WO2020242243A1 - Lens and lens assembly comprising same - Google Patents

Lens and lens assembly comprising same Download PDF

Info

Publication number
WO2020242243A1
WO2020242243A1 PCT/KR2020/006984 KR2020006984W WO2020242243A1 WO 2020242243 A1 WO2020242243 A1 WO 2020242243A1 KR 2020006984 W KR2020006984 W KR 2020006984W WO 2020242243 A1 WO2020242243 A1 WO 2020242243A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
plate
conductive material
disposed
liquid
Prior art date
Application number
PCT/KR2020/006984
Other languages
French (fr)
Korean (ko)
Inventor
배진우
Original Assignee
엘지이노텍(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍(주) filed Critical 엘지이노텍(주)
Publication of WO2020242243A1 publication Critical patent/WO2020242243A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/12Fluid-filled or evacuated lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/06Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of fluids in transparent cells
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/0075Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element having an element with variable optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/004Optical devices or arrangements for the control of light using movable or deformable optical elements based on a displacement or a deformation of a fluid
    • G02B26/005Optical devices or arrangements for the control of light using movable or deformable optical elements based on a displacement or a deformation of a fluid based on electrowetting
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/021Mountings, adjusting means, or light-tight connections, for optical elements for lenses for more than one lens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/028Mountings, adjusting means, or light-tight connections, for optical elements for lenses with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B2207/00Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
    • G02B2207/115Electrowetting

Definitions

  • Embodiments relate to a lens and a lens assembly comprising the lens.
  • various shooting functions include at least one of an optical zoom function (zoom-in/zoom-out), an auto-focusing (AF) function, or an image stabilization or image stabilization (OIS) function.
  • an optical zoom function zoom-in/zoom-out
  • AF auto-focusing
  • OIS image stabilization or image stabilization
  • the autofocus and image stabilization functions are performed by moving or tilting several lenses aligned with the optical axis in a vertical direction of the optical axis or the optical axis.
  • optical performance is deteriorated due to thermal expansion of different liquids included in the lens unit that performs auto focusing and camera shake correction functions in the optical device.
  • the embodiment is to provide a lens having improved optical performance despite temperature change and a lens assembly including the lens.
  • a lens includes: a first plate including a cavity; Room temperature ionic liquid disposed in the cavity; A non-conductive liquid disposed in the cavity and in contact with the room temperature ionic liquid; And a first electrode disposed on the first plate and not in contact with the room temperature ionic liquid. It may include a second electrode disposed on the first plate and in contact with the room temperature ionic liquid.
  • the room temperature ionic liquid may contain one of the following formulas.
  • a lens according to another embodiment may include a first plate including a cavity; A gel electrolyte membrane disposed in the cavity; A non-conductive material in contact with the gel electrolyte membrane and disposed in the cavity; A first electrode disposed on the first plate and not in contact with the gel electrolyte membrane; And a second electrode disposed on the first plate and in contact with the gel electrolyte membrane.
  • the non-conductive material may comprise a non-conductive liquid.
  • the non-conductive material may include air.
  • the gel electrolyte membrane may include room temperature ionic liquid or polymer.
  • the room temperature ionic liquid may be an imidazolium-based ionic liquid.
  • the room temperature ionic liquid may include an ionic liquid having at least one structure selected from the following formulas.
  • the room temperature ionic liquid may be a pyrrolidinium-based ionic liquid.
  • the polymer is PS-PEO-PS (polystyrene-block-poly(ethylene oxide)-block-polystyrene), Nafion, sulfonated polystyrene, and Poly(N-isopropylacrylamide) (PNIPAM), or a combination thereof.
  • PS-PEO-PS polystyrene-block-poly(ethylene oxide)-block-polystyrene
  • Nafion sodiumfion
  • sulfonated polystyrene and Poly(N-isopropylacrylamide) (PNIPAM)
  • PNIPAM Poly(N-isopropylacrylamide)
  • the gel electrolyte membrane may include a water-based liquid electrolyte and a water-soluble polymer.
  • the water-soluble polymer may be made of an ion conductive polymer.
  • the ion conductive polymer may be made of a fluorine-based or non-fluorine-based polymer having a structure in which a sulfonic acid group, an amine group, or a hydrophilic cation exchange functional group of a phosphoric acid group is bonded, or a structure in which an amine-based hydrophilic anion exchange functional group is bonded.
  • a lens assembly includes: a first lens; And at least one second lens aligned with the first lens on an optical axis, and the first lens may include the aforementioned lens.
  • deformation of the second plate is minimized even when the temperature changes due to heat of the lens itself or the temperature of the surroundings, or even when the temperature is high, and thus optical performance may be improved.
  • the lens according to the embodiment, and the lens assembly including the lens uses a gel electrolyte membrane as a conductive material, the influence of the lens from gravity can be minimized, and a non-conductive liquid such as oil may not be used.
  • the manufacturing method of the can be simplified and the manufacturing cost can be reduced.
  • the gel-type polymer film used as a conductive material in the lens and the lens assembly including the lens according to the embodiment has the advantage of being very flat because the transparency is very high, 95% or more, and the surface roughness is adjustable.
  • the lens according to the embodiment and a lens assembly including the lens may be used in a wide temperature range of -80°C to 200°C.
  • the lens and the lens assembly including the lens according to the embodiment have an advantage of having a very high electrical driving range.
  • FIG. 1 is a cross-sectional view of a lens according to an embodiment.
  • FIG. 2 is a graph for explaining driving of a lens according to the first and second embodiments described above.
  • 3A and 3B are diagrams for explaining driving of a lens according to the fourth exemplary embodiment described above.
  • FIG. 4 is a plan view of the lens shown in FIG. 1.
  • 5A and 5B are cross-sectional views illustrating a second plate according to an embodiment.
  • 6A and 6B are cross-sectional views of a second plate according to another embodiment.
  • FIG. 7 is a cross-sectional view illustrating a state before and after an extension part is stretched in a second plate according to an exemplary embodiment in a direction parallel to an optical axis.
  • FIG. 8 is a cross-sectional view showing a state before and after an extension part is stretched in a second plate according to another embodiment in a direction parallel to an optical axis.
  • FIG. 9 is a cross-sectional view showing a state before and after an extension part is extended in a second plate according to another embodiment in a direction parallel to an optical axis.
  • 10A and 10B are bottom views of a lens according to an embodiment.
  • FIG. 11 shows a bottom view of a lens according to a comparative example.
  • FIG. 12A to 12C are perspective views illustrating a manufacturing process of forming an adhesive from the lens shown in FIG. 1.
  • FIG. 13 is a block diagram of a camera module according to an embodiment.
  • FIG. 14A is a cross-sectional view of a camera module according to a comparative example
  • FIG. 14B is a cross-sectional view of a lens according to the embodiment.
  • 15 is a schematic block diagram of an optical device according to an embodiment.
  • first, second, A, B, (a), and (b) may be used in describing the constituent elements of the embodiment of the present invention. These terms are only for distinguishing the component from other components, and are not limited to the nature, order, or order of the component by the term.
  • a component when a component is described as being'connected','coupled' or'connected' to another component, the component is not only directly connected, coupled or connected to the other component, but also the component and It may also include a case of being'connected','coupled' or'connected' due to another component between the other components.
  • top (top) or bottom (bottom) when it is described as being formed or disposed on the “top (top) or bottom (bottom)” of each component, the top (top) or bottom (bottom) is one as well as when the two components are in direct contact with each other. It also includes a case in which the above other component is formed or disposed between the two components.
  • upper (upper) or lower (lower) when expressed as "upper (upper) or lower (lower)", the meaning of not only an upward direction but also a downward direction based on one component may be included.
  • a lens according to an exemplary embodiment a lens assembly including the lens, and a camera module including the assembly will be described using a Cartesian coordinate system, but the exemplary embodiment is not limited thereto. That is, according to the Cartesian coordinate system, the x-axis, y-axis, and z-axis are orthogonal to each other, but embodiments are not limited thereto. That is, the x-axis, y-axis, and z-axis may cross each other instead of orthogonal.
  • FIG. 1 shows a cross-sectional view of a lens 100 according to an embodiment.
  • a lens 100 includes a conductive material 110, a non-conductive liquid (or air) 120, a plurality of plates, first and second electrodes E1 and E2, and It may include an insulating layer 146.
  • the conductive material 110 may be filled, accommodated, or disposed in at least a portion of the cavity CA.
  • the conductive material 110 may have various shapes.
  • a conductive material 110 according to various embodiments will be described as follows.
  • the conductive material 110 may be a room temperature ionic liquid (RTIL) as a conductive liquid.
  • RTIL refers to an ionic liquid that exists as a liquid at room temperature.
  • the RTIL may be a liquid composed of only ions, for example an anion smaller than a macrocation including nitrogen.
  • RTIL maintained by the Coulomb force has very low volatility, so it is liquid at room temperature and has a low expansion rate.
  • RTIL is non-volatile, non-toxic, non-flammable, has excellent thermal stability and ionic conductivity, and exists as a liquid over a wide temperature range.
  • RTIL can optimize its properties by changing positive/anion ions according to the purpose of use.
  • RTIL can be used as an electrolyte because of its wide electrochemical window, high ionic conductivity, wide liquid temperature range, non-volatile and non-explosive properties.
  • RTIL may be selected from the following Formulas 1 to 5, or may include at least one.
  • mmim is dimethylimidazolium
  • emim is ethylmethylimidazolium
  • bmim is butylmethylimidazolium
  • hmim is hexylmethylimidazolium
  • the conductive material 110 may further include a cosolvent as well as RTIL.
  • a co-solvent is mixed with RTIL, the viscosity characteristics, temperature range of the liquid used, electrical characteristics, and ionic conductivity characteristics of the conductive material 110 may be improved. That is, by using the co-solvent, the viscosity of the conductive material 110 is lowered and the electrical properties are increased, the use temperature range is increased, and the electric drive range can be extended.
  • the co-solvent may consist of dimethyl sulfoxide, but is not limited thereto.
  • the conductive material 110 may include a gel electrolyte membrane.
  • the gel electrolyte membrane may include room temperature ionic liquid and/or polymer.
  • a room temperature ionic liquid can be prepared as a gel electrolyte membrane using various polymers capable of physically or chemically bonding with the room temperature ionic liquid.
  • the room temperature ionic liquid may be an ionic liquid based on imidazolium or a ionic liquid based on pyrrolidinium.
  • the room temperature ionic liquid may include an ionic liquid having at least one structure selected from Formulas 6 to 9 below.
  • the polymer included in the gel electrolyte membrane is PS-PEO-PS (polystyrene-block-poly(ethylene oxide)-block-polystyrene), Nafion, and sulfonated polystyrene. ), Poly(N-isopropylacrylamide) (PNIPAM), or a combination thereof.
  • the gel electrolyte membrane may include a water-based liquid electrolyte and a water-soluble polymer.
  • a water-based liquid electrolyte can be prepared as a gel-type water-based electrolyte membrane using various water-soluble polymers capable of physically or chemically bonding with the water-based liquid electrolyte.
  • the water-soluble polymer may be made of an ion conductive polymer.
  • the ion conductive polymer may be made of a fluorine-based or non-fluorine-based polymer having a structure in which a sulfonic acid group, an amine group, or a hydrophilic cation exchange functional group of a phosphoric acid group is bonded, or an amine-based hydrophilic anion exchange functional group is bonded, but embodiments are limited thereto. It doesn't work.
  • the fluorine-based polymer electrolyte is at least among the fluorine-based groups of polytetrafluoroethrylene (PTFE), polyvinylfluoride (PVF), polyvinylidine fluoride (PVDF), and polyethylenetetrafluoroethylene (ETFE).
  • PTFE polytetrafluoroethrylene
  • PVDF polyvinylfluoride
  • ETFE polyethylenetetrafluoroethylene
  • Any one of a fluorine-based polymer with a sulfonic acid group, an amine group, a hydrophilic cation exchange functional group group of a phosphoric acid group, and at least one of a structure having an amine-based hydrophilic anion exchange functional group may have a structure in which a hydrophilic ion exchange functional group is bonded.
  • the fluorine-based polymer electrolyte is Nafion, Aquivion, Flemion, Gore, Aciplex, R-1030,
  • the non-fluorine-based polymer electrolyte is a non-fluorine-based polymer of any one of polyarylene, polyetherketone and polyetheretherketone, or a hydrophilic cation exchange functional group of sulfonic acid group, amine group, and phosphoric acid group and amine-based hydrophilic anion. At least one of the exchange functional group groups may have a structure in which a hydrophilic ion exchange functional group is bonded.
  • the non-fluorine-based polymer electrolyte is sulfonated polyetheretherketone (sPEEK), sulfonated polyetherketone (sPEK), sulfonated polyethersulfone (sPES). ), sulfonated polyarylethersulfone (sPAES) may be a cationic conductive polymer film or an anionic conductive polymer film.
  • the lens 100 may further include a non-conductive material.
  • the non-conductive material may include a non-conductive liquid (hereinafter, referred to as “non-conductive liquid”) 120.
  • the non-conductive liquid 120 may be disposed in contact with the conductive material 110 in the cavity CA.
  • a conductive material 110 may be disposed on the non-conductive liquid 120.
  • the non-conductive liquid 120 is disposed in contact with the room temperature ionic liquid 110, and according to the third and fourth embodiments, the non-conductive material 120 is a gel electrolyte membrane ( 110) can be placed in contact,
  • the conductive material 110 and the non-conductive material 120 are not mixed with each other, and an interface BO may be formed in a contact portion between the conductive material 110 and the non-conductive liquid.
  • the non-conductive material disposed under the conductive material 110 may include air 120 instead of the non-conductive liquid.
  • the conductive material 110 and the air 120 are not mixed with each other, and an interface BO may be formed in a contact portion between the conductive material 110 and the air 120.
  • only a gel electrolyte membrane may be used without using a non-conductive liquid such as oil.
  • the conductive material 110 in FIG. 1 is a polar fluid, for example, water (H2O) containing salt, heat generated when the lens 100 is operated or the lens (100)
  • the conductive material 110 and the non-conductive liquid (or air) 120 may expand in the optical axis direction (eg, z-axis direction) by the ambient temperature.
  • the stress caused by the thermal expansion is concentrated to the second plate P2, causing a lot of bending in the second plate P2, thereby deteriorating optical performance.
  • the conductive material 110 includes a room temperature ionic material, a room temperature ionic material including a co-solvent, or a gel electrolyte membrane
  • thermal expansion according to temperature is polarity. Since it is smaller than the fluid having A, the stress applied to the second plate P2 is reduced, so that the optical performance does not deteriorate and can be maintained satisfactorily.
  • the above-described cavity CA is located on the optical axis LX, and may be defined by at least one plate.
  • the plurality of plates may include first to third plates P1 to P3.
  • the first plate P1 may include a cavity CA.
  • the first plate P1 may include an inner side surface i defining a side portion of the cavity CA.
  • the inner surface i of the first plate P1 may be inclined as shown, but the embodiment is not limited thereto.
  • the cavity CA may include first and second openings O1 and O2 respectively formed above and below the first plate P1. That is, the cavity CA may be defined as a region surrounded by the inner surface i of the first plate P1, the first opening O1 and the second opening O2.
  • the diameter of the wider one of the first and second openings O1 and O2 may vary depending on the FOV required by the lens 100 or the role to be performed in the optical device including the lens 100. According to an embodiment, the size (or area or width) of the first opening O1 may be larger than the size (or area or width) of the second opening O2.
  • each of the first and second openings O1 and O2 may be a cross-sectional area in a horizontal direction (eg, in the x-axis and y-axis directions).
  • the size of each of the first and second openings O1 and O2 may mean a radius when the cross section of the opening is circular, and may mean a diagonal length when the cross section of the opening is square.
  • the cavity CA is a part through which light passes. Accordingly, the first plate P1 constituting the cavity CA may be made of a transparent material or may contain impurities so that light transmission is not easy.
  • the light may be incident in the cavity CA through a first opening O1 that is wider than the second opening O2 and emitted through the second opening O2, or a second opening that is narrower than the first opening O1 ( It may be incident through O2) and emitted through the first opening O1.
  • the second plate P2 may be disposed above or below the first plate P1, and the third plate P3 may be disposed above or below the first plate P1.
  • the second plate P2 may be disposed above the first plate P1, and the third plate P3 may be disposed below the first plate P1.
  • the second plate P2 may be disposed above the cavity CA, and the third plate P3 may be disposed below the cavity CA.
  • the second plate P2 and the third plate P3 may be disposed to face each other with the first plate P1 interposed therebetween. Also, at least one of the second plate P2 and the third plate P3 may be omitted.
  • At least one of the second or third plates P2 and P3 may have a rectangular planar shape, and a partial region may be escaped to expose a part of an electrode to be described later.
  • Each of the second and third plates P2 and P3 is a region through which light passes, and may be made of a light-transmitting material.
  • each of the second and third plates P2 and P3 may be made of glass, and may be made of the same material for convenience of the process.
  • the edges of each of the second and third plates P2 and P3 may have a rectangular shape, but are not limited thereto.
  • the second plate P2 may have a configuration that allows incident light to proceed into the cavity CA of the first plate P1, but may have a configuration that allows light to be emitted in the opposite direction.
  • the third plate P3 may have a configuration that allows light that has passed through the cavity CA of the first plate P1 to be emitted, but may have a configuration that allows the light to be emitted in the opposite direction.
  • the second plate P2 may directly contact the conductive material 110.
  • the actual effective lens area of the lens 100 may be narrower than the diameter of the narrow second opening O2 among the first and second openings O1 and O2 of the first plate P1.
  • the first electrode (or individual electrode) E1 is disposed on one surface of the first plate P1 (for example, under the first plate P1), and the second electrode (or a common electrode) (E2) may be disposed on the other surface of the first plate P1 (eg, above the first plate P1). That is, the first electrode E1 is disposed on the first plate P1 and does not contact the room temperature ionic liquid, and the second electrode E2 is disposed on the first plate P1 and contacts the room temperature ionic liquid. can do.
  • a portion of the second electrode E2 disposed on the first plate P1 may be exposed to the conductive material 110 to directly contact the conductive material 110.
  • the insulating layer 146 is disposed between the first electrode E1 and the conductive material 110, and the insulating layer 146 is disposed between the first electrode E1 and the non-conductive liquid (or air) 120. ) Is disposed, the first electrode E1, the conductive material 110, and the non-conductive liquid (or air) 120 may be electrically separated from each other.
  • an oxide film (not shown) may be disposed between the second electrode E2 and the conductive material 110.
  • the first electrode E1 may be a plurality of electrodes, and the second electrode E2 may be one electrode.
  • the number of first electrodes E1 may be 4 or 8, and the embodiment is not limited to a specific number of first electrodes E1.
  • first electrode E1 may be disposed extending from between the first and third plates P1 and P3 to the inner side i of the first plate P1.
  • first electrode E1 may extend from the inner surface i of the first plate P1 to the top of the first plate P1 and may be disposed to be spaced apart from the second electrode E2.
  • Each of the first electrode E1 and the second electrode E2 may be made of a conductive material, for example, a metal.
  • the insulating layer 146 may be disposed in the lower region of the cavity CA while covering a part of the upper surface of the third plate P3. That is, the insulating layer 146 may be disposed between the non-conductive liquid (or air) 120 and the third plate P3.
  • the insulating layer 146 may be disposed while covering the entire first electrode E1 disposed on the inner surface i of the cavity CA. Further, the insulating layer 146 may be disposed on the upper surface of the first plate P1 to cover a part of the second electrode E2 and the entire first electrode E1. In this way, the insulating layer 146 is a contact between the first electrode E1 and the conductive material 110, the contact between the first electrode E1 and the non-conductive liquid (or air) 120, and the third plate P3. ) And the non-conductive liquid (or air) 120 may block contact.
  • the insulating layer 146 may cover the first electrode E1 and expose a part of the second electrode E2 so that electrical energy is applied to the conductive material 110 through the second electrode E2.
  • the lens module including the lens 100 according to the embodiment may include a first connection substrate and a second connection substrate.
  • the first connection substrate may be electrically connected to an electrode pad formed on the main substrate (not shown) through a connection pad electrically connected to the first electrode E1.
  • the second connection substrate may be electrically connected to an electrode pad formed on the main substrate through a connection pad electrically connected to the second electrode E2.
  • the first connection substrate may be implemented as a flexible printed circuit board (FPCB), and the second connection substrate may be implemented as an FPCB or a single metal substrate (conductive metal plate), but embodiments are limited thereto. It doesn't work.
  • FPCB flexible printed circuit board
  • conductive metal plate single metal substrate
  • the first connection substrate may transmit a plurality of different voltages (hereinafter referred to as “individual voltages”) to the plurality of first electrodes E1, respectively.
  • the second connection substrate may transmit one driving voltage (hereinafter, referred to as “common voltage”) to the second electrode E2.
  • the common voltage may include a DC voltage or an AC voltage.
  • the width or duty cycle of the pulse may be constant. That is, the driving voltage may be supplied to the lens 100 through the first connection substrate and the second connection substrate.
  • the curvature of the interface BO formed in the lens 100 may be changed to perform an auto-focusing (AF) function, and the tilting angle of the interface BO may be changed, thereby correcting hand shake or image It can also perform an OIS (Optical Image Stabilizer) function.
  • AF auto-focusing
  • OIS Optical Image Stabilizer
  • FIG. 2 is a graph for explaining the driving of the lens 100 according to the first and second embodiments described above, wherein the horizontal axis represents the amount of electric charge and the vertical axis represents the amount of displacement.
  • the displacement of the lens 100 varies as the level (eg, amount of charge) of the driving signal applied to the lens 100 is varied.
  • the lens 100 may be driven to perform an AF or OIS function.
  • 3A and 3B are diagrams for explaining driving of the lens 100 according to the fourth embodiment.
  • the electrode to which the two voltages V1 and V2 are applied is shown to be in direct contact with the conductive material 110, but as described above, the electrodes V1 and V2 and the conductive material 110 An insulating layer 146 may be disposed therebetween.
  • the lens 100 according to the embodiment is not limited to the configuration shown in FIG. 1. That is, the conductive material according to the first to fourth embodiments is disposed instead of the conductive liquid among two different liquids, and air is disposed instead of the non-conductive liquid among two different liquids, or the non-conductive liquid itself is disposed. If possible, the lens according to the embodiment can be applied to lenses having any existing configuration.
  • FIG. 4 is a plan view of the lens 100 shown in FIG. 1.
  • the second plate P2 may include first and second portions PA1 and PA2.
  • the first part PA1 is a part in contact with the conductive material 110, and the second part PA2 is a part surrounding the first part PA1.
  • the second plate P2 may have a uniform first thickness T1.
  • the lens 100 illustrated in FIG. 1 may further include a bonding member 148.
  • the bonding member (or adhesive) 148 is disposed between the first plate P1 and the second plate P2 and serves to couple the first plate P1 and the second plate P2 to each other.
  • the lens 100 illustrated in FIG. 1 may further include a plate leg (LEG) 148 instead of including the bonding member 148.
  • the plate leg 148 is disposed between the first plate P1 and the second plate P2 and serves to support the second plate P2.
  • the plate leg 148 may be integrally implemented with the same material as the second plate P2.
  • the member 148 may have a second thickness T2.
  • the thickness of the portion of the third plate P3 facing the non-conductive material (eg, non-conductive liquid or air) 120 (hereinafter referred to as'third thickness') (T3) is the first thickness (T1) And may be less than the total sum of the first thickness T1 and the second thickness T2.
  • the first thickness T1 and the third thickness T3 may be the same.
  • the conductive material 110 and the non-conductive material (for example, non-conductive liquid or air) 120 by heat generated when the lens 100 according to the above-described embodiment operates or the temperature around the lens 100 It can expand in the optical axis direction (eg, z-axis direction).
  • the optical axis direction eg, z-axis direction.
  • the first thickness T1 of the second plate P2 and the third thickness T3 of the third plate P3 are the same, or the third thickness T3 is the first thickness T1 ) And the second thickness (T2), but slightly larger than the first thickness (T1), the thermal expansion of the conductive material 110 and the non-conductive material (for example, non-conductive liquid or air) 120
  • the resulting stress may be distributed to the first and third plates P1 and P3. In this way, when the stress is dispersed, the probability that the second plate P2 is damaged is reduced, and the optical performance of the lens 100 is not deteriorated and can be maintained satisfactorily.
  • the first portion PA1 of the second plate P2 may have a flat portion FP and an elastic portion EP.
  • the flat portion FP may have a first thickness T1 uniformly and may be positioned on a path through the optical axis LX in the second plate P2.
  • the stretchable part EP is a part surrounding the flat part FP and may be disposed between the flat part FP and the second part PA2.
  • the elastic part EP may have greater elasticity than the flat part FP.
  • the stress is flat when the conductive material 110 and the non-conductive material (eg, non-conductive liquid or air) 120 are thermally expanded. It may be concentrated in the elastic portion EP rather than the portion FP.
  • the flat portion FP may be connected to the elastic portion EP so that parallel movement may be possible to move away from or close to the cavity CA according to the expansion and contraction of the elastic portion EP.
  • the performance of the lens 100 may be deteriorated.
  • the conductive material 110 and the non-conductive material (eg, non-conductive liquid or air) 120 are not affected or affected by thermal expansion. Less received, the performance of the lens 100 can be maintained.
  • the width W of the first part PA1 (or the flat part FP) is smaller than the width of the second opening O2, one of the both ends of the flat part FP is deflected, etc.
  • the (110) and the non-conductive material (eg, non-conductive liquid or air) 120 are expanded, the parallel movement of the flat portion FP may become difficult. Accordingly, the width W of the first portion PA1 (or the flat portion FP) may be larger than the width of the second opening O2, but the embodiment is not limited thereto.
  • the expansion and contraction part EP may have an annular planar shape, but the embodiment is not limited to a specific planar shape of the expansion and contraction part EP.
  • FIG. 5A and 5B are cross-sectional views illustrating a second plate P2 according to an embodiment. While FIG. 5A shows the entire cross-section of the second plate P2, for convenience of explanation, FIG. 5B shows only the left portion of the cross-sectional shape of the second plate P2. The right portion of the second plate P2, which is not shown in FIG. 5B, is symmetrical with the left portion shown in FIG. 5B in the y-axis direction, and thus can be seen through FIG. 5B.
  • the number of flat portions FP may be plural.
  • the flat portion FP may include first and second flat portions FP1 and FP2.
  • the first flat portion FP1 corresponds to the flat portion FP shown in FIG. 4, and the second flat portion FP2 is between the elastic portion EP and the second portion PA2 of the second plate P2.
  • the number of flat portions FP is one, as illustrated in FIG. 4, and the expansion and contraction portions EP may directly contact the second portion PA2.
  • the second flat portion FP2 shown in FIGS. 5A and 5B corresponds to the second part PA2 of the second plate P2
  • the second plate P2 shown in FIGS. 5A and 5B It also has one flat portion FP1.
  • the second flat portion FP2 illustrated in FIGS. 5A and 5B will be described as corresponding to the second portion PA2 of the second plate P2. That is, the flat portion referred to below is meant to mean the flat portion FP shown in FIG. 4 or the first flat portion FP1 shown in FIGS. 5A and 5B, respectively.
  • the stretchable part EP may include first to third segments S1 to S3.
  • the first segment S1 may have a fourth thickness T4 smaller than the first thickness T1.
  • the second segment S2 may be disposed between the first segment S1 and the flat portions FP and FP1.
  • the third segment S3 may be disposed between the first segment S1 and the second part PA2.
  • At least one of the second and third segments S2 and S3 may have a cross-sectional shape whose thickness decreases as the first segment S1 approaches.
  • each of the second and third segments S2 and S3 has a cross-sectional shape whose thickness decreases as the first segment S1 approaches.
  • the elastic part EP when the elastic part EP includes the first segment S1 having a fourth thickness T4 smaller than the first thickness T1, the conductive material 110 and a non-conductive material (for example, , The stress caused by the thermal expansion of the non-conductive liquid or air) 120 is applied to the expansion/contraction part (EP) instead of the flat parts (FP, FP1), so that the influence of the flat parts (FP, FP1) by the stress is reduced. I can.
  • the thickness of at least one of the second and third segments S2 and S3 has a cross-sectional shape that decreases as the first segment S1 approaches, the conductive material 110 and the non-conductive liquid (or air) When the 120 expands or contracts, the elastic part EP may be flexibly expanded and contracted.
  • the stretchable part EP may include only one first segment S1.
  • the elastic part EP may include a plurality of first segments.
  • the stretchable part EP may include the 1-1 and 1-2 segments S11 and S12.
  • the elastic part EP may further include a fourth segment S4 disposed between the plurality of first segments.
  • the elastic part EP when the elastic part EP includes the 1-1 and 1-2 segments S11 and S12, the elastic part EP is the 1-1 segment S11.
  • a fourth segment (S4) disposed between the first-second segment (S12) may be further included.
  • the fourth segment S4 may include 4-1 to 4-3 segments S41 to S43. The 4-1th segment S41 is in contact with the 1-1th segment S11 and is a portion located between the 1-1th segment S11 and the 4-2th segment S42.
  • the 4-3th segment S43 is in contact with the 1-2nd segment S12 and is a portion located between the 1-2nd segment S12 and the 4-2th segment S42.
  • the 4-2th segment S42 is a portion located between the 4-1th segment S41 and the 4-3th segment S43.
  • the fourth segment S4 may have a cross-sectional shape whose thickness decreases as it approaches the first segment S1.
  • the 4-1 segment S41 has a cross-sectional shape whose thickness decreases as it approaches the 1-1 segment S11
  • the 4-3 segment S43 is the first -2 It may have a cross-sectional shape whose thickness decreases as the segment approaches S12.
  • the conductive material 110 and a non-conductive material for example, For example, more stress due to thermal expansion of the non-conductive liquid or air 120 may be applied to the expansion/contractor EP instead of the flat portions FP and FP1.
  • the fourth segment S4 has a cross-sectional shape in which the thickness decreases as the fourth segment S4 approaches the first segment S1, the expansion and contraction portion EP may be more flexible.
  • the expansion/contraction part EP may include at least one of a recess and a protrusion.
  • the first to third segments S1 to S3 may form recesses.
  • the fourth segment S4 may form a protrusion, and the top surface of the 4-2th segment S42 may correspond to the upper surface of the protrusion.
  • 6A and 6B are cross-sectional views of the first portion PA1 of the second plate P2 according to another exemplary embodiment.
  • the expansion/contraction part EP may include a plurality of recesses R1 and R2 and at least one protrusion PT1 and PT2.
  • each of the recess and the protrusion may have at least one cross-sectional shape of a semicircular shape, a semi-elliptic shape, or a polygonal shape (eg, triangular, square, etc.).
  • the recess R1 may have a rectangular cross-sectional shape
  • the recess R2 may have a semicircular cross-sectional shape.
  • the stretching part EP may have a zigzag shape.
  • FIG. 7 to 9 are cross-sectional views illustrating before and after the extension part EP is stretched in the second plate P2 according to the embodiment in a direction parallel to the optical axis.
  • the expansion and contraction portions EP are implemented at both ends of the first part PA1 of the second plate P2 in various forms, the conductive material 110 and a non-conductive material (for example, a non-conductive liquid or When the air) 120 is thermally expanded, more stress may be concentrated in the expansion/contraction part EP than in the flat parts FP and FP1. That is, as shown in FIGS. 7 (b), 8 (b), and 9 (b), the expansion and contraction portions EP are stretched like a spring, so that the flat portions FP and FP1 are parallel in the optical axis direction. Since it can be moved, the optical performance of the lens 100 can be maintained well without deteriorating.
  • a non-conductive material for example, a non-conductive liquid or When the air
  • first plate P1 and the second plate P2 may be coupled to each other in various ways.
  • the second part PA2 of the second plate P2 may include a bonding area BA.
  • the second plate P2 may be coupled to the first plate P1 through a bonding method.
  • the bonding method is a laser irradiation toward the bonding area BA by the second part PA2 of the second plate P2 having light transmission properties, thereby combining the first plate P1 and the second plate P2. It means the way to do it.
  • FIGS. 10A and 10B are bottom views of the lens 100 according to the embodiment.
  • FIGS. 10A and 10B show only the second plate P2.
  • the second plate P2 includes a bonding area BA.
  • Each bonding area BA has an inner periphery IE and an outer periphery OE. At least one of the inner edge IE and the outer edge OE of the bonding area BO may have a polygonal bottom shape.
  • the outer periphery of the bonding area BA may have a pentagonal bottom shape as shown in FIG. 10A or a hexagonal bottom shape as shown in FIG. 10B.
  • FIG. 11 shows a bottom view of a lens according to a comparative example.
  • the second plate P2 of the lens according to the comparative example shown in FIG. 11 performs the same role as the second plate P2 of the lens 100 according to the embodiment. It is assumed that the lens according to the comparative example shown in FIG. 11 is the same as the lens 100 according to the embodiment, except that the shape of the bottom surface of the outer edge OE of the second plate P2 shown in FIG. 11 is different.
  • the outer edge of the bonding area BA has a circular bottom shape, it is caused by thermal expansion of the conductive material 110 and the non-conductive material (eg, non-conductive liquid or air) 120
  • the resulting stress is applied the most to the origin, that is, the center of the second plate P2, that is, the optical axis LX, having the same distance as the rim portion OE of the circle, and thus the second plate P2 may be damaged.
  • the conductive material 110 and the non-conductive liquid (or , The stress caused by the thermal expansion of the air) 120 is distributed to each edge of the outer bonding area (BA) OE having a different distance from the center of the second plate (P2), that is, not only the optical axis (LX).
  • the second plate P2 may receive less stress than when (OE) is circular.
  • the outside OE is polygonal as shown in FIGS. 10A and 10B than when the outside OE is circular as shown in FIG. 11, the area of the bonding area BA increases, thereby increasing the temperature. Accordingly, when the volume of the conductive material 110 and the non-conductive liquid (or air) 120 is expanded, it is possible to further prevent or minimize the second plate P2 from being bent or damaged.
  • the first and second plates P1 and P2 may be bonded to each other by an adhesive 148.
  • the adhesive 148 may be disposed in the bonding area BA shown in FIGS. 10A, 10B and 11.
  • the first and second plates P1 and P2 are connected to each other by bonding in the bonding area BA. Can also be combined.
  • 12A to 12C are perspective views illustrating a manufacturing process of forming an adhesive 148 in the lens 100 shown in FIG. 1.
  • a non-conductive material 120 and a conductive material 110 are sequentially filled in the cavity CA in the first plate P1, and the adhesive 148 is prepared.
  • the material 148A is disposed around the cavity CA.
  • the conductive material 110 is filled in the cavity CA and the second plate P2 is covered on the first plate P1 on which the adhesive 148 manufacturing material 148A is formed.
  • the first and second plates ( P1, P2) can be combined with each other.
  • the adhesive 148 is not limited to the manufacturing method shown in FIGS. 12A to 12C, and may be manufactured by other methods.
  • the adhesive 148 may be manufactured in various forms and may be manufactured using, for example, Side Sealing Molding (SSM).
  • SSM Side Sealing Molding
  • the first and second plates P1 and P2 are bonded together, the first and second plates are thermally expanded when the conductive material 110 and the non-conductive material (eg, non-conductive liquid or air) 120 are thermally expanded. 2 Since the bonding portion of the plates P1 and P2 does not expand, a lot of stress is applied to the second plate P2 and may be destroyed.
  • the conductive material 110 and the non-conductive material eg, non-conductive liquid or air
  • the conductive material 110 and the non-conductive material for example, a non-conductive liquid or air When
  • the volume of the adhesive 148 expands in the direction A1 indicated by the arrow, so that the stress applied to the second plate P2 can be reduced as much as possible.
  • the conductive material 110 and the non-conductive material eg, non-conductive liquid or air
  • the second plate P2 may move in parallel, thereby preventing or minimizing deterioration in optical performance. I can make it.
  • the coefficient of thermal expansion of the adhesive 148 may be greater than that of the second plate P2.
  • the lens 100 according to the above-described embodiment can be applied to various fields.
  • FIG. 13 is a block diagram of a camera module 200 according to an embodiment.
  • the camera module 200 may include a lens assembly 210 and an image sensor 220.
  • the lens assembly 210 may include at least one first lens and a second lens 214.
  • the second lens 214 may mean the lens 100 illustrated in FIG. 1.
  • At least one first lens may be aligned with the second lens 214 along the optical axis LX.
  • at least one first lens may include a first lens unit 212 and a second lens unit 216.
  • Each of the first and second lens units 212 and 216 may include at least one lens.
  • At least one of the first or second lens units 212 and 216 may be omitted.
  • Each of the plurality of first lenses may be a solid lens or a liquid lens, and the lens assembly 210 according to the embodiment is not limited to a specific shape of the lens.
  • the second lens 214 is disposed between the first lens unit 212 and the second lens unit 216, but the embodiment is not limited thereto. That is, according to another embodiment, the second lens 214 may be disposed above the first lens unit 212 or may be disposed below the second lens unit 216. As such, the second lens 214 may be disposed between the plurality of first lenses, above the plurality of first lenses, and below the plurality of first lenses.
  • the second lens 214 may also serve as any one of the plurality of first lenses.
  • the image sensor 220 transmits light passing through the opening of the second lens 214 (for example, the first and second openings O1 and O2 shown in FIG. 1) and at least one first lens. It can receive and generate image data.
  • the image sensor 220 may be aligned with the second lens 214 and at least one first lens (eg, 212 and 216 shown in FIG. 13) along the optical axis LX.
  • the second lens 214 can serve as any one of the plurality of first lenses, the number of lenses included in the lens assembly 210 is reduced. I can. Accordingly, the size of the lens assembly 210 may be reduced.
  • FIG. 14A is a cross-sectional view of a camera module according to a comparative example
  • FIG. 14B is a cross-sectional view of a lens according to the embodiment.
  • the camera module according to the comparative example shown in FIG. 14A includes a first lens unit 212, a liquid lens 10, a second lens unit 216, and an image sensor 220, and the embodiment shown in FIG. 14B
  • the camera module by includes a first lens unit 212, a second lens unit 214, a second lens unit 216, and an image sensor 220.
  • the first lens unit 212, the second lens unit 216, and the image sensor 220 shown in FIG. 14A are the first lens unit 212, the second lens unit 216, and the image sensor shown in FIG. 220), the same reference numerals are used, and duplicate descriptions are omitted.
  • the liquid lens 10 of the camera module according to the comparative example shown in FIG. 14A has the same configuration as the lens 100 according to the embodiment shown in FIG.
  • each of the first to third plates P1 to P3 The characteristics are different, and instead of the conductive material 110, a water-based conductive liquid (hereinafter, referred to as'LQ1') is included, and as the non-conductive material 120, a non-conductive liquid such as oil (hereinafter, referred to as'LQ2') ) Is placed.
  • a water-based conductive liquid hereinafter, referred to as'LQ1'
  • a non-conductive liquid such as oil
  • the second lens 214 shown in FIG. 14B may be any one of the lenses 100 214 shown in FIG. 1 or 13.
  • the image sensor 220 shown in each of FIGS. 14A and 14B may correspond to an imaging surface of the image sensor 220 shown in FIG. 13.
  • the camera module according to the comparative example includes the liquid lens 10 in which the structure of the interface between the two liquids LQ1 and LQ2 is changed through voltage, and thus its use in various environments is restricted.
  • the first liquid LQ1 is a water-based electrolyte, and is implemented by adding ions such as salt to water in a certain amount or more.
  • Water-based electrolytes have a freezing point or melting point at 0°C and a boiling point at 100°C. Due to the fundamental material properties of water that decomposes when a voltage of 1.23V is applied, use in various environments is limited. Therefore, the liquid lens 10 using the water-based electrolyte as the conductive liquid LQ1 cannot be used at a high temperature of 100°C or higher and a low temperature of 0°C or lower.
  • the conductive liquid LQ1 easily expands due to the rapid expansion coefficient of water, so that the second plate P2 is curved according to the temperature, thereby deteriorating optical performance.
  • the temperature of the liquid lens 10 is 30 °C to 80 °C
  • the second plate (P2) is deformed due to stress or even It may be destroyed.
  • the stress applied to the second plate P2 may be minimized by reducing the thickness of the second plate P2.
  • manufacturing cost and manufacturing time may increase, and the structure of the liquid lens 10 may be complicated.
  • the conductive liquid LQ1 and the non-conductive liquid LQ2 expand, so that the curvature of the second plate P2 gradually decreases, which is curved as the liquid lens 10. ), which can lead to deterioration in optical performance, such as a decrease in resolution.
  • a room temperature ionic liquid having a lower expansion rate according to temperature than a water-based electrolyte solution, a room temperature ionic liquid including a co-solvent, and room temperature ions Since a gel-type electrolyte membrane containing a liquid and a polymer or a gel-type electrolyte membrane containing a water-based liquid electrolyte and a water-soluble polymer is used, even when the temperature changes due to the heat of the lenses (100, 214) or the surrounding temperature, etc. Deformation of the second plate P2 is minimized, and thus optical performance may be improved.
  • the manufacturing method of the lenses 100 and 214 may be simplified and the manufacturing cost may be reduced.
  • the gel-type polymer film used as the conductive material 110 in the third and fourth embodiments has an advantage of being very flat because the transparency is very high, 95% or more, and the surface roughness is adjustable.
  • the temperature range that can be used is 0°C to 100°C, which is the temperature range of water, whereas the lenses 100 and 214 according to the embodiment have a temperature range of -80°C to 200°C. It can be used in a wide temperature range.
  • the water-based liquid lens 10 according to the comparative example it can be electrically decomposed at a very low voltage of 1.23V, so that the electrical drive range is very low, whereas the lenses 100 and 214 according to the embodiment
  • the electrical drive range has a very high advantage.
  • the third thickness of the third plate P3 ( T3) is implemented to be similar to or equal to the first thickness T1 of the second plate P2, or implemented so that the second plate P2 has an elastic portion EP, or the outer edge of the bonding area BA or
  • One of the cabinets may be implemented to have a polygonal planar shape, or the first and second plates P1 and P2 may be bonded by an adhesive 148 instead of bonding. Accordingly, as shown in FIG. 14B, deformation of the second plate P2 of the lens 214 at various temperatures or high temperatures may be minimized, and thus optical performance may be improved.
  • an optical device may be implemented using the camera module 200 including a lens according to the above-described embodiment.
  • the optical device may include a device capable of processing or analyzing an optical signal.
  • Examples of optical devices may include a camera/video device, a telescope device, a microscope device, an interferometer device, a photometer device, a polarimeter device, a spectrometer device, a reflectometer device, an autocollimator device, a lens meter device, and the like, including a lens assembly. This embodiment can be applied to an optical device capable of.
  • the optical device may be implemented as a portable device such as a smart phone, a notebook computer, or a tablet computer.
  • These optical devices include a camera module 200, a display unit (not shown) that outputs an image, a battery (not shown) that supplies power to the camera module 200, a camera module 200, a display unit, and a battery.
  • It may include a body housing.
  • the optical device may further include a communication module capable of communicating with other devices and a memory unit capable of storing data.
  • the communication module and the memory unit may also be mounted on the main body housing.
  • optical device 300 including a lens according to an embodiment will be described with reference to the accompanying drawings, but the optical device 300 according to the embodiment is not limited thereto.
  • 15 is a schematic block diagram of an optical device 300 according to an embodiment.
  • the optical device 300 may include a prism unit 310, a lens 320, and a zooming unit 330.
  • the lens 320 may correspond to the lenses 100 and 214 described above.
  • the prism unit 310 serves to change the path of light incident in the direction indicated by IN to the optical axis LX of the lens 320.
  • the lens 320 may perform OIS and AF functions for light whose optical path is changed in the prism unit 310 and output to the zooming unit 330.
  • the zooming unit 330 zooms in/out of the light that has passed through the lens 320.
  • the zooming unit 330 may include an actuator (not shown) that moves the plurality of lenses 320 in a direction parallel to the optical axis LX (eg, a z-axis direction).
  • the lens according to the embodiment and the lens assembly including the lens include a camera/video device, a telescope device, a microscope device, an interferometer device, a photometer device, a polarimeter device, a spectrometer device, a reflectometer device, an autocollimator device, a lens meter device, and a smart device. It can be used in portable devices such as phones, notebook computers, and tablet computers.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Automatic Focus Adjustment (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

A lens according to an embodiment comprises: a first plate including a cavity; a room-temperature ionic liquid disposed in the cavity; a non-conductive liquid disposed in the cavity and coming in contact with the room-temperature ionic liquid; a first electrode disposed on the first plate and not coming in contact with the room-temperature ionic liquid; and a second electrode disposed on the first plate and coming in contact with the room-temperature ionic liquid.

Description

렌즈 및 이 렌즈를 포함하는 렌즈 어셈블리Lens and lens assembly containing the lens
실시 예는 렌즈 및 이 렌즈를 포함하는 렌즈 어셈블리에 관한 것이다.Embodiments relate to a lens and a lens assembly comprising the lens.
휴대용 장치의 사용자는 고해상도를 가지며 크기가 작고 다양한 촬영 기능을 갖는 광학 장치를 원하고 있다. 예를 들어, 다양한 촬영 기능이란, 광학 줌 기능(zoom-in/zoom-out), 오토 포커싱(AF:Auto-Focusing) 기능 또는 손떨림 보정 내지 영상 흔들림 방지(OIS:Optical Image Stabilizer) 기능 중 적어도 하나를 의미할 수 있다.Users of portable devices want optical devices that have high resolution, are small in size, and have various photographing functions. For example, various shooting functions include at least one of an optical zoom function (zoom-in/zoom-out), an auto-focusing (AF) function, or an image stabilization or image stabilization (OIS) function. Can mean
기존의 경우, 전술한 다양한 촬영 기능을 구현하기 위해, 여러 개의 렌즈를 조합하고, 조합된 렌즈를 직접 움직이는 방법을 이용하였다. 그러나, 이와 같이 렌즈의 수를 증가시킬 경우 광학 장치의 크기가 커질 수 있다.In the conventional case, in order to implement the aforementioned various photographing functions, a method of combining several lenses and directly moving the combined lenses was used. However, when the number of lenses is increased in this way, the size of the optical device may increase.
오토 포커스와 손떨림 보정 기능은, 광축으로 정렬된 여러 개의 렌즈가, 광축 또는 광축의 수직 방향으로 이동하거나 틸팅(Tilting)하여 수행된다. 이때, 광학 장치에서 오토 포커싱과 손떨림 보정 기능을 수행하는 렌즈부에 포함된 서로 다른 액체의 열 팽창으로 인해, 광학 성능이 저하되는 문제가 있다.The autofocus and image stabilization functions are performed by moving or tilting several lenses aligned with the optical axis in a vertical direction of the optical axis or the optical axis. In this case, there is a problem in that optical performance is deteriorated due to thermal expansion of different liquids included in the lens unit that performs auto focusing and camera shake correction functions in the optical device.
실시 예는 온도 변화에도 불구하고 개선된 광학 성능을 갖는 렌즈 및 이 렌즈를 포함하는 렌즈 어셈블리를 제공하기 위한 것이다.The embodiment is to provide a lens having improved optical performance despite temperature change and a lens assembly including the lens.
실시 예에서 해결하고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제는 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The technical problem to be solved in the embodiment is not limited to the technical problem mentioned above, and another technical problem not mentioned will be clearly understood by those of ordinary skill in the technical field to which the present invention belongs from the following description. I will be able to.
일 실시 예에 의한 렌즈는, 캐비티를 포함하는 제1 플레이트; 상기 캐비티에 배치되는 상온 이온성 액체; 상기 캐비티에 배치되고 상기 상온 이온성 액체에 접하는 비전도성 액체; 및 상기 제1 플레이트 상에 배치되고 상기 상온 이온성 액체와 접촉하지 않는 제1 전극; 상기 제1 플레이트 상에 배치되고 상기 상온 이온성 액체와 접촉하는 제2 전극을 포함할 수 있다.A lens according to an embodiment includes: a first plate including a cavity; Room temperature ionic liquid disposed in the cavity; A non-conductive liquid disposed in the cavity and in contact with the room temperature ionic liquid; And a first electrode disposed on the first plate and not in contact with the room temperature ionic liquid. It may include a second electrode disposed on the first plate and in contact with the room temperature ionic liquid.
예를 들어, 상기 상온 이온성 액체는 다음 화학식들 하나를 포함할 수 있다.For example, the room temperature ionic liquid may contain one of the following formulas.
Figure PCTKR2020006984-appb-I000001
Figure PCTKR2020006984-appb-I000001
다른 실시 예에 의한 렌즈는, 캐비티를 포함하는 제1 플레이트; 상기 캐비티에 배치되는 겔형 전해질막; 상기 겔형 전해질막과 접촉하고 상기 캐비티에 배치되는 비전도성 물질; 상기 제1 플레이트 상에 배치되고 상기 겔형 전해질막과 접촉하지 않는 제1 전극; 및 상기 제1 플레이트 상에 배치되고 상기 겔형 전해질막과 접촉하는 제2 전극을 포함할 수 있다.A lens according to another embodiment may include a first plate including a cavity; A gel electrolyte membrane disposed in the cavity; A non-conductive material in contact with the gel electrolyte membrane and disposed in the cavity; A first electrode disposed on the first plate and not in contact with the gel electrolyte membrane; And a second electrode disposed on the first plate and in contact with the gel electrolyte membrane.
예를 들어, 상기 비전도성 물질은 비전도성 액체를 포함할 수 있다.For example, the non-conductive material may comprise a non-conductive liquid.
예를 들어, 상기 비전도성 물질은 공기를 포함할 수 있다.For example, the non-conductive material may include air.
예를 들어, 상기 겔형 전해질막은 상온 이온성 액체 또는 고분자를 포함할 수 있다.For example, the gel electrolyte membrane may include room temperature ionic liquid or polymer.
예를 들어, 상기 상온 이온성 액체는 이미다졸륨(Imidazolium) 기반 이온성 액체일 수 있다. 상기 상온 이온성 액체는 다음 화학식들 중에서 선택되는 적어도 하나의 구조를 가지는 이온성 액체를 포함할 수 있다.For example, the room temperature ionic liquid may be an imidazolium-based ionic liquid. The room temperature ionic liquid may include an ionic liquid having at least one structure selected from the following formulas.
Figure PCTKR2020006984-appb-I000002
Figure PCTKR2020006984-appb-I000002
(1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide; [EMIM][TFSI])(1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide; [EMIM][TFSI])
Figure PCTKR2020006984-appb-I000003
Figure PCTKR2020006984-appb-I000003
(1-Butyl-3-methylimidazolium hexafluorophosphate; [BMIM][PF6])(1-Butyl-3-methylimidazolium hexafluorophosphate; [BMIM][PF 6 ])
Figure PCTKR2020006984-appb-I000004
Figure PCTKR2020006984-appb-I000004
(1-ethyl-3-methylimidazolium n-octylsulfate; [EMIM][OctOSO3])(1-ethyl-3-methylimidazolium n-octylsulfate; [EMIM][OctOSO 3 ])
Figure PCTKR2020006984-appb-I000005
Figure PCTKR2020006984-appb-I000005
(1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide; [BMIM][TFSI])(1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide; [BMIM][TFSI])
예를 들어, 상기 상온 이온성 액체는 피롤리디늄(Pyrrolidinium) 기반 이온성 액체일 수 있다.For example, the room temperature ionic liquid may be a pyrrolidinium-based ionic liquid.
예를 들어, 상기 고분자는 PS-PEO-PS (polystyrene-block-poly(ethylene oxide)-block-polystyrene), 나피온(Nafion), 술포네이티드 폴리스티렌(sulfonated Polystyrene), Poly(N-isopropylacrylamide)(PNIPAM), 또는 이들의 조합으로 이루어질 수 있다.For example, the polymer is PS-PEO-PS (polystyrene-block-poly(ethylene oxide)-block-polystyrene), Nafion, sulfonated polystyrene, and Poly(N-isopropylacrylamide) ( PNIPAM), or a combination thereof.
예를 들어, 상기 겔형 전해질막은 물기반 액체 전해질 및 수용성 고분자를 포함할 수 있다.For example, the gel electrolyte membrane may include a water-based liquid electrolyte and a water-soluble polymer.
예를 들어, 상기 수용성 고분자는 이온 전도성 고분자로 이루어질 수 있다.For example, the water-soluble polymer may be made of an ion conductive polymer.
예를 들어, 상기 이온 전도성 고분자는 술폰산기, 아민기, 또는 인산기의 친수성 양이온 교환 기능기가 결합된 구조, 또는 아민계 친수성 음이온 교환 기능기가 결합된 구조를 가지는 불소계 또는 비불소계 고분자로 이루어질 수 있다.For example, the ion conductive polymer may be made of a fluorine-based or non-fluorine-based polymer having a structure in which a sulfonic acid group, an amine group, or a hydrophilic cation exchange functional group of a phosphoric acid group is bonded, or a structure in which an amine-based hydrophilic anion exchange functional group is bonded.
또 다른 실시 예에 의한 렌즈 어셈블리는, 제1 렌즈; 및 상기 제1 렌즈와 광축으로 정렬된 적어도 하나의 제2 렌즈를 포함하고, 상기 제1 렌즈는 전술한 렌즈를 포함할 수 있다.A lens assembly according to another embodiment includes: a first lens; And at least one second lens aligned with the first lens on an optical axis, and the first lens may include the aforementioned lens.
실시 예에 따른 렌즈 및 이 렌즈를 포함하는 렌즈 어셈블리는 렌즈 자체의 열 또는 주변의 온도 등으로 인해 온도가 변하거나 고온일 때에도 제2 플레이트의 변형이 최소화되고 이에 따라 광학 성능이 개선될 수 있다.In the lens and the lens assembly including the lens according to the embodiment, deformation of the second plate is minimized even when the temperature changes due to heat of the lens itself or the temperature of the surroundings, or even when the temperature is high, and thus optical performance may be improved.
또한, 실시 예에 따른 렌즈, 이 렌즈를 포함하는 렌즈 어셈블리는 전도성 물질로서 겔형 전해질 막을 사용하므로 렌즈가 중력으로부터 받는 영향이 최소화될 수 있고, 오일과 같은 비전도성 액체를 사용하지 않을 수도 있으므로, 렌즈의 제조 방법이 간단해지고 제조 원가가 줄어들 수 있다.In addition, since the lens according to the embodiment, and the lens assembly including the lens, uses a gel electrolyte membrane as a conductive material, the influence of the lens from gravity can be minimized, and a non-conductive liquid such as oil may not be used. The manufacturing method of the can be simplified and the manufacturing cost can be reduced.
또한, 실시 예에 따른 렌즈 및 이 렌즈를 포함하는 렌즈 어셈블리에서 전도성 물질로서 사용되는 겔형 고분자막은 투명도가 95%이상으로 매우 높으며 표면 거칠기도 조절이 가능하여 매우 평탄하게 만들 수 있는 잇점을 갖는다.In addition, the gel-type polymer film used as a conductive material in the lens and the lens assembly including the lens according to the embodiment has the advantage of being very flat because the transparency is very high, 95% or more, and the surface roughness is adjustable.
또한, 실시 예에 따른 렌즈 및 이 렌즈를 포함하는 렌즈 어셈블리는 -80℃ 내지 200℃의 넓은 온도 구간에서 사용될 수 있다.In addition, the lens according to the embodiment and a lens assembly including the lens may be used in a wide temperature range of -80°C to 200°C.
또한, 실시 예에 따른 렌즈 및 이 렌즈를 포함하는 렌즈 어셈블리는 전기적 구동 범위가 매우 높은 잇점을 갖는다.In addition, the lens and the lens assembly including the lens according to the embodiment have an advantage of having a very high electrical driving range.
또한, 본 실시 예에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며 언급하지 않은 또 다른 효과는 아래의 기재로부터 본 발명이 속하는 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.In addition, the effects obtained in the present embodiment are not limited to the above-mentioned effects, and another effect not mentioned can be clearly understood by those of ordinary skill in the field to which the present invention belongs from the following description. There will be.
도 1은 일 실시 예에 의한 렌즈의 단면도를 나타낸다.1 is a cross-sectional view of a lens according to an embodiment.
도 2는 전술한 제1 및 제2 실시 예에 의한 렌즈의 구동을 설명하기 위한 그래프이다.2 is a graph for explaining driving of a lens according to the first and second embodiments described above.
도 3 (a) 및 (b)는 전술한 제4 실시 예에 의한 렌즈의 구동을 설명하기 위한 도면이다.3A and 3B are diagrams for explaining driving of a lens according to the fourth exemplary embodiment described above.
도 4는 도 1에 도시된 렌즈의 평면도를 나타낸다.4 is a plan view of the lens shown in FIG. 1.
도 5a 및 도 5b는 제2 플레이트의 실시 예에 의한 단면도를 나타낸다.5A and 5B are cross-sectional views illustrating a second plate according to an embodiment.
도 6a 및 도 6b는 다른 실시 예에 의한 제2 플레이트의 단면도를 나타낸다.6A and 6B are cross-sectional views of a second plate according to another embodiment.
도 7은 광축과 나란한 방향으로 일 실시 예에 의한 제2 플레이트에서 신축부가 늘어나기 이전 및 이후의 모습을 나타내는 단면도이다.7 is a cross-sectional view illustrating a state before and after an extension part is stretched in a second plate according to an exemplary embodiment in a direction parallel to an optical axis.
도 8은 광축과 나란한 방향으로 다른 실시 예에 의한 제2 플레이트에서 신축부가 늘어나기 이전 및 이후의 모습을 나타내는 단면도이다.8 is a cross-sectional view showing a state before and after an extension part is stretched in a second plate according to another embodiment in a direction parallel to an optical axis.
도 9는 광축과 나란한 방향으로 또 다른 실시 예에 의한 제2 플레이트에서 신축부가 늘어나기 이전 및 이후의 모습을 나타내는 단면도이다.9 is a cross-sectional view showing a state before and after an extension part is extended in a second plate according to another embodiment in a direction parallel to an optical axis.
도 10a 및 도 10b는 실시 예에 의한 렌즈의 저면도를 나타낸다.10A and 10B are bottom views of a lens according to an embodiment.
도 11은 비교 례에 의한 렌즈의 저면도를 나타낸다.11 shows a bottom view of a lens according to a comparative example.
도 12a 내지 도 12c는 도 1에 도시된 렌즈에서 접착제를 형성하는 제조 공정을 나타내는 사시도이다.12A to 12C are perspective views illustrating a manufacturing process of forming an adhesive from the lens shown in FIG. 1.
도 13은 실시 예에 의한 카메라 모듈의 블럭도를 나타낸다.13 is a block diagram of a camera module according to an embodiment.
도 14a는 비교 례에 의한 카메라 모듈의 단면도를 나타내고, 도 14b는 실시 예에 의한 렌즈의 단면도를 나타낸다.14A is a cross-sectional view of a camera module according to a comparative example, and FIG. 14B is a cross-sectional view of a lens according to the embodiment.
도 15는 실시 예에 의한 광학 기기의 개략적인 블럭도를 나타낸다.15 is a schematic block diagram of an optical device according to an embodiment.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 예를 상세히 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
다만, 본 발명의 기술 사상은 설명되는 일부 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있고, 본 발명의 기술 사상 범위 내에서라면, 실시 예들 간 그 구성 요소들 중 하나 이상을 선택적으로 결합, 치환하여 사용할 수 있다.However, the technical idea of the present invention is not limited to some embodiments to be described, but may be implemented in various different forms, and within the scope of the technical idea of the present invention, one or more of the constituent elements may be selectively selected between the embodiments. It can be combined with and substituted for use.
또한, 본 발명의 실시 예에서 사용되는 용어(기술 및 과학적 용어를 포함)는, 명백하게 특별히 정의되어 기술되지 않는 한, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 일반적으로 이해될 수 있는 의미로 해석될 수 있으며, 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥상의 의미를 고려하여 그 의미를 해석할 수 있을 것이다.In addition, terms (including technical and scientific terms) used in the embodiments of the present invention are generally understood by those of ordinary skill in the art, unless explicitly defined and described. It can be interpreted as a meaning, and terms generally used, such as terms defined in a dictionary, may be interpreted in consideration of the meaning in the context of the related technology.
또한, 본 발명의 실시 예에서 사용된 용어는 실시 예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함할 수 있고, “A 및(와) B, C중 적어도 하나(또는 한 개 이상)”으로 기재되는 경우 A, B, C로 조합할 수 있는 모든 조합 중 하나이상을 포함할 수 있다.In addition, terms used in the embodiments of the present invention are for describing the embodiments and are not intended to limit the present invention. In the present specification, the singular form may include the plural form unless specifically stated in the phrase, and when described as “at least one (or more than one) of A and (and) B and C”, it is combined with A, B, and C. It may contain one or more of all possible combinations.
또한, 본 발명의 실시 예의 구성 요소를 설명하는 데 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등으로 한정되지 않는다.In addition, terms such as first, second, A, B, (a), and (b) may be used in describing the constituent elements of the embodiment of the present invention. These terms are only for distinguishing the component from other components, and are not limited to the nature, order, or order of the component by the term.
그리고, 어떤 구성 요소가 다른 구성요소에 ‘연결’, ‘결합’ 또는 ‘접속’된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결, 결합 또는 접속되는 경우뿐만 아니라, 그 구성 요소와 그 다른 구성요소 사이에 있는 또 다른 구성 요소로 인해 ‘연결’, ‘결합’ 또는 ‘접속’되는 경우도 포함할 수 있다.And, when a component is described as being'connected','coupled' or'connected' to another component, the component is not only directly connected, coupled or connected to the other component, but also the component and It may also include a case of being'connected','coupled' or'connected' due to another component between the other components.
또한, 각 구성 요소의 “상(위) 또는 하(아래)”에 형성 또는 배치되는 것으로 기재되는 경우, 상(위) 또는 하(아래)는 두 개의 구성 요소들이 서로 직접 접촉되는 경우뿐만 아니라 하나 이상의 또 다른 구성 요소가 두 개의 구성 요소들 사이에 형성 또는 배치되는 경우도 포함한다. 또한 “상(위) 또는 하(아래)”로 표현되는 경우 하나의 구성 요소를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함할 수 있다.In addition, when it is described as being formed or disposed on the “top (top) or bottom (bottom)” of each component, the top (top) or bottom (bottom) is one as well as when the two components are in direct contact with each other. It also includes a case in which the above other component is formed or disposed between the two components. In addition, when expressed as "upper (upper) or lower (lower)", the meaning of not only an upward direction but also a downward direction based on one component may be included.
이하, 실시 예에 의한 렌즈, 이 렌즈를 포함하는 렌즈 어셈블리 및 이 어셈블리를 포함하는 카메라 모듈을 데카르트 좌표계를 이용하여 설명하지만, 실시 예는 이에 국한되지 않는다. 즉, 데카르트 좌표계에 의하면, x축, y축 및 z축은 서로 직교하지만, 실시 예는 이에 국한되지 않는다. 즉, x축, y축, z축은 직교하는 대신에 서로 교차할 수 있다.Hereinafter, a lens according to an exemplary embodiment, a lens assembly including the lens, and a camera module including the assembly will be described using a Cartesian coordinate system, but the exemplary embodiment is not limited thereto. That is, according to the Cartesian coordinate system, the x-axis, y-axis, and z-axis are orthogonal to each other, but embodiments are not limited thereto. That is, the x-axis, y-axis, and z-axis may cross each other instead of orthogonal.
도 1은 일 실시 예에 의한 렌즈(100)의 단면도를 나타낸다.1 shows a cross-sectional view of a lens 100 according to an embodiment.
도 1을 참조하면, 일 실시 예에 의한 렌즈(100)는 전도성 물질(110), 비전도성 액체(또는, 공기)(120), 복수의 플레이트, 제1 및 제2 전극(E1, E2) 및 절연층(146)을 포함할 수 있다.Referring to FIG. 1, a lens 100 according to an embodiment includes a conductive material 110, a non-conductive liquid (or air) 120, a plurality of plates, first and second electrodes E1 and E2, and It may include an insulating layer 146.
전도성 물질(110)은 캐비티(Cavity)(CA)의 적어도 일부에 충진, 수용 또는 배치될 수 있다.The conductive material 110 may be filled, accommodated, or disposed in at least a portion of the cavity CA.
실시 예에 의하면, 전도성 물질(110)은 다양한 형태를 가질 수 있다.According to an embodiment, the conductive material 110 may have various shapes.
이하, 다양한 실시 예에 의한 전도성 물질(110)을 다음과 같이 살펴본다.Hereinafter, a conductive material 110 according to various embodiments will be described as follows.
제1 실시 예에 의하면, 전도성 물질(110)은 전도성 액체로서 상온 이온성 액체(RTIL:Room Temperature Ionic Liquid)일 수 있다. RTIL은 상온에서 액체로 존재하는 이온성 액체를 의미한다. RTIL은 이온만으로 구성된, 예를 들어 질소를 포함하는 거대 양이온보다 작은 음이온으로 이루어지는 액체일 수 있다. 쿨롱 힘(Coulomb force)에 의해 유지되는 RTIL은 매우 낮은 휘발성을 가지므로 상온에서 액체이면서도 낮은 팽창율을 보인다. 또한, RTIL은 비휘발성, 무독성, 비가연성이며 우수한 열적 안정성과 이온 전도도를 지니며 넓은 온도 범위에서 액체로 존재하는 특성을 갖는다. 특히, RTIL은 이용목적에 따라 양/음이온을 변화시켜 특성을 최적화시킬 수 있다. 또한, RTIL은 넓은 전기적 구동 범위(electrochemical window)와 높은 이온전도도, 넓은 액체온도범위, 비휘발성, 비폭발성을 갖추기 때문에 전해질로서 사용될 수 있다.According to the first embodiment, the conductive material 110 may be a room temperature ionic liquid (RTIL) as a conductive liquid. RTIL refers to an ionic liquid that exists as a liquid at room temperature. The RTIL may be a liquid composed of only ions, for example an anion smaller than a macrocation including nitrogen. RTIL maintained by the Coulomb force has very low volatility, so it is liquid at room temperature and has a low expansion rate. In addition, RTIL is non-volatile, non-toxic, non-flammable, has excellent thermal stability and ionic conductivity, and exists as a liquid over a wide temperature range. In particular, RTIL can optimize its properties by changing positive/anion ions according to the purpose of use. In addition, RTIL can be used as an electrolyte because of its wide electrochemical window, high ionic conductivity, wide liquid temperature range, non-volatile and non-explosive properties.
예를 들어, RTIL은 다음 화학식 1 내지 5 중에서 선택되거나 적어도 하나를 포함할 수 있다.For example, RTIL may be selected from the following Formulas 1 to 5, or may include at least one.
Figure PCTKR2020006984-appb-C000001
Figure PCTKR2020006984-appb-C000001
Figure PCTKR2020006984-appb-C000002
Figure PCTKR2020006984-appb-C000002
Figure PCTKR2020006984-appb-C000003
Figure PCTKR2020006984-appb-C000003
Figure PCTKR2020006984-appb-C000004
Figure PCTKR2020006984-appb-C000004
Figure PCTKR2020006984-appb-C000005
Figure PCTKR2020006984-appb-C000005
여기서, mmim은 디메틸이미다졸륨(dimethylimidazolium)이고, emim은 에틸메틸이미다졸륨(ethylmethylimidazolium)이고, bmim은 부틸메틸이미다졸륨(butylmethylimidazolium)이고, hmim은 헥실메틸이미다졸륨(hexylmethylimidazolium)이고, omim은 옥틸메틸이미다졸륨(octylmethylimidazolium)이다.Here, mmim is dimethylimidazolium, emim is ethylmethylimidazolium, bmim is butylmethylimidazolium, hmim is hexylmethylimidazolium, omim Is octylmethylimidazolium.
제2 실시 예에 의하면, 전도성 물질(110)은 RTIL뿐만 아니라 공용매(cosolvent)를 더 포함할 수 있다. RTIL에 공용매를 섞을 경우, 전도성 물질(110)의 점도 특성, 사용 액체 온도범위, 전기적 특성, 이온 전도도 특성이 개선될 수 있다. 즉, 공용매를 이용함으로써, 전도성 물질(110)의 점도는 낮아지고 전기적 특성은 증가되면서 사용 온도 범위도 증가되고, 전기 구동 범위도 확장시킬 수 있다.According to the second embodiment, the conductive material 110 may further include a cosolvent as well as RTIL. When a co-solvent is mixed with RTIL, the viscosity characteristics, temperature range of the liquid used, electrical characteristics, and ionic conductivity characteristics of the conductive material 110 may be improved. That is, by using the co-solvent, the viscosity of the conductive material 110 is lowered and the electrical properties are increased, the use temperature range is increased, and the electric drive range can be extended.
예를 들어, 공용매는 디메틸 술폭사이드 (Dimethyl sulfoxide)로 이루어질 수 있으나, 이에 국한되지 않는다.For example, the co-solvent may consist of dimethyl sulfoxide, but is not limited thereto.
제3 및 제4 실시 예에 의하면, 전도성 물질(110)은 겔형 전해질막을 포함할 수 있다.According to the third and fourth embodiments, the conductive material 110 may include a gel electrolyte membrane.
제3 실시 예에 의하면, 겔형 전해질막은 상온 이온성 액체 및/또는 고분자를 포함할 수 있다. 상온 이온성 액체와 물리적 혹은 화학적으로 결합할 수 있는 다양한 고분자를 이용하여 상온 이온성 액체를 겔형 전해질막으로 제조할 수 있다.According to the third embodiment, the gel electrolyte membrane may include room temperature ionic liquid and/or polymer. A room temperature ionic liquid can be prepared as a gel electrolyte membrane using various polymers capable of physically or chemically bonding with the room temperature ionic liquid.
상온 이온성 액체는 이미다졸륨(Imidazolium) 기반 이온성 액체일 수도 있고, 피롤리디늄(Pyrrolidinium) 기반 이온성 액체일 수도 있다.The room temperature ionic liquid may be an ionic liquid based on imidazolium or a ionic liquid based on pyrrolidinium.
만일, 상온 이온성 액체가 이미다졸륨 기반 이온성 액체일 경우, 상온 이온성 액체는 다음 화학식 6 내지 9 중에서 선택되는 적어도 하나의 구조를 갖는 이온성 액체를 포함할 수 있다.If the room temperature ionic liquid is an imidazolium-based ionic liquid, the room temperature ionic liquid may include an ionic liquid having at least one structure selected from Formulas 6 to 9 below.
Figure PCTKR2020006984-appb-C000006
Figure PCTKR2020006984-appb-C000006
(1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide; [EMIM][TFSI])(1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide; [EMIM][TFSI])
Figure PCTKR2020006984-appb-C000007
Figure PCTKR2020006984-appb-C000007
(1-Butyl-3-methylimidazolium hexafluorophosphate; [BMIM][PF6])(1-Butyl-3-methylimidazolium hexafluorophosphate; [BMIM][PF 6 ])
Figure PCTKR2020006984-appb-C000008
Figure PCTKR2020006984-appb-C000008
(1-ethyl-3-methylimidazolium n-octylsulfate; [EMIM][OctOSO3])(1-ethyl-3-methylimidazolium n-octylsulfate; [EMIM][OctOSO 3 ])
Figure PCTKR2020006984-appb-C000009
Figure PCTKR2020006984-appb-C000009
(1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide; [BMIM][TFSI])(1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide; [BMIM][TFSI])
또한, 제3 실시 예에서, 겔형 전해질막에 포함되는 고분자는 PS-PEO-PS (polystyrene-block-poly(ethylene oxide)-block-polystyrene), 나피온(Nafion), 술포네이티드 폴리스티렌(sulfonated Polystyrene), Poly(N-isopropylacrylamide)(PNIPAM), 또는 이들의 조합으로 이루어질 수 있다.In addition, in the third embodiment, the polymer included in the gel electrolyte membrane is PS-PEO-PS (polystyrene-block-poly(ethylene oxide)-block-polystyrene), Nafion, and sulfonated polystyrene. ), Poly(N-isopropylacrylamide) (PNIPAM), or a combination thereof.
제4 실시 예에 의하면, 겔형 전해질막은 물기반 액체 전해질 및 수용성 고분자를 포함할 수 있다. 물기반의 액체 전해질을 제조한 후, 물기반의 액체 전해질과 물리적 혹은 화학적으로 결합할 수 있는 다양한 수용성 고분자를 이용하여 물기반 액체 전해질을 겔형 물기반 전해질막으로 제조할 수 있다.According to the fourth embodiment, the gel electrolyte membrane may include a water-based liquid electrolyte and a water-soluble polymer. After preparing a water-based liquid electrolyte, a water-based liquid electrolyte can be prepared as a gel-type water-based electrolyte membrane using various water-soluble polymers capable of physically or chemically bonding with the water-based liquid electrolyte.
수용성 고분자는 이온 전도성 고분자로 이루어질 수 있다. 이온 전도성 고분자는 술폰산기, 아민기, 또는 인산기의 친수성 양이온 교환 기능기가 결합된 구조, 또는 아민계 친수성 음이온 교환 기능기가 결합된 구조를 가지는 불소계 또는 비불소계 고분자로 이루어질 수 있으나, 실시 예는 이에 국한되지 않는다.The water-soluble polymer may be made of an ion conductive polymer. The ion conductive polymer may be made of a fluorine-based or non-fluorine-based polymer having a structure in which a sulfonic acid group, an amine group, or a hydrophilic cation exchange functional group of a phosphoric acid group is bonded, or an amine-based hydrophilic anion exchange functional group is bonded, but embodiments are limited thereto. It doesn't work.
불소계 고분자 전해질은 폴리테트라플루오르에틸렌 (Polytetrafluoroethrylene, PTFE), 폴리비닐플루라이드 (Polyvinylfluoride, PVF), 폴리비닐리딘플루라이드 (Polyvinylidine fluoride, PVDF), 폴리에틸렌테트라플루오르에틸렌 (Polyethylenetetrafluoroethylene, ETFE)의 불소계 그룹 중 적어도 어느 하나인 불소계 고분자와 술폰산기, 아민기, 인산기의 친수성 양이온 교환 기능기 그룹 및 아민계 친수성 음이온 교환 기능기를 지닌 구조 중 적어도 어느 하나인 친수성 이온교환기능기가 결합된 구조를 가질 수 있다. 예를 들면, 상기 불소계 고분자 전해질은 나피온 (Nafion), 아퀴비온 (Aquivion), 플레미온 (Flemion), 고어 (Gore), 에이씨플렉스 (Aciplex), R-1030, Aciplex A-192 또는 Morgane ADP 일 수 있다.The fluorine-based polymer electrolyte is at least among the fluorine-based groups of polytetrafluoroethrylene (PTFE), polyvinylfluoride (PVF), polyvinylidine fluoride (PVDF), and polyethylenetetrafluoroethylene (ETFE). Any one of a fluorine-based polymer with a sulfonic acid group, an amine group, a hydrophilic cation exchange functional group group of a phosphoric acid group, and at least one of a structure having an amine-based hydrophilic anion exchange functional group may have a structure in which a hydrophilic ion exchange functional group is bonded. For example, the fluorine-based polymer electrolyte is Nafion, Aquivion, Flemion, Gore, Aciplex, R-1030, Aciplex A-192 or Morgane ADP. I can.
비불소계 고분자 전해질은 폴리 아릴렌계, 폴리에테른케톤 및 폴리에테르에테르케톤 중 어느 하나의 비불소계 고분자, 또는 비불소계 고분자에 술폰산기, 아민기, 인산기의 친수성 양이온 교환 기능기 그룹 및 아민계 친수성 음이온 교환 기능기 그룹 중 적어도 어느 하나인 친수성 이온 교환기능기가 결합된 구조를 가질 수 있다. 예를 들면, 비불소계 고분자 전해질은 술폰화된 폴리에테르에테르케톤(sulfonated polyetheretherketone (sPEEK)), 술폰화된 폴리에테르케톤(sulfonated polyetherketone (sPEK)), 술폰화된 폴리에테르술폰(sulfonated polyethersulfone (sPES)), 술폰화된 폴리아릴렌에테르술폰(sulfonated polyarylethersulfone (sPAES))의 양이온 전도성 고분자막 또는 음이온 전도성 고분자막 일 수 있다. The non-fluorine-based polymer electrolyte is a non-fluorine-based polymer of any one of polyarylene, polyetherketone and polyetheretherketone, or a hydrophilic cation exchange functional group of sulfonic acid group, amine group, and phosphoric acid group and amine-based hydrophilic anion. At least one of the exchange functional group groups may have a structure in which a hydrophilic ion exchange functional group is bonded. For example, the non-fluorine-based polymer electrolyte is sulfonated polyetheretherketone (sPEEK), sulfonated polyetherketone (sPEK), sulfonated polyethersulfone (sPES). ), sulfonated polyarylethersulfone (sPAES) may be a cationic conductive polymer film or an anionic conductive polymer film.
한편, 제1 내지 제4 실시 예 각각에서, 렌즈(100)는 비전도성을 갖는 물질을 더 포함할 수 있다. 여기서, 비전도성 물질은 비전도성 액체(이하, ‘비전도성 액체’라 한다)(120)를 포함할 수 있다. 비전도성 액체(120)는 캐비티(CA) 내에서 전도성 물질(110)에 접하여 배치될 수 있다. 도시된 바와 같이, 비전도성 액체(120) 위에 전도성 물질(110)이 배치될 수 있다.Meanwhile, in each of the first to fourth embodiments, the lens 100 may further include a non-conductive material. Here, the non-conductive material may include a non-conductive liquid (hereinafter, referred to as “non-conductive liquid”) 120. The non-conductive liquid 120 may be disposed in contact with the conductive material 110 in the cavity CA. As shown, a conductive material 110 may be disposed on the non-conductive liquid 120.
즉, 제1 및 제2 실시 예에 의하면 비전도성 액체(120)는 상온 이온성 액체(110)에 접하여 배치되고, 제3 및 제4 실시 예에 의하면 비전도성 물질(120)은 겔형 전해질막(110)에 접하여 배치될 수 있다,That is, according to the first and second embodiments, the non-conductive liquid 120 is disposed in contact with the room temperature ionic liquid 110, and according to the third and fourth embodiments, the non-conductive material 120 is a gel electrolyte membrane ( 110) can be placed in contact,
전도성 물질(110)과 비전도성 물질(120)(예를 들어, 비전도성 액체)은 서로 섞이지 않으며, 전도성 물질(110) 및 비전도성 액체 사이의 접하는 부분에 계면(BO)이 형성될 수 있다.The conductive material 110 and the non-conductive material 120 (eg, a non-conductive liquid) are not mixed with each other, and an interface BO may be formed in a contact portion between the conductive material 110 and the non-conductive liquid.
또는, 제3 및 제4 실시 예 각각에서, 전도성 물질(110)의 아래에 배치된 비전도성 물질은 비전도성 액체 대신에 공기(120)를 포함할 수도 있다. 전도성 물질(110)과 공기(120)는 서로 섞이지 않으며, 전도성 물질(110) 및 공기(120) 사이의 접하는 부분에 계면(BO)이 형성될 수 있다. 이와 같이, 제3 및 제4 실시 예에 의하면, 오일과 같은 비전도성 액체를 사용하지 않고 겔형 전해질막만을 사용할 수도 있다.Alternatively, in each of the third and fourth embodiments, the non-conductive material disposed under the conductive material 110 may include air 120 instead of the non-conductive liquid. The conductive material 110 and the air 120 are not mixed with each other, and an interface BO may be formed in a contact portion between the conductive material 110 and the air 120. As described above, according to the third and fourth embodiments, only a gel electrolyte membrane may be used without using a non-conductive liquid such as oil.
만일, 도 1에서 전도성 물질(110)이 극성을 갖는 유체(polar fluid) 예를 들어, 염(salt)을 포함하는 물(H2O)일 경우, 렌즈(100)가 동작할 때 발생하는 열 또는 렌즈(100) 주변의 온도에 의해 전도성 물질(110) 및 비전도성 액체(또는, 공기)(120)는 광축 방향(예를 들어, z축 방향)으로 팽창할 수 있다. 이러한 열 팽창에 의한 응력이 제2 플레이트(P2)로 집중되어, 제2 플레이트(P2)에 많은 굴곡이 야기되어 광학적 성능이 악화될 수 있다.If the conductive material 110 in FIG. 1 is a polar fluid, for example, water (H2O) containing salt, heat generated when the lens 100 is operated or the lens (100) The conductive material 110 and the non-conductive liquid (or air) 120 may expand in the optical axis direction (eg, z-axis direction) by the ambient temperature. The stress caused by the thermal expansion is concentrated to the second plate P2, causing a lot of bending in the second plate P2, thereby deteriorating optical performance.
그러나, 전술한 실시 예에 의한 렌즈(100)에서와 같이, 전도성 물질(110)이 상온 이온성 물질, 공용매를 포함하는 상온 이온성 물질 또는 겔형 전해질막을 포함할 경우, 온도에 따른 열팽창이 극성을 갖는 유체보다 작기 때문에, 제2 플레이트(P2)에 가해지는 응력이 감소하여, 광학적 성능이 악화되지 않고 양호하게 유지될 수 있다.However, as in the lens 100 according to the above-described embodiment, when the conductive material 110 includes a room temperature ionic material, a room temperature ionic material including a co-solvent, or a gel electrolyte membrane, thermal expansion according to temperature is polarity. Since it is smaller than the fluid having A, the stress applied to the second plate P2 is reduced, so that the optical performance does not deteriorate and can be maintained satisfactorily.
한편, 전술한 캐비티(CA)는 광축(LX) 상에 위치하며, 적어도 하나의 플레이트에 의해 정의될 수 있다.Meanwhile, the above-described cavity CA is located on the optical axis LX, and may be defined by at least one plate.
실시 예에 의하면, 복수의 플레이트는 제1 내지 제3 플레이트(P1 내지 P3)를 포함할 수 있다. 제1 플레이트(P1)는 캐비티(CA)를 포함할 수 있다. 예를 들어, 제1 플레이트(P1)는 캐비티(CA)의 측부를 정의하는 내측면(i)을 포함할 수 있다. 이때, 제1 플레이트(P1)의 내측면(i)은 도시된 바와 같이 경사질 수 있으나, 실시 예는 이에 국한되지 않는다.According to an embodiment, the plurality of plates may include first to third plates P1 to P3. The first plate P1 may include a cavity CA. For example, the first plate P1 may include an inner side surface i defining a side portion of the cavity CA. In this case, the inner surface i of the first plate P1 may be inclined as shown, but the embodiment is not limited thereto.
캐비티(CA)는 제1 플레이트(P1)의 위 및 아래에 각각 형성된 제1 및 제2 개구(O1, O2)를 포함할 수 있다. 즉, 캐비티(CA)는 제1 플레이트(P1)의 내측면(i), 제1 개구(O1) 및 제2 개구(O2)로 둘러싸인 영역으로 정의될 수 있다. 제1 및 제2 개구(O1, O2) 중에서 보다 넓은 개구의 직경은 렌즈(100)에서 요구하는 화각(FOV) 또는 렌즈(100)를 포함하는 광학 기기에서 수행해야 할 역할에 따라 달라질 수 있다. 실시 예에 의하면, 제1 개구(O1)의 크기(또는, 면적 또는 폭)는 제2 개구(O2)의 크기(또는, 면적 또는 폭)보다 더 클 수 있다. 여기서, 제1 및 제2 개구(O1, O2) 각각의 크기는 수평 방향(예를 들어, x축과 y축 방향)의 단면적일 수 있다. 예를 들어, 제1 및 제2 개구(O1, O2) 각각의 크기란, 개구의 단면이 원형이면 반지름을 의미하고, 개구의 단면이 정사각형이면 대각선의 길이를 의미할 수 있다.The cavity CA may include first and second openings O1 and O2 respectively formed above and below the first plate P1. That is, the cavity CA may be defined as a region surrounded by the inner surface i of the first plate P1, the first opening O1 and the second opening O2. The diameter of the wider one of the first and second openings O1 and O2 may vary depending on the FOV required by the lens 100 or the role to be performed in the optical device including the lens 100. According to an embodiment, the size (or area or width) of the first opening O1 may be larger than the size (or area or width) of the second opening O2. Here, the size of each of the first and second openings O1 and O2 may be a cross-sectional area in a horizontal direction (eg, in the x-axis and y-axis directions). For example, the size of each of the first and second openings O1 and O2 may mean a radius when the cross section of the opening is circular, and may mean a diagonal length when the cross section of the opening is square.
캐비티(CA)는 광이 투과하는 부위이다. 따라서, 캐비티(CA)를 이루는 제1 플레이트(P1)는 투명한 재료로 이루어질 수도 있고, 광의 투과가 용이하지 않도록 불순물을 포함할 수도 있다.The cavity CA is a part through which light passes. Accordingly, the first plate P1 constituting the cavity CA may be made of a transparent material or may contain impurities so that light transmission is not easy.
광은 캐비티(CA)에서 제2 개구(O2)보다 넓은 제1 개구(O1)를 통해 입사되어 제2 개구(O2)를 통해 출사될 수도 있고, 제1 개구(O1)보다 좁은 제2 개구(O2)를 통해 입사되어 제1 개구(O1)를 통해 출사될 수 있다.The light may be incident in the cavity CA through a first opening O1 that is wider than the second opening O2 and emitted through the second opening O2, or a second opening that is narrower than the first opening O1 ( It may be incident through O2) and emitted through the first opening O1.
또한, 제2 플레이트(P2)는 제1 플레이트(P1)의 위 또는 아래 중 한 곳에 배치되고, 제3 플레이트(P3)는 제1 플레이트(P1)의 위 또는 아래 중 다른 곳에 배치될 수 있다. 예를 들어, 도시된 바와 같이, 제2 플레이트(P2)는 제1 플레이트(P1)의 위에 배치되고, 제3 플레이트(P3)는 제1 플레이트(P1)의 아래에 배치될 수 있다. 이 경우, 제2 플레이트(P2)는 캐비티(CA) 위에 배치되고, 제3 플레이트(P3)는 캐비티(CA) 아래에 배치될 수 있다.In addition, the second plate P2 may be disposed above or below the first plate P1, and the third plate P3 may be disposed above or below the first plate P1. For example, as shown, the second plate P2 may be disposed above the first plate P1, and the third plate P3 may be disposed below the first plate P1. In this case, the second plate P2 may be disposed above the cavity CA, and the third plate P3 may be disposed below the cavity CA.
제2 플레이트(P2)와 제3 플레이트(P3)는 제1 플레이트(P1)를 사이에 두고 서로 대향하여 배치될 수 있다. 또한, 제2 플레이트(P2) 또는 제3 플레이트(P3) 중 적어도 하나는 생략될 수도 있다.The second plate P2 and the third plate P3 may be disposed to face each other with the first plate P1 interposed therebetween. Also, at least one of the second plate P2 and the third plate P3 may be omitted.
제2 또는 제3 플레이트(P2, P3) 중 적어도 하나는 사각형 평면 형상을 가질 수 있으며 일부 영역이 도피되어 후술할 전극의 일부를 노출 시킬 수 있다. 제2 및 제3 플레이트(P2, P3) 각각은 광이 통과하는 영역으로서, 투광성 재료로 이루어질 수 있다. 예를 들면, 제2 및 제3 플레이트(P2, P3) 각각은 유리(glass)로 이루어질 수 있으며, 공정의 편의상 동일한 재료로 형성될 수 있다. 또한, 제2 및 제3 플레이트(P2, P3) 각각의 가장 자리는 사각형 형상일 수 있으나, 반드시 이에 한정하지는 않는다.At least one of the second or third plates P2 and P3 may have a rectangular planar shape, and a partial region may be escaped to expose a part of an electrode to be described later. Each of the second and third plates P2 and P3 is a region through which light passes, and may be made of a light-transmitting material. For example, each of the second and third plates P2 and P3 may be made of glass, and may be made of the same material for convenience of the process. Further, the edges of each of the second and third plates P2 and P3 may have a rectangular shape, but are not limited thereto.
제2 플레이트(P2)는 입사되는 광이 제1 플레이트(P1)의 캐비티(CA) 내부로 진행하도록 허용하는 구성을 가질 수 있으나 반대 방향으로 광 출사를 허용하는 구성을 가질 수도 있다. 제3 플레이트(P3)는 제1 플레이트(P1)의 캐비티(CA)를 통과한 광이 출사되도록 허용하는 구성을 가질 수 있으나 반대 방향으로도 광 출사를 허용하는 구성을 가질 수도 있다. 제2 플레이트(P2)는 전도성 물질(110)과 직접 접촉할 수 있다.The second plate P2 may have a configuration that allows incident light to proceed into the cavity CA of the first plate P1, but may have a configuration that allows light to be emitted in the opposite direction. The third plate P3 may have a configuration that allows light that has passed through the cavity CA of the first plate P1 to be emitted, but may have a configuration that allows the light to be emitted in the opposite direction. The second plate P2 may directly contact the conductive material 110.
또한, 렌즈(100)의 실제 유효 렌즈 영역은 제1 플레이트(P1)의 제1 및 제2 개구(O1, O2) 중에서 좁은 제2 개구(O2)의 직경보다 좁을 수 있다.In addition, the actual effective lens area of the lens 100 may be narrower than the diameter of the narrow second opening O2 among the first and second openings O1 and O2 of the first plate P1.
한편, 제1 전극(또는, 개별 전극)(E1)은 제1 플레이트(P1)의 일면(예를 들어, 제1 플레이트(P1)의 아래)에 배치되고, 제2 전극(또는, 공통 전극)(E2)은 제1 플레이트(P1)의 타면(예를 들어, 제1 플레이트(P1)의 위)에 배치될 수 있다. 즉, 제1 전극(E1)은 제1 플레이트(P1) 상에 배치되고 상온 이온성 액체와 접촉하지 않고 제2 전극(E2)은 제1 플레이트(P1) 상에 배치되고 상온 이온성 액체와 접촉할 수 있다.Meanwhile, the first electrode (or individual electrode) E1 is disposed on one surface of the first plate P1 (for example, under the first plate P1), and the second electrode (or a common electrode) (E2) may be disposed on the other surface of the first plate P1 (eg, above the first plate P1). That is, the first electrode E1 is disposed on the first plate P1 and does not contact the room temperature ionic liquid, and the second electrode E2 is disposed on the first plate P1 and contacts the room temperature ionic liquid. can do.
제1 플레이트(P1)의 위에 배치된 제2 전극(E2)의 일부가 전도성 물질(110)에 노출되어 전도성 물질(110)과 직접 접촉할 수 있다. 반면에, 제1 전극(E1)과 전도성 물질(110) 사이에 절연층(146)이 배치되고, 제1 전극(E1)과 비전도성 액체(또는, 공기)(120) 사이에 절연층(146)이 배치되어, 제1 전극(E1)과 전도성 물질(110) 및 비전도성 액체(또는, 공기)(120)는 서로 전기적으로 이격될 수 있다.A portion of the second electrode E2 disposed on the first plate P1 may be exposed to the conductive material 110 to directly contact the conductive material 110. On the other hand, the insulating layer 146 is disposed between the first electrode E1 and the conductive material 110, and the insulating layer 146 is disposed between the first electrode E1 and the non-conductive liquid (or air) 120. ) Is disposed, the first electrode E1, the conductive material 110, and the non-conductive liquid (or air) 120 may be electrically separated from each other.
또는, 비록 도시되지는 않았지만, 제2 전극(E2)과 전도성 물질(110) 사이에 산화막(미도시)이 배치될 수도 있다.Alternatively, although not shown, an oxide film (not shown) may be disposed between the second electrode E2 and the conductive material 110.
제1 전극(E1)은 복수의 전극이고, 제2 전극(E2)은 한 개의 전극일 수 있다. 예를 들어, 제1 전극(E1)의 개수는 4개일 수도 있고, 8개일 수도 있으며, 실시 예는 제1 전극(E1)의 특정한 개수에 국한되지 않는다.The first electrode E1 may be a plurality of electrodes, and the second electrode E2 may be one electrode. For example, the number of first electrodes E1 may be 4 or 8, and the embodiment is not limited to a specific number of first electrodes E1.
또한, 제1 전극(E1)은 제1 및 제3 플레이트(P1, P3)의 사이로부터 제1 플레이트(P1)의 내측면(i)까지 연장되어 배치될 수도 있다.In addition, the first electrode E1 may be disposed extending from between the first and third plates P1 and P3 to the inner side i of the first plate P1.
또한, 제1 전극(E1)은 제1 플레이트(P1)의 내측면(i)으로부터 제1 플레이트(P1)의 위까지 연장되어 제2 전극(E2)과 이격되어 배치될 수 있다.In addition, the first electrode E1 may extend from the inner surface i of the first plate P1 to the top of the first plate P1 and may be disposed to be spaced apart from the second electrode E2.
제1 전극(E1) 및 제2 전극(E2) 각각은 도전성 재료로 이루어질 수 있고, 예를 들면 금속으로 이루어질 수 있다.Each of the first electrode E1 and the second electrode E2 may be made of a conductive material, for example, a metal.
한편, 절연층(146)은 캐비티(CA)의 하부 영역에서 제3 플레이트(P3)의 상부면의 일부를 덮으면서 배치될 수 있다. 즉, 절연층(146)은 비전도성 액체(또는, 공기)(120)와 제3 플레이트(P3)의 사이에 배치될 수 있다.Meanwhile, the insulating layer 146 may be disposed in the lower region of the cavity CA while covering a part of the upper surface of the third plate P3. That is, the insulating layer 146 may be disposed between the non-conductive liquid (or air) 120 and the third plate P3.
또한, 절연층(146)은 캐비티(CA)의 내측면(i)에 배치된 제1 전극(E1)의 전체를 덮으면서 배치될 수 있다. 또한, 절연층(146)은 제1 플레이트(P1)의 상부면에서, 제2 전극(E2)의 일부와 제1 전극(E1)의 전체를 덮으며 배치될 수 있다. 이와 같이, 절연층(146)은 제1 전극(E1)과 전도성 물질(110) 간의 접촉, 제1 전극(E1)과 비전도성 액체(또는, 공기)(120) 간의 접촉 및 제3 플레이트(P3)와 비전도성 액체(또는, 공기)(120) 간의 접촉을 차단할 수 있다.In addition, the insulating layer 146 may be disposed while covering the entire first electrode E1 disposed on the inner surface i of the cavity CA. Further, the insulating layer 146 may be disposed on the upper surface of the first plate P1 to cover a part of the second electrode E2 and the entire first electrode E1. In this way, the insulating layer 146 is a contact between the first electrode E1 and the conductive material 110, the contact between the first electrode E1 and the non-conductive liquid (or air) 120, and the third plate P3. ) And the non-conductive liquid (or air) 120 may block contact.
절연층(146)이 제1 전극(E1)을 덮고, 제2 전극(E2)의 일부를 노출시켜, 제2 전극(E2)을 통해 전도성 물질(110)에 전기 에너지가 인가되도록 할 수 있다.The insulating layer 146 may cover the first electrode E1 and expose a part of the second electrode E2 so that electrical energy is applied to the conductive material 110 through the second electrode E2.
한편, 비록 도시되지 않았지만, 실시 예에 의한 렌즈(100)를 포함하는 렌즈 모듈은 제1 연결 기판 및 제2 연결 기판을 포함할 수 있다.Meanwhile, although not shown, the lens module including the lens 100 according to the embodiment may include a first connection substrate and a second connection substrate.
제1 연결 기판은 제1 전극(E1)과 전기적으로 연결된 연결 패드를 통해 메인 기판(미도시) 상에 형성된 전극 패드와 전기적으로 연결될 수 있다. 제2 연결 기판은 제2 전극(E2)과 전기적으로 연결된 연결 패드를 통해 메인 기판 상에 형성된 전극 패드와 전기적으로 연결될 수 있다.The first connection substrate may be electrically connected to an electrode pad formed on the main substrate (not shown) through a connection pad electrically connected to the first electrode E1. The second connection substrate may be electrically connected to an electrode pad formed on the main substrate through a connection pad electrically connected to the second electrode E2.
예를 들어, 제1 연결 기판은 연성회로기판(FPCB: Flexible Printed Circuit Board)로 구현되고, 제2 연결 기판은 FPCB 또는 단일 메탈 기판(전도성 메탈 플레이트)으로 구현될 수 있으나, 실시 예는 이에 국한되지 않는다.For example, the first connection substrate may be implemented as a flexible printed circuit board (FPCB), and the second connection substrate may be implemented as an FPCB or a single metal substrate (conductive metal plate), but embodiments are limited thereto. It doesn't work.
제1 연결 기판은 서로 다른 복수 개의 전압(이하, ‘개별 전압’이라 함)을 복수의 제1 전극(E1)으로 각각 전달할 수 있다. 제2 연결 기판은 하나의 구동 전압(이하, ‘공통 전압’이라 함)을 제2 전극(E2)으로 전달할 수 있다. 공통 전압은 DC 전압 또는 AC 전압을 포함할 수 있으며, 공통 전압이 펄스 형태로 인가되는 경우 펄스의 폭 또는 듀티 사이클(duty cycle)은 일정할 수 있다. 즉, 제1 연결 기판과 제2 연결 기판을 통해 렌즈(100)로 구동 전압이 공급될 수 있다.The first connection substrate may transmit a plurality of different voltages (hereinafter referred to as “individual voltages”) to the plurality of first electrodes E1, respectively. The second connection substrate may transmit one driving voltage (hereinafter, referred to as “common voltage”) to the second electrode E2. The common voltage may include a DC voltage or an AC voltage. When the common voltage is applied in the form of a pulse, the width or duty cycle of the pulse may be constant. That is, the driving voltage may be supplied to the lens 100 through the first connection substrate and the second connection substrate.
구동 전압에 대응하여 렌즈(100) 내에 형성되는 계면(BO)의 곡률이 변하여 오토 포커싱(AF:Auto-Focusin) 기능을 수행할 수도 있고, 계면(BO)의 틸팅되는 각도가 변하여 손떨림 보정 내지 영상 흔들림 방지(OIS:Optical Image Stabilizer) 기능을 수행할 수도 있다. 만일, 렌즈(100)가 AF 기능을 수행할 경우, 서로 동일한 레벨을 갖는 개별 전압이 제1 연결 기판을 통해 복수의 제1 전극(E1)으로 각각 전달될 수 있다. 또는, 렌즈(100)가 OIS 기능을 수행할 경우, 서로 다른 레벨을 갖는 복수의 개별 전압이 제1 연결 기판을 통해 복수의 제1 전극(E1)으로 각각 전달될 수 있다.In response to the driving voltage, the curvature of the interface BO formed in the lens 100 may be changed to perform an auto-focusing (AF) function, and the tilting angle of the interface BO may be changed, thereby correcting hand shake or image It can also perform an OIS (Optical Image Stabilizer) function. If the lens 100 performs the AF function, individual voltages having the same level with each other may be transmitted to the plurality of first electrodes E1 through the first connection substrate. Alternatively, when the lens 100 performs the OIS function, a plurality of individual voltages having different levels may be respectively transmitted to the plurality of first electrodes E1 through the first connection substrate.
이하, 전술한 실시 예에 의한 렌즈(100)의 동작을 첨부된 도면을 참조하여 다음과 같이 설명한다.Hereinafter, the operation of the lens 100 according to the above-described embodiment will be described with reference to the accompanying drawings.
도 2는 전술한 제1 및 제2 실시 예에 의한 렌즈(100)의 구동을 설명하기 위한 그래프로서, 횡축은 전하량을 나타내고 종축은 변위량을 나타낸다.2 is a graph for explaining the driving of the lens 100 according to the first and second embodiments described above, wherein the horizontal axis represents the amount of electric charge and the vertical axis represents the amount of displacement.
도 2를 참조하면, 렌즈(100)에 인가되는 구동 신호의 레벨(예를 들어, 전하량)을 달리 함에 따라 렌즈(100)의 변위가 달라짐을 알 수 있다. 이러한 원리로 렌즈(100)를 구동하여 AF 또는 OIS 기능을 수행할 수 있다.Referring to FIG. 2, it can be seen that the displacement of the lens 100 varies as the level (eg, amount of charge) of the driving signal applied to the lens 100 is varied. With this principle, the lens 100 may be driven to perform an AF or OIS function.
도 3 (a) 및 (b)는 전술한 제4 실시 예에 의한 렌즈(100)의 구동을 설명하기 위한 도면이다. 여기서, 이해를 돕기 위해, 2개의 전압(V1, V2)을 인가받는 전극이 전도성 물질(110)과 직접 접하는 것으로 도시되어 있지만, 전술한 바와 같이, 전극(V1, V2)과 전도성 물질(110) 사이에 절연층(146)이 배치될 수 있다.3A and 3B are diagrams for explaining driving of the lens 100 according to the fourth embodiment. Here, for better understanding, the electrode to which the two voltages V1 and V2 are applied is shown to be in direct contact with the conductive material 110, but as described above, the electrodes V1 and V2 and the conductive material 110 An insulating layer 146 may be disposed therebetween.
렌즈(100)로 구동 전압이 인가되지 않을 때, 도 3 (a)에 도시된 바와 같이, 양이온과 음이온이 배열된다. 이후, 렌즈(100)로 양의 전압(V1)과 음의 전압(V2)이 인가될 경우, 도 3 (b)에 도시된 바와 같이 음의 전압(V2)이 인가된 전극으로 양이온이 이동하고, 양의 전압(V1)이 인가된 전극으로 음이온이 이동함을 알 수 있다. 이러한 원리로, 렌즈(100)로 구동 전압을 인가하여 AF 기능 또는 OIS 기능이 수행될 수 있다.When the driving voltage is not applied to the lens 100, positive and negative ions are arranged as shown in FIG. 3 (a). Thereafter, when a positive voltage (V1) and a negative voltage (V2) are applied to the lens 100, as shown in FIG. 3(b), the positive electrode moves to the electrode to which the negative voltage (V2) is applied, and , It can be seen that negative ions move to the electrode to which the positive voltage V1 is applied. With this principle, the AF function or the OIS function may be performed by applying a driving voltage to the lens 100.
또한, 실시 예에 의한 렌즈(100)는 도 1에 도시된 구성에 국한되지 않는다. 즉, 서로 다른 2개의 액체 중 전도성 액체 대신에 전술한 제1 내지 제4 실시 예에 의한 전도성 물질이 배치되고, 서로 다른 2개의 액체 중 비전도성 액체 대신에 공기가 배치되거나 비전도성 액체 자체가 배치될 수 있다면, 기존의 어떠한 구성을 갖는 렌즈에도 실시 예에 의한 렌즈는 적용될 수 있다.In addition, the lens 100 according to the embodiment is not limited to the configuration shown in FIG. 1. That is, the conductive material according to the first to fourth embodiments is disposed instead of the conductive liquid among two different liquids, and air is disposed instead of the non-conductive liquid among two different liquids, or the non-conductive liquid itself is disposed. If possible, the lens according to the embodiment can be applied to lenses having any existing configuration.
이하, 실시 예에 의한 렌즈를 다음과 같이 세부적으로 살펴본다.Hereinafter, a lens according to an embodiment will be described in detail as follows.
도 4는 도 1에 도시된 렌즈(100)의 평면도를 나타낸다.4 is a plan view of the lens 100 shown in FIG. 1.
도 1 및 도 4를 참조하면, 제2 플레이트(P2)는 제1 및 제2 부분(PA1, PA2)을 포함할 수 있다.1 and 4, the second plate P2 may include first and second portions PA1 and PA2.
제1 부분(PA1)은 전도성 물질(110)과 접하는 부분이고, 제2 부분(PA2)은 제1 부분(PA1)을 에워싸는 부분이다. 제2 플레이트(P2)는 균일한 제1 두께(T1)를 가질 수 있다.The first part PA1 is a part in contact with the conductive material 110, and the second part PA2 is a part surrounding the first part PA1. The second plate P2 may have a uniform first thickness T1.
또한, 도 1에 도시된 렌즈(100)는 본딩 부재(148)를 더 포함할 수 있다. 본딩 부재(또는, 접착제)(148)는 제1 플레이트(P1)와 제2 플레이트(P2) 사이에 배치되어, 제1 플레이트(P1)와 제2 플레이트(P2)를 서로 결합시키는 역할을 한다.In addition, the lens 100 illustrated in FIG. 1 may further include a bonding member 148. The bonding member (or adhesive) 148 is disposed between the first plate P1 and the second plate P2 and serves to couple the first plate P1 and the second plate P2 to each other.
또는, 도 1에 도시된 렌즈(100)는 본딩 부재(148)를 포함하는 대신에 플레이트 레그(LEG)(148)를 더 포함할 수 있다. 플레이트 레그(148)는 제1 플레이트(P1)와 제2 플레이트(P2) 사이에 배치되어, 제2 플레이트(P2)를 지지하는 역할을 한다. 여기서, 플레이트 레그(148)는 제2 플레이트(P2)와 동일한 재질로 일체로 구현될 수도 있다. 부재(148)는 제2 두께(T2)를 가질 수 있다.Alternatively, the lens 100 illustrated in FIG. 1 may further include a plate leg (LEG) 148 instead of including the bonding member 148. The plate leg 148 is disposed between the first plate P1 and the second plate P2 and serves to support the second plate P2. Here, the plate leg 148 may be integrally implemented with the same material as the second plate P2. The member 148 may have a second thickness T2.
제3 플레이트(P3)에서 비전도성 물질(예를 들어 비전도성 액체 또는 공기)(120)와 마주하는 부분의 두께(이하, ‘제3 두께’라 한다)(T3)는 제1 두께(T1) 이상이고 제1 두께(T1)와 제2 두께(T2)의 총 합보다 작을 수 있다. 예를 들어, 제1 두께(T1)와 제3 두께(T3)는 서로 동일할 수 있다.The thickness of the portion of the third plate P3 facing the non-conductive material (eg, non-conductive liquid or air) 120 (hereinafter referred to as'third thickness') (T3) is the first thickness (T1) And may be less than the total sum of the first thickness T1 and the second thickness T2. For example, the first thickness T1 and the third thickness T3 may be the same.
전술한 실시 예에 의한 렌즈(100)가 동작할 때 발생하는 열 또는 렌즈(100) 주변의 온도에 의해 전도성 물질(110) 및 비전도성 물질(예를 들어 비전도성 액체 또는 공기)(120)는 광축 방향(예를 들어, z축 방향)으로 팽창할 수 있다. 이때, 제3 플레이트(P3)의 제3 두께(T3)가 두껍고 제2 플레이트(P2)의 제1 두께(T1)가 상대적으로 얇다면, 열 팽창에 의한 응력이 제3 플레이트(P3)보다 제2 플레이트(P2)로 집중되어 제2 플레이트(P2)에 많은 굴곡이 야기되어 광학적 성능이 열악해질 수 있다.The conductive material 110 and the non-conductive material (for example, non-conductive liquid or air) 120 by heat generated when the lens 100 according to the above-described embodiment operates or the temperature around the lens 100 It can expand in the optical axis direction (eg, z-axis direction). At this time, if the third thickness T3 of the third plate P3 is thick and the first thickness T1 of the second plate P2 is relatively thin, the stress due to thermal expansion is greater than that of the third plate P3. The second plate (P2) is concentrated to cause a lot of curvature in the second plate (P2), the optical performance may be poor.
그러나, 전술한 바와 같이, 제2 플레이트(P2)의 제1 두께(T1)와 제3 플레이트(P3)의 제3 두께(T3)가 동일하거나, 제3 두께(T3)가 제1 두께(T1)와 제2 두께(T2)의 총합보다 작으면서 제1 두께(T1)보다 약간 클 경우, 전도성 물질(110) 및 비전도성 물질(예를 들어 비전도성 액체 또는 공기)(120)의 열 팽창에 의한 응력이 제1 및 제3 플레이트(P1, P3)로 분산될 수 있다. 이와 같이, 응력이 분산될 경우 제2 플레이트(P2)가 파손될 확률이 감소하고, 렌즈(100)의 광학적 성능이 악화되지 않고 양호하게 유지될 수 있다.However, as described above, the first thickness T1 of the second plate P2 and the third thickness T3 of the third plate P3 are the same, or the third thickness T3 is the first thickness T1 ) And the second thickness (T2), but slightly larger than the first thickness (T1), the thermal expansion of the conductive material 110 and the non-conductive material (for example, non-conductive liquid or air) 120 The resulting stress may be distributed to the first and third plates P1 and P3. In this way, when the stress is dispersed, the probability that the second plate P2 is damaged is reduced, and the optical performance of the lens 100 is not deteriorated and can be maintained satisfactorily.
한편, 제2 플레이트(P2)의 제1 부분(PA1)은 평탄부(FP) 및 신축부(EP)를 가질 수 있다.Meanwhile, the first portion PA1 of the second plate P2 may have a flat portion FP and an elastic portion EP.
평탄부(FP)는 제1 두께(T1)를 균일하게 가지며, 제2 플레이트(P2)에서 광축(LX)이 지나는 경로 상에 위치할 수 있다.The flat portion FP may have a first thickness T1 uniformly and may be positioned on a path through the optical axis LX in the second plate P2.
신축부(EP)는 도 4에 도시된 바와 같이 평탄부(FP)를 에워싸는 부분으로서, 평탄부(FP)와 제2 부분(PA2) 사이에 배치될 수 있다.As illustrated in FIG. 4, the stretchable part EP is a part surrounding the flat part FP and may be disposed between the flat part FP and the second part PA2.
신축부(EP)는 평탄부(FP)보다 더 큰 탄성을 가질 수 있다. 평탄부(FP)보다 신축부(EP)가 더 큰 탄성을 가질 경우, 전도성 물질(110) 및 비전도성 물질(예를 들어, 비전도성 액체 또는 공기)(120)의 열 팽창 시, 응력이 평탄부(FP)보다 신축부(EP)로 집중될 수 있다. 이를 위해, 신축부(EP)의 신축에 따라 캐비티(CA)로부터 멀어지거나 가까워지도록 평행 이동 가능하게, 평탄부(FP)는 신축부(EP)와 연결될 수 있다.The elastic part EP may have greater elasticity than the flat part FP. When the elastic part EP has a greater elasticity than the flat part FP, the stress is flat when the conductive material 110 and the non-conductive material (eg, non-conductive liquid or air) 120 are thermally expanded. It may be concentrated in the elastic portion EP rather than the portion FP. To this end, the flat portion FP may be connected to the elastic portion EP so that parallel movement may be possible to move away from or close to the cavity CA according to the expansion and contraction of the elastic portion EP.
만일, 제2 플레이트(P2)의 제1 부분(PA1)이 전도성 물질(110) 및 비전도성 물질(예를 들어, 비전도성 액체 또는 공기)(120)의 열팽창에 의해 만곡(후술되는 도 14a의 230)될 경우, 렌즈(100)의 성능이 악화될 수 있다. 그러나, 실시 예에서와 같이, 평탄부(FP)가 평행 이동할 경우, 전도성 물질(110) 및 비전도성 물질(예를 들어, 비전도성 액체 또는 공기)(120)의 열팽창에 영향을 받지 않거나 영향을 덜 받아, 렌즈(100)의 성능이 유지될 수 있다.If the first part PA1 of the second plate P2 is curved by the thermal expansion of the conductive material 110 and the non-conductive material (eg, non-conductive liquid or air) 120 (see FIG. 14A to be described later) 230), the performance of the lens 100 may be deteriorated. However, as in the embodiment, when the flat portion FP moves in parallel, the conductive material 110 and the non-conductive material (eg, non-conductive liquid or air) 120 are not affected or affected by thermal expansion. Less received, the performance of the lens 100 can be maintained.
만일, 제1 부분(PA1)(또는, 평탄부(FP))의 폭(W)이 제2 개구(O2)의 폭보다 작을 경우, 평탄부(FP)의 양단부 중 하나가 편향되는 등 전도성 물질(110) 및 비전도성 물질(예를 들어, 비전도성 액체 또는 공기)(120)의 팽창시에 평탄부(FP)의 평행 이동이 어려워질 수 있다. 따라서, 제1 부분(PA1)(또는, 평탄부(FP))의 폭(W)은 제2 개구(O2)의 폭보다 클 수 있으나, 실시 예는 이에 국한되지 않는다.If the width W of the first part PA1 (or the flat part FP) is smaller than the width of the second opening O2, one of the both ends of the flat part FP is deflected, etc. When the (110) and the non-conductive material (eg, non-conductive liquid or air) 120 are expanded, the parallel movement of the flat portion FP may become difficult. Accordingly, the width W of the first portion PA1 (or the flat portion FP) may be larger than the width of the second opening O2, but the embodiment is not limited thereto.
도 4에 도시된 바와 같이, 신축부(EP)는 환형 평면 형상을 가질 수 있으나, 실시 예는 신축부(EP)의 특정한 평면 형상에 국한되지 않는다.As shown in FIG. 4, the expansion and contraction part EP may have an annular planar shape, but the embodiment is not limited to a specific planar shape of the expansion and contraction part EP.
도 5a 및 도 5b는 제2 플레이트(P2)의 실시 예에 의한 단면도를 나타낸다. 도 5a는 제2 플레이트(P2)의 전체 단면을 도시한 반면, 설명의 편의상, 도 5b는 제2 플레이트(P2)의 단면 형상에서 좌측 부분 만을 도시한다. 도 5b에서 도시가 생략된 제2 플레이트(P2)의 우측 부분은 도 5b에 도시된 좌측 부분과 y축 방향으로 대칭이므로 도 5b를 통해 알 수 있다.5A and 5B are cross-sectional views illustrating a second plate P2 according to an embodiment. While FIG. 5A shows the entire cross-section of the second plate P2, for convenience of explanation, FIG. 5B shows only the left portion of the cross-sectional shape of the second plate P2. The right portion of the second plate P2, which is not shown in FIG. 5B, is symmetrical with the left portion shown in FIG. 5B in the y-axis direction, and thus can be seen through FIG. 5B.
일 실시 예에 의하면, 평탄부(FP)의 개수는 복수 개일 수 있다. 예를 들어, 도 5a 및 도 5b에 도시된 바와 같이, 평탄부(FP)는 제1 및 제2 평탄부(FP1, FP2)를 포함할 수 있다. 제1 평탄부(FP1)는 도 4에 도시된 평탄부(FP)에 해당하며, 제2 평탄부(FP2)는 신축부(EP)와 제2 플레이트(P2)의 제2 부분(PA2) 사이에 배치될 수 있다.According to an embodiment, the number of flat portions FP may be plural. For example, as shown in FIGS. 5A and 5B, the flat portion FP may include first and second flat portions FP1 and FP2. The first flat portion FP1 corresponds to the flat portion FP shown in FIG. 4, and the second flat portion FP2 is between the elastic portion EP and the second portion PA2 of the second plate P2. Can be placed on
다른 실시 예에 의하면, 평탄부(FP)의 개수는 도 4에 도시된 바와 같이 하나이고, 신축부(EP)는 제2 부분(PA2)과 직접 접할 수 있다. 또한, 도 5a 및 도 5b에 도시된 제2 평탄부(FP2)가 제2 플레이트(P2)의 제2 부분(PA2)에 해당할 경우, 도 5a 및 도 5b에 도시된 제2 플레이트(P2)도 하나의 평탄부(FP1)를 갖는다.According to another embodiment, the number of flat portions FP is one, as illustrated in FIG. 4, and the expansion and contraction portions EP may directly contact the second portion PA2. In addition, when the second flat portion FP2 shown in FIGS. 5A and 5B corresponds to the second part PA2 of the second plate P2, the second plate P2 shown in FIGS. 5A and 5B It also has one flat portion FP1.
이하, 설명의 편의상 도 5a 및 도 5b에 도시된 제2 평탄부(FP2)는 제2 플레이트(P2)의 제2 부분(PA2)에 해당하는 것으로 설명한다. 즉, 이하에서 언급되는 평탄부란, 도 4에 도시된 평탄부(FP) 또는 도 5a 및 도 5b 각각에 도시된 제1 평탄부(FP1)를 의미하는 것으로 한다.Hereinafter, for convenience of description, the second flat portion FP2 illustrated in FIGS. 5A and 5B will be described as corresponding to the second portion PA2 of the second plate P2. That is, the flat portion referred to below is meant to mean the flat portion FP shown in FIG. 4 or the first flat portion FP1 shown in FIGS. 5A and 5B, respectively.
또한, 실시 예에 의하면, 신축부(EP)는 제1 내지 제3 세그먼트(S1 내지 S3)를 포함할 수 있다. 제1 세그먼트(S1)는 제1 두께(T1)보다 작은 제4 두께(T4)를 가질 수 있다. 제2 세그먼트(S2)는 제1 세그먼트(S1)와 평탄부(FP, FP1) 사이에 배치될 수 있다. 제3 세그먼트(S3)는 제1 세그먼트(S1)와 제2 부분(PA2) 사이에 배치될 수 있다.In addition, according to an embodiment, the stretchable part EP may include first to third segments S1 to S3. The first segment S1 may have a fourth thickness T4 smaller than the first thickness T1. The second segment S2 may be disposed between the first segment S1 and the flat portions FP and FP1. The third segment S3 may be disposed between the first segment S1 and the second part PA2.
실시 예에 의하면, 제2 및 제3 세그먼트(S2, S3) 중 적어도 하나는 제1 세그먼트(S1)로 접근할수록 두께가 감소하는 단면 형상을 가질 수 있다. 예를 들어, 도 5a 및 도 5b에 도시된 바와 같이, 제2 및 제3 세그먼트(S2, S3) 각각은 제1 세그먼트(S1)로 접근할수록 두께가 감소하는 단면 형상을 갖는다.According to an embodiment, at least one of the second and third segments S2 and S3 may have a cross-sectional shape whose thickness decreases as the first segment S1 approaches. For example, as shown in FIGS. 5A and 5B, each of the second and third segments S2 and S3 has a cross-sectional shape whose thickness decreases as the first segment S1 approaches.
전술한 바와 같이, 신축부(EP)가 제1 두께(T1)보다 작은 제4 두께(T4)를 갖는 제1 세그먼트(S1)를 포함할 경우 전도성 물질(110) 및 비전도성 물질(예를 들어, 비전도성 액체 또는 공기)(120)의 열팽창에 의한 응력이 평탄부(FP, FP1) 대신에 신축부(EP)로 인가되어, 평탄부(FP, FP1)가 응력에 의해 받는 영향이 감소될 수 있다. 또한, 제2 및 제3 세그먼트(S2, S3) 중 적어도 하나의 두께가 제1 세그먼트(S1)로 접근할수록 감소하는 단면 형상을 가질 경우, 전도성 물질(110) 및 비전도성 액체(또는, 공기)(120)가 팽창하거나 수축할 때 신축부(EP)의 신축이 유연하게 이루어질 수 있다.As described above, when the elastic part EP includes the first segment S1 having a fourth thickness T4 smaller than the first thickness T1, the conductive material 110 and a non-conductive material (for example, , The stress caused by the thermal expansion of the non-conductive liquid or air) 120 is applied to the expansion/contraction part (EP) instead of the flat parts (FP, FP1), so that the influence of the flat parts (FP, FP1) by the stress is reduced. I can. In addition, when the thickness of at least one of the second and third segments S2 and S3 has a cross-sectional shape that decreases as the first segment S1 approaches, the conductive material 110 and the non-conductive liquid (or air) When the 120 expands or contracts, the elastic part EP may be flexibly expanded and contracted.
도 5a에 도시된 바와 같이, 신축부(EP)는 하나의 제1 세그먼트(S1)만을 포함할 수 있다. 그러나, 다른 실시 예에 의하면, 신축부(EP)는 복수의 제1 세그먼트를 포함할 수도 있다. 예를 들어, 도 5b에 도시된 바와 같이 신축부(EP)는 제1-1 및 제1-2 세그먼트(S11, S12)를 포함할 수 있다.As illustrated in FIG. 5A, the stretchable part EP may include only one first segment S1. However, according to another embodiment, the elastic part EP may include a plurality of first segments. For example, as shown in FIG. 5B, the stretchable part EP may include the 1-1 and 1-2 segments S11 and S12.
만일, 신축부(EP)에 포함된 제1 세그먼트의 개수가 복수 개일 경우, 신축부(EP)는 복수의 제1 세그먼트 사이에 배치된 제4 세그먼트(S4)를 더 포함할 수 있다. 예를 들어, 도 5b에 도시된 바와 같이 신축부(EP)가 제1-1 및 제1-2 세그먼트(S11, S12)를 포함할 경우, 신축부(EP)는 제1-1 세그먼트(S11)와 제1-2 세그먼트(S12) 사이에 배치된 제4 세그먼트(S4)를 더 포함할 수 있다. 도 5b를 참조하면, 제4 세그먼트(S4)는 제4-1 내지 제4-3 세그먼트(S41 내지 S43)를 포함할 수 있다. 제4-1 세그먼트(S41)는 제1-1 세그먼트(S11)와 접하며 제1-1 세그먼트(S11)와 제4-2 세그먼트(S42) 사이에 위치한 부분이다. 제4-3 세그먼트(S43)는 제1-2 세그먼트(S12)와 접하며 제1-2 세그먼트(S12)와 제4-2 세그먼트(S42) 사이에 위치한 부분이다. 제4-2 세그먼트(S42)는 제4-1 세그먼트(S41)와 제4-3 세그먼트(S43) 사이에 위치한 부분이다.If the number of first segments included in the elastic part EP is plural, the elastic part EP may further include a fourth segment S4 disposed between the plurality of first segments. For example, as shown in FIG. 5B, when the elastic part EP includes the 1-1 and 1-2 segments S11 and S12, the elastic part EP is the 1-1 segment S11. ) And a fourth segment (S4) disposed between the first-second segment (S12) may be further included. Referring to FIG. 5B, the fourth segment S4 may include 4-1 to 4-3 segments S41 to S43. The 4-1th segment S41 is in contact with the 1-1th segment S11 and is a portion located between the 1-1th segment S11 and the 4-2th segment S42. The 4-3th segment S43 is in contact with the 1-2nd segment S12 and is a portion located between the 1-2nd segment S12 and the 4-2th segment S42. The 4-2th segment S42 is a portion located between the 4-1th segment S41 and the 4-3th segment S43.
또한, 제4 세그먼트(S4)는 제1 세그먼트(S1)로 접근할수록 두께가 감소하는 단면 형상을 가질 수 있다. 예를 들어, 도 5b를 참조하면, 제4-1 세그먼트(S41)는 제1-1 세그먼트(S11)로 접근할수록 두께가 감소하는 단면 형상을 갖고, 제4-3 세그먼트(S43)는 제1-2 세그먼트(S12)로 접근할수록 두께가 감소하는 단면 형상을 가질 수 있다.In addition, the fourth segment S4 may have a cross-sectional shape whose thickness decreases as it approaches the first segment S1. For example, referring to FIG. 5B, the 4-1 segment S41 has a cross-sectional shape whose thickness decreases as it approaches the 1-1 segment S11, and the 4-3 segment S43 is the first -2 It may have a cross-sectional shape whose thickness decreases as the segment approaches S12.
전술한 바와 같이, 제1 세그먼트(S1)의 개수가 복수 개이고, 복수의 제1 세그먼트(S1) 사이에 제4 세그먼트(S4)가 배치될 경우, 전도성 물질(110) 및 비전도성 물질(예를 들어, 비전도성 액체 또는 공기)(120)의 열팽창에 의한 응력이 평탄부(FP, FP1) 대신에 신축부(EP)로 더 많이 인가될 수 있다. 또한, 제4 세그먼트(S4)가 제1 세그먼트(S1)로 접근할수록 두께가 감소하는 단면 형상을 가질 경우, 신축부(EP)의 신축이 더욱 유연하게 이루어질 수 있다.As described above, when the number of the first segments S1 is plural and the fourth segment S4 is disposed between the plurality of first segments S1, the conductive material 110 and a non-conductive material (for example, For example, more stress due to thermal expansion of the non-conductive liquid or air 120 may be applied to the expansion/contractor EP instead of the flat portions FP and FP1. In addition, when the fourth segment S4 has a cross-sectional shape in which the thickness decreases as the fourth segment S4 approaches the first segment S1, the expansion and contraction portion EP may be more flexible.
또한, 신축부(EP)는 리세스 및 돌출부 중 적어도 하나를 포함할 수 있다. 도 5a를 참조하면, 제1 내지 제3 세그먼트(S1 내지 S3)는 리세스를 형성할 수 있다. 또한, 도 5b를 참조하면, 제4 세그먼트(S4)는 돌출부를 형성할 수 있으며, 제4-2 세그먼트(S42)의 탑면이 돌출부의 상면에 해당할 수 있다.In addition, the expansion/contraction part EP may include at least one of a recess and a protrusion. Referring to FIG. 5A, the first to third segments S1 to S3 may form recesses. Further, referring to FIG. 5B, the fourth segment S4 may form a protrusion, and the top surface of the 4-2th segment S42 may correspond to the upper surface of the protrusion.
도 6a 및 도 6b는 다른 실시 예에 의한 제2 플레이트(P2)에서 제1 부분(PA1)의 단면도를 나타낸다.6A and 6B are cross-sectional views of the first portion PA1 of the second plate P2 according to another exemplary embodiment.
예를 들어, 도 6a 및 도 6b 각각에 도시된 바와 같이 신축부(EP)는 복수의 리세스(R1, R2) 및 적어도 하나의 돌출부(PT1, PT2)를 포함할 수 있다.For example, as illustrated in FIGS. 6A and 6B, the expansion/contraction part EP may include a plurality of recesses R1 and R2 and at least one protrusion PT1 and PT2.
또한, 실시 예에 의하면, 리세스와 돌출부 각각은 반원형, 반타원형 또는 다각형(예를 들어, 세모, 네모 등) 중 적어도 하나의 단면 형상을 가질 수 있다. 예를 들어, 도 6a에 도시된 바와 같이 리세스(R1)는 사각형 단면 형상을 가질 수도 있고, 도 6b에 도시된 바와 같이 리세스(R2)는 반원형 단면 형상을 가질 수도 있다.In addition, according to an embodiment, each of the recess and the protrusion may have at least one cross-sectional shape of a semicircular shape, a semi-elliptic shape, or a polygonal shape (eg, triangular, square, etc.). For example, as shown in FIG. 6A, the recess R1 may have a rectangular cross-sectional shape, and as shown in FIG. 6B, the recess R2 may have a semicircular cross-sectional shape.
또한, 실시 예에 의하면, 신축부(EP)는 지그재그 형태를 가질 수도 있다.In addition, according to an embodiment, the stretching part EP may have a zigzag shape.
도 7 내지 도 9는 광축과 나란한 방향으로 실시 예에 의한 제2 플레이트(P2)에서 신축부(EP)가 늘어나기 이전 및 이후의 모습을 나타내는 단면도이다.7 to 9 are cross-sectional views illustrating before and after the extension part EP is stretched in the second plate P2 according to the embodiment in a direction parallel to the optical axis.
도 7 (a), 도 8 (a) 및 도 9 (a)는 전도성 물질(110) 및 비전도성 액체(또는, 공기)(120)가 열팽창하기 이전에 즉, 신축부(EP)가 늘어나기 이전의 단면을 나타내고, 도 7 (b), 도 8 (b) 및 도 9 (b)는 전도성 물질(110) 및 비전도성 액체(또는, 공기)(120)가 열팽창하여 신축부(EP)가 늘어난 이후의 단면을 나타낸다.7(a), 8(a), and 9(a) show that before the conductive material 110 and the non-conductive liquid (or air) 120 thermally expand, that is, the elastic part EP is stretched. Figure 7 (b), Figure 8 (b) and Figure 9 (b) shows the previous cross-section, the conductive material 110 and the non-conductive liquid (or air) 120 thermally expands the elastic part (EP) It shows the cross section after stretching.
전술한 바와 같이 제2 플레이트(P2)의 제1 부분(PA1)의 양단에 신축부(EP)를 다양한 형태로 구현할 경우, 전도성 물질(110) 및 비전도성 물질(예를 들어, 비전도성 액체 또는 공기)(120)이 열팽창할 경우 평탄부(FP, FP1)보다 신축부(EP)로 응력이 보다 많이 집중될 수 있다. 즉, 신축부(EP)가 도 7 (b), 도 8 (b), 도 9 (b)에 도시된 바와 같이, 마치 스프링처럼 늘어남으로 인해, 평탄부(FP, FP1)가 광축 방향으로 평행 이동할 수 있어, 렌즈(100)의 광학적 성능이 악화되지 않고 양호하게 유지될 수 있다.As described above, when the expansion and contraction portions EP are implemented at both ends of the first part PA1 of the second plate P2 in various forms, the conductive material 110 and a non-conductive material (for example, a non-conductive liquid or When the air) 120 is thermally expanded, more stress may be concentrated in the expansion/contraction part EP than in the flat parts FP and FP1. That is, as shown in FIGS. 7 (b), 8 (b), and 9 (b), the expansion and contraction portions EP are stretched like a spring, so that the flat portions FP and FP1 are parallel in the optical axis direction. Since it can be moved, the optical performance of the lens 100 can be maintained well without deteriorating.
한편, 제1 플레이트(P1)와 제2 플레이트(P2)는 다양한 방법으로 서로 결합할 수 있다.Meanwhile, the first plate P1 and the second plate P2 may be coupled to each other in various ways.
제2 플레이트(P2)의 제2 부분(PA2)은 본딩 영역(BA)을 포함할 수 있다. 본딩 영역(BA)에서 제2 플레이트(P2)는 제1 플레이트(P1)와 본딩 방식으로 결합될 수 있다. 여기서, 본딩 방식이란, 투광성을 갖는 제2 플레이트(P2)의 제2 부분(PA2)으로 본딩 영역(BA)을 향해 레이저를 조사하여, 제1 플레이트(P1)와 제2 플레이트(P2)를 결합하는 방식을 의미한다.The second part PA2 of the second plate P2 may include a bonding area BA. In the bonding area BA, the second plate P2 may be coupled to the first plate P1 through a bonding method. Here, the bonding method is a laser irradiation toward the bonding area BA by the second part PA2 of the second plate P2 having light transmission properties, thereby combining the first plate P1 and the second plate P2. It means the way to do it.
도 10a 및 도 10b는 실시 예에 의한 렌즈(100)의 저면도를 나타낸다. 설명의 편의상, 도 10a 및 도 10b는 제2 플레이트(P2)만을 도시한다.10A and 10B are bottom views of the lens 100 according to the embodiment. For convenience of explanation, FIGS. 10A and 10B show only the second plate P2.
도 10a 및 도 10b를 참조하면, 제2 플레이트(P2)는 본딩 영역(BA)을 포함한다. 각 본딩 영역(BA)은 내곽(IE)과 외곽(OE)을 갖는다. 본딩 영역(BO)의 내곽(IE) 또는 외곽(OE) 중 적어도 하나는 다각형 저면 형상을 가질 수 있다. 예를 들어, 본딩 영역(BA)의 외곽은 도 10a에 도시된 바와 같이 5각형의 저면 형상을 갖거나, 도 10b에 도시된 바와 같이, 6각형의 저면 형상을 가질 수 있다.10A and 10B, the second plate P2 includes a bonding area BA. Each bonding area BA has an inner periphery IE and an outer periphery OE. At least one of the inner edge IE and the outer edge OE of the bonding area BO may have a polygonal bottom shape. For example, the outer periphery of the bonding area BA may have a pentagonal bottom shape as shown in FIG. 10A or a hexagonal bottom shape as shown in FIG. 10B.
도 11은 비교 례에 의한 렌즈의 저면도를 나타낸다.11 shows a bottom view of a lens according to a comparative example.
도 11에 도시된 비교 례에 의한 렌즈의 제2 플레이트(P2)는 실시 예에 의한 렌즈(100)의 제2 플레이트(P2)와 동일한 역할을 수행한다. 도 11에 도시된 제2 플레이트(P2)의 외곽(OE)의 저면 형상이 다름을 제외하면, 도 11에 도시된 비교 례에 의한 렌즈는 실시 예에 의한 렌즈(100)와 동일한 것으로 가정한다.The second plate P2 of the lens according to the comparative example shown in FIG. 11 performs the same role as the second plate P2 of the lens 100 according to the embodiment. It is assumed that the lens according to the comparative example shown in FIG. 11 is the same as the lens 100 according to the embodiment, except that the shape of the bottom surface of the outer edge OE of the second plate P2 shown in FIG. 11 is different.
도 11에 도시된 바와 같이, 본딩 영역(BA)의 외곽이 원형 저면 형상을 가질 경우, 전도성 물질(110) 및 비전도성 물질(예를 들어, 비전도성 액체 또는 공기)(120)의 열팽창으로 야기된 응력이 원의 테두리 부분(OE)과 거리가 동일한 원점 즉, 제2 플레이트(P2)의 중심 즉, 광축(LX)에 가장 많이 가해지게 되어 제2 플레이트(P2)가 손상될 수 있다.As shown in FIG. 11, when the outer edge of the bonding area BA has a circular bottom shape, it is caused by thermal expansion of the conductive material 110 and the non-conductive material (eg, non-conductive liquid or air) 120 The resulting stress is applied the most to the origin, that is, the center of the second plate P2, that is, the optical axis LX, having the same distance as the rim portion OE of the circle, and thus the second plate P2 may be damaged.
그러나, 도 10a 및 도 10b에 도시된 바와 같이, 제2 플레이트(P2)의 본딩 영역(BA)의 외곽이 원형이 아니라, 다각형 평면 형상을 가질 경우, 전도성 물질(110) 및 비전도성 액체(또는, 공기)(120)의 열팽창으로 야기된 응력이 제2 플레이트(P2)의 중심 즉, 광축(LX)만이 아니라 중심으로부터 거리가 다른 본딩 영역(BA) 외곽(OE)의 각 모서리로 분산됨으로써 외곽(OE)이 원형일 때보다도 제2 플레이트(P2)가 응력을 덜 받을 수 있다. 또한, 도 11에 도시된 바와 같이 외곽(OE)이 원형일 때보다 도 10a 및 도 10b에 도시된 바와 같이 외곽(OE)이 다각형일 경우, 본딩 영역(BA)의 면적이 증가하여, 온도에 따라 전도성 물질(110) 및 비전도성 액체(또는, 공기)(120)의 부피가 팽창할 때 제2 플레이트(P2)가 굴곡되거나 파손되는 것을 더욱 방지하거나 최소화시킬 수 있다.However, as shown in FIGS. 10A and 10B, when the outer edge of the bonding area BA of the second plate P2 is not circular but has a polygonal planar shape, the conductive material 110 and the non-conductive liquid (or , The stress caused by the thermal expansion of the air) 120 is distributed to each edge of the outer bonding area (BA) OE having a different distance from the center of the second plate (P2), that is, not only the optical axis (LX). The second plate P2 may receive less stress than when (OE) is circular. In addition, when the outside OE is polygonal as shown in FIGS. 10A and 10B than when the outside OE is circular as shown in FIG. 11, the area of the bonding area BA increases, thereby increasing the temperature. Accordingly, when the volume of the conductive material 110 and the non-conductive liquid (or air) 120 is expanded, it is possible to further prevent or minimize the second plate P2 from being bent or damaged.
도 1에 도시된 바와 같이, 제1 및 제2 플레이트(P1, P2)는 접착제(148)에 의해 서로 결합할 수 있다. 예를 들어, 접착제(148)는 도 10a, 도 10b 및 도 11에 도시된 본딩 영역(BA)에 배치될 수 있다.1, the first and second plates P1 and P2 may be bonded to each other by an adhesive 148. For example, the adhesive 148 may be disposed in the bonding area BA shown in FIGS. 10A, 10B and 11.
또는, 도 1에 도시된 렌즈(100)에서 부재(148)와 제2 플레이트(P2)가 일체일 경우, 본딩 영역(BA)에서 본딩에 의해 제1 및 제2 플레이트(P1, P2)가 서로 결합할 수도 있다.Alternatively, when the member 148 and the second plate P2 are integrally formed in the lens 100 shown in FIG. 1, the first and second plates P1 and P2 are connected to each other by bonding in the bonding area BA. Can also be combined.
도 12a 내지 도 12c는 도 1에 도시된 렌즈(100)에서 접착제(148)를 형성하는 제조 공정을 나타내는 사시도이다.12A to 12C are perspective views illustrating a manufacturing process of forming an adhesive 148 in the lens 100 shown in FIG. 1.
도 12a를 참조하면, 제1 플레이트(P1)에서 캐비티(CA)에 비전도성 물질(예를 들어, 비전도성 액체 또는 공기)(120) 및 전도성 물질(110)을 순차적으로 채우고 접착제(148) 제조용 물질(148A)을 캐비티(CA)의 주변에 배치시킨다.Referring to FIG. 12A, a non-conductive material (eg, non-conductive liquid or air) 120 and a conductive material 110 are sequentially filled in the cavity CA in the first plate P1, and the adhesive 148 is prepared. The material 148A is disposed around the cavity CA.
이후, 도 12b를 참조하면, 전도성 물질(110)이 캐비티(CA)에 채워지고 접착제(148) 제조용 물질(148A)이 형성된 제1 플레이트(P1) 위에 제2 플레이트(P2)를 덮는다.Thereafter, referring to FIG. 12B, the conductive material 110 is filled in the cavity CA and the second plate P2 is covered on the first plate P1 on which the adhesive 148 manufacturing material 148A is formed.
이후, 도 12c를 참조하면, 도 12b에 도시된 결과물 위에 열이나 UV(160)를 인가하여 접착제(148) 제조용 물질(148A)을 경화시킴으로써, 접착제(148)에 의해 제1 및 제2 플레이트(P1, P2)가 서로 결합할 수 있다.Thereafter, referring to FIG. 12C, by applying heat or UV 160 on the resultant product shown in FIG. 12B to cure the material 148A for manufacturing the adhesive 148, the first and second plates ( P1, P2) can be combined with each other.
접착제(148)는 도 12a 내지 도 12c에 도시된 제조 방법에 국한되지 않으며, 다른 방법으로도 제조될 수도 있다.The adhesive 148 is not limited to the manufacturing method shown in FIGS. 12A to 12C, and may be manufactured by other methods.
또한, 접착제(148)는 다양한 형태로 제조될 수 있으며, 예를 들어, 사이드 실링 몰딩(SSM:Side Sealing Molding)을 이용하여 제조될 수 있다.In addition, the adhesive 148 may be manufactured in various forms and may be manufactured using, for example, Side Sealing Molding (SSM).
제1 및 제2 플레이트(P1, P2)가 본딩 방식으로 결합할 경우, 전도성 물질(110)과 비전도성 물질(예를 들어, 비전도성 액체 또는 공기)(120)가 열팽창할 때 제1 및 제2 플레이트(P1, P2)의 결합 부위는 팽창되지 않기 때문에 제2 플레이트(P2)로 많은 응력이 부여되어 파괴될 수도 있다.When the first and second plates P1 and P2 are bonded together, the first and second plates are thermally expanded when the conductive material 110 and the non-conductive material (eg, non-conductive liquid or air) 120 are thermally expanded. 2 Since the bonding portion of the plates P1 and P2 does not expand, a lot of stress is applied to the second plate P2 and may be destroyed.
그러나, 도 1에 도시된 바와 같이 제1 및 제2 플레이트(P1, P2)가 접착제(148)에 의해 결합할 경우, 전도성 물질(110)과 비전도성 물질(예를 들어, 비전도성 액체 또는 공기)(120)이 열팽창할 때, 화살표로 표시한 방향(A1)으로 접착제(148)의 부피가 팽창함으로써, 제2 플레이트(P2)에 가해지는 응력을 최대한 감소시킬 수 있다. 이로 인해, 전도성 물질(110)과 비전도성 물질(예를 들어, 비전도성 액체 또는 공기)(120)가 열팽창할 때 제2 플레이트(P2)가 평행 이동할 수 있어, 광학적 성능이 악화됨을 방지하거나 최소화시킬 수 있다. 이를 위해, 실시 예에 의하면, 접착제(148)의 열팽창률은 제2 플레이트(P2)의 열팽창률보다 클 수 있다.However, as shown in FIG. 1, when the first and second plates P1 and P2 are bonded by the adhesive 148, the conductive material 110 and the non-conductive material (for example, a non-conductive liquid or air When) 120 is thermally expanded, the volume of the adhesive 148 expands in the direction A1 indicated by the arrow, so that the stress applied to the second plate P2 can be reduced as much as possible. Accordingly, when the conductive material 110 and the non-conductive material (eg, non-conductive liquid or air) 120 are thermally expanded, the second plate P2 may move in parallel, thereby preventing or minimizing deterioration in optical performance. I can make it. To this end, according to the embodiment, the coefficient of thermal expansion of the adhesive 148 may be greater than that of the second plate P2.
전술한 실시 예에 의한 렌즈(100)는 다양한 분야에 적용될 수 있다.The lens 100 according to the above-described embodiment can be applied to various fields.
이하, 전술한 렌즈를 포함하는 실시 예에 의한 렌즈 어셈블리 및 카메라 모듈의 구성 및 동작을 첨부된 도면을 참조하여 다음과 같이 설명한다.Hereinafter, a configuration and operation of a lens assembly and a camera module according to an embodiment including the above-described lens will be described as follows with reference to the accompanying drawings.
도 13은 실시 예에 의한 카메라 모듈(200)의 블럭도를 나타낸다.13 is a block diagram of a camera module 200 according to an embodiment.
실시 예에 의한 카메라 모듈(200)은 렌즈 어셈블리(210) 및 이미지 센서(220)를 포함할 수 있다.The camera module 200 according to the embodiment may include a lens assembly 210 and an image sensor 220.
실시 예에 의한 렌즈 어셈블리(210)는 적어도 하나의 제1 렌즈 및 제2 렌즈(214)를 포함할 수 있다. 여기서, 제2 렌즈(214)는 도 1에 도시된 렌즈(100)를 의미할 수 있다.The lens assembly 210 according to the embodiment may include at least one first lens and a second lens 214. Here, the second lens 214 may mean the lens 100 illustrated in FIG. 1.
적어도 하나의 제1 렌즈는 제2 렌즈(214)와 광축(LX)으로 정렬될 수 있다. 예를 들어, 적어도 하나의 제1 렌즈는 도 13에 예시된 바와 같이, 제1 렌즈부(212) 및 제2 렌즈부(216)를 포함할 수 있다. 제1 및 제2 렌즈부(212, 216) 각각은 적어도 하나의 렌즈를 포함할 수 있다. 제1 또는 제2 렌즈부(212, 216) 중 적어도 하나는 생략될 수도 있다.At least one first lens may be aligned with the second lens 214 along the optical axis LX. For example, as illustrated in FIG. 13, at least one first lens may include a first lens unit 212 and a second lens unit 216. Each of the first and second lens units 212 and 216 may include at least one lens. At least one of the first or second lens units 212 and 216 may be omitted.
복수의 제1 렌즈 각각은 고체 렌즈일 수도 있고 액체 렌즈일 수도 있으며, 실시 예에 의한 렌즈 어셈블리(210)는 렌즈의 특정한 형태에 국한되지 않는다.Each of the plurality of first lenses may be a solid lens or a liquid lens, and the lens assembly 210 according to the embodiment is not limited to a specific shape of the lens.
도 13의 경우 제2 렌즈(214)가 제1 렌즈부(212)와 제2 렌즈부(216) 사이에 배치된 것으로 예시되어 있지만, 실시 예는 이에 국한되지 않는다. 즉, 다른 실시 예에 의하면, 제2 렌즈(214)는 제1 렌즈부(212)의 위에 배치될 수도 있고, 제2 렌즈부(216)의 아래에 배치될 수도 있다. 이와 같이, 제2 렌즈(214)는 복수의 제1 렌즈 사이, 복수의 제1 렌즈 위 및 복수의 제1 렌즈 아래 중 한 곳에 배치될 수 있다.In the case of FIG. 13, it is illustrated that the second lens 214 is disposed between the first lens unit 212 and the second lens unit 216, but the embodiment is not limited thereto. That is, according to another embodiment, the second lens 214 may be disposed above the first lens unit 212 or may be disposed below the second lens unit 216. As such, the second lens 214 may be disposed between the plurality of first lenses, above the plurality of first lenses, and below the plurality of first lenses.
또한, 제2 렌즈(214)는 복수의 제1 렌즈 중 어느 하나의 렌즈의 역할도 수행할 수 있다.In addition, the second lens 214 may also serve as any one of the plurality of first lenses.
또한, 이미지 센서(220)는 제2 렌즈(214)의 개구(예를 들어, 도 1에 도시된 제1 및 제2 개구(O1, O2))와 적어도 하나의 제1 렌즈를 통과한 광을 수신하여 이미지 데이터를 생성할 수 있다. 이를 위해, 이미지 센서(220)는 제2 렌즈(214) 및 적어도 하나의 제1 렌즈(예를 들어, 도 13에 도시된 212, 216)와 광축(LX)으로 정렬될 수 있다.In addition, the image sensor 220 transmits light passing through the opening of the second lens 214 (for example, the first and second openings O1 and O2 shown in FIG. 1) and at least one first lens. It can receive and generate image data. To this end, the image sensor 220 may be aligned with the second lens 214 and at least one first lens (eg, 212 and 216 shown in FIG. 13) along the optical axis LX.
또한, 도 13에 도시된 바와 같이, 제2 렌즈(214)가 복수의 제1 렌즈 중 어느 하나의 대상 렌즈의 역할을 수행할 수 있기 때문에, 렌즈 어셈블리(210)에 포함된 렌즈의 개수를 줄일 수 있다. 따라서, 렌즈 어셈블리(210)의 크기가 감소할 수 있다.In addition, as shown in FIG. 13, since the second lens 214 can serve as any one of the plurality of first lenses, the number of lenses included in the lens assembly 210 is reduced. I can. Accordingly, the size of the lens assembly 210 may be reduced.
이하, 비교 례 및 실시 예에 의한 렌즈 및 렌즈를 포함하는 카메라 모듈을 첨부된 도면을 참조하여 다음과 같이 설명한다.Hereinafter, a lens and a camera module including a lens according to comparative examples and embodiments will be described with reference to the accompanying drawings.
도 14a는 비교 례에 의한 카메라 모듈의 단면도를 나타내고, 도 14b는 실시 예에 의한 렌즈의 단면도를 나타낸다.14A is a cross-sectional view of a camera module according to a comparative example, and FIG. 14B is a cross-sectional view of a lens according to the embodiment.
도 14a에 도시된 비교 례에 의한 카메라 모듈은 제1 렌즈부(212), 액체 렌즈(10), 제2 렌즈부(216) 및 이미지 센서(220)를 포함하고, 도 14b에 도시된 실시 예에 의한 카메라 모듈은 제1 렌즈부(212), 제2 렌즈(214), 제2 렌즈부(216) 및 이미지 센서(220)를 포함한다.The camera module according to the comparative example shown in FIG. 14A includes a first lens unit 212, a liquid lens 10, a second lens unit 216, and an image sensor 220, and the embodiment shown in FIG. 14B The camera module by includes a first lens unit 212, a second lens unit 214, a second lens unit 216, and an image sensor 220.
도 14a에 도시된 제1 렌즈부(212), 제2 렌즈부(216) 및 이미지 센서(220)는 도 13에 도시된 제1 렌즈부(212) 제2 렌즈부(216) 및 이미지 센서(220)에 각각 해당하므로, 동일한 참조부호를 사용하였으며 중복되는 설명을 생략한다. 도 14a에 도시된 비교 례에 의한 카메라 모듈의 액체 렌즈(10)는 도 1에 도시된 실시 예에 의한 렌즈(100)와 동일한 구성을 갖되, 제1 내지 제3 플레이트(P1 내지 P3) 각각의 특성이 다르고, 전도성 물질(110) 대신에 물 기반의 전도성 액체(이하, ‘LQ1’이라 한다)를 포함하고, 비전도성 물질(120)로서 오일과 같은 비전도성 액체(이하, ‘LQ2’라 한다)가 배치된다.The first lens unit 212, the second lens unit 216, and the image sensor 220 shown in FIG. 14A are the first lens unit 212, the second lens unit 216, and the image sensor shown in FIG. 220), the same reference numerals are used, and duplicate descriptions are omitted. The liquid lens 10 of the camera module according to the comparative example shown in FIG. 14A has the same configuration as the lens 100 according to the embodiment shown in FIG. 1, but each of the first to third plates P1 to P3 The characteristics are different, and instead of the conductive material 110, a water-based conductive liquid (hereinafter, referred to as'LQ1') is included, and as the non-conductive material 120, a non-conductive liquid such as oil (hereinafter, referred to as'LQ2') ) Is placed.
도 14b에 도시된 제2 렌즈(214)는 도 1 또는 도 13에 도시된 렌즈(100 214) 중 어느 하나일 수 있다.The second lens 214 shown in FIG. 14B may be any one of the lenses 100 214 shown in FIG. 1 or 13.
또한, 도 14a 및 도 14b 각각에 도시된 이미지 센서(220)는 도 13에 도시된 이미지 센서(220)의 결상면에 해당할 수 있다.In addition, the image sensor 220 shown in each of FIGS. 14A and 14B may correspond to an imaging surface of the image sensor 220 shown in FIG. 13.
비교 례에 의한 카메라 모듈은 2개의 액체(LQ1, LQ2) 사이의 계면의 구조가 전압을 통해 바뀌는 액체 렌즈(10)를 포함하므로, 다양한 환경에서 사용이 제약된다. 제1 액체(LQ1)는 물 기반의 전해액으로서, 물에 소금과 같은 이온을 일정 함량 이상으로 넣어서 구현된다. 물기반의 전해액이 0℃에서 어는점 혹은 녹는점을 갖고 100℃에서 끓는점을 가지며, 1.23V의 전압이 걸리면 분해되는 물의 근본적인 물질 특성으로 인해 다양한 환경에서 사용상 제약을 갖는다. 따라서, 물기반의 전해액을 전도성 액체(LQ1)로 사용하는 액체 렌즈(10)는 100℃ 이상의 고온과 0℃ 이하의 저온에서 사용될 수 없다.The camera module according to the comparative example includes the liquid lens 10 in which the structure of the interface between the two liquids LQ1 and LQ2 is changed through voltage, and thus its use in various environments is restricted. The first liquid LQ1 is a water-based electrolyte, and is implemented by adding ions such as salt to water in a certain amount or more. Water-based electrolytes have a freezing point or melting point at 0°C and a boiling point at 100°C. Due to the fundamental material properties of water that decomposes when a voltage of 1.23V is applied, use in various environments is limited. Therefore, the liquid lens 10 using the water-based electrolyte as the conductive liquid LQ1 cannot be used at a high temperature of 100°C or higher and a low temperature of 0°C or lower.
또한, 상온보다 높은 온도에서는 물의 급격한 팽창계수로 인해서 전도성 액체(LQ1)가 쉽게 팽창되므로 온도에 따라 제2 플레이트(P2)에 만곡이 발생하여 광학적 성능이 저하된다. 예를 들어, 액체 렌즈(10)의 온도가 30℃ 내지 80℃일 경우, 서로 다른 제1 및 제2 액체(LQ1, LQ2)의 팽창으로 인해 제2 플레이트(P2)가 응력을 받아 변형되거나 심지어 파괴될 수도 있다. 이를 해소하기 위해, 제2 플레이트(P2)의 두께를 감소시켜 제2 플레이트(P2)에 걸리는 응력을 최소화시킬 수 있다. 그러나, 제2 플레이트(P2)의 두께를 줄이기 위해 식각 공정이 추가될 경우, 제조 비용과 제조 시간이 증가하고 액체 렌즈(10)의 구조가 복잡해질 수도 있다.In addition, at a temperature higher than room temperature, the conductive liquid LQ1 easily expands due to the rapid expansion coefficient of water, so that the second plate P2 is curved according to the temperature, thereby deteriorating optical performance. For example, when the temperature of the liquid lens 10 is 30 ℃ to 80 ℃, due to the expansion of the first and second liquids (LQ1, LQ2) different from each other, the second plate (P2) is deformed due to stress or even It may be destroyed. In order to solve this, the stress applied to the second plate P2 may be minimized by reducing the thickness of the second plate P2. However, when an etching process is added to reduce the thickness of the second plate P2, manufacturing cost and manufacturing time may increase, and the structure of the liquid lens 10 may be complicated.
또한, 액체 렌즈(10)의 온도가 상승함에 따라 전도성 액체(LQ1)와 비전도성 액체(LQ2)가 팽창하여 제2 플레이트(P2)의 곡률이 점점 낮아지고 이는 액체 렌즈(10)로서 만곡(230)을 발생시켜 해상력 저하 같은 광학적인 성능의 악화를 가져올 수 있다.In addition, as the temperature of the liquid lens 10 increases, the conductive liquid LQ1 and the non-conductive liquid LQ2 expand, so that the curvature of the second plate P2 gradually decreases, which is curved as the liquid lens 10. ), which can lead to deterioration in optical performance, such as a decrease in resolution.
또한, 비교 례에 의한 액체 렌즈(10)의 경우, 물의 휘발성 및 낮은 끓는점으로 인해서 온도를 올리면, 액체의 팽창에 의한 응력이 얇은 두께를 갖는 제2 플레이트(P2)에만 굴곡이 치중되어 광학적 성능이 매우 악화될 수 있다.In addition, in the case of the liquid lens 10 according to the comparative example, when the temperature is raised due to the volatility of water and the low boiling point, the stress due to the expansion of the liquid is concentrated only on the second plate P2 having a thin thickness, and optical performance is reduced. It can get very bad.
반면에, 실시 예에 의한 렌즈(100, 214)의 경우, 물기반의 전해액 대신에 물기반의 전해액보다 온도에 따른 팽창률이 낮은 상온 이온성 액체, 공용매를 포함하는 상온 이온성 액체, 상온 이온성 액체와 고분자를 포함하는 겔형 전해질막 또는 물 기반 액체 전해질과 수용성 고분자를 포함하는 겔형 전해질막을 사용하므로, 렌즈(100, 214) 자체의 열 또는 주변의 온도 등으로 인해 온도가 변하거나 고온일 때에도 제2 플레이트(P2)의 변형이 최소화되고 이에 따라 광학 성능이 개선될 수 있다.On the other hand, in the case of the lenses 100 and 214 according to the embodiment, a room temperature ionic liquid having a lower expansion rate according to temperature than a water-based electrolyte solution, a room temperature ionic liquid including a co-solvent, and room temperature ions Since a gel-type electrolyte membrane containing a liquid and a polymer or a gel-type electrolyte membrane containing a water-based liquid electrolyte and a water-soluble polymer is used, even when the temperature changes due to the heat of the lenses (100, 214) or the surrounding temperature, etc. Deformation of the second plate P2 is minimized, and thus optical performance may be improved.
또한, 액체 전해질을 사용하는 비교 례와 달리, 제3 및 제4 실시 예에서와 같이, 전도성 물질(110)로서 겔형 전해질 막을 사용할 경우, 렌즈(100)가 중력으로부터 받는 영향이 최소화될 수 있다. 게다가, 제3 및 제4 실시 예의 경우, 오일과 같은 비전도성 액체를 사용하지 않을 수도 있으므로, 렌즈(100, 214)의 제조 방법이 간단해지고 제조 원가가 줄어들 수 있다.In addition, unlike the comparative example using a liquid electrolyte, as in the third and fourth embodiments, when a gel-type electrolyte membrane is used as the conductive material 110, the influence of the lens 100 from gravity can be minimized. In addition, in the case of the third and fourth embodiments, since a non-conductive liquid such as oil may not be used, the manufacturing method of the lenses 100 and 214 may be simplified and the manufacturing cost may be reduced.
또한, 제3 및 제4 실시 예에서 전도성 물질(110)로서 사용되는 겔형 고분자막은 투명도가 95%이상으로 매우 높으며 표면 거칠기도 조절이 가능하여 매우 평탄하게 만들 수 있는 잇점을 갖는다.In addition, the gel-type polymer film used as the conductive material 110 in the third and fourth embodiments has an advantage of being very flat because the transparency is very high, 95% or more, and the surface roughness is adjustable.
또한, 비교 례에 의한 액체 렌즈(10)의 경우 사용될 수 있는 온도 구간이 물의 온도 구간인 0℃ 내지 100℃인 반면, 실시 예에 의한 렌즈(100, 214)의 경우 -80℃ 내지 200℃의 넓은 온도 구간에서 사용될 수 있다.In addition, in the case of the liquid lens 10 according to the comparative example, the temperature range that can be used is 0°C to 100°C, which is the temperature range of water, whereas the lenses 100 and 214 according to the embodiment have a temperature range of -80°C to 200°C. It can be used in a wide temperature range.
또한, 비교 례에 의한 물기반의 액체 렌즈(10)의 경우, 전기적으로 매우 낮은 1.23V의 전압에서 분해될 수 있어, 전기적 구동 범위가 매우 낮은 반면, 실시 예에 의한 렌즈(100, 214)는 전기적 구동 범위가 매우 높은 잇점을 갖는다.In addition, in the case of the water-based liquid lens 10 according to the comparative example, it can be electrically decomposed at a very low voltage of 1.23V, so that the electrical drive range is very low, whereas the lenses 100 and 214 according to the embodiment The electrical drive range has a very high advantage.
또한, 전도성 물질(110) 및 비전도성 물질(예를 들어, 비전도성 액체 또는 공기)의 열팽창이 제2 플레이트(P2)에 미치는 영향을 최소화하기 위해, 제3 플레이트(P3)의 제3 두께(T3)를 제2 플레이트(P2)의 제1 두께(T1)와 유사하게 또는 동등하게 구현하거나, 제2 플레이트(P2)가 신축부(EP)를 갖도록 구현하거나, 본딩 영역(BA)의 외곽 또는 내각 중 하나가 다각형 평면 형상을 갖도록 구현하거나, 본딩 대신에 접착제(148)에 의해 제1 및 제2 플레이트(P1, P2)를 결합시킬 수 있다. 따라서, 도 14b에 도시된 바와 같이 다양한 온도 또는 고온에서 렌즈(214)의 제2 플레이트(P2)의 변형이 최소화되고 이에 따라 광학성능이 개선될 수 있다.In addition, in order to minimize the effect of the thermal expansion of the conductive material 110 and the non-conductive material (for example, non-conductive liquid or air) on the second plate P2, the third thickness of the third plate P3 ( T3) is implemented to be similar to or equal to the first thickness T1 of the second plate P2, or implemented so that the second plate P2 has an elastic portion EP, or the outer edge of the bonding area BA or One of the cabinets may be implemented to have a polygonal planar shape, or the first and second plates P1 and P2 may be bonded by an adhesive 148 instead of bonding. Accordingly, as shown in FIG. 14B, deformation of the second plate P2 of the lens 214 at various temperatures or high temperatures may be minimized, and thus optical performance may be improved.
한편, 전술한 실시 예에 의한 렌즈를 포함하는 카메라 모듈(200)을 이용하여 광학 기기를 구현할 수 있다. 여기서, 광학 기기는 광 신호를 가공하거나 분석할 수 있는 장치를 포함할 수 있다. 광학 기기의 예로는 카메라/비디오 장치, 망원경 장치, 현미경 장치, 간섭계 장치, 광도계 장치, 편광계 장치, 분광계 장치, 반사계 장치, 오토콜리메이터 장치, 렌즈미터 장치 등이 있을 수 있으며, 렌즈 어셈블리를 포함할 수 있는 광학 기기에 본 실시 예를 적용할 수 있다.Meanwhile, an optical device may be implemented using the camera module 200 including a lens according to the above-described embodiment. Here, the optical device may include a device capable of processing or analyzing an optical signal. Examples of optical devices may include a camera/video device, a telescope device, a microscope device, an interferometer device, a photometer device, a polarimeter device, a spectrometer device, a reflectometer device, an autocollimator device, a lens meter device, and the like, including a lens assembly. This embodiment can be applied to an optical device capable of.
또한, 광학 기기는 스마트폰, 노트북 컴퓨터, 태블릿 컴퓨터 등의 휴대용 장치로 구현될 수 있다. 이러한 광학 기기는 카메라 모듈(200), 영상을 출력하는 디스플레이부(미도시), 카메라 모듈(200)에 전원을 공급하는 배터리(미도시), 카메라 모듈(200)과 디스플레이부와 배터리를 실장하는 본체 하우징을 포함할 수 있다. 광학 기기는 타 기기와 통신할 수 있는 통신모듈과, 데이터를 저장할 수 있는 메모리부를 더 포함할 수 있다. 통신 모듈과 메모리부 역시 본체 하우징에 실장될 수 있다.In addition, the optical device may be implemented as a portable device such as a smart phone, a notebook computer, or a tablet computer. These optical devices include a camera module 200, a display unit (not shown) that outputs an image, a battery (not shown) that supplies power to the camera module 200, a camera module 200, a display unit, and a battery. It may include a body housing. The optical device may further include a communication module capable of communicating with other devices and a memory unit capable of storing data. The communication module and the memory unit may also be mounted on the main body housing.
이하, 실시 예에 의한 렌즈를 포함하는 광학 기기(300)를 첨부된 도면을 참조하여 설명하지만, 실시 예에 의한 광학 기기(300)는 이에 국한되지 않는다.Hereinafter, an optical device 300 including a lens according to an embodiment will be described with reference to the accompanying drawings, but the optical device 300 according to the embodiment is not limited thereto.
도 15는 실시 예에 의한 광학 기기(300)의 개략적인 블럭도를 나타낸다.15 is a schematic block diagram of an optical device 300 according to an embodiment.
광학 기기(300)는 프리즘 유닛(310), 렌즈(320) 및 주밍(zooming)부(330)를 포함할 수 있다. 여기서, 렌즈(320)은 전술한 렌즈(100, 214)에 해당할 수 있다.The optical device 300 may include a prism unit 310, a lens 320, and a zooming unit 330. Here, the lens 320 may correspond to the lenses 100 and 214 described above.
프리즘 유닛(310)은 IN으로 표기된 방향으로 입사되는 광의 경로를 렌즈(320)의 광축(LX)으로 변경하는 역할을 한다.The prism unit 310 serves to change the path of light incident in the direction indicated by IN to the optical axis LX of the lens 320.
프리즘 유닛(310)에서 광로가 변경된 광에 대해 렌즈(320)는 OIS 및 AF 기능을 수행하여 주밍부(330)로 출사할 수 있다.The lens 320 may perform OIS and AF functions for light whose optical path is changed in the prism unit 310 and output to the zooming unit 330.
주밍부(330)는 렌즈(320)를 경유한 광을 줌 인/줌 아웃한다. 이를 위해, 주밍부(330)는 복수의 렌즈(320)를 광축(LX)과 나란한 방향(예를 들어, z축 방향)으로 이동시키는 액츄에이터(미도시)를 포함할 수 있다.The zooming unit 330 zooms in/out of the light that has passed through the lens 320. To this end, the zooming unit 330 may include an actuator (not shown) that moves the plurality of lenses 320 in a direction parallel to the optical axis LX (eg, a z-axis direction).
전술한 다양한 실시 예들은 본 발명의 목적을 벗어나지 않고, 서로 상반되지 않은 한 서로 조합될 수도 있다. 또한, 전술한 다양한 실시 예들 중에서 어느 실시 예의 구성 요소가 상세히 설명되지 않은 경우 다른 실시 예의 동일한 참조부호를 갖는 구성 요소에 대한 설명이 준용될 수 있다.The various embodiments described above may be combined with each other as long as they are not contradictory to each other without departing from the object of the invention. In addition, when a component of one embodiment is not described in detail among the various embodiments described above, the description of the component having the same reference numerals of the other embodiment may apply mutatis mutandis.
이상에서 실시 예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시 예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시 예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.The embodiments have been described above, but these are only examples and do not limit the present invention, and those of ordinary skill in the field to which the present invention belongs are not illustrated above within the scope not departing from the essential characteristics of the present embodiment. It will be seen that various modifications and applications are possible. For example, each component specifically shown in the embodiment can be modified and implemented. And differences related to these modifications and applications should be construed as being included in the scope of the present invention defined in the appended claims.
발명의 실시를 위한 형태는 전술한 "발명의 실시를 위한 최선의 형태"에서 충분히 설명되었다.The mode for carrying out the invention has been sufficiently described in the above-described "Best mode for carrying out the invention."
실시 예에 의한 렌즈 및 이 렌즈를 포함하는 렌즈 어셈블리는 카메라/비디오 장치, 망원경 장치, 현미경 장치, 간섭계 장치, 광도계 장치, 편광계 장치, 분광계 장치, 반사계 장치, 오토콜리메이터 장치, 렌즈미터 장치, 스마트폰, 노트북 컴퓨터, 태블릿 컴퓨터 등의 휴대용 장치에 이용될 수 있다.The lens according to the embodiment and the lens assembly including the lens include a camera/video device, a telescope device, a microscope device, an interferometer device, a photometer device, a polarimeter device, a spectrometer device, a reflectometer device, an autocollimator device, a lens meter device, and a smart device. It can be used in portable devices such as phones, notebook computers, and tablet computers.

Claims (10)

  1. 캐비티를 포함하는 제1 플레이트;A first plate including a cavity;
    상기 캐비티에 배치되는 상온 이온성 액체;Room temperature ionic liquid disposed in the cavity;
    상기 캐비티에 배치되고 상기 상온 이온성 액체에 접하는 비전도성 액체;A non-conductive liquid disposed in the cavity and in contact with the room temperature ionic liquid;
    상기 제1 플레이트 상에 배치되고 상기 상온 이온성 액체와 접촉하지 않는 제1 전극; 및A first electrode disposed on the first plate and not in contact with the room temperature ionic liquid; And
    상기 제1 플레이트 상에 배치되고 상기 상온 이온성 액체와 접촉하는 제2 전극을 포함하는 렌즈.A lens including a second electrode disposed on the first plate and in contact with the room temperature ionic liquid.
  2. 제1 항에 있어서, 상기 상온 이온성 액체는 다음 화학식들 중 적어도 하나를 포함하는 렌즈.The lens of claim 1, wherein the room temperature ionic liquid contains at least one of the following formulas.
    Figure PCTKR2020006984-appb-I000006
    Figure PCTKR2020006984-appb-I000006
  3. 캐비티를 포함하는 제1 플레이트;A first plate including a cavity;
    상기 캐비티에 배치되는 겔형 전해질막;A gel electrolyte membrane disposed in the cavity;
    상기 겔형 전해질막과 접촉하고 상기 캐비티에 배치되는 비전도성 물질;A non-conductive material in contact with the gel electrolyte membrane and disposed in the cavity;
    상기 제1 플레이트 상에 배치되고 상기 겔형 전해질막과 접촉하지 않는 제1 전극; 및A first electrode disposed on the first plate and not in contact with the gel electrolyte membrane; And
    상기 제1 플레이트 상에 배치되고 상기 겔형 전해질막과 접촉하는 제2 전극을 포함하는 렌즈.A lens disposed on the first plate and including a second electrode in contact with the gel electrolyte membrane.
  4. 제3 항에 있어서,The method of claim 3,
    상기 비전도성 물질은 비전도성 액체를 포함하는 렌즈.The non-conductive material is a lens comprising a non-conductive liquid.
  5. 제3 항에 있어서,The method of claim 3,
    상기 비전도성 물질은 공기를 포함하는 렌즈.The non-conductive material is a lens containing air.
  6. 제3 항에 있어서, The method of claim 3,
    상기 겔형 전해질막은 상온 이온성 액체 또는 고분자를 포함하는 렌즈.The gel electrolyte membrane is a lens containing an ionic liquid or a polymer at room temperature.
  7. 제6 항에 있어서, 상기 상온 이온성 액체는 이미다졸륨(Imidazolium) 기반 이온성 액체인 렌즈.The lens of claim 6, wherein the room temperature ionic liquid is an imidazolium based ionic liquid.
  8. 제7 항에 있어서, 상기 상온 이온성 액체는 다음 화학식들 중에서 선택되는 적어도 하나의 구조를 가지는 이온성 액체를 포함하는 렌즈. The lens of claim 7, wherein the room temperature ionic liquid includes an ionic liquid having at least one structure selected from the following formulas.
    Figure PCTKR2020006984-appb-I000007
    Figure PCTKR2020006984-appb-I000007
    (1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide; [EMIM][TFSI])(1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide; [EMIM][TFSI])
    Figure PCTKR2020006984-appb-I000008
    Figure PCTKR2020006984-appb-I000008
    (1-Butyl-3-methylimidazolium hexafluorophosphate; [BMIM][PF6])(1-Butyl-3-methylimidazolium hexafluorophosphate; [BMIM][PF 6 ])
    Figure PCTKR2020006984-appb-I000009
    Figure PCTKR2020006984-appb-I000009
    (1-ethyl-3-methylimidazolium n-octylsulfate; [EMIM][OctOSO3])(1-ethyl-3-methylimidazolium n-octylsulfate; [EMIM][OctOSO 3 ])
    Figure PCTKR2020006984-appb-I000010
    Figure PCTKR2020006984-appb-I000010
    (1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide; [BMIM][TFSI])(1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide; [BMIM][TFSI])
  9. 제3 항에 있어서, 상기 겔형 전해질막은The method of claim 3, wherein the gel electrolyte membrane
    물기반 액체 전해질 및 수용성 고분자를 포함하는 렌즈.Lens containing water-based liquid electrolyte and water-soluble polymer.
  10. 제1 렌즈; 및A first lens; And
    상기 제1 렌즈와 광축으로 정렬된 적어도 하나의 제2 렌즈를 포함하고,Including at least one second lens aligned with the first lens and the optical axis,
    상기 제1 렌즈는 제1 항 또는 제3 항에 기재된 렌즈를 포함하는 렌즈 어셈블리.The lens assembly including the lens according to claim 1 or 3, wherein the first lens.
PCT/KR2020/006984 2019-05-31 2020-05-29 Lens and lens assembly comprising same WO2020242243A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0064207 2019-05-31
KR1020190064207A KR20200137590A (en) 2019-05-31 2019-05-31 Lens and lens assembly including the lens

Publications (1)

Publication Number Publication Date
WO2020242243A1 true WO2020242243A1 (en) 2020-12-03

Family

ID=73554142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/006984 WO2020242243A1 (en) 2019-05-31 2020-05-29 Lens and lens assembly comprising same

Country Status (2)

Country Link
KR (1) KR20200137590A (en)
WO (1) WO2020242243A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116626788A (en) * 2023-07-24 2023-08-22 季华实验室 Electrowetting zoom lens based on high-refractive-index ionic liquid

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006064951A (en) * 2004-08-26 2006-03-09 Fuji Photo Film Co Ltd Optical element, lens unit and imaging apparatus
KR20060082776A (en) * 2005-01-13 2006-07-19 삼성전기주식회사 Variable focous liquid lens with reduced driving voltage
US20090002838A1 (en) * 2006-08-10 2009-01-01 Kazuo Yokoyama Varifocal Lens Device
KR20110115961A (en) * 2010-04-16 2011-10-24 소니 주식회사 Optical device and housing
CN102466825A (en) * 2010-11-16 2012-05-23 中国科学院兰州化学物理研究所 Electrowetting zoom lens based on ion liquid

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8922901B2 (en) 2013-05-24 2014-12-30 Invenios Inc Fabrication of liquid lens arrays
US9952358B2 (en) 2015-04-11 2018-04-24 Corning Incorporated Method to prevent emulsion in a liquid lens

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006064951A (en) * 2004-08-26 2006-03-09 Fuji Photo Film Co Ltd Optical element, lens unit and imaging apparatus
KR20060082776A (en) * 2005-01-13 2006-07-19 삼성전기주식회사 Variable focous liquid lens with reduced driving voltage
US20090002838A1 (en) * 2006-08-10 2009-01-01 Kazuo Yokoyama Varifocal Lens Device
KR20110115961A (en) * 2010-04-16 2011-10-24 소니 주식회사 Optical device and housing
CN102466825A (en) * 2010-11-16 2012-05-23 中国科学院兰州化学物理研究所 Electrowetting zoom lens based on ion liquid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116626788A (en) * 2023-07-24 2023-08-22 季华实验室 Electrowetting zoom lens based on high-refractive-index ionic liquid
CN116626788B (en) * 2023-07-24 2023-11-24 季华实验室 Electrowetting zoom lens based on high-refractive-index ionic liquid

Also Published As

Publication number Publication date
KR20200137590A (en) 2020-12-09

Similar Documents

Publication Publication Date Title
WO2020091307A1 (en) Variable low resistance line nonvolatile memory device and method for operating same
WO2019146974A1 (en) Camera module
WO2018190506A1 (en) Liquid lens control circuit, camera module and liquid lens control method
WO2019221541A1 (en) Camera module
WO2019088353A1 (en) Camera module including liquid lens and optical instrument
WO2020122594A1 (en) Lens assmebly and camera module including same
WO2018135851A1 (en) Liquid lens, and camera module and optical device comprising same
WO2018021740A1 (en) Dual camera module and optical instrument
WO2014171799A1 (en) Mems device
WO2020242243A1 (en) Lens and lens assembly comprising same
WO2019147004A1 (en) Camera module
WO2020242039A1 (en) Liquid lens
WO2019225984A1 (en) Liquid lens, and camera module and optical instrument comprising same
WO2021071320A1 (en) Imaging lens
WO2021054725A1 (en) Camera module
WO2018182204A1 (en) Dual lens driving apparatus and camera module
WO2021125451A1 (en) Electro-responsive gel lens having automatic multifocal and image stabilization functions
WO2020242135A1 (en) Liquid lens and lens assembly comprising liquid lens
WO2019146980A1 (en) Liquid lens module, lens assembly comprising same, and camera module comprising lens assembly
WO2019225975A1 (en) Liquid lens, and camera module and optical device comprising same
WO2019199130A1 (en) Lens driving device and camera module including same
WO2018080279A1 (en) Liquid lens, camera module and optical device comprising same
WO2021054740A1 (en) Camera module
WO2020246770A1 (en) Liquid lens control device for controlling liquid lens module comprising liquid lens, control method therefor, and camera module comprising device
WO2019225973A1 (en) Liquid lens and lens assembly including same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20813417

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20813417

Country of ref document: EP

Kind code of ref document: A1