隔设置的线圈中的每个线圈的匝数相同,且接收天线所产生的电信号为所述一对并排且间隔设置的线圈中的每个线圈所产生的电信号之和。
  11. 如权利要求8所述的收发装置,其特征在于,所述独立线圈的中心点与所述一对并排且间隔设置的线圈中的每个线圈的中心点在一条直线上。
  12. 如权利要求6所述的收发装置,其特征在于,所述干扰消除面为所述一对并排且间隔设置的线圈中的每个线圈的中心点连线的垂直平分面。
  13. 如权利要求1所述的收发装置,其特征在于,所述发送天线为发送线圈;所述接收天线为接收线圈;所述发送线圈和所述接收线圈之一的中心点在所述发送线圈和所述接收线圈其中另一的中垂线上;所述发送线圈所在的平面和所述接收线圈所在的平面相垂直;其中,所述发送线圈的中垂线为经过所述发送线圈的中心点且与所述发送线圈所在的平面垂直的直线;所述接收线圈的中垂线为经过所述接收线圈的中心点且与所述接收线圈所在的平面垂直的直线。
  14. 如权利要求1-13任意一项所述的收发装置,其特征在于,所述收发装置还包括用于对所述接收天线接收到的有用信号进行模拟消除的模拟消除模块;所述模拟消除模块包括增益控制模块和加法器模块;所述增益控制模块用于对发送的模拟信号进行增益控制;所述加法器模块与所述增益控制模块电连接,用于在接收到模拟形式的所述有用信号时消除所述发送天线所发送的模拟信号。
  15. 如权利要求14所述的收发装置,其特征在于,所述收发装置还包括数字消除模块;所述数字消除模块用于对所述接收天线接收到且经模数转换后的有用信号进行数字消除;所述数字消除模块包括信道估计模块及算法模块;所述信道估计模块用于估计信道响应;所述算法模块用于在接收到数字形式的所述有用信号时消除所述发送天线所发送信号的残留干扰信号。
  16. 一种收发设备,所述收发设备包括处理器,其特征在于,所述收发设备还包括如权利要求1-15中任意一项所述的收发装置,所述收发装置与所述处理器电连接。
PCT/CN2020/088992 2019-06-05 2020-05-07 收发装置及收发设备 WO2020244354A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/540,832 US12028104B2 (en) 2019-06-05 2021-12-02 Transceiver apparatus and transceiver device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910486718.9 2019-06-05
CN201910486718.9A CN112134586B (zh) 2019-06-05 2019-06-05 收发装置及收发设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/540,832 Continuation US12028104B2 (en) 2019-06-05 2021-12-02 Transceiver apparatus and transceiver device

Publications (1)

Publication Number Publication Date
WO2020244354A1 true WO2020244354A1 (zh) 2020-12-10

Family

ID=73652080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/088992 WO2020244354A1 (zh) 2019-06-05 2020-05-07 收发装置及收发设备

Country Status (2)

Country Link
CN (1) CN112134586B (zh)
WO (1) WO2020244354A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6137447A (en) * 1995-09-30 2000-10-24 Sony Chemicals Corporation Antenna for reader/writer
CN205562832U (zh) * 2015-11-11 2016-09-07 山西潞安环保能源开发股份有限公司 一种基于超导技术的矿井中核磁共振信号激发与接收装置
CN109274399A (zh) * 2017-07-17 2019-01-25 瑞昱半导体股份有限公司 无线通信装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6140974A (en) * 1998-10-20 2000-10-31 Nortel Networks Limited Antenna arrangement
CN104025381B (zh) * 2011-11-01 2016-06-15 Tdk株式会社 天线装置和移动终端
CN102800993B (zh) * 2012-07-20 2014-11-19 西安空间无线电技术研究所 一种双频段波束等化侧馈偏置卡塞格伦天线及其实现方法
CN103392263B (zh) * 2012-12-26 2016-03-30 华为技术有限公司 一种天线系统
JP6260048B2 (ja) * 2013-12-19 2018-01-17 華為技術有限公司Huawei Technologies Co.,Ltd. 全二重アンテナおよび移動端末
US20180158598A1 (en) * 2016-12-06 2018-06-07 Gear Radio Electronics Corp. Imbalanced magnetic-cancelling coils
CN106685489A (zh) * 2017-02-28 2017-05-17 努比亚技术有限公司 通信终端及近场通信天线模组

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6137447A (en) * 1995-09-30 2000-10-24 Sony Chemicals Corporation Antenna for reader/writer
CN205562832U (zh) * 2015-11-11 2016-09-07 山西潞安环保能源开发股份有限公司 一种基于超导技术的矿井中核磁共振信号激发与接收装置
CN109274399A (zh) * 2017-07-17 2019-01-25 瑞昱半导体股份有限公司 无线通信装置

Also Published As

Publication number Publication date
CN112134586B (zh) 2022-05-17
US20220094387A1 (en) 2022-03-24
CN112134586A (zh) 2020-12-25

Similar Documents

Publication Publication Date Title
AU2011239121B2 (en) Apparatus and method for Spatial Division Duplex(SDD) for millimeter wave communication system
CN102388541B (zh) 设备到设备通信期间的干扰抑制方法及设备
CN108390694B (zh) 多路选择开关、射频系统以及无线通信设备
CN108462507B (zh) 多路选择开关、射频系统以及无线通信设备
CN102983397B (zh) 小型高隔离度双陷波uwb mimo天线
US20080080455A1 (en) Method and system for utilizing polarized antennas in coexistence systems
WO2012139344A1 (zh) Nfc双模移动终端及其通信方法
JP2002033691A (ja) 能動反射装置及び無線データ通信システム
US9979069B2 (en) Wireless broadband/land mobile radio antenna system
US7394799B2 (en) Apparatus and method using smart antenna in FDD wireless communication system
WO2019201055A1 (zh) 全双工自干扰减弱方法及全双工自干扰减弱系统
JP2008166855A (ja) 携帯電話機
CN208226091U (zh) 一种高隔离度2.4g双天线的pcb天线
CN104716441B (zh) 一种多频天线及移动终端
WO2020244354A1 (zh) 收发装置及收发设备
JP6104483B2 (ja) 無線通信装置
US12028104B2 (en) Transceiver apparatus and transceiver device
JP2000216724A (ja) 移動体通信システムおよびその通信方法
WO2013078793A1 (zh) 一种天线及终端
WO2022213940A1 (zh) 电子设备和天线调整方法
CN106207406A (zh) 一种mimo天线结构及移动终端
WO2021244726A1 (en) Jamming signal cancellation
CN202434698U (zh) 利用天线单元内闭合电流回路提高隔离度的mimo天线
CN219246936U (zh) 一种天线组件及全双工通信系统
WO2022110261A1 (en) Decoupling apparatus, radiation unit and antenna

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20818062

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20818062

Country of ref document: EP

Kind code of ref document: A1