WO2020241783A1 - Variation cause identifying method and laser processing apparatus - Google Patents

Variation cause identifying method and laser processing apparatus Download PDF

Info

Publication number
WO2020241783A1
WO2020241783A1 PCT/JP2020/021201 JP2020021201W WO2020241783A1 WO 2020241783 A1 WO2020241783 A1 WO 2020241783A1 JP 2020021201 W JP2020021201 W JP 2020021201W WO 2020241783 A1 WO2020241783 A1 WO 2020241783A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
output
physical quantity
abnormal
variable factor
Prior art date
Application number
PCT/JP2020/021201
Other languages
French (fr)
Japanese (ja)
Inventor
学 西原
憲三 柴田
静波 王
西尾 正敏
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202080038281.3A priority Critical patent/CN113874151B/en
Priority to JP2021522880A priority patent/JP7113320B2/en
Publication of WO2020241783A1 publication Critical patent/WO2020241783A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters

Definitions

  • the present disclosure relates to a method for identifying a variable factor for specifying a variable factor for the laser output of a laser oscillator and a laser processing apparatus.
  • Patent Document 1 describes a laser oscillator, an output measuring unit that measures the laser output of the laser light emitted by the laser oscillator, and a measured value of the output measuring unit in order to bring the laser output closer to a target value.
  • a laser processing apparatus including a control unit for controlling an operation signal of a laser oscillator is disclosed.
  • the present disclosure has been made in view of this point, and the purpose of the present disclosure is to facilitate the device or the user to take measures to prevent the output fluctuation of the laser oscillator.
  • the present disclosure includes a laser oscillator, an output measuring unit for measuring the amount of laser light emitted by the laser oscillator, and the laser output of the laser beam so as to approach a target value.
  • a variable factor identification process executed by the control unit in a laser processing apparatus including a control unit that performs feedback control of a drive current supplied to the laser oscillator based on a measured value of the output measurement unit. Based on the current control execution process in which the control unit performs the feedback control and the measured value of the output measurement unit, the difference between the laser output and the target value exceeds a predetermined threshold value during the execution of the current control process.
  • the fluctuation generation specified in the timing specification processing is performed from the timing specification process for specifying the fluctuation occurrence timing in which the output fluctuation occurs and the plurality of first physical quantities measured by the laser processing apparatus during the execution of the current control execution step.
  • the abnormal physical quantity identification process that identifies the abnormal physical quantity that becomes an abnormal value within the first monitoring time determined according to the timing, and the plurality of second physical quantities that cause fluctuations in the abnormal physical quantity specified in the abnormal physical quantity identification process.
  • the variable factor identification process that specifies the physical quantity that becomes an abnormal value as a variable factor within the second monitoring time that is determined according to the abnormal start timing when the abnormal physical quantity becomes an abnormal value, and the variable factor that is specified in the variable factor identification process. It is characterized in that it executes a variable factor output process that outputs information indicating the above to an output device.
  • the device or the user can output the device.
  • the variable factor can be recognized by referring to the information output by. Therefore, it becomes easier for the device or the user to take measures to prevent output fluctuations.
  • the laser processing device 100 includes a laser oscillator 10, a laser light emitting head 40, a transmission fiber 50, a control unit 60, a power supply 70, and a display device as an output device. It includes 80, a controller 90, a chiller 14, and a dehumidifying device 15.
  • the laser oscillator 10 and the end portion (incident end) of the transmission fiber 50 on the condensing unit 13 side are housed in the housing 11.
  • the laser oscillator 10 has a plurality of laser devices 20, a beam coupler 12, and a condensing unit 13.
  • the laser device 20 combines, for example, 10 laser modules 30 that emit laser light LB1 having different wavelengths from each other and laser light LB1 emitted from each of the 10 laser modules 30 to emit the laser light LB1.
  • the diffraction grating 22, the partially transmitted mirror 23 that transmits a part of the laser light emitted by the diffraction grating 22 as the laser light LB2, and reflects the rest as the reflected light LB3, and the reflected light LB3 from the partially transmitted mirror 23.
  • It has a photodiode 24 that receives light and measures the amount of reflected light LB3, a temperature measuring unit 20a that measures the temperature inside the laser device 20, and a humidity measuring unit 20b that measures the humidity inside the laser device 20. ..
  • each laser module 30 has a laser diode bar (LD bar) 31, and the laser diode bar 31 is a semiconductor laser array having a plurality of emitters 31b arranged in parallel. is there.
  • the laser diode bar 31 is a semiconductor laser array composed of a plurality of laser diodes arranged in parallel having an emitter 31b.
  • the laser diode bar 31 has a flat plate shape having a rectangular shape in a plan view, and a plate-shaped positive electrode 32 is arranged on one surface thereof, and one surface of the positive electrode 32 is attached.
  • a plate-shaped negative electrode 33 wider than the positive electrode 32 is arranged on the other surface of the laser diode bar 31, and a part of one surface of the negative electrode 33 is attached.
  • One side surface of the laser diode bar 31 constitutes a laser light emitting surface 31a that emits the laser light LB1.
  • a wiring 35 is connected to each electrode (positive electrode 32, negative electrode 33), and a current (electric power) is supplied from a power source 70 described later via the wiring 35.
  • the number of emitters 31b included in one laser diode bar 31 is set to, for example, 50.
  • the laser diode bars 31 of the 10 laser modules 30 are connected in series with each other.
  • thermocouple 36 for measuring the temperature in the vicinity of the laser diode bar 31 is attached to the region where the laser diode bar 31 is not attached on the attachment surface of the laser diode bar 31 of the negative electrode 33.
  • the thermocouple 36 may be replaced with another means such as an RTD (Resistance Temperature Detector), a thermistor, or an IC (Integrated Circuit) sensor. Good.
  • a semiconductor device such as a thermistor or an IC sensor may be integrally formed with the laser diode bar 31, whereby the internal temperature of the laser diode bar 31 can be indirectly or directly measured and measured. The temperature can be brought closer to the internal temperature of the laser diode bar 31.
  • the beam coupler 12 combines the laser light LB2 (see FIG. 2) emitted from each of the plurality of laser devices 20 with one laser light LB4 and emits the laser light LB4 to the condensing unit 13.
  • the beam coupler 12 includes a photodiode 12a that measures a part of the amount of light that occupies a certain proportion of the laser beam LB4, a temperature measuring unit 12b that measures the temperature inside the beam coupler 12, and the humidity inside the beam coupler 12.
  • a humidity measuring unit 12c for measuring the temperature is provided.
  • the condensing unit 13 condenses the incident laser light LB4 by a condensing lens (not shown) arranged inside, reduces the beam diameter by a predetermined magnification, and emits it to the transmission fiber 50.
  • reference numeral LB5 is a laser beam emitted by the condensing unit 13.
  • the light collecting unit 13 has a connector (not shown), and the incident end of the transmission fiber 50 is connected to the connector.
  • the condensing unit 13 includes a photodiode 13a that measures a part of the amount of light that occupies a certain proportion of the laser beam LB5, a temperature measuring unit 13b that measures the temperature inside the condensing unit 13, and humidity inside the condensing unit 13.
  • a humidity measuring unit 13c for measuring the light is provided.
  • the laser oscillator 10 By configuring the laser oscillator 10 in such a configuration, it is possible to obtain a high-power laser beam LB5 having a laser output exceeding several kW.
  • the transmission fiber 50 guides the laser light LB5 emitted by the laser oscillator 10 and incident on the incident end of the transmission fiber 50 to the laser light emitting head 40.
  • the laser light emitting head 40 irradiates the laser light LB6 guided by the transmission fiber 50 toward the outside.
  • the laser beam LB6 is emitted by the laser beam emitting head 40 toward the work W, which is a machining object arranged at a predetermined position. By doing so, the work W is laser machined.
  • the laser light emitting head 40 is provided with a photodiode 40a as an output measuring unit for measuring a part of the amount of light that occupies a certain ratio of the laser light LB6.
  • the control unit 60 performs feedback control of the drive current supplied to the laser oscillator 10 based on the measured value of the photodiode 40a so that the laser output of the laser beam LB6 approaches a predetermined target value.
  • the control of the drive current by the control unit 60 is performed by outputting a command voltage value to the power supply 70.
  • the control unit 60 stores a machining program to be executed when performing a predetermined machining on the work W.
  • the machining program defines a target value of the laser output of the laser beam LB6 at each timing during machining. Details of the control by the control unit 60 will be described later.
  • the power supply 70 supplies a drive current to each of the plurality of laser devices 20 based on the command voltage value output by the control unit 60.
  • the display device 80 outputs and displays information indicating an abnormal physical quantity described later and information indicating a fluctuation factor described later under the control of the control unit 60.
  • the controller 90 receives an input from the user for starting the machining program execution, and outputs a command for instructing the start of the machining program execution to the control unit 60.
  • the chiller 14 inputs a chiller main body 14a that controls the temperature of each laser device 20 of the laser oscillator 10 and an input for controlling the operation of the chiller main body 14a by circulating the circulating liquid through the plurality of laser devices 20. It is provided with a chiller operation unit 14b that receives and outputs a command corresponding to the input to the chiller main unit 14a.
  • the circulating liquid circulates inside each laser device 20 and in a pipe 16 arranged between the laser device 20 and the chiller main body 14a.
  • the pipes 16 corresponding to each laser device 20 are connected in parallel.
  • the dehumidifying device 15 receives an input for controlling the operation of the dehumidifying device main body 15a that supplies dry air to each laser device 20 of the laser oscillator 10 to dehumidify, and the dehumidifying device main body 15a, and commands in response to the input. Is provided with a dehumidifying operation unit 15b that outputs the dehumidifying device main body 15a.
  • the dry air is introduced into each laser oscillator 10 via the introduction pipe 17 and is led out through the outlet pipe 18.
  • the introduction tube 17 and the lead-out tube 18 are arranged so as to connect the laser oscillator 10 in parallel, but the laser oscillator 10 may be arranged so as to be connected in series.
  • control unit 60 controls the drive current
  • the control unit 60 measures the photodiode 40a so that the laser output of the laser beam LB6 approaches the target value of each timing set in the machining program by executing the stored machining program. Feedback control of the command voltage value is performed based on the value. That is, feedback control of the drive current supplied to the laser device 20 is performed (current control execution step).
  • the control unit 60 stores the measured values of the photodiodes 12a, 13a, 24, 40a, the temperature measuring units 12b, 13b, 20a, the thermocouple 36, and the humidity measuring units 12c, 13c, 20b during the execution of the machining program as a data log. To do. FIG.
  • FIG. 7A shows when the target value of the laser output of the laser beam LB6 during the execution of the machining program in S101, the measured value of the laser output of the laser beam LB6 during the execution of the machining program in S101, and the command voltage value are constant.
  • FIG. 7B shows the measured value of the temperature of the laser apparatus 20 during the execution of the machining program in S101
  • FIG. 7C shows the measured value of the humidity of the laser apparatus 20 during the execution of the machining program in S101.
  • FIG. 7D Indicates the pressure of the circulating fluid circulated by the chiller-14 during execution of the machining program in S101.
  • the measured value of the laser output of the laser beam LB6 is calculated by the control unit 60 based on the measured value of the photodiode 40a.
  • the control unit 60 measures the laser output of the laser beam LB6 during execution of the machining program in S101 based on the measured value of the photodiode 40a by referring to the data log stored in S101.
  • the fluctuation occurrence timing t1 (see FIGS. 7A to 7D) in which the output fluctuation in which the difference between the value and the target value specified by the machining program exceeds a predetermined threshold TH is specified and stored (timing specifying step). ..
  • the laser output of the laser beam LB6 does not stop.
  • the control unit 60 receives a plurality of first physical quantities measured by the laser machining apparatus 100 during execution of the machining program in S101 within the first monitoring time T1 determined according to the fluctuation occurrence timing t1. Identify the abnormal physical quantity that becomes an abnormal value (abnormal physical quantity identification step). At this time, the laser output of the laser beam LB6 does not stop. As a result, it is possible to prevent the occurrence of construction defects due to the stoppage of the laser output.
  • the plurality of first physical quantities include the measured values of the temperature measuring units 12b, 13b, 20a, the thermocouple 36, and the humidity measuring units 12c, 13c, 20b.
  • the first monitoring time T1 is set to the time from the timing before the predetermined time of the fluctuation occurrence timing t1 to the timing after the predetermined time of the fluctuation occurrence timing t1. Then, the control unit 60 outputs and displays the information indicating the abnormal physical quantity on the display device 80. As a result, the user can recognize the abnormal physical quantity as a physical quantity that is likely to be a factor of output fluctuation. Further, the control unit 60 identifies and stores the abnormality start timing t2 in which the abnormal physical quantity becomes an abnormal value during the execution of the machining program in S101. For example, the measured value of the temperature measuring unit 20a is regarded as an abnormal value when it does not fall within the numerical range of 0 to H1 ° C. in the first monitoring time T1.
  • the measured value of the temperature measuring unit 20a rises in synchronization with the decrease of the measured value of the laser output of the laser beam LB6, and the temperature measuring unit 20a increases the measured value within the first monitoring time T1. Since the measured temperature exceeds H1 ° C., the temperature is specified as an abnormal physical quantity. As a result, the user recognizes the temperature of the laser device 20 (laser diode bar 31) as a physical quantity that is likely to be a factor of output reduction, and lowers the temperature of the circulating fluid with respect to the chiller operation unit 14b of the chiller 14. Can be input.
  • the measured value of the humidity measuring unit 20b is regarded as an abnormal value when it does not fall within the predetermined numerical range Ra within the first monitoring time T1.
  • the humidity measured by the humidity measuring unit 20b is within the predetermined numerical range Ra within the first monitoring time T1, and is therefore considered not to be an abnormal physical quantity.
  • the control unit 60 is within the second monitoring time T2 determined according to the abnormality start timing t2 specified in S103 from the plurality of second physical quantities that cause fluctuations in the abnormal physical quantity specified in S103.
  • the physical quantity that becomes an abnormal value is specified as a variable factor (variable factor identification step).
  • the laser output of the laser beam LB6 does not stop. As a result, it is possible to prevent the occurrence of construction defects due to the stoppage of the laser output.
  • the second monitoring time T2 is set to the time from the timing before the predetermined time of the abnormal start timing t2 to the timing after the predetermined time of the abnormal start timing t2.
  • the abnormal physical quantity specified in S103 is the temperature measured by the temperature measuring unit 20a, a plurality including the pressure, flow rate, and temperature (cooling water temperature) of the circulating liquid circulated by the chiller 14.
  • the fluctuation factor is specified from the second physical quantity of.
  • the pressure of the circulating fluid circulated by the chiller 14 is considered to be an outlier if it does not fall within the numerical range of H2 to H3Pa.
  • the pressure of the circulating fluid circulated by the chiller 14 is lower than H2Pa within the second monitoring time T2, so that the pressure of the circulating fluid is specified as a variable factor.
  • the abnormal physical quantity specified in S103 is the humidity measured by the humidity measuring unit 20b
  • the control unit 60 outputs and displays the information indicating the fluctuation factor specified in S104 on the display device 80 (variation factor output step).
  • the laser output of the laser beam LB6 does not stop.
  • the user can recognize the fluctuation factor by referring to the information output and displayed on the display device 80, and it becomes easy to take measures to prevent the output fluctuation.
  • the fluctuation factor is a physical quantity of any one of the pressure, the flow rate, and the temperature of the circulating fluid circulated by the chiller 14
  • the user uses the chiller operation unit 14b of the chiller 14 so as to suppress the output fluctuation.
  • the fluctuation factor is the pressure of the dry air supplied by the dehumidifying device 15
  • the user controls the pressure of the dry air to the dehumidifying operation unit 15b of the dehumidifying device 15 so as to suppress the output fluctuation. Can be done.
  • the laser oscillator 10 is provided with a plurality of laser devices 20, but only one may be provided. In such a case, the laser beam LB2 output from the laser device 20 is directly incident on the transmission fiber 50.
  • the number of laser modules 30 and laser diode bars 31 included in one laser device 20 is set to 10, but the maximum output required for the laser device 20 and the price of the laser device 20 are determined. Other numbers may be set depending on the number.
  • the number of emitters 31b included in one laser diode bar 31 is set to 50, but other emitters 31b are required depending on the maximum output required for the laser module 30, the price of the laser diode bar 31, and the like. It may be set to the number.
  • the abnormal physical quantity is specified from the measured values of the temperature measuring units 12b, 13b, 20a, the thermocouple 36, and the humidity measuring units 12c, 13c, 20b, but the voltage value of each part in the laser processing apparatus 100,
  • the abnormal physical quantity may be specified from the current value and the loss amount of the laser light in each part in the laser processing apparatus 100 obtained based on the measured values of the photodiodes 12a, 13a, 24, and 40a.
  • the condition that the control unit 60 considers that the temperature in the first monitoring time T1 is an abnormal value is that the temperature does not fall within a predetermined numerical range.
  • Other conditions may be used, such as the temperature gradient not falling within a predetermined numerical range.
  • the condition that the control unit 60 considers the pressure of the circulating fluid to be an abnormal value within the second monitoring time T2 is that the pressure does not fall within a predetermined numerical range.
  • other conditions may be used, such as the slope of the pressure not falling within a predetermined numerical range.
  • the output device is a display device 80 that displays information indicating the fluctuation factor, but it may be a device that outputs information indicating the fluctuation factor as a signal to another device. Then, another device may recognize the fluctuation factor and take measures to prevent the output fluctuation.
  • the abnormal physical quantity is the humidity measured by the humidity measuring unit 20b
  • the temperature measured by the temperature measuring unit 20a and the dehumidifying device are applied to a plurality of second physical quantities to be specified as fluctuation factors. Both of the pressures of the dry air supplied by 15 are included, but only one of them may be included.
  • the abnormal physical quantity is the temperature measured by the temperature measuring unit 20a
  • the pressure, the flow rate, and the flow rate of the circulating liquid circulated by the chiller 14 to the plurality of second physical quantities to be specified as the fluctuation factors. All physical quantities of temperature are included, but only one or two physical quantities may be included.
  • the second physical quantity includes not only the physical quantity related to the laser oscillator 10 but also the physical quantity related to the peripheral device (for example, the chiller 14) outside the laser oscillator 10, so that not only the laser oscillator 10 but also the peripheral device can be maintained. Can be prompted.
  • variable factor identification method and the laser processing apparatus of the present disclosure can make it easy for the apparatus or the user to take measures to prevent the output fluctuation, and are useful for identifying the fluctuation factor of the laser output of the laser oscillator.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Lasers (AREA)
  • Laser Beam Processing (AREA)

Abstract

A control unit is caused to: perform a current control execution step in which drive current feedback control is performed so as to bring a laser output of laser light of a laser oscillator closer to a target value; identify a variation occurrence timing at which, during execution of the current control execution step, an output variation occurred such that a difference between the laser output and the target value exceeds a predetermined threshold value; identify, from a plurality of first physical quantities measured during execution of the current control execution step, an abnormal physical quantity exhibiting an abnormal value within a first monitoring time determined in accordance with the variation occurrence timing; identify, from a plurality of second physical quantities providing a cause for variation of the abnormal physical quantity, a physical quantity exhibiting an abnormal value within a second monitoring time determined in accordance with an abnormality start timing at which the abnormal physical quantity exhibited an abnormal value, as a variation cause; and output information indicating the identified variation cause to an output device.

Description

変動要因特定方法及びレーザ加工装置Fluctuation factor identification method and laser processing equipment
 本開示は、レーザ発振器のレーザ出力の変動要因を特定する変動要因特定方法及びレーザ加工装置に関する。 The present disclosure relates to a method for identifying a variable factor for specifying a variable factor for the laser output of a laser oscillator and a laser processing apparatus.
 特許文献1には、レーザ発振器と、前記レーザ発振器により出射されたレーザ光のレーザ出力を測定する出力測定部と、前記レーザ出力を目標値に近づけるために、前記出力測定部の測定値に基づいて、レーザ発振器の操作信号を制御する制御部とを備えたレーザ加工装置が開示されている。 Patent Document 1 describes a laser oscillator, an output measuring unit that measures the laser output of the laser light emitted by the laser oscillator, and a measured value of the output measuring unit in order to bring the laser output closer to a target value. A laser processing apparatus including a control unit for controlling an operation signal of a laser oscillator is disclosed.
特開2003-53564号公報Japanese Unexamined Patent Publication No. 2003-53564
 ところで、レーザ加工装置に特許文献1のようなフィードバック制御をさせる場合、出力測定部による測定から、その測定値がレーザ出力に反映されるまでの間に、レーザ出力と目標値との差が大きくなる出力変動が発生することがある。このような出力変動は加工精度の低下を招くので、装置又はユーザが、このような出力変動を防止するために対策を施しやすくしたいという要望がある。 By the way, when the laser processing apparatus is to perform feedback control as in Patent Document 1, the difference between the laser output and the target value is large between the measurement by the output measuring unit and the reflection of the measured value in the laser output. Output fluctuation may occur. Since such output fluctuation causes a decrease in processing accuracy, there is a demand that the apparatus or the user wants to easily take measures to prevent such output fluctuation.
 本開示は、かかる点に鑑みてなされたものであり、その目的とするところは、装置又はユーザがレーザ発振器の出力変動を防止するために対策を施しやすくすることにある。 The present disclosure has been made in view of this point, and the purpose of the present disclosure is to facilitate the device or the user to take measures to prevent the output fluctuation of the laser oscillator.
 上記の目的を達成するため、本開示は、レーザ発振器と、前記レーザ発振器により出射されたレーザ光の光量を測定する出力測定部と、前記レーザ光のレーザ出力を目標値に近づけるように、前記出力測定部の測定値に基づいて、前記レーザ発振器に供給する駆動電流のフィードバック制御を行う制御部とを備えたレーザ加工装置において、前記制御部によって実行される変動要因特定処理であって、前記制御部が、前記フィードバック制御を行う電流制御実行処理と、前記出力測定部の測定値に基づいて、前記電流制御処理の実行中に前記レーザ出力と前記目標値との差が所定の閾値を超える出力変動が発生した変動発生タイミングを特定するタイミング特定処理と、前記電流制御実行ステップの実行中に前記レーザ加工装置において測定された複数の第1物理量から、前記タイミング特定処理において特定された変動発生タイミングに応じて定まる第1監視時間内に異常値となる異常物理量を特定する異常物理量特定処理と、前記異常物理量特定処理で特定された異常物理量の変動の要因となる複数の第2物理量から、前記異常物理量が異常値となった異常開始タイミングに応じて定まる第2監視時間内に異常値となる物理量を変動要因として特定する変動要因特定処理と、前記変動要因特定処理で特定された変動要因を示す情報を出力装置に出力させる変動要因出力処理とを実行することを特徴とする。 In order to achieve the above object, the present disclosure includes a laser oscillator, an output measuring unit for measuring the amount of laser light emitted by the laser oscillator, and the laser output of the laser beam so as to approach a target value. A variable factor identification process executed by the control unit in a laser processing apparatus including a control unit that performs feedback control of a drive current supplied to the laser oscillator based on a measured value of the output measurement unit. Based on the current control execution process in which the control unit performs the feedback control and the measured value of the output measurement unit, the difference between the laser output and the target value exceeds a predetermined threshold value during the execution of the current control process. The fluctuation generation specified in the timing specification processing is performed from the timing specification process for specifying the fluctuation occurrence timing in which the output fluctuation occurs and the plurality of first physical quantities measured by the laser processing apparatus during the execution of the current control execution step. From the abnormal physical quantity identification process that identifies the abnormal physical quantity that becomes an abnormal value within the first monitoring time determined according to the timing, and the plurality of second physical quantities that cause fluctuations in the abnormal physical quantity specified in the abnormal physical quantity identification process. The variable factor identification process that specifies the physical quantity that becomes an abnormal value as a variable factor within the second monitoring time that is determined according to the abnormal start timing when the abnormal physical quantity becomes an abnormal value, and the variable factor that is specified in the variable factor identification process. It is characterized in that it executes a variable factor output process that outputs information indicating the above to an output device.
 これにより、変動要因が異常値となることに起因して異常物理量が異常値となり、当該異常物理量が異常値となることに起因して出力変動が発生した場合に、装置又はユーザが、出力装置によって出力された情報を参照することにより変動要因を認識できる。したがって、装置又はユーザが、出力変動を防止するために対策を施しやすくなる。 As a result, when the abnormal physical quantity becomes an abnormal value due to the fluctuation factor becoming an abnormal value and the output fluctuation occurs due to the abnormal physical quantity becoming an abnormal value, the device or the user can output the device. The variable factor can be recognized by referring to the information output by. Therefore, it becomes easier for the device or the user to take measures to prevent output fluctuations.
 本開示によれば、装置又はユーザが出力変動を防止するために対策を施しやすくなる。 According to the present disclosure, it becomes easy for the device or the user to take measures to prevent output fluctuations.
本開示の実施形態1に係るレーザ加工装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the laser processing apparatus which concerns on Embodiment 1 of this disclosure. 本開示の実施形態1に係るレーザ装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the laser apparatus which concerns on Embodiment 1 of this disclosure. 複数のレーザモジュールの構成を示す模式図である。It is a schematic diagram which shows the structure of a plurality of laser modules. レーザモジュールの側面図である。It is a side view of a laser module. レーザモジュールの正面図である。It is a front view of a laser module. 制御部の動作を示すフローチャートである。It is a flowchart which shows the operation of a control part. 加工プログラムの実行中におけるレーザ出力の目標値、測定値、補正前出力、及び補正量を示すグラフである。It is a graph which shows the target value, the measured value, the output before correction, and the correction amount of a laser output during execution of a processing program. 加工プログラムの実行中におけるレーザ装置の温度の測定値を示すグラフである。It is a graph which shows the measured value of the temperature of a laser apparatus during execution of a machining program. 加工プログラムの実行中におけるレーザ装置の湿度の測定値を示すグラフである。It is a graph which shows the measured value of the humidity of a laser apparatus during execution of a processing program. 加工プログラムの実行中における循環液の圧力を示すグラフである。It is a graph which shows the pressure of the circulating fluid during execution of a processing program.
 以下、本開示の実施形態を図面に基づいて詳細に説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本開示、その適用物或いはその用途を制限することを意図するものでは全くない。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The following description of preferred embodiments is merely exemplary and is not intended to limit the disclosure, its applications or its uses.
 本実施形態に係るレーザ加工装置100は、図1に示すように、レーザ発振器10と、レーザ光出射ヘッド40と、伝送ファイバ50と、制御部60と、電源70と、出力装置としての表示装置80と、コントローラ90と、チラー14と、除湿装置15とを備えている。レーザ発振器10と、伝送ファイバ50の集光ユニット13側の端部(入射端)とは筐体11に収容されている。 As shown in FIG. 1, the laser processing device 100 according to the present embodiment includes a laser oscillator 10, a laser light emitting head 40, a transmission fiber 50, a control unit 60, a power supply 70, and a display device as an output device. It includes 80, a controller 90, a chiller 14, and a dehumidifying device 15. The laser oscillator 10 and the end portion (incident end) of the transmission fiber 50 on the condensing unit 13 side are housed in the housing 11.
 レーザ発振器10は、複数のレーザ装置20と、ビーム結合器12と、集光ユニット13とを有している。 The laser oscillator 10 has a plurality of laser devices 20, a beam coupler 12, and a condensing unit 13.
 レーザ装置20は、図2に示すように、互いに異なる波長のレーザ光LB1を発する例えば10個のレーザモジュール30と、10個のレーザモジュール30からそれぞれ出射されたレーザ光LB1を結合させて出射する回折格子22と、回折格子22により出射されたレーザ光の一部をレーザ光LB2として透過させる一方、残りを反射光LB3として反射させる部分透過ミラー23と、部分透過ミラー23からの反射光LB3を受光し、反射光LB3の光量を測定するフォトダイオード24と、レーザ装置20内部の温度を測定する温度測定部20aと、レーザ装置20内部の湿度を測定する湿度測定部20bとを有している。 As shown in FIG. 2, the laser device 20 combines, for example, 10 laser modules 30 that emit laser light LB1 having different wavelengths from each other and laser light LB1 emitted from each of the 10 laser modules 30 to emit the laser light LB1. The diffraction grating 22, the partially transmitted mirror 23 that transmits a part of the laser light emitted by the diffraction grating 22 as the laser light LB2, and reflects the rest as the reflected light LB3, and the reflected light LB3 from the partially transmitted mirror 23. It has a photodiode 24 that receives light and measures the amount of reflected light LB3, a temperature measuring unit 20a that measures the temperature inside the laser device 20, and a humidity measuring unit 20b that measures the humidity inside the laser device 20. ..
 各レーザモジュール30は、図3~5に示すように、レーザダイオードバー(LDバー)31を有しており、レーザダイオードバー31は、並列に配置された複数のエミッタ31bを有する半導体レーザアレイである。言い換えるとレーザダイオードバー31は、エミッタ31bを有する並列に配置された複数のレーザダイオードからなる半導体レーザアレイである。レーザダイオードバー31は、平面視矩形状の平板形状をなし、その一方の面には板状の正電極32が配置され、正電極32の一方の面が取り付けられている。また、レーザダイオードバー31の他方の面には、正電極32よりも広い板状の負電極33が配置され、負電極33の一方の面の一部が取り付けられている。レーザダイオードバー31の一側面が、レーザ光LB1を出射するレーザ光出射面31aを構成している。各電極(正電極32,負電極33)には、配線35が接続され、当該配線35を介して後述する電源70から電流(電力)が供給される。なお、一つのレーザダイオードバー31に含まれるエミッタ31bの個数は、例えば50個に設定される。10個のレーザモジュール30のレーザダイオードバー31は、互いに直列に接続されている。 As shown in FIGS. 3 to 5, each laser module 30 has a laser diode bar (LD bar) 31, and the laser diode bar 31 is a semiconductor laser array having a plurality of emitters 31b arranged in parallel. is there. In other words, the laser diode bar 31 is a semiconductor laser array composed of a plurality of laser diodes arranged in parallel having an emitter 31b. The laser diode bar 31 has a flat plate shape having a rectangular shape in a plan view, and a plate-shaped positive electrode 32 is arranged on one surface thereof, and one surface of the positive electrode 32 is attached. Further, a plate-shaped negative electrode 33 wider than the positive electrode 32 is arranged on the other surface of the laser diode bar 31, and a part of one surface of the negative electrode 33 is attached. One side surface of the laser diode bar 31 constitutes a laser light emitting surface 31a that emits the laser light LB1. A wiring 35 is connected to each electrode (positive electrode 32, negative electrode 33), and a current (electric power) is supplied from a power source 70 described later via the wiring 35. The number of emitters 31b included in one laser diode bar 31 is set to, for example, 50. The laser diode bars 31 of the 10 laser modules 30 are connected in series with each other.
 負電極33のレーザダイオードバー31の取付面におけるレーザダイオードバー31の取り付けられていない領域には、レーザダイオードバー31の近傍の温度を測定する熱電対36が取り付けられている。レーザダイオードバー31の近傍の温度を測定する手段として、熱電対36に代えて、RTD(Resistance Temperature Detector,測温抵抗体)、サーミスタ、IC(Integrated Circuit)センサ等の他の手段を用いてもよい。また、サーミスタ、ICセンサ等の半導体デバイスをレーザダイオードバー31と一体的に形成しても良く、これにより、レーザダイオードバー31の内部温度を間接的または直接的に測定することができ、測定される温度を、レーザダイオードバー31の内部温度により近付けることができる。 A thermocouple 36 for measuring the temperature in the vicinity of the laser diode bar 31 is attached to the region where the laser diode bar 31 is not attached on the attachment surface of the laser diode bar 31 of the negative electrode 33. As a means for measuring the temperature in the vicinity of the laser diode bar 31, the thermocouple 36 may be replaced with another means such as an RTD (Resistance Temperature Detector), a thermistor, or an IC (Integrated Circuit) sensor. Good. Further, a semiconductor device such as a thermistor or an IC sensor may be integrally formed with the laser diode bar 31, whereby the internal temperature of the laser diode bar 31 can be indirectly or directly measured and measured. The temperature can be brought closer to the internal temperature of the laser diode bar 31.
 ビーム結合器12は、複数のレーザ装置20からそれぞれ出射されたレーザ光LB2(図2参照)を一つのレーザ光LB4に結合して集光ユニット13に出射する。ビーム結合器12には、レーザ光LB4の一定の割合を占める一部の光量を測定するフォトダイオード12a、ビーム結合器12内部の温度を測定する温度測定部12b、及びビーム結合器12内部の湿度を測定する湿度測定部12cが設けられている。 The beam coupler 12 combines the laser light LB2 (see FIG. 2) emitted from each of the plurality of laser devices 20 with one laser light LB4 and emits the laser light LB4 to the condensing unit 13. The beam coupler 12 includes a photodiode 12a that measures a part of the amount of light that occupies a certain proportion of the laser beam LB4, a temperature measuring unit 12b that measures the temperature inside the beam coupler 12, and the humidity inside the beam coupler 12. A humidity measuring unit 12c for measuring the temperature is provided.
 集光ユニット13は、内部に配設された集光レンズ(図示せず)によって、入射されたレーザ光LB4を集光して所定の倍率でビーム径を縮小して伝送ファイバ50に出射する。図2中、符号LB5は、集光ユニット13によって出射されるレーザ光である。集光ユニット13は図示しないコネクタを有し、コネクタには伝送ファイバ50の入射端が接続されている。集光ユニット13には、レーザ光LB5の一定の割合を占める一部の光量を測定するフォトダイオード13a、集光ユニット13内部の温度を測定する温度測定部13b、及び集光ユニット13内部の湿度を測定する湿度測定部13cが設けられている。 The condensing unit 13 condenses the incident laser light LB4 by a condensing lens (not shown) arranged inside, reduces the beam diameter by a predetermined magnification, and emits it to the transmission fiber 50. In FIG. 2, reference numeral LB5 is a laser beam emitted by the condensing unit 13. The light collecting unit 13 has a connector (not shown), and the incident end of the transmission fiber 50 is connected to the connector. The condensing unit 13 includes a photodiode 13a that measures a part of the amount of light that occupies a certain proportion of the laser beam LB5, a temperature measuring unit 13b that measures the temperature inside the condensing unit 13, and humidity inside the condensing unit 13. A humidity measuring unit 13c for measuring the light is provided.
 レーザ発振器10をこのような構成とすることで、レーザ出力が数kWを超える高出力のレーザ光LB5を得ることができる。 By configuring the laser oscillator 10 in such a configuration, it is possible to obtain a high-power laser beam LB5 having a laser output exceeding several kW.
 伝送ファイバ50は、レーザ発振器10により出射されて伝送ファイバ50の入射端に入射されたレーザ光LB5をレーザ光出射ヘッド40に導く。 The transmission fiber 50 guides the laser light LB5 emitted by the laser oscillator 10 and incident on the incident end of the transmission fiber 50 to the laser light emitting head 40.
 レーザ光出射ヘッド40は、伝送ファイバ50によって導かれたレーザ光LB6を外部に向けて照射する。例えば、図1に示すレーザ加工装置100では、所定の位置に配置された加工対象物であるワークWに向けて、レーザ光出射ヘッド40によりレーザ光LB6を出射する。このようにすることで、ワークWがレーザ加工される。レーザ光出射ヘッド40には、レーザ光LB6の一定の割合を占める一部の光量を測定する出力測定部としてのフォトダイオード40aが設けられている。 The laser light emitting head 40 irradiates the laser light LB6 guided by the transmission fiber 50 toward the outside. For example, in the laser machining apparatus 100 shown in FIG. 1, the laser beam LB6 is emitted by the laser beam emitting head 40 toward the work W, which is a machining object arranged at a predetermined position. By doing so, the work W is laser machined. The laser light emitting head 40 is provided with a photodiode 40a as an output measuring unit for measuring a part of the amount of light that occupies a certain ratio of the laser light LB6.
 制御部60は、レーザ光LB6のレーザ出力を所定の目標値に近づけるように、フォトダイオード40aの測定値に基づいて、レーザ発振器10に供給する駆動電流のフィードバック制御を行う。ここで、制御部60による駆動電流の制御は、電源70に指令電圧値を出力することによって行われる。また、制御部60は、ワークWに対して所定の加工を行うときに実行する加工プログラムを記憶している。加工プログラムは、加工中の各タイミングにおけるレーザ光LB6のレーザ出力の目標値を規定する。制御部60による制御の詳細については、後述する。 The control unit 60 performs feedback control of the drive current supplied to the laser oscillator 10 based on the measured value of the photodiode 40a so that the laser output of the laser beam LB6 approaches a predetermined target value. Here, the control of the drive current by the control unit 60 is performed by outputting a command voltage value to the power supply 70. Further, the control unit 60 stores a machining program to be executed when performing a predetermined machining on the work W. The machining program defines a target value of the laser output of the laser beam LB6 at each timing during machining. Details of the control by the control unit 60 will be described later.
 電源70は、制御部60により出力された指令電圧値に基づいて、駆動電流を複数のレーザ装置20のそれぞれに対して供給する。 The power supply 70 supplies a drive current to each of the plurality of laser devices 20 based on the command voltage value output by the control unit 60.
 表示装置80は、後述する異常物理量を示す情報、及び後述する変動要因を示す情報を、制御部60の制御により出力表示する。 The display device 80 outputs and displays information indicating an abnormal physical quantity described later and information indicating a fluctuation factor described later under the control of the control unit 60.
 コントローラ90は、加工プログラム実行の開始等をさせる入力をユーザから受け付け、加工プログラム実行の開始等を指示する指令を制御部60に出力する。 The controller 90 receives an input from the user for starting the machining program execution, and outputs a command for instructing the start of the machining program execution to the control unit 60.
 チラー14は、複数のレーザ装置20に循環液を循環させることにより、レーザ発振器10の各レーザ装置20の温度を制御するチラー本体部14aと、チラー本体部14aの動作を制御するための入力を受け付け、当該入力に応じた指令をチラー本体部14aに出力するチラー操作部14bとを備えている。循環液は、各レーザ装置20内部と、当該レーザ装置20とチラー本体部14aとの間に配設された配管16内を循環する。各レーザ装置20に対応する配管16は、並列に接続されている。 The chiller 14 inputs a chiller main body 14a that controls the temperature of each laser device 20 of the laser oscillator 10 and an input for controlling the operation of the chiller main body 14a by circulating the circulating liquid through the plurality of laser devices 20. It is provided with a chiller operation unit 14b that receives and outputs a command corresponding to the input to the chiller main unit 14a. The circulating liquid circulates inside each laser device 20 and in a pipe 16 arranged between the laser device 20 and the chiller main body 14a. The pipes 16 corresponding to each laser device 20 are connected in parallel.
 除湿装置15は、レーザ発振器10の各レーザ装置20にドライエアを供給して除湿する除湿装置本体部15aと、除湿装置本体部15aの動作を制御するための入力を受け付け、当該入力に応じた指令を除湿装置本体部15aに出力する除湿操作部15bとを備えている。ドライエアは、各レーザ発振器10に導入管17を介して導入されるとともに、導出管18を介して導出される。本実施形態では、導入管17及び導出管18が、レーザ発振器10を並列に接続するように配設されているが、レーザ発振器10を直列に接続するように配設してもよい。 The dehumidifying device 15 receives an input for controlling the operation of the dehumidifying device main body 15a that supplies dry air to each laser device 20 of the laser oscillator 10 to dehumidify, and the dehumidifying device main body 15a, and commands in response to the input. Is provided with a dehumidifying operation unit 15b that outputs the dehumidifying device main body 15a. The dry air is introduced into each laser oscillator 10 via the introduction pipe 17 and is led out through the outlet pipe 18. In the present embodiment, the introduction tube 17 and the lead-out tube 18 are arranged so as to connect the laser oscillator 10 in parallel, but the laser oscillator 10 may be arranged so as to be connected in series.
 以下、制御部60が駆動電流を制御する動作について、図6を参照して説明する。 Hereinafter, the operation in which the control unit 60 controls the drive current will be described with reference to FIG.
 まず、S101において、制御部60は、記憶している加工プログラムの実行により、レーザ光LB6のレーザ出力を、当該加工プログラムに設定された各タイミングの目標値に近づけるように、フォトダイオード40aの測定値に基づいて、指令電圧値のフィードバック制御を行う。つまり、レーザ装置20に供給される駆動電流のフィードバック制御を行う(電流制御実行ステップ)。制御部60は、加工プログラムの実行中におけるフォトダイオード12a,13a,24,40a、温度測定部12b,13b,20a、熱電対36、湿度測定部12c,13c,20bの測定値をデータログとして記憶する。図7Aは、S101での加工プログラムの実行中におけるレーザ光LB6のレーザ出力の目標値、S101での加工プログラムの実行中におけるレーザ光LB6のレーザ出力の測定値、指令電圧値を一定にしたときのレーザ光LB6のレーザ出力(補正前出力)、及びS101での加工プログラムの実行中におけるレーザ光LB6のレーザ出力の測定値と指令電圧値を一定にしたときのレーザ光LB6のレーザ出力との差(補正量)を示す。図7Bは、S101での加工プログラムの実行中におけるレーザ装置20の温度の測定値を示し、図7Cは、S101での加工プログラムの実行中におけるレーザ装置20の湿度の測定値を示し、図7Dは、S101での加工プログラムの実行中におけるチラ-14によって循環させられる循環液の圧力を示す。ここで、レーザ光LB6のレーザ出力の測定値は、制御部60によって、フォトダイオード40aの測定値に基づいて算出される。 First, in S101, the control unit 60 measures the photodiode 40a so that the laser output of the laser beam LB6 approaches the target value of each timing set in the machining program by executing the stored machining program. Feedback control of the command voltage value is performed based on the value. That is, feedback control of the drive current supplied to the laser device 20 is performed (current control execution step). The control unit 60 stores the measured values of the photodiodes 12a, 13a, 24, 40a, the temperature measuring units 12b, 13b, 20a, the thermocouple 36, and the humidity measuring units 12c, 13c, 20b during the execution of the machining program as a data log. To do. FIG. 7A shows when the target value of the laser output of the laser beam LB6 during the execution of the machining program in S101, the measured value of the laser output of the laser beam LB6 during the execution of the machining program in S101, and the command voltage value are constant. The laser output of the laser beam LB6 (output before correction) and the measured value of the laser output of the laser beam LB6 during execution of the machining program in S101 and the laser output of the laser beam LB6 when the command voltage value is constant. Indicates the difference (correction amount). FIG. 7B shows the measured value of the temperature of the laser apparatus 20 during the execution of the machining program in S101, and FIG. 7C shows the measured value of the humidity of the laser apparatus 20 during the execution of the machining program in S101. FIG. 7D. Indicates the pressure of the circulating fluid circulated by the chiller-14 during execution of the machining program in S101. Here, the measured value of the laser output of the laser beam LB6 is calculated by the control unit 60 based on the measured value of the photodiode 40a.
 次に、S102において、制御部60は、S101で記憶したデータログを参照することにより、フォトダイオード40aの測定値に基づいて、S101での加工プログラムの実行中におけるレーザ光LB6のレーザ出力の測定値と、加工プログラムによって規定された目標値との差が所定の閾値THを超える出力変動が発生した変動発生タイミングt1(図7A~図7D参照。)を特定して記憶する(タイミング特定ステップ)。この時、レーザ光LB6のレーザ出力は停止しない。 Next, in S102, the control unit 60 measures the laser output of the laser beam LB6 during execution of the machining program in S101 based on the measured value of the photodiode 40a by referring to the data log stored in S101. The fluctuation occurrence timing t1 (see FIGS. 7A to 7D) in which the output fluctuation in which the difference between the value and the target value specified by the machining program exceeds a predetermined threshold TH is specified and stored (timing specifying step). .. At this time, the laser output of the laser beam LB6 does not stop.
 次に、S103において、制御部60は、S101での加工プログラムの実行中にレーザ加工装置100において測定される複数の第1物理量から、変動発生タイミングt1に応じて定まる第1監視時間T1内に異常値となる異常物理量を特定する(異常物理量特定ステップ)。この時、レーザ光LB6のレーザ出力は停止しない。これにより、レーザ出力の停止による施工不良の発生を防ぐことができる。複数の第1物理量は、温度測定部12b,13b,20a、熱電対36、及び湿度測定部12c,13c,20bの測定値を含む。第1監視時間T1は、変動発生タイミングt1の所定時間前のタイミングから、変動発生タイミングt1の所定時間後のタイミングまでの時間等に設定される。そして、制御部60は、異常物理量を示す情報を、表示装置80に出力表示させる。これにより、ユーザは、異常物理量を、出力変動の要因である可能性の高い物理量として認識できる。また、制御部60は、S101での加工プログラムの実行中に異常物理量が異常値となった異常開始タイミングt2を特定して記憶する。例えば、温度測定部20aの測定値は、第1監視時間T1において0~H1℃の数値範囲内に収まらなくなった場合に、異常値であるとみなされる。図7A~図7Dの例では、レーザ光LB6のレーザ出力の測定値が低下するのに同期して温度測定部20aの測定値が上昇し、第1監視時間T1内において、温度測定部20aにより測定された温度がH1℃を超えているので、当該温度が異常物理量として特定される。これにより、ユーザは、レーザ装置20(レーザダイオードバー31)の温度を、出力低下の要因である可能性の高い物理量として認識し、チラー14のチラー操作部14bに対し、循環液の温度を下げるための入力を行える。また、湿度測定部20bの測定値は、第1監視時間T1内において所定の数値範囲Ra内に収まらなくなった場合に、異常値であるとみなされる。図7A~図7Dの例では、第1監視時間T1内において、湿度測定部20bにより測定された湿度は所定の数値範囲Ra内に収まっているので、異常物理量でないとみなされる。 Next, in S103, the control unit 60 receives a plurality of first physical quantities measured by the laser machining apparatus 100 during execution of the machining program in S101 within the first monitoring time T1 determined according to the fluctuation occurrence timing t1. Identify the abnormal physical quantity that becomes an abnormal value (abnormal physical quantity identification step). At this time, the laser output of the laser beam LB6 does not stop. As a result, it is possible to prevent the occurrence of construction defects due to the stoppage of the laser output. The plurality of first physical quantities include the measured values of the temperature measuring units 12b, 13b, 20a, the thermocouple 36, and the humidity measuring units 12c, 13c, 20b. The first monitoring time T1 is set to the time from the timing before the predetermined time of the fluctuation occurrence timing t1 to the timing after the predetermined time of the fluctuation occurrence timing t1. Then, the control unit 60 outputs and displays the information indicating the abnormal physical quantity on the display device 80. As a result, the user can recognize the abnormal physical quantity as a physical quantity that is likely to be a factor of output fluctuation. Further, the control unit 60 identifies and stores the abnormality start timing t2 in which the abnormal physical quantity becomes an abnormal value during the execution of the machining program in S101. For example, the measured value of the temperature measuring unit 20a is regarded as an abnormal value when it does not fall within the numerical range of 0 to H1 ° C. in the first monitoring time T1. In the examples of FIGS. 7A to 7D, the measured value of the temperature measuring unit 20a rises in synchronization with the decrease of the measured value of the laser output of the laser beam LB6, and the temperature measuring unit 20a increases the measured value within the first monitoring time T1. Since the measured temperature exceeds H1 ° C., the temperature is specified as an abnormal physical quantity. As a result, the user recognizes the temperature of the laser device 20 (laser diode bar 31) as a physical quantity that is likely to be a factor of output reduction, and lowers the temperature of the circulating fluid with respect to the chiller operation unit 14b of the chiller 14. Can be input. Further, the measured value of the humidity measuring unit 20b is regarded as an abnormal value when it does not fall within the predetermined numerical range Ra within the first monitoring time T1. In the examples of FIGS. 7A to 7D, the humidity measured by the humidity measuring unit 20b is within the predetermined numerical range Ra within the first monitoring time T1, and is therefore considered not to be an abnormal physical quantity.
 次に、S104において、制御部60は、S103で特定された異常物理量の変動の要因となる複数の第2物理量から、S103で特定された異常開始タイミングt2に応じて定まる第2監視時間T2内に異常値となる物理量を変動要因として特定する(変動要因特定ステップ)。この時、レーザ光LB6のレーザ出力は停止しない。これにより、レーザ出力の停止による施工不良の発生を防ぐことができる。第2監視時間T2は、異常開始タイミングt2の所定時間前のタイミングから、異常開始タイミングt2の所定時間後のタイミングまでの時間等に設定される。具体的には、S103で特定された異常物理量が、温度測定部20aにより測定された温度である場合には、チラー14によって循環させられる循環液の圧力、流量及び温度(冷却水温)を含む複数の第2物理量から、変動要因を特定する。チラー14によって循環させられる循環液の圧力は、H2~H3Paの数値範囲内に収まらない場合に、異常値であるとみなされる。図7A~図7Dの例では、第2監視時間T2内において、チラー14によって循環させられる循環液の圧力が、H2Paを下回っているので、循環液の圧力が変動要因として特定される。また、S103で特定された異常物理量が、湿度測定部20bにより測定された湿度である場合には、温度測定部20aにより測定される温度、及び除湿装置15によって供給されるドライエアの圧力を含む複数の第2物理量から、変動要因を特定する。 Next, in S104, the control unit 60 is within the second monitoring time T2 determined according to the abnormality start timing t2 specified in S103 from the plurality of second physical quantities that cause fluctuations in the abnormal physical quantity specified in S103. The physical quantity that becomes an abnormal value is specified as a variable factor (variable factor identification step). At this time, the laser output of the laser beam LB6 does not stop. As a result, it is possible to prevent the occurrence of construction defects due to the stoppage of the laser output. The second monitoring time T2 is set to the time from the timing before the predetermined time of the abnormal start timing t2 to the timing after the predetermined time of the abnormal start timing t2. Specifically, when the abnormal physical quantity specified in S103 is the temperature measured by the temperature measuring unit 20a, a plurality including the pressure, flow rate, and temperature (cooling water temperature) of the circulating liquid circulated by the chiller 14. The fluctuation factor is specified from the second physical quantity of. The pressure of the circulating fluid circulated by the chiller 14 is considered to be an outlier if it does not fall within the numerical range of H2 to H3Pa. In the examples of FIGS. 7A to 7D, the pressure of the circulating fluid circulated by the chiller 14 is lower than H2Pa within the second monitoring time T2, so that the pressure of the circulating fluid is specified as a variable factor. Further, when the abnormal physical quantity specified in S103 is the humidity measured by the humidity measuring unit 20b, a plurality including the temperature measured by the temperature measuring unit 20a and the pressure of the dry air supplied by the dehumidifying device 15. From the second physical quantity of, the variable factor is specified.
 次に、S105において、制御部60は、S104で特定した変動要因を示す情報を、表示装置80に出力表示させる(変動要因出力ステップ)。この時、レーザ光LB6のレーザ出力は停止しない。これにより、レーザ出力の停止による施工不良の発生を防ぐことができる。出力表示により、ユーザが、表示装置80に出力表示された情報を参照することにより、変動要因を認識でき、出力変動を防止するための対策を施しやすくなる。例えば、変動要因がチラー14によって循環させられる循環液の圧力、流量及び温度のいずれか1つの物理量である場合、ユーザは、出力変動が抑制されるように、チラー14のチラー操作部14bに対し、変動要因となる物理量を制御する入力操作を行える。また、変動要因が除湿装置15によって供給されるドライエアの圧力である場合、ユーザは、出力変動が抑制されるように、除湿装置15の除湿操作部15bに対し、ドライエアの圧力を制御する入力操作を行える。 Next, in S105, the control unit 60 outputs and displays the information indicating the fluctuation factor specified in S104 on the display device 80 (variation factor output step). At this time, the laser output of the laser beam LB6 does not stop. As a result, it is possible to prevent the occurrence of construction defects due to the stoppage of the laser output. By the output display, the user can recognize the fluctuation factor by referring to the information output and displayed on the display device 80, and it becomes easy to take measures to prevent the output fluctuation. For example, when the fluctuation factor is a physical quantity of any one of the pressure, the flow rate, and the temperature of the circulating fluid circulated by the chiller 14, the user uses the chiller operation unit 14b of the chiller 14 so as to suppress the output fluctuation. , You can perform input operations to control physical quantities that cause fluctuations. Further, when the fluctuation factor is the pressure of the dry air supplied by the dehumidifying device 15, the user controls the pressure of the dry air to the dehumidifying operation unit 15b of the dehumidifying device 15 so as to suppress the output fluctuation. Can be done.
 なお、上記実施形態では、レーザ発振器10にレーザ装置20を複数設けたが、1つだけ設けてもよい。かかる場合、レーザ装置20から出力されたレーザ光LB2がそのまま伝送ファイバ50に入射される。 In the above embodiment, the laser oscillator 10 is provided with a plurality of laser devices 20, but only one may be provided. In such a case, the laser beam LB2 output from the laser device 20 is directly incident on the transmission fiber 50.
 また、上記実施形態では、1つのレーザ装置20に含まれるレーザモジュール30及びレーザダイオードバー31の数を10個に設定したが、レーザ装置20に要求される最大出力やレーザ装置20の価格等に応じて他の個数に設定してもよい。 Further, in the above embodiment, the number of laser modules 30 and laser diode bars 31 included in one laser device 20 is set to 10, but the maximum output required for the laser device 20 and the price of the laser device 20 are determined. Other numbers may be set depending on the number.
 また、上記実施形態では、1つのレーザダイオードバー31に含まれるエミッタ31bの個数を50個に設定したが、レーザモジュール30に要求される最大出力やレーザダイオードバー31の価格等に応じて他の個数に設定してもよい。 Further, in the above embodiment, the number of emitters 31b included in one laser diode bar 31 is set to 50, but other emitters 31b are required depending on the maximum output required for the laser module 30, the price of the laser diode bar 31, and the like. It may be set to the number.
 また、上記実施形態では、温度測定部12b,13b,20a、熱電対36、及び湿度測定部12c,13c,20bの測定値から異常物理量を特定したが、レーザ加工装置100における各部の電圧値、及び電流値や、フォトダイオード12a,13a,24,40aの測定値に基づいて得られるレーザ加工装置100内の各部でのレーザ光の損失量から異常物理量を特定できるようにしてもよい。 Further, in the above embodiment, the abnormal physical quantity is specified from the measured values of the temperature measuring units 12b, 13b, 20a, the thermocouple 36, and the humidity measuring units 12c, 13c, 20b, but the voltage value of each part in the laser processing apparatus 100, The abnormal physical quantity may be specified from the current value and the loss amount of the laser light in each part in the laser processing apparatus 100 obtained based on the measured values of the photodiodes 12a, 13a, 24, and 40a.
 また、上記実施形態では、S103で、制御部60が、第1監視時間T1内における温度が異常値であるとみなす条件を、当該温度が所定の数値範囲内に収まらないこととしたが、当該温度の傾きが所定の数値範囲内に収まらないこと等、他の条件としてもよい。 Further, in the above embodiment, in S103, the condition that the control unit 60 considers that the temperature in the first monitoring time T1 is an abnormal value is that the temperature does not fall within a predetermined numerical range. Other conditions may be used, such as the temperature gradient not falling within a predetermined numerical range.
 また、上記実施形態では、S104で、制御部60が、第2監視時間T2内における循環液の圧力が異常値であるとみなす条件を、当該圧力が所定の数値範囲内に収まらないこととしたが、当該圧力の傾きが所定の数値範囲内に収まらないこと等、他の条件としてもよい。 Further, in the above embodiment, in S104, the condition that the control unit 60 considers the pressure of the circulating fluid to be an abnormal value within the second monitoring time T2 is that the pressure does not fall within a predetermined numerical range. However, other conditions may be used, such as the slope of the pressure not falling within a predetermined numerical range.
 また、上記実施形態では、出力装置を、変動要因を示す情報を表示する表示装置80としたが、変動要因を示す情報を信号として他の装置に出力する装置としてもよい。そして、他の装置が、変動要因を認識し、出力変動を防止するために対策を施すようにしてもよい。 Further, in the above embodiment, the output device is a display device 80 that displays information indicating the fluctuation factor, but it may be a device that outputs information indicating the fluctuation factor as a signal to another device. Then, another device may recognize the fluctuation factor and take measures to prevent the output fluctuation.
 また、上記実施形態では、異常物理量が湿度測定部20bにより測定された湿度である場合に変動要因の特定対象となる複数の第2物理量に、温度測定部20aにより測定される温度、及び除湿装置15によって供給されるドライエアの圧力の両方を含めたが、いずれか一方だけを含めてもよい。 Further, in the above embodiment, when the abnormal physical quantity is the humidity measured by the humidity measuring unit 20b, the temperature measured by the temperature measuring unit 20a and the dehumidifying device are applied to a plurality of second physical quantities to be specified as fluctuation factors. Both of the pressures of the dry air supplied by 15 are included, but only one of them may be included.
 また、上記実施形態では、異常物理量が温度測定部20aにより測定された温度である場合に変動要因の特定対象となる複数の第2物理量に、チラー14によって循環させられる循環液の圧力、流量及び温度のうちのすべての物理量を含めたが、いずれか1つ又は2つの物理量だけを含めてもよい。第2の物理量は、レーザ発振器10内に関連する物理量だけでなく、レーザ発振器10外の周辺機器(例えばチラー14)に関連する物理量も含めることで、レーザ発振器10だけでなく、周辺機器のメンテナンスを促すことができる。 Further, in the above embodiment, when the abnormal physical quantity is the temperature measured by the temperature measuring unit 20a, the pressure, the flow rate, and the flow rate of the circulating liquid circulated by the chiller 14 to the plurality of second physical quantities to be specified as the fluctuation factors. All physical quantities of temperature are included, but only one or two physical quantities may be included. The second physical quantity includes not only the physical quantity related to the laser oscillator 10 but also the physical quantity related to the peripheral device (for example, the chiller 14) outside the laser oscillator 10, so that not only the laser oscillator 10 but also the peripheral device can be maintained. Can be prompted.
 本開示の変動要因特定方法及びレーザ加工装置は、装置又はユーザに、出力変動を防止するための対策を施しやすくさせることができ、レーザ発振器のレーザ出力の変動要因の特定に有用である。 The variable factor identification method and the laser processing apparatus of the present disclosure can make it easy for the apparatus or the user to take measures to prevent the output fluctuation, and are useful for identifying the fluctuation factor of the laser output of the laser oscillator.
100   レーザ加工装置
10   レーザ発振器
14   チラー
15   除湿装置
40a   フォトダイオード(出力測定部)
60   制御部
80   表示装置(出力装置)
T1   第1監視時間
T2   第2監視時間
TH   閾値
t1   変動発生タイミング
t2   異常開始タイミング
100 Laser Machining Equipment 10 Laser Oscillator 14 Chiller 15 Dehumidifier 40a Photodiode (Output Measuring Unit)
60 Control unit 80 Display device (output device)
T1 1st monitoring time T2 2nd monitoring time TH threshold value t1 Fluctuation occurrence timing t2 Abnormal start timing

Claims (6)

  1.  レーザ発振器と、
     前記レーザ発振器により出射されたレーザ光の光量を測定する出力測定部と、
     前記レーザ光のレーザ出力を目標値に近づけるように、前記出力測定部の測定値に基づいて、前記レーザ発振器に供給する駆動電流のフィードバック制御を行う制御部とを備えたレーザ加工装置において、前記制御部によって実行される変動要因特定方法であって、
     前記フィードバック制御を行う電流制御実行ステップと、
     前記出力測定部の測定値に基づいて、前記電流制御実行ステップの実行中に前記レーザ出力と前記目標値との差が所定の閾値を超える出力変動が発生した変動発生タイミングを特定するタイミング特定ステップと、
     前記電流制御実行ステップの実行中に前記レーザ加工装置において測定された複数の第1物理量から、前記タイミング特定ステップにおいて特定された変動発生タイミングに応じて定まる第1監視時間内に異常値となる異常物理量を特定する異常物理量特定ステップと、
     前記異常物理量特定ステップで特定された異常物理量の変動の要因となる複数の第2物理量から、前記異常物理量が異常値となった異常開始タイミングに応じて定まる第2監視時間内に異常値となる物理量を変動要因として特定する変動要因特定ステップと、
     前記変動要因特定ステップで特定された変動要因を示す情報を出力装置に出力させる変動要因出力ステップとを実行することを特徴とする変動要因特定方法。
    Laser oscillator and
    An output measuring unit that measures the amount of laser light emitted by the laser oscillator,
    In a laser processing apparatus provided with a control unit that performs feedback control of a drive current supplied to the laser oscillator based on a measured value of the output measuring unit so that the laser output of the laser light approaches a target value. A method of identifying variable factors executed by the control unit.
    The current control execution step for performing the feedback control and
    A timing specifying step for specifying a fluctuation occurrence timing in which an output fluctuation in which the difference between the laser output and the target value exceeds a predetermined threshold value occurs during execution of the current control execution step based on the measured value of the output measuring unit. When,
    An abnormality that becomes an abnormal value within the first monitoring time determined according to the fluctuation occurrence timing specified in the timing specifying step from a plurality of first physical quantities measured in the laser processing apparatus during the execution of the current control execution step. Anomalous physical quantity identification step to identify physical quantity and
    From a plurality of second physical quantities that cause fluctuations in the abnormal physical quantity specified in the abnormal physical quantity specifying step, the abnormal physical quantity becomes an abnormal value within the second monitoring time determined according to the abnormal start timing at which the abnormal physical quantity becomes an abnormal value. A variable factor identification step that identifies a physical quantity as a variable factor, and
    A method for identifying a variable factor, which comprises executing a variable factor output step of causing an output device to output information indicating the variable factor specified in the variable factor specifying step.
  2.  請求項1に記載の変動要因特定方法において、
     前記レーザ加工装置は、前記レーザ発振器に循環液を循環させることにより、前記レーザ発振器の温度を制御するチラーをさらに備え、
     前記複数の第1物理量は、前記レーザ発振器の温度を含み、
     前記レーザ発振器の温度の変動の要因となる複数の第2物理量は、前記循環液の圧力、流量及び温度の少なくとも一つを含むことを特徴とする変動要因特定方法。
    In the method for identifying variable factors according to claim 1,
    The laser processing apparatus further includes a chiller that controls the temperature of the laser oscillator by circulating a circulating liquid in the laser oscillator.
    The plurality of first physical quantities include the temperature of the laser oscillator.
    A method for identifying a variable factor, wherein the plurality of second physical quantities that cause the temperature fluctuation of the laser oscillator include at least one of the pressure, the flow rate, and the temperature of the circulating fluid.
  3.  請求項1又は2に記載の変動要因特定方法において、
     前記レーザ加工装置は、前記レーザ発振器にドライエアを供給して除湿する除湿装置をさらに備え、
     前記複数の第1物理量は、前記レーザ発振器の湿度を含み、
     前記レーザ発振器の湿度の変動の要因となる複数の第2物理量は、前記レーザ発振器における温度及び前記ドライエアの圧力の少なくとも一方を含むことを特徴とする変動要因特定方法。
    In the method for identifying a variable factor according to claim 1 or 2.
    The laser processing device further includes a dehumidifying device that supplies dry air to the laser oscillator to dehumidify the laser oscillator.
    The plurality of first physical quantities include the humidity of the laser oscillator.
    A method for identifying a variable factor, wherein the plurality of second physical quantities that cause fluctuations in the humidity of the laser oscillator include at least one of a temperature in the laser oscillator and a pressure of the dry air.
  4.  請求項1~3のいずれか1項に記載の変動要因特定方法において、
     前記タイミング特定ステップと、前記異常物理量特定ステップと、前記変動要因特定ステップと、は、前記レーザ光のレーザ出力を停止することなく行うことを特徴とする変動要因特定方法。
    In the method for identifying a variable factor according to any one of claims 1 to 3,
    A method for identifying a variable factor, characterized in that the timing specifying step, the abnormal physical quantity specifying step, and the variable factor specifying step are performed without stopping the laser output of the laser beam.
  5.  請求項1~4のいずれか1項に記載の変動要因特定方法において、
     前記第2物理量は、前記レーザ発振器内に関連する物理量だけでなく、レーザ発振器外の周辺機器に関連する物理量も含むことを特徴とする変動要因特定方法。
    In the method for identifying a variable factor according to any one of claims 1 to 4,
    A method for identifying a variable factor, wherein the second physical quantity includes not only a physical quantity related to the inside of the laser oscillator but also a physical quantity related to a peripheral device outside the laser oscillator.
  6.  レーザ発振器と、
     前記レーザ発振器により出射されたレーザ光の光量を測定する出力測定部と、
     前記レーザ光のレーザ出力を目標値に近づけるように、前記出力測定部の測定値に基づいて、前記レーザ発振器に供給する駆動電流のフィードバック制御を行う制御部とを備えたレーザ加工装置であって、
     前記制御部は、前記フィードバック制御を行う電流制御実行ステップと、
     前記出力測定部の測定値に基づいて、前記電流制御実行ステップの実行中に前記レーザ出力と前記目標値との差が所定の閾値を超える出力変動が発生した変動発生タイミングを特定するタイミング特定ステップと、
     前記電流制御実行ステップの実行中に前記レーザ加工装置において測定された複数の第1物理量から、前記タイミング特定ステップにおいて特定された変動発生タイミングに応じて定まる第1監視時間内に異常値となる異常物理量を特定する異常物理量特定ステップと、
     前記異常物理量特定ステップで特定された異常物理量の変動の要因となる複数の第2物理量から、前記異常物理量が異常値となった異常開始タイミングに応じて定まる第2監視時間内に異常値となる物理量を変動要因として特定する変動要因特定ステップと、
     前記変動要因特定ステップで特定された変動要因を示す情報を出力装置に出力させる変動要因出力ステップとを実行するように構成されていることを特徴とするレーザ加工装置。
    Laser oscillator and
    An output measuring unit that measures the amount of laser light emitted by the laser oscillator,
    A laser processing apparatus including a control unit that performs feedback control of a drive current supplied to the laser oscillator based on the measured value of the output measuring unit so that the laser output of the laser beam approaches a target value. ,
    The control unit includes a current control execution step that performs the feedback control, and
    A timing specifying step for specifying a fluctuation occurrence timing in which an output fluctuation in which the difference between the laser output and the target value exceeds a predetermined threshold value occurs during execution of the current control execution step based on the measured value of the output measuring unit. When,
    An abnormality that becomes an abnormal value within the first monitoring time determined according to the fluctuation occurrence timing specified in the timing specifying step from a plurality of first physical quantities measured in the laser processing apparatus during the execution of the current control execution step. Anomalous physical quantity identification step to identify physical quantity and
    From a plurality of second physical quantities that cause fluctuations in the abnormal physical quantity specified in the abnormal physical quantity specifying step, the abnormal physical quantity becomes an abnormal value within the second monitoring time determined according to the abnormal start timing at which the abnormal physical quantity becomes an abnormal value. A variable factor identification step that identifies a physical quantity as a variable factor, and
    A laser machining apparatus characterized in that it is configured to execute a variable factor output step of outputting information indicating a variable factor specified in the variable factor specifying step to an output device.
PCT/JP2020/021201 2019-05-30 2020-05-28 Variation cause identifying method and laser processing apparatus WO2020241783A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080038281.3A CN113874151B (en) 2019-05-30 2020-05-28 Method for determining cause of fluctuation and laser processing apparatus
JP2021522880A JP7113320B2 (en) 2019-05-30 2020-05-28 Variation factor identification method and laser processing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-101600 2019-05-30
JP2019101600 2019-05-30

Publications (1)

Publication Number Publication Date
WO2020241783A1 true WO2020241783A1 (en) 2020-12-03

Family

ID=73553163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/021201 WO2020241783A1 (en) 2019-05-30 2020-05-28 Variation cause identifying method and laser processing apparatus

Country Status (3)

Country Link
JP (1) JP7113320B2 (en)
CN (1) CN113874151B (en)
WO (1) WO2020241783A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10190134A (en) * 1996-08-06 1998-07-21 Cutting Edge Optronics Inc Laser diode array assembly and its operating method
JP2017005141A (en) * 2015-06-11 2017-01-05 ファナック株式会社 Laser oscillation part, air cooler, and laser equipment for cooling dehumidifier by common cooling water
JP2017191833A (en) * 2016-04-12 2017-10-19 ファナック株式会社 Laser device capable of using small-sized chiller

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006289443A (en) * 2005-04-11 2006-10-26 Hikari Physics Kenkyusho:Kk Laser beam machining device
DE112006003867B4 (en) * 2006-04-25 2012-01-26 Mitsubishi Denki K.K. Laser oscillator device, power supply device and associated control method
CN101104223B (en) * 2006-07-10 2012-05-23 彩霸阳光株式会社 Laser processing device
JP2011240361A (en) * 2010-05-18 2011-12-01 Omron Corp Laser beam machining device and abnormality monitoring method of the laser beam machining device
JP5941087B2 (en) * 2014-03-25 2016-06-29 ファナック株式会社 Laser processing equipment that retracts the processing nozzle in the event of power failure
JP2015233064A (en) * 2014-06-09 2015-12-24 東京エレクトロン株式会社 Etching processing method and bevel etching device
JP6868796B2 (en) * 2017-05-10 2021-05-12 パナソニックIpマネジメント株式会社 Laser device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10190134A (en) * 1996-08-06 1998-07-21 Cutting Edge Optronics Inc Laser diode array assembly and its operating method
JP2017005141A (en) * 2015-06-11 2017-01-05 ファナック株式会社 Laser oscillation part, air cooler, and laser equipment for cooling dehumidifier by common cooling water
JP2017191833A (en) * 2016-04-12 2017-10-19 ファナック株式会社 Laser device capable of using small-sized chiller

Also Published As

Publication number Publication date
JP7113320B2 (en) 2022-08-05
CN113874151A (en) 2021-12-31
CN113874151B (en) 2023-04-07
JPWO2020241783A1 (en) 2020-12-03

Similar Documents

Publication Publication Date Title
JP7199034B2 (en) laser device
US8168920B2 (en) Bonding device
JP2006247681A (en) Monitoring device for laser beam machining
JP2017092206A (en) Laser device having fault diagnosis function
JP2007038226A (en) Laser machining monitoring device
US11329443B2 (en) Laser device
CN110829175B (en) Laser device
JP2007044739A (en) Laser machining monitoring device
JP2011240361A (en) Laser beam machining device and abnormality monitoring method of the laser beam machining device
WO2020241783A1 (en) Variation cause identifying method and laser processing apparatus
CN112045301A (en) Laser processing system
JP2017097016A (en) Optical fiber relay unit equipped with circulation path for circulating coolant
JP2006286993A (en) Laser module, controlling method therefor, and control data for controlling it and formation method therefor
JP2018158361A (en) Laser processing apparatus
JP6564594B2 (en) Light source device
US9899790B2 (en) Laser apparatus having temperature control function for maintenance work
JP7270169B2 (en) LASER DEVICE AND LASER PROCESSING DEVICE USING THE SAME
JP2018022101A (en) Evaluation device, evaluation method, and combiner
WO2021140969A1 (en) Laser output control method, and laser processing device
JP7312956B2 (en) Laser processing equipment
JP7126192B2 (en) Condensing optical unit, laser oscillator using the same, laser processing device, and abnormality diagnosis method for laser oscillator
JP4636436B2 (en) High voltage leakage current measuring device and TFT array inspection device
RU2470335C1 (en) Infrared collimator
US20220238394A1 (en) Temperature control method, temperature control device, and optical heating device
CN103959430A (en) Method of calibrating a system comprising a gas-discharge lamp and a cooling arrangement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20812716

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021522880

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20812716

Country of ref document: EP

Kind code of ref document: A1