WO2020244327A1 - Procédé et dispositif de traitement de données - Google Patents

Procédé et dispositif de traitement de données Download PDF

Info

Publication number
WO2020244327A1
WO2020244327A1 PCT/CN2020/086298 CN2020086298W WO2020244327A1 WO 2020244327 A1 WO2020244327 A1 WO 2020244327A1 CN 2020086298 W CN2020086298 W CN 2020086298W WO 2020244327 A1 WO2020244327 A1 WO 2020244327A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
multimedia
redundancy model
priority
network state
Prior art date
Application number
PCT/CN2020/086298
Other languages
English (en)
Chinese (zh)
Inventor
杨璐
范志刚
Original Assignee
西安万像电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安万像电子科技有限公司 filed Critical 西安万像电子科技有限公司
Publication of WO2020244327A1 publication Critical patent/WO2020244327A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/60Network streaming of media packets
    • H04L65/75Media network packet handling
    • H04L65/762Media network packet handling at the source 
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/80Responding to QoS

Definitions

  • the present disclosure relates to the technical field of data error correction codes, and in particular to data processing methods and devices.
  • multimedia services usually package the code stream data according to fixed rules and send it in the form of data packets.
  • the existing previous error correction or redundancy algorithms can basically be divided into three generations of algorithms.
  • the first generation algorithm uses a primary redundancy model, and the error tolerance within the unit data length is low, which is not suitable for large Data transfer.
  • the second-generation algorithm introduces two or more redundant models.
  • the algorithm itself is relatively complex, which is not conducive to the calculation and transmission of data such as real-time images when computing resources are limited.
  • the third-generation algorithm requires hardware support for scenarios such as optical fiber data transmission. It is not suitable for the transmission of multimedia data in the existing complicated wired or wireless network under the condition of limited computing resources.
  • the above algorithms are only applicable to specific scenarios, and are not well adapted to the transmission of real-time multimedia data under complex networks.
  • the embodiments of the present disclosure provide a forward error correction method and device, which can solve the problem that the current error correction method cannot be adaptive.
  • the technical solution is as follows:
  • a data processing method including:
  • the acquiring the data priority of the multimedia includes:
  • the priority of the multimedia data is determined according to the data classification.
  • the current network status data includes at least one of the following: packet loss rate, packet error rate, network delay, round-trip time (RTT), life cycle (Time To Live, TTL).
  • the determining the corresponding redundancy model parameters according to the data priority and current network state data includes:
  • the algorithm type used for determining the redundancy model according to the data priority includes:
  • the multimedia data is control signaling data, determining that the redundancy model is a primary redundancy model
  • the amount of data is less than a preset threshold and real-time requirements are high, determining that the redundancy model is a primary redundancy model
  • the amount of data is greater than a preset threshold and real-time requirements are low, and the redundancy model is determined to be a secondary or multiple redundancy model.
  • the method further includes:
  • a data processing method including:
  • the multimedia data is restored according to the redundancy model.
  • the method further includes: when the current network state data changes, feeding back the current network data to the sender.
  • a data processing device including:
  • An acquiring unit configured to acquire the data priority of the multimedia and current network state data during transmission
  • a determining unit configured to determine corresponding redundancy model parameters according to the data priority and current network state data
  • the encoding sending unit is configured to perform error correction encoding on the multimedia data according to the redundancy model parameter and send it.
  • the acquiring unit is specifically configured to determine the priority of the multimedia data according to data classification.
  • the current network status data includes at least one of the following: packet loss rate, packet error rate, network delay, round-trip time (RTT), life cycle (Time To Live, TTL).
  • the determining unit is specifically configured to:
  • the determining unit is specifically configured to:
  • the multimedia data is control signaling data, determining that the redundancy model is a primary redundancy model
  • the amount of data is less than a preset threshold and real-time requirements are high, determining that the redundancy model is a primary redundancy model
  • the amount of data is greater than a preset threshold and real-time requirements are low, and the redundancy model is determined to be a secondary or multiple redundancy model.
  • the data processing device further includes a detection unit for detecting the current hardware and software conditions; when the current software and hardware conditions meet the preset conditions, the high-order redundancy model is selected.
  • a data processing device including:
  • the parsing unit is used to analyze the received multimedia data
  • the detection unit is configured to detect current network state data according to the redundancy model
  • the recovery unit in the case of detecting packet loss, recovers multimedia data according to the redundancy model.
  • the data processing device further includes a feedback unit configured to feed back the current network data to the sender when the current network state data changes.
  • the forward error correction method and device provided in the embodiments of the present disclosure solve the problem that the forward error correction cannot be adaptive by determining the corresponding redundancy model parameters according to the data priority and current network state data.
  • the present invention mainly designs a dynamic forward error correction method for real-time multimedia data transmission, and can recover lost data according to an error correction algorithm without retransmitting data.
  • the present invention adopts the method of dynamic redundancy model selection, selects different models, reduces the amount of calculation, and guarantees more effectiveness with less redundant data.
  • Data transmission is correct, suitable for mixed transmission of video, audio, control and other data.
  • the present invention adopts a dynamic redundancy model, introduces multiple redundancy algorithms with lower complexity, introduces network features, data features, computing resource features, and dynamically selects different redundancy methods in real time, not limited to primary and secondary redundancy.
  • multiple redundancy algorithms can be selected to form three or more redundancy models to adapt to the complex and changeable network environment and hardware environment. It does not cause waste of resources, and at the same time can improve the accuracy of data transmission.
  • FIG. 1 is a first schematic flowchart of a forward error correction method provided by an embodiment of the present disclosure
  • FIG. 2 is a second schematic flowchart of a forward error correction method provided by an embodiment of the present disclosure
  • FIG. 3 is a first structural diagram of a forward error correction device provided by an embodiment of the present disclosure
  • FIG. 4 is a second structural diagram of a forward error correction device provided by an embodiment of the present disclosure.
  • Fig. 5 is a schematic diagram of a redundancy model provided by an embodiment of the present invention.
  • the embodiment of the present disclosure provides a data processing method. As shown in FIG. 1, the processing method includes the following steps:
  • the obtaining the data priority of the multimedia includes: determining the priority of the multimedia data according to a data classification strategy.
  • the data can be classified according to the type of data.
  • the data can be classified into control signaling data required to transmit audio and video, video data, audio data, etc.
  • control signaling data has the highest priority
  • audio data has the second priority
  • video data has the lowest priority.
  • the data volume of control signaling data required to transmit audio and video is the smallest, followed by the data volume of audio data, and the data volume of video data is the largest.
  • the current network state data includes at least packet loss rate, packet error rate, network delay, round-trip time (RTT), and time to live (TTL).
  • the redundancy model parameters include at least: the number of valid messages m, the number of redundant messages n, and a redundancy check algorithm.
  • the redundant data format is shown in Figure 5.
  • the n-th redundancy model is to solve the n-ary linear equations, and the lost packets are unknowns.
  • the equation can be solved according to The group mode is restored at the receiving end.
  • the size of m and n is determined by data priority and network status.
  • the redundancy check algorithm includes but is not limited to convolutional code, Hamming code, BCH code, RS code, Turbo code, LDPC code, TPC code, etc.
  • the selection of the specific verification algorithm depends on the computing capabilities of the software and hardware of the current operating environment.
  • the forward error correction method provided by the embodiments of the present disclosure solves the problem of a single forward error correction method in the background art by adopting a technical means of dynamically selecting a redundant model.
  • the current network packet loss rate is 20%
  • the receiving end can recover the lost data (of course, the network is fluctuating, 20% is only a measured value, and it may be large or small in practice. The ideal value is used here to illustrate the principle).
  • This redundancy model is suitable for the fastest algorithm in the current operating environment.
  • c is lost, because the original data of a and b are not lost, the result is correct; a or b is lost, according to the convolution algorithm Both a and b can be restored; when two or more of the three packets of a, b, and c are lost, the data cannot be restored.
  • the punctured convolutional code and BCH code as examples.
  • the calculation redundancy of the convolutional code is denoted as p, and the calculation redundancy of the BCH code is denoted as q.
  • the 4 valid messages are denoted as x0, x1, x2, x3.
  • dn is the inverse element of d2, which can be obtained by looking up the table.
  • the third-order and above redundant models are similar to the above-mentioned first-order and second-order redundant models. In essence, they are solved by a multi-variable linear equation. The coefficients of each equation cannot be linearly correlated, so different check code algorithms are needed to generate this coefficient.
  • the high-order redundancy model is a redundancy model higher than three times.
  • Shannon's theorem under the same redundancy, the longer the block code length, the stronger the fault tolerance. But at the same time it will increase the average transmission delay, because the longer the code length, the more data must be received to calculate the lost data when recovering data. For example, when the network packet loss is very low, it is necessary to transmit a set of important and high real-time data. At this time, the redundancy model can be selected first to ensure that the data is accurate and not only has strong real-time performance, but also improves the calculation speed and saves Computing resource consumption.
  • the present invention can also be extended to implement higher-order redundancy models.
  • the embodiment of the present disclosure provides a data processing method. As shown in FIG. 2, the processing method includes the following steps:
  • the method may further include: when the current network state data changes, feeding back the current network data to the sender.
  • An embodiment of the present disclosure provides a data processing device 30.
  • the processing device includes: an acquiring unit 301, configured to acquire the data priority of the multimedia and current network state data during transmission; and a determining unit 302, It is used to determine the corresponding redundancy model parameter according to the data priority and the current network state data; the encoding sending unit 303 is used to perform error correction coding on the multimedia data and send it according to the redundancy model parameter.
  • An embodiment of the present disclosure provides a data processing device 40.
  • the processing device includes a parsing unit 401 for parsing received multimedia data;
  • the calculation unit 402 is configured to calculate corresponding redundant model data according to the multimedia data
  • the restoring unit 403 restores the multimedia data according to the redundant model data in the case of detecting packet loss or error.
  • the forward error correction device may further include a feedback unit 404 for
  • the embodiments of the present disclosure also provide a computer-readable storage medium.
  • the non-transitory computer-readable storage medium may be a read-only memory (English: Read Only Memory, ROM), random access memory (English: Random Access Memory, RAM), CD-ROM, magnetic tape, floppy disk and optical data storage device, etc.
  • the storage medium stores computer instructions for executing the forward error correction method described in the above-mentioned embodiment corresponding to FIG. 1, which will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

La présente invention concerne un procédé et un dispositif de traitement de données relevant du domaine technique du code de correction d'erreur de données et permettant de régler le problème du multimédia actuel en disposant d'un schéma de correction d'erreur directe relativement simple. La solution technique spécifique comprend les étapes consistant à : acquérir une priorité de données des données multimédias et les données d'état de réseau actuel en cours de transmission ; déterminer le paramètre de modèle de redondance correspondant en fonction de la priorité des données et des données d'état de réseau actuel ; puis réaliser un codage de correction d'erreur sur les données multimédias en fonction du paramètre de modèle de redondance et envoyer les données multimédias. D'après l'invention, un moyen technique de sélection dynamique d'un modèle redondant est utilisé pour une correction d'erreur directe adaptative pendant une transmission multimédia.
PCT/CN2020/086298 2019-06-05 2020-04-23 Procédé et dispositif de traitement de données WO2020244327A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910488334.0A CN110299963A (zh) 2019-06-05 2019-06-05 数据处理方法及装置
CN201910488334.0 2019-06-05

Publications (1)

Publication Number Publication Date
WO2020244327A1 true WO2020244327A1 (fr) 2020-12-10

Family

ID=68027659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/086298 WO2020244327A1 (fr) 2019-06-05 2020-04-23 Procédé et dispositif de traitement de données

Country Status (2)

Country Link
CN (1) CN110299963A (fr)
WO (1) WO2020244327A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113839830A (zh) * 2021-07-15 2021-12-24 腾讯科技(深圳)有限公司 数据包多发参数的预测方法、装置与存储介质
CN118175212A (zh) * 2024-05-11 2024-06-11 苏州馨能数字科技有限公司 一种上行数据传输方法、系统、设备及存储介质

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110299963A (zh) * 2019-06-05 2019-10-01 西安万像电子科技有限公司 数据处理方法及装置
CN110855400B (zh) * 2019-11-29 2022-02-25 江苏方天电力技术有限公司 基于纠错码的自适应丢包恢复方法、计算设备及存储介质
CN111629281B (zh) * 2020-04-13 2021-02-02 北京创享苑科技文化有限公司 一种视频传输中基于网络丢包率分布的在线连续检验方法
CN111629210A (zh) * 2020-05-22 2020-09-04 北京大米科技有限公司 一种数据处理的方法、装置及电子设备
CN113347114A (zh) * 2021-06-03 2021-09-03 清华大学 面向截止时间感知的实时流媒体的传输控制方法及装置
CN117896546B (zh) * 2024-03-14 2024-06-07 浙江华创视讯科技有限公司 一种数据传输方法、系统、电子设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1976479A (zh) * 2005-11-15 2007-06-06 三星电子株式会社 在无线网络中发送数据的方法和设备
CN101115077A (zh) * 2006-07-25 2008-01-30 美国博通公司 在通信系统中处理数据的方法及系统
US20100002692A1 (en) * 2008-07-02 2010-01-07 Harry Bims Multimedia-aware quality-of-service and error correction provisioning
WO2017157303A1 (fr) * 2016-03-15 2017-09-21 中兴通讯股份有限公司 Procédé, dispositif et système d'anti-perte de paquet destinés à être utilisés dans une communication en temps réel
CN107872296A (zh) * 2016-09-26 2018-04-03 三星显示有限公司 用于传输视频的方法和数据发射机
CN110299963A (zh) * 2019-06-05 2019-10-01 西安万像电子科技有限公司 数据处理方法及装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1817859A1 (fr) * 2004-12-02 2007-08-15 THOMSON Licensing Correction d'erreur adaptative sans voie de retour
CN100450187C (zh) * 2005-10-17 2009-01-07 华为技术有限公司 支持错误弹性的多媒体数据网络实时传送方法
US8489954B2 (en) * 2008-08-29 2013-07-16 Ntt Docomo, Inc. Method and apparatus for reliable media transport
CN101686106B (zh) * 2008-09-28 2013-04-17 华为技术有限公司 自适应前向纠错的方法、装置和系统
CN102075312B (zh) * 2011-01-10 2013-03-20 西安电子科技大学 基于视频服务质量的混合选择重传方法
CN102420983B (zh) * 2011-11-18 2013-10-23 北京工业大学 一种针对高效视频编码hevc熵编码的上下文简化方法
CN110224793B (zh) * 2015-10-16 2021-03-09 上海交通大学 一种基于媒体内容的自适应fec方法
CN108183774B (zh) * 2018-03-26 2021-07-27 浙江齐聚科技有限公司 一种流媒体传输的前向纠错方法和系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1976479A (zh) * 2005-11-15 2007-06-06 三星电子株式会社 在无线网络中发送数据的方法和设备
CN101115077A (zh) * 2006-07-25 2008-01-30 美国博通公司 在通信系统中处理数据的方法及系统
US20100002692A1 (en) * 2008-07-02 2010-01-07 Harry Bims Multimedia-aware quality-of-service and error correction provisioning
WO2017157303A1 (fr) * 2016-03-15 2017-09-21 中兴通讯股份有限公司 Procédé, dispositif et système d'anti-perte de paquet destinés à être utilisés dans une communication en temps réel
CN107872296A (zh) * 2016-09-26 2018-04-03 三星显示有限公司 用于传输视频的方法和数据发射机
CN110299963A (zh) * 2019-06-05 2019-10-01 西安万像电子科技有限公司 数据处理方法及装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113839830A (zh) * 2021-07-15 2021-12-24 腾讯科技(深圳)有限公司 数据包多发参数的预测方法、装置与存储介质
CN113839830B (zh) * 2021-07-15 2023-10-24 腾讯科技(深圳)有限公司 数据包多发参数的预测方法、装置与存储介质
CN118175212A (zh) * 2024-05-11 2024-06-11 苏州馨能数字科技有限公司 一种上行数据传输方法、系统、设备及存储介质

Also Published As

Publication number Publication date
CN110299963A (zh) 2019-10-01

Similar Documents

Publication Publication Date Title
WO2020244327A1 (fr) Procédé et dispositif de traitement de données
JP5237119B2 (ja) ラプターコードをデコードする方法及び装置
US8381048B2 (en) Transmission system, method and program
CN110943800A (zh) 数据包的发送方法、装置及系统、存储介质、电子装置
US8683301B2 (en) Error correction coding for recovering multiple packets in a group in view of limited bandwidth
US8640009B2 (en) Methods and apparatus for providing linear erasure codes
US20210218419A1 (en) Method, device and apparatus for storing data, computer readable storage medium
EP2200182B1 (fr) Procédé et dispositif pour coder le code de matrice de générateur à faible densité
US20230023776A1 (en) Codeword Synchronization Method, Receiver, Network Device, and Network System
Yao et al. Passive network tomography for erroneous networks: A network coding approach
CN106372026B (zh) 一种链路检测方法和接收设备
CN109274462B (zh) 一种基于改进在线喷泉码的图像传输方法
JP6197876B2 (ja) プログラム、符号化装置、及び符号化方法
Roca et al. Rs+ ldpc-staircase codes for the erasure channel: Standards, usage and performance
CN107733568B (zh) 基于fpga实现crc并行计算的方法及装置
Shalin et al. Multimedia data transmission through TCP/IP using hash based FEC with AUTO-XOR scheme
CN103873068A (zh) 低密度奇偶检查的解码方法与电子装置
WO2022228370A1 (fr) Procédé de synchronisation de mot de code, récepteur, dispositif de réseau et système de réseau
WO2016119120A1 (fr) Appareil et procédé de décodage fec
Zhao et al. Scale-free Luby transform codes
TWI334277B (en) Method for calculating syndrome efficiently in reed-solomon decoding and machine readable storage medium storing instructions for performing the method
JP2009290657A (ja) 誤り訂正装置
Wang et al. The capability of error correction for burst-noise channels using error estimating code
Dodunekova et al. A survey on proper codes
Tirronen et al. Optimal degree distributions for LT codes in small cases

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20819069

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20819069

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20819069

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/06/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20819069

Country of ref document: EP

Kind code of ref document: A1