WO2020244012A1 - 一种治疗用呼吸机的风机 - Google Patents

一种治疗用呼吸机的风机 Download PDF

Info

Publication number
WO2020244012A1
WO2020244012A1 PCT/CN2019/094559 CN2019094559W WO2020244012A1 WO 2020244012 A1 WO2020244012 A1 WO 2020244012A1 CN 2019094559 W CN2019094559 W CN 2019094559W WO 2020244012 A1 WO2020244012 A1 WO 2020244012A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
air
fan
impeller
wall
Prior art date
Application number
PCT/CN2019/094559
Other languages
English (en)
French (fr)
Inventor
汤卓然
黄勇
朱永权
舒文秀
傅佳萍
边宏亮
龙峰
陈锋
王博
简越
郭海龙
Original Assignee
沈阳新松医疗科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 沈阳新松医疗科技股份有限公司 filed Critical 沈阳新松医疗科技股份有限公司
Priority to EP19931724.9A priority Critical patent/EP3981453A4/en
Publication of WO2020244012A1 publication Critical patent/WO2020244012A1/zh
Priority to US17/220,881 priority patent/US20210220585A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0057Pumps therefor
    • A61M16/0066Blowers or centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/663Sound attenuation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0057Pumps therefor
    • A61M16/0066Blowers or centrifugal pumps
    • A61M16/0069Blowers or centrifugal pumps the speed thereof being controlled by respiratory parameters, e.g. by inhalation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/1075Preparation of respiratory gases or vapours by influencing the temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • F04D25/082Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation the unit having provision for cooling the motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4226Fan casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/5806Cooling the drive system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/5853Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps heat insulation or conduction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/663Sound attenuation
    • F04D29/664Sound attenuation by means of sound absorbing material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/663Sound attenuation
    • F04D29/665Sound attenuation by means of resonance chambers or interference
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/668Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps damping or preventing mechanical vibrations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3368Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/42Reducing noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers

Definitions

  • the invention relates to a pressure gas supply device for treatment, in particular to a fan of a ventilator for treatment.
  • a ventilator is a device that can replace, control or change a person's normal physiological breathing, increase lung ventilation, improve respiratory function, reduce respiratory consumption, and save heart reserves.
  • the fan As the source of therapeutic gas, the fan is the core component of the ventilator.
  • the fan generates a certain pressure and flow of gas in the ventilator to provide the patient.
  • the performance index of the fan directly affects the performance of the whole ventilator, and relevant design should be carried out in the installation, fixation, vibration reduction, noise reduction, airway, air flow combing, and structure of the fan.
  • CPAP Continuous Positive Pressure Ventilation
  • sleep apnea syndrome that is, severe snoring and accompanying suffocation symptoms
  • the sleep ventilator is mainly used during the patient's sleep period, so there is a particularly high requirement for noise reduction.
  • ventilators on the market usually use general-purpose fans, which have problems such as turbulent airflow, turbulence or turbulence, low efficiency and high noise.
  • the motor drives the impeller to rotate at a high speed to generate a certain flow of air flow in the vortex air path, while maintaining the gas in a certain pressure range in the volute air path, and output to the positive airway pressure ventilator pipeline system through the volute air outlet. .
  • This process will generate a lot of noise.
  • the noise mainly comes from three aspects. On the one hand, it is the noise generated by the air flowing through the high-speed rotating impeller.
  • the second aspect is the aerodynamic noise caused by the high-speed flowing gas in the volute.
  • the third aspect is Vibration noise generated by a high-speed rotating motor.
  • Bilevel ventilator is currently the most widely used ventilator for non-invasive nasal (face) mask mechanical ventilation. It is widely used in acute and chronic respiratory failure caused by various intrapulmonary and extrapulmonary diseases, such as chronic obstructive pulmonary disease, bronchiectasis, cystic fibrosis, interstitial lung disease, heart failure, neuromuscular disease, obesity, hypoventilation, etc., and Various types of sleep breathing disorders, especially patients with central sleep apnea or complex sleep breathing disorders. In order to achieve the therapeutic effect of the ventilator, it is necessary to detect the patient's breathing through the control system to ensure that the ventilator can accurately follow the patient's breathing frequency to give air, which requires the fan to continuously accelerate and decelerate to achieve rapid response.
  • the motor During the rapid acceleration and rapid deceleration of the fan, the motor will generate a lot of heat. If this heat cannot be taken away in time, the temperature of the motor will rise significantly, which will affect the electrical safety and the life of the fan.
  • the heat dissipation problem of the fan has always been a key problem to be solved in the design process of the ventilator.
  • the fans used in the ventilators on the market mainly have the motor located outside the fan housing, and the airflow cannot flow through the motor during the operation of the fan.
  • An additional design method is needed to dissipate the motor itself; the additional heat dissipation structure design not only increases the internal space requirement, but the effect is not very satisfactory.
  • the purpose of the present invention is to provide a ventilator for a therapeutic ventilator.
  • the fan of the present invention includes a motor, an impeller, a lower casing, an upper casing and an air intake structure, wherein the lower casing is connected to the upper casing, and the casing formed by the upper and lower casings is provided with an air outlet;
  • the lower end of the lower shell is an open end, the upper end is provided with a ring frame, the motor is located inside the lower shell, the output shaft end is mounted on the lower shell, the output shaft of the motor is connected with an impeller, and the impeller is located between the ring frame and the ring frame.
  • the air intake structure is installed on the lower casing, and the lower end away from the impeller is the axial air intake end.
  • the upper end of the air intake structure and the ring frame form a noise silencing chamber.
  • the cold air enters the noise silencing chamber along the axial direction of the housing through the air intake structure under the action of the motor driven impeller to rotate, and then flows through the surface of the motor for heat exchange. Outflow from the air outlet;
  • the air intake structure includes a flat plate and an air intake pipe.
  • the flat plate has a ring shape and is installed on the lower shell.
  • the flat plate is provided with a plurality of air intake holes B along the circumferential direction, and each air intake hole B is connected with Air intake pipes, the lower end of each air intake pipe is connected to the air intake hole B, and a noise silencing chamber is formed between the upper end and the ring frame;
  • the flat plate is provided with drainage holes;
  • a motor support ring is installed on the flat plate, and the motor support ring and the flat plate serve as a support for the non-output shaft end of the motor;
  • the fan of the present invention includes a motor, an impeller, a lower casing, an upper casing, and an intake sound-absorbing cotton, wherein the lower casing is connected with the upper casing, and an air outlet is provided on the casing formed by the upper and lower casings;
  • the lower end of the lower shell is an open end, and the upper end is provided with a ring frame, the motor is located inside the lower shell, the output shaft end is mounted on the lower shell, the output shaft of the motor is connected with an impeller, and the impeller is located between the ring frame and the ring frame.
  • the inner surface of the lower shell is equipped with air intake sound-absorbing cotton, which forms an air inlet channel between the air-intake sound-absorbing cotton and the outer surface of the motor, and the external cold air acts on the motor to drive the impeller to rotate Pass through the air inlet channel to exchange heat with the surface of the motor, and the air after heat exchange flows out from the air outlet;
  • the material of the air intake sound-absorbing cotton is PE or EVA open-cell foam
  • the sound absorption coefficient of the air intake sound-absorbing cotton at a frequency of 500-4KHz is 0.8-1;
  • the ratio of the length to the diameter of the non-rotating shaft part of the motor rotor is 3:1 to 6:1;
  • the material of the motor housing is a thermally conductive material to conduct heat from the inside of the motor
  • the material of the motor casing type motor housing is aluminum alloy material
  • the coil of the motor is a slotless tube and is installed on the stator core of the motor.
  • the stator core adopts a low-loss stamped silicon steel sheet non-slot laminated tube shape, and the stator core is installed in the sleeve type of the motor.
  • a temperature sensor is arranged inside the motor, and the sleeve-type motor housing, rear cover, front cover and printed circuit board of the motor conduct heat from other parts of the motor to the temperature sensor for providing a temperature signal to the control center;
  • the output shaft end of the motor is installed with a water-stopping washer and/or a soft washer;
  • the impeller is made of a material with a density of less than 1g/mm 3 ;
  • the back of the impeller is provided with at least one annular protrusion for improving the structural strength of the impeller
  • the impeller is directly connected to the output shaft of the motor, and the contact part between the output shaft of the motor and the impeller is in a sawtooth shape;
  • the air outlet plane of the fan is staggered with the blade plane of the impeller
  • the lower shell is provided with an annular wall A and an outer wall from the inside to the outside, the lower end of the annular wall A and the outer wall is an open end, the upper end is provided with a ring frame, the space between the outer wall and the upper shell and the air outlet
  • the motor is located inside the annular wall A, and the output shaft end is installed on the lower housing; the air intake structure is arranged between the annular wall A and the outer wall;
  • the inner ring of the ring frame has a plurality of points extending inward in the circumferential direction to form support ribs, an air inlet A is formed between two adjacent support ribs, and a motor mounting frame is provided on the inner side of the ring wall A, and the motor is installed
  • the frame is connected with each of the supporting ribs, and the output shaft end of the motor is fixed on the motor mounting frame; the outer edge of the lower end of the outer wall is provided with an air outlet channel A that is half of the air outlet;
  • the upper shell includes an annular wall B, an air outlet channel B, and a top plate.
  • the annular wall B is located outside the outer wall after being connected to the lower shell.
  • the upper end of the annular wall B is provided with a top plate and the lower end is an open end ,
  • the outer edge of the lower end of the annular wall B is provided with an air outlet channel B that is half of the air outlet;
  • the annular air flow channel between the annular wall B and the outer wall has a relative axial length of 1 to 2°, and the air flow cross-sectional area is gradually increased to gradually transition to the air outlet tube cross-sectional area.
  • the present invention has low working noise, compact structure, and efficient heat dissipation, so that the motor can effectively use the flow of cold air to dissipate heat, and provide patients with sufficient prescribed treatment pressure and flow.
  • a noise silencing chamber is formed between the air intake structure of the present invention and the ring frame, which effectively reduces air intake flow noise.
  • the impeller of the present invention has high efficiency and low inertia, provides effective pressure, flow, acceleration and deceleration capabilities, and enables the fan to produce required respiratory treatment parameters.
  • the two ends of the motor of the present invention can be "soft installation", which can reduce the transmission of unbalanced vibration of the motor rotor and impeller to other parts of the fan, amplify and radiate the fan vibration noise, and further reduce noise.
  • the present invention can also adopt the method of arranging the air inlet sound-absorbing cotton on the inner surface of the annular wall A of the lower shell, so that an air inlet channel is formed between the motor surface and the air inlet sound-absorbing cotton, and the motor housing is cooled when the gas flows through the channel at high speed
  • the air intake sound-absorbing cotton will reduce the noise.
  • Figure 1 is a schematic diagram of the three-dimensional structure of the present invention.
  • FIG. 2A is a schematic diagram of the internal structure of the upper casing and the lower casing of the present invention after being connected;
  • FIG. 2B is a schematic diagram of the internal structure of Embodiment 1 of the present invention.
  • Figure 3A is one of the exploded views of the first embodiment of the present invention.
  • 3B is the second exploded view of the first embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the internal structure of the lower casing of the present invention.
  • Figure 5 is a schematic diagram of the internal structure of the upper casing of the present invention.
  • Figure 6 is a schematic diagram of the internal structure of the motor of the present invention.
  • Figure 7 is a schematic diagram of the structure of the motor rotor of the present invention.
  • Figure 8A is one of the three-dimensional structural schematic diagrams of the impeller of the present invention.
  • Figure 8B is the second three-dimensional structural diagram of the impeller of the present invention.
  • Figure 8C is the third three-dimensional structural diagram of the impeller of the present invention.
  • FIG. 9A is one of the three-dimensional structural schematic diagrams of the air intake structure in the first embodiment of the present invention.
  • 9B is the second three-dimensional structural diagram of the air intake structure in the first embodiment of the present invention.
  • FIG. 10 is a schematic diagram of the internal structure of the first embodiment of the present invention after removing the impeller;
  • FIG. 11 is a schematic diagram of the internal structure of the motor and the lower casing of the present invention after installation;
  • FIG. 12 is a schematic diagram of another internal structure after the motor and the lower housing are installed in the second embodiment of the present invention.
  • 1 is a fan
  • 2 is the motor
  • 201 is the casing motor housing
  • 202 is the stator core
  • 203 is the coil
  • 204 is the back cover
  • 205 is the front cover
  • 206 is the output shaft
  • 207 is the permanent magnet
  • 208 is the balance ring
  • 209 is the printing
  • 210 is a bearing
  • 211 is a temperature sensor
  • 212 is a lead fixing member
  • 213 is a wire
  • 214 is a Y-connected coil terminal wire
  • 215 is a bearing pre-tensioning spring
  • 3 is an impeller, 301 is the main blade, 302 is a splitter blade, 303 is a hub, 304 is a through hole, 305 is a back plate, and 306 is an annular protrusion;
  • 4 is the lower shell, 401 is the annular wall A, 402 is the outer wall, 403 is the air outlet channel A, 404 is the ring frame, 405 is the support rib, 406 is the air inlet A, and 407 is the motor mounting frame;
  • 5 is the upper shell, 501 is the annular wall B, 502 is the air outlet channel B, 503 is the connecting ear, and 504 is the top plate;
  • 6 is an air intake structure, 601 is a flat plate, 602 is an air intake pipe, 603 is a drain hole, and 604 is an air intake hole B;
  • 7 is the motor support ring
  • 8 is the noise silencing chamber
  • 9 is the water-stopping gasket
  • 10 is the soft gasket
  • 11 is the air inlet sound-absorbing cotton
  • 12 is the air inlet channel
  • 13 is the air outlet.
  • the fan 1 of this embodiment includes a motor 2, an impeller 3, a lower casing 4, an upper casing 5, an air intake structure 6 and a motor support ring 7, wherein the lower casing 4 and the upper casing
  • the body 5 is detachably connected to form a casing of the fan 1 together; an air outlet 13 is formed on the casing formed by the upper and lower casings 5 and 4, and the outlet direction of the air outlet 13 is tangent to the outer surface of the casing.
  • the lower shell 4 is provided with an annular wall A401 and an outer wall 402 from the inside to the outside.
  • the lower ends of the annular wall A401 and the outer wall 402 are open ends, and the upper end is provided with a ring frame 404.
  • the outer wall 402 and the ring wall A401 are arranged coaxially;
  • the inner ring of 404 has multiple points extending inward along the circumferential direction to form support ribs 405.
  • An air inlet A406 is formed between two adjacent support ribs 405.
  • a motor mounting frame 407 is provided on the inner side of the annular wall A401.
  • the motor mounting frame 407 Connected with each supporting rib 405, the output shaft end of the motor 2 is fixed on the motor mounting frame 407.
  • the outer edge of the lower end of the outer wall 402 is provided with an air outlet channel A403 as a half of the air outlet 13, and the space between the outer wall 402 and the upper casing 5 is in communication with the air outlet 13.
  • the motor 2 is located inside the annular wall A401, and the output shaft end is fixed on the motor mounting frame 407.
  • the upper shell 5 includes an annular wall B501, an air outlet channel B502, a connecting lug 503 and a top plate 504.
  • the annular wall B501 is located outside the outer wall 402 after being connected to the lower shell 4, and is coaxially arranged with the outer wall 402 and the annular wall A401
  • the upper end of the annular wall B501 is provided with a top plate 504, and the lower end is an open end.
  • a plurality of connecting ears 503 are evenly distributed along the circumferential direction on the outer surface of the annular wall B501, and the outer edge of the lower end of the annular wall B501 is provided as an output Half of the air outlet channel B502 of the air outlet 13, the air outlet channel B502 on the upper shell 5 and the air outlet channel A403 on the lower shell 4 are buckled up and down to form the air outlet 13.
  • the impeller 3 of this embodiment is directly installed on the output shaft 206 of the motor 2 to reduce the moment of inertia, which is different from the existing copper sleeve installation method.
  • the installation contact part of the output shaft 206 of the motor 2 and the impeller 3 is in a sawtooth shape, which increases the installation contact area and bears the acceleration and deceleration stress of the motor 2.
  • the impeller 3 is located between the ring frame 404 and the top plate 504 of the upper casing 5.
  • the impeller 3 includes a main blade 301, a splitter blade 302, a hub 303 and a back plate 305.
  • the hub 303 is provided with a through hole 304.
  • One end of the hub 303 is connected to the output shaft 206 of the motor 2 and the other end is in the middle of the back plate 305. The position is fixed.
  • On the back plate 305 on the periphery of the hub 303 a plurality of main blades 301 and a plurality of splitter blades 302 are evenly distributed along the circumferential direction, and the main blades 301 and the splitter blades 302 are alternately arranged.
  • One end of the main blade 301 is located on the outer edge of the back plate 305, and the other end is connected to the hub 303; one end of the splitter blade 302 is located on the outer edge of the back plate 305, and a gap is left between the other end and the hub 303.
  • the thickness of the back plate 305 in this embodiment is limited to 0.8mm, the total number of blades is limited to 17 (16 in this embodiment), the main blade 301 reaches the hub 303, and the length of the splitter blade 302 is 2/3 of the length of the main blade 301 , The thickness of the splitter blade 302 is limited to 0.8 mm.
  • the impeller 3 of this embodiment is made of the lightest engineering plastics (density less than or equal to 1g/mm 3 , such as polypropylene, LDPE, HDPE, TPV, etc.), and can meet the requirements of the impeller when working under high pressure and high frequency acceleration and deceleration. For stress requirements, the diameter of the impeller 3 is limited to less than 50mm.
  • annular protrusion 306 is provided on the other side of the back plate 305; the annular protrusion 306 in this embodiment is Three, concentrically opened, the cross section is inverted triangle.
  • the air intake structure 6 is arranged coaxially with the motor 2 and forms a noise silencing chamber 8 between the ring frame 404 and In order to reduce the radiated noise of the intake airflow of the fan 1.
  • the air intake structure 6 includes a flat plate 601 and an air intake pipe 602.
  • the flat plate 601 is annular and can be connected to the lower end of the lower housing 4 by ultrasonic or friction welding.
  • the inner ring of the flat plate 601 is inserted into the motor support ring 7.
  • the flat plate 601 is provided with a plurality of air inlet holes B604 evenly along the circumferential direction, and each air inlet hole B604 is connected with an air inlet pipe 602, and each air inlet pipe 602 is inserted between the annular wall A401 and the outer wall 402 of the lower casing 4.
  • the lower end of the intake pipe 602 is connected to the intake hole B604, and a noise silencing chamber 8 is formed between the upper end and the ring frame 404.
  • a plurality of drainage holes 603 are also opened on the plate 601.
  • the output shaft end of the motor 2 (that is, the side connected to the impeller 3) can be changed to a flexible fixing method.
  • the motor 2 is mounted on the motor mounting frame 407 through a soft washer 10, and the soft washer 10 can be made of a flexible material.
  • Into such as silica gel).
  • both ends of the motor 2 are "softly" mounted on the housing, which can reduce the unbalanced vibration of the rotor and the impeller 3 from being transmitted to other parts of the fan 1, amplify and radiate the fan vibration noise, and further reduce noise.
  • the output shaft end of the motor 2 can also be installed with a water-stopping washer 9.
  • the water-stopping washer 9 is in the shape of a circular ring, and the inner ring extends outward in the axial direction; the water-stopping washer 9 will reduce water leakage to
  • the bearing 210 inside the motor 2 can also be used as a mounting washer for the motor 2.
  • the output shaft end of the motor 2 is located on the motor mounting frame 407 of the inner casing 4.
  • the motor 2 includes a rotor (including a bipolar permanent magnet 207, a stainless steel output shaft 206 and a balance ring 208), a tubular stator core 202 without cogging, a tubular coil 203, Sleeve-in-line motor housing 201, bearing 210, aluminum alloy front cover 205, aluminum alloy rear cover 204, lead fixing 212, printed circuit board 209, wire 213, bearing preload spring 215 and temperature sensor 211, stator
  • the iron core 202 is pressed into the sleeve-type motor housing 201 and glued with high thermal conductivity epoxy resin.
  • the coil 203 has a tubular three-phase two-pole toothless structure.
  • the stator core 202 adopts a low-loss stamped silicon steel sheet non-slot laminated tube shape, and has low thermal resistance.
  • Motor 2 is a brushless DC motor (BLDC).
  • the coil 203 is installed in the stator core 202 and pasted to the stator core 202 with a high thermal conductivity epoxy resin adhesive to form a low thermal resistance system, which can effectively dissipate the coil 203 and the stator core 202.
  • the rotor has an ultra-low moment of inertia/power ratio, and the ratio of the length to the diameter of the non-rotating shaft of the rotor is 3:1 to 6:1.
  • the rotor is assisted by two bearings 210 installed between the front cover 205 and the rear cover 204.
  • the bearing preload spring 215 uses preload force to improve rotation accuracy, precise shaft positioning, eliminates or reduces bearing 210 ball slip, and provides more Good control and reduction of axial and radial displacement under load, the vibration reduction and noise reduction of the blower driven by the high-speed and high-frequency acceleration and deceleration motor and the load between the bearings 210 are critical to the performance and service life of the fan.
  • the wire 213 is terminated on the printed circuit board 209.
  • the printed circuit board 209 is supported by a lead fixing member 212 made of a plastic material with high thermal conductivity.
  • the lead fixing member 212 is matched with the sleeve-type motor housing 201 and fixed with thermally conductive glue.
  • the three Y-connected coil terminal wires 214 are wired to the wire 213 through the printed circuit board 209, and are connected to the external drive via the wire 213.
  • the wire 213 is a multi-strand flexible temperature-resistant silicone insulated wire with low noise, long life and biocompatibility.
  • the temperature sensor 211 is installed on the printed circuit board 209.
  • the motor casing 201 with high thermal conductivity can conduct heat from other parts of the motor 2 to the temperature sensor 211, so the temperature sensor 211 can accurately and indirectly sense the temperature of the entire motor 2 Give a signal to the control center (such as a processor, etc.).
  • the substrate of the printed circuit board 209 is a material with high thermal conductivity (such as an aluminum substrate or FR4), and is also connected to the wire 213 for temperature monitoring and safety protection of the motor 2.
  • the above-mentioned structure of the motor 2 provides low thermal resistance between the heat source (such as the stator core 202 and the coil 203), the rotor and the sleeve-type motor housing 201, and the temperature sensor 211. This has two advantages.
  • One is to quickly dissipate heat from the heat source of the motor 2 to the sleeve-type motor housing 201 to effectively cool it; the second is more accurate internal temperature sensing to monitor motor life and unsafe events to protect patients.
  • the built-in temperature sensor 211 will provide a high-reliability determination signal to the control center for when the temperature of the motor 2 is higher than the set value, the control center controls the motor 2 to stop working to prevent damage to the bearing 210 ,
  • the lubricating oil dries, the life of motor 2 ends, or other safety hazards caused by failure events.
  • the plane of the air outlet 13 of the fan 1 of this embodiment is offset from the plane of the blades of the impeller 3 to eliminate the tonal noise caused by pressure fluctuations between the impeller blades and the volute tongue.
  • the annular air flow channel between the annular wall B501 and the outer wall 402 has a relative axial length of 1 to 2°, and the air flow cross-sectional area is gradually increased to gradually transition to the air outlet 13 cross-sectional area.
  • the fan 1 of this embodiment has a high-performance single-stage axial air inlet/tangential air outlet 13 with a built-in noise reduction function.
  • the fan 1 is used as a pressure and flow generator of a bilevel respiratory therapy device for treating COPD or severe OSA, a high-flow therapy device, a CPAP device, or any other breathing device.
  • the motor 2 works to drive the impeller 3 to rotate, and the external cold air is driven by the motor 2 to drive the impeller 3 to rotate through the intake pipes 602 in the air intake structure 6 into the noise silencing chamber 8 along the axial direction of the housing, and then flows Heat exchange is carried out through the surface of the motor 2.
  • a curved channel (circular arrow in FIG. 2A) is formed for receiving and slowing down the air flow from the impeller 3 to generate pressure.
  • the air flow output of the impeller 3 in this embodiment is different from the flow rate of the existing fan, which immediately flows to the air outlet 13, but the compressed air flow will rotate along the central axis of the housing, pass between the ring frame 404 and the top plate 504, and then go down. It passes between the outer wall 402 of the lower casing 4 and the annular wall B501 of the upper casing 5, and finally flows out from the air outlet 13; this arrangement can eliminate the pressure fluctuations between the blades on the impeller 3 and the volute tongue Tonal noise formed.
  • the structure of the impeller 3 in this embodiment can minimize the moment of inertia to improve the system response speed required by the bilevel ventilator.
  • the air inlet A406 forms one of the main sources of noise generation and outward transmission of the fan 1.
  • the air flow path of the impeller 3 is designed to minimize the noise and resistance caused by the potential non-uniform flow field, turbulence, and the interaction of turbulence with the rigid structure along the flow direction of the fan.
  • One of the important sources of noise is the sudden change of the flow profile (shape or speed). In order to reduce this noise, the airflow path from the intake air will smoothly follow the slowly changing curve (the arrow in Figure 8C), and then enter the pressure formation zone.
  • This embodiment replaces the single large-diameter air inlet window of the existing fan.
  • Air enters the noise silencing chamber 8 through a plurality of intake pipes 602.
  • the space between the annular wall A401 and the outer wall 402 and the intake pipe 602 form an air flow rectifier and a noise trap, which effectively reduces the air flow noise.
  • the total airflow cross-sectional area of all the air intake pipes 602 is defined as the equivalent area of the cross-sectional area of the fan exhaust pipe (ie, the air outlet 13).
  • the inlet airflow from the noise trap area flows along the surface of the motor 2 to provide effective forced air cooling for the motor 2 (as shown by the arrow in Fig. 2B).
  • the surface of the motor 2 can be selectively made of fins to further improve the heat exchange efficiency. The greater the air movement load of the impeller 3, the greater the heat generated by the motor 2, but at the same time the increased heat will be taken away by the increased cold air flow. Therefore, this method will maintain the cooling effect of the motor 2 under all operating conditions.
  • the drainage hole 603 provided on the flat plate 601 of this embodiment provides a drainage method when water is accidentally poured back into the fan 1 from the humidifier. If there is backflowing water, first fill the space formed between the annular wall A401 and the outer wall 402 to store and buffer a set amount of water. If the backflowing water exceeds the rated volume, the additional water will follow the line shown in Figure 10. The arrow flow fills the gap between the fans and drains slowly from the drain hole 603.
  • this embodiment eliminates the air intake structure 6, and installs the air intake sound-absorbing cotton 11 on the inner surface of the annular wall A401 on the lower housing 4.
  • the air-intake passage 12 is formed between the air-absorbing cotton 11 and the outer surface of the motor 2.
  • the outside air enters from the lower end of the lower shell 4 and exchanges heat with the surface of the motor 2 when flowing through the air-intake passage 12 Cooling down; at the same time, when the internal noise of the fan 1 reversely passes through the air intake channel 12, the air intake sound-absorbing cotton 11 will play a role in reducing noise.
  • the material of the air-intake sound-absorbing cotton 11 in this embodiment is PE or EVA open-cell foam, and the sound-absorbing coefficient of the air-intake sound-absorbing cotton 11 at a frequency of 500-4KHz is 0.8-1.
  • the rest are the same as the first embodiment.
  • the fan of the present invention can be applied to application fields with fast response time, easy drive and control, large output pressure, large flow, high safety and reliability, low noise, small volume, and low cost, such as in bilevel ventilator.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Anesthesiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Pulmonology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种治疗用呼吸机的风机(1),下壳体(4)与上壳体(5)相连,在上壳体(5)、下壳体(4)形成的壳体上设有出风口(13),出风方向与壳体的外表面相切;下壳体(4)由内至外分别设有环形壁A (401)及外壁(402),环形壁A(401)及外壁(402)的下端为开放端、上端设有环形架(404),外壁(402)与上壳体(5)之间的空间与出风口(13)相连通;电机(2)位于环形壁A(401)内侧,输出轴(206)端安装在下壳体(4)上,电机(2)的输出轴(206)连接有叶轮(3),叶轮(3)位于环形架(404)与上壳体(5)的顶板(504)之间;环形壁A(401)与外壁(402)之间设有安装在下壳体(4)上的进气结构件(6),进气结构件(6)与环形架(404)之间形成噪声消音腔室(8)。风机(1)工作噪声小,结构紧凑,电机(2)有效地利用冷空气的流动散热,提高了安全和可靠性,为患者提供了规定的治疗压力、流量和动态响应性能。

Description

一种治疗用呼吸机的风机 技术领域
本发明涉及治疗用压力气体供应装置,具体地说是一种治疗用呼吸机的风机。
背景技术
呼吸机是一种能代替、控制或改变人的正常生理呼吸,增加肺通气量,改善呼吸功能,减轻呼吸消耗,节约心脏储备的装置。
风机作为治疗气体来源,是呼吸机中的核心部件。风机在呼吸机中产生一定压力和流量的气体提供给患者。风机的性能指标直接影响着呼吸机整机的性能,需要在风机的安装、固定、减震、减噪、气道、气流梳理、结构等方面进行相关设计。
CPAP(持续正压通气)呼吸机主要用于治疗睡眠呼吸暂停综合症,也就是重度打鼾及伴有的憋气症状,而且它还可以治疗睡眠呼吸暂停综合症的并发症,提高使用者夜间睡眠时的血氧浓度,治疗低氧血症等。睡眠呼吸机主要使用时间为患者睡眠期间,因此对降低噪声有特别高的要求。目前,市面上的呼吸机通常采用通用风机,存在气流紊乱,容易产生紊流或涡流等问题,效率低而且噪音大。通过电机带动叶轮高速旋转,在涡流气路内产生一定流量的气流,同时在涡壳气道内维持气体在一定的压力范围,通过涡壳出风口导流输出到气道正压呼吸机管路系统。此过程会产生较大的噪声,噪声主要来自三个方面,一方面是空气流过高速旋转的叶轮产生的噪声,第二方面是涡壳内高速流动的气体产生空气动力噪声,第三方面是高速旋转的电机产生的振动噪声。
双水平呼吸机是目前无创性鼻(面)罩机械通气应用最多的呼吸机。它广泛应用于各种肺内肺外疾病导致的急慢性呼吸衰竭,如慢阻肺、支气管扩张、肺囊性纤维化、间质性肺病、心衰、神经肌肉疾病、肥胖低通气等,以及各种类型的睡眠呼吸疾病,尤其是伴有中枢性睡眠呼吸暂停或复杂性睡眠呼吸障碍的患者。为了达到呼吸机的治疗效果,需要通过控制系统来检测病人的呼吸,保证呼吸机能够准确跟随病人的呼吸频率进行给气,这就需要风机不断进行加速和减速,从而达到快速响应。风机在急加速、急减速过程中,电机会产生大量的热量,如果这些热量不能够被及时带走会造成电机温度大幅升高,以至影响电气安全及风机寿命。风机的散热问题一直是呼吸机设计过程中重点解决的问题,目前市场上呼吸机所采用的风机主要都是电机处于风机壳体的外部,在风机工作过程中气流并不能流经电机,而需要额外的设计方法来对电机本身散热;额外的散热结构设计不但增加内部空间需求,而且效果并不十分理想。市场上也存在电机处于风机内部气道中的设计形式,但是均为轴向的出气形式,并且结构相对复杂,电机也需 要专门定制,不具有通用性。因此提供一种新的风机设计方案来解决以上问题是十分有价值的。
目前,对高压、高流量、响应时间快、可靠性高、噪音小、结构紧凑、经济有效的治疗用呼吸气体压力源(简称风机)设计已经成为一种需求。
发明内容
为了满足呼吸机对风机的使用需求,本发明的目的在于提供一种治疗用呼吸机的风机。
本发明的目的是通过以下技术方案来实现的:
本发明的风机包括电机、叶轮、下壳体、上壳体及进气结构件,其中下壳体与上壳体相连,在该上、下壳体形成的壳体上设有出风口;所述下壳体的下端为开放端,上端设有环形架,所述电机位于下壳体内侧,输出轴端安装在下壳体上,电机的输出轴连接有叶轮,该叶轮位于所述环形架与上壳体的顶板之间;所述进气结构件安装在下壳体上,远离叶轮的下端为轴向进气端,该进气结构件的上端与环形架之间形成噪声消音腔室,外界冷空气在电机驱动叶轮旋转的作用下通过该进气结构件沿所述壳体的轴向进入到噪声消音腔室,再流经所述电机表面进行热交换,热交换后的空气由所述出风口流出;
其中:所述进气结构件包括平板及进气管,该平板为环形、安装在下壳体上,平板上沿周向开设有多个进气孔B,每个所述进气孔B均连接有进气管,各所述进气管的下端接至进气孔B处,上端与所述环形架之间形成噪声消音腔室;
所述平板上开设有排水孔;
所述平板上安装有电机支撑环,该电机支撑环与平板共同作为所述电机非输出轴端的支撑;
本发明的风机包括电机、叶轮、下壳体、上壳体及进气吸音棉,其中下壳体与上壳体相连,在该上、下壳体形成的壳体上设有出风口;所述下壳体的下端为开放端、上端设有环形架,所述电机位于下壳体内侧,输出轴端安装在下壳体上,电机的输出轴连接有叶轮,该叶轮位于所述环形架与上壳体的顶板之间;所述下壳体的内表面安装有进气吸音棉,该进气吸音棉与电机的外表面之间形成进气通道,外界冷空气在电机驱动叶轮旋转的作用下通过该进气通道,与所述电机的表面进行热交换,热交换后的空气由所述出风口流出;
其中:所述进气吸音棉的材质为PE或EVA开孔发泡;
所述进气吸音棉在频率500~4KHz之间的吸音系数为0.8~1;
所述电机转子非转轴部分长度与直径的比为3:1~6:1;
所述电机外壳的材料为热传导材料,以传导来自电机内部的热量;
所述电机套管式电机外壳的材料为铝合金材料;
所述电机的线圈为无槽管状,安装在电机的定子铁芯上,所述定子铁芯采用 低损耗冲压硅钢片无槽叠层管形,该定子铁芯安装在所述电机的套管式电机外壳上;
所述电机内部设有温度传感器,该电机的套管式电机外壳、后盖、前盖及印刷电路板将热量从电机其他部分传导至所述温度传感器,用于提供温度信号至控制中心;
所述电机的输出轴端安装有止水堵漏垫圈和/或软垫圈;
所述叶轮由密度小于1g/mm 3的材料制成;
所述叶轮的背面设有至少一个提升叶轮结构强度的环形凸起;
所述叶轮与电机的输出轴直连,该电机的输出轴与叶轮连接的接触部呈锯齿形;
所述风机的出风口平面与叶轮的叶片平面错开;
所述下壳体由内至外分别设有环形壁A及外壁,该环形壁A及外壁的下端为开放端、上端设有环形架,所述外壁与上壳体之间的空间与出风口相连通;所述电机位于环形壁A内侧,输出轴端安装在下壳体上;所述进气结构件设置在环形壁A与外壁之间;
所述环形架的内环沿周向有多处向内侧延伸、形成支撑肋,相邻两支撑肋之间形成进气孔A,所述环形壁A的内侧设有电机安装架,该电机安装架与各所述支撑肋相连,所述电机的输出轴端固定在电机安装架上;所述外壁下端外边缘设有作为出风口一半的出风口通道A;
所述上壳体包括环形壁B、出风口通道B及顶板,该环形壁B在与所述下壳体连接后位于外壁的外侧,所述环形壁B的上端设有顶板、下端为开放端,在该环形壁B下端外边缘设有作为出风口一半的出风口通道B;
所述环形壁B与外壁之间的环形气流通道相对轴向有1~2°,通过逐渐增大气流横截面面积以逐渐过渡到出风口管横截面面积。
本发明的优点与积极效果为:
1.本发明的工作噪声小,结构紧凑,高效散热,使电机能够有效地利用冷空气的流动散热,为患者提供了足够的规定治疗压力、流量。
2.本发明的进气结构件与环形架之间形成有噪声消音腔室,有效地降低了进气流动噪声。
3.本发明的上、下壳体连接后,在环形架与顶板之间受压气流将沿壳体中心轴旋转,并向下移动到出风口,可以消除叶片和蜗壳蜗舌之间压力波动形成的音调噪声。
4.本发明的叶轮效率高、惯性低,提供有效的压力、流量、加速和减速能力,使风机能够产生所需的呼吸治疗参数。
5.本发明的电机两端可为“软安装”,可以减少电机转子和叶轮的不平衡振动传播到风机的其他部件上,放大辐射出风机振动噪声,进一步降噪。
6.本发明还可采用下壳体的环形壁A内表面设置进气吸音棉的方式,使电机表面与进气吸音棉之间形成一个进气通道,气体高速流过通道时对电机外壳降温,同时风机内部噪音反向通过进气通道时,进气吸音棉会起到降低噪声的作用。
附图说明
图1为本发明的立体结构示意图;
图2A为本发明上壳体与下壳体连接后的内部结构示意图;
图2B为本发明实施例一的内部结构示意图;
图3A为本发明实施例一的爆炸图之一;
图3B为本发明实施例一的爆炸图之二;
图4为本发明下壳体的内部结构示意图;
图5为本发明上壳体的内部结构示意图;
图6为本发明电机的内部结构示意图;
图7为本发明电机转子的结构示意图;
图8A为本发明叶轮的立体结构示意图之一;
图8B为本发明叶轮的立体结构示意图之二;
图8C为本发明叶轮的立体结构示意图之三;
图9A为本发明实施例一中进气结构件的立体结构示意图之一;
图9B为本发明实施例一中进气结构件的立体结构示意图之二;
图10为本发明实施例一拿掉叶轮后的内部结构示意图;
图11为本发明电机与下壳体安装后的一种内部结构示意图;
图12为本发明实施例二电机与下壳体安装后的另一种内部结构示意图;
其中:1为风机,
2为电机,201为套管式电机外壳,202为定子铁芯,203为线圈,204为后盖,205为前盖,206为输出轴,207为永磁体,208为平衡环,209为印刷电路板,210为轴承,211为温度传感器,212为引线固定件,213为导线,214为Y型连接线圈端子线,215为轴承预紧弹簧;
3为叶轮,301为主叶片,302为分流叶片,303为轮毂,304为通孔,305为背板,306为环形凸起;
4为下壳体,401为环形壁A,402为外壁,403为出风口通道A,404为环形架,405为支撑肋,406为进气孔A,407为电机安装架;
5为上壳体,501为环形壁B,502为出风口通道B,503为连接耳,504为顶板;
6为进气结构件,601为平板,602为进气管,603为排水孔,604为进气孔B;
7为电机支撑环,8为噪声消音腔室,9为止水堵漏垫圈,10为软垫圈,11 为进气吸音棉,12为进气通道,13为出风口。
具体实施方式
下面结合附图对本发明作进一步详述。
实施例一
如图1~11所示,本实施例的风机1包括电机2、叶轮3、下壳体4、上壳体5、进气结构件6及电机支撑环7,其中下壳体4与上壳体5可拆卸地相连,共同形成风机1的壳体;在该上、下壳体5、4形成的壳体上形成出风口13,出风口13的出风方向与壳体的外表面相切。
下壳体4由内至外分别设有环形壁A401及外壁402,该环形壁A401及外壁402的下端为开放端、上端设有环形架404,外壁402与环形壁A401同轴设置;环形架404的内环沿周向有多处向内侧延伸、形成支撑肋405,相邻两支撑肋405之间形成进气孔A406,环形壁A401的内侧设有电机安装架407,该电机安装架407与各支撑肋405相连,电机2的输出轴端固定在电机安装架407上。在外壁402下端外边缘设有作为出风口13一半的出风口通道A403,外壁402与上壳体5之间的空间与出风口13相连通。电机2位于环形壁A401内侧,输出轴端固定在电机安装架407上。
上壳体5包括环形壁B501、出风口通道B502、连接耳503及顶板504,该环形壁B501在与下壳体4连接后位于外壁402的外侧,并与外壁402、环形壁A401同轴设置;环形壁B501的上端设有顶板504、下端为开放端,在该环形壁B501的外表面沿圆周方向均布有多个用于连接的连接耳503,环形壁B501下端外边缘设有作为出风口13一半的出风口通道B502,上壳体5上的出风口通道B502与下壳体4上的出风口通道A403上下扣合,形成出风口13。
本实施例的叶轮3是直接安装到电机2的输出轴206上的,以减轻转动惯量,区别于现有铜套安装方法。电机2的输出轴206与叶轮3安装接触部呈锯齿形,增加安装接触面积,承担电机2加减速应力。叶轮3位于环形架404与上壳体5的顶板504之间。叶轮3包括主叶片301、分流叶片302、轮毂303及背板305,该轮毂303上开设有通孔304,轮毂303的一端与电机2的输出轴206相连,另一端与背板305一面的中间位置固接,在轮毂303外围的背板305上,沿圆周方向均匀分布有多个主叶片301及多个分流叶片302,主叶片301与分流叶片302交替设置。主叶片301的一端位于背板305的外边缘,另一端与轮毂303连接;分流叶片302的一端位于背板305的外边缘,另一端与轮毂303之间留有间隙。本实施例的背板305厚度限制在0.8mm以内,总叶片数限制在17以下(本实施例为16),主叶片301达到轮毂303,分流叶片302的长度为主叶片301长度的2/3,分流叶片302的厚度限制在0.8mm以内。本实施例的叶轮3采用最轻的工程塑料(密度小于等于1g/mm 3,如聚丙烯、LDPE、HDPE、TPV等)制成,且能够满 足叶轮在高压、高频加减速下工作时的应力要求,叶轮3的直径限制在50mm以内。为防止由低密度塑料制造的叶轮3在长期应力作用下的变形,提高叶轮3的结构强度,在背板305的另一面设有至少一个环形凸起306;本实施例的环形凸起306为三个,同心开设,截面呈倒置的三角形。
环形壁A401与外壁402之间设有安装在下壳体4上的进气结构件6,该进气结构件6与电机2同轴设置,并与环形架404之间形成噪声消音腔室8,以降低风机1的进气气流辐射噪声。进气结构件6包括平板601及进气管602,该平板601为环形、可采用超声或摩擦焊接等方式连接在下壳体4的下端,平板601的内环与电机支撑环7插接,该电机支撑环7与平板601共同作为电机2非输出轴端的支撑;本实施例的电机支撑环7由柔性软生物医用柔性硅制成,并进行包胶注塑实现。平板601上沿圆周方向均匀开设有多个进气孔B604,每个进气孔B604均连接有进气管602,各进气管602插设于下壳体4的环形壁A401与外壁402之间,该进气管602的下端接至进气孔B604处,上端与环形架404之间形成噪声消音腔室8。在平板601上还开设有多个排水孔603。
在电机2的输出轴端(即与叶轮3连接的一侧)可以改用柔性固定方式,本实施例是电机2通过软垫圈10安装到电机安装架407上,软垫圈10可以用柔性材料制成(如硅胶)。这样,电机2的两端均“软”安装在壳体上,可以减少转子和叶轮3的不平衡振动传播到风机1的其他部件上,放大辐射出风机振动噪声,并进一步降噪。
电机2的输出轴端还可以安装一个止水堵漏垫圈9,该止水堵漏垫圈9呈圆环状,内环沿轴向向外延伸;该止水堵漏垫圈9将减少水泄漏到电机2内部的轴承210部分的机会,也可作为电机2的安装垫圈。
电机2的输出轴端位于内壳体4的电机安装架407上。如图6、图7所示,电机2包括转子(包括两极管式的永磁体207、不锈钢材料的输出轴206及平衡环208)、管状无齿槽的定子铁芯202、管状的线圈203、套管式电机外壳201、轴承210、铝合金材料的前盖205、铝合金材料的后盖204、引线固定件212、印刷电路板209、导线213、轴承预紧弹簧215及温度传感器211,定子铁芯202压入套管式电机外壳201内,并用高导热环氧树脂胶合。线圈203为管状三相二极无齿结构。定子铁芯202采用低损耗冲压硅钢片无槽叠层管形,且具有低热阻。电机2为无刷直流电动机(BLDC)。线圈203安装在定子铁芯202内,并用高导热环氧树脂胶粘剂粘贴到定子铁芯202上,形成低热阻系统,能有效为线圈203和定子铁芯202散热。转子具有超低的转动惯量/功率比值,转子非转轴部分长度和直径的比值为3:1~6:1。
转子由两个安装在前盖205和后盖204之间的轴承210辅助,通过轴承预紧弹簧215用预紧力以提高旋转精度,精确的轴定位,消除或减少轴承210球打滑,提供更好的控制和在负载作用下减少轴向和径向位移,高速高频加减速电机驱动鼓风 机的减振降噪和轴承210间的负荷对风机的性能和使用寿命至关重要。
导线213端接在印刷电路板209上,印刷电路板209由高导热率的塑料材料制成的引线固定件212支撑,引线固定件212与套管式电机外壳201配合,用导热胶固定。三根Y型连接线圈端子线214通过印刷电路板209布线连接到导线213,通过导线213进行外部驱动连接。导线213是多股柔性耐温硅胶绝缘电线,具有噪音低、寿命长和生物相容性。
温度传感器211安装在印刷电路板209上,高导热率的电机套管式电机外壳201能够将热量从电机2其他部分传导到温度传感器211,所以温度传感器211可以准确地间接感知整个电机2温度提供给控制中心(如处理器等)一个信号。印刷电路板209的基材为高导热材料(如铝基板或FR4),也连接到导线213上,用于电机2温度监测和安全保护。上述的电机2结构在热源(如定子铁芯202、线圈203)、转子和套管式电机外壳201、温度传感器211之间提供低热阻。这有两个好处,一是从电机2热源到套管式电机外壳201快速散热,使之有效冷却;第二是更精确的内部温度传感,监测电机寿命和不安全事件,保护患者。出现温升情况时,内置的温度传感器211将提供一个高可靠性的确定信号给控制中心,用于当电机2温度高于设定值时,控制中心控制电机2停止工作,以防轴承210损坏,润滑油干掉,电机2寿命结束,或其他故障事件带来的安全隐患。
本实施例的风机1的出风口13平面与叶轮3的叶片平面错开,以消除叶轮叶片和蜗壳蜗舌之间压力波动形成的音调噪声。环形壁B501与外壁402之间的环形气流通道相对轴向有1~2°,通过逐渐增大气流横截面面积以逐渐过渡到出风口13横截面面积。
本实施例的工作原理为:
本实施例的风机1具有内置降噪功能的高性能单级轴向进风/切向出风口13。风机1用于作为用于治疗COPD或严重OSA的双水平呼吸治疗设备的压力和流量发生器、高流量治疗设备、CPAP设备或任何其他呼吸设备。
电机2工作,驱动叶轮3旋转,外界冷空气在电机2驱动叶轮3旋转的作用下通过进气结构件6中的各个进气管602沿壳体的轴向进入到噪声消音腔室8,再流经电机2表面进行热交换。在下壳体4的外壁402与上壳体5的环形壁B501之间形成弯曲通道(如图2A中的环形箭头),用于接收和减缓来自叶轮3的气流,以产生压力。本实施例叶轮3的气流输出不同于现有风机的流量那样立即流向出风口13,而是受压气流将沿壳体的中心轴旋转,经环形架404与顶板504之间后,再向下经下壳体4的外壁402与上壳体5的环形壁B501之间,最后再由出风口13流出;通过这种布置方式,可以消除叶轮3上的叶片和蜗壳蜗舌之间压力波动形成的音调噪声。本实施例叶轮3的结构可以使转动惯量最小化,以提高双水平呼吸机所需的系统响应速度。
进气孔A406形成了风机1的主要噪声产生和外向传递来源之一。叶轮3的 气流路径设计成尽量减小由于潜在的非均匀流场、湍流以及湍流与刚性结构沿风机流动方向的相互作用而产生的噪声和阻力。噪声的重要来源之一是突然改变流量轮廓(形状或速度),为减小此噪声,来自进气气流路径顺利将沿着缓慢变化曲线(如图8C中的箭头),然后进入压力形成区。
本实施例取代了现有风机的单大口径进风窗。空气通过多个进气管602进入噪音消音腔室8,环形壁A401与外壁402之间的空间与进气管602形成了气流整流器和噪声捕集器,有效地降低了进气流动噪声。为优化降噪效果与进气阻力指标,将所有进气管602的总气流截面面积定义为风机排气管(即出风口13)截面面积的等效面积。
从噪声捕集区出来的入口气流沿电机2的表面流动,为电机2提供有效的强制风冷(如图2B中的箭头所示)。电机2的表面可以选择性地制成翅片,以进一步提高热交换效率。叶轮3的空气运动负荷越大,电机2产生的热量越大,但同时增加的热量会被增加的冷空气流量带走。因此,这种方式将保持电机2在所有运行条件下冷却效果。
本实施例的平板601上开设的排水孔603,为当水意外地从加湿器倒灌回风机1时提供一排水方法。如果有倒灌的水的话,首先要填满环形壁A401与外壁402之间形成的空间储存和缓冲设定数量的水,如果倒灌的水量超过了额定容积,额外的水会沿着图10中的箭头流动填满风机之间的空隙的和从排水孔603缓慢排水。
实施例二
如图12所示,本实施例与实施例一的区别在于:本实施例取消了进气结构件6,在下壳体4上的环形壁A401的内表面安装了进气吸音棉11,该进气吸音棉11与电机2的外表面之间形成进气通道12,外界气体由下壳体4的下端进入,流过进气通道12时与电机2的表面进行热交换,对电机2的表面降温;同时风机1内部噪音反向通过进气通道12时,进气吸音棉11会起到降低噪声的作用。本实施例进气吸音棉11的材质为PE或者EVA开孔发泡,进气吸音棉11在频率500~4KHz之间的吸音系数为0.8~1。其余均与实施例一相同。
本发明的风机能够应用于响应时间快、易于驱动和控制、输出压力大、流量大、安全和可靠性高、噪音低、体积小、成本低的应用领域,如应用在双水平呼吸机中。

Claims (21)

  1. 一种治疗用呼吸机的风机,其特征在于:该风机(1)包括电机(2)、叶轮(3)、下壳体(4)、上壳体(5)及进气结构件(6),其中下壳体(4)与上壳体(5)相连,在该上、下壳体(5、4)形成的壳体上设有出风口(13);所述下壳体(4)的下端为开放端,上端设有环形架(404),所述电机(2)位于下壳体(4)内侧,输出轴端安装在下壳体(4)上,电机(2)的输出轴(206)连接有叶轮(3),该叶轮(3)位于所述环形架(404)与上壳体(5)的顶板(504)之间;所述进气结构件(6)安装在下壳体(4)上,远离叶轮(3)的下端为轴向进气端,该进气结构件(6)的上端与环形架(404)之间形成噪声消音腔室(8),外界冷空气在电机(2)驱动叶轮(3)旋转的作用下通过该进气结构件(6)沿所述壳体的轴向进入到噪声消音腔室(8),再流经所述电机(2)表面进行热交换,热交换后的空气由所述出风口(13)流出。
  2. 根据权利要求1所述治疗用呼吸机的风机,其特征在于:所述进气结构件(6)包括平板(601)及进气管(602),该平板(601)为环形、安装在下壳体(4)上,平板(601)上沿周向开设有多个进气孔B(604),每个所述进气孔B(604)均连接有进气管(602),各所述进气管(602)的下端接至进气孔B(604)处,上端与所述环形架(404)之间形成噪声消音腔室(8)。
  3. 根据权利要求2所述治疗用呼吸机的风机,其特征在于:所述平板(601)上开设有排水孔(603)。
  4. 根据权利要求2所述治疗用呼吸机的风机,其特征在于:所述平板(601)上安装有电机支撑环(7),该电机支撑环(7)与平板(601)共同作为所述电机(2)非输出轴端的支撑。
  5. 一种治疗用呼吸机的风机,其特征在于:该风机(1)包括电机(2)、叶轮(3)、下壳体(4)、上壳体(5)及进气吸音棉(11),其中下壳体(4)与上壳体(5)相连,在该上、下壳体(5、4)形成的壳体上设有出风口(13);所述下壳体(4)的下端为开放端、上端设有环形架(404),所述电机(2)位于下壳体(4)内侧,输出轴端安装在下壳体(4)上,电机(2)的输出轴(206)连接有叶轮(3),该叶轮(3)位于所述环形架(404)与上壳体(5)的顶板(504)之间;所述下壳体(4)的内表面安装有进气吸音棉(11),该进气吸音棉(11)与电机(2)的外表面之间形成进气通道(12),外界冷空气在电机(2)驱动叶轮(3)旋转的作用下通过该进气通道(12),与所述电机(2)的表面进行热交换,热交换后的空气由所述出风口(13)流出。
  6. 根据权利要求5所述治疗用呼吸机的风机,其特征在于:所述进气吸音棉(11)的材质为PE或EVA开孔发泡。
  7. 根据权利要求5所述治疗用呼吸机的风机,其特征在于:所述进气吸音 棉(11)在频率500~4KHz之间的吸音系数为0.8~1。
  8. 根据权利要求1或5所述治疗用呼吸机的风机,其特征在于:所述电机(2)转子非转轴部分长度与直径的比为3:1~6:1。
  9. 根据权利要求1或5所述治疗用呼吸机的风机,其特征在于:所述电机(2)外壳的材料为热传导材料,以传导来自电机(2)内部的热量。
  10. 根据权利要求9所述治疗用呼吸机的风机,其特征在于:所述电机(2)套管式电机外壳(201)的材料为铝合金材料。
  11. 根据权利要求1或5所述治疗用呼吸机的风机,其特征在于:所述电机(2)的线圈(203)为无槽管状,安装在电机(2)的定子铁芯(202)上,所述定子铁芯(202)采用低损耗冲压硅钢片无槽叠层管形,该定子铁芯(202)安装在所述电机(2)的套管式电机外壳(201)上。
  12. 根据权利要求1或5所述治疗用呼吸机的风机,其特征在于:所述电机(2)内部设有温度传感器(211),该电机(2)的套管式电机外壳(201)、后盖(204)、前盖(205)及印刷电路板(209)将热量从电机其他部分传导至所述温度传感器(211),用于提供温度信号至控制中心。
  13. 根据权利要求1或5所述治疗用呼吸机的风机,其特征在于:所述电机(2)的输出轴端安装有止水堵漏垫圈(9)和/或软垫圈(10)。
  14. 根据权利要求1或5所述治疗用呼吸机的风机,其特征在于:所述叶轮(3)由密度小于1g/mm 3的材料制成。
  15. 根据权利要求1或5所述治疗用呼吸机的风机,其特征在于:所述叶轮(3)的背面设有至少一个提升叶轮(3)结构强度的环形凸起(306)。
  16. 根据权利要求1或5所述治疗用呼吸机的风机,其特征在于:所述叶轮(3)与电机(2)的输出轴(206)直连,该电机(2)的输出轴(206)与叶轮(3)连接的接触部呈锯齿形。
  17. 根据权利要求1或5所述治疗用呼吸机的风机,其特征在于:所述风机的出风口平面与叶轮(3)的叶片平面错开。
  18. 根据权利要求1或5所述治疗用呼吸机的风机,其特征在于:所述下壳体(4)由内至外分别设有环形壁A(401)及外壁(402),该环形壁A(401)及外壁(402)的下端为开放端、上端设有环形架(404),所述外壁(402)与上壳体(5)之间的空间与出风口(13)相连通;所述电机(2)位于环形壁A(401)内侧,输出轴端安装在下壳体(4)上;所述进气结构件(6)设置在环形壁A(401)与外壁(402)之间。
  19. 根据权利要求1或5所述治疗用呼吸机的风机,其特征在于:所述环形架(404)的内环沿周向有多处向内侧延伸、形成支撑肋(405),相邻两支撑肋(405)之间形成进气孔A(406),所述环形壁A(401)的内侧设有电机安装架(407),该电机安装架(407)与各所述支撑肋(405)相连,所述电机(2)的 输出轴端固定在电机安装架(407)上;所述外壁(402)下端外边缘设有作为出风口(13)一半的出风口通道A(403)。
  20. 根据权利要求1或5所述治疗用呼吸机的风机,其特征在于:所述上壳体(5)包括环形壁B(501)、出风口通道B(502)及顶板(504),该环形壁B(501)在与所述下壳体(4)连接后位于外壁(402)的外侧,所述环形壁B(501)的上端设有顶板(504)、下端为开放端,在该环形壁B(501)下端外边缘设有作为出风口(13)一半的出风口通道B(502)。
  21. 根据权利要求1或5所述治疗用呼吸机的风机,其特征在于:所述环形壁B(501)与外壁(402)之间的环形气流通道相对轴向有1~2°,通过逐渐增大气流横截面面积以逐渐过渡到出风口管横截面面积。
PCT/CN2019/094559 2019-06-06 2019-07-03 一种治疗用呼吸机的风机 WO2020244012A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19931724.9A EP3981453A4 (en) 2019-06-06 2019-07-03 Fan of ventilator for use in treatment
US17/220,881 US20210220585A1 (en) 2019-06-06 2021-04-01 Blower for respirator device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910491187.2A CN110131188B (zh) 2019-06-06 2019-06-06 一种治疗用呼吸机的风机
CN201910491187.2 2019-06-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/220,881 Continuation-In-Part US20210220585A1 (en) 2019-06-06 2021-04-01 Blower for respirator device

Publications (1)

Publication Number Publication Date
WO2020244012A1 true WO2020244012A1 (zh) 2020-12-10

Family

ID=67580627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/094559 WO2020244012A1 (zh) 2019-06-06 2019-07-03 一种治疗用呼吸机的风机

Country Status (4)

Country Link
US (1) US20210220585A1 (zh)
EP (1) EP3981453A4 (zh)
CN (1) CN110131188B (zh)
WO (1) WO2020244012A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112963383B (zh) * 2021-02-01 2023-01-06 杭州贝丰科技股份有限公司 一种降噪装置、高速涡轮风机及呼吸机
CN113757145A (zh) * 2021-09-14 2021-12-07 杭州贝丰科技有限公司 风机
CN116464675B (zh) * 2023-06-20 2023-09-01 河北拓顺医疗科技有限公司 一种呼吸机内置风机用减震型降噪装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120067347A1 (en) * 2009-04-29 2012-03-22 Fisher & Paykel Healthcare Limited Fan unit with improved surge characteristics
CN105298880A (zh) * 2015-11-27 2016-02-03 吉林省沃鸿医疗器械制造有限公司 风机
CN105604964A (zh) * 2014-11-17 2016-05-25 日本电产株式会社 鼓风机
CN205287146U (zh) * 2015-11-05 2016-06-08 沈阳迈思医疗科技有限公司 一种用于呼吸机的消音降噪装置
CN106422017A (zh) * 2016-10-14 2017-02-22 广州南北电子科技有限公司 一种呼吸机的鼓风装置
CN109806471A (zh) * 2017-11-22 2019-05-28 沈阳新松医疗科技股份有限公司 一种用于无创呼吸机的直流风机

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ597253A (en) * 2006-05-24 2013-06-28 Resmed Motor Technologies Inc Compact low noise efficient blower for CPAP devices
CA3035508A1 (en) * 2011-07-13 2013-01-17 Fisher & Paykel Healthcare Limited Impeller and motor assembly
JP5659208B2 (ja) * 2012-10-22 2015-01-28 シナノケンシ株式会社 送風機
FR3001155B1 (fr) * 2013-01-22 2015-12-25 Air Liquide Medical Systems Appareil d'assistance respiratoire avec turbine insonorisee
US10221865B2 (en) * 2015-05-29 2019-03-05 Ametek, Inc. Reduced noise appliance
CN106730203B (zh) * 2016-12-28 2021-05-18 北京怡和嘉业医疗科技股份有限公司 用于呼吸机的减噪装置和呼吸机
US10830244B2 (en) * 2017-10-13 2020-11-10 Ametek, Inc. Motor-fan assembly with improved airflow and noise reduction properties
CN210106214U (zh) * 2019-06-06 2020-02-21 沈阳新松医疗科技股份有限公司 治疗用呼吸机的风机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120067347A1 (en) * 2009-04-29 2012-03-22 Fisher & Paykel Healthcare Limited Fan unit with improved surge characteristics
CN105604964A (zh) * 2014-11-17 2016-05-25 日本电产株式会社 鼓风机
CN205287146U (zh) * 2015-11-05 2016-06-08 沈阳迈思医疗科技有限公司 一种用于呼吸机的消音降噪装置
CN105298880A (zh) * 2015-11-27 2016-02-03 吉林省沃鸿医疗器械制造有限公司 风机
CN106422017A (zh) * 2016-10-14 2017-02-22 广州南北电子科技有限公司 一种呼吸机的鼓风装置
CN109806471A (zh) * 2017-11-22 2019-05-28 沈阳新松医疗科技股份有限公司 一种用于无创呼吸机的直流风机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3981453A4 *

Also Published As

Publication number Publication date
US20210220585A1 (en) 2021-07-22
CN110131188A (zh) 2019-08-16
EP3981453A1 (en) 2022-04-13
EP3981453A4 (en) 2023-06-28
CN110131188B (zh) 2024-04-23

Similar Documents

Publication Publication Date Title
US11892000B2 (en) Compact low noise efficient blower for CPAP devices
AU2021201305B2 (en) Impeller and motor assembly
WO2020244012A1 (zh) 一种治疗用呼吸机的风机
EP1643131B1 (en) Blower apparatus of the CPAP/NIPPV type
US8225786B2 (en) Double-ended blower and volutes therefor
US11534565B2 (en) Impeller and motor assembly
US20080178879A1 (en) Impeller for a wearable positive airway pressure device
CN210106214U (zh) 治疗用呼吸机的风机
CN215927830U (zh) 一种降噪风机及呼吸机
US20240133386A1 (en) Compact low noise efficient blower for cpap devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19931724

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019931724

Country of ref document: EP