WO2020242225A1 - COMPOSITION FOR PREVENTING OR TREATING PROTEIN CONFORMATIONAL DISORDERS, COMPRISING IRE1α KINASE ACTIVATOR AS ACTIVE INGREDIENT - Google Patents

COMPOSITION FOR PREVENTING OR TREATING PROTEIN CONFORMATIONAL DISORDERS, COMPRISING IRE1α KINASE ACTIVATOR AS ACTIVE INGREDIENT Download PDF

Info

Publication number
WO2020242225A1
WO2020242225A1 PCT/KR2020/006933 KR2020006933W WO2020242225A1 WO 2020242225 A1 WO2020242225 A1 WO 2020242225A1 KR 2020006933 W KR2020006933 W KR 2020006933W WO 2020242225 A1 WO2020242225 A1 WO 2020242225A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
cftr
composition
ire1α
ups
Prior art date
Application number
PCT/KR2020/006933
Other languages
French (fr)
Korean (ko)
Inventor
이민구
박학
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Publication of WO2020242225A1 publication Critical patent/WO2020242225A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/4965Non-condensed pyrazines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/506Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/16Otologicals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/502Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects
    • G01N33/5023Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects on expression patterns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/91Transferases (2.)
    • G01N2333/912Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)

Definitions

  • the present invention relates to a composition for the prevention or treatment of abnormal protein form diseases comprising an IRE1 ⁇ kinase activator, for example, CSTMP as an active ingredient.
  • Deficiency in protein folding and migration is a common pathogenesis mechanism that inhibits the homeostasis of living organisms and contributes to a variety of human diseases (1-3).
  • secreted proteins including transmembrane proteins, are synthesized in ribosomes and then migrated to the endoplasmic reticulum (ER).
  • ER contains a variety of chaperones and folding catalysts to ensure proper folding of proteins (4).
  • the secreted proteins that enable the ER quality control mechanism come out of the endoplasmic reticulum (ER), move to the Golgi, and eventually to the plasma membrane or extracellular medium.
  • ER-associated degradation In contrast, incompletely folded proteins remain in the ER and are selectively targeted with ER-associated degradation (ERAD) in order to prevent the risk of abnormal proteins that occur when they exit the ER (5).
  • ESD ER-associated degradation
  • the misfolded protein cannot enter the normal Golgi-mediated protein secretion pathway, ultimately causing cystic fibrosis (CF) and congenital hearing loss, respectively.
  • CFTR which has anion channel activity, is a cyclic AMP-regulated transport protein and conducts Cl - and HCO 3 - on the apical surface (tip surface) of epithelial cells in secretory organs including airways, pancreas, small intestines, and exocrine glands ( 6).
  • CFTR is one of the qualitative management systems of ER and has two N-linked glycosylation sites that are initially core glycosylated in the ER (band B) and mediate the interaction with the ER lectin chaperone (7).
  • band C After migration to the Golgi, these glycosylation sites are complex-glycosylated (band C), and the complex-glycosylated CFTR is directed to the adhesiv surface of the epithelial tissue (8).
  • the mutation in which the 508th phenylalanine residue is deleted ( ⁇ F508) is the most common disease-causing CFTR mutation (9), causing protein misfolding, ER retention, and degradation by ERAD (10).
  • the ⁇ F508-CFTR protein remains in a core-glycosylated form in the ER, and only a small amount is expressed on the plasma membrane surface (11).
  • Is a transmembrane protein of transporting anions such as (12) -, I - - or HCO 3 gave pen is Cl in the inner ear (inner ear), and thyroid follicles.
  • the loss of function of fendrin due to genetic mutations can be the cause of deafness with an enlarged vestibular aqueduct (DFNB4) and Pendrid syndrome (PDS).
  • DFNB4 vestibular aqueduct
  • PDS Pendrid syndrome
  • the most common disease-causing mutation of pendrin, p.H723R (His723Arg) induces protein misfolding, ER retention, and degradation by ERAD, like the ⁇ F508-CFTR protein (13).
  • UPS can be selectively activated without causing significant cellular stress, it can be used as a promising therapeutic means for diseases that occur due to defects in the folding of membrane proteins and migration to the cell surface.
  • conventional methods of activating the UPS of CFTR and pendrin e.g., overexpression of GRASP55 in ⁇ F508-CFTR and overexpression of MVB12B in p.H723R-fendrin
  • CF, DFNB4 CF, DFNB4
  • It is clinically unsuitable to treat human patients with Pendrid syndrome.
  • UPSs are stress-induced rather than structural (19). Blocking of ER-Golgi transport, for example, induces a stress related signal with respect to the UPS of membrane proteins. Blocking typical protein secretion from the ER to the Golgi causes unfolded proteins to accumulate in the ER lumen, inducing ER stress and an adaptive cellular response called UPR (unfolded protein response) (20).
  • UPR unfolded protein response
  • IRE1 ⁇ inositol-desiring enzymes 1 ⁇
  • IRE1 ⁇ RNA-like ER kinase
  • ATF6 ⁇ activating transcription factors 6 ⁇
  • IRE1 ⁇ the evolutionarily most conserved form of the UPR signal, appears to play an important role in the ER stress-induced UPS of membrane proteins. Deficiency of IRE1 ⁇ does not induce CFTR and Fendrin UPS following ER-Golgi pathway blockade (16, 21). Nevertheless, the clear mechanism of UPS regulation by IRE1 ⁇ is not known.
  • IRE1 is a type I ER transmembrane protein consisting of an ER-luminal domain that serves as a sensor for a protein that is not folded during ER stress, and a cytoplasmic domain including an endoribonuclease domain and a Ser/Thr protein kinase domain.
  • the activated mammalian IRE1 ⁇ protein transmits the ER stress signal by cleaving the mRNA of the transcription factor XBP1 (X-box-binding protein 1), and thus activated XBP1 (spliced XBP1) regulates protein folding and protein quality.
  • XBP1 transcription factor XBP1
  • UPR-related genes involved in ERAD (22).
  • IRE1-dependent decay (RIDD) process is also recognized as a complementary mechanism to reduce ER loading by degrading the mRNA of various proteins (23).
  • activation of IRE1 protein kinase triggers the'alarm stress pathway' using an adapter protein such as TRAF2 (TNF receptor-associated factor 2) to trigger ASK1 (apoptosis signal-regulating kinase 1) and its downstream effector, JNK. (JUN N-terminal kinase) is activated (24).
  • the present inventors investigated the role of IRE1 ⁇ in UPS by analyzing each signal arm.
  • the present inventors' findings showed that the UPS of CFTR and pendrin was activated in vivo and in vitro through the IRE1 ⁇ kinase-mediated signaling cascade, not by the XBP1- and RIDD-dependent pathways requiring IRE1 ⁇ RNase activity.
  • the IRE1 ⁇ kinase pathway can provide a novel target for the development of therapeutic agents for diseases caused by protein folding and migration defects.
  • the present inventors have made intensive research efforts to discover new highly reliable therapeutic targets for various protein morphological disorders caused by the abnormal three-dimensional structure of the protein, and to develop an efficient new therapeutic composition based on this.
  • the compound of Formula 1 when the compound of Formula 1 is administered, the'Unconventional Protein Secretion (UPS)' is activated without causing apoptosis, and the expression of the cell surface of the secreted protein having folding and mobility defects due to mutation, etc.
  • UPS Unconventional Protein Secretion
  • an object of the present invention is to provide a composition for preventing or treating protein conformational disorders.
  • Another object of the present invention is to provide a method for screening a composition for preventing or treating diseases of abnormal protein form.
  • Another object of the present invention is to provide a composition for inhibiting atypical protein secretion (UPS).
  • UPS atypical protein secretion
  • the present invention provides a composition for preventing or treating protein conformational disorders comprising a compound represented by the following general formula 1 or a pharmaceutically acceptable salt thereof as an active ingredient do:
  • R 1 to R 3 are each independently C 1 -C 3 alkyl, and X is halogen.
  • the present inventors have made intensive research efforts to discover new highly reliable therapeutic targets for various protein morphological disorders caused by the abnormal three-dimensional structure of the protein, and to develop an efficient new therapeutic composition based on this.
  • UPS Unconventional Protein Secretion
  • the protein morphological abnormality disease prevented or treated with the composition of the present invention is a disease caused by unfolding or misfolding of the protein due to amino acid mutation.
  • protein refers to a series of macromolecules formed by bonding of amino acid residues to each other by peptide bonds. Proteins are linear molecules consisting of consecutive bonds of amino acid units, but their three-dimensional shape and state change tendency are affected by the overall size, charge and hydrophobicity of all or each constituent residue, and whether or not covalent or non-covalent bonds are formed. And if the tendency is abnormal, it may cause various PCD (protein conformational disease) diseases.
  • PCD protein conformational disease
  • the protein is a secretory protein.
  • Secreted proteins including transmembrane proteins, move from the endoplasmic reticulum (ER) to the Golgi and are ultimately sent to the plasma membrane or extracellularly. Proteins with folding defects do not enter the normal Golgi-mediated protein secretion pathway, and vesicle-related degradation mechanisms (ERAD, ER-associated degradation) causes various diseases because cell surface expression is not achieved.
  • ER endoplasmic reticulum
  • ESD vesicle-related degradation mechanisms
  • folding defect means that a polypeptide cannot be folded normally so that a protein acquires a three-dimensional structure having its own function and activity.
  • folding defect is meant to include “misfolding” and “unfolding”.
  • the term “treatment” refers to (a) inhibition of the development of a disease, disease or condition; (b) alleviation of a disease, disease or condition; Or (c) to eliminate the disease, disease or condition.
  • the therapeutic composition discovered through the method of the present invention inhibits cell surface expression of secreted proteins by activating atypical protein secretion in individuals suffering from PCD disease, more specifically due to folding and migration defects caused by mutations in secreted proteins. It serves to inhibit, eliminate, or alleviate the development of symptoms caused by.
  • the composition of the present invention may itself be a therapeutic composition for PCD, or may be administered together with other pharmacological components and applied as a therapeutic adjuvant for the disease.
  • the term “treatment” or “therapeutic agent” in the present specification includes the meaning of “treatment aid” or “treatment aid”.
  • prevention refers to suppressing the occurrence of a disease or disease in a subject that has not been diagnosed as having a disease or disease, but is likely to have such disease or disease.
  • the term “administration” or “administer” refers to the formation of the same amount in the body of the subject by directly administering a therapeutically effective amount of the composition of the present invention to the subject.
  • the "therapeutically effective amount” of the composition means an amount of extract sufficient to provide a therapeutic or prophylactic effect to a subject to which the composition is to be administered, and includes a “prophylactically effective amount”.
  • the term “subject” includes, without limitation, human, mouse, rat, guinea pig, dog, cat, horse, cow, pig, monkey, chimpanzee, baboon or rhesus monkey. Specifically, the subject of the present invention is a human.
  • alkyl refers to a linear or branched saturated hydrocarbon group
  • C 1 -C 3 alkyl refers to an alkyl group having 1 to 3 carbon atoms, and when C 1 -C 3 alkyl is substituted, a substituent The carbon number of is not included.
  • R 1 to R 3 in the general formula 1 of the present invention are C 1 alkyl.
  • X in the general formula 1 of the present invention is Cl.
  • the concentration of the compound of Formula 1 of the present invention is 5 ⁇ M-50 ⁇ M, more specifically 5 ⁇ M-30 ⁇ M, and most specifically 10 ⁇ M-20.
  • the protein is selected from the group consisting of a cystic fibrosis membrane conduction regulator (CFTR), pendrin, and combinations thereof.
  • CFTR cystic fibrosis membrane conduction regulator
  • pendrin pendrin
  • the protein form abnormal disease prevented or treated with the composition of the present invention is cystic fibrosis or congenital hearing impairment.
  • CFTR is a protein constituting the qualitative management system of the endoplasmic reticulum, and is transferred to the Golgi, complex-glycosylated, and then sent to the attachment surface of the epithelial tissue. Cystic fibrosis is caused by being degraded by ERAD without being expressed on the plasma membrane surface.
  • Pendrin is a transmembrane protein that transports negative ions in the inner ear and thyroid follicles, and a series of processes leading to protein misfolding, ER retention, and ERAD caused by mutations cause congenital hearing impairment. Specifically, the hearing impairment is deafness with an enlarged vestibular aqueduct (DFNB4) or Pendrid syndrome (PDS).
  • DFNB4 enlarged vestibular aqueduct
  • PDS Pendrid syndrome
  • the pharmaceutical composition of the present invention includes a pharmaceutically acceptable carrier.
  • Pharmaceutically acceptable carriers included in the pharmaceutical composition of the present invention are commonly used at the time of formulation, and include lactose, dextrose, sucrose, sorbitol, mannitol, starch, gum acacia, calcium phosphate, alginate, gelatin, Calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrup, methyl cellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate, mineral oil, etc. It does not become.
  • the pharmaceutical composition of the present invention may further include a lubricant, a wetting agent, a sweetening agent, a flavoring agent, an emulsifying agent, a suspending agent, a preservative, and the like in addition to the above components.
  • a lubricant e.g., a talc, a kaolin, a kaolin, a kaolin, a kaolin, a kaolin, kaolin, kaolin, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, a talct, a talct, a talct, a stea, stevia, glycerin, glycerin, glycerin, g
  • the pharmaceutical composition of the present invention can be administered orally or parenterally, and specifically, it is administered parenterally.
  • the appropriate dosage of the pharmaceutical composition of the present invention is prescribed in various ways depending on factors such as formulation method, administration mode, patient's age, weight, sex, pathological condition, food, administration time, route of administration, excretion rate and response sensitivity. Can be.
  • a preferred dosage of the pharmaceutical composition of the present invention is in the range of 0.001-100 mg/kg on an adult basis.
  • the pharmaceutical composition of the present invention is prepared in unit dosage form by formulating using a pharmaceutically acceptable carrier and/or excipient according to a method that can be easily carried out by a person having ordinary knowledge in the technical field to which the present invention belongs. Or it can be made by incorporating it into a multi-dose container.
  • the formulation may be in the form of a solution, suspension, syrup, or emulsion in an oil or aqueous medium, or in the form of an extract, powder, powder, granule, tablet or capsule, and may additionally include a dispersant or a stabilizer.
  • the present invention provides a method for screening a composition for preventing or treating a protein conformational disorder comprising the following steps:
  • the candidate substance is determined as a composition for preventing or treating abnormal protein morphology.
  • biological sample refers to any sample including cells expressing IRE1 ⁇ obtained from mammals including humans, and includes, but is not limited to, tissues, organs, cells, or cell culture.
  • test substance used while referring to the screening method of the present invention is added to a sample containing IRE1 ⁇ -expressing cells, and is used in screening to test whether it affects the activity or expression level of IRE1 ⁇ kinase.
  • the test substances include, but are not limited to, compounds, nucleotides, peptides, and natural extracts.
  • the step of measuring the expression level or activity of IRE1 ⁇ kinase in a biological sample treated with the test substance may be performed by various methods known in the art for measuring expression levels and activities. As a result of the measurement, when the expression level or activity of IRE1 ⁇ kinase is increased, the test substance may be determined as a composition for preventing or treating diseases of abnormal protein form.
  • the term “increased expression” means that the expression level of IRE1 ⁇ kinase increases to the extent that the symptoms of protein morphological disorders are alleviated or improved or the risk is reduced by promoting UPS of a mutant protein having a folding/migration defect. do. Specifically, it may mean a state in which the activity or expression is increased by 20% or more, more specifically, by 40% or more, and more specifically, by 60% or more compared to the control group.
  • the term "increase in activity” refers to a significant increase in the intrinsic function of the protein in vivo compared to the control group. Specifically, the UPS of a mutant protein having a folding/migration defect is promoted to cause abnormal protein morphology. It refers to an increase in the activity of IRE1 ⁇ kinase to the extent that symptoms of a disease are alleviated or improved, or the risk thereof is reduced. Increasing activity includes not only an increase in function, but also an increase in ultimate activity due to an increase in stability.
  • the present invention provides a composition for inhibiting atypical protein secretion (UPS) comprising an inhibitor of IRE1 ⁇ kinase as an active ingredient.
  • UPS atypical protein secretion
  • the term “inhibitor” refers to a substance that causes a decrease in the activity or expression of IRE1 ⁇ kinase, whereby the activity or expression of the IRE1 ⁇ kinase becomes undetectable or exists at an insignificant level, as well as in the IRE1 ⁇ kinase. It refers to a substance that decreases the activity or expression of IRE1 ⁇ kinase to the extent that the UPS pathway induced by it can be significantly reduced.
  • Inhibitors of IRE1 ⁇ kinase include, for example, shRNA, siRNA, miRNA, ribozyme, peptide nucleic acids (PNA) or Antisense oligonucleotides and antibodies or aptamers that inhibit at the protein level, as well as compounds, peptides, and natural products that inhibit the activity of IRE1 ⁇ kinase, but are not limited thereto.
  • UPS typically protein secretion
  • UPS inhibition significantly inhibits the UPS pathway induced by IRE1 ⁇ , and ultimately inhibits the movement of abnormal proteins with folding defects to the plasma membrane or secretion outside the cell. it means. Accordingly, the term “atypical protein secretion (UPS) inhibition” has the same meaning as “prevention or treatment of diseases caused by excessive secretion of proteins with folding defects”.
  • the inhibitor of IRE1 ⁇ kinase of the present invention is APY29.
  • the present invention provides a protein conformational disorder comprising administering a composition comprising a compound represented by the following general formula 1 or a pharmaceutically acceptable salt thereof as an active ingredient. ) To provide a method of preventing or treating:
  • the present invention provides a method of inhibiting atypical protein secretion (UPS) in a subject comprising administering an inhibitor of IRE1 ⁇ kinase.
  • UPS atypical protein secretion
  • the present invention provides a composition for preventing or treating a protein conformational disorder, and a screening method thereof.
  • the present invention also provides a composition for inhibiting the atypical protein secretion (UPS) pathway.
  • UPS atypical protein secretion
  • the present invention can be usefully used as an efficient therapeutic composition for various protein morphological disorders caused by defects in folding and migration of mutant proteins, and provides a novel target with high reliability for the development of therapeutic agents.
  • FIG. 1 is a diagram showing that XBP1 splicing and IRE1 ⁇ endonuclease activity are independent of the UPS of ⁇ F508-CFTR.
  • ASK1 phosphorylation is activated due to Arf1-Q71L-induced ER-to-Golgi blockade, but XBP1 splicing is not.
  • HEK293 cells were transformed with Arf1-Q71L plasmid for 48 hours or treated with 5 ⁇ M of tapsigargin for 12 hours to induce ER stress. Representative immunoblot results of IRE1 ⁇ , phosphoric acid-IRE1 ⁇ , phosphoric acid-ASK1, and spliced XBP1 are shown in FIG.
  • the cell surface-specific labeling of the protein was confirmed by the absence of the cytoplasmic protein aldolase A in the biotinylated fragment.
  • FIG. 2 is a diagram showing that IRE1 ⁇ kinase activity is required for UPS induction of ⁇ F508-CFTR.
  • APY29 100 ⁇ M or protein synthesis inhibitor cycloheximide (0.1 mg/mL) was treated, and surface biotinylation assay was performed.
  • APY29 selectively reduces the surface ⁇ F508-CFTR without affecting the overall protein level.
  • HeLa cells were transformed with ⁇ F508-CFTR expression plasmids in the presence and absence of Arf1-Q71L, respectively, and APY29 (100 ⁇ M) was added to the medium for a period of time.
  • CFTR was immunostained with anti-M3A7 CFTR antibody (green), and IRE1 ⁇ was labeled with anti-IRE1 ⁇ antibody (red).
  • Graph data are expressed as mean ⁇ standard error. ** P ⁇ 0.01. Data was analyzed for one-way variance and then Tukey multiple comparison test was performed.
  • FIG. 3 is a diagram showing that ASK1 is required for a UPS of a core-glycosylated CFTR.
  • the ASK1 inhibitor, MSC2032964A (ASK1-Inh) inhibits the UPS of Arf1-Q71L-induced CFTR.
  • Surface biotinylation assays were performed in HEK293 cells transformed with plasmids expressing WT-CFTR, ⁇ F508-CFTR and/or Arf1-Q71L.
  • Several cells were treated with MSC2032964A (10 ⁇ M) for a period of time. Representative surface biotinylation results for WT-CFTR and ⁇ F508-CFTR are shown in Figs. 3A and 3B, respectively.
  • FIG. 4 is a diagram showing that activation of IRE1 ⁇ kinase by CSTMP induces UPS of ⁇ F508-CFTR.
  • Surface biotinylation assays were performed in HEK293 cells expressing ⁇ F508-CFTR.
  • CFTR on the cell surface before membrane permeation was immunostained with an anti-HA antibody (green), and after permeation, the entire CFTR was stained with an anti-R4 CFTR antibody (red). Arrows indicate surface CFTR. Morphological quantification of surface CFTR strength is shown in Fig. 4f (n 5). Scale bar: 10 ⁇ m. ** P ⁇ 0.01, compared to untreated group (first lane). Data were analyzed for one-way variance and then Tukey multiple comparison test was performed.
  • FIG. 5 is a diagram showing that CSTMP (10 ⁇ M) treatment does not induce cytotoxicity.
  • Caspase 3 was cleaved after 72 hours of transformation with the plasmid encoding Arf1-Q71L (arrow).
  • Figures 5c and 5d show the effect of CSTMP (10 ⁇ M) on UPS, activation of ASK1 and caspase 3 cleavage of ⁇ F508-CFTR over time.
  • CSTMP (10 ⁇ M) did not cause cleavage of caspase 3 until 72 hours.
  • Camptothecin (2 ⁇ M, 12h) was used as a positive control to induce cleavage of caspase 3 (arrow).
  • Graph data are expressed as mean ⁇ standard error.
  • 6 is a diagram showing that the Cl - channel function of ⁇ F508-CFTR is restored by CSTMP.
  • Total cell currents were recorded from HEK293 cells transformed with the specified plasmid. Current was induced by applying ramp pulses from -100 mV to +100 mV (0.8 mV/ms, fixed voltage 0 mV) at intervals of 10 seconds.
  • CFTR Cl - current was activated by cAMP (Forskolin 5 ⁇ M + IBMX 100 ⁇ M) and inhibited by CFTR inh -172 (5 ⁇ M).
  • 6A is a diagram showing the current density measured at -80 mV. The number of copies (n) was indicated for each lane.
  • 6B-6F show representative total cell currents for 48 hours in cells transformed with mock, WT-CFTR or ⁇ F508-CFTR plasmid.
  • Several cells were treated with CSTMP (10 ⁇ M) for 24 hours, thereby inducing a clear CFTR current in cells expressing ⁇ F508-CFTR. Histogram data are expressed as mean ⁇ standard error. ** P ⁇ 0.01. Data were analyzed by unpaired Student's t -test.
  • FIG. 7 is a diagram showing that CSTMP recovers the surface expression of misfolded fendrin.
  • PANC-1 cells stably expressing p.H723R-fendrin were transfected with a plasmid encoding Arf1-Q71L and incubated with CSTMP (10 ⁇ M or 30 ⁇ M) for 48 hours.
  • CSTMP (10 ⁇ M or 30 ⁇ M) 10 ⁇ M or 30 ⁇ M
  • FIG. 8A shows the result of performing a surface biotinylation analysis using epithelial cells collected from the colonic mucosa.
  • a protein sample from HEK293 cells was used as a control.
  • Wild-type (Cftr WT ) or ⁇ F508-CFTR (Cftr F508del ) 6-week-old mice were administered vehicle or CSTMP (2.59 mg/kg, per os, once a day) for 5 days, respectively.
  • Figure 8c shows the immunohistochemistry of CFTR.
  • mice colon tissue The longitudinal/transverse sections of mouse colon tissue were immunostained with anti-CFTR R4 rabbit polyclonal antibody. Arrows indicate CFTR expression in the colon apical membrane. CSTMP treatment induced cell surface expression of CFTR in Cftr F508del mouse colon. Scale bar: 10 ⁇ m. 8D and 8E It shows the result of measuring short circuit current (I sc ) in the mouse colon. The epithelial Na + channel was blocked by treatment with amiloride (100 ⁇ M) on the tip of the mouse colon.
  • amiloride 100 ⁇ M
  • FIG. 9 is a diagram showing the control experiment results of FIG. 1.
  • HEK293 cells were transformed with a plasmid encoding Arf1-Q71L for 48 hours or treated with tapcigagin (5 ⁇ M) for 12 hours to induce ER stress, and incubated with cross-linking reagent EGS (500 ⁇ M) for 30 minutes ( Fig. 9a).
  • Arrow heads represent cross-linked IRE1 ⁇ polymer (top band) and monomer (bottom band) forms, respectively.
  • 9B is a diagram showing the result of quantifying the mRNA of XBP1 by qPCR.
  • RNA samples were prepared 48 hours after transforming HEK293 cells with XBP1-specific siRNA.
  • tapcigagin not Arf1-Q71L, increased the level of XBP1 mRNA silenced by siRNA against XBP1 .
  • 9C is a diagram showing the effect of IRE1 ⁇ - and XBP1-specific siRNAs on XBP1 splicing.
  • HEK293 cells were treated with tapcigagin (5 ⁇ M) for 12 hours or transformed with a designated siRNA (48 hours).
  • Tapsigagin increased the protein levels of spliced XBP1 (XBP1s) reduced by siRNA against IRE1 ⁇ or XBP1.
  • 9D is a diagram showing that STF-083010 reduces the RNase activity of IRE1 ⁇ .
  • HEK293 cells were treated with tapcigagin (5 ⁇ M, 12 hours) and/or STF-083010 (60 ⁇ M, 12 h), and then immunoblot analysis for XBP1 protein was performed.
  • FIG. 10 is a diagram showing the control experiment results of FIG. 2.
  • 10A and 10B Figure shows that APY29 dose-dependently inhibits phosphorylation of IRE1 ⁇ and ASK1. Phosphorylation of IRE1 ⁇ and ASK1 was induced by transforming with Arf1-Q71L plasmid for 48 hours.
  • the IC 50 value of APY29 for ASK1 phosphorylation is 6.4 ⁇ M.
  • 10C to 10F show the results of analyzing the protein stability of WT- and ⁇ F508-CFTR in HEK293 cells treated with cycloheximide, a protein synthesis inhibitor.
  • the protein stability of ⁇ F508-CFTR was lower in all conditions than WT-CFTR. Data are expressed as mean ⁇ standard error. ** P ⁇ 0.01, compared to WT-CFTR. The data were analyzed through the Tukey multiple comparison test after one-way variance analysis.
  • FIG. 11 is a diagram showing that overexpression of IRE1 ⁇ activates the UPS of ⁇ F508-CFTR. Only IRE1 ⁇ overexpression activates the UPS of ⁇ F508-CFTR and reinforces the effect of tarpsigagin.
  • FIG. 12 is a diagram showing that CSTMP further increases the UPS of Arf1-Q71L-induced ⁇ F508-CFTR.
  • FIG. 13 is a diagram showing that apoptosis is induced when Arf1-Q71L overexpression is prolonged.
  • the apoptosis marker Annexin V was labeled on living cells. After fixation and permeabilization, cells were stained with anti-CFTR (M3A7) antibody. Transformation with Arf1-Q71L plasmid for 72 hours induced apoptosis. Similar results were found in three independent experiments. Scale bar: 10 ⁇ m.
  • FIG. 14 is a diagram showing that CSTMP (10 ⁇ M) activates the UPS of CFTR without causing apoptosis.
  • HeLa cells were transformed with ⁇ F508-CFTR and with 10 ⁇ M CSTMP for 0 hours (FIG. 14A), 24 hours (FIG. 14AB), 48 hours (FIG. 14BC) or 72 hours (FIG. 14BD) Cultured. Before fixation, apoptosis marker Annexin V was labeled on living cells. After fixation and permeabilization, cells were stained with anti-CFTR (M3A7) antibody. UPS of ⁇ F508-CFTR was initiated at 24 hours due to CSTMP treatment, but apoptosis was not induced until 72 hours. Arrow heads indicate CFTR expressed on the cell-surface. Similar results were found in three independent experiments. Scale bar: 10 ⁇ m.
  • FIG. 15 is a diagram showing the LD 50 value of CSTMP orally administered to a mouse.
  • Vehicle saline solution
  • CSTMP in 4 groups consisting of 4 mice (12 weeks old), 2.59 mg/kg (corresponding to 10 ⁇ M, assuming that CSTMP is evenly distributed throughout the body), 25.9 mg/kg (corresponding to 100 ⁇ M) , Or 259 mg/kg (equivalent to 1,000 ⁇ M) was administered orally once a day for 5 days.
  • the LD 50 value was 25.9 mg/kg/day. No mice died on the 2.59 mg/kg/day dosing schedule.
  • HEK293, HeLa and PANC-1 cells were treated with 10% Fetal Bovine Serum (FBS) and 1% 100X antibiotic/antifungal (100 units/mL penicillin, 100 units/mL streptomycin and 250 ng/mL amphotericin B) (Gibco # 15240062) supplemented with DMEM (Dulbecco's modified Eagle's medium-high glucose, Gibco #11995-065, Carlsbad, CA) medium. Cells were cultured in a 37° C. 5% CO 2 incubator. A mammalian expression plasmid encoding human IRE1 ⁇ -pcDNA3.EGFP was purchased from Addgene (gene ID: 2081).
  • Plasmids encoding human pCMV- ⁇ F508-CFTR, pCMV-WT-CFTR (pCMVNot6.2), pCMV-GRASP55-Myc, and extracellular tagged HA- ⁇ F508-CFTR and pcDNA3-HA-Arf1-Q71L have been described in conventional literature. It is described above (15, 29).
  • ON-TARGETplus human ERN1 siRNA (IRE1 ⁇ , gene ID: 2081) and human XBP1 siRNA (gene ID: 7494) were purchased from SMARTpool (Dharmacon, Lafayette, CO, USA).
  • Tapsigagin Sigma Aldrich, T9033
  • STF-083010 (TOCRIS, 4509)
  • APY29 (TOCRIS, 4865)
  • MSC 2032964A (TOCRIS, 5641)
  • cyclohexide (Sigma Aldrich, C4859) were purchased commercially.
  • CSTMP was synthesized by Cayman chemical (Michigan, USA) (CAS registration number 1000672-89-8).
  • anti-CFTR M3A7 (Millipore, Billerica, MA), anti-IRE1 ⁇ (Cell Signaling Technology, 3294), anti-phosphate S724 IRE1 ⁇ (Abcam, ab48187), anti-XBP1 (Abcam, ab198999 ), anti-ASK1 (Cell Signaling Technology, 3762), anti-phosphate Thr845 ASK1 (Cell Signaling Technology, 3765), anti-BiP (Cell Signaling Technology, 3177), anti-CHOP (Cell Signaling Technology, 2895), anti- pro/p17-caspase 3, anti-cleaved PARP1 (Abcam, ab136812), anti-HA (Cell Signaling Technology, 2367), anti-Myc (Cell Signaling Technology, 2276), anti-aldolase A (Abcam, ab78339), anti- ⁇ -actin (Santa Cruz, sc47778) and anti-fendrin (Santa Cruz, sc23779).
  • qPCR was performed using the StepOne system (Applied Biosystems, Foster City, CA, USA). Real-time PCR reaction was measured by detecting the binding of double-stranded DNA and fluorescent SYBR Greendye.
  • PCR amplification mix with 100 ng cDNA, 2 ⁇ L primer set, 10 ⁇ L 2x SYBR premix Ex Taq and 0.4 ⁇ L 50 ⁇ ROX standard dye (Takara, RR420L), and then use RNase-free water to reduce the total reaction volume to 20 ⁇ L. Adjusted. Amplification was carried out under the following cycle conditions: 95°C for 15 minutes, followed by 40 cycles at 95°C for 15 seconds, and 60°C for 40 seconds. Analysis was performed 3 times for each cDNA.
  • Ct comparative threshold cycle
  • the primer sequences used for the qPCR analysis are as follows: hIRE1 ⁇ , positive "nun* primer 5'-CGG GAG AAC ATC ACT GTC CC-3', reverse"nun* primer 5'-CCC GGT AGT GGT GCT TCT TA- 3'; hXBP1, positive "nun* primer 5'-TTG TCA CCC CTC CAG AAC ATC-3', reverse”nun* primer 5'-TCC AGA ATG CCC AAC AGG AT-3'; hXBP1 (spliced), positive"nu* primer 5'-TGC TGA GTC CGC AGC AGG TG-3', reverse"nu* primer 5'-GCT GGC AGG CTC TGG GGA AG-3'; GAPDH, positive "Nun* primer 5'-AAT CCC ATC ACC ATC TTC CA-3', reverse "Nun* primer 5'-TGG ACT CCA CGA CGT ACT CA-3'.
  • PBS phosphate buffered saline
  • the colon tissue was cut lengthwise and the connective tissue and muscle were stripped.
  • Cultured cells or transmembrane proteins in the plasma membrane of the colon mucosa were mixed with 1 mL biotin solution (0.3 mg/mL Sulfo-NHS-SS-biotin in refrigerated PBS, Thermo Pierce, 21331) at 4°C for 30 minutes in dark conditions. It was biotinylated while gently stirring and cultivation.
  • Cells or colon tissues were incubated in PBS with a quenching buffer containing 0.5% bovine serum albumin (BSA) at 4° C. for 10 minutes to remove excess biotin, followed by washing three times with PBS.
  • BSA bovine serum albumin
  • the surface-biotinylated cells were prepared with 25 mM Tris (pH 7.4), 1% (v/v) NP40, 150 mM NaCl, 10% glycerol and 1 mM EDTA-Na 2 and a protease inhibitor cocktail (Roche, Germany). ) was collected in lysis buffer supplemented.
  • the cell lysate was homogenized with ultrasound for 20 seconds (1 s pulse) and then centrifuged at 4° C. for 20 minutes at 16,000 g .
  • the supernatant containing 400 ⁇ g of total protein was incubated with 200 ⁇ L 10% streptavidin agarose (Thermo Pierce, 20347). Streptavidin-bound, biotinylated protein was centrifuged and washed 5 times with lysis buffer. The biotinylated protein was eluted in a 2 ⁇ SDS sample buffer supplemented with DTT (0.02 g/mL) and separated by SDS-polyacrylamide gel electrophoresis. The separated protein was transferred to a nitrocellulose membrane and blotted with appropriate primary and secondary antibodies in 5% skim milk. Protein bands were detected by chemiluminescence, and the density of each protein band was quantified using imaging software (Multi Gauge ver. 3.0; Fujifilm, Tokyo, Japan).
  • HEK293 cells were washed three times with PBS and incubated at 37°C for 30 minutes in PBS (pH 8.2) with 500 ⁇ M ethylene glycol succinimidyl succinate (EGS; Thermo Scientific, 21565). After cross-linking, the cells were sequentially incubated in 20 mM Tris (pH 7.4) for 10 minutes to quench EGS to terminate the reaction. After the cells were lysed and homogenized, immunoblotting was performed using an anti-IRE1 ⁇ antibody made into a sample in a 2 ⁇ SDS sample buffer.
  • Immunofluorescence staining was performed by slightly modifying the previously reported methods (15, 18).
  • mouse tissues were embedded in an optimal incision temperature (OCT) compound (Miles, Elkhart, IN, USA), cooled in liquid nitrogen, and cut into 4- ⁇ m sections. Then, the mouse colon sections were fixed and permeabilized by incubating for 5 minutes at -20°C with cold methanol.
  • OCT optimal incision temperature
  • HeLa cells were cultured on 18-mm round coverslips and fixed with 3.7% formaldehyde for 6 minutes at room temperature. Thereafter, the cells were permeabilized with 0.1% Triton X-100 in PBS for 5 minutes at room temperature.
  • tissue sections or coverslips on glass slides were washed 3 times with PBS and cultured at room temperature for 1 hour in PBS containing 1% BSA and 5% serum of the appropriate species (horse/donkey/goat serum) for non-specific binding. The site was blocked. After blocking, tissue sections or cells were stained by incubating with an appropriate primary antibody, and stained with a fluorophore-conjugated secondary antibody. For the surface-specific labeling of CFTR, cells that were not permeabilized after fixation were cultured with a blocking solution and stained with an anti-HA antibody to detect the extracellular HA-epitope of CFTR.
  • the cells on the coverslip were mounted on a slide glass with a fluorescent mounting medium (Dako, S3025, US). Fluorescence images were captured with a laser scanning confocal microscope (LSM 780; Carl Zeiss, Berlin, Germany) with a 63 x 1.4 numerical aperture oil objective.
  • LSM 780 laser scanning confocal microscope
  • Total cell recordings were performed on CFTR-transformed HEK293 cells according to a previously reported method (15).
  • the cells were transferred to a bath mounted on a stage of a conduction microscope (Ti2, Nikon) and the membrane was teared after gigaohm ( ⁇ ) sealing to obtain a whole-cell patch.
  • the bath solution was perfused at 5 mL/min.
  • Voltage and current recording was performed at room temperature (22-25°C).
  • a patch pipette of 2-4 M ⁇ resistance was connected to the head stage of a patch clamp amplifier (Axopatch-200B, Molecular Devices, Sunnyvale, CA, USA).
  • the bath solution contained 140 mM N-methyl-D-glucamine chloride (NMDG-Cl), 1 mM CaCl 2 , 1 mM MgCl 2 , 10 mM glucose and 10 mM HEPES (pH 7.4).
  • the pipette solution contained 140 mM N-methyl-D-glucamine chloride, 5 mM EGTA, 1 mM MgCl 2 , 3 mM MgATP and 10 mM HEPES, pH 7.2.
  • I/V current-voltage
  • CFTR currents were activated by cAMP (5 ⁇ M forskolin and 100 ⁇ M 3-isobutyl-1-methylxanthine [IBMX]). The current generated by CFTR was confirmed by adding CFTR inh -172 (10 ⁇ M), a CFTR inhibitor.
  • PClamp 10.2 and Digidata 1550B were used to obtain data and apply command pulses. Voltage and current flow were analyzed by storage in pClamp 10.2 and Origin 8.0 (OriginLab Corp., Northampton, MA, USA). The current was filtered at 5 kHz and sampled at 1 kHz. All data were normalized to total-cell capacitance (pF).
  • Tissues with 10 mL of HCO 3 -buffered solution containing 120 mM NaCl, 5 mM KCl, 1 mM MgCl 2 , 1 mM CaCl 2 , 10 mM D-glucose, 5 mM HEPES and 25 mM NaHCO 3 (pH 7.4). Together, each slide was batched at 37° C., 95% O 2 -5% CO 2 . Tissues were voltage-fixed using an EVC-4000 voltage clamp (World Precision Instruments) and I sc was continuously recorded using a PowerLab data acquisition system (AD Instruments, Castle Hill, Australia).
  • the pH i measurement was performed with a standard pH solution containing 150 mM KCl and 5 ⁇ M nigericin. Intrinsic buffer volume ( ⁇ i) was calculated by measuring ⁇ pH i corresponding to 5-40 mM NH 4 Cl pulses in Na + free solution. ⁇ i value does not operate significantly affected by transfection of a plasmid encoding the WT- gave gave pen or pen H723R-, Cl - / HCO 3 - exchange activity without compensating for the buffer capacity ⁇ pH unit / min Expressed as.
  • Results for multiple experiments were expressed as mean ⁇ standard error.
  • Statistical analysis was performed using GraphPad Prism5 (GraphPad Software, Inc., La Jolla, CA) using a two-sided Student's t -test or a one-way variance analysis and then a Tukey multiple comparison test. If P ⁇ 0.05, it was considered statistically significant.
  • Endoribonuclease activity of IRE1 ⁇ is not essential for the UPS of CFTR
  • Mammalian IRE1 ⁇ is maintained as an inactive monomer by binding to the ER chaperone protein BiP (Fig. 9A). Oligomerization of the IRE1 monomer occurs as a response to the accumulation of ER of unfolded proteins in the first step of IRE1 activation (25).
  • Arf1-Q71L induces ER stress as secreted proteins accumulate in the ER lumen (15).
  • ER stress can also be induced by treatment with tapsigargin, a Ca 2+ -ATPase inhibitor that depletes calcium in the ER lumen (26).
  • IRE1 ⁇ in the cross-linking analysis in HEK293 aggregates after Arf1-Q71L expression (48h) or tapsigagin treatment (12h) to become an oligomer (Fig. 9a).
  • Oligomerization of IRE1 ⁇ opens the kinase domain and begins to be activated and activates the RNase domain (25).
  • Both Arf1-Q71L and tapcigagin trigger IRE1 ⁇ kinase activity in HEK293 cells, inducing IRE1 ⁇ autophosphorylation and downstream ASK1 phosphorylation (FIGS. 1A and 1B ).
  • treatment with tapcigagin which rapidly induces ER stress (12h), induced XBP1 splicing, whereas ER stress induced by Arf1-Q71L overexpression (48 h) did not (FIGS. 1A and 1B ).
  • STF-083010 is a compound targeting the catalytic core of the IRE1 ⁇ RNase domain, and inhibits IRE1 ⁇ endonuclease activity without affecting the kinase activity or the overall oligomerization step (27).
  • STF-083010 60 ⁇ M was treated for 12 hours, tapcigajin-induced XBP1 production was stopped (Fig. 9D).
  • STF-083010 did not affect the Arf1-Q71L-induced UPS of ⁇ F508-CFTR (FIGS. 1E and 1F ).
  • the IRE1 ⁇ kinase-ASK1 pathway is required for UPS of ⁇ F508-CFTR.
  • APY29 a type I kinase inhibitor, inhibits autophosphorylation of IRE1 ⁇ by competitively occupying the ATP-binding pocket of IRE1 ⁇ (28).
  • the IC 50 value of APY29 for ASK1 phosphorylation was calculated to be about 6.4 ⁇ M, and treatment with 100 ⁇ M APY29 for 12 hours almost completely inhibited Arf1-Q71L-induced phosphorylation for IRE1 ⁇ and ASK1 (FIGS. 10A and 10AB. ).
  • ⁇ F508-CFTR surface targeting induced by ectopic expression of Arf1-Q71L by APY29 was abolished (FIGS. 2A and 2B ). Since the stability of ⁇ F508-CFTR is lower than that of wild-type (WT)-CFTR (FIG. 10c-f), a protein synthesis defect may also have caused a rapid decrease in the amount of ⁇ F508-CFTR on the cell surface. In fact, treatment with the protein synthesis inhibitor cycloheximide (0.1 mg/mL) drastically reduced the level of ⁇ F508-CFTR on the cell surface (FIGS. 10c-f).
  • APY29 selectively inhibits the recovery of ⁇ F508-CFTR on the cell surface and does not affect protein synthesis.
  • APY29 The inhibitory effect of APY29 on the cell surface expression of CFTR was additionally confirmed through immunofluorescence analysis. Morphological analysis was performed using HeLa cells, which are better adsorbed to coverslips and less susceptible to cell loss, instead of HEK293 cells (18, 29). In control cells, the ⁇ F508-CFTR protein remained only within the ER. When ER-Golgi migration was blocked with Arf1-Q71L, a significant amount of ⁇ F508-CFTR reached the cell surface as previously reported (arrow, Fig. 2c) (15). Notably, APY29 treatment significantly reduced the cell surface expression of Arf1-Q71L-induced ⁇ F508-CFTR (FIGS. 2C and 2D ).
  • MSC2032964A is a potent and selective ASK1 inhibitor that blocks LPS-induced ASK1 phosphorylation (31).
  • IRE1 ⁇ kinase Activation of IRE1 ⁇ kinase induces UPS of ⁇ F508-CFTR.
  • Small molecule therapy is preferred over gene overexpression methods in treating human patients with diseases associated with protein folding and migration defects.
  • the tetramethylpyrazine derivative (E)-2-(2-chlorostyryl)-3,5,6-trimethyl-pyrazine (CSTMP) has been reported to activate the IRE1 ⁇ -TRAF2-ASK1 complex (32).
  • CSTMP has been reported to induce death of human non-small cell lung cancer A549 cells through JNK activation and mitochondrial dysfunction, it may induce cytotoxicity at high concentrations (>50 ⁇ M) (32).
  • HEK293 cells expressing WT- or ⁇ F508-CFTR were incubated with CSTMP (10 ⁇ M) for 48 hours and CFTR-mediated Cl -Measure the current.
  • CSTMP forskolin
  • IBMX 3-isobutyl-1-methylxanthine
  • IRE1 ⁇ is involved in the UPS of ER stress-induced pendrin (16)
  • the present inventors investigated the effect of CSTMP, an IRE1 ⁇ kinase activator, on the recovery of cell surface migration defects induced by p.H723R-pendrin mutations. I did.
  • CSTMP an IRE1 ⁇ kinase activator
  • PANC-1 derived from the pancreatic duct was used (16).
  • the surface expression of p.H723R-fendrin was investigated through surface biotinylation analysis. 7A and 7B, p.H723R-fendrin is hardly detected in the plasma membrane of the control cells.
  • CSTMP (30 ⁇ M) was treated, p.H723R-fendrin was strongly expressed on the cell surface.
  • CSTMP In vivo treatment of CSTMP restores cell surface expression and CFTR-mediated anion transport of CFTR in CftrF 508del mouse colon.
  • CSTMP restores epithelial transport defects caused by the ⁇ F508-CFTR mutation in mice.
  • the malfunctioning ⁇ F508-CFTR mutation causes a defect that primarily affects the transport of ions and fluids in the intestine, resulting in intestinal obstruction in mice (33).
  • toxicity was evaluated by measuring half the lethal dose (LD 50 ) of CSTMP in mice. Mice were orally administered 3 different doses of CSTMP corresponding to 10-1,000 ⁇ M for 5 days (assuming that CSTMP is evenly distributed throughout the body). The LD 50 value of the mouse was calculated as 25.9 mg/kg/day (corresponding to 100 ⁇ M) (FIG. 15).
  • CSTMP LD 50 2.59 mg/kg/day, equivalent to 10 ⁇ M once a day
  • Cftr WT WT-CFTR
  • Cftr F508del ⁇ F508-CFTR

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Epidemiology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Toxicology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

The present invention relates to a composition for preventing or treating protein conformational disorders, a screening method therefor and a composition for inhibiting an unconventional protein secretion (UPS) pathway. The present invention may be usefully employed as a therapeutic agent composition effective against various protein conformational disorders caused by a folding transport defect of a mutant protein, and also provides a highly-reliable novel target for developing a therapeutic agent.

Description

IRE1α 키나아제 활성화제를 유효성분으로 포함하는 단백질 형태 이상 질환의 예방 또는 치료용 조성물Composition for preventing or treating diseases of abnormal protein form comprising IRE1α kinase activator as an active ingredient
본 발명은 IRE1α 키나아제 활성화제, 예를 들어 CSTMP를 유효성분으로 포함하는 단백질 형태 이상 질환의 예방 또는 치료용 조성물에 관한 것이다.The present invention relates to a composition for the prevention or treatment of abnormal protein form diseases comprising an IRE1α kinase activator, for example, CSTMP as an active ingredient.
단백질 폴딩 및 이동의 결핍은 생명체의 항상성을 저해하는 흔한 발병 메카니즘으로, 다양한 인간 질환에 원인을 제공한다(1-3). 진핵생물에서 막관통 단백질을 포함하는 분비 단백질은 리보좀에서 합성된 후 소포체(ER)로 이동한다. ER은 다양한 샤페론 및 폴딩 촉매를 함유하고 있어 단백질이 제대로 폴딩되도록 한다(4). 소포체의 질적 관리(ER quality control) 메카니즘을 가능하도록 하는 분비 단백질은 소포체(ER)에서 나와 골지(Golgi)로 이동하며, 종국적으로 원형질막이나 세포외 배지로 보내진다. 이와 달리 불완전하게 폴딩된 단백질은 이들이 ER에서 빠져나왔을 때 발생하는 비정상 단백질에 의한 위험 발생을 막기 위해 ER에 남아 선택적으로 소포관련 분해기전(ERAD, ER-associated degradation)으로 타겟팅된다(5). 낭포성 섬유증 막전도 조절자(CFTR, ABCC7) 및 펜드린(pendrin, SLC26A4)의 많은 질환유발 돌연변이는 단백질 폴딩 결함을 유발한다. 결론적으로, 미스폴딩된 단백질은 정상적인 골지-매개 단백질 분비경로로 진입할 수 없어 궁극적으로 낭포성 섬유증(CF) 및 선천성 청각손실을 각각 유발한다.Deficiency in protein folding and migration is a common pathogenesis mechanism that inhibits the homeostasis of living organisms and contributes to a variety of human diseases (1-3). In eukaryotes, secreted proteins, including transmembrane proteins, are synthesized in ribosomes and then migrated to the endoplasmic reticulum (ER). ER contains a variety of chaperones and folding catalysts to ensure proper folding of proteins (4). The secreted proteins that enable the ER quality control mechanism come out of the endoplasmic reticulum (ER), move to the Golgi, and eventually to the plasma membrane or extracellular medium. In contrast, incompletely folded proteins remain in the ER and are selectively targeted with ER-associated degradation (ERAD) in order to prevent the risk of abnormal proteins that occur when they exit the ER (5). Many disease-causing mutations in cystic fibrosis membrane conduction regulators (CFTR, ABCC7 ) and pendrin ( SLC26A4 ) cause protein folding defects. In conclusion, the misfolded protein cannot enter the normal Golgi-mediated protein secretion pathway, ultimately causing cystic fibrosis (CF) and congenital hearing loss, respectively.
음이온 채널 활성을 가지는 CFTR는 cyclic AMP-조절 수송단백질로서 기도, 췌장, 소장, 및 외분비선을 포함하는 분비기관 내 상피세포의 첨부표면(첨단부 표면)에서 Cl- 및 HCO3 -를 전도한다(6). CFTR는 ER의 질적 관리 시스템의 하나로서 ER(밴드 B)에서 초기에 코어 글리코실화되어 ER 렉틴 샤페론과의 상호작용을 매개하는 2개의 N-결합 글리코실화 부위를 가진다(7). 골지로 이동한 뒤, 이들 글리코실화 부위는 복합체-글리코실화되고(밴드 C), 복합체-글리코실화된 CFTR는 상피조직의 첨부 표면으로 보내진다(8). 2,000여개의 동정된 변이중에서, 508번째 페닐알라닌 잔기가 삭제된 돌연변이(ΔF508)는 가장 흔한 질환 유발 CFTR 돌연변이로서(9), 단백질 미스폴딩, ER 정체 및 ERAD에 의한 분해(10)를 유발한다. 결론적으로 ΔF508-CFTR 단백질은 ER 내에서 코어-글리코실화된 형태로 남아 소량만이 원형질막 표면에서 발현된다(11). CFTR, which has anion channel activity, is a cyclic AMP-regulated transport protein and conducts Cl - and HCO 3 - on the apical surface (tip surface) of epithelial cells in secretory organs including airways, pancreas, small intestines, and exocrine glands ( 6). CFTR is one of the qualitative management systems of ER and has two N-linked glycosylation sites that are initially core glycosylated in the ER (band B) and mediate the interaction with the ER lectin chaperone (7). After migration to the Golgi, these glycosylation sites are complex-glycosylated (band C), and the complex-glycosylated CFTR is directed to the adhesiv surface of the epithelial tissue (8). Of the 2,000 identified mutations, the mutation in which the 508th phenylalanine residue is deleted (ΔF508) is the most common disease-causing CFTR mutation (9), causing protein misfolding, ER retention, and degradation by ERAD (10). In conclusion, the ΔF508-CFTR protein remains in a core-glycosylated form in the ER, and only a small amount is expressed on the plasma membrane surface (11).
펜드린은 내이(inner ear) 및 갑상선 여포에서 Cl-, I- 또는 HCO3 -와 같은 음이온을 수송하는 막관통 단백질이다(12). 유전자 변이로 인한 펜드린의 기능 소실은 비증후군성 전정수도관 확장 관련 청각소실(deafness with an enlarged vestibular aqueduct, DFNB4) 및 펜드리드 증후군(PDS)의 원인이 될 수 있다. 펜드린의 가장 흔한 질환유발 변이인 p.H723R (His723Arg)은 ΔF508-CFTR 단백질과 마찬가지로 단백질 미스폴딩, ER 정체 및 ERAD에 의한 분해를 유발한다(13).Is a transmembrane protein of transporting anions such as (12) -, I - - or HCO 3 gave pen is Cl in the inner ear (inner ear), and thyroid follicles. The loss of function of fendrin due to genetic mutations can be the cause of deafness with an enlarged vestibular aqueduct (DFNB4) and Pendrid syndrome (PDS). The most common disease-causing mutation of pendrin, p.H723R (His723Arg), induces protein misfolding, ER retention, and degradation by ERAD, like the ΔF508-CFTR protein (13).
대부분의 분비 단백질은 ER에서 원형질막으로 이동할 때 전형적인 골지-매개 분비 경로를 이용한다. 이러한 전통적인 분비경로 외에‘비전형적 단백질 분비(UPS)’로 불리는 새로운 메카니즘이 막관통 단백질을 포함하는 세포내 분비 단백질의 수송을 매개한다(14). 이전의 연구는 ER-골지의 수송로가 차단되거나 ER의 스트레스 상황 하에서 미성숙 상태의 코어-글리코실화된 CFTR 및 펜드린이 골지-비의존성 UPS 경로를 경유하여 원형질막에 도달할 수 있음을 밝힌 바 있다(15, 16). 일단 세포 표면에 도달하면, 코어-글리코실화된 CFTR 및 펜드린은 다소 감소하기는 하였을지언정 음이온 수소능력을 가진다(15, 16). 따라서, 유의한 세포 스트레스 유발없이 UPS를 선택적으로 활성화할 수 있다면 막단백질의 폴딩 및 세포표면으로의 이동에 결함이 있어 발병하는 질환에 대한 유망한 치료수단으로 이용될 수 있다. 그러나, CFTR 및 펜드린의 UPS를 활성화시키는 종래의 방법(예를 들어 ΔF508-CFTR에 있어서 GRASP55의 과발현 및 p.H723R-펜드린에 있어서 MVB12B의 과발현)(15, 16)은 CF, DFNB4, 또는 펜드리드 증후군을 가지는 인간 환자를 치료하기에는 임상적으로 부적합하다. Most secreted proteins use a typical Golgi-mediated secretory pathway when moving from the ER to the plasma membrane. In addition to these traditional secretion pathways, a new mechanism called “atypical protein secretion (UPS)” mediates the transport of secreted proteins into cells, including transmembrane proteins (14). Previous studies have shown that the ER-Golgi transport pathway is blocked or under stress conditions of the ER, the immature core-glycosylated CFTR and pendrin can reach the plasma membrane via the Golgi-independent UPS pathway ( 15, 16). Once at the cell surface, core-glycosylated CFTR and pendrin have anionic hydrogen capacity, albeit somewhat reduced (15, 16). Therefore, if UPS can be selectively activated without causing significant cellular stress, it can be used as a promising therapeutic means for diseases that occur due to defects in the folding of membrane proteins and migration to the cell surface. However, conventional methods of activating the UPS of CFTR and pendrin (e.g., overexpression of GRASP55 in ΔF508-CFTR and overexpression of MVB12B in p.H723R-fendrin) (15, 16) are CF, DFNB4, or It is clinically unsuitable to treat human patients with Pendrid syndrome.
최근의 연구를 통해 막 단백질의 UPS에 관여하는 몇몇 핵심 분자가 동정되었으나, UPS 조절 메카니즘의 전체적인 그림은 아직 알려지지 않았다. 일반적으로, 대부분의 UPS는 구조적인 것이 아니라 스트레스에 의해 유도된다(19). 예를 들어, ER-골지 수송의 차단은 막 단백질의 UPS에 관하여는 스트레스 관련 신호를 유도한다. ER에서 골지로의 전형적인 단백질 분비의 차단으로 인해 폴딩되지 않은 단백질을 ER 내강에 축적시켜 ER 스트레스 및 UPR(미접힘 protein response)라고 불리는 적응성 세포 반응을 유도한다(20). 진핵세포에는 크게 다음 세 종류의 UPR 센서가 존재한다: 이노시톨-요망 효소인 1α(IRE1α)과 IRE1β; 단백질 키나아제인 RNA-유사 ER 키나아제(PERK); 그리고 ER 막에 존재하여 ER 스트레스 신호를 전송하는 활성화 전사인자 6α(ATF6α) 및 ATF6β. 흥미롭게도, 진화적으로 가장 보존적인 형태의 UPR 신호인 IRE1α가 막 단백질의 ER 스트레스-유도된 UPS에서 중요한 역할을 하는 것으로 보인다. IRE1α이 결핍되면 ER-골지 경로 차단에 따른 CFTR 및 펜드린의 UPS가 유도되지 않는다(16, 21). 그럼에도, IRE1α에 의한 UPS 조절의 명확한 메카니즘은 알려져있지 않다. Although recent studies have identified several key molecules involved in the UPS of membrane proteins, the overall picture of the UPS regulation mechanism is not yet known. In general, most UPSs are stress-induced rather than structural (19). Blocking of ER-Golgi transport, for example, induces a stress related signal with respect to the UPS of membrane proteins. Blocking typical protein secretion from the ER to the Golgi causes unfolded proteins to accumulate in the ER lumen, inducing ER stress and an adaptive cellular response called UPR (unfolded protein response) (20). There are three main types of UPR sensors in eukaryotic cells: inositol-desiring enzymes 1α (IRE1α) and IRE1β; RNA-like ER kinase (PERK), which is a protein kinase; And activating transcription factors 6α (ATF6α) and ATF6β that exist in the ER membrane and transmit ER stress signals. Interestingly, IRE1α, the evolutionarily most conserved form of the UPR signal, appears to play an important role in the ER stress-induced UPS of membrane proteins. Deficiency of IRE1α does not induce CFTR and Fendrin UPS following ER-Golgi pathway blockade (16, 21). Nevertheless, the clear mechanism of UPS regulation by IRE1α is not known.
IRE1는 ER 스트레스 동안 폴딩되지 않은 단백질의 센서 역할을 하는 ER-내강 도메인과, 엔도리보뉴클레아제 도메인 및 Ser/Thr 단백질 키나아제 도메인을 포함하는 세포기질 도메인으로 이루어진 I형 ER 막관통 단백질이다. 활성화된 포유류의 IRE1α 단백질은 전사인자 XBP1(X-box-binding protein 1)의 mRNA를 절단함으로써 ER 스트레스 신호를 전송하며, 이에 따라 활성화된 XBP1(스플라이싱된 XBP1)는 단백질 폴딩, 단백질 질적 조절 및 ERAD(22)에 관여하는 UPR-관련 유전자를 증가시킨다. 이러한 메카니즘을 이용하여, ER 내의 폴딩되지 않은 단백질에 의한 부담이 경감되고 ER은 항상성을 되찾는다. IRE1-의존성 붕괴(RIDD) 과정 역시 다양한 단백질의 mRNA를 분해시킴으로써 ER 로딩을 감소시키는 보완적 메카니즘으로 인식된다(23). 뿐만 아니라, IRE1 단백질 키나아제의 활성화는 TRAF2(TNF receptor-associated factor 2)와 같은 어댑터 단백질을 이용하여‘알람 스트레스 경로’를 촉발하여 ASK1(세포사멸 신호-regulating kinase 1) 및 이의 다운스트림 이펙터인 JNK(JUN N-terminal kinase)의 활성화에 이르게 된다(24).IRE1 is a type I ER transmembrane protein consisting of an ER-luminal domain that serves as a sensor for a protein that is not folded during ER stress, and a cytoplasmic domain including an endoribonuclease domain and a Ser/Thr protein kinase domain. The activated mammalian IRE1α protein transmits the ER stress signal by cleaving the mRNA of the transcription factor XBP1 (X-box-binding protein 1), and thus activated XBP1 (spliced XBP1) regulates protein folding and protein quality. And UPR-related genes involved in ERAD (22). Using this mechanism, the burden by the unfolded protein in the ER is alleviated and the ER regains homeostasis. The IRE1-dependent decay (RIDD) process is also recognized as a complementary mechanism to reduce ER loading by degrading the mRNA of various proteins (23). In addition, activation of IRE1 protein kinase triggers the'alarm stress pathway' using an adapter protein such as TRAF2 (TNF receptor-associated factor 2) to trigger ASK1 (apoptosis signal-regulating kinase 1) and its downstream effector, JNK. (JUN N-terminal kinase) is activated (24).
본 발명자들은 각각의 신호 arm을 분석함으로써 UPS에서 IRE1α의 역할을 조사하였다. 본 발명자들의 조사결과는 CFTR 및 펜드린의 UPS가 IRE1α RNase 활성을 요구하는 XBP1-및 RIDD-의존성 경로에 의해서가 아니라, IRE1α 키나아제-매개 신호 캐스케이드를 통해 인 비보인 비트로에서 활성화됨을 보였다. IRE1α키나아제 경로는 단백질 폴딩 및 이동 결함을 원인으로 하는 질환의 치료제 개발을 위한 신규한 타겟을 제공할 수 있다.The present inventors investigated the role of IRE1α in UPS by analyzing each signal arm. The present inventors' findings showed that the UPS of CFTR and pendrin was activated in vivo and in vitro through the IRE1α kinase-mediated signaling cascade, not by the XBP1- and RIDD-dependent pathways requiring IRE1α RNase activity. The IRE1α kinase pathway can provide a novel target for the development of therapeutic agents for diseases caused by protein folding and migration defects.
본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 논문 및 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다.Throughout this specification, a number of papers and patent documents are referenced and citations are indicated. The disclosure contents of the cited papers and patent documents are incorporated by reference in this specification as a whole, and the level of the technical field to which the present invention belongs and the contents of the present invention are more clearly described.
본 발명자들은 단백질의 비정상적 3차원 구조를 원인으로 하는 다양한 단백질 형태 이상 질환에 대한 신뢰도 높은 치료 타겟을 새로이 발굴하고, 이를 기반으로 효율적인 신규 치료제 조성물을 개발하기 위하여 예의 연구 노력하였다. 그 결과, 상기 화학식 1의 화합물을 투여할 경우 세포 사멸 유발 없이‘비전형적 단백질 분비(Unconventional Protein Secretion, UPS)’가 활성화되면서 돌연변이 등으로 인해 폴딩 및 이동성 결함을 가지는 분비 단백질의 세포 표면의 발현이 극적으로 회복됨을 발견함으로써, 본 발명을 완성하게 되었다.The present inventors have made intensive research efforts to discover new highly reliable therapeutic targets for various protein morphological disorders caused by the abnormal three-dimensional structure of the protein, and to develop an efficient new therapeutic composition based on this. As a result, when the compound of Formula 1 is administered, the'Unconventional Protein Secretion (UPS)' is activated without causing apoptosis, and the expression of the cell surface of the secreted protein having folding and mobility defects due to mutation, etc. By finding a dramatic recovery, the present invention was completed.
따라서 본 발명의 목적은 단백질 형태 이상 질환(protein conformational disorder)의 예방 또는 치료용 조성물을 제공하는 데 있다.Accordingly, an object of the present invention is to provide a composition for preventing or treating protein conformational disorders.
본 발명의 다른 목적은 단백질 형태 이상 질환의 예방 또는 치료용 조성물의 스크리닝 방법을 제공하는 데 있다.Another object of the present invention is to provide a method for screening a composition for preventing or treating diseases of abnormal protein form.
본 발명의 또 다른 목적은 비전형적 단백질 분비(UPS) 억제용 조성물을 제공하는 데 있다.Another object of the present invention is to provide a composition for inhibiting atypical protein secretion (UPS).
본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다.Other objects and advantages of the present invention will become more apparent by the following detailed description, claims and drawings.
본 발명의 일 양태에 따르면, 본 발명은 하기 일반식 1로 표시되는 화합물 또는 이의 약제학적으로 허용되는 염을 유효성분으로 포함하는 단백질 형태 이상 질환(protein conformational disorder)의 예방 또는 치료용 조성물을 제공한다:According to one aspect of the present invention, the present invention provides a composition for preventing or treating protein conformational disorders comprising a compound represented by the following general formula 1 or a pharmaceutically acceptable salt thereof as an active ingredient do:
일반식 1 General Formula 1
Figure PCTKR2020006933-appb-I000001
Figure PCTKR2020006933-appb-I000001
상기 일반식에서, R1 내지 R3는 각각 독립적으로 C1-C3 알킬이고, X는 할로겐이다.In the above general formula, R 1 to R 3 are each independently C 1 -C 3 alkyl, and X is halogen.
본 발명자들은 단백질의 비정상적 3차원 구조를 원인으로 하는 다양한 단백질 형태 이상 질환에 대한 신뢰도 높은 치료 타겟을 새로이 발굴하고, 이를 기반으로 효율적인 신규 치료제 조성물을 개발하기 위하여 예의 연구 노력하였다. 그 결과, 상기 화학식 1의 화합물을 투여할 경우 세포 사멸 유발 없이‘비전형적 단백질 분비(Unconventional Protein Secretion, UPS)’가 활성화되면서 돌연변이 등으로 인해 폴딩 및 이동성 결함을 가지는 분비 단백질의 세포 표면의 발현이 극적으로 회복됨을 발견함으로써, 본 발명을 완성하게 되었다.The present inventors have made intensive research efforts to discover new highly reliable therapeutic targets for various protein morphological disorders caused by the abnormal three-dimensional structure of the protein, and to develop an efficient new therapeutic composition based on this. As a result, when the compound of Formula 1 is administered,'Unconventional Protein Secretion (UPS)' is activated without causing apoptosis, and expression of the cell surface of the secreted protein having folding and mobility defects due to mutation, etc. By finding a dramatic recovery, the present invention was completed.
본 발명의 구체적인 구현예에 따르면, 본 발명의 조성물로 예방 또는 치료되는 단백질 형태 이상 질환은 아미노산 변이로 인한 단백질의 미접힘(unfold) 또는 잘못 접힘(misfold)에 의한 질환이다.According to a specific embodiment of the present invention, the protein morphological abnormality disease prevented or treated with the composition of the present invention is a disease caused by unfolding or misfolding of the protein due to amino acid mutation.
본 명세서에서 용어“단백질”은 펩타이드 결합에 의해 아미노산 잔기들이 서로 결합되어 형성된 일련의 고분자(macromolecule)를 의미한다. 단백질은 아미노산 유닛들의 연속적인 결합으로 이루어진 선형의 분자이나, 전체적인 크기, 전체 또는 각 구성 잔기의 전하 및 소수성, 공유·비공유 결합 형성여부 등에 의해 3차원 형태 및 상태 변화 경향이 영향을 받으며, 이러한 형태 및 경향이 비정상적일 경우 다양한 PCD(protein conformational disease) 질환의 원인이 될 수 있다. In the present specification, the term "protein" refers to a series of macromolecules formed by bonding of amino acid residues to each other by peptide bonds. Proteins are linear molecules consisting of consecutive bonds of amino acid units, but their three-dimensional shape and state change tendency are affected by the overall size, charge and hydrophobicity of all or each constituent residue, and whether or not covalent or non-covalent bonds are formed. And if the tendency is abnormal, it may cause various PCD (protein conformational disease) diseases.
구체적으로는, 상기 단백질은 분비 단백질(secretory protein)이다. 막관통 단백질을 비롯한 분비 단백질은 소포체(ER)로부터 골지(Golgi)로 이동 후 종국적으로 원형질막이나 세포 외로 보내지는데, 폴딩 결함을 가지는 단백질은 정상적인 골지-매개 단백질 분비경로로 진입하지 못하고 소포관련 분해기전(ERAD, ER-associated degradation)으로 보내짐으로써 세포 표면 발현이 이루어지지 않아 다양한 질환을 유발한다.Specifically, the protein is a secretory protein. Secreted proteins, including transmembrane proteins, move from the endoplasmic reticulum (ER) to the Golgi and are ultimately sent to the plasma membrane or extracellularly. Proteins with folding defects do not enter the normal Golgi-mediated protein secretion pathway, and vesicle-related degradation mechanisms (ERAD, ER-associated degradation) causes various diseases because cell surface expression is not achieved.
본 명세서에서 용어“폴딩 결함(folding defect)”은 단백질이 고유의 기능 및 활성을 가지는 3차원 구조를 획득하도록 폴리펩타이드가 정상적으로 폴딩 되지 못하는 것을 의미한다. 따라서, 용어 “폴딩 결함”은“잘못 접힘(misfolding)”과“미접힘(unfolding)”을 포함하는 의미이다. In the present specification, the term "folding defect" means that a polypeptide cannot be folded normally so that a protein acquires a three-dimensional structure having its own function and activity. Thus, the term “folding defect” is meant to include “misfolding” and “unfolding”.
본 명세서에서 용어“치료”는 (a)질환, 질병 또는 증상의 발전의 억제; (b)질환, 질병 또는 증상의 경감; 또는 (c)질환, 질병 또는 증상을 제거하는 것을 의미한다. 본 발명의 방법을 통해 발굴된 치료 조성물은 PCD 질환, 보다 구체적으로는 분비 단백질의 변이로 인한 폴딩 및 이동결함을 원인으로 질환에 걸린 개체에서 비전형적 단백질 분비를 활성화시킴으로써 분비 단백질의 세포 표면 발현 저해에 의해 유발되었던 증상의 발전을 억제하거나, 이를 제거하거나 또는 경감시키는 역할을 한다. 따라서, 본 발명의 조성물은 그 자체로 PCD의 치료 조성물이 될 수도 있고, 혹은 다른 약리성분과 함께 투여되어 상기 질환에 대한 치료 보조제로 적용될 수도 있다. 이에, 본 명세서에서 용어“치료”또는“치료제”는“치료 보조”또는“치료 보조제”의 의미를 포함한다. In the present specification, the term “treatment” refers to (a) inhibition of the development of a disease, disease or condition; (b) alleviation of a disease, disease or condition; Or (c) to eliminate the disease, disease or condition. The therapeutic composition discovered through the method of the present invention inhibits cell surface expression of secreted proteins by activating atypical protein secretion in individuals suffering from PCD disease, more specifically due to folding and migration defects caused by mutations in secreted proteins. It serves to inhibit, eliminate, or alleviate the development of symptoms caused by. Accordingly, the composition of the present invention may itself be a therapeutic composition for PCD, or may be administered together with other pharmacological components and applied as a therapeutic adjuvant for the disease. Accordingly, the term “treatment” or “therapeutic agent” in the present specification includes the meaning of “treatment aid” or “treatment aid”.
본 명세서에서, 용어“예방”은 질환 또는 질병을 보유하고 있다고 진단된 적은 없으나, 이러한 질환 또는 질병에 걸릴 가능성이 있는 대상체에서 질환 또는 질병의 발생을 억제하는 것을 의미한다. In the present specification, the term “prevention” refers to suppressing the occurrence of a disease or disease in a subject that has not been diagnosed as having a disease or disease, but is likely to have such disease or disease.
본 명세서에서 용어“투여”또는“투여하다”는 본 발명의 조성물의 치료적 유효량을 대상체에 직접적으로 투여함으로써 대상체의 체내에서 동일한 양이 형성되도록 하는 것을 말한다. 조성물의“치료적 유효량”은 조성물을 투여하고자 하는 대상체에게 치료적 또는 예방적 효과를 제공하기에 충분한 추출물의 함량을 의미하며, 이에 “예방적 유효량”을 포함하는 의미이다. 본 명세서에서 용어“대상체”는 제한없이 인간, 마우스, 래트, 기니아 피그, 개, 고양이, 말, 소, 돼지, 원숭이, 침팬지, 비비 또는 붉은털 원숭이를 포함한다. 구체적으로는, 본 발명의 대상체는 인간이다. In the present specification, the term “administration” or “administer” refers to the formation of the same amount in the body of the subject by directly administering a therapeutically effective amount of the composition of the present invention to the subject. The "therapeutically effective amount" of the composition means an amount of extract sufficient to provide a therapeutic or prophylactic effect to a subject to which the composition is to be administered, and includes a "prophylactically effective amount". As used herein, the term “subject” includes, without limitation, human, mouse, rat, guinea pig, dog, cat, horse, cow, pig, monkey, chimpanzee, baboon or rhesus monkey. Specifically, the subject of the present invention is a human.
본 명세서에서 용어“알킬”은 직쇄 또는 분쇄의 포화 탄화수소기를 의미하며, C1-C3 알킬은 탄소수 1 내지 3의 알킬 유니트를 가지는 알킬기를 의미하며, C1-C3 알킬이 치환된 경우 치환체의 탄소수는 포함되지 않은 것이다. In the present specification, the term “alkyl” refers to a linear or branched saturated hydrocarbon group, and C 1 -C 3 alkyl refers to an alkyl group having 1 to 3 carbon atoms, and when C 1 -C 3 alkyl is substituted, a substituent The carbon number of is not included.
본 발명의 구체적인 구현예에 따르면, 본 발명의 일반식 1의 R1 내지 R3는 C1 알킬이다. According to a specific embodiment of the present invention, R 1 to R 3 in the general formula 1 of the present invention are C 1 alkyl.
본 발명의 구체적인 구현예에 따르면, 본 발명의 일반식 1의 X는 Cl이다.According to a specific embodiment of the present invention, X in the general formula 1 of the present invention is Cl.
R1 내지 R3가 C1 알킬(메틸)이고 X가 Cl인 화학식 1 화합물은 (E)-2-(2-클로로스티릴)-3,5,6-트리메틸-피라진(CSTMP)으로, CSTMP는 IRE1α키나아제를 활성화시킨다. 하기 실시예에서 구체적으로 기재한 바와 같이, 본 발명자들은 UPS를 활성화시켜 폴딩/이동 결함을 가지는 분비 단백질의 표면 발현을 회복시키기 위해서는 IRE1α키나아제를 활성화시켜야 한다는 사실을 다각적인 실험을 통해 최초로 확인하였다. 이는 IRE1α 엔도뉴클레아제 활성화를 통한 XBP1의 스플라이싱(활성화) 유도가 UPS 촉진을 위한 핵심 타겟이라 제안하던 당업계의 상식을 뒤집으면서, PCD 질환을 치료하기 위한 가장 효율적이고 직접적인 타겟을 제안하는 것이다. The compound of Formula 1 wherein R 1 to R 3 are C 1 alkyl (methyl) and X is Cl is (E)-2-(2-chlorostyryl)-3,5,6-trimethyl-pyrazine (CSTMP), CSTMP Activates the IRE1α kinase. As described in detail in the following examples, the present inventors first confirmed through various experiments that IRE1α kinase must be activated in order to restore the surface expression of a secreted protein having a folding/migration defect by activating UPS. This reverses common sense in the art that suggested that the induction of splicing (activation) of XBP1 through IRE1α endonuclease activation is a key target for UPS promotion, suggesting the most efficient and direct target for treating PCD disease. will be.
본 발명의 구체적인 구현예에 따르면, 본 발명의 화학식 1 화합물의 농도는 5μM-50μM이며, 보다 구체적으로는 5μM-30μM이고, 가장 구체적으로는 10μM-20이다. According to a specific embodiment of the present invention, the concentration of the compound of Formula 1 of the present invention is 5 μM-50 μM, more specifically 5 μM-30 μM, and most specifically 10 μM-20.
본 발명의 구체적인 구현예에 따르면, 상기 단백질은 낭포성 섬유증 막전도 조절자(CFTR), 펜드린(pendrin) 및 이들의 조합으로 구성된 군으로부터 선택된다. According to a specific embodiment of the present invention, the protein is selected from the group consisting of a cystic fibrosis membrane conduction regulator (CFTR), pendrin, and combinations thereof.
보다 구체적으로, 본 발명의 조성물로 예방 또는 치료되는 단백질 형태 이상 질환은 낭포성 섬유증 또는 선천성 청각장애이다. More specifically, the protein form abnormal disease prevented or treated with the composition of the present invention is cystic fibrosis or congenital hearing impairment.
CFTR는 소포체의 질적 관리 시스템을 이루는 단백질로서 골지로 이동한 뒤 복합체-글리코실화된 후 상피조직의 첨부 표면으로 보내지는데, 돌연변이, 예를 들어 508번째 페닐알라닌 잔기가 삭제된 ΔF508-CFTR는 미스폴딩되어 원형질막 표면에서 발현되지 못한 채 ERAD에 의해 분해됨으로써 낭포성 섬유증을 유발한다. CFTR is a protein constituting the qualitative management system of the endoplasmic reticulum, and is transferred to the Golgi, complex-glycosylated, and then sent to the attachment surface of the epithelial tissue. Cystic fibrosis is caused by being degraded by ERAD without being expressed on the plasma membrane surface.
펜드린은 내이(inner ear)와 갑상선 여포의 음이온을 수송 막관통 단백질로, 역시 변이로 인한 단백질 미스폴딩, ER 정체 및 ERAD에 이르는 일련의 과정은 선천성 청각장애를 유발한다. 구체적으로는, 상기 청각장애는 비증후군성 전정수도관 확장 관련 청각소실(deafness with an enlarged vestibular aqueduct, DFNB4) 또는 펜드리드 증후군(PDS)이다. Pendrin is a transmembrane protein that transports negative ions in the inner ear and thyroid follicles, and a series of processes leading to protein misfolding, ER retention, and ERAD caused by mutations cause congenital hearing impairment. Specifically, the hearing impairment is deafness with an enlarged vestibular aqueduct (DFNB4) or Pendrid syndrome (PDS).
본 발명의 조성물이 약제학적 조성물로 제조되는 경우, 본 발명의 약제학적 조성물은 약제학적으로 허용되는 담체를 포함한다. 본 발명의 약제학적 조성물에 포함되는 약제학적으로 허용되는 담체는 제제시에 통상적으로 이용되는 것으로서, 락토스, 덱스트로스, 수크로스, 솔비톨, 만니톨, 전분, 아카시아 고무, 인산 칼슘, 알기네이트, 젤라틴, 규산 칼슘, 미세결정성 셀룰로스, 폴리비닐피롤리돈, 셀룰로스, 물, 시럽, 메틸 셀룰로스, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 활석, 스테아르산 마그네슘 및 미네랄 오일 등을 포함하나, 이에 한정되는 것은 아니다. 본 발명의 약제학적 조성물은 상기 성분들 이외에 윤활제, 습윤제, 감미제, 향미제, 유화제, 현탁제, 보존제 등을 추가로 포함할 수 있다. 적합한 약제학적으로 허용되는 담체 및 제제는 Remington's Pharmaceutical Sciences (19th ed., 1995)에 상세히 기재되어 있다.When the composition of the present invention is prepared as a pharmaceutical composition, the pharmaceutical composition of the present invention includes a pharmaceutically acceptable carrier. Pharmaceutically acceptable carriers included in the pharmaceutical composition of the present invention are commonly used at the time of formulation, and include lactose, dextrose, sucrose, sorbitol, mannitol, starch, gum acacia, calcium phosphate, alginate, gelatin, Calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrup, methyl cellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate, mineral oil, etc. It does not become. The pharmaceutical composition of the present invention may further include a lubricant, a wetting agent, a sweetening agent, a flavoring agent, an emulsifying agent, a suspending agent, a preservative, and the like in addition to the above components. Suitable pharmaceutically acceptable carriers and formulations are described in detail in Remington's Pharmaceutical Sciences (19th ed., 1995).
본 발명의 약제학적 조성물은 경구 또는 비경구 투여할 수 있으며, 구체적으로는 비경구 방식으로 투여된다.The pharmaceutical composition of the present invention can be administered orally or parenterally, and specifically, it is administered parenterally.
본 발명의 약제학적 조성물의 적합한 투여량은 제제화 방법, 투여방식, 환자의 연령, 체중, 성, 병적 상태, 음식, 투여 시간, 투여 경로, 배설 속도 및 반응 감응성과 같은 요인들에 의해 다양하게 처방될 수 있다. 본 발명의 약제학적 조성물의 바람직한 투여량은 성인 기준으로 0.001-100 ㎎/kg 범위 내이다.The appropriate dosage of the pharmaceutical composition of the present invention is prescribed in various ways depending on factors such as formulation method, administration mode, patient's age, weight, sex, pathological condition, food, administration time, route of administration, excretion rate and response sensitivity. Can be. A preferred dosage of the pharmaceutical composition of the present invention is in the range of 0.001-100 mg/kg on an adult basis.
본 발명의 약제학적 조성물은 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있는 방법에 따라, 약제학적으로 허용되는 담체 및/또는 부형제를 이용하여 제제화함으로써 단위 용량 형태로 제조되거나 또는 다용량 용기 내에 내입시켜 제조될 수 있다. 이때 제형은 오일 또는 수성 매질중의 용액, 현탁액, 시럽제 또는 유화액 형태이거나 엑스제, 산제, 분말제, 과립제, 정제 또는 캅셀제 형태일 수도 있으며, 분산제 또는 안정화제를 추가적으로 포함할 수 있다.The pharmaceutical composition of the present invention is prepared in unit dosage form by formulating using a pharmaceutically acceptable carrier and/or excipient according to a method that can be easily carried out by a person having ordinary knowledge in the technical field to which the present invention belongs. Or it can be made by incorporating it into a multi-dose container. At this time, the formulation may be in the form of a solution, suspension, syrup, or emulsion in an oil or aqueous medium, or in the form of an extract, powder, powder, granule, tablet or capsule, and may additionally include a dispersant or a stabilizer.
본 발명의 다른 양태에 따르면, 본 발명은 다음의 단계를 포함하는 단백질 형태 이상 질환(protein conformational disorder)의 예방 또는 치료용 조성물의 스크리닝 방법을 제공한다:According to another aspect of the present invention, the present invention provides a method for screening a composition for preventing or treating a protein conformational disorder comprising the following steps:
(1) IRE1α 키나아제를 포함하는 생물학적 시료에 시험물질을 접촉시키는 단계; 및(1) contacting a test substance with a biological sample containing IRE1α kinase; And
(2) 상기 시료 내 IRE1α 키나아제의 활성 또는 발현을 측정하는 단계, (2) measuring the activity or expression of IRE1α kinase in the sample,
상기 IRE1α kinase의 활성 또는 발현이 증가한 경우, 상기 후보물질은 단백질 형태 이상 질환의 예방 또는 치료용 조성물로 판정한다.When the activity or expression of the IRE1α kinase is increased, the candidate substance is determined as a composition for preventing or treating abnormal protein morphology.
본 발명에서 지시하는 단백질 형태 이상 질환에 대해서는 이미 상술하였으므로 과도한 중복을 피하기 위해 그 기재를 생략한다.Since the protein morphology abnormal disease indicated in the present invention has already been described above, description thereof will be omitted to avoid excessive duplication.
본 발명에서 용어“생물학적 시료”는 인간을 포함한 포유동물로부터 얻어지는, IRE1α를 발현하는 세포를 포함하고 있는 모든 시료로서, 조직, 기관, 세포 또는 세포 배양액을 포함하나, 이에 제한되지 않는다.In the present invention, the term "biological sample" refers to any sample including cells expressing IRE1α obtained from mammals including humans, and includes, but is not limited to, tissues, organs, cells, or cell culture.
본 발명의 스크리닝 방법을 언급하면서 사용되는 용어 “시험물질”은 IRE1α를 발현하는 세포를 포함하는 시료에 첨가되어 IRE1α 키나아제의 활성 또는 발현량에 영향을 미치는지 여부를 검사하기 위하여 스크리닝에서 이용되는 미지의 물질을 의미한다. 상기 시험물질은 화합물, 뉴클레오타이드, 펩타이드 및 천연 추출물을 포함하나, 이에 제한되는 것은 아니다. 시험물질을 처리한 생물학적 시료에서 IRE1α 키나아제의 발현량 또는 활성을 측정하는 단계는 당업계에 공지된 다양한 발현량 및 활성 측정방법에 의해 수행 될 수 있다. 측정 결과, IRE1α 키나아제의 발현량 또는 활성이 증가하는 경우 상기 시험물질은 단백질 형태 이상 질환의 예방 또는 치료용 조성물로 판정될 수 있다.The term “test substance” used while referring to the screening method of the present invention is added to a sample containing IRE1α-expressing cells, and is used in screening to test whether it affects the activity or expression level of IRE1α kinase. Means substance. The test substances include, but are not limited to, compounds, nucleotides, peptides, and natural extracts. The step of measuring the expression level or activity of IRE1α kinase in a biological sample treated with the test substance may be performed by various methods known in the art for measuring expression levels and activities. As a result of the measurement, when the expression level or activity of IRE1α kinase is increased, the test substance may be determined as a composition for preventing or treating diseases of abnormal protein form.
본 명세서에서 용어“발현의 증가”는 폴딩/이동 결함을 가지는 변이 단백질의 UPS가 촉진되어 단백질 형태 이상 질환의 증상이 경감 또는 개선되거나 혹은 그 위험이 감소할 정도로 IRE1α 키나아제의 발현량이 증가하는 것을 의미한다. 구체적으로는 대조군에 비하여 활성 또는 발현량이 20% 이상 증가한 상태, 보다 구체적으로는 40% 이상 증가한 상태, 더욱 구체적으로는 60% 이상 증가한 상태를 의미할 수 있다.In the present specification, the term “increased expression” means that the expression level of IRE1α kinase increases to the extent that the symptoms of protein morphological disorders are alleviated or improved or the risk is reduced by promoting UPS of a mutant protein having a folding/migration defect. do. Specifically, it may mean a state in which the activity or expression is increased by 20% or more, more specifically, by 40% or more, and more specifically, by 60% or more compared to the control group.
본 명세서에서 용어 “활성의 증가”란 대조군에 비하여 단백질의 생체내 고유한 기능이 측정 가능할 정도로 유의하게 증가하는 것을 말하며, 구체적으로는 폴딩/이동 결함을 가지는 변이단백질의 UPS가 촉진되어 단백질 형태 이상 질환의 증상이 경감 또는 개선되거나 혹은 그 위험이 감소할 정도로 IRE1α 키나아제의 활성이 증가하는 것을 말한다. 활성(activity)의 증가는 단순한 기능(function)의 증가 뿐 아니라 안정성(stability)의 증가로 기인한 궁극적인 활성 증가를 포함한다.In the present specification, the term "increase in activity" refers to a significant increase in the intrinsic function of the protein in vivo compared to the control group. Specifically, the UPS of a mutant protein having a folding/migration defect is promoted to cause abnormal protein morphology. It refers to an increase in the activity of IRE1α kinase to the extent that symptoms of a disease are alleviated or improved, or the risk thereof is reduced. Increasing activity includes not only an increase in function, but also an increase in ultimate activity due to an increase in stability.
본 발명의 또 다른 양태에 따르면, 본 발명은 IRE1α 키나아제의 억제제를 유효성분으로 포함하는 비전형적 단백질 분비(UPS) 억제용 조성물을 제공한다.According to another aspect of the present invention, the present invention provides a composition for inhibiting atypical protein secretion (UPS) comprising an inhibitor of IRE1α kinase as an active ingredient.
본 명세서에서 용어“억제제”는 IRE1α 키나아제의 활성 또는 발현의 저하를 야기시키는 물질을 의미하며, 이에 의해 IRE1α 키나아제의 활성 또는 발현이 탐지 불가능해지거나 무의미한 수준으로 존재하게 되는 경우 뿐 아니라, IRE1α 키나아제에 의해 유도되는 UPS 경로가 유의하게 저하될 수 있을 정도로 IRE1α 키나아제의 활성 또는 발현을 저하시키는 물질을 의미한다. In the present specification, the term “inhibitor” refers to a substance that causes a decrease in the activity or expression of IRE1α kinase, whereby the activity or expression of the IRE1α kinase becomes undetectable or exists at an insignificant level, as well as in the IRE1α kinase. It refers to a substance that decreases the activity or expression of IRE1α kinase to the extent that the UPS pathway induced by it can be significantly reduced.
IRE1α 키나아제의 억제제는 예를 들어 당업계에 이미 그 서열 및 구조가 공지된 효소인 IRE1α 키나아제의 발현을 유전자 수준에서 억제하는 shRNA, siRNA, miRNA, 리보자임(ribozyme), PNA(peptide nucleic acids) 또는 안티센스 올리고뉴클레오타이드와, 단백질 수준에서 억제하는 항체 또는 앱타머 뿐 아니라, IRE1α 키나아제의 활성을 억제하는 화합물 , 펩타이드 및 천연물을 포함하나, 이에 제한되는 것은 아니다. Inhibitors of IRE1α kinase include, for example, shRNA, siRNA, miRNA, ribozyme, peptide nucleic acids (PNA) or Antisense oligonucleotides and antibodies or aptamers that inhibit at the protein level, as well as compounds, peptides, and natural products that inhibit the activity of IRE1α kinase, but are not limited thereto.
본 명세서에서 용어“비전형적 단백질 분비(UPS) 억제”는 IRE1α에 의해 유도되는 UPS 경로를 유의하게 저해함으로써, 궁극적으로 폴딩 결함을 가지는 이상 단백질이 원형질막으로 이동하거나 세포 외부로 분비되는 것을 억제하는 것을 의미한다. 따라서, 용어“비전형적 단백질 분비(UPS) 억제”는“폴딩 결함을 가지는 단백질의 과도한 분비로 인한 질환의 예방 또는 치료”와 동일한 의미를 가진다. As used herein, the term “atypical protein secretion (UPS) inhibition” significantly inhibits the UPS pathway induced by IRE1α, and ultimately inhibits the movement of abnormal proteins with folding defects to the plasma membrane or secretion outside the cell. it means. Accordingly, the term “atypical protein secretion (UPS) inhibition” has the same meaning as “prevention or treatment of diseases caused by excessive secretion of proteins with folding defects”.
본 발명의 구체적인 구현예에 따르면, 본 발명의 IRE1α 키나아제의 억제제는 APY29이다.According to a specific embodiment of the present invention, the inhibitor of IRE1α kinase of the present invention is APY29.
본 발명의 또 다른 양태에 따르면, 본 발명은 하기 일반식 1로 표시되는 화합물 또는 이의 약제학적으로 허용되는 염을 유효성분으로 포함하는 조성물을 투여하는 단계를 포함하는 단백질 형태 이상 질환(protein conformational disorder)의 예방 또는 치료 방법을 제공한다:According to another aspect of the present invention, the present invention provides a protein conformational disorder comprising administering a composition comprising a compound represented by the following general formula 1 or a pharmaceutically acceptable salt thereof as an active ingredient. ) To provide a method of preventing or treating:
일반식 1 General Formula 1
Figure PCTKR2020006933-appb-I000002
Figure PCTKR2020006933-appb-I000002
본 발명에서 이용되는 일반식 1 화합물 및 이를 통해 예방 또는 치료될 수 있는 단백질 형태 이상 질환에 대해서는 이미 상술하였으므로, 과도한 중복을 피하기 위해 그 기재를 생략한다.Since the general formula 1 compound used in the present invention and protein morphological disorders that can be prevented or treated through the same have been described above, description thereof will be omitted to avoid excessive redundancy.
본 발명의 또 다른 양태에 따르면, 본 발명은 IRE1α 키나아제의 억제제를 투여하는 단계를 포함하는 대상체에서의 비전형적 단백질 분비(UPS) 억제 방법을 제공한다.According to another aspect of the present invention, the present invention provides a method of inhibiting atypical protein secretion (UPS) in a subject comprising administering an inhibitor of IRE1α kinase.
본 발명의 특징 및 이점을 요약하면 다음과 같다:The features and advantages of the present invention are summarized as follows:
(a) 본 발명은 단백질 형태 이상 질환(protein conformational disorder)의 예방 또는 치료용 조성물 및 이의 스크리닝 방법을 제공한다.(a) The present invention provides a composition for preventing or treating a protein conformational disorder, and a screening method thereof.
(b) 본 발명은 또한 비전형적 단백질 분비(UPS) 경로의 억제용 조성물을 제공한다.(b) The present invention also provides a composition for inhibiting the atypical protein secretion (UPS) pathway.
(c) 본 발명은 변이 단백질의 폴딩 및 이동 결함을 원인으로 하는 다양한 단백질 형태 이상 질환에 대한 효율적인 치료제 조성물로 유용하게 이용될 수 있을 뿐 아니라, 치료제 개발을 위한 신뢰도 높은 신규 타겟을 제공한다.(c) The present invention can be usefully used as an efficient therapeutic composition for various protein morphological disorders caused by defects in folding and migration of mutant proteins, and provides a novel target with high reliability for the development of therapeutic agents.
도 1은 XBP1 스플라이싱 및 IRE1α 엔도뉴클라아제 활성이 ΔF508-CFTR의 UPS와 무관함을 보여주는 그림이다. Arf1-Q71L-유도된 소포체-골지 (ER-to-Golgi) 차단으로 인해 ASK1 인산화가 활성화되나, XBP1 스플라이싱은 활성화되지 않는다. HEK293 세포를 Arf1-Q71L 플라스미드로 48시간 동안 형질전환하거나 타프시가진 (thapsigargin) 5μM를 12시간 동안 처리하여 소포체 스트레스(ER stress)를 유도하였다. 대표적으로 IRE1α, 인산-IRE1α, 인산-ASK1 및 스플라이싱된 XBP1의 면역블롯 결과는 도 1a에 나타내고, 복수회 실험결과에 대한 정량화 결과는 도 1b에 요약하였다(n=3). XBP1가 아닌 IRE1α가 Arf1-Q71L-유도된 ΔF508-CFTR의 UPS에 필요하다. 도 1c는 플라스미드 및/또는 siRNA로 형질전환된 HEK293 세포에 대한 표면 바이오틴화 분석 결과를 면역블롯으로 보여주는 그림이며, 복수회 실험에 대한 결과는 도 1d에 요약하였다(n=4). 단백질의 세포 표면-특이적 표지는 바이오틴화된 절편에서 세포질 단백질 알돌레이즈 A가 존재하지 않음을 통해 확인하였다. 상술한 방법으로 XBP1 siRNA 대신 STF-083010(60 μM, 12 h)를 처리하여 표면 바이오틴화 분석을 수행하였다. 대표적인 결과는 도 1e에 나타내었으며 복수회 실험에 대한 결과는 도 1f에 요약하였다(n=4). 막대그래프 데이터는 평균 ± 표준오차로 나타내었다. **P< 0.01, n.s. 유의성 없음. 데이터는 일원분산분석 후 Tukey 다중비교검정을 수행하였다.1 is a diagram showing that XBP1 splicing and IRE1α endonuclease activity are independent of the UPS of ΔF508-CFTR. ASK1 phosphorylation is activated due to Arf1-Q71L-induced ER-to-Golgi blockade, but XBP1 splicing is not. HEK293 cells were transformed with Arf1-Q71L plasmid for 48 hours or treated with 5 μM of tapsigargin for 12 hours to induce ER stress. Representative immunoblot results of IRE1α, phosphoric acid-IRE1α, phosphoric acid-ASK1, and spliced XBP1 are shown in FIG. 1A, and the quantification results for the results of multiple experiments are summarized in FIG. 1B (n=3). IRE1α, not XBP1, is required for the UPS in Arf1-Q71L-derived ΔF508-CFTR. Figure 1c is a picture showing the results of the surface biotinylation analysis of HEK293 cells transformed with plasmid and/or siRNA as an immunoblot, and the results of multiple experiments are summarized in Figure 1d (n=4). The cell surface-specific labeling of the protein was confirmed by the absence of the cytoplasmic protein aldolase A in the biotinylated fragment. In the above-described method, instead of XBP1 siRNA, STF-083010 (60 μM, 12 h) was treated to perform surface biotinylation analysis. Representative results are shown in Fig. 1e, and the results for multiple experiments are summarized in Fig. 1f (n=4). Histogram data are expressed as mean ± standard error. ** P <0.01, ns no significance. Data was analyzed for one-way variance and then Tukey multiple comparison test was performed.
도 2는 ΔF508-CFTR의 UPS 유도에 IRE1α 키나아제 활성이 필요함을 보여주는 그림이다. HEK293 세포에서 Arf1-Q71L로 ΔF508-CFTR UPS를 유도한 뒤 APY29(100 μM) 또는 단백질 합성 억제제인 사이클로헥시마이드(0.1 mg/mL)를 처리하고 표면 바이오틴화 분석을 수행함으로써 IRE1α 키나아제 억제제인 APY29가 ΔF508-CFTR의 UPS에 미치는 영향을 조사하였다. 대표적인 면역블롯 결과는 도 2a에 나타내었으며, 복수회 실험에 대한 결과는 도 2b에 요약하였다(n=5). APY29는 전체 단백질 수준에 영향을 미치지 않으면서 표면 ΔF508-CFTR를 선택적으로 감소시킨다. HeLa 세포를 Arf1-Q71L의 존재 및 부재 하에서 각각 ΔF508-CFTR 발현 플라스미드로 형질전환하고 APY29(100 μM)를 일정기간 동안 배지에 첨가하였다. 항-M3A7 CFTR 항체(녹색)로 CFTR을 면역염색하고 IRE1α는 항-IRE1α 항체(붉은색)로 표지하였다. 대표적인 면역형광 이미지는 도 2c에 나타냈으며 표면 CFTR 강도에 대한 정량화 결과는 도 2d에 요약하였다(n=5-14). 화살표는 세포 표면에서 발현되는 ΔF508-CFTR을 나타낸다. 스케일바: 10 μm. 그래프 데이터는 평균 ± 표준오차로 나타내었다. **P< 0.01. 데이터는 일원분산분석 후 Tukey 다중비교검정을 수행하였다.Figure 2 is a diagram showing that IRE1α kinase activity is required for UPS induction of ΔF508-CFTR. After inducing ΔF508-CFTR UPS with Arf1-Q71L in HEK293 cells, APY29 (100 μM) or protein synthesis inhibitor cycloheximide (0.1 mg/mL) was treated, and surface biotinylation assay was performed. The effect of ΔF508-CFTR on UPS was investigated. Representative immunoblot results are shown in FIG. 2A, and results for multiple experiments are summarized in FIG. 2B (n=5). APY29 selectively reduces the surface ΔF508-CFTR without affecting the overall protein level. HeLa cells were transformed with ΔF508-CFTR expression plasmids in the presence and absence of Arf1-Q71L, respectively, and APY29 (100 μM) was added to the medium for a period of time. CFTR was immunostained with anti-M3A7 CFTR antibody (green), and IRE1α was labeled with anti-IRE1α antibody (red). Representative immunofluorescence images are shown in Fig. 2c, and the quantification results for surface CFTR intensity are summarized in Fig. 2d (n=5-14). Arrows indicate ΔF508-CFTR expressed on the cell surface. Scale bar: 10 μm. Graph data are expressed as mean ± standard error. ** P <0.01. Data was analyzed for one-way variance and then Tukey multiple comparison test was performed.
도 3은 ASK1이 코어-글리코실화된 CFTR의 UPS에 필요함을 보여주는 그림이다. ASK1 억제제인 MSC2032964A(ASK1-Inh)은 Arf1-Q71L-유도된 CFTR의 UPS를 억제한다. WT-CFTR, ΔF508-CFTR 및/또는 Arf1-Q71L를 발현하는 플라스미드로 형질전환된 HEK293 세포에서 표면 바이오틴화 분석을 수행하였다. 몇몇 세포에 일정한 시간 동안 MSC2032964A(10 μM)를 처리하였다. WT-CFTR 및 ΔF508-CFTR에 대한 대표적인 표면 바이오틴화 결과를 도 3a 및 3b에 각각 표시하였다. 복수회 실험에 대한 결과는 도 3C의 그래프에 요약하였다(n=6). MSC2032964A의 ASK1 활성억제 효과는 감소된 인산화를 통해 확인할 수 있었다. **P<0.01, Arf1-Q71L, 0h과 비교. 표면 바이오틴화 분석을 ASK1-특이적 siRNA(100 nM)를 공-형질전환하여 상술한 방법대로 수행하였다. WT-CFTR 및 ΔF508-CFTR의 대표적인 표면 바이오틴화 결과는 도 3d 및 도 3f에 각각 표시하였다. 복수회 실험에 대한 결과는 도 3e 및 3g에 요약하였다(모두 n=3). b, 코어-글리코실화된 CFTR. c, complex-글리코실화된 CFTR. 그래프 데이터는 평균 ± 표준오차로 나타내었다. **P< 0.01. 데이터는 일원분산분석 후 Tukey 다중비교검정 또는 양측(two-sided) 스튜던트 t-검정을 수행하였다.3 is a diagram showing that ASK1 is required for a UPS of a core-glycosylated CFTR. The ASK1 inhibitor, MSC2032964A (ASK1-Inh), inhibits the UPS of Arf1-Q71L-induced CFTR. Surface biotinylation assays were performed in HEK293 cells transformed with plasmids expressing WT-CFTR, ΔF508-CFTR and/or Arf1-Q71L. Several cells were treated with MSC2032964A (10 μM) for a period of time. Representative surface biotinylation results for WT-CFTR and ΔF508-CFTR are shown in Figs. 3A and 3B, respectively. The results for the multiple experiments are summarized in the graph of FIG. 3C (n=6). The inhibitory effect of MSC2032964A on ASK1 activity could be confirmed through reduced phosphorylation. ** P <0.01, compared to Arf1-Q71L, 0h. Surface biotinylation analysis was performed in the manner described above by co-transformation of ASK1-specific siRNA (100 nM). Representative surface biotinylation results of WT-CFTR and ΔF508-CFTR are shown in FIGS. 3D and 3F, respectively. The results for the multiple experiments are summarized in FIGS. 3E and 3G (all n=3). b , core-glycosylated CFTR. c , complex-glycosylated CFTR. Graph data are expressed as mean ± standard error. ** P <0.01. Data were analyzed for one-way variance, followed by Tukey multiple comparison test or two-sided Student's t-test.
도 4는 CSTMP에 의한 IRE1α 키나아제 활성화가 ΔF508-CFTR의 UPS를 유도함을 보여주는 그림이다. HEK293 세포에 48시간 동안 3~100 μM의 CSTMP를 처리하였다. 세포사멸 신호의 활성화를 PARP 및 카스파아제 3 절단을 통해 분석하였다(화살표). 대표적인 면역블롯 결과는 도 4a에 나타내었으며, 복수회 실험에 대한 결과는 도 4b에 요약하였다(n=5). 10 μM 농도의 CSTMP는 ASK1을 활성화시켰으나, 세포사멸 신호를 활성화시키지는 않았다(붉은 화살표). ΔF508-CFTR를 발현하는 HEK293 세포에서 표면 바이오틴화 분석은 수행하였다. 몇몇 세포에 CSTMP(10 μM)를 일정시간 동안 처리하였다. 대표적인 결과는 도 4c에 나타냈으며, 복수회 실험결과의 요약은 도 4d에 나타내었다(n=6). *P< 0.05, **P< 0.01, 비처리군(첫 번째 레인)과 비교. ##P< 0.01, GRASP55-Myc만 처리한 군과 비교(네 번째 레인). HeLa 세포를 세포외 HA-tagged ΔF508-CFTR를 인코딩하는 플라스미드로 형질전환하였다. 몇몇 세포를 고정 전 12시간 또는 24시간 동안 CSTMP(10 μM)와 함께 배양하였다. 막 투과 전 세포 표면의 CFTR를 항-HA 항체로 면역염색하고(녹색), 투과 후 전체 CFTR을 항-R4 CFTR 항체로 염색하였다(붉은색). 화살표는 표면 CFTR을 나타낸다. 표면 CFTR 강도에 대한 형태계측 정량화는 도 4f에 나타내었다(n=5). 스케일바: 10 μm. **P< 0.01, 비처리군(첫 번째 레인)과 비교. 데이터는 일원분산분석 후 Tukey 다중비교검정을 수행하였다.4 is a diagram showing that activation of IRE1α kinase by CSTMP induces UPS of ΔF508-CFTR. HEK293 cells were treated with 3-100 μM CSTMP for 48 hours. The activation of the apoptosis signal was analyzed by cleaving PARP and caspase 3 (arrow). Representative immunoblot results are shown in FIG. 4A, and results for multiple experiments are summarized in FIG. 4B (n=5). CSTMP at a concentration of 10 μM activated ASK1, but did not activate the apoptosis signal (red arrow). Surface biotinylation assays were performed in HEK293 cells expressing ΔF508-CFTR. Several cells were treated with CSTMP (10 μM) for a period of time. Representative results are shown in Fig. 4c, and a summary of the results of multiple experiments is shown in Fig. 4d (n=6). * P <0.05, ** P <0.01, compared to untreated group (first lane). ## P <0.01, compared to the group treated with GRASP55-Myc alone (lane 4). HeLa cells were transformed with a plasmid encoding extracellular HA-tagged ΔF508-CFTR. Several cells were incubated with CSTMP (10 μM) for 12 or 24 hours before fixation. CFTR on the cell surface before membrane permeation was immunostained with an anti-HA antibody (green), and after permeation, the entire CFTR was stained with an anti-R4 CFTR antibody (red). Arrows indicate surface CFTR. Morphological quantification of surface CFTR strength is shown in Fig. 4f (n=5). Scale bar: 10 μm. ** P <0.01, compared to untreated group (first lane). Data were analyzed for one-way variance and then Tukey multiple comparison test was performed.
도 5는 CSTMP(10 μM) 처리가 세포독성을 유발하지 않음을 보여주는 그림이다. 도 5a 및 5b는 이소성 Arf1-Q71L가 ΔF508-CFTR의 UPS, ASK1의 활성화 및 카스파아제 3 절단에 미치는 영향을 시간에 따라 보여준다. 대표적 면역블롯 결과는 도 5a에 나타내고, 복수회 실험에 대한 결과는 도 5b에 요약하였다(n=6). Arf1-Q71L를 인코딩하는 플라스미드로 72시간 동안 형질전환하자 카스파아제 3가 절단되었다(화살표). 도 5c 및 5d는 CSTMP(10 μM)가 ΔF508-CFTR의 UPS, ASK1의 활성화 및 카스파아제 3 절단에 미치는 영향을 시간에 따라 보여준다. 대표적인 면역블롯 결과를 도 5c에 나타내었으며, 복수회 실험에 대한 결과는 도 5d에 요약하였다(n=6). CSTMP(10 μM)는 72시간까지 카스파아제 3의 절단을 유발하지 않았다. 캄토테신(2 μM, 12h)을 카스파아제 3의 절단을 유도하기 위한 양성 대조군으로 사용하였다(화살표). 그래프 데이터는 평균 ± 표준오차로 나타냈다.5 is a diagram showing that CSTMP (10 μM) treatment does not induce cytotoxicity. 5A and 5B show the effect of ectopic Arf1-Q71L on UPS, activation of ASK1 and caspase 3 cleavage of ΔF508-CFTR over time. Representative immunoblot results are shown in FIG. 5A, and results for multiple experiments are summarized in FIG. 5B (n=6). Caspase 3 was cleaved after 72 hours of transformation with the plasmid encoding Arf1-Q71L (arrow). Figures 5c and 5d show the effect of CSTMP (10 μM) on UPS, activation of ASK1 and caspase 3 cleavage of ΔF508-CFTR over time. Representative immunoblot results are shown in Fig. 5c, and the results for multiple experiments are summarized in Fig. 5d (n=6). CSTMP (10 μM) did not cause cleavage of caspase 3 until 72 hours. Camptothecin (2 μM, 12h) was used as a positive control to induce cleavage of caspase 3 (arrow). Graph data are expressed as mean ± standard error.
도 6은 CSTMP에 의해 ΔF508-CFTR의 Cl- 채널기능이 회복됨을 보여주는 그림이다. 정해진 플라스미드로 형질전환된 HEK293 세포로부터 전체세포 전류를 기록하였다. -100 mV에서 +100 mV까지(0.8 mV/ms, 고정전압 0 mV)의 램프 펄스를 10초 간격으로 가함으로써 전류를 유발하였다. CFTR Cl- 전류는 cAMP(포스콜린 5 μM + IBMX 100 μM)에 의해 활성화되고 CFTRinh- 172(5 μM)에 의해 억제되었다. 도 6a는 -80 mV에서 측정된 전류 밀도를 보여주는 그림이다. 복제수(n)는 각 레인마다 표시하였다. 도 6b 내지 6f는 모크(mock), WT-CFTR 또는 ΔF508-CFTR 플라스미드로 형질전환된 세포에서48시간 동안의 대표적인 전체세포 전류를 나타낸다. 몇몇 세포에 CSTMP(10μM)를 24시간 동안 처리하였으며, 이에 의해 ΔF508-CFTR를 발현하는 세포 내에서 명확한 CFTR 전류가 유도되었다. 막대그래프 데이터는 평균 ± 표준오차로 나타내었다. **P< 0.01. 데이터는 쌍을 이루지 않은 스튜던트 t-검정으로 분석하였다.6 is a diagram showing that the Cl - channel function of ΔF508-CFTR is restored by CSTMP. Total cell currents were recorded from HEK293 cells transformed with the specified plasmid. Current was induced by applying ramp pulses from -100 mV to +100 mV (0.8 mV/ms, fixed voltage 0 mV) at intervals of 10 seconds. CFTR Cl - current was activated by cAMP (Forskolin 5 μM + IBMX 100 μM) and inhibited by CFTR inh -172 (5 μM). 6A is a diagram showing the current density measured at -80 mV. The number of copies (n) was indicated for each lane. 6B-6F show representative total cell currents for 48 hours in cells transformed with mock, WT-CFTR or ΔF508-CFTR plasmid. Several cells were treated with CSTMP (10 μM) for 24 hours, thereby inducing a clear CFTR current in cells expressing ΔF508-CFTR. Histogram data are expressed as mean ± standard error. ** P <0.01. Data were analyzed by unpaired Student's t -test.
도 7은 CSTMP가 미스폴딩된 펜드린의 표면발현을 회복시킴을 보여주는 그림이다. p.H723R-펜드린을 안정적으로 발현하는 PANC-1 세포에 Arf1-Q71L를 인코딩하는 플라스미드를 형질감염시키고 CSTMP(10 μM 또는 30 μM)와 함께 48시간 동안 인큐베이션하였다. 대표적 표면 바이오틴화 분석결과를 도 7a에 나타내고, 복수회 실험에 대한 결과는 도 7b에 요약하였다(n=5). *P< 0.05, **P< 0.01, 비처리군(첫 번째 레인)과 비교. ##P< 0.01, Arf1-Q71L만 도입한 군과 비교(두 번째 레인). pHi를 기록함으로써 Cl- o/HCO3 - i 교환 활성을 측정하였으며, 대표적인 음이온 교환측정 결과는 도 7c에, 복수회 실험값에 대한 정량화는 도 7d에 표시하였다(n=7-8). CSTMP(30 μM)는 p.H723R-펜드린 발현세포에서 Cl-/HCO3 - 교환 활성을 유의적으로 증가시켰다. 막대그래프 데이터는 평균 ± 표준오차로 나타내었다. **P< 0.01, p.H723R-펜드린만 처리한 군과 비교. 데이터는 일원분산분석 후 Tukey 다중비교검정을 수행하였다.7 is a diagram showing that CSTMP recovers the surface expression of misfolded fendrin. PANC-1 cells stably expressing p.H723R-fendrin were transfected with a plasmid encoding Arf1-Q71L and incubated with CSTMP (10 μM or 30 μM) for 48 hours. A representative surface biotinylation analysis result is shown in FIG. 7A, and the results for multiple experiments are summarized in FIG. 7B (n=5). * P <0.05, ** P <0.01, compared to untreated group (first lane). ## P <0.01, compared to the group that introduced only Arf1-Q71L (second lane). By recording the pH i , Cl - o /HCO 3 - i exchange activity was measured, and representative anion exchange measurement results are shown in Fig. 7c, and quantification of multiple experimental values is shown in Fig. 7d (n=7-8). CSTMP (30 μM) is expressed in the Cl gave p.H723R- pen cells increased the activity significantly exchange - / HCO 3. Histogram data are expressed as mean ± standard error. ** P <0.01, compared with the group treated with p.H723R-fendrin only. Data were analyzed for one-way variance and then Tukey multiple comparison test was performed.
도 8a는 대장 점막에서 채취한 상피 세포를 이용하여 표면 바이오틴화 분석을 수행한 결과를 보여준다. HEK293 세포의 단백질 시료를 대조군으로 사용하였다. 야생형(CftrWT) 또는 ΔF508-CFTR(CftrF508del)의 6주령 마우스에 비이클 또는 CSTMP(2.59 mg/kg, per os, 하루 한번)를 각각 5일간 투여하였다. 대표적인 표면 바이오틴화 분석 결과를 도 8a에 나타냈으며 복수회 실험의 결과는 도 8b에 요약하였다(n=4). 도 8c는 CFTR의 면역조직화학을 보여준다. 마우스 대장 조직의 종/횡 단면을 항-CFTR R4 래빗 다클론 항체로 면역 염색하였다. 화살표는 대장 첨단막에서의 CFTR 발현을 나타낸다. CSTMP 처리는 CftrF508del 마우스 대장에서 CFTR의 세포 표면 발현을 유도하였다. 스케일바: 10 μm. 도 8d 및 도 8e는 마우스 대장에서의 단락전류(Isc) 측정결과를 보여준다. 마우스 대장 첨단부에 아밀로라이드(100 μM)를 처리하여 상피 Na+채널을 차단하였다. 아데닐일 사이클라제 활성화제인 포스콜린(10 μM)을 첨단부에 투여하자 내강-음성 Isc가 유발되었는데, 이는 기저부로 전달된 Na+-K+-2Cl- 공수송체 억제제인 부메타니드(100 μM)에 의해 완전히 억제되었다. CftrF508del마우스 대장에서 CSTMP 처리는 CFTR-의존성 Isc를 유도하였다. 대표적인 Isc 측정 결과는 도 8d에, 복수회 실험에 대한 결과는 도 8e에 요약하였다(n=6-9). b, 코어-글리코실화된 CFTR. c, complex-글리코실화된 CFTR. 막대그래프 데이터는 평균±표준오차로 나타냈다. n.s. 유의성 없음. **P< 0.01. 데이터는 일원분산분석 후 Tukey 다중비교검정을 수행하였다.8A shows the result of performing a surface biotinylation analysis using epithelial cells collected from the colonic mucosa. A protein sample from HEK293 cells was used as a control. Wild-type (Cftr WT ) or ΔF508-CFTR (Cftr F508del ) 6-week-old mice were administered vehicle or CSTMP (2.59 mg/kg, per os, once a day) for 5 days, respectively. Representative surface biotinylation analysis results are shown in Fig. 8A, and the results of multiple experiments are summarized in Fig. 8B (n=4). Figure 8c shows the immunohistochemistry of CFTR. The longitudinal/transverse sections of mouse colon tissue were immunostained with anti-CFTR R4 rabbit polyclonal antibody. Arrows indicate CFTR expression in the colon apical membrane. CSTMP treatment induced cell surface expression of CFTR in Cftr F508del mouse colon. Scale bar: 10 μm. 8D and 8E It shows the result of measuring short circuit current (I sc ) in the mouse colon. The epithelial Na + channel was blocked by treatment with amiloride (100 μM) on the tip of the mouse colon. When forskolin (10 μM), an adenylyl cyclase activator, was administered to the tip, a lumen-negative I sc was induced, which was delivered to the base of Na + -K + -2Cl - bumetanide (100 μM). In Cftr F508del mouse colon, CSTMP treatment induced CFTR-dependent I sc . Representative I sc measurement results are summarized in FIG. 8D, and results for multiple experiments are summarized in FIG. 8E (n=6-9). b , core-glycosylated CFTR. c , complex-glycosylated CFTR. Bar graph data are expressed as mean±standard error. ns no significance. ** P <0.01. Data were analyzed for one-way variance and then Tukey multiple comparison test was performed.
도 9는 도 1의 대조군 실험결과를 나타내는 그림이다. HEK293 세포를 Arf1-Q71L를 인코딩하는 플라스미드로 48시간 동안 형질전환하거나 12시간 동안 타프시가진(5μM)을 처리하여 ER 스트레스를 유도하고, 교차 결합 시약 EGS(500μM)와 함께 30분 간 배양하였다(도 9a). 화살표머리는 교차 결합된 IRE1α 중합체(상부 밴드) 및 단량체(하부 밴드) 형태를 각각 나타낸다. 대표적인 면역블롯 결과는 왼쪽 패널에 나타내고, 복수회 실험결과에 대한 정량화 결과는 오른쪽 패널에 요약하였다(n=3). 도 9b는 qPCR로 XBP1의 mRNA를 정량화한 결과를 보여주는 그림이다. RNA 시료는 HEK293 세포에 XBP1-특이적 siRNA를 형질전환한 후 48시간 뒤에 제작하였다. 세포를 Arf1-Q71L를 인코딩하는 플라스미드로 48시간 동안 형질전환하거나 12시간 동안 타프시가진(5μM)을 처리하고, 복수회 실험결과에 대한 정량화 결과를 요약하였다(n=3). Arf1-Q71L가 아닌 타프시가진만이 XBP1에 대한 siRNA에 의해 사일런싱된 XBP1 mRNA 수준을 증가시켰다. 도 9c는 IRE1α-및 XBP1-특이적 siRNA가 XBP1 스플라이싱에 미치는 효과를 보여주는 그림이다. HEK293 세포에 타프시가진(5μM)을 12시간 동안 처리하거나 또는 정해진 siRNA(48시간)로 형질전환하였다. 타프시가진은 IRE1α 또는 XBP1에 대한 siRNA에 의해 감소된 스플라이싱된 XBP1(XBP1s)의 단백질 수준을 증가시켰다. 대표적인 면역블롯 결과는 왼쪽 패널에 나타내고, 복수회 실험의 정량화 결과는 오른쪽 패널에 요약하였다(n=3). 도 9d는 STF-083010가 IRE1α의 RNase 활성을 감소시킴을 보여주는 그림이다. HEK293 세포를 타프시가진(5μM, 12시간) 및/또는 STF-083010(60 μM,12h)로 처리한 뒤, XBP1 단백질에 대한 면역블롯 분석을 수행하였다. 대표적인 면역블롯 결과는 왼쪽 패널에 나타내고, 복수회 실험결과에 대한 정량화 결과는 오른쪽 패널에 요약하였다(n=3). 막대 그래프 데이터는 평균±표준오차로 나타내었다. **P< 0.01. 데이터는 일원분산분석 후 Tukey 다중비교검정을 통해 분석하였다.9 is a diagram showing the control experiment results of FIG. 1. HEK293 cells were transformed with a plasmid encoding Arf1-Q71L for 48 hours or treated with tapcigagin (5 μM) for 12 hours to induce ER stress, and incubated with cross-linking reagent EGS (500 μM) for 30 minutes ( Fig. 9a). Arrow heads represent cross-linked IRE1α polymer (top band) and monomer (bottom band) forms, respectively. Representative immunoblot results are shown in the left panel, and the quantification results for multiple experiments are summarized in the right panel (n=3). 9B is a diagram showing the result of quantifying the mRNA of XBP1 by qPCR. RNA samples were prepared 48 hours after transforming HEK293 cells with XBP1-specific siRNA. Cells were transformed with a plasmid encoding Arf1-Q71L for 48 hours or treated with tapcigagin (5 μM) for 12 hours, and the quantification results for the multiple experiments were summarized (n=3). Only tapcigagin, not Arf1-Q71L, increased the level of XBP1 mRNA silenced by siRNA against XBP1 . 9C is a diagram showing the effect of IRE1α- and XBP1-specific siRNAs on XBP1 splicing. HEK293 cells were treated with tapcigagin (5 μM) for 12 hours or transformed with a designated siRNA (48 hours). Tapsigagin increased the protein levels of spliced XBP1 (XBP1s) reduced by siRNA against IRE1α or XBP1. Representative immunoblot results are shown in the left panel, and the quantification results of multiple experiments are summarized in the right panel (n=3). 9D is a diagram showing that STF-083010 reduces the RNase activity of IRE1α. HEK293 cells were treated with tapcigagin (5 μM, 12 hours) and/or STF-083010 (60 μM, 12 h), and then immunoblot analysis for XBP1 protein was performed. Representative immunoblot results are shown in the left panel, and the quantification results for multiple experiments are summarized in the right panel (n=3). Bar graph data are expressed as mean±standard error. ** P <0.01. The data were analyzed through the Tukey multiple comparison test after one-way variance analysis.
도 10은 도 2의 대조군 실험결과를 보여주는 그림이다. 도 10a 및 10b는 APY29가 IRE1α 및 ASK1의 인산화를 용량 의존적으로 억제함을 보여주는 그림이다. Arf1-Q71L 플라스미드로 48시간 동안 형질전환함으로써 IRE1α 및 ASK1의 인산화를 유도하였다. 대표적인 면역블롯은 도 10a에 나타내고, 복수회 실험결과는 도 10b에 요약하였다(n=3). ASK1 인산화에 대한 APY29의 IC50값은 6.4μM이다. 도 10c 내지 10f는 단백질 합성 억제제인 사이클로헥시마이드로 처리한 HEK293 세포에서 WT- 및 ΔF508-CFTR의 단백질 안정성을 분석한 결과를 나타낸다. 세포를 WT-또는 ΔF508-CFTR를 인코딩하는 플라스미드로 48시간 동안 형질전환하였다. 몇몇 세포는 UPS를 유도하기 위해 Arf1-Q71L 플라스미드와 공-형질전환하였다. 사이클로헥시마이드(0.1 mg/mL)와 함께 정해진 시간동안 배양한 후 표면 바이오틴화 분석을 수행하였다. WT-CFTR 및 ΔF508-CFTR의 대표적인 결과를 도 10c 및 10d에 각각 표시하였다. 대조군 및 Arf1-Q71L-형질전환된 세포-표면에서의 CFTR 수준 및 전체 세포 용해물을 도 10e 및 10f에 각각 요약하였다(n=3). ΔF508-CFTR의 단백질 안정성은 WT-CFTR보다 모든 조건에서 낮았다. 데이터는 평균±표준오차로 나타냈다. **P< 0.01, WT-CFTR 대비. 데이터는 일원분산분석 후 Tukey 다중비교검정을 통해 분석하였다.10 is a diagram showing the control experiment results of FIG. 2. 10A and 10B Figure shows that APY29 dose-dependently inhibits phosphorylation of IRE1α and ASK1. Phosphorylation of IRE1α and ASK1 was induced by transforming with Arf1-Q71L plasmid for 48 hours. A representative immunoblot is shown in Fig. 10A, and the results of multiple experiments are summarized in Fig. 10B (n=3). The IC 50 value of APY29 for ASK1 phosphorylation is 6.4 μM. 10C to 10F show the results of analyzing the protein stability of WT- and ΔF508-CFTR in HEK293 cells treated with cycloheximide, a protein synthesis inhibitor. Cells were transformed for 48 hours with a plasmid encoding WT- or ΔF508-CFTR. Several cells were co-transformed with the Arf1-Q71L plasmid to induce UPS. After incubation with cycloheximide (0.1 mg/mL) for a predetermined time, surface biotinylation analysis was performed. Representative results of WT-CFTR and ΔF508-CFTR are shown in Figs. 10C and 10D, respectively. CFTR levels and total cell lysates at the control and Arf1-Q71L-transformed cell-surface are summarized in Figures 10E and 10F, respectively (n=3). The protein stability of ΔF508-CFTR was lower in all conditions than WT-CFTR. Data are expressed as mean±standard error. ** P <0.01, compared to WT-CFTR. The data were analyzed through the Tukey multiple comparison test after one-way variance analysis.
도 11은 IRE1α의 과발현이 ΔF508-CFTR의 UPS를 활성화시킴을 보여주는 그림이다. IRE1α 과발현만으로 ΔF508-CFTR의 UPS가 활성화되며 타프시가진의 효과를 강화하였다. HEK293 세포에 ΔF508-CFTR 및/또는 IRE1α (0.5 또는 1μg/mL, 48시간)를 인코딩하는 플라스미드를 공-형질전환하였다. 몇몇 세포에 타프시가진(5μM, 12시간)을 처리하였다. 대표적인 표면 바이오틴화 분석결과는 도 11a에, 복수회 실험결과(n=3)에 대한 요약은 도 11b에 각각 표시하였다. HEK293 세포를 정해진 플라스미드로 48시간 동안 형질전환하였다. 대표적인 표면 바이오틴화 분석결과는 도 11c에, 복수회 실험결과(n=5)에 대한 요약은 도 11d에 각각 표시하였다. 막대 그래프 데이터는 평균±표준오차로 나타내었다. *P< 0.05, **P< 0.01, 미처리군 대비(1st 레인). #P< 0.05, ##P< 0.01, IRE1α만 처리한 군 대비(3번째 또는 4번째 레인). 데이터는 일원분산분석 후 Tukey 다중비교검정을 통해 분석하였다.11 is a diagram showing that overexpression of IRE1α activates the UPS of ΔF508-CFTR. Only IRE1α overexpression activates the UPS of ΔF508-CFTR and reinforces the effect of tarpsigagin. HEK293 cells were co-transformed with plasmids encoding ΔF508-CFTR and/or IRE1α (0.5 or 1 μg/mL, 48 hours). Several cells were treated with tapcigagin (5 μM, 12 hours). Representative surface biotinylation analysis results are shown in Fig. 11A, and a summary of the results of multiple experiments (n=3) is shown in Fig. 11B. HEK293 cells were transformed with the defined plasmid for 48 hours. Representative surface biotinylation analysis results are shown in Fig. 11c, and a summary of the results of multiple experiments (n=5) is shown in Fig. 11d. Bar graph data are expressed as mean±standard error. * P <0.05, ** P <0.01, compared to untreated group (1st lane). # P <0.05, ## P <0.01, compared to the group treated with only IRE1α (lane 3 or 4). The data were analyzed through the Tukey multiple comparison test after one-way variance analysis.
도 12는 CSTMP가 Arf1-Q71L-유도된 ΔF508-CFTR의 UPS를 더욱 증가시킴을 보여주는 그림이다. 정해진 플라스미드로 48시간 동안 형질전환한 HEK293에서 표면 바이오틴화 분석을 수행하였다. 일부 세포에 CSTMP(10μM)를 24시간 및 48시간 동안 처리하였다. 대표적인 결과는 도 12a에, 복수회 실험결과(n=3)에 대한 요약은 도 12b에 각각 표시하였다. **P< 0.01, 미처리 대조군 대비(첫번째 레인). #P< 0.05, ##P< 0.01, Arf1-Q71L만 처리한 군 대비(두번째 레인). 데이터는 일원분산분석 후 Tukey 다중비교검정을 통해 분석하였다.12 is a diagram showing that CSTMP further increases the UPS of Arf1-Q71L-induced ΔF508-CFTR. Surface biotinylation analysis was performed on HEK293 transformed with the specified plasmid for 48 hours. Some cells were treated with CSTMP (10 μM) for 24 hours and 48 hours. Representative results are shown in Fig. 12A, and a summary of the results of multiple experiments (n=3) is shown in Fig. 12B. ** P <0.01, compared to untreated control (first lane). # P <0.05, ## P <0.01, compared to the group treated with only Arf1-Q71L (second lane). The data were analyzed through the Tukey multiple comparison test after one-way variance analysis.
도 13은 Arf1-Q71L 과발현이 연장될 경우 세포사멸이 유도됨을 보여주는 그림이다. HeLa 세포에 ΔF508-CFTR 플라스미드만을 형질전환하거나(도 13a의 A) 또는 Arf1-Q71L 플라스미드를 함께 24시간(도 13a의 B), 48시간(도 13b의 C) 또는 72시간(도 13b의 D) 동안 공-형질전환하였다. 고정 전에, 세포사멸 마커인 아넥신 V를 살아있는 세포에 표지하였다. 고정 및 투과처리 후, 세포를 항-CFTR(M3A7) 항체로 염색하였다. Arf1-Q71L 플라스미드로 72시간 동안 형질전환하자 세포사멸이 유도되었다. 세 번의 독립적인 실험에서 유사한 결과가 나타났다. 스케일 바: 10μm.13 is a diagram showing that apoptosis is induced when Arf1-Q71L overexpression is prolonged. Transform only ΔF508-CFTR plasmid into HeLa cells (Fig. 13A) or Arf1-Q71L plasmid together for 24 hours (Fig. 13AB), 48 hours (Fig. 13BC) or 72 hours (Fig. 13BD) During co-transformation. Before fixation, the apoptosis marker Annexin V was labeled on living cells. After fixation and permeabilization, cells were stained with anti-CFTR (M3A7) antibody. Transformation with Arf1-Q71L plasmid for 72 hours induced apoptosis. Similar results were found in three independent experiments. Scale bar: 10 μm.
도 14는 CSTMP(10μM)가 세포사멸 유발 없이 CFTR의 UPS를 활성화시킴을 보여주는 그림이다. HeLa 세포를 ΔF508-CFTR로 형질전환하고 10μM CSTMP와 함께 0시간(도 14a의 A), 24시간(도 14a의 B), 48시간(도 14b의 C) 또는 72시간(도 14b의 D) 동안 배양하였다. 고정 전에, 세포사멸 마커인 아넥신 V를 살아있는 세포에 표지하였다. 고정 및 투과처리 후, 세포를 항-CFTR(M3A7) 항체로 염색하였다. CSTMP 처리로 인해 24시간째에 ΔF508-CFTR의 UPS가 개시되었으나, 72시간째까지도 세포사멸은 유도되지 않았다. 화살표 머리는 세포-표면에 발현된 CFTR를 나타낸다. 세 번의 독립적인 실험에서 유사한 결과가 나타났다. 스케일 바: 10μm.14 is a diagram showing that CSTMP (10 μM) activates the UPS of CFTR without causing apoptosis. HeLa cells were transformed with ΔF508-CFTR and with 10 μM CSTMP for 0 hours (FIG. 14A), 24 hours (FIG. 14AB), 48 hours (FIG. 14BC) or 72 hours (FIG. 14BD) Cultured. Before fixation, apoptosis marker Annexin V was labeled on living cells. After fixation and permeabilization, cells were stained with anti-CFTR (M3A7) antibody. UPS of ΔF508-CFTR was initiated at 24 hours due to CSTMP treatment, but apoptosis was not induced until 72 hours. Arrow heads indicate CFTR expressed on the cell-surface. Similar results were found in three independent experiments. Scale bar: 10 μm.
도 15는 마우스에 경구 투여된 CSTMP의 LD50 값을 보여주는 그림이다. 4마리 마우스(12 주령)로 구성돤 4개 군에 비이클(식염수) 또는 CSTMP를 2.59 mg/kg(10μM에 해당, CSTMP가 전신에 고루 분포된다는 가정 하에), 25.9 mg/kg(100μM에 해당), 또는 259 mg/kg(1,000μM에 해당)로 5일간 1일 1회 경구투여하였다. LD50 값은 25.9 mg/kg/day로 나타났다. 2.59 mg/kg/day 투약 스케쥴에서 사망한 마우스는 없었다.15 is a diagram showing the LD 50 value of CSTMP orally administered to a mouse. Vehicle (saline solution) or CSTMP in 4 groups consisting of 4 mice (12 weeks old), 2.59 mg/kg (corresponding to 10 μM, assuming that CSTMP is evenly distributed throughout the body), 25.9 mg/kg (corresponding to 100 μM) , Or 259 mg/kg (equivalent to 1,000 μM) was administered orally once a day for 5 days. The LD 50 value was 25.9 mg/kg/day. No mice died on the 2.59 mg/kg/day dosing schedule.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시 예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail through examples. These examples are only for describing the present invention in more detail, and it will be apparent to those of ordinary skill in the art that the scope of the present invention is not limited by these examples according to the gist of the present invention. .
실시예Example
실험방법Experiment method
세포 배양, 플라스미드, siRNA 및 마우스.Cell culture, plasmids, siRNA and mice.
HEK293, HeLa 및 PANC-1 세포는 10% FBS(Fetal Bovine Serum) 및 1% 100X 항생/항진균제(100 units/mL 페니실린, 100 units/mL 스트렙토마이신 및 250 ng/mL 암포테리신 B)(Gibco #15240062)가 보충된 DMEM (Dulbecco’s modified Eagle’s medium-high 글루코스, Gibco #11995-065, Carlsbad, CA) 배지에서 유지하였다. 세포를 37℃ 5% CO2 인큐베이터에서 배양하였다. 인간 IRE1α-pcDNA3.EGFP를 인코딩하는 포유류 발현 플라스미드는 Addgene(유전자 ID: 2081)에서 구입하였다. 인간 pCMV-ΔF508-CFTR, pCMV-WT-CFTR(pCMVNot6.2), pCMV-GRASP55-Myc와, 세포외 태그된 HA-ΔF508-CFTR 및 pcDNA3-HA-Arf1-Q71L를 인코딩하는 플라스미드는 종래 문헌에 상술되어 있다(15, 29). ON-TARGETplus 인간 ERN1 siRNA(IRE1α, 유전자 ID: 2081) 및 인간 XBP1 siRNA(유전자 ID: 7494)는 SMARTpool(Dharmacon, Lafayette, CO, USA)에서 구입하였다. 플라스미드 DNA 및 siRNA의 HEK293 또는 HeLa 세포에의 형질감염은 TransIT-X2 Dynamic Delivery System (Mirus Bio LLC, Madison, WI)을 이용하여 제조자의 설명서에 따라 수행하였다. CftrF508del 마우스는 Dr. K.R. Thomas (University of Utah, Salt Lake City, UT)(33)로부터 종래에 보고된 방법으로 수득하였다(15). 마우스는 교배한 뒤 연세의료원 동물연구 규정에 따라 관리하였다. HEK293, HeLa and PANC-1 cells were treated with 10% Fetal Bovine Serum (FBS) and 1% 100X antibiotic/antifungal (100 units/mL penicillin, 100 units/mL streptomycin and 250 ng/mL amphotericin B) (Gibco # 15240062) supplemented with DMEM (Dulbecco's modified Eagle's medium-high glucose, Gibco #11995-065, Carlsbad, CA) medium. Cells were cultured in a 37° C. 5% CO 2 incubator. A mammalian expression plasmid encoding human IRE1α-pcDNA3.EGFP was purchased from Addgene (gene ID: 2081). Plasmids encoding human pCMV-ΔF508-CFTR, pCMV-WT-CFTR (pCMVNot6.2), pCMV-GRASP55-Myc, and extracellular tagged HA-ΔF508-CFTR and pcDNA3-HA-Arf1-Q71L have been described in conventional literature. It is described above (15, 29). ON-TARGETplus human ERN1 siRNA (IRE1α, gene ID: 2081) and human XBP1 siRNA (gene ID: 7494) were purchased from SMARTpool (Dharmacon, Lafayette, CO, USA). Transfection of plasmid DNA and siRNA into HEK293 or HeLa cells was performed using the TransIT-X2 Dynamic Delivery System (Mirus Bio LLC, Madison, WI) according to the manufacturer's instructions. The CftrF508del mouse is a Dr. Obtained from KR Thomas (University of Utah, Salt Lake City, UT) (33) by a previously reported method (15). Mice were bred and managed according to the animal research regulations of Yonsei Medical Center.
화합물 및 항체. Compounds and antibodies.
타프시가진(Sigma Aldrich, T9033), STF-083010(TOCRIS, 4509), APY29(TOCRIS, 4865), MSC 2032964A(TOCRIS, 5641) 및 사이클로헥시마이드(Sigma Aldrich, C4859)는 상업적으로 구입하였다. CSTMP는 Cayman chemical(Michigan, USA)(CAS 등록번호 1000672-89-8)에서 합성하였다. 다음의 항체는 상업적으로 구입하였다: 항-CFTR M3A7(Millipore, Billerica, MA), 항-IRE1α(세포 신호Technology, 3294), 항-인산 S724 IRE1α(Abcam, ab48187), 항-XBP1(Abcam, ab198999), 항-ASK1(Cell Signaling Technology, 3762), 항-인산 Thr845 ASK1(Cell Signaling Technology, 3765), 항-BiP(Cell Signaling Technology, 3177), 항-CHOP(Cell Signaling Technology, 2895), 항-pro/p17-카스파아제 3, 항-절단된 PARP1 (Abcam, ab136812), 항-HA(Cell Signaling Technology, 2367), 항-Myc(Cell Signaling Technology, 2276), 항-알돌라아제 A(Abcam, ab78339), 항-β-액틴(Santa Cruz, sc47778) 및 항-펜드린(Santa Cruz, sc23779). 항-R4 다클론 항체는 종래에 보고된 바와 같이 인간 CFTR의 아미노산 1458-1471에 해당하는 펩타이드를 항원으로 하여 수득하였다(15).Tapsigagin (Sigma Aldrich, T9033), STF-083010 (TOCRIS, 4509), APY29 (TOCRIS, 4865), MSC 2032964A (TOCRIS, 5641) and cyclohexide (Sigma Aldrich, C4859) were purchased commercially. CSTMP was synthesized by Cayman chemical (Michigan, USA) (CAS registration number 1000672-89-8). The following antibodies were commercially purchased: anti-CFTR M3A7 (Millipore, Billerica, MA), anti-IRE1α (Cell Signaling Technology, 3294), anti-phosphate S724 IRE1α (Abcam, ab48187), anti-XBP1 (Abcam, ab198999 ), anti-ASK1 (Cell Signaling Technology, 3762), anti-phosphate Thr845 ASK1 (Cell Signaling Technology, 3765), anti-BiP (Cell Signaling Technology, 3177), anti-CHOP (Cell Signaling Technology, 2895), anti- pro/p17-caspase 3, anti-cleaved PARP1 (Abcam, ab136812), anti-HA (Cell Signaling Technology, 2367), anti-Myc (Cell Signaling Technology, 2276), anti-aldolase A (Abcam, ab78339), anti-β-actin (Santa Cruz, sc47778) and anti-fendrin (Santa Cruz, sc23779). Anti-R4 polyclonal antibody was obtained using a peptide corresponding to amino acids 1458-1471 of human CFTR as an antigen as previously reported (15).
정량적 PCR 분석(qPCR).Quantitative PCR analysis (qPCR).
Tri-RNA 시약(Favorgen Biotech Corp, Taiwan)을 이용하여 제조자의 설명서에 따라 총 RNA를 HEK293 세포로부터 추출하였다. RNA를 cDNA로 역전사하기 위하여, 정제된 RNA 시료를 cDNA EcoDry Premix(Takara Bio Inc., Shiga, Japan)와 조합하고 혼합물을 42℃에서 1시간 동안 배양한 후 70℃에서 10분간 배양하였다. Total RNA was extracted from HEK293 cells according to the manufacturer's instructions using Tri-RNA reagent (Favorgen Biotech Corp, Taiwan). In order to reverse transcription of RNA to cDNA, the purified RNA sample was combined with cDNA EcoDry Premix (Takara Bio Inc., Shiga, Japan), and the mixture was incubated at 42°C for 1 hour, followed by incubation at 70°C for 10 minutes.
qPCR은 StepOne system(Applied Biosystems, Foster City, CA, USA)을 이용하여 수행하였다. 실시간 PCR 반응은 이중가닥 DNA와 형광 SYBR Greendye의 결합을 검출함으로써 측정하였다. PCR 증폭을 위해 100ng cDNA, 2 μL 프라이머 세트, 10 μL 2x SYBR premix Ex Taq 및 0.4 μL 50× ROX 기준염료(Takara, RR420L)와 혼합한 뒤 무-RNase 물을 이용하여 총 반응 부피를 20 μL로 조절하였다. 증폭은 다음의 사이클 조건으로 수행하였다: 95℃ 15분, 이후 95℃ 15초로 40 사이클, 및 60℃ 40초. 분석은 각 cDNA에 대해 3 번 수행하였다. 상대적인 mRNA 발현수준은 비교 역가 순환(comparative threshold cycle, Ct) 방법을 이용하여 유전자 발현을 하우스키핑 유전자인 GAPDH에 대해 표준화함으로써 계산하였고 ΔCt 값은 다음과 같이 계산하였다: ΔCt = Ct(GAPDH) - Ct(타겟 유전자). 각 실험조건에서 평균 ΔCt를 빼서 ΔΔCt 값을 얻었다. 유전자 발현의 배수 변화는 GAPDH 및에 대해 표준화하고 대조군 시료에 대한 상대적인 값을 2-ΔΔCt로 계산하였다. qPCR 분석을 위해 사용된 프라이머 서열은 다음과 같다: hIRE1α, 정"눰* 프라이머 5’-CGG GAG AAC ATC ACT GTC CC-3’, 역"눰* 프라이머 5’-CCC GGT AGT GGT GCT TCT TA-3’; hXBP1, 정"눰* 프라이머 5’-TTG TCA CCC CTC CAG AAC ATC-3’, 역"눰* 프라이머 5’-TCC AGA ATG CCC AAC AGG AT-3’; hXBP1(스플라이싱된), 정"눰* 프라이머 5’-TGC TGA GTC CGC AGC AGG TG-3’, 역"눰* 프라이머 5’-GCT GGC AGG CTC TGG GGA AG-3’; GAPDH, 정"눰* 프라이머 5’-AAT CCC ATC ACC ATC TTC CA-3’, 역"눰* 프라이머 5’-TGG ACT CCA CGA CGT ACT CA-3’. qPCR was performed using the StepOne system (Applied Biosystems, Foster City, CA, USA). Real-time PCR reaction was measured by detecting the binding of double-stranded DNA and fluorescent SYBR Greendye. For PCR amplification, mix with 100 ng cDNA, 2 μL primer set, 10 μL 2x SYBR premix Ex Taq and 0.4 μL 50× ROX standard dye (Takara, RR420L), and then use RNase-free water to reduce the total reaction volume to 20 μL. Adjusted. Amplification was carried out under the following cycle conditions: 95°C for 15 minutes, followed by 40 cycles at 95°C for 15 seconds, and 60°C for 40 seconds. Analysis was performed 3 times for each cDNA. Relative mRNA expression levels were calculated by normalizing gene expression to the housekeeping gene GAPDH using a comparative threshold cycle (Ct) method, and ΔCt values were calculated as follows: ΔCt = Ct(GAPDH)-Ct (Target gene). The average ΔCt was subtracted from each experimental condition to obtain a ΔΔCt value. The fold change in gene expression was normalized to GAPDH and the relative value for the control sample was calculated as 2 -ΔΔCt . The primer sequences used for the qPCR analysis are as follows: hIRE1α, positive "nun* primer 5'-CGG GAG AAC ATC ACT GTC CC-3', reverse"nun* primer 5'-CCC GGT AGT GGT GCT TCT TA- 3'; hXBP1, positive "nun* primer 5'-TTG TCA CCC CTC CAG AAC ATC-3', reverse"nun* primer 5'-TCC AGA ATG CCC AAC AGG AT-3'; hXBP1 (spliced), positive&quot;nu* primer 5'-TGC TGA GTC CGC AGC AGG TG-3', reverse&quot;nu* primer 5'-GCT GGC AGG CTC TGG GGA AG-3'; GAPDH, positive "Nun* primer 5'-AAT CCC ATC ACC ATC TTC CA-3', reverse "Nun* primer 5'-TGG ACT CCA CGA CGT ACT CA-3'.
표면 바이오틴화, 교차 결합 분석 및 면역블롯분석. Surface biotinylation, cross-linking analysis and immunoblot analysis.
바이오틴화를 위하여, 6-웰 플레이트(1×106)에서 자란 HEK293 세포를 5분간 4℃에서 배양하고 냉장 PBS(phosphate 완충액ed saline)로 3 번 세척하였다. 마우스 대장 점막에서의 바이오틴화를 위해, 대장조직을 세로로 절개하고 연결조직 및 근육을 벗겨냈다. 배양된 세포 또는 대장 점막의 원형질막 내 막관통 단백질을 1mL 바이오틴 용액(냉장 PBS 내 0.3 mg/mL Sulfo-NHS-SS-바이오틴, Thermo Pierce, 21331)과 함께 4℃에서 30분 동안 암(dark) 조건에서 부드럽게 교반배양하면서 바이오틴화 하였다. 세포 또는 대장 조직을 PBS에서 0.5% BSA(bovine serum albumin)을 포함하는 퀀칭 버퍼와 함께 10분간 4℃에서 배양하여 과량의 바이오틴을 제거한 뒤 PBS로 3회 세척하였다. 다음으로 표면-바이오틴화된 세포를 25 mM Tris(pH 7.4), 1% (v/v)NP40, 150 mM NaCl, 10% 글리세롤 및 1 mM EDTA-Na2를 포함하고 프로테아제 억제제 칵테일(Roche, Germany)이 보충된 용해 완충제에서 수집하였다. 세포 용해물을 초음파로 20초 동안(1s 펄스) 균질화한 뒤 16,000 g로 20분간 4℃에서 원심분리하였다. 400 μg의 총 단백질을 포함하는 상층액을 200 μL 10% 스트렙타비딘 아가로스(Thermo Pierce, 20347)과 함께 배양하였다. 스트렙타비딘-결합된, 바이오틴화된 단백질을 원심분리하고 용해 완충액으로 5회 세척하였다. 바이오틴화된 단백질은 DTT(0.02 g/mL)가 보충된 2×SDS 시료 완충액에서 용출하고 SDS-폴리아크릴아마이드 젤 전기영동으로 분리하였다. 분리된 단백질을 니트로셀룰로스 막으로 옮기고 5% 탈지유에서 적절한 일차 및 이차 항체로 블롯팅하였다. 단백질 밴드를 화학발광으로 검출하였으며, 각 단백질 밴드의 밀도는 이미징 소프트웨어(Multi Gauge ver. 3.0; Fujifilm, Tokyo, Japan)를 이용하여 정량화하였다. For biotinylation, HEK293 cells grown in 6 -well plates (1×10 6 ) were incubated at 4° C. for 5 minutes and washed 3 times with refrigerated PBS (phosphate buffered saline). For biotinylation in the mucous membrane of the mouse colon, the colon tissue was cut lengthwise and the connective tissue and muscle were stripped. Cultured cells or transmembrane proteins in the plasma membrane of the colon mucosa were mixed with 1 mL biotin solution (0.3 mg/mL Sulfo-NHS-SS-biotin in refrigerated PBS, Thermo Pierce, 21331) at 4°C for 30 minutes in dark conditions. It was biotinylated while gently stirring and cultivation. Cells or colon tissues were incubated in PBS with a quenching buffer containing 0.5% bovine serum albumin (BSA) at 4° C. for 10 minutes to remove excess biotin, followed by washing three times with PBS. Next, the surface-biotinylated cells were prepared with 25 mM Tris (pH 7.4), 1% (v/v) NP40, 150 mM NaCl, 10% glycerol and 1 mM EDTA-Na 2 and a protease inhibitor cocktail (Roche, Germany). ) Was collected in lysis buffer supplemented. The cell lysate was homogenized with ultrasound for 20 seconds (1 s pulse) and then centrifuged at 4° C. for 20 minutes at 16,000 g . The supernatant containing 400 μg of total protein was incubated with 200 μL 10% streptavidin agarose (Thermo Pierce, 20347). Streptavidin-bound, biotinylated protein was centrifuged and washed 5 times with lysis buffer. The biotinylated protein was eluted in a 2×SDS sample buffer supplemented with DTT (0.02 g/mL) and separated by SDS-polyacrylamide gel electrophoresis. The separated protein was transferred to a nitrocellulose membrane and blotted with appropriate primary and secondary antibodies in 5% skim milk. Protein bands were detected by chemiluminescence, and the density of each protein band was quantified using imaging software (Multi Gauge ver. 3.0; Fujifilm, Tokyo, Japan).
종래에 보고된 방법으로 교차 결합 분석을 수행하였다(29). HEK293 세포를 PBS로 3 회 세척 후 500 μM 에틸렌글리콜 숙시니미딜숙시네이트 (EGS; Thermo Scientific, 21565)와 함께 PBS(pH 8.2)에서 30분 동안 37℃에서 배양하였다. 교차 결합 후, 세포를 순차적으로 20 mM Tris(pH 7.4)에서 10분간 배양하여 EGS를 퀀칭함으로써 반응이 종료되도록 하였다. 세포를 용해하고, 균질화한 뒤, 2×SDS 샘플 완충액에서 시료로 만들어 항-IRE1α 항체를 이용하여 면역블롯팅을 수행하였다. Cross-linking analysis was performed by the previously reported method (29). HEK293 cells were washed three times with PBS and incubated at 37°C for 30 minutes in PBS (pH 8.2) with 500 μM ethylene glycol succinimidyl succinate (EGS; Thermo Scientific, 21565). After cross-linking, the cells were sequentially incubated in 20 mM Tris (pH 7.4) for 10 minutes to quench EGS to terminate the reaction. After the cells were lysed and homogenized, immunoblotting was performed using an anti-IRE1α antibody made into a sample in a 2×SDS sample buffer.
면역세포화학, 면역조직화학, 및 형태계측 분석. Immunocytochemistry, immunohistochemistry, and morphometric analysis.
종래 보고된 방법(15, 18)을 조금 변형하여 면역형광 염색을 수행하였다. 대장 점막에서의 면역조직화학을 위해 마우스의 조직을 최적 절개 온도(OCT) 컴파운드(Miles, Elkhart, IN, USA)에서 포매하고 액체질소에서 냉각시킨 후 4-μm 절편으로 잘랐다. 이후, 마우스 대장 절편을 고정하고 차가운 메탄올과 함께 -20℃에서 5분간 배양함으로써 투과처리하였다. 면역세포화학 분석을 위해, HeLa 세포를 18-mm 둥근 커버슬립에서 배양하고 3.7% 포름알데히드로 상온에서 6분간 고정하였다. 이후 세포를 PBS에서 0.1% Triton X-100으로 상온에서 5분간 투과처리하였다. 글라스 슬라이드 상의 조직 단면 또는 커버슬립에서 자란 세포를 PBS로 3번 세척하고 1% BSA 및 적절한 종의 5% 혈청(말/당나귀/염소 혈청)을 포함하는 PBS에서 1시간 동안 상온에서 배양하여 비특이적 결합부위를 블로킹하였다. 블로킹 후, 조직 단면 또는 세포를 적절한 일차항체와 배양함으로써 염색하고, 형광단(fluorophore)-접합 2차 항체로 염색하였다. CFTR의 표면-특이적 표지를 위해, 고정 후 투과처리 하지 않은 세포를 블로킹 용액과 함께 배양하고 항-HA 항체로 염색하여 CFTR의 세포외 HA-에피토프를 검출하고자 하였다. 커버슬립 상의 세포는 형광 마운팅 배지와 함께 슬라이드 글래스로 마운트하였다(Dako, S3025, US). 형광 이미지는 63 x 1.4 개구수 오일 대물렌즈를 가지는 레이져스캐닝 공초첨 현미경(LSM 780; Carl Zeiss, Berlin, Germany)으로 캡쳐하였다. Immunofluorescence staining was performed by slightly modifying the previously reported methods (15, 18). For immunohistochemistry in the colonic mucosa, mouse tissues were embedded in an optimal incision temperature (OCT) compound (Miles, Elkhart, IN, USA), cooled in liquid nitrogen, and cut into 4-μm sections. Then, the mouse colon sections were fixed and permeabilized by incubating for 5 minutes at -20°C with cold methanol. For immunocytochemical analysis, HeLa cells were cultured on 18-mm round coverslips and fixed with 3.7% formaldehyde for 6 minutes at room temperature. Thereafter, the cells were permeabilized with 0.1% Triton X-100 in PBS for 5 minutes at room temperature. Cells grown on tissue sections or coverslips on glass slides were washed 3 times with PBS and cultured at room temperature for 1 hour in PBS containing 1% BSA and 5% serum of the appropriate species (horse/donkey/goat serum) for non-specific binding. The site was blocked. After blocking, tissue sections or cells were stained by incubating with an appropriate primary antibody, and stained with a fluorophore-conjugated secondary antibody. For the surface-specific labeling of CFTR, cells that were not permeabilized after fixation were cultured with a blocking solution and stained with an anti-HA antibody to detect the extracellular HA-epitope of CFTR. The cells on the coverslip were mounted on a slide glass with a fluorescent mounting medium (Dako, S3025, US). Fluorescence images were captured with a laser scanning confocal microscope (LSM 780; Carl Zeiss, Berlin, Germany) with a 63 x 1.4 numerical aperture oil objective.
캡쳐된 공초점 이미지의 형태계측 분석은 MetaMorph 현미경 분석 소프트웨어(version 7.1; Molecular Devices, Sunnyvale, USA)를 이용하여 종래 보고된 방법대로 수행하였다(18). 각 단일세포의 농도 프로파일을 전체 구역에 대한 평균농도의 표준편차로 표시하였다. Morphological analysis of the captured confocal images was performed using MetaMorph microscope analysis software (version 7.1; Molecular Devices, Sunnyvale, USA) according to the previously reported method (18). The concentration profile of each single cell was expressed as the standard deviation of the mean concentration over the entire area.
Cl- 채녈 활성 및 단락전류(Isc)의 측정. Cl - Measurement of channel activation and short circuit current (Isc).
전체 세포 기록은 recordings were performed on CFTR 형질전환된 HEK293 세포에서 종래 보고된 방법에 따라 수행하였다(15). 세포를 전도 현미경(Ti2, Nikon)의 스테이지에 마운트된 배스로 이동시키고 기가 옴(Ω) 실링 후 막을 찢음으로써 전체-세포 패치를 얻었다. 배스 용액은 5 mL/min로 관류시켰다. 전압 및 전류 기록은 상온(22-25℃)에서 수행하였다. 2-4 MΩ 저항의 패치 피펫을 패치 클램프 증폭기(Axopatch-200B, Molecular Devices, Sunnyvale, CA, USA)의 헤드 스테이지에 연결하였다. 배스 용액에는 140 mM N-메틸-D-글루카민 클로라이드(NMDG-Cl), 1 mM CaCl2, 1 mM MgCl2, 10 mM 글루코스 및 10 mM HEPES(pH 7.4)가 포함되어 있다. 피펫 용액에는 140 mM N-메틸-D-글루카민 클로라이드, 5 mM EGTA, 1 mM MgCl2, 3 mM MgATP 및 10 mM HEPES(pH 7.2)가 포함되어 있다. 전류-전압(I/V) 관계를 조사하기 위해, -100에서 100 mV의 램프 펄스(0.8 mV/ms, 고정전압 0 mV)를 가함으로써 전압 클램프 모드 및 I/V 곡선을 수득하였다. CFTR 전류는 cAMP(5 μM 포스콜린 및 100 μM 3-이소부틸-1-메틸잔틴[IBMX])에 의해 활성화되었다. CFTR에 의해 발생한 전류는 CFTR 억제제인 CFTRinh-172 (10 μM)를 가함으로써 확인하였다. 데이터를 얻고 커맨드 펄스를 가하기 위해 pClamp 10.2 및 Digidata 1550B(Molecular Devices)를 사용하였다. 전압 및 전류 흐름은 pClamp 10.2 및 Origin 8.0(OriginLab Corp., Northampton, MA, USA)에 저장하여 분석되었다. 전류는 5 kHz에서 여과하여 1 kHz에서 샘플링하였다. 모든 데이터는 전체-세포 전기용량(pF)에 대해 표준화하였다.Total cell recordings were performed on CFTR-transformed HEK293 cells according to a previously reported method (15). The cells were transferred to a bath mounted on a stage of a conduction microscope (Ti2, Nikon) and the membrane was teared after gigaohm (Ω) sealing to obtain a whole-cell patch. The bath solution was perfused at 5 mL/min. Voltage and current recording was performed at room temperature (22-25°C). A patch pipette of 2-4 MΩ resistance was connected to the head stage of a patch clamp amplifier (Axopatch-200B, Molecular Devices, Sunnyvale, CA, USA). The bath solution contained 140 mM N-methyl-D-glucamine chloride (NMDG-Cl), 1 mM CaCl 2 , 1 mM MgCl 2 , 10 mM glucose and 10 mM HEPES (pH 7.4). The pipette solution contained 140 mM N-methyl-D-glucamine chloride, 5 mM EGTA, 1 mM MgCl 2 , 3 mM MgATP and 10 mM HEPES, pH 7.2. In order to investigate the current-voltage (I/V) relationship, a voltage clamp mode and I/V curve were obtained by applying a ramp pulse (0.8 mV/ms, fixed voltage 0 mV) of -100 to 100 mV. CFTR currents were activated by cAMP (5 μM forskolin and 100 μM 3-isobutyl-1-methylxanthine [IBMX]). The current generated by CFTR was confirmed by adding CFTR inh -172 (10 μM), a CFTR inhibitor. PClamp 10.2 and Digidata 1550B (Molecular Devices) were used to obtain data and apply command pulses. Voltage and current flow were analyzed by storage in pClamp 10.2 and Origin 8.0 (OriginLab Corp., Northampton, MA, USA). The current was filtered at 5 kHz and sampled at 1 kHz. All data were normalized to total-cell capacitance (pF).
종래 보고된 방법(15)을 조금 변형하여 마우스 대장 Isc를 측정하였다(15). CO2로 마취시킨 뒤 희생시킨 마우스의 맹장에서 직장까지의 대장 표본을 회수하고 장간막 경계를 따라 개방하였다. 관내 내용물을 HCO3-완충된 용액으로 세척하고 표본을 노출 표면적이 12.6 mm2가 되도록 Ussing 챔버(World Precision Instruments, Stevenage, UK)에 마운트하였다. 조직을 120 mM NaCl, 5 mM KCl, 1 mM MgCl2, 1 mM CaCl2, 10 mM D-글루코스, 5 mM HEPES 및 25 mM NaHCO3(pH 7.4)를 포함하는 HCO3-완충된 용액 10 mL와 함께 각 슬라이드에서 37℃,95% O2-5% CO2.조건에서 배치(batch)하였다. 조직을 EVC- 4000 전압 클램프(World Precision Instruments)를 이용하여 전압 고정하고 PowerLab 데이터 수득 시스템(AD Instruments, Castle Hill, Australia)을 이용하여 Isc를 계속적으로 기록하였다. The previously reported method (15) was slightly modified to measure the mouse colon I sc (15). After anesthesia with CO 2 , a specimen of the colon from the cecum to the rectum of the sacrificed mouse was recovered and opened along the mesenteric boundary. The contents of the tube were washed with HCO 3 -buffered solution and the specimen was mounted in a Ussing chamber (World Precision Instruments, Stevenage, UK) so that the exposed surface area was 12.6 mm 2 . Tissues with 10 mL of HCO 3 -buffered solution containing 120 mM NaCl, 5 mM KCl, 1 mM MgCl 2 , 1 mM CaCl 2 , 10 mM D-glucose, 5 mM HEPES and 25 mM NaHCO 3 (pH 7.4). Together, each slide was batched at 37° C., 95% O 2 -5% CO 2 . Tissues were voltage-fixed using an EVC-4000 voltage clamp (World Precision Instruments) and I sc was continuously recorded using a PowerLab data acquisition system (AD Instruments, Castle Hill, Australia).
Cl-/HCO3 - 교환 활성의 측정. Cl - / HCO 3 - Measurement of active exchange.
PANC-1 세포에서 pHi의 측정은 pH-민감성 형광 프로브인 2',7'-비스-(2-카복시에틸)-5-(및-6)-카복시 플루오레세인 (BCECF)을 이용하여 종래 보고된 방법으로 수행하였다(16). BCECF 형광은 490 nm 및 440 nm의 여기파장에서 2/sec의 해상도로 기록하였다(Delta Ram; PTI Inc., Edison, New Jersey, USA). Cl-/HCO3 - 교환 활성은 HCO3-함유 완충액(25 mM HCO3-with 5% CO2)에서 Cl-을 제거하여 발생하는 초기 pHi 증가의 증가율로부터 추정하였다. pHi 계측은 150 mM KCl 및 5 μM 니제리신을 포함하는 표준 pH 용액으로 수행하였다. 고유 완충액 용량(βi)은 무 Na+ 용액에서의 5-40 mM NH4Cl 펄스에 대응한 ΔpHi를 측정함으로써 계산하였다. βi 값은 WT-펜드린 또는 H723R-펜드린을 인코딩하는 플라스미드로의 형질전환에 의해 유의한 영향을 받지 않기 때문에, Cl-/HCO3 - 교환 활성은 완충액 용량을 보상하지 않고 ΔpH unit/min로 표현하였다.Measurement of pH i in PANC-1 cells is conventionally performed using a pH-sensitive fluorescent probe, 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxy fluorescein (BCECF). It was performed with the reported method (16). BCECF fluorescence was recorded with a resolution of 2/sec at excitation wavelengths of 490 nm and 440 nm (Delta Ram; PTI Inc., Edison, New Jersey, USA). Cl - / HCO 3 - exchange activity of HCO 3 - was estimated from the increase rate of the initial increase in pH i generated by removing the - Cl in buffer containing (25 mM HCO 3 -with 5% CO 2). The pH i measurement was performed with a standard pH solution containing 150 mM KCl and 5 μM nigericin. Intrinsic buffer volume (βi) was calculated by measuring ΔpH i corresponding to 5-40 mM NH 4 Cl pulses in Na + free solution. β i value does not operate significantly affected by transfection of a plasmid encoding the WT- gave gave pen or pen H723R-, Cl - / HCO 3 - exchange activity without compensating for the buffer capacity ΔpH unit / min Expressed as.
통계적 분석Statistical analysis
복수회 실험에 대한 결과는 평균 ± 표준오차로 나타내었다. 통계적 분석은 GraphPad Prism5 (GraphPad Software, Inc., La Jolla, CA)를 이용하여 양측 스튜던트 t-검정 또는 일원분산분석 후 Tukey 다중비교검정을 통해 수행하였다. P<0.05인 경우 통계적 유의성이 있는 것으로 간주하였다. Results for multiple experiments were expressed as mean ± standard error. Statistical analysis was performed using GraphPad Prism5 (GraphPad Software, Inc., La Jolla, CA) using a two-sided Student's t -test or a one-way variance analysis and then a Tukey multiple comparison test. If P <0.05, it was considered statistically significant.
연구 승인. Research approval.
모든 동물 실험은 ILAR(Institutional Laboratory Animal Resources) 및 연세의생명연구원 동물실험위원회의 승인 하에 수행되었다(승인번호 2018-0139). All animal experiments were performed under the approval of ILAR (Institutional Laboratory Animal Resources) and Yonsei Life Research Institute Animal Testing Committee (approval number 2018-0139).
실험결과Experiment result
IRE1α의 엔도리보뉴클레아제 활성은 CFTR의 UPS에 필수적이지 않다 Endoribonuclease activity of IRE1α is not essential for the UPS of CFTR
포유류 IRE1α는 ER 샤페론 단백질 BiP와 결합함으로써 불활성의 단량체로 유지된다(도 9a). IRE1 단량체의 올리고머화는 IRE1 활성화의 가장 첫 단계에서 미접힘(unfolded) 단백질의 ER 누적에 대한 반응으로써 일어난다(25). Arf1 GTPase의 우세한 억제 형태에 의해 ER에서 골지로의 수송을 저해하면 Arf1-Q71L는 ER 내강에 분비 단백질이 누적됨에 따라 ER 스트레스를 유발한다(15). ER 스트레스는 ER 내강에서 칼슘을 고갈시키는 Ca2+-ATPase 억제제인 타프시가진(thapsigargin)을 처리하여 유도될 수도 있다(26). ER 스트레스를 유발하는 이러한 메카니즘과 마찬가지로, HEK293에서의 교차 결합 분석에서 IRE1α는 Arf1-Q71L 발현(48h) 또는 타프시가진 처리(12h) 후 응집하여 올리고머가 된다(도 9a).Mammalian IRE1α is maintained as an inactive monomer by binding to the ER chaperone protein BiP (Fig. 9A). Oligomerization of the IRE1 monomer occurs as a response to the accumulation of ER of unfolded proteins in the first step of IRE1 activation (25). When the transport from ER to Golgi is inhibited by the predominant inhibitory form of Arf1 GTPase, Arf1-Q71L induces ER stress as secreted proteins accumulate in the ER lumen (15). ER stress can also be induced by treatment with tapsigargin, a Ca 2+ -ATPase inhibitor that depletes calcium in the ER lumen (26). Like this mechanism that induces ER stress, IRE1α in the cross-linking analysis in HEK293 aggregates after Arf1-Q71L expression (48h) or tapsigagin treatment (12h) to become an oligomer (Fig. 9a).
IRE1α의 올리고머화는 opens the 키나아제 도메인을 개방하여 활성화되기 시작하고 RNase 도메인을 활성화한다(25). Arf1-Q71L 및 타프시가진 모두 HEK293 세포에서 IRE1α 키나아제 활성을 촉발시켜 IRE1α 자가인산화 및 다운스트림의 ASK1 인산화를 유도한다(도 1a 및 1b). 흥미롭게도, ER 스트레스를 신속(12h)하게 유발하는 타프시가진 처리는 XBP1 스플라이싱을 유발하는 반면 Arf1-Q71L 과발현(48 h)으로 유도된 ER 스트레스는 그렇지 않았다(도 1a 및 1b). Arf1-Q71L 및 타프시가진이 모두 막 단백질의 UPS를 유도하므로(15, 16), 이는 IRE1α RNase 기질인 XBP1가 아니라 IRE1α 키나아제-매개 신호가 ER 스트레스-관련 UPS에 주로 관여되어 있음을 암시한다. XBP1이 아닌 IRE1α의 고갈을 보여주는 표면 바이오틴화 실험은 ER 스트레스-관련 UPS는 XBP1과 무관하다는 가정을 추가적으로 뒷받침한다(도 1c 및 1d). IRE1α 및 XBP1에 대한 면역블롯분석과 mRNA 정량을 통해 사용된 각 유전자의 녹다운이 확인되었다(도 1c, 도 9b 및 9c).Oligomerization of IRE1α opens the kinase domain and begins to be activated and activates the RNase domain (25). Both Arf1-Q71L and tapcigagin trigger IRE1α kinase activity in HEK293 cells, inducing IRE1α autophosphorylation and downstream ASK1 phosphorylation (FIGS. 1A and 1B ). Interestingly, treatment with tapcigagin, which rapidly induces ER stress (12h), induced XBP1 splicing, whereas ER stress induced by Arf1-Q71L overexpression (48 h) did not (FIGS. 1A and 1B ). Since Arf1-Q71L and tapcigazin both induce the UPS of the membrane protein (15, 16), this suggests that the IRE1α kinase-mediated signal rather than the IRE1α RNase substrate XBP1 is primarily involved in ER stress-related UPS. Surface biotinylation experiments showing depletion of IRE1α rather than XBP1 further support the assumption that ER stress-related UPS is independent of XBP1 (Figs. 1c and 1d). Knockdown of each gene used was confirmed through immunoblot analysis and mRNA quantification for IRE1α and XBP1 (FIGS. 1c, 9b and 9c).
ΔF508-CFTR의 UPS가 XBP1 스플라이싱과 무관하다는 의외의 발견 때문에, 본 발명자들은 IRE1α가 RNase 활성이 없는 상황 하에서 UPS를 매개할 수 있는지 조사하였다. STF-083010은 IRE1α RNase 도메인의 촉매 코어를 타겟팅하는 화합물로, 키나아제 활성이나 전체적인 올리고머화 단계에 영향을 주지 않으면서 IRE1α 엔도뉴클레아제 활성을 억제한다(27). STF-083010(60 μM)를 12시간 종안 처리하자, 타프시가진-유도 XBP1 생성이 중단되었다(도 9d). 그러나, STF-083010는 ΔF508-CFTR의 Arf1-Q71L-유도 UPS에 영향을 미치지 않았다(도 1e 및 1f). 이러한 결과는 IRE1α의 RNase 활성이 ΔF508-CFTR의 UPS에 필수적이 아님을 보여준다. Due to the unexpected discovery that the UPS of ΔF508-CFTR is independent of XBP1 splicing, the present inventors investigated whether IRE1α can mediate UPS in the absence of RNase activity. STF-083010 is a compound targeting the catalytic core of the IRE1α RNase domain, and inhibits IRE1α endonuclease activity without affecting the kinase activity or the overall oligomerization step (27). When STF-083010 (60 μM) was treated for 12 hours, tapcigajin-induced XBP1 production was stopped (Fig. 9D). However, STF-083010 did not affect the Arf1-Q71L-induced UPS of ΔF508-CFTR (FIGS. 1E and 1F ). These results show that the RNase activity of IRE1α is not essential for the UPS of ΔF508-CFTR.
ΔF508-CFTR의 UPS를 위해 IRE1α키나아제-ASK1 경로가 필요하다.The IRE1α kinase-ASK1 pathway is required for UPS of ΔF508-CFTR.
본 발명자들은 막 단백질의 UPS에서 IRE1α 키나아제-매개 신호에 초점을 맞추었다. I형 키나아제 억제제인 APY29는 IRE1α의 ATP-결합 포켓을 경쟁적으로 점유함으로써 IRE1α의 자가인산전이를 저해한다(28). HEK293 세포에서, ASK1 인산화에 대한 APY29의 IC50 값은 약 6.4 μM로 계산되었으며, 100 μM APY29를 12시간 처리하자 IRE1α 및 ASK1에 대한 Arf1-Q71L-유도 인산화는 거의 완전히 억제되었다(도 10a 및 10aB). 중요하게도, APY29(100 μM)에 의해 Arf1-Q71L의 이소성 발현으로 유도된 ΔF508-CFTR 표면 타겟팅이 소멸되었다(도 2a 및 2b). ΔF508-CFTR의 안정성이 야생형(WT)-CFTR보다 낮기 때문에(도 10c-f), 단백질 합성결함 역시 세포 표면의 ΔF508-CFTR 양이 빠르게 감소하는 원인이 되었을 수 있다. 실제로, 단백질 합성 억제제인 사이클로헥시마이드(0.1 mg/mL)를 처리하자 세포 표면의 ΔF508-CFTR 수준이 급격히 감소하였다(도 10c-f). 그러나, 사이클로헥시마이드가 세포-표면 및 전체 세포 ΔF508-CFTR 수준의 빠른 감소를 가져온 반면, APY29는 전체 단백질 수준에 영향을 미치지 않으면서 세포 표면 ΔF508-CFTR만 감소시켰다(도 2a 및 2b). 이러한 데이터로부터 APY29가 ΔF508-CFTR의 세포 표면에서의 회복을 선택적으로 억제하고 단백질 합성에는 영향을 주지 않음을 알 수 있다.We focused on the IRE1α kinase-mediated signal in the UPS of membrane proteins. APY29, a type I kinase inhibitor, inhibits autophosphorylation of IRE1α by competitively occupying the ATP-binding pocket of IRE1α (28). In HEK293 cells, the IC 50 value of APY29 for ASK1 phosphorylation was calculated to be about 6.4 μM, and treatment with 100 μM APY29 for 12 hours almost completely inhibited Arf1-Q71L-induced phosphorylation for IRE1α and ASK1 (FIGS. 10A and 10AB. ). Importantly, ΔF508-CFTR surface targeting induced by ectopic expression of Arf1-Q71L by APY29 (100 μM) was abolished (FIGS. 2A and 2B ). Since the stability of ΔF508-CFTR is lower than that of wild-type (WT)-CFTR (FIG. 10c-f), a protein synthesis defect may also have caused a rapid decrease in the amount of ΔF508-CFTR on the cell surface. In fact, treatment with the protein synthesis inhibitor cycloheximide (0.1 mg/mL) drastically reduced the level of ΔF508-CFTR on the cell surface (FIGS. 10c-f). However, while cycloheximide resulted in a rapid decrease in cell-surface and total cell ΔF508-CFTR levels, APY29 only decreased cell surface ΔF508-CFTR without affecting total protein levels (FIGS. 2A and 2B ). From these data, it can be seen that APY29 selectively inhibits the recovery of ΔF508-CFTR on the cell surface and does not affect protein synthesis.
CFTR의 세포표면 발현에 대한 APY29의 억제효과를 면역형광분석을 통해 추가적으로 확인하였다. HEK293 세포 대신 커버슬립에 더 잘 흡착하고 세포손실에 덜 취약한 HeLa 세포를 이용하여 형태학적 분석을 수행하였다 (18, 29). 대조군 세포에서, ΔF508-CFTR 단백질은 ER 내에만 머물렀다. ER-골지 이동을 Arf1-Q71L으로 차단하자, 종래 보고된 바대로 상당량의 ΔF508-CFTR가 세포 표면에 도달하였다(화살표, 도 2c)(15). 주목할만한 점은 APY29 처리가 Arf1-Q71L-유도된 ΔF508-CFTR의 세포표면 발현을 크게 감소시켰다는 것이다(도 2c 및 2d).The inhibitory effect of APY29 on the cell surface expression of CFTR was additionally confirmed through immunofluorescence analysis. Morphological analysis was performed using HeLa cells, which are better adsorbed to coverslips and less susceptible to cell loss, instead of HEK293 cells (18, 29). In control cells, the ΔF508-CFTR protein remained only within the ER. When ER-Golgi migration was blocked with Arf1-Q71L, a significant amount of ΔF508-CFTR reached the cell surface as previously reported (arrow, Fig. 2c) (15). Notably, APY29 treatment significantly reduced the cell surface expression of Arf1-Q71L-induced ΔF508-CFTR (FIGS. 2C and 2D ).
IRE1α이 ER 외막에서 IRE1-TRAF2-ASK1 복합체를 형성함으로써 ASK1을 활성화시켜 ER 스트레스 신호를 ASK1-JNK 신호 경로로 연결하므로(24, 30), 본 발명자들은 비전형적 CFTR 분비에서 ASK1의 역할을 조사하였다. MSC2032964A는 LPS-유도된 ASK1 인산화를 차단하는 강력하고 선택적인 ASK1 억제제이다(31). The results in 도 3A-3C에서 보는 바와 같이 MSC2032964A (10 μM) 처리를 통한 ASK1 인산화 억제는 Arf1-Q71L-유도된 WT- 및 ΔF508-CFTR 모두의 UPS를 시간-의존적으로 감소시킨다. 나아가, 특정 siRNA를 이용하여 ASK1를 억제하면 Arf1-Q71L-유도된 WT- 및 ΔF508-CFTR의 UPSrk 소멸된다(도 3d-3g). 이를 종합하면, IRE1α의 키나아제 활성 및 ASK1가 코어-글리코실화된 CFTR의 UPS에 중요한 역할을 한다는 것을 알 수 있다. Since IRE1α forms the IRE1-TRAF2-ASK1 complex in the ER outer membrane, thereby activating ASK1 and connecting the ER stress signal to the ASK1-JNK signaling pathway (24, 30), the present inventors investigated the role of ASK1 in the secretion of atypical CFTR. . MSC2032964A is a potent and selective ASK1 inhibitor that blocks LPS-induced ASK1 phosphorylation (31). The results in Figure 3A-3C, ASK1 phosphorylation inhibition through MSC2032964A (10 μM) treatment time-dependently reduced the UPS of both Arf1-Q71L-induced WT- and ΔF508-CFTR. Furthermore, inhibition of ASK1 using a specific siRNA results in annihilation of the UPSrk of Arf1-Q71L-induced WT- and ΔF508-CFTR (FIGS. 3D-3G ). Taken together, it can be seen that the kinase activity of IRE1α and ASK1 play an important role in the UPS of core-glycosylated CFTR.
IRE1α키나아제의 활성화가 ΔF508-CFTR의 UPS를 유도한다.Activation of IRE1α kinase induces UPS of ΔF508-CFTR.
다음으로, IRE1 키나아제 활성증가가 F508-CFTR 변이에 의해 발생한 단백질 이동 결함에 미치는 효과를 조사하였다. 명백하게도, IRE1α의 과발현만으로 ΔF508-CFTR의 표면발현이 일어났으며(도 11), 이를 통해 IRE1α 증가가 ΔF508-CFTR의 이동 결함을 회복시킬 수 있다는 가설을 뒷받침했다. 나아가, IRE1α 과발현은 Arf1-Q71L 또는 타프시가진과 함께 사용될 경우 ΔF508-CFTR의 UPS 유도에 상승효과를 보였다(도 11). Next, the effect of increasing IRE1 kinase activity on the protein migration defect caused by the F508-CFTR mutation was investigated. Obviously, only overexpression of IRE1α occurred on the surface of ΔF508-CFTR (FIG. 11), which supported the hypothesis that an increase in IRE1α could recover the migration defect of ΔF508-CFTR. Furthermore, IRE1α overexpression showed a synergistic effect on the UPS induction of ΔF508-CFTR when used with Arf1-Q71L or tapcigajin (FIG. 11).
저분자 치료는 단백질 폴딩 및 이동 결함과 관련된 질환에 결린 인간 환자를 치료함에 있어서 유전자 과발현 방법보다 바람직하다. 테트라메틸피라진 유도체인 (E)-2-(2-클로로스티릴)-3,5,6-트리메틸-피라진(CSTMP)는 IRE1α-TRAF2-ASK1 복합체를 활성화시키는 것으로 보고되었다(32). 그러나, CSTMP는 JNK 활성화 및 미토콘드리아 기능장애 유발을 통해 인간 비소세포폐암 A549 세포의 사멸을 유도한다고 보고되었기 때문에, 고농도(>50 μM)에서 세포독성을 유발할 수도 있다(32). HEK293 세포를 다양한 농도의 CSTMP로 48시간 동안 처리한 결과, 저농도의 CSTMP(10 μM)도 세포사멸 신호의 촉발 없이 충분히 ASK1을 활성화시킬 수 있음을 확인한 반면, 높은 농도(100 μM)의 CSTMP는 세포사멸 마커 단백질인 PARP 및 카스파아제 3를 절단하였다(도 4a 및 4b). 따라서, 본 발명자들은 세포에 10 μM CSTMP를 처리하고 ΔF508-CFTR의 이동 결함이 회복되는지를 조사하였다. 그 결과, 10μM CSTMP은 ΔF508-CFTR의 세포 표면 발현을 유도하는 데에 충분하였으며(도 4c 및 4d), GRASP55(도 4c 및 4d) 또는 Arf1-Q71L(도 12)의 과발현과 조합될 경우 상승효과를 보였다. Small molecule therapy is preferred over gene overexpression methods in treating human patients with diseases associated with protein folding and migration defects. The tetramethylpyrazine derivative (E)-2-(2-chlorostyryl)-3,5,6-trimethyl-pyrazine (CSTMP) has been reported to activate the IRE1α-TRAF2-ASK1 complex (32). However, since CSTMP has been reported to induce death of human non-small cell lung cancer A549 cells through JNK activation and mitochondrial dysfunction, it may induce cytotoxicity at high concentrations (>50 μM) (32). As a result of treating HEK293 cells with various concentrations of CSTMP for 48 hours, it was confirmed that even a low concentration of CSTMP (10 μM) can sufficiently activate ASK1 without triggering apoptosis signal, whereas a high concentration (100 μM) of CSTMP The death marker proteins PARP and caspase 3 were cleaved (FIGS. 4A and 4B ). Therefore, the present inventors investigated whether cells were treated with 10 μM CSTMP and the migration defect of ΔF508-CFTR was recovered. As a result, 10 μM CSTMP was sufficient to induce cell surface expression of ΔF508-CFTR (Figs. 4c and 4d), synergistic effect when combined with overexpression of GRASP55 (Figs. 4c and 4d) or Arf1-Q71L (Fig. 12). Showed.
다음으로, 10 μM CSTMP와 Arf1-Q71L 과발현에 의한 각각의 세포독성을 비교하였다. 도 5a 및 5b에서 보는 바와 같이, Arf1-Q71L-발현 플라스미드로 형질전환한 경우 ΔF508-CFTR의 세포 표면 발현이 회복되었으며 48시간째에 정점에 달했다. 주목할만한 것은, Arf1-Q71L-발현 플라스미드로 72시간 형질전환할 경우 ER-골지 차단을 연장시키면서 카스파아제 3 절단을 유발한다는 점이다(도 5a 및 5b). 반면, 시간에 따른(0, 6, 12, 24, 48 및 72시간) CSTMP(10 μM) 처리는 세포사멸신호의 촉발 없이 ΔF508-CFTR의 표면 발현을 지속적으로 회복시켰다(도 5c 및 5d). 세포사멸 마커인 아넥신 V로 면역염색한 결과, 연장된 이소성 Arf1-Q71L 발현(72시간)이 세포독성을 유도하였으나, CSTMP(10 μM)는 그렇지 않음을 추가적으로 확인하였다(도 13 및 14). Next, the cytotoxicity of 10 μM CSTMP and Arf1-Q71L overexpression was compared. 5A and 5B, when transformed with the Arf1-Q71L-expressing plasmid, the cell surface expression of ΔF508-CFTR was recovered and reached its peak at 48 hours. Notably, when transforming with the Arf1-Q71L-expressing plasmid for 72 hours, it induces caspase 3 cleavage while prolonging ER-Golgi blockade (Figs. 5A and 5B). On the other hand, CSTMP (10 μM) treatment according to time (0, 6, 12, 24, 48, and 72 hours) continuously recovered the surface expression of ΔF508-CFTR without triggering apoptosis signal (FIGS. 5C and 5D ). As a result of immunostaining with Annexin V, an apoptosis marker, it was further confirmed that prolonged ectopic Arf1-Q71L expression (72 hours) induced cytotoxicity, but not CSTMP (10 μM) (FIGS. 13 and 14 ).
HEK293 세포에서 IRE1α 키나아제 활성화제인 CSTMP에 의해 ΔF508-CFTR의 기능이 회복된다.In HEK293 cells, the function of ΔF508-CFTR is restored by the IRE1α kinase activator CSTMP.
CSTMP에 의해 세포표면 발현이 유도된 ΔF508-CFTR가 기능적인 활성도 유지하는지를 조사하기 위해, WT- 또는 ΔF508-CFTR를 발현하는 HEK293 세포를 CSTMP(10 μM)와 함께 48시간 동안 배양하고 CFTR-매개 Cl- 전류를 측정하였다. 세포내 cAMP를 증가시키는 포스콜린(포스콜린) 및 3-이소부틸-1-메틸잔틴 (IBMX)을 처리해도 형질전환 시약만 처리한 대조군 HEK293 세포에서 Cl- 전류를 유발하지 않는다(도 6a 및 6b). 램프 펄스(-100 to +100 mV, 0.8mV/ms)를 가한 후, WT-CFTR를 발현하는 세포는 exhibited 전형적인 CFTR Cl- 전류를 보였는데, 이는 (1) cAMP 처리에 의해 활성화되고(포스콜린 및 IBMX),(2) CFTR 억제제인 CFTRinh-172에 의해 억제되며, (3) 선형의 I-V 관계를 가진다(도 6c). CSTMP(10 μM)를 48시간 동안 처리해도 WT-CFTR 전류는 크게 바뀌지 않았다(도 6d). 다음으로, CSTMP가 ΔF508-CFTR 발현세포에 미치는 영향을 조사하였다. 도 6e에서 보는 바와 같이, ΔF508-CFTR를 발현하는 세포는 정상적인 조건 하에서 cAMP에 의해 활성화된 CFTR 전류를 명확히 보이지 않았다. CSTMP(10 μM)를 48시간 동안 처리한 후 ΔF508-CFTR를 발현하는 세포에서 전형적인 CFTR 전류를 측정한 결과, ΔF508-CFTR 세포의 전류 크기는 야생형 세포에서 측정한 값의 32%였다(도 6a 및 6f).To investigate whether ΔF508-CFTR, in which cell surface expression was induced by CSTMP, maintains functional activity, HEK293 cells expressing WT- or ΔF508-CFTR were incubated with CSTMP (10 μM) for 48 hours and CFTR-mediated Cl -Measure the current. Even treatment with forskolin (forskolin) and 3-isobutyl-1-methylxanthine (IBMX), which increases intracellular cAMP, does not induce Cl - current in control HEK293 cells treated with only the transformation reagent (Figs. 6A and 6B. ). After applying a ramp pulse (-100 to +100 mV, 0.8 mV/ms), cells expressing WT-CFTR exhibited a typical CFTR Cl - current, which was (1) activated by cAMP treatment (Forskolin And IBMX), (2) CFTRinh-172, which is a CFTR inhibitor, (3) has a linear IV relationship (Fig. 6c). Treatment with CSTMP (10 μM) for 48 hours did not significantly change the WT-CFTR current (FIG. 6D ). Next, the effect of CSTMP on ΔF508-CFTR-expressing cells was investigated. As shown in Figure 6e, cells expressing ΔF508-CFTR did not clearly show a CFTR current activated by cAMP under normal conditions. After treatment with CSTMP (10 μM) for 48 hours, a typical CFTR current was measured in cells expressing ΔF508-CFTR. As a result, the current magnitude of ΔF508-CFTR cells was 32% of the value measured in wild-type cells (FIG. 6A and 6f).
CSTMP는 p.H723R-펜드린을 생화학적 및 기능적으로 회복시킨다 .CSTMP biochemically and functionally restores p.H723R-fendrin.
IRE1α가 ER 스트레스-유도된 펜드린의 UPS에 관여하기 때문에(16), 본 발명자들은 IRE1α 키나아제 활성화제인 CSTMP가 p.H723R-펜드린 변이에 의해 유발된 세포표면 이동 결함의 회복에 미치는 영향을 조사하였다. 펜드린의 세포 표면 발현을 조사하기 위해 췌장관 유래 PANC-1를 사용하였다(16). 먼저, 표면 바이오틴화 분석을 통해 p.H723R-펜드린의 표면발현을 조사하였다. 도 7a 및 7b에서 보는 바와 같이, p.H723R-펜드린은 대조군 세포의 원형질막에서 거의 검출되지 않는다. 이에 비해, CSTMP(30 μM)을 처리하자 p.H723R-펜드린이 세포 표면에서 강하게 발현하였다. 나아가, CSTMP 처리는 p.H723R-펜드린 발현세포에서 펜드린-매개 Cl-/HCO3 교환의 활성화를 유발하였고, WT-펜드린 발현세포의 수송기능의 약 35%가 회복되었는데, 이는 Arf1-Q71L 과발현에 의한 효과와 유사한 수준이다(도 7c 및 7d). 이러한 결과는 IRE1α 키나아제 활성화가 CFTR의 이동 결함 돌연변이 뿐 아니라 p.H723R-펜드린를 포함하는 다른 막단백질에 의해서 유발되는 질환에도 치료효과를 발휘한다는 점을 보여준다.Since IRE1α is involved in the UPS of ER stress-induced pendrin (16), the present inventors investigated the effect of CSTMP, an IRE1α kinase activator, on the recovery of cell surface migration defects induced by p.H723R-pendrin mutations. I did. To investigate the cell surface expression of pendrin, PANC-1 derived from the pancreatic duct was used (16). First, the surface expression of p.H723R-fendrin was investigated through surface biotinylation analysis. 7A and 7B, p.H723R-fendrin is hardly detected in the plasma membrane of the control cells. In contrast, when CSTMP (30 μM) was treated, p.H723R-fendrin was strongly expressed on the cell surface. Furthermore, CSTMP processing p.H723R- Pen Pen gave gave expression in cell-mediated Cl - was induced activation / HCO 3 exchange, was approximately 35% of the transport function of the cells expressing WT- Pen gave a recovery, which Arf1- It is at a level similar to the effect of Q71L overexpression (Figs. 7C and 7D). These results show that IRE1α kinase activation exerts a therapeutic effect on diseases caused by not only the migration defect mutation of CFTR, but also other membrane proteins including p.H723R-fendrin.
CSTMP의 인 비보 처리는 CftrF508del 마우스 대장에서 CFTR의 세포 표면 발현 및 CFTR-매개 음이온 수송을 회복시킨다. In vivo treatment of CSTMP restores cell surface expression and CFTR-mediated anion transport of CFTR in CftrF 508del mouse colon.
마지막으로, CSTMP의 인 비보 투여가 마우스에서의 ΔF508-CFTR 돌연변이에 의해 유발된 상피수송 결함을 회복시키는지 여부를 조사였다. 기능상실 ΔF508-CFTR 돌연변이는 장내 이온 및 체액 수송에 주로 영향을 주는 결함을 유발하여 종국적으로 마우스에서 장폐색을 일으킨다(33). CSTMP의 생체 내 영향을 분석하기 위하여, 마우스에서 CSTMP의 반수 치사량(LD50)을 측정함으로써 독성을 평가하였다. 마우스에 5일간 10-1,000 μM에 해당하는 3가지 상이한 투여량의 CSTMP를 경구투여하였다(CSTMP가 전신에 고루 분포된다는 가정 하에). 마우스의 The LD50 값은 25.9 mg/kg/day(100 μM에 해당)로 계산되었다(도 15). 이후, WT-CFTR(CftrWT) 또는 ΔF508-CFTR (CftrF508del)에 대해 동형접합인 6주령 마우스에 CSTMP LD50의 10분의 1(2.59 mg/kg/day, 하루 한번 10 μM에 해당)을 5일간 처리하였다. LD50 평가실험 동안 이정도 투여량에서 사망하는 마우스는 없었다(도 15). Finally, it was investigated whether in vivo administration of CSTMP restores epithelial transport defects caused by the ΔF508-CFTR mutation in mice. The malfunctioning ΔF508-CFTR mutation causes a defect that primarily affects the transport of ions and fluids in the intestine, resulting in intestinal obstruction in mice (33). To analyze the in vivo effect of CSTMP, toxicity was evaluated by measuring half the lethal dose (LD 50 ) of CSTMP in mice. Mice were orally administered 3 different doses of CSTMP corresponding to 10-1,000 μM for 5 days (assuming that CSTMP is evenly distributed throughout the body). The LD 50 value of the mouse was calculated as 25.9 mg/kg/day (corresponding to 100 μM) (FIG. 15). Thereafter, 1/10 of CSTMP LD 50 (2.59 mg/kg/day, equivalent to 10 μM once a day) was applied to 6-week-old mice homozygous for WT-CFTR (Cftr WT ) or ΔF508-CFTR (Cftr F508del ). Treated for 5 days. During the LD 50 evaluation experiment, no mice died at this dose (Fig. 15).
주목할만한 것은, 마우스 대장점막에서 채취한 시료를 이용한 표면 바이오틴화 실험 결과 CSTMP가 코어-글리코실화된 ΔF508-CFTR의 세포 표면 발현을 회복시킴을 확인하였다(도 8a 및 8b). 면역조직화학 분석을 통해 CftrF508del 마우스에서의 CSTMP 회복효과를 다시 확인하였다(도 8c). CftrWT 마우스에서, CFTR는 대장 음와(crypt) 세포의 첨단부 막에서 발현하였으며, CSTMP 처리로 인해 WT-CFTR의 분포는 영향을 받지 않았다. 앞서 보고된 바와 마찬가지로(15, 34), ΔF508-CFTR의 첨단부 발현이 CftrF508del 마우스의 대장 선와에서는 관찰되지 않았다. 특히, CftrF508del 마우스에서 CSTMP의 경구 투여가 대장 음와세포의 첨단부에서 ΔF508-CFTR 발현을 회복시켰다(도 8c). 나아가, CSTMP 처리는 CftrF508del 마우스 대장에서 CFTR-매개 음이온 수송의 기능적 회복을 가져왔다. 포스콜린 처리로 인해 증가된 세포내 cAMP 수준은 CftrWT 마우스 대장에서 전형적인 CFTR-의존성 단락전류 (short-circuit current, Isc)를 유발하였는데, 이는 (1) 내강-음성이고, (2) Na+/K+/2Cl- 공수송체 억제제인 부메타니드(bumetanide)를 이용한 기저측 Cl- 흡수 차단에 의해 억제되며, (3) CftrF508del 마우스 대장에는 존재하지 않는다(도 8d 및 8e). 명백하게, CSTMP 처리는 CftrWT 마우스에서 측정된 수준의 89%에 이르는 전류 크기로 포스콜린으로 활성화되고, 내강-음성이며 부메타니드로 억제 가능한 Isc를 유발한다(도 8d 및 8e). 이를 종합하면, 이러한 결과는 CSTMP가 이동-결함 CFTR 돌연변이에 대한 유효한 치료제가 될 수 있다는 인 비보 증거를 제공한다.Notably, as a result of surface biotinylation experiments using samples taken from the mouse colon mucosa, it was confirmed that CSTMP restores the cell surface expression of core-glycosylated ΔF508-CFTR (FIGS. 8A and 8B ). Through immunohistochemical analysis, the CSTMP recovery effect in Cftr F508del mice was confirmed again (Fig. 8c). In Cftr WT mice, CFTR was expressed in the apical membrane of colon crypt cells, and the distribution of WT-CFTR was not affected by CSTMP treatment. As previously reported (15, 34), apical expression of ΔF508-CFTR was not observed in the colon gland of Cftr F508del mice. In particular, oral administration of CSTMP in Cftr F508del mice restored ΔF508-CFTR expression at the tip of colon crypt cells (Fig. 8c). Furthermore, CSTMP treatment resulted in a functional recovery of CFTR-mediated anion transport in Cftr F508del mouse colon. Increased intracellular cAMP levels due to forskolin treatment induced typical CFTR-dependent short-circuit current (Isc) in the colon of Cftr WT mice, which were (1) lumen-negative and (2) Na + / K + /2Cl - is inhibited by blocking the basal side Cl - absorption using bumetanide, a cotransporter inhibitor, (3) Cftr F508del does not exist in the mouse colon (Figs. 8D and 8E). Obviously, CSTMP treatment causes forskolin-activated, lumen-negative and bumetanide-inhibitable Isc with current magnitudes reaching 89% of the levels measured in Cftr WT mice (FIGS. 8D and 8E ). Taken together, these results provide in vivo evidence that CSTMP may be an effective therapeutic agent for migration-defective CFTR mutations.
이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.As described above, specific parts of the present invention have been described in detail, and it is obvious that these specific techniques are only preferred embodiments, and the scope of the present invention is not limited thereto for those of ordinary skill in the art. Accordingly, it will be said that the substantial scope of the present invention is defined by the appended claims and their equivalents.
참고문헌references
1.Thomas PJ et al. Trends Biochem Sci.1995;20(11):456-9.1. Thomas PJ et al. Trends Biochem Sci. 1995;20(11):456-9.
2.Park HJ et al. J Med Genet.2003;40(4):242-8.2. Park HJ et al. J Med Genet. 2003;40(4):242-8.
3.Bullock AN, and Fersht AR. Nat Rev Cancer.2001;1(1):68-76.3.Bullock AN, and Fersht AR. Nat Rev Cancer. 2001;1(1):68-76.
4.Hammond C, and Helenius A. Curr Opin Cell Biol.1995;7(4):523-9.4. Hammond C, and Helenius A. Curr Opin Cell Biol. 1995;7(4):523-9.
5.Meusser B et al. Nat Cell Biol.2005;7(8):766-72.5.Meusser B et al. Nat Cell Biol. 2005;7(8):766-72.
6.Lee MG et al. Physiol Rev.2012;92(1):39-74.6. Lee MG et al. Physiol Rev. 2012;92(1):39-74.
7.Chang XB et al. J Cell Sci.2008;121(Pt 17):2814-23.7. Chang XB et al. J Cell Sci. 2008;121(Pt 17):2814-23.
8.Amaral MD. J Mol Neurosci.2004;23(1-2):41-8.8.Amaral MD. J Mol Neurosci. 2004;23(1-2):41-8.
9.Meng X et al. Cell Mol Life Sci.2017;74(1):23-38.9. Meng X et al. Cell Mol Life Sci. 2017;74(1):23-38.
10.Ward CL et al. Cell.1995;83(1):121-7.10. Ward CL et al. Cell. 1995;83(1):121-7.
11.Cheng SH et al. Cell.1990;63(4):827-34.11. Cheng SH et al. Cell. 1990;63(4):827-34.
12.Alper SL, and Sharma AK. Mol Aspects Med.2013;34(2-3):494-515.12. Alper SL, and Sharma AK. Mol Aspects Med. 2013;34(2-3):494-515.
13.Yoon JS et al. J Med Genet.2008;45(7):411-9.13.Yoon JS et al. J Med Genet. 2008;45(7):411-9.
14.Gee HY et al. Semin Cell Dev Biol.2018;83(59-66).14.Gee HY et al. Semin Cell Dev Biol. 2018;83(59-66).
15.Gee HY et al. Cell. 2011;146(5):746-60.15. Ge HY et al. Cell. 2011;146(5):746-60.
16.Jung J et al. Nat Commun.2016;7(11386).16. Jung J et al. Nat Commun. 2016;7(11386).
17.Noh SH et al. Autophagy. 2018;14(10):1761-78.17. Noh SH et al. Autophagy. 2018;14(10):1761-78.
18.Piao H et al. Sci Rep.2017;7(39887).18. Piao H et al. Sci Rep. 2017;7(39887).
19.Giuliani F et al. Curr Opin Cell Biol.2011;23(4):498-504.19. Giuliani F et al. Curr Opin Cell Biol. 2011;23(4):498-504.
20.Hetz C, and Papa FR. Mol Cell.2018;69(2):169-81.20. Hetz C, and Papa FR. Mol Cell. 2018;69(2):169-81.
21.Gee HeonY et al. Cell.2011;146(5):746-60.21.Gee HeonY et al. Cell. 2011;146(5):746-60.
22.Calfon M et al. Nature.2002;415(6867):92-6.22. Calfon M et al. Nature. 2002;415(6867):92-6.
23.Hollien J, and Weissman JS. Science.2006;313(5783):104-7.23. Holleyn J, and Weissman JS. Science. 2006;313(5783):104-7.
24.Nishitoh H et al. Genes Dev.2002;16(11):1345-55.24. Nishitoh H et al. Genes Dev. 2002;16(11):1345-55.
25.Korennykh AV et al. Nature.2009;457(7230):687-93.25. Korennykh AV et al. Nature. 2009;457(7230):687-93.
26.Pahl HL. Physiol Rev.1999;79(3):683-701.26.Pahl HL. Physiol Rev. 1999;79(3):683-701.
27.Hetz C et al. T Nat Rev Drug Discov.2013;12(9):703-19.27. Hetz C et al. T Nat Rev Drug Discov. 2013;12(9):703-19.
28.Wang L et al. Nat Chem Biol.2012;8(12):982-9.28. Wang L et al. Nat Chem Biol. 2012;8(12):982-9.
29.Kim J et al. Traffic.2016;17(7):733-53.29. Kim J et al. Traffic. 2016;17(7):733-53.
30.Urano F et al. Science. 2000;287(5453): 664-6.30. Urano F et al. Science. 2000;287(5453): 664-6.
31.Guo X et al. EMBO Mol Med.2010;2(12):504-15.31. Guo X et al. EMBO Mol Med. 2010;2(12):504-15.
32.Zhang J et al. Biomed Pharmacother.2016;82(281-9).32. Zhang J et al. Biomed Pharmacother. 2016;82(281-9).
33.Zeiher BG et al. A mouse model for the delta F508 allele of cystic fibrosis. J Clin Invest.1995;96(4):2051-64.33. Zeiher BG et al. A mouse model for the delta F508 allele of cystic fibrosis. J Clin Invest. 1995;96(4):2051-64.
34.Namkung W et al. Gastroenterology. 2005;129(6):1979-90.34. Namkung W et al. Gastroenterology. 2005;129(6):1979-90.
35.Rabouille C. Trends Cell Biol.2017;27(3):230-40.35. Rabouille C. Trends Cell Biol. 2017;27(3):230-40.
36.Kim J et al. Unconventional protein secretion -new insights into the pathogenesis and therapeutic targets of human diseases. 2018;131(12).36. Kim J et al. Unconventional protein secretion -new insights into the pathogenesis and therapeutic targets of human diseases. 2018;131(12).
37.Xu Y et al. Cell Discov.2018;4(11).37. Xu Y et al. Cell Discov. 2018;4(11).
38.Shamu CE, and Walter P. Embo j.1996;15(12):3028-39.38. Shamu CE, and Walter P. Embo j. 1996;15(12):3028-39.
39.Karagoz GE et al. IRE1. 2017;639. Karagoz GE et al. IRE1. 2017;6
40.Hetz C, and Glimcher LH. Mol Cell.2009;35(5):551-61.40. Hetz C, and Glimcher LH. Mol Cell. 2009;35(5):551-61.
41.Pattingre S et al. J Biol Chem.2009;284(5):2719-28.41. Pattingre S et al. J Biol Chem. 2009;284(5):2719-28.
42.Barrett KE, and Keely SJ. Annu Rev Physiol.2000;62(535-72).42. Barrett KE, and Keely SJ. Annu Rev Physiol. 2000;62(535-72).

Claims (12)

  1. 하기 일반식 1로 표시되는 화합물 또는 이의 약제학적으로 허용되는 염을 유효성분으로 포함하는 단백질 형태 이상 질환(protein conformational disorder)의 예방 또는 치료용 조성물:A composition for preventing or treating a protein conformational disorder comprising a compound represented by the following general formula 1 or a pharmaceutically acceptable salt thereof as an active ingredient:
    일반식 1General Formula 1
    Figure PCTKR2020006933-appb-I000003
    Figure PCTKR2020006933-appb-I000003
    상기 일반식에서, R1 내지 R3는 각각 독립적으로 C1-C3 알킬이고, X는 할로겐이다.In the above general formula, R 1 to R 3 are each independently C 1 -C 3 alkyl, and X is halogen.
  2. 제 1 항에 있어서, 상기 일반식 1의 R1 내지 R3는 C1 알킬인 것을 특징으로 하는 조성물.The composition of claim 1, wherein R 1 to R 3 in the general formula 1 are C 1 alkyl.
  3. 제 1 항에 있어서, 상기 일반식 1의 X는 Cl인 것을 특징으로 하는 조성물.The composition of claim 1, wherein X in Formula 1 is Cl.
  4. 제 1 항에 있어서, 상기 단백질 형태 이상 질환은 아미노산 변이로 인한 단백질의 미접힘(unfold) 또는 잘못 접힘(misfold)에 의한 질환인 것을 특징으로 하는 조성물.The composition of claim 1, wherein the protein morphology disorder is a disease caused by unfolding or misfolding of proteins due to amino acid mutations.
  5. 제 4 항에 있어서, 상기 단백질은 낭포성 섬유증 막전도 조절자(CFTR), 펜드린(pendrin) 및 이들의 조합으로 구성된 군으로부터 선택되는 것을 특징으로 하는 조성물. The composition of claim 4, wherein the protein is selected from the group consisting of cystic fibrosis membrane conduction regulator (CFTR), pendrin, and combinations thereof.
  6. 제 4 항에 있어서, 상기 단백질 형태 이상 질환은 낭포성 섬유증 또는 선천성 청각장애인 것을 특징으로 하는 조성물. The composition of claim 4, wherein the protein morphological disorder is cystic fibrosis or congenital hearing impairment.
  7. 다음의 단계를 포함하는 단백질 형태 이상 질환(protein conformational disorder)의 예방 또는 치료용 조성물의 스크리닝 방법:A method for screening a composition for preventing or treating protein conformational disorders comprising the following steps:
    (1) IRE1α 키나아제를 포함하는 생물학적 시료에 시험물질을 접촉시키는 단계; 및(1) contacting a test substance with a biological sample containing IRE1α kinase; And
    (2) 상기 시료 내 IRE1α 키나아제의 활성 또는 발현을 측정하는 단계, (2) measuring the activity or expression of IRE1α kinase in the sample,
    상기 IRE1α kinase의 활성 또는 발현이 증가한 경우, 상기 후보물질은 단백질 형태 이상 질환의 예방 또는 치료용 조성물로 판정한다.When the activity or expression of the IRE1α kinase is increased, the candidate substance is determined as a composition for preventing or treating abnormal protein morphology.
  8. 제 7 항에 있어서, 상기 단백질 형태 이상 질환은 아미노산 변이로 인한 단백질의 미접힘(unfold) 또는 잘못 접힘(misfold)에 의한 질환인 것을 특징으로 하는 방법.The method of claim 7, wherein the protein morphology disorder is a disease caused by unfolding or misfolding of the protein due to amino acid mutation.
  9. 제 8 항에 있어서, 상기 단백질은 낭포성 섬유증 막전도 조절자(CFTR), 펜드린(pendrin) 및 이들의 조합으로 구성된 군으로부터 선택되는 것을 특징으로 하는 조성물. 9. The composition of claim 8, wherein the protein is selected from the group consisting of cystic fibrosis membrane conduction regulator (CFTR), pendrin, and combinations thereof.
  10. 제 8 항에 있어서, 상기 단백질 형태 이상 질환은 낭포성 섬유증 또는 선천성 청각장애인 것을 특징으로 하는 조성물. 9. The composition of claim 8, wherein the protein morphological disorder is cystic fibrosis or congenital hearing impairment.
  11. IRE1α 키나아제의 억제제를 유효성분으로 포함하는 비전형적 단백질 분비(UPS) 억제용 조성물.A composition for inhibiting atypical protein secretion (UPS) comprising an inhibitor of IRE1α kinase as an active ingredient.
  12. 제 11 항에 있어서, 상기 IRE1α 키나아제의 억제제는 APY29인 것을 특징으로 하는 조성물.12. The composition of claim 11, wherein the inhibitor of IRE1α kinase is APY29.
PCT/KR2020/006933 2019-05-28 2020-05-28 COMPOSITION FOR PREVENTING OR TREATING PROTEIN CONFORMATIONAL DISORDERS, COMPRISING IRE1α KINASE ACTIVATOR AS ACTIVE INGREDIENT WO2020242225A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0062327 2019-05-28
KR1020190062327A KR102215967B1 (en) 2019-05-28 2019-05-28 A Composition for Preventing or Treating a Protein Conformational Disease Comprising an IRE1α Kinase Activator as an Active Ingredient

Publications (1)

Publication Number Publication Date
WO2020242225A1 true WO2020242225A1 (en) 2020-12-03

Family

ID=73552389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/006933 WO2020242225A1 (en) 2019-05-28 2020-05-28 COMPOSITION FOR PREVENTING OR TREATING PROTEIN CONFORMATIONAL DISORDERS, COMPRISING IRE1α KINASE ACTIVATOR AS ACTIVE INGREDIENT

Country Status (2)

Country Link
KR (1) KR102215967B1 (en)
WO (1) WO2020242225A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101085760A (en) * 2007-06-13 2007-12-12 山东大学 Ligustrazine stilbenoids derivatives, preparation method thereof, medicament composition and use
US20110319436A1 (en) * 2008-09-15 2011-12-29 The Regents Of The University Of California Methods and Compositions for Modulating IRE1, SRC, and ABL Activity

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101403862B1 (en) 2012-12-11 2014-06-11 중앙대학교 산학협력단 Use of IRE1 gene and HXL1 gene in UPR signal pathway for treating mycoses or meningoencephalitis

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101085760A (en) * 2007-06-13 2007-12-12 山东大学 Ligustrazine stilbenoids derivatives, preparation method thereof, medicament composition and use
US20110319436A1 (en) * 2008-09-15 2011-12-29 The Regents Of The University Of California Methods and Compositions for Modulating IRE1, SRC, and ABL Activity

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
PARK, H. ET AL.: "IRE1alpha kinase-mediated unconventional protein secretion rescues misfolded CFTR and pendrin", SCIENCE ADVANCES, vol. 6, no. 8, eaax9914, 19 February 2020 (2020-02-19), pages 1 - 14, XP055766012 *
PIAO, H. ET AL.: "IRE1alpha is an essential regulator for unconventional secretion of CFTR via its kinase activity", 18TH WORLD CONGRESS OF BASIC AND CLINICAL PHARMACOLOGY, 4 July 2018 (2018-07-04) *
PIAO, H. ET AL.: "Rescue of folding-defective membrane proteins by IRE1 alpha-mediated unconventional secretion", THE 70TH KOREAN SOCIETY OF PHARMACOLOGY FALL CONFERENCE, vol. 70, 1 November 2018 (2018-11-01) *
WALTER, F. ET AL.: "ER stress cignaling has an activating transcription factor 6a (ATF6)-dependent ''off-switch", JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 293, no. 47, 2018, pages 18270 - 18284, XP055765983 *
ZHANG, J. ET AL.: "IRE1alpha-TRAF2-ASK1 pathway is involved in CSTMP-induced apoptosis and ER stress in human non-small cell lung cancer A549 cells", BIOMEDICINE & PHARMACOTHERAPY, vol. 82, 2016, pages 281 - 289, XP029678115, DOI: 10.1016/j.biopha.2016.04.050 *

Also Published As

Publication number Publication date
KR20200136599A (en) 2020-12-08
KR102215967B1 (en) 2021-02-16

Similar Documents

Publication Publication Date Title
Hunzicker-Dunn et al. Gonadotropin signaling in the ovary
Chepurny et al. PKA-dependent potentiation of glucose-stimulated insulin secretion by Epac activator 8-pCPT-2′-O-Me-cAMP-AM in human islets of Langerhans
WO2021107644A1 (en) USE OF COMPOSITION FOR ENHANCING ANTICANCER EFFECT, COMPRISING ERRγ INHIBITOR AS ACTIVE INGREDIENT
Park et al. IRE1α kinase–mediated unconventional protein secretion rescues misfolded CFTR and pendrin
Feng et al. Source of dopamine in gastric juice and luminal dopamine‐induced duodenal bicarbonate secretion via apical dopamine D2 receptors
WO2014178653A1 (en) Use of human small leucine zipper protein in adipocyte differentiation procedure
Liou et al. Hepatic Fis1 regulates mitochondrial integrated stress response and improves metabolic homeostasis
WO2015009094A1 (en) Composition containing ppar-ν neddylation inhibitor for inhibiting adipocyte differentiation and use thereof
WO2020242225A1 (en) COMPOSITION FOR PREVENTING OR TREATING PROTEIN CONFORMATIONAL DISORDERS, COMPRISING IRE1α KINASE ACTIVATOR AS ACTIVE INGREDIENT
WO2021177518A1 (en) Pharmaceutical composition for lowering blood cholesterol, preventing or treating cardiovascular diseases and reducing inflammation
Bulteau et al. Properties of CFTR activated by the xanthine derivative X-33 in human airway Calu-3 cells
WO2023140664A1 (en) Pharmaceutical composition for preventing or treating liver fibrosis induced by non-alcoholic steatohepatitis, containing, as active ingredient, expression inhibitor of lipocalin 2 or receptor thereof
WO2017023002A1 (en) Non-alcoholic fatty liver regulating factor 14-3-3 protein
Mowles et al. The dopamine receptor of the rat mammotroph in cell culture as a model for drug action
WO2010016706A2 (en) Novel use of idbf
WO2015111971A1 (en) Pharmaceutical composition containing gpr119 ligand as active ingredient for preventing or treating non-alcoholic fatty liver disease
WO2019194598A1 (en) Rock2 inhibitor as skeletal muscle metabolic activator for improvement of obesity and diabetes
US20230277485A1 (en) Methods for the treatment of lysosomal storage diseases
KR20110138986A (en) Pharmaceutical composition for treating or preventing metabolic syndrome comprising trap80 regulator
WO2016126026A2 (en) Composition for treating diabetes and use thereof
JP2011510947A (en) Use of hedgehog agonists in the treatment of musculoskeletal disorders
WO2023096351A1 (en) Composition for treating cancer having epidermal growth factor receptor (egfr) mutation
WO2022065923A1 (en) Use of hdac6 as preventive or therapeutic agent for tdp-43 proteinopathy
WO2023182856A1 (en) Pharmaceutical composition including rho-kinase inhibitor for prevention or treatment of cutaneous fibrotic disorders such as keloid, etc. and use thereof
WO2021194276A1 (en) Pharmaceutical composition, for prevention or treatment of cancer, comprising 13-hydroxyoctadecadienoic acid as active ingredient

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20813633

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20813633

Country of ref document: EP

Kind code of ref document: A1