WO2020244112A1 - 一种基于光声效应的纳米流体防团聚装置 - Google Patents

一种基于光声效应的纳米流体防团聚装置 Download PDF

Info

Publication number
WO2020244112A1
WO2020244112A1 PCT/CN2019/110845 CN2019110845W WO2020244112A1 WO 2020244112 A1 WO2020244112 A1 WO 2020244112A1 CN 2019110845 W CN2019110845 W CN 2019110845W WO 2020244112 A1 WO2020244112 A1 WO 2020244112A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanofluid
nano
module
agglomeration
photoacoustic
Prior art date
Application number
PCT/CN2019/110845
Other languages
English (en)
French (fr)
Inventor
毛聪
张志康
肖林峰
钟宇杰
刘子奇
戴家辉
胡永乐
Original Assignee
长沙理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长沙理工大学 filed Critical 长沙理工大学
Priority to US17/088,058 priority Critical patent/US10994249B1/en
Publication of WO2020244112A1 publication Critical patent/WO2020244112A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/04Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with electromagnetism
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/02Maintaining the aggregation state of the mixed materials
    • B01F23/023Preventing sedimentation, conglomeration or agglomeration of solid ingredients during or after mixing by maintaining mixed ingredients in movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • B01F23/55Mixing liquids with solids the mixture being submitted to electrical, sonic or similar energy
    • B01F23/551Mixing liquids with solids the mixture being submitted to electrical, sonic or similar energy using vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/70Drives therefor, e.g. crank mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/80Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/80Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations
    • B01F31/85Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations with a vibrating element inside the receptacle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/80Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations
    • B01F31/89Methodical aspects; Controlling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/05Mixers using radiation, e.g. magnetic fields or microwaves to mix the material
    • B01F33/054Mixers using radiation, e.g. magnetic fields or microwaves to mix the material the energy being in the form of a laser to modify the characteristics or conditions of the products, e.g. for heating

Definitions

  • the invention relates to a device for preventing agglomeration of nanofluids, in particular to a device for preventing agglomeration of nanofluids based on the photoacoustic effect.
  • Nanofluid refers to the dispersion of metal or non-metal nanoparticles into traditional liquid heat exchange media such as water and oil to prepare a uniform, stable, and high thermal conductivity new heat exchange medium. Nanofluids have broad prospects in the fields of energy, chemical industry, automobiles, construction, microelectronics, information, etc., and have become research hotspots in many fields such as materials, physics, chemistry, and heat transfer.
  • the invention patent with the publication number "CN108499202 A” and the invention title "device for preventing nanofluid particles from agglomeration and sedimentation in a heat exchange system” discloses a device for preventing nanofluid particles from agglomeration and sedimentation in a heat exchange system.
  • the principle is The inner wall is provided with some protrusions, which will collide with the protrusions on the inner wall of the pipe when the fluid flows in the pipe, so as to prevent the agglomeration and sedimentation of nanoparticles.
  • the device solves the problem of nanofluid agglomeration and sedimentation to a certain extent.
  • this technical solution still has the following problems: the collision force between the fluid and the tube wall is difficult to change the nanoparticle agglomeration problem in the central area of the pipeline; and it is restricted by the arrangement density of the protrusions on the inner wall of the pipeline, and the collision between the nanofluid and the tube wall The frequency is very low, and it is inevitable that nano-particle agglomeration still exists near the tube wall.
  • the invention patent with the publication number "CN103418159 A” and the invention title "A new method to prevent nano-particle re-agglomeration during the rapid expansion of supercritical fluid” discloses a method to prevent nano-particle re-agglomeration.
  • the principle is to use RESS technology in A layer of organic film is deposited on the surface of specific nanoparticles, which solves the problem of agglomeration of nanoparticles to a certain extent.
  • this technical solution still has the following problems: the types of nanoparticles processed by the RESS technology are specific, the number of nanoparticles processed in a single time is limited, and the process and process parameters of the RESS technology are difficult to control.
  • the present invention proposes a nanofluid anti-agglomeration device based on the photoacoustic effect, which is used to solve the problem of nanoparticle agglomeration during mechanical processing using nanofluid lubrication and cooling.
  • the basic principle is to use gold nanoparticles to generate ultrasonic waves under the irradiation of pulsed lasers.
  • the quartz optical fiber and the nano-gold solution tank are adaptively driven to the agglomeration area, using laser irradiation
  • the generated ultrasonic waves disperse the agglomerated nanoparticles in the nanofluid, thereby effectively, quickly and accurately solving the problem of nanofluid agglomeration.
  • a nanofluid anti-agglomeration device based on the photoacoustic effect is characterized in that the device is composed of a support module, a photoacoustic conversion module, a motion module and a control module; the support module includes: a support and Screws and brackets are used to support the photoacoustic conversion module and the motion module.
  • the photoacoustic conversion module includes: nanosecond laser, lens holder, lens, quartz optical fiber, optical fiber holder, nano-gold particles, nano-gold solution tank and bolts.
  • the nanosecond laser is fixed on the fixed plate, the lens holder clamps the lens, and the fiber holder fixes the quartz fiber; the nano gold solution made of nano gold particles is stored in the nano gold solution tank, and the nano gold solution tank is fixed by bolts At the lower end of the silica fiber, and the end core of the silica fiber is inserted into the nano-gold solution.
  • the pulsed laser generated by the nanosecond laser interacts with the nano-gold particles in the nano-gold solution tank.
  • the nano-gold particles Under the irradiation of the pulsed laser, the nano-gold particles will experience rapid and periodic volume expansion and contraction, thereby generating ultrasonic waves and realizing photoacoustics. Conversion. Under the action of ultrasound, it can effectively prevent the agglomeration of nanoparticles in the nanofluid.
  • the motion module includes: a servo motor, a dovetail guide rail, a screw nut, a fixed plate, a guide rail slider and a deep groove ball bearing; the dovetail guide rail is installed on the bracket by screws and supports the motion module; the screw nut is connected with the guide rail slider , And connected to the servo motor through deep groove ball bearings.
  • the control module includes: a carrying plate, a CCD and a nanofluid; the CCD monitors the suspended state of the nanoparticle in the nanofluid in real time.
  • the control system commands and then activates the motion device to move the photoacoustic conversion module to the reunion area.
  • the photoacoustic conversion module sends ultrasonic waves to disperse the agglomerated nanoparticles, thereby effectively, quickly and accurately solving the agglomeration problem of nanofluids.
  • the nanofluid anti-agglomeration device based on the photoacoustic effect is characterized in that the nanosecond laser is a nanosecond pulse laser with a wavelength of 527nm, with a pulse width of 150ns, a repetition frequency of 1kHz, and an average power of less than 130mW.
  • the silica fiber is a multimode fiber with a core diameter of 500-1000 ⁇ m.
  • the size of the nano-gold particles is 40-60 nm, and the concentration of the prepared nano-gold solution is 0.3-0.6 mg/ml.
  • CCD is a photodetector, that is, a charge-coupled device, the number of its image sensitive unit is 5000 ⁇ 1.
  • bracket, dovetail rail, fixed plate and rail slider is steel.
  • the optical fiber holder is fixed on the guide rail slider.
  • the position of the lens holder is adjustable and can adapt to the focusing requirements of different lasers.
  • the aforementioned nanofluid anti-agglomeration device based on the photoacoustic effect has the following beneficial effects:
  • Ultrasonic waves are generated in the photoacoustic conversion module based on the photoacoustic effect, and the nanofluid is oscillated at high frequency under the action of the ultrasound, which can effectively prevent the agglomeration of nanoparticles or disperse the existing agglomeration, and significantly improve the dispersion performance of the nanofluid.
  • 2It has precise and directional functions. Through the cooperation of the three groups of motion modules, the up and down, left and right, and front and back combined movements of the photoacoustic conversion module can be realized, so that the directional ultrasound generated based on the photoacoustic effect can accurately ultrasonically vibrate the nanofluid in each area.
  • the CCD monitors the suspended state of the nanoparticles in the nanofluid in real time.
  • the light signal sensed by the photosensitive element on the CCD becomes weak, and the computer control system is given instructions to activate the motion device to move the photoacoustic conversion module to In the agglomeration area, the photoacoustic conversion module sends ultrasonic waves to disperse the agglomerated nanoparticles, thereby quickly solving the agglomeration problem of nanofluids.
  • the prepared nano-gold solution can be used repeatedly, and it is easy to operate when replacing the nano-gold solution tank, quartz optical fiber and other instruments; it has a wide range of practicability and is suitable for anti-agglomeration of various nanofluids.
  • Figure 1 is a schematic diagram of the structure of the present invention.
  • Figure 2 is a schematic diagram of the optical path in the optical fiber of the present invention.
  • Figure 3 is a schematic diagram of the photoacoustic conversion of the present invention.
  • the labels in the above figures 1 to 3 are: 1—bracket, 2—screw, 3—carrying plate, 4—CCD, 5—servo motor, 6—dovetail rail, 7—screw nut, 8—fixing plate, 9 —Fiber Holder, 10—Guide Slider, 11—Quartz Fiber, 12—Lens, 13—Nanosecond Laser, 14—Lens Holder, 15—Deep Groove Ball Bearing, 16—Nano Gold Particle, 17—Nano Gold solution tank, 18—nanofluid, 19—bolt.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

一种基于光声效应的纳米流体防团聚装置,包括支承模块、光声转化模块、运动模块和控制模块。其中支承模块由支架(1)和螺钉(2)组成,用于支撑光声转化模块和运动模块;光声转化模块是由纳秒激光器(13)、透镜夹持器(14)、透镜(12)、石英光纤(11)、光纤夹持器(9)、纳米金颗粒(16)、纳米金溶液罐(17)和螺栓(19)组成,可以实现光声转化,从而产生超声波;运动模块包括:伺服电机(5)、燕尾导轨(6)、丝杠螺母(7)、固定板(8)、导轨滑块(10)和深沟球轴承(15),用于承载光声转化模块,并实现光声转化模块组合运动;控制模块由承载板(3)和CCD(4)组成,用于适时控制运动模块。能够有效、快速、精准地解决纳米流体的团聚问题。

Description

一种基于光声效应的纳米流体防团聚装置 技术领域
本发明涉及一种防止纳米流体团聚的装置,特别是一种基于光声效应的纳米流体防团聚装置。
背景技术
纳米流体是指把金属或非金属纳米颗粒分散到水、油等传统液态换热介质中,制备成均匀、稳定、高导热的新型换热介质。纳米流体在能源、化工、汽车、建筑、微电子、信息等领域得到广泛前景,从而成为材料、物理、化学、传热学等众多领域的研究热点。
由于纳米流体强化传热的特性,使之正逐步被应用于机械加工过程中起润滑冷却作用。但是当纳米流体长期静置时,其中的纳米颗粒容易形成团聚体并出现沉降现象,团聚体直接影响了纳米流体的传热冷却效率。公开号为“CN108499202 A”、发明名称为“防止换热系统中纳米流体颗粒团聚沉降的装置”的发明专利公开了一种防止换热系统中纳米流体颗粒团聚沉降的装置,其原理是在管道内壁设置一些凸起,当流体在管道内流动时会与管道内壁凸起之间产生碰撞,从而防止纳米颗粒的团聚与沉降,该装置在一定程度上解决了纳米流体团聚沉降的问题。但是该技术方案仍旧存在以下问题:流体与管壁之间的碰撞力很难改变管道中心区的纳米颗粒团聚问题;而且受制于管道内壁凸起的布置密度,纳米流体与管壁之间的碰撞频率很低,管壁附近难免依旧存在纳米颗粒团聚。
公开号为“CN103418159 A”、发明名称为“在超临界流体快速膨胀过程中防止纳米粒子再团聚的新方法”的发明专利公开了一种防止纳米粒子再团聚方法,其原理是利用RESS技术在特定的纳米粒子表面上沉积一层有机物薄 膜,在一定程度上解决了纳米颗粒团聚的问题。但是该技术方案仍旧存在以下问题:利用RESS技术所处理的纳米粒子种类特定,单次处理纳米粒子的数量有限,而且RESS技术的工艺及工艺参数很难控制。
发明内容
为解决现有问题,本发明提出了一种基于光声效应的纳米流体防团聚装置,用于解决采用纳米流体润滑冷却机械加工过程中纳米颗粒的团聚问题。其基本原理是利用纳米金颗粒在脉冲激光的辐照下会产生超声波,根据光敏元件感知到纳米流体的团聚区域及程度,自适应驱动石英光纤及纳米金溶液罐到团聚区域,采用激光辐照产生的超声波驱散纳米流体中团聚的纳米颗粒,从而有效、快速、精准地解决纳米流体团聚问题。
为了实现上述目的,一种基于光声效应的纳米流体防团聚装置,其特征在于:该装置是由支承模块、光声转化模块、运动模块和控制模块组成;所述的支承模块包括:支架和螺钉,支架用于支撑光声转化模块和运动模块。
所述的光声转化模块包括:纳秒激光器、透镜夹持器、透镜、石英光纤、光纤夹持器、纳米金颗粒、纳米金溶液罐和螺栓。纳秒激光器固定在固定板上,透镜夹持器夹住透镜,光纤夹持器固定石英光纤;由纳米金颗粒制成的纳米金溶液储存于纳米金溶液罐中,纳米金溶液罐通过螺栓固定在石英光纤下端,并且石英光纤末端纤芯插入纳米金溶液中。纳秒激光器产生的脉冲激光与纳米金溶液罐中的纳米金颗粒相互作用,纳米金颗粒在脉冲激光的辐照下会经历快速的、周期性的体积膨胀和收缩,从而产生超声波,实现光声转化。在超声波作用下可以有效防止纳米流体中的纳米颗粒团聚。
所述的运动模块包括:伺服电机、燕尾导轨、丝杠螺母、固定板、导轨滑块 和深沟球轴承;燕尾导轨通过螺钉安装在支架上并且支承运动模块;丝杠螺母与导轨滑块连接,并通过深沟球轴承与伺服电机相连。运动模块有3组,通过3组运动模块的配合可以实现光声转化模块的上下、左右、前后组合运动,从而对各个区域的纳米流体进行超声振动以防止纳米颗粒团聚。
所述的控制模块包括:承载板、CCD和纳米流体;CCD实时监测纳米流体中的纳米颗粒悬浮状态,当纳米颗粒出现团聚时,CCD上面的光敏元件感知到的光信号变弱,会给予计算机控制系统指令,进而启动运动装置将光声转化模块移动到团聚区域,光声转化模块发送超声波驱散团聚的纳米颗粒,从而有效、快速、精准地解决了纳米流体的团聚问题。
所述的一种基于光声效应的纳米流体防团聚装置,其特征在于:纳秒激光器是波长为527nm的纳秒脉冲激光器,其脉宽为150ns、重复频率为1kHz、平均功率小于130mW。石英光纤为纤芯直径为500~1000μm的多模光纤。纳米金颗粒的尺寸为40~60nm,所制成的纳米金溶液的浓度为0.3~0.6mg/ml。CCD为光电探测器,即电荷耦合器,其像敏单元数为5000×1。
所述的支架、燕尾导轨、固定板和导轨滑块的材料为钢材。
所述的光纤夹持器固定在导轨滑块上。
所述的透镜夹持器的位置可调,能够适应不同激光的聚焦要求。
上述一种基于光声效应的纳米流体防团聚装置,与现有的技术相比,其有益效果在于:
①显著提升了纳米流体的分散性能。基于光声效应光声转化模块中产生了超声波,在超声波作用下使得纳米流体高频振荡,能够有效防止纳米颗粒团聚或驱散已有的团聚,显著提升了纳米流体的分散性能。
②具有精准、定向的功能。通过3组运动模块的配合可以实现光声转化模块的上下、左右、前后组合运动,从而基于光声效应所产生的定向超声可以精准地对各个区域的纳米流体进行超声振动。
③采用闭环控制,能够快速解决团聚。CCD实时监测纳米流体中的纳米颗粒悬浮状态,当纳米颗粒出现团聚时,CCD上面的光敏元件感知到的光信号变弱,会给予计算机控制系统指令,进而启动运动装置将光声转化模块移动到团聚区域,光声转化模块发送超声波驱散团聚的纳米颗粒,从而快速地解决纳米流体的团聚问题。
④结构简单和实用性好。制备的纳米金溶液可以反复使用,更换纳米金溶液罐、石英光纤等器械时操作简便;实用性十分广泛,适用于各种纳米流体的防团聚。
附图说明
图1是本发明结构示意图。
图2是本发明光纤中光路示意图。
图3是本发明光声转化示意图。
附图标记
以上图1至图3中的标示为:1—支架,2—螺钉,3—承载板,4—CCD,5—伺服电机,6—燕尾导轨,7—丝杠螺母,8—固定板,9—光纤夹持器,10—导轨滑块,11—石英光纤,12—透镜,13—纳秒激光器,14—透镜夹持器,15—深沟球轴承,16—纳米金颗粒,17—纳米金溶液罐,18—纳米流体,19— 螺栓。

Claims (5)

  1. 一种基于光声效应的纳米流体防团聚装置,其特征在于:该装置是由支承模块、光声转化模块、运动模块和控制模块组成;所述的支承模块包括:支架(1)和螺钉(2);支架(1)用于支撑光声转化模块和运动模块;
    所述的光声转化模块包括:纳秒激光器(13)、透镜夹持器(14)、透镜(12)、石英光纤(11)、光纤夹持器(9)、纳米金颗粒(16)、纳米金溶液罐(17)和螺栓(19);纳秒激光器(13)固定在固定板(8)上,透镜夹持器(14)夹住透镜(12),光纤夹持器(9)固定石英光纤(11);由纳米金颗粒(16)制成的纳米金溶液储存于纳米金溶液罐(17)中,纳米金溶液罐(17)通过螺栓(19)固定在石英光纤(11)的下端,并且石英光纤(11)末端纤芯插入纳米金溶液中;纳秒激光器(13)产生的脉冲激光与纳米金溶液罐(17)中的纳米金颗粒(16)相互作用,纳米金颗粒(16)在脉冲激光的辐照下会经历快速、周期性的体积膨胀和收缩,从而产生超声波,实现光声转化;在超声波作用下可以有效防止纳米流体(18)中的纳米颗粒团聚;
    所述的运动模块包括:伺服电机(5)、燕尾导轨(6)、丝杠螺母(7)、固定板(8)、导轨滑块(10)和深沟球轴承(15);燕尾导轨(6)通过螺钉(19)安装在支架(1)上并且支承运动模块;丝杠螺母(7)与导轨滑块(10)连接,并通过深沟球轴承(15)与伺服电机(5)相连;运动模块有3组,通过3组运动模块的配合可以实现光声转化模块的上下、左右、前后组合运动,从而可以对各个区域的纳米流体(18)进行超声振动以防止纳米颗粒团聚;
    所述的控制模块包括:承载板(3)、CCD(4)和纳米流体(18);CCD(4)实时监测纳米流体(18)中的纳米颗粒悬浮状态,当纳米颗粒出现团聚时,CCD上面的光敏元件感知到的光信号变弱,会给予计算机控制系统指令,进而 启动运动装置将光声转化模块移动到团聚区域,光声转化模块发送超声波驱散团聚的纳米颗粒,从而有效、快速、精准地解决了纳米流体的团聚问题。
  2. 根据权利要求1所述的一种基于光声效应的纳米流体防团聚装置,其特征在于:纳秒激光器(13)的波长为527nm、脉宽为150ns、重复频率为1kHz、平均功率为120~130mW;石英光纤(11)是纤芯直径为500~1000μm的多模光纤;纳米金颗粒(16)的尺寸为40~60nm,所制成的纳米金溶液的浓度为0.3~0.6mg/ml;CCD(4)为光电探测器,即电荷耦合器,其像敏单元数为5000×1。
  3. 根据权利要求1所述的一种基于光声效应的纳米流体防团聚装置,其特征在于:支架(1)、燕尾导轨(6)、固定板(8)和导轨滑块(10)的材料为钢材。
  4. 根据权利要求1所述的一种基于光声效应的纳米流体防团聚装置,其特征在于:光纤夹持器(9)固定在导轨滑块(10)上。
  5. 根据权利要求1所述的一种基于光声效应的纳米流体防团聚装置,其特征在于:透镜夹持器(14)的位置可调,能够适应不同激光的聚焦要求。
PCT/CN2019/110845 2019-06-03 2019-10-12 一种基于光声效应的纳米流体防团聚装置 WO2020244112A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/088,058 US10994249B1 (en) 2019-06-03 2020-11-03 Anti-agglomeration device using ultrasonic waves for a nanofluid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910474925.2 2019-06-03
CN201910474925.2A CN110193319B (zh) 2019-06-03 2019-06-03 一种基于光声效应的纳米流体防团聚装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/088,058 Continuation US10994249B1 (en) 2019-06-03 2020-11-03 Anti-agglomeration device using ultrasonic waves for a nanofluid

Publications (1)

Publication Number Publication Date
WO2020244112A1 true WO2020244112A1 (zh) 2020-12-10

Family

ID=67753729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/110845 WO2020244112A1 (zh) 2019-06-03 2019-10-12 一种基于光声效应的纳米流体防团聚装置

Country Status (3)

Country Link
US (1) US10994249B1 (zh)
CN (1) CN110193319B (zh)
WO (1) WO2020244112A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110193319B (zh) 2019-06-03 2020-05-29 长沙理工大学 一种基于光声效应的纳米流体防团聚装置
CN110193318B (zh) * 2019-06-03 2020-05-29 长沙理工大学 一种基于光声效应的纳米流体防团聚方法
CN113477283B (zh) * 2021-06-18 2022-09-06 电子科技大学长三角研究院(湖州) 一种非等离子体金属光致超声驱动流体运动的方法及捕捉装置
DE102021121631A1 (de) 2021-08-20 2023-02-23 Dionex Softron Gmbh Mischanordnung

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09122611A (ja) * 1995-10-31 1997-05-13 Toppan Printing Co Ltd 超音波洗浄装置
CN204469632U (zh) * 2015-01-29 2015-07-15 北京科技大学 一种复合超声均匀分散装置
TW201536480A (zh) * 2014-03-24 2015-10-01 Wei-Tai Huang 奈米流體微量潤滑設備
CN205570228U (zh) * 2016-04-29 2016-09-14 太仓贝斯特机械设备有限公司 一种高效纳米银浆分散机
CN206566846U (zh) * 2017-03-15 2017-10-20 贵州理工学院 一种温度可控的超声分散装置
CN108252891A (zh) * 2018-03-05 2018-07-06 河南工程学院 一种基于光纤的激光驱动宏观液流装置和方法
CN208660990U (zh) * 2018-05-14 2019-03-29 宿迁市第一人民医院 一种高效的用于纳米载体制备的超声波分散仪器
CN110193319A (zh) * 2019-06-03 2019-09-03 长沙理工大学 一种基于光声效应的纳米流体防团聚装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2657668A (en) * 1948-06-04 1953-11-03 Nat Lead Co Apparatus for impregnating and coating porous bodies
FR1541739A (fr) * 1967-08-28 1968-10-11 Cie Pour L Etude Et La Realisa Pulvérisation par ultrasons de liquides ou de solides fusibles ou solubles
KR101619629B1 (ko) * 2014-10-29 2016-05-11 오씨아이 주식회사 코어 쉘 구조 나노실리콘의 고분자 분산용액 제조장치
FR3050211B1 (fr) * 2016-04-19 2018-04-13 Etablissement Français Du Sang Dispositif de segmentation d'echantillons d'adn
KR101814103B1 (ko) * 2016-05-25 2018-01-02 부경대학교 산학협력단 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09122611A (ja) * 1995-10-31 1997-05-13 Toppan Printing Co Ltd 超音波洗浄装置
TW201536480A (zh) * 2014-03-24 2015-10-01 Wei-Tai Huang 奈米流體微量潤滑設備
CN204469632U (zh) * 2015-01-29 2015-07-15 北京科技大学 一种复合超声均匀分散装置
CN205570228U (zh) * 2016-04-29 2016-09-14 太仓贝斯特机械设备有限公司 一种高效纳米银浆分散机
CN206566846U (zh) * 2017-03-15 2017-10-20 贵州理工学院 一种温度可控的超声分散装置
CN108252891A (zh) * 2018-03-05 2018-07-06 河南工程学院 一种基于光纤的激光驱动宏观液流装置和方法
CN208660990U (zh) * 2018-05-14 2019-03-29 宿迁市第一人民医院 一种高效的用于纳米载体制备的超声波分散仪器
CN110193319A (zh) * 2019-06-03 2019-09-03 长沙理工大学 一种基于光声效应的纳米流体防团聚装置

Also Published As

Publication number Publication date
CN110193319B (zh) 2020-05-29
US20210129092A1 (en) 2021-05-06
CN110193319A (zh) 2019-09-03
US10994249B1 (en) 2021-05-04

Similar Documents

Publication Publication Date Title
WO2020244112A1 (zh) 一种基于光声效应的纳米流体防团聚装置
WO2020244111A1 (zh) 一种基于光声效应的纳米流体防团聚方法
Zhang et al. Progress in enhancement of CO2 absorption by nanofluids: A mini review of mechanisms and current status
Ke et al. Formation and stability of bulk nanobubbles in different solutions
Amiri et al. Laminar convective heat transfer of hexylamine-treated MWCNTs-based turbine oil nanofluid
Zheng et al. Electron beam manipulation of nanoparticles
Ghorabaee et al. The use of nanofluids in thermosyphon heat pipe: a comprehensive review
Polman Solar steam nanobubbles
Qin et al. Superhydrophobic polytetrafluoroethylene surfaces with accurately and continuously tunable water adhesion fabricated by picosecond laser direct ablation
CN107973268B (zh) 一种纳米及微米孔的加工方法
Rasheed et al. Hybrid nanofluids as renewable and sustainable colloidal suspensions for potential photovoltaic/thermal and solar energy applications
CN110576264B (zh) 一种用于流体减阻的微纳复合结构及激光加工方法
Liu et al. Solar evaporation of a hanging plasmonic droplet
Nito et al. Quantitative evaluation of optical forces by single particle tracking in slit-like microfluidic channels
Rafique et al. Laser nature dependence on enhancement of optical and thermal properties of copper oxide nanofluids
Seifikar et al. Efficient photo-thermal conversion using Pt nanofluid prepared by laser ablation in liquid
Kalus et al. Discrimination of ablation, shielding, and interface layer effects on the steady-state formation of persistent bubbles under liquid flow conditions during laser synthesis of colloids
Li et al. Tension gradient-driven oil/water interface rapid particle self-assembly and its application in microdroplet motion control
Wang et al. Plasma resonance effects on bubble nucleation in flow boiling of a nanofluid irradiated by a pulsed laser beam
Tsai et al. Laser Cleaning Technique Using Laser-induced Acoustic Streaming for Silicon Wafers.
CN215449094U (zh) 用于sers微腔结构的制备装置
CN111300273B (zh) 一种基于可控空蚀技术的织构加工试验装置
Mansour et al. In situ monitoring the productivity of ultra-small gold nanoparticles generated by pulsed-laser ablation of a high-speed rotating gold target in pure water
CN2876688Y (zh) 自防垢换热器
Zhong et al. Laser-accelerated self-assembly of colloidal particles at the water–air interface

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19931875

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19931875

Country of ref document: EP

Kind code of ref document: A1