WO2020244015A1 - 适用于柔性直流输电系统的直流限流器拓扑结构 - Google Patents

适用于柔性直流输电系统的直流限流器拓扑结构 Download PDF

Info

Publication number
WO2020244015A1
WO2020244015A1 PCT/CN2019/094781 CN2019094781W WO2020244015A1 WO 2020244015 A1 WO2020244015 A1 WO 2020244015A1 CN 2019094781 W CN2019094781 W CN 2019094781W WO 2020244015 A1 WO2020244015 A1 WO 2020244015A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
flexible
transmission system
circuit
parallel
Prior art date
Application number
PCT/CN2019/094781
Other languages
English (en)
French (fr)
Inventor
王志新
王金健
Original Assignee
上海交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海交通大学 filed Critical 上海交通大学
Publication of WO2020244015A1 publication Critical patent/WO2020244015A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/02Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess current
    • H02H9/021Current limitation using saturable reactors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Definitions

  • the invention relates to the technical field of power transmission and distribution, and in particular to a DC current limiter topology structure suitable for a flexible DC power transmission system.
  • the flexible DC transmission technology based on insulated gate bipolar transistors overcomes the shortcomings of traditional high voltage DC transmission that are easy to fail in commutation.
  • Flexible DC transmission is widely used in long-distance transmission of new energy due to its flexible control and power supply to passive networks. It is a key technology for the construction of energy Internet and smart grid.
  • the DC side short-circuit fault suppression methods are divided into three types according to the processing area: suppress the AC side feed current, control the converter to realize the self-clearing of the DC side short-circuit fault, and use the current limiter and the DC circuit breaker to remove the fault.
  • the first two methods can effectively suppress the fault current fed into the AC side, but cannot prevent the DC side parallel capacitor from discharging to the fault point.
  • the third method can suppress the inrush current caused by the parallel capacitor, it is affected by the breaking capacity and shutdown. Due to the limitation of breaking time, the application cases of high-voltage DC circuit breakers in actual projects are rare.
  • patent document CN108123427A discloses an inductive bidirectional DC current limiter topology.
  • the device is installed at the DC port of the converter station of the DC transmission system and consists of four parts: a circulation branch, a parallel diode string, a transfer circuit and a current-limiting inductor branch.
  • a circulation branch When the system fails, the fault current is transferred to the current-limiting branch with large inductance, but the patent does not consider the detection time of the fault current. Before the fault current is determined, the current flows through the current-limiting branch, which will cause a Large fault current.
  • Patent document CN104184135B provides a HVDC DC current limiter topology structure.
  • the DC current limiter includes parallel IGBT strings.
  • the anti-parallel reactor diode groups are connected in the middle of the IGBT strings to form a bridge structure; the bridge structure and
  • the bypass switches are connected in parallel.
  • the current limiter bypasses when the system is working normally, and is put into operation when the system fails, and by continuously switching between the two current flow paths according to a certain frequency, the DC current rises are limited.
  • the purpose of the present invention is to provide a DC current limiter topology structure suitable for a flexible DC transmission system.
  • a DC current limiter topology structure suitable for a flexible DC transmission system includes: a current-limiting reactor, a main circuit and a current-limiting circuit;
  • the main loop and the current limiting loop are connected in parallel to form a parallel circuit
  • the current-limiting reactor is connected in series with the parallel circuit.
  • the main loop includes: two pairs of reverse-series IGBT tubes and a fast isolation switch UFD are connected in series.
  • the current limiting loop includes an inductor and a resistor connected in parallel.
  • the DC current limiter is installed at the DC port of the converter station of the flexible DC transmission system.
  • the main circuit is shut off, and the current passes through the current limiting circuit.
  • the IGBT tube is turned off, and the fast isolation switch UFD is turned off within 2-3 ms.
  • it further includes a DC circuit breaker, and the DC circuit breaker is connected in series with the parallel circuit.
  • the DC circuit breaker includes a main loop IGBT, and the turn-off time of the main loop IGBT is consistent with the turn-off time of the IGBT tube.
  • a DC current limiter topology structure suitable for a flexible DC transmission system includes: a current-limiting reactor, a main circuit and a current-limiting circuit;
  • the main loop and the current limiting loop are connected in parallel to form a parallel circuit
  • the current-limiting reactor is connected in series with the parallel circuit
  • the main loop includes: two pairs of IGBT tubes connected in reverse series and a fast isolating switch UFD in series with each other;
  • the current limiting circuit includes an inductor and a resistor connected in parallel;
  • the DC current limiter is installed at the DC port of the converter station of the flexible DC transmission system
  • the IGBT tube is turned off, and the fast isolating switch UFD is turned off within 2-3 ms;
  • the DC current limiter topology structure further includes a DC circuit breaker, and the DC circuit breaker is connected in series with the parallel circuit;
  • the DC circuit breaker includes a main loop IGBT, and the turn-off time of the main loop IGBT is consistent with the turn-off time of the IGBT tube.
  • the present invention has the following beneficial effects:
  • the DC current limiter proposed in the present invention is installed at the DC port of the converter station of the DC transmission system. Under the normal operation of the system, the current limiting reactor has a low inductance value, low on-state loss and good dynamic characteristics. At the same time, in the event of a fault, it can effectively suppress the rapid increase of the fault current.
  • the current limiting circuit proposed by the present invention is formed by paralleling an inductor and a resistor, and the resistor can not only play a role of shunting, but also absorb the energy released by the inductor.
  • part of the energy released by the inductor is absorbed by the resistor, and the time for the circuit breaker to remove the fault is shortened.
  • Figure 1 is a circuit topology diagram of the DC current limiter of the present invention
  • Figure 2 is a current path diagram under normal operation of the flexible DC transmission system
  • Figure 3 is a diagram of the current path when the flexible DC transmission system fails
  • Figure 4 is the topological structure diagram of the test circuit of the DC current limiter
  • Figure 5 is a schematic diagram of the simulation results of the test circuit.
  • the present invention provides a DC current limiter topology structure suitable for a flexible DC transmission system, including: a current-limiting reactor, a main circuit and a current-limiting circuit.
  • the main circuit and the current limiting circuit are connected in parallel to form a parallel circuit, and the current limiting reactor is connected in series with the parallel circuit.
  • the main circuit includes: two pairs of reverse-series IGBT tubes and the fast disconnect switch UFD are connected in series; the current limiting circuit includes parallel inductance and resistance; the DC current limiter is installed at the DC port of the converter station of the flexible DC transmission system, and The DC circuit breakers cooperate to suppress the fault current.
  • the DC circuit breaker includes the main circuit IGBT and the main circuit IGBT.
  • the turn-off time is consistent with the turn-off time of the IGBT tube.
  • the system When the flexible DC transmission system fails, the system has a fault detection time of 2-3ms. During this period of time, the IGBT tubes VT a , VT b , VT 1 , and VT 2 remain conductive. After the fault occurs, the current limiter and the DC circuit breaker The IGBT tube of the main circuit is disconnected, and the current flow path changes. The current flow path is transferred from the main circuit of the current limiter to the current limiting circuit, and from the main circuit of the circuit breaker to the current transfer circuit. Among them, RCD is the residual current DC switch.
  • the simulation result is shown in Figure 5.
  • the current limiter can limit the current below 9kA.
  • the current-limiting loop resistance of the current-limiter can absorb the energy released by the inductor and accelerate the energy absorption.
  • the circuit breaker can cut off the fault within 5ms.

Abstract

一种适用于柔性直流输电系统的直流限流器拓扑结构,包括:限流电抗器L1、主回路和限流回路;所述主回路与所述限流回路并联形成并联电路;所述限流电抗器L1与所述并联电路串联。直流限流器安装于换流站的直流端口处,在系统正常工作时,电流流过主回路;系统发生故障时,电流流通路径从主回路切换至限流回路,能有效抑制故障电流的快速增大。该限流器拓扑结构在正常工作情况下损耗较小,发生故障时能有效抑制故障电流的快速增大,同时能量耗散较快,能缩短高压直流断路器的故障切除时间。

Description

适用于柔性直流输电系统的直流限流器拓扑结构 技术领域
本发明涉及输配电技术领域,具体地,涉及一种适用于柔性直流输电系统的直流限流器拓扑结构。
背景技术
得益于电力电子器件产业的快速发展,基于绝缘栅双极晶体管的柔性直流输电技术克服了传统高压直流输电容易换相失败的缺陷。柔性直流输电由于其控制灵活,可向无源网络供电等优点,被广泛应用于新能源远距离传输,是构建能源互联网和智能电网的关键技术。
柔性直流输电面临直流电网故障清除难题,以基于两电平或三电平的VSC-HVDC为例。在直流侧架空线发生短路故障时,并联在直流侧的电容向故障点迅速放电,故障电流在几毫秒内可以达到额定电流的几十倍;同时,交流侧馈入的故障电流,即使采取闭锁换流器措施,交流系统的故障电流依然能够与IGBT反向并联的二极管、直流侧故障点构成回路,故障电流引起二极管过流而损坏。
直流侧短路故障抑制方法按处理区域分为三种:抑制交流侧馈入电流,控制换流器实现直流侧短路故障的自清除,采用限流器和直流断路器切除故障。前两种方法能够有效抑制交流侧馈入的故障电流,但不能阻止直流侧并联电容向故障点放电,第三种方法虽然能抑制并联电容带来的冲击电流,但由于受到开断容量以及关断时间的限制,高压直流断路器在实际工程中的应用案例并不多见。
在目前的研究中,专利文献CN108123427A公开了一种电感型双向直流限流器拓扑结构。该装置安装于直流输电系统的换流站的直流端口处,由流通支路、并联的二极管串、转移电路和限流电感支路四部分组成。在系统发生故障时,故障电流转移到带大电感的限流支路,但该专利并未考虑故障电流的检测时间,在未确定故障电流之前,电流从通流支路流过,会产生很大的故障电流。
专利文献CN104184135B提供了一种HVDC直流限流器拓扑结构,直流限流器包括并联的IGBT串,在IGBT串的中间位置连接反向并联的电抗器二极管组,形成桥 式结构;桥式结构与旁路开关并联。该限流器在系统正常工作时旁路,在系统故障时投入运行,通过在两种电流流通路径间按照一定频率不断切换,限制直流电流上升。但是,该直流系统会存在换相失败的风险。
发明内容
针对现有技术中的缺陷,本发明的目的是提供一种适用于柔性直流输电系统的直流限流器拓扑结构。
根据本发明提供的一种适用于柔性直流输电系统的直流限流器拓扑结构,包括:限流电抗器、主回路和限流回路;
所述主回路与所述限流回路并联形成并联电路;
所述限流电抗器与所述并联电路串联。
优选地,所述主回路包括:两对反向串联的IGBT管与快速隔离开关UFD相互串联。
优选地,所述限流回路包括并联的电感和电阻。
优选地,所述直流限流器安装于柔性直流输电系统的换流站的直流端口处。
优选地,所述柔性直流输电系统正常运行时,电流经过所述主回路。
优选地,所述柔性直流输电系统故障时,所述主回路关断,电流经过所述限流回路。
优选地,所述柔性直流输电系统故障时,所述IGBT管关断,所述快速隔离开关UFD在2-3ms时间内断开。
优选地,还包括直流断路器,所述直流断路器与所述并联电路串联。
优选地,所述直流断路器包括主回路IGBT,所述主回路IGBT的关断时间与所述IGBT管的关断时间一致。
根据本发明提供的一种适用于柔性直流输电系统的直流限流器拓扑结构,包括:限流电抗器、主回路和限流回路;
所述主回路与所述限流回路并联形成并联电路;
所述限流电抗器与所述并联电路串联;
所述主回路包括:两对反向串联的IGBT管与快速隔离开关UFD相互串联;
所述限流回路包括并联的电感和电阻;
所述直流限流器安装于柔性直流输电系统的换流站的直流端口处;
所述柔性直流输电系统正常运行时,电流经过所述主回路;
所述柔性直流输电系统故障时,所述主回路关断,电流经过所述限流回路;
所述柔性直流输电系统故障时,所述IGBT管关断,所述快速隔离开关UFD在2-3ms时间内断开;
所述直流限流器拓扑结构还包括直流断路器,所述直流断路器与所述并联电路串联;
所述直流断路器包括主回路IGBT,所述主回路IGBT的关断时间与所述IGBT管的关断时间一致。
与现有技术相比,本发明具有如下的有益效果:
1、本发明提出的直流限流器安装于直流输电系统换流站的直流端口处,在系统正常运行情况下,限流电抗器的电感值较低,通态损耗较小,动态特性较好,同时故障情况下,能有效抑制故障电流的快速增大。
2、本发明提出的限流回路由电感和电阻并联而成,电阻既可以起到分流的作用,又可以吸收电感释放的能量。
3、本发明提出的限流回路中,电感释放的能量有一部分被电阻吸收,断路器切除故障的时间缩短。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为本发明直流限流器的电路拓扑结构图;
图2为柔性直流输电系统正常运行下的电流路径图;
图3为柔性直流输电系统故障时的电流路径图;
图4为直流限流器的测试电路拓扑结构图;
图5为测试电路的仿真结果示意图。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变化和改进。这些都属于本发明的保护范围。
如图1所示,本发明提供的一种适用于柔性直流输电系统的直流限流器拓扑结构,包括:限流电抗器、主回路和限流回路。主回路与限流回路并联形成并联电路,限流电抗器与并联电路串联。
主回路包括:两对反向串联的IGBT管与快速隔离开关UFD相互串联;限流回路包括并联的电感和电阻;直流限流器安装于柔性直流输电系统的换流站的直流端口处,与直流断路器协同配合抑制故障电流。
如图2所示,柔性直流输电系统正常运行时,电流经过主回路。
如图3所示,柔性直流输电系统故障时,柔性直流输电系统故障时,IGBT管关断,快速隔离开关UFD在2-3ms时间内断开,直流断路器包括主回路IGBT,主回路IGBT的关断时间与IGBT管的关断时间一致。
柔性直流输电系统故障时,系统有2-3ms的故障检测时间,该时间段内IGBT管VT a、VT b、VT 1、VT 2保持导通,确定故障发生后,限流器与直流断路器主回路的IGBT管断开,电流流通路径发生变化,电流流经路径从限流器的主回路转移至限流回路,从断路器的主回路转移至电流转移回路,其中,RCD是剩余电流直流开关。在2-3ms内断开限流器与断路器主回路的快速隔离开关UFD,同时断路器电流转移回路的IGBT管VT 3-VT n断开,电流从断路器转移回路移至金属氧化物MOA。
进一步地,在PSCAD搭建如图4所示的仿真模型进行验证,参数如表1所示。
表1仿真模型
Figure PCTCN2019094781-appb-000001
仿真结果如图5所示,限流电抗器电感值虽小,但限流器能将电流限制在9kA以下,同时由于限流器限流回路电阻可以吸收电感释放的能量,加快能量的吸收,断路器能够 在5ms内切除故障。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本发明的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。

Claims (10)

  1. 一种适用于柔性直流输电系统的直流限流器拓扑结构,其特征在于,包括:限流电抗器、主回路和限流回路;
    所述主回路与所述限流回路并联形成并联电路;
    所述限流电抗器与所述并联电路串联。
  2. 根据权利要求1所述的适用于柔性直流输电系统的直流限流器拓扑结构,其特征在于,所述主回路包括:两对反向串联的IGBT管与快速隔离开关UFD相互串联。
  3. 根据权利要求1所述的适用于柔性直流输电系统的直流限流器拓扑结构,其特征在于,所述限流回路包括并联的电感和电阻。
  4. 根据权利要求1所述的适用于柔性直流输电系统的直流限流器拓扑结构,其特征在于,所述直流限流器安装于柔性直流输电系统的换流站的直流端口处。
  5. 根据权利要求1所述的适用于柔性直流输电系统的直流限流器拓扑结构,其特征在于,所述柔性直流输电系统正常运行时,电流经过所述主回路。
  6. 根据权利要求1所述的适用于柔性直流输电系统的直流限流器拓扑结构,其特征在于,所述柔性直流输电系统故障时,所述主回路关断,电流经过所述限流回路。
  7. 根据权利要求2所述的适用于柔性直流输电系统的直流限流器拓扑结构,其特征在于,所述柔性直流输电系统故障时,所述IGBT管关断,所述快速隔离开关UFD在2-3ms时间内断开。
  8. 根据权利要求7所述的适用于柔性直流输电系统的直流限流器拓扑结构,其特征在于,还包括直流断路器,所述直流断路器与所述并联电路串联。
  9. 根据权利要求8所述的适用于柔性直流输电系统的直流限流器拓扑结构,其特征在于,所述直流断路器包括主回路IGBT,所述主回路IGBT的关断时间与所述IGBT管的关断时间一致。
  10. 一种适用于柔性直流输电系统的直流限流器拓扑结构,其特征在于,包括:限流电抗器、主回路和限流回路;
    所述主回路与所述限流回路并联形成并联电路;
    所述限流电抗器与所述并联电路串联;
    所述主回路包括:两对反向串联的IGBT管与快速隔离开关UFD相互串联;
    所述限流回路包括并联的电感和电阻;
    所述直流限流器安装于柔性直流输电系统的换流站的直流端口处;
    所述柔性直流输电系统正常运行时,电流经过所述主回路;
    所述柔性直流输电系统故障时,所述主回路关断,电流经过所述限流回路;
    所述柔性直流输电系统故障时,所述IGBT管关断,所述快速隔离开关UFD在2-3ms时间内断开;
    所述直流限流器拓扑结构还包括直流断路器,所述直流断路器与所述并联电路串联;
    所述直流断路器包括主回路IGBT,所述主回路IGBT的关断时间与所述IGBT管的关断时间一致。
PCT/CN2019/094781 2019-06-04 2019-07-05 适用于柔性直流输电系统的直流限流器拓扑结构 WO2020244015A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910482001.7A CN110265986A (zh) 2019-06-04 2019-06-04 适用于柔性直流输电系统的直流限流器拓扑结构
CN201910482001.7 2019-06-04

Publications (1)

Publication Number Publication Date
WO2020244015A1 true WO2020244015A1 (zh) 2020-12-10

Family

ID=67916735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/094781 WO2020244015A1 (zh) 2019-06-04 2019-07-05 适用于柔性直流输电系统的直流限流器拓扑结构

Country Status (2)

Country Link
CN (1) CN110265986A (zh)
WO (1) WO2020244015A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021119938A1 (zh) * 2019-12-16 2021-06-24 西门子股份公司 混合断路器、混合断路系统及断路方法
CN112086943B (zh) * 2020-09-02 2022-05-24 东南大学 一种主动式故障限流电路及全固态直流断路器
CN112260245A (zh) * 2020-09-28 2021-01-22 深圳供电局有限公司 限流装置和方法以及直流电网保护装置和直流电网系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012100831A1 (en) * 2011-01-27 2012-08-02 Alstom Technology Ltd Circuit breaker apparatus
CN106877301A (zh) * 2017-04-14 2017-06-20 贵州电网有限责任公司 一种高压直流断路器及试验方法
CN108258669A (zh) * 2018-02-05 2018-07-06 全球能源互联网研究院有限公司 一种二次换相式直流限流器及其控制方法
CN208571622U (zh) * 2018-06-29 2019-03-01 国网浙江省电力有限公司杭州供电公司 一种多端柔性直流输电线路的故障处理系统
CN109586260A (zh) * 2018-10-30 2019-04-05 华北电力大学 一种阻感型电容换相混合式限流器及其控制方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101997306B (zh) * 2010-09-28 2013-12-18 中国科学院电工研究所 矩阵式电阻型超导限流器限流单元间电压均衡器
CN205791504U (zh) * 2016-05-23 2016-12-07 华北电力大学 一种用于10kv电网的智能故障限流器
KR101996514B1 (ko) * 2017-02-22 2019-10-01 한양대학교 에리카산학협력단 Dc 그리드용 고장 전류 제한기 및 그 제어방법
CN108123427A (zh) * 2018-01-17 2018-06-05 华北电力大学 一种电感型双向直流限流器拓扑
CN109390964A (zh) * 2018-11-28 2019-02-26 国网江苏省电力有限公司经济技术研究院 含有电感型超导限流器和直流断路器的多端柔性直流系统
CN109659967B (zh) * 2018-12-28 2020-08-11 国网江苏省电力有限公司经济技术研究院 含有电阻型超导限流器和直流断路器的换流站及其直流故障处理策略

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012100831A1 (en) * 2011-01-27 2012-08-02 Alstom Technology Ltd Circuit breaker apparatus
CN106877301A (zh) * 2017-04-14 2017-06-20 贵州电网有限责任公司 一种高压直流断路器及试验方法
CN108258669A (zh) * 2018-02-05 2018-07-06 全球能源互联网研究院有限公司 一种二次换相式直流限流器及其控制方法
CN208571622U (zh) * 2018-06-29 2019-03-01 国网浙江省电力有限公司杭州供电公司 一种多端柔性直流输电线路的故障处理系统
CN109586260A (zh) * 2018-10-30 2019-04-05 华北电力大学 一种阻感型电容换相混合式限流器及其控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HAN NAIZHENG;JIA XIUFANG;ZHAO XIBEI;XU JIANZHONG;ZHAO CHENGYONG: "A Novel Hybrid DC Fault Current Limiter Topology", ZHONGGUO DIANJI GONGCHENG XUEBAO = PROCEEDINGS CHINESE SOCIETY OF ELECTRICAL ENGINEERING, vol. 39, no. 6, 20 March 2019 (2019-03-20), pages 1647 - 1658, XP055764609, ISSN: 0258-8013, DOI: 10.13334/j.0258-8013.pcsee.180469 *

Also Published As

Publication number Publication date
CN110265986A (zh) 2019-09-20

Similar Documents

Publication Publication Date Title
Mohammadi et al. HVDC circuit breakers: A comprehensive review
Wang et al. Reactor sizing criterion for the continuous operation of meshed HB-MMC-based MTDC system under DC faults
Xue et al. On the bipolar MMC-HVDC topology suitable for bulk power overhead line transmission: configuration, control, and DC fault analysis
EP3355431B1 (en) Cascaded full-bridge high-voltage dc circuit breaker
RU2740012C1 (ru) Продольный компенсатор и способ управления
Xu et al. A thyristor-based DC fault current limiter with inductor inserting–bypassing capability
RU2592640C2 (ru) Линейный защитный автомат постоянного напряжения
WO2020244015A1 (zh) 适用于柔性直流输电系统的直流限流器拓扑结构
CN104900444A (zh) 直流断路器的拓扑结构及其控制方法
Xiang et al. Research on fast solid state DC breaker based on a natural current zero-crossing point
CN110970875A (zh) 一种用于直流电网的组合限流型直流断路器
KR20150115854A (ko) 선로 전류를 차단 또는 제한하는 장치 및 그의 제어 방법
Giannakis et al. Performance evaluation and limitations of overvoltage suppression circuits for low-and medium-voltage DC solid-state breakers
Chen et al. Study on coordination of resistive SFCLs and hybrid-type circuit breakers to protect a HVDC system with LCC and VSC stations
Wen et al. Technical assessment of hybrid DCCB with improved current commutation drive circuit
WO2020233180A1 (zh) 限流型可控避雷器、换流器、输电系统以及控制方法
CN111740395A (zh) 电感耦合型高压直流限流断路器拓扑结构
CN106711930A (zh) 一种直流断路器及其控制方法
Teng et al. Research on a novel DC circuit breaker based on artificial current zero-crossing
Xue et al. A modular hybrid DC circuit breaker with fault current self-adaptive control and protection coordination
Xu et al. A multi-port current-limiting hybrid DC circuit breaker
CN103986122A (zh) 一种附加二极管的模块化限流断路器功率模块
Wu et al. A multiterminal active resonance circuit breaker for modular multilevel converter based DC grid
CN113162000B (zh) 一种改进的自适应限流直流固态断路器及其控制方法
CN114156841A (zh) 一种新型大电流强迫换流分断的换流回路拓扑结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19931781

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19931781

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19931781

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/07/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19931781

Country of ref document: EP

Kind code of ref document: A1