WO2020241723A1 - 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置 - Google Patents

三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置 Download PDF

Info

Publication number
WO2020241723A1
WO2020241723A1 PCT/JP2020/021018 JP2020021018W WO2020241723A1 WO 2020241723 A1 WO2020241723 A1 WO 2020241723A1 JP 2020021018 W JP2020021018 W JP 2020021018W WO 2020241723 A1 WO2020241723 A1 WO 2020241723A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
information
tile
unit
dimensional data
Prior art date
Application number
PCT/JP2020/021018
Other languages
English (en)
French (fr)
Inventor
賀敬 井口
敏康 杉尾
チャン ディーン ハン
ポンサック ラサン
プラヂット ミッタラピヤヌルク
ケン リン ロイ
Original Assignee
パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ filed Critical パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority to JP2021522839A priority Critical patent/JPWO2020241723A1/ja
Priority to CN202080038119.1A priority patent/CN113853635A/zh
Publication of WO2020241723A1 publication Critical patent/WO2020241723A1/ja
Priority to US17/521,309 priority patent/US20220058834A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/597Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding specially adapted for multi-view video sequence encoding
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T9/00Image coding
    • G06T9/001Model-based coding, e.g. wire frame
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M7/00Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
    • H03M7/14Conversion to or from non-weighted codes
    • H03M7/24Conversion to or from floating-point codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/80Generation or processing of content or additional data by content creator independently of the distribution process; Content per se
    • H04N21/85Assembly of content; Generation of multimedia applications
    • H04N21/854Content authoring
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M7/00Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
    • H03M7/30Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
    • H03M7/3082Vector coding

Definitions

  • the present disclosure relates to a three-dimensional data coding method, a three-dimensional data decoding method, a three-dimensional data coding device, and a three-dimensional data decoding device.
  • 3D data In the future, devices or services that utilize 3D data are expected to become widespread in a wide range of fields such as computer vision for autonomous operation of automobiles or robots, map information, monitoring, infrastructure inspection, or video distribution.
  • the three-dimensional data is acquired by various methods such as a distance sensor such as a range finder, a stereo camera, or a combination of a plurality of monocular cameras.
  • a point cloud that expresses the shape of a three-dimensional structure by a point cloud in a three-dimensional space.
  • the position and color of the point cloud are stored.
  • Point clouds are expected to become the mainstream method for expressing three-dimensional data, but point clouds have a very large amount of data. Therefore, in the storage or transmission of 3D data, it is essential to compress the amount of data by coding, as in the case of 2D moving images (for example, MPEG-4 AVC or HEVC standardized by MPEG). Become.
  • point cloud compression is partially supported by a public library (Point Cloud Library) that performs point cloud-related processing.
  • Point Cloud Library a public library that performs point cloud-related processing.
  • Patent Document 1 there is known a technique for searching and displaying facilities located around a vehicle using three-dimensional map data (see, for example, Patent Document 1).
  • An object of the present disclosure is to provide a three-dimensional data coding method, a three-dimensional data decoding method, a three-dimensional data coding device, or a three-dimensional data decoding device that can reduce the amount of processing.
  • the three-dimensional data coding method generates a bit stream by encoding the position information and one or more attribute information of each of a plurality of three-dimensional points included in the point group data, and is described above.
  • the normal vector of each of the plurality of three-dimensional points is encoded as one attribute information included in the one or more attribute information.
  • the point group data is divided into a plurality of divided data, and the plurality of divided data are encoded to generate a bit stream, and the bit stream is described as described above.
  • the three-dimensional data decoding method is a bit stream generated by encoding the position information of each of a plurality of three-dimensional points included in the point group data and one or more attribute information. Then, a bit stream in which each normal vector of the plurality of three-dimensional points is encoded as one attribute information included in the one or more attribute information is acquired, and the one attribute information is obtained from the bit stream.
  • the normal vector is obtained by decoding.
  • the three-dimensional data decoding method acquires a bit stream generated by encoding a plurality of divided data generated by dividing the point group data, and obtains a bit stream generated by encoding the plurality of divided data, and obtains the bit stream from the bit stream. , Acquire information indicating the normal vector of each of the plurality of divided data.
  • the present disclosure can provide a three-dimensional data coding method, a three-dimensional data decoding method, a three-dimensional data coding device, or a three-dimensional data decoding device that can reduce the amount of processing.
  • FIG. 1 is a diagram showing a configuration of a three-dimensional data coding / decoding system according to the first embodiment.
  • FIG. 2 is a diagram showing a configuration example of point cloud data according to the first embodiment.
  • FIG. 3 is a diagram showing a configuration example of a data file in which the point cloud data information according to the first embodiment is described.
  • FIG. 4 is a diagram showing the types of point cloud data according to the first embodiment.
  • FIG. 5 is a diagram showing a configuration of a first coding unit according to the first embodiment.
  • FIG. 6 is a block diagram of the first coding unit according to the first embodiment.
  • FIG. 7 is a diagram showing a configuration of a first decoding unit according to the first embodiment.
  • FIG. 1 is a diagram showing a configuration of a three-dimensional data coding / decoding system according to the first embodiment.
  • FIG. 2 is a diagram showing a configuration example of point cloud data according to the first embodiment.
  • FIG. 3 is a diagram showing a
  • FIG. 8 is a block diagram of the first decoding unit according to the first embodiment.
  • FIG. 9 is a block diagram of the three-dimensional data encoding device according to the first embodiment.
  • FIG. 10 is a diagram showing an example of position information according to the first embodiment.
  • FIG. 11 is a diagram showing an example of an ocree representation of position information according to the first embodiment.
  • FIG. 12 is a block diagram of the three-dimensional data decoding device according to the first embodiment.
  • FIG. 13 is a block diagram of the attribute information coding unit according to the first embodiment.
  • FIG. 14 is a block diagram of the attribute information decoding unit according to the first embodiment.
  • FIG. 15 is a block diagram showing a configuration of an attribute information coding unit according to the first embodiment.
  • FIG. 16 is a block diagram of the attribute information coding unit according to the first embodiment.
  • FIG. 17 is a block diagram showing a configuration of an attribute information decoding unit according to the first embodiment.
  • FIG. 18 is a block diagram of the attribute information decoding unit according to the first embodiment.
  • FIG. 19 is a diagram showing a configuration of a second coding unit according to the first embodiment.
  • FIG. 20 is a block diagram of a second coding unit according to the first embodiment.
  • FIG. 21 is a diagram showing a configuration of a second decoding unit according to the first embodiment.
  • FIG. 22 is a block diagram of a second decoding unit according to the first embodiment.
  • FIG. 23 is a diagram showing a protocol stack related to PCC coded data according to the first embodiment.
  • FIG. 24 is a diagram showing a configuration of a coding unit and a multiplexing unit according to the second embodiment.
  • FIG. 25 is a diagram showing a configuration example of coded data according to the second embodiment.
  • FIG. 26 is a diagram showing a configuration example of the coded data and the NAL unit according to the second embodiment.
  • FIG. 27 is a diagram showing an example of semantics of pcc_nal_unit_type according to the second embodiment.
  • FIG. 28 is a block diagram of the first coding unit according to the third embodiment.
  • FIG. 29 is a block diagram of the first decoding unit according to the third embodiment.
  • FIG. 30 is a block diagram of the divided portion according to the third embodiment.
  • FIG. 31 is a diagram showing a division example of slices and tiles according to the third embodiment.
  • FIG. 31 is a diagram showing a division example of slices and tiles according to the third embodiment.
  • FIG. 32 is a diagram showing an example of a slice and tile division pattern according to the third embodiment.
  • FIG. 33 is a diagram showing an example of the dependency relationship according to the third embodiment.
  • FIG. 34 is a diagram showing an example of the decoding order of the data according to the third embodiment.
  • FIG. 35 is a flowchart of the coding process according to the third embodiment.
  • FIG. 36 is a block diagram of the joint portion according to the third embodiment.
  • FIG. 37 is a diagram showing a configuration example of the coded data and the NAL unit according to the third embodiment.
  • FIG. 38 is a flowchart of the coding process according to the third embodiment.
  • FIG. 39 is a flowchart of the decoding process according to the third embodiment.
  • FIG. 40 is a diagram showing an example of syntax of tile addition information according to the fourth embodiment.
  • FIG. 41 is a block diagram of the coding / decoding system according to the fourth embodiment.
  • FIG. 42 is a diagram showing an example of syntax of slice addition information according to the fourth embodiment.
  • FIG. 43 is a flowchart of the coding process according to the fourth embodiment.
  • FIG. 44 is a flowchart of the decoding process according to the fourth embodiment.
  • FIG. 45 is a diagram showing an example of the division method according to the fifth embodiment.
  • FIG. 46 is a diagram showing a division example of the point cloud data according to the fifth embodiment.
  • FIG. 47 is a diagram showing an example of syntax of tile addition information according to the fifth embodiment.
  • FIG. 48 is a diagram showing an example of index information according to the fifth embodiment.
  • FIG. 41 is a block diagram of the coding / decoding system according to the fourth embodiment.
  • FIG. 42 is a diagram showing an example of syntax of slice addition information according to the fourth
  • FIG. 49 is a diagram showing an example of the dependency relationship according to the fifth embodiment.
  • FIG. 50 is a diagram showing an example of transmission data according to the fifth embodiment.
  • FIG. 51 is a diagram showing a configuration example of the NAL unit according to the fifth embodiment.
  • FIG. 52 is a diagram showing an example of the dependency relationship according to the fifth embodiment.
  • FIG. 53 is a diagram showing an example of the decoding order of the data according to the fifth embodiment.
  • FIG. 54 is a diagram showing an example of the dependency relationship according to the fifth embodiment.
  • FIG. 55 is a diagram showing an example of the decoding order of the data according to the fifth embodiment.
  • FIG. 56 is a flowchart of the coding process according to the fifth embodiment.
  • FIG. 57 is a flowchart of the decoding process according to the fifth embodiment.
  • FIG. 58 is a flowchart of the coding process according to the fifth embodiment.
  • FIG. 59 is a flowchart of the coding process according to the fifth embodiment.
  • FIG. 60 is a diagram showing an example of transmission data and reception data according to the fifth embodiment.
  • FIG. 61 is a flowchart of the decoding process according to the fifth embodiment.
  • FIG. 62 is a diagram showing an example of transmission data and reception data according to the fifth embodiment.
  • FIG. 63 is a flowchart of the decoding process according to the fifth embodiment.
  • FIG. 64 is a flowchart of the coding process according to the fifth embodiment.
  • FIG. 65 is a diagram showing an example of index information according to the fifth embodiment.
  • FIG. 66 is a diagram showing an example of the dependency relationship according to the fifth embodiment.
  • FIG. 67 is a diagram showing an example of transmission data according to the fifth embodiment.
  • FIG. 68 is a diagram showing an example of transmission data and reception data according to the fifth embodiment.
  • FIG. 69 is a flowchart of the decoding process according to the fifth embodiment.
  • FIG. 70 is a diagram schematically showing the quantization process for each tile according to the sixth embodiment.
  • FIG. 71 is a diagram showing an example of GPS syntax according to the sixth embodiment.
  • FIG. 72 is a diagram showing an example of syntax of tile information according to the sixth embodiment.
  • FIG. 73 is a diagram showing an example of syntax of node information according to the sixth embodiment.
  • FIG. 74 is a flowchart of the three-dimensional data coding process according to the sixth embodiment.
  • FIG. 75 is a flowchart of the three-dimensional data coding process according to the sixth embodiment.
  • FIG. 76 is a flowchart of the three-dimensional data decoding process according to the sixth embodiment.
  • FIG. 77 is a diagram showing an example of tile division according to the sixth embodiment.
  • FIG. 78 is a diagram showing an example of tile division according to the sixth embodiment.
  • FIG. 79 is a flowchart of the three-dimensional data coding process according to the sixth embodiment.
  • FIG. 80 is a block diagram of the three-dimensional data encoding device according to the sixth embodiment.
  • FIG. 81 is a diagram showing an example of GPS syntax according to the sixth embodiment.
  • FIG. 82 is a flowchart of the three-dimensional data decoding process according to the sixth embodiment.
  • FIG. 83 is a diagram showing an example of the application according to the sixth embodiment.
  • FIG. 84 is a diagram showing an example of tile division and slice division according to the sixth embodiment.
  • FIG. 85 is a flowchart of processing in the system according to the sixth embodiment.
  • FIG. 86 is a flowchart of processing in the system according to the sixth embodiment.
  • FIG. 87 is a block diagram of the three-dimensional data encoding device according to the seventh embodiment.
  • FIG. 88 is a block diagram of the three-dimensional data decoding device according to the seventh embodiment.
  • FIG. 89 is a block diagram of the three-dimensional data encoding device according to the seventh embodiment.
  • FIG. 90 is a block diagram showing a configuration of a three-dimensional data decoding device according to the seventh embodiment.
  • FIG. 90 is a block diagram showing a configuration of a three-dimensional data decoding device according to the seventh embodiment.
  • FIG. 91 is a diagram showing an example of point cloud data according to the seventh embodiment.
  • FIG. 92 is a diagram showing an example of a normal vector for each point according to the seventh embodiment.
  • FIG. 93 is a diagram showing an example of syntax of the normal vector according to the seventh embodiment.
  • FIG. 94 is a flowchart of the three-dimensional data coding process according to the seventh embodiment.
  • FIG. 95 is a flowchart of the three-dimensional data decoding process according to the seventh embodiment.
  • FIG. 96 is a diagram showing a configuration example of a bit stream according to the seventh embodiment.
  • FIG. 97 is a diagram showing an example of point cloud information according to the seventh embodiment.
  • FIG. 98 is a flowchart of the three-dimensional data coding process according to the seventh embodiment.
  • FIG. 100 is a diagram showing an example of division of the normal vector according to the seventh embodiment.
  • FIG. 101 is a diagram showing an example of division of the normal vector according to the seventh embodiment.
  • FIG. 102 is a diagram showing an example of point cloud data according to the seventh embodiment.
  • FIG. 103 is a diagram showing an example of a normal vector according to the seventh embodiment.
  • FIG. 104 is a diagram showing an example of information of the normal vector according to the seventh embodiment.
  • FIG. 105 is a diagram showing an example of a cube according to the seventh embodiment.
  • FIG. 106 is a diagram showing an example of a surface of a cube according to the seventh embodiment.
  • FIG. 100 is a diagram showing an example of division of the normal vector according to the seventh embodiment.
  • FIG. 101 is a diagram showing an example of division of the normal vector according to the seventh embodiment.
  • FIG. 102 is a diagram showing an example of point cloud data according to the seventh embodiment.
  • FIG. 103 is a diagram showing an example
  • FIG. 107 is a diagram showing an example of a surface of a cube according to the seventh embodiment.
  • FIG. 108 is a diagram showing an example of a surface of a cube according to the seventh embodiment.
  • FIG. 109 is a diagram showing an example of slice visibility according to the seventh embodiment.
  • FIG. 110 is a diagram showing a configuration example of a bit stream according to the seventh embodiment.
  • FIG. 111 is a diagram showing an example of syntax of the slice header of the position information according to the seventh embodiment.
  • FIG. 112 is a diagram showing an example of syntax of the slice header of the position information according to the seventh embodiment.
  • FIG. 113 is a flowchart of the three-dimensional data coding process according to the seventh embodiment.
  • FIG. 114 is a flowchart of the three-dimensional data decoding process according to the seventh embodiment.
  • FIG. 115 is a flowchart of the three-dimensional data decoding process according to the seventh embodiment.
  • FIG. 116 is a diagram showing a configuration example of a bit stream according to the seventh embodiment.
  • FIG. 117 is a diagram showing an example of syntax of slice information according to the seventh embodiment.
  • FIG. 118 is a diagram showing an example of syntax of slice information according to the seventh embodiment.
  • FIG. 119 is a flowchart of the three-dimensional data decoding process according to the seventh embodiment.
  • FIG. 120 is a diagram showing an example of the partial decoding process according to the seventh embodiment.
  • FIG. 121 is a diagram showing a configuration example of the three-dimensional data decoding device according to the seventh embodiment.
  • FIG. 122 is a diagram showing a processing example of the random access control unit according to the seventh embodiment.
  • FIG. 123 is a diagram showing a processing example of the random access control unit according to the seventh embodiment.
  • FIG. 124 is a diagram showing an example of the relationship between the distance and the resolution according to the seventh embodiment.
  • FIG. 125 is a diagram showing an example of a brick and a normal vector according to the seventh embodiment.
  • FIG. 126 is a diagram showing an example of the level according to the seventh embodiment.
  • FIG. 127 is a diagram showing an example of an ocree tree structure according to the seventh embodiment.
  • FIG. 128 is a flowchart of the three-dimensional data decoding process according to the seventh embodiment.
  • FIG. 123 is a diagram showing a processing example of the random access control unit according to the seventh embodiment.
  • FIG. 124 is a diagram showing an example of the relationship between the distance and the resolution according to the seventh embodiment.
  • FIG. 125 is a diagram showing an example of
  • FIG. 130 is a diagram showing an example of a brick to be decoded according to the seventh embodiment.
  • FIG. 131 is a diagram showing an example of the level of the decoding target according to the seventh embodiment.
  • FIG. 132 is a diagram showing an example of syntax of the slice header of the position information according to the seventh embodiment.
  • FIG. 133 is a flowchart of the three-dimensional data coding process according to the seventh embodiment.
  • FIG. 134 is a flowchart of the three-dimensional data decoding process according to the seventh embodiment.
  • FIG. 135 is a diagram showing an example of point cloud data according to the seventh embodiment.
  • FIG. 136 is a diagram showing an example of point cloud data according to the seventh embodiment.
  • FIG. 137 is a diagram showing a configuration example of the system according to the seventh embodiment.
  • FIG. 138 is a diagram showing a configuration example of the system according to the seventh embodiment.
  • FIG. 139 is a diagram showing a configuration example of the system according to the seventh embodiment.
  • FIG. 140 is a diagram showing a configuration example of the system according to the seventh embodiment.
  • FIG. 141 is a diagram showing a configuration example of a bit stream according to the seventh embodiment.
  • FIG. 142 is a diagram showing a configuration example of the three-dimensional data coding apparatus according to the seventh embodiment.
  • FIG. 143 is a diagram showing a configuration example of the three-dimensional data decoding device according to the seventh embodiment.
  • FIG. 144 is a diagram showing a basic structure of the ISOBMFF according to the seventh embodiment.
  • FIG. 145 is a protocol stack diagram in the case where the NAL unit common to the PCC codec according to the seventh embodiment is stored in the ISOBMFF.
  • FIG. 146 is a diagram showing an example of converting the bit stream according to the seventh embodiment into a file format.
  • FIG. 147 is a diagram showing an example of syntax of slice information according to the seventh embodiment.
  • FIG. 148 is a diagram showing a syntax example of the PCC random access table according to the seventh embodiment.
  • FIG. 149 is a diagram showing a syntax example of the PCC random access table according to the seventh embodiment.
  • FIG. 150 is a diagram showing a syntax example of the PCC random access table according to the seventh embodiment.
  • FIG. 151 is a flowchart of the three-dimensional data coding process according to the seventh embodiment.
  • FIG. 152 is a flowchart of the three-dimensional data decoding process according to the seventh embodiment.
  • FIG. 153 is a flowchart of the three-dimensional data coding process according to the seventh embodiment.
  • FIG. 154 is a flowchart of the three-dimensional data decoding process according to the seventh embodiment.
  • FIG. 155 is a block diagram of the three-dimensional data creation device according to the fifth embodiment.
  • FIG. 156 is a flowchart of the three-dimensional data creation method according to the fifth embodiment.
  • FIG. 157 is a diagram showing a configuration of the system according to the eighth embodiment.
  • FIG. 158 is a block diagram of the client device according to the eighth embodiment.
  • FIG. 159 is a block diagram of the server according to the eighth embodiment.
  • FIG. 160 is a flowchart of the three-dimensional data creation process by the client device according to the eighth embodiment.
  • FIG. 161 is a flowchart of the sensor information transmission process by the client device according to the eighth embodiment.
  • FIG. 162 is a flowchart of a three-dimensional data creation process by the server according to the eighth embodiment.
  • FIG. 163 is a flowchart of the three-dimensional map transmission process by the server according to the eighth embodiment.
  • FIG. 164 is a diagram showing a configuration of a modified example of the system according to the eighth embodiment.
  • FIG. 165 is a diagram showing a configuration of a server and a client device according to the eighth embodiment.
  • FIG. 166 is a diagram showing a configuration of a server and a client device according to the eighth embodiment.
  • FIG. 167 is a flowchart of processing by the client device according to the eighth embodiment.
  • FIG. 168 is a diagram showing a configuration of a sensor information collection system according to the eighth embodiment.
  • FIG. 169 is a diagram showing an example of the system according to the eighth embodiment.
  • FIG. 170 is a diagram showing a modified example of the system according to the eighth embodiment.
  • FIG. 171 is a flowchart showing an example of application processing according to the eighth embodiment.
  • FIG. 172 is a diagram showing a sensor range of various sensors according to the eighth embodiment.
  • FIG. 173 is a diagram showing a configuration example of the automatic driving system according to the eighth embodiment.
  • FIG. 174 is a diagram showing a configuration example of a bit stream according to the eighth embodiment.
  • FIG. 175 is a flowchart of the point group selection process according to the eighth embodiment.
  • FIG. 176 is a diagram showing a screen example of the point group selection process according to the eighth embodiment.
  • FIG. 177 is a diagram showing a screen example of the point group selection process according to the eighth embodiment.
  • FIG. 178 is a diagram showing a screen example of the point group selection process according to the eighth embodiment.
  • the three-dimensional data coding method generates a bit stream by encoding the position information and one or more attribute information of each of a plurality of three-dimensional points included in the point group data, and is described above.
  • the normal vector of each of the plurality of three-dimensional points is encoded as one attribute information included in the one or more attribute information.
  • the three-dimensional data coding method can process the normal vector in the same manner as other attribute information by encoding the normal vector as attribute information. Therefore, the three-dimensional data coding method can reduce the processing amount.
  • the normal vector represented by a floating point number may be converted into an integer and then coded.
  • the three-dimensional data coding method can process the normal vector in the same manner as other attribute information represented by an integer.
  • the bit stream includes control information common to the position information and the one or more attribute information, and the control information includes the one attribute information included in the one or more attribute information having the normal vector.
  • Information indicating that the normal vector may be shown, or at least one of the information indicating that the normal vector is data having three elements for each point may be included.
  • the point group data is divided into a plurality of divided data, and the plurality of divided data are encoded to generate a bit stream, and the bit stream is the said. Contains information indicating the normal vector of each of the plurality of divided data.
  • the three-dimensional data coding method can reduce the processing amount and the code amount as compared with the case where the normal vector is encoded for each point by encoding the normal vector for each divided data. ..
  • each of the plurality of divided data may be a random access unit.
  • the three-dimensional data decoding method is a bit stream generated by encoding the position information of each of a plurality of three-dimensional points included in the point group data and one or more attribute information. Then, a bit stream in which each normal vector of the plurality of three-dimensional points is encoded as one attribute information included in the one or more attribute information is acquired, and the one attribute information is obtained from the bit stream.
  • the normal vector is obtained by decoding.
  • the three-dimensional data decoding method can process the normal vector in the same manner as other attribute information by decoding the normal vector as attribute information. Therefore, the three-dimensional data decoding method can reduce the processing amount.
  • the normal vector represented by an integer may be acquired.
  • the three-dimensional data decoding method can process the normal vector in the same manner as other attribute information represented by an integer.
  • the bit stream includes control information common to the position information and the one or more attribute information, and in the control information, the first attribute information included in the one or more attribute information indicates the normal vector. It may include information indicating that, or at least one of information indicating that the normal vector is data having three elements for each point.
  • the three-dimensional data decoding method acquires a bit stream generated by encoding a plurality of divided data generated by dividing the point group data, and obtains a bit stream generated by encoding the plurality of divided data, and obtains the bit stream from the bit stream. , Acquire information indicating the normal vector of each of the plurality of divided data.
  • the three-dimensional data decoding method can reduce the processing amount as compared with the case of decoding the normal vector for each point by decoding the normal vector for each divided data.
  • each of the plurality of divided data may be a random access unit.
  • the division data to be decoded may be further determined from the plurality of division data based on the normal vector, and the division data to be decoded may be decoded.
  • the decoding order of the plurality of divided data may be further determined based on the normal vector, and the plurality of divided data may be decoded in the determined decoding order.
  • the three-dimensional data coding apparatus includes a processor and a memory, and the processor uses the memory to position each of a plurality of three-dimensional points included in the point group data.
  • a bit stream is generated by encoding information and one or more attribute information, and in the coding, one attribute information including the normal vector of each of the plurality of three-dimensional points is included in the one or more attribute information. Encode as.
  • the three-dimensional data encoding device can process the normal vector in the same manner as other attribute information by encoding the normal vector as attribute information. Therefore, the three-dimensional data encoding device can reduce the processing amount.
  • the three-dimensional data coding device includes a processor and a memory, and the processor uses the memory to divide the point group data into a plurality of divided data, and the plurality of divided data.
  • a bit stream is generated by encoding the divided data, and the bit stream contains information indicating a normal vector of each of the plurality of divided data.
  • the three-dimensional data coding apparatus can reduce the processing amount and the code amount as compared with the case where the normal vector is encoded for each point by encoding the normal vector for each divided data. ..
  • the three-dimensional data decoding device includes a processor and a memory, and the processor uses the memory to provide position information of each of a plurality of three-dimensional points included in the point group data. And a bitstream generated by encoding one or more attribute information, and each normal vector of the plurality of three-dimensional points is coded as one attribute information included in the one or more attribute information. The converted bit stream is acquired, and the normal vector is acquired by decoding the one attribute information from the bit stream.
  • the three-dimensional data decoding device can process the normal vector in the same manner as other attribute information by decoding the normal vector as attribute information. Therefore, the three-dimensional data decoding device can reduce the processing amount.
  • the three-dimensional data decoding device includes a processor and a memory, and the processor uses the memory to divide a plurality of divided data generated by dividing the point group data.
  • the bit stream generated by encoding is acquired, and the information indicating the normal vector of each of the plurality of divided data is acquired from the bit stream.
  • the three-dimensional data decoding device can reduce the amount of processing as compared with the case of decoding the normal vector for each point by decoding the normal vector for each divided data.
  • a recording medium such as a system, method, integrated circuit, computer program or computer readable CD-ROM, system, method, integrated circuit, computer program. And any combination of recording media may be realized.
  • a three-dimensional data coding method and a three-dimensional data coding device for providing a function of transmitting and receiving necessary information according to an application in the coded data of a three-dimensional point cloud, and the code thereof.
  • the three-dimensional data decoding method and the three-dimensional data decoding apparatus for decoding the encoded data, the three-dimensional data multiplexing method for multiplexing the encoded data, and the three-dimensional data transmission method for transmitting the encoded data will be described. To do.
  • a first coding method and a second coding method are being studied as a coding method (coding method) for point group data, but the configuration of the coded data and the coded data are used as a system.
  • the method of storing in the format is not defined, and there is a problem that the MUX processing (multiplexing), transmission or storage in the coding unit cannot be performed as it is.
  • FIG. 1 is a diagram showing a configuration example of a three-dimensional data coding / decoding system according to the present embodiment.
  • the three-dimensional data coding / decoding system includes a three-dimensional data coding system 4601, a three-dimensional data decoding system 4602, a sensor terminal 4603, and an external connection unit 4604.
  • the three-dimensional data coding system 4601 generates coded data or multiplexed data by encoding point group data which is three-dimensional data.
  • the three-dimensional data coding system 4601 may be a three-dimensional data coding device realized by a single device, or may be a system realized by a plurality of devices. Further, the three-dimensional data coding apparatus may include a part of a plurality of processing units included in the three-dimensional data coding system 4601.
  • the three-dimensional data coding system 4601 includes a point cloud data generation system 4611, a presentation unit 4612, a coding unit 4613, a multiplexing unit 4614, an input / output unit 4615, and a control unit 4616.
  • the point cloud data generation system 4611 includes a sensor information acquisition unit 4617 and a point cloud data generation unit 4618.
  • the sensor information acquisition unit 4617 acquires the sensor information from the sensor terminal 4603 and outputs the sensor information to the point cloud data generation unit 4618.
  • the point cloud data generation unit 4618 generates point cloud data from the sensor information and outputs the point cloud data to the coding unit 4613.
  • the presentation unit 4612 presents the sensor information or the point cloud data to the user. For example, the presentation unit 4612 displays information or an image based on sensor information or point cloud data.
  • the coding unit 4613 encodes (compresses) the point cloud data, and outputs the obtained coded data, the control information obtained in the coding process, and other additional information to the multiplexing unit 4614.
  • the additional information includes, for example, sensor information.
  • the multiplexing unit 4614 generates multiplexed data by multiplexing the coded data input from the coding unit 4613, the control information, and the additional information.
  • the format of the multiplexed data is, for example, a file format for storage or a packet format for transmission.
  • the input / output unit 4615 (for example, the communication unit or the interface) outputs the multiplexed data to the outside.
  • the multiplexed data is stored in a storage unit such as an internal memory.
  • the control unit 4616 (or application execution unit) controls each processing unit. That is, the control unit 4616 controls coding, multiplexing, and the like.
  • the sensor information may be input to the coding unit 4613 or the multiplexing unit 4614. Further, the input / output unit 4615 may output the point cloud data or the coded data as it is to the outside.
  • the transmission signal (multiplexed data) output from the three-dimensional data coding system 4601 is input to the three-dimensional data decoding system 4602 via the external connection unit 4604.
  • the three-dimensional data decoding system 4602 generates point group data which is three-dimensional data by decoding the coded data or the multiplexed data.
  • the three-dimensional data decoding system 4602 may be a three-dimensional data decoding device realized by a single device, or may be a system realized by a plurality of devices. Further, the three-dimensional data decoding device may include a part of a plurality of processing units included in the three-dimensional data decoding system 4602.
  • the three-dimensional data decoding system 4602 includes a sensor information acquisition unit 4621, an input / output unit 4622, a demultiplexing unit 4623, a decoding unit 4624, a presentation unit 4625, a user interface 4626, and a control unit 4627.
  • the sensor information acquisition unit 4621 acquires sensor information from the sensor terminal 4603.
  • the input / output unit 4622 acquires the transmission signal, decodes the multiplexed data (file format or packet) from the transmitted signal, and outputs the multiplexed data to the demultiplexed unit 4623.
  • the demultiplexing unit 4623 acquires the encoded data, control information and additional information from the multiplexing data, and outputs the encoded data, control information and additional information to the decoding unit 4624.
  • the decoding unit 4624 reconstructs the point cloud data by decoding the encoded data.
  • the presentation unit 4625 presents the point cloud data to the user. For example, the presentation unit 4625 displays information or an image based on the point cloud data.
  • the user interface 4626 acquires instructions based on user operations.
  • the control unit 4627 (or application execution unit) controls each processing unit. That is, the control unit 4627 controls demultiplexing, decoding, presentation, and the like.
  • the input / output unit 4622 may acquire the point cloud data or the coded data as it is from the outside. Further, the presentation unit 4625 may acquire additional information such as sensor information and present information based on the additional information. In addition, the presentation unit 4625 may make a presentation based on the user's instruction acquired by the user interface 4626.
  • the sensor terminal 4603 generates sensor information, which is information obtained by the sensor.
  • the sensor terminal 4603 is a terminal equipped with a sensor or a camera, and includes, for example, a moving object such as an automobile, a flying object such as an airplane, a mobile terminal, or a camera.
  • the sensor information that can be acquired by the sensor terminal 4603 is, for example, (1) the distance between the sensor terminal 4603 and the object obtained from the LIDAR, the millimeter-wave radar, or the infrared sensor, or the reflectance of the object, and (2) a plurality.
  • the sensor information may include the attitude, orientation, gyro (angular velocity), position (GPS information or altitude), speed, acceleration, and the like of the sensor.
  • the sensor information may include temperature, atmospheric pressure, humidity, magnetism, and the like.
  • the external connection unit 4604 is realized by communication with an integrated circuit (LSI or IC), an external storage unit, a cloud server via the Internet, broadcasting, or the like.
  • LSI integrated circuit
  • IC integrated circuit
  • cloud server via the Internet, broadcasting, or the like.
  • FIG. 2 is a diagram showing the structure of point cloud data.
  • FIG. 3 is a diagram showing a configuration example of a data file in which information on point cloud data is described.
  • the point cloud data includes data of a plurality of points.
  • the data of each point includes position information (three-dimensional coordinates) and attribute information for the position information.
  • a collection of multiple points is called a point cloud.
  • a point cloud indicates a three-dimensional shape of an object.
  • Position information such as three-dimensional coordinates may be called geometry (geometry).
  • the data at each point may include attribute information (attribute) of a plurality of attribute types.
  • the attribute type is, for example, color or reflectance.
  • One attribute information may be associated with one position information, or attribute information having a plurality of different attribute types may be associated with one position information. Further, a plurality of attribute information of the same attribute type may be associated with one position information.
  • the configuration example of the data file shown in FIG. 3 is an example in which the position information and the attribute information have a one-to-one correspondence, and shows the position information and the attribute information of N points constituting the point cloud data. There is.
  • the position information is, for example, information on three axes of x, y, and z.
  • the attribute information is, for example, RGB color information.
  • a typical data file is a ply file or the like.
  • FIG. 4 is a diagram showing the types of point cloud data.
  • the point cloud data includes a static object and a dynamic object.
  • the static object is 3D point cloud data at an arbitrary time (certain time).
  • a dynamic object is three-dimensional point cloud data that changes over time.
  • the three-dimensional point cloud data at a certain time is referred to as a PCC frame or a frame.
  • the object may be a point cloud whose area is limited to some extent like ordinary video data, or a large-scale point cloud whose area is not limited such as map information.
  • the sensor information is acquired by various methods such as a distance sensor such as LIDAR or a range finder, a stereo camera, or a combination of a plurality of monocular cameras.
  • the point cloud data generation unit 4618 generates point cloud data based on the sensor information obtained by the sensor information acquisition unit 4617.
  • the point cloud data generation unit 4618 generates position information as point cloud data, and adds attribute information for the position information to the position information.
  • the point cloud data generation unit 4618 may process the point cloud data when generating the position information or adding the attribute information. For example, the point cloud data generation unit 4618 may reduce the amount of data by deleting the point clouds whose positions overlap. In addition, the point cloud data generation unit 4618 may convert the position information (position shift, rotation, normalization, etc.), or may render the attribute information.
  • point group data generation system 4611 is included in the three-dimensional data coding system 4601 in FIG. 1, it may be provided independently outside the three-dimensional data coding system 4601.
  • the coding unit 4613 generates coded data by coding the point cloud data based on a predetermined coding method.
  • a predetermined coding method There are roughly two types of coding methods as follows. The first is a coding method using position information, and this coding method will be hereinafter referred to as a first coding method. The second is a coding method using a video codec, and this coding method will be hereinafter referred to as a second coding method.
  • the decoding unit 4624 decodes the point cloud data by decoding the encoded data based on a predetermined coding method.
  • the multiplexing unit 4614 generates multiplexed data by multiplexing the encoded data using an existing multiplexing method.
  • the generated multiplexed data is transmitted or accumulated.
  • the multiplexing unit 4614 multiplexes other media such as video, audio, subtitles, applications, and files, or reference time information. Further, the multiplexing unit 4614 may further multiplex the attribute information related to the sensor information or the point cloud data.
  • the multiplexing method or file format there are ISOBMFF, ISOBMFF-based transmission method MPEG-DASH, MMT, MPEG-2 TS Systems, RMP, and the like.
  • the demultiplexing unit 4623 extracts PCC coded data, other media, time information, etc. from the multiplexing data.
  • the input / output unit 4615 transmits the multiplexed data by using a method suitable for the medium to be transmitted or the medium to be stored, such as broadcasting or communication.
  • the input / output unit 4615 may communicate with other devices via the Internet, or may communicate with a storage unit such as a cloud server.
  • http http, ftp, TCP, UDP, etc. are used.
  • a PULL type communication method may be used, or a PUSH type communication method may be used.
  • Either wired transmission or wireless transmission may be used.
  • wired transmission Ethernet (registered trademark), USB, RS-232C, HDMI (registered trademark), coaxial cable, or the like is used.
  • wireless transmission wireless LAN, Wi-Fi (registered trademark), Bluetooth (registered trademark), millimeter wave and the like are used.
  • DVB-T2 DVB-S2, DVB-C2, ATSC3.0, ISDB-S3 or the like is used.
  • FIG. 5 is a diagram showing the configuration of the first coding unit 4630, which is an example of the coding unit 4613 that encodes the first coding method.
  • FIG. 6 is a block diagram of the first coding unit 4630.
  • the first coding unit 4630 generates coded data (coded stream) by coding the point cloud data by the first coding method.
  • the first coding unit 4630 includes a position information coding unit 4631, an attribute information coding unit 4632, an additional information coding unit 4633, and a multiplexing unit 4634.
  • the first coding unit 4630 has a feature of performing coding while being aware of the three-dimensional structure. Further, the first coding unit 4630 has a feature that the attribute information coding unit 4632 performs coding using the information obtained from the position information coding unit 4631.
  • the first coding method is also called GPCC (Geometry based PCC).
  • the point cloud data is PCC point cloud data such as a PLY file, or PCC point cloud data generated from sensor information, and is position information (Position), attribute information (Attribute), and other additional information (MetaData). including.
  • the position information is input to the position information coding unit 4631, the attribute information is input to the attribute information coding unit 4632, and the additional information is input to the additional information coding unit 4633.
  • the position information coding unit 4631 generates coded position information (Compressed Geometry) which is coded data by encoding the position information.
  • the position information coding unit 4631 encodes the position information by using an N-branch structure such as an octa-tree. Specifically, in the octave tree, the target space is divided into eight nodes (subspaces), and 8-bit information (occupancy code) indicating whether or not each node contains a point cloud is generated. .. Further, the node including the point cloud is further divided into eight nodes, and 8-bit information indicating whether or not the point cloud is included in each of the eight nodes is generated. This process is repeated until it becomes equal to or less than the threshold value of the number of point clouds included in the predetermined hierarchy or node.
  • the attribute information coding unit 4632 generates coded attribute information (Compressed Attribute) which is coded data by encoding using the configuration information generated by the position information coding unit 4631. For example, the attribute information coding unit 4632 determines a reference point (reference node) to be referred to in the coding of the target point (target node) to be processed based on the ocree tree structure generated by the position information coding unit 4631. To do. For example, the attribute information coding unit 4632 refers to a node whose parent node in the octree is the same as the target node among the peripheral nodes or adjacent nodes. The method of determining the reference relationship is not limited to this.
  • the attribute information coding process may include at least one of a quantization process, a prediction process, and an arithmetic coding process.
  • the reference means that the reference node is used to calculate the predicted value of the attribute information, or the state of the reference node (for example, occupancy indicating whether or not the reference node contains a point group) is used to determine the encoding parameter. Information) is used.
  • the coding parameter is a quantization parameter in the quantization process, a context in arithmetic coding, or the like.
  • the additional information coding unit 4633 generates the encoded additional information (Compressed MetaData) which is the encoded data by encoding the compressible data among the additional information.
  • the multiplexing unit 4634 generates a encoded stream (Compressed Stream) which is encoded data by multiplexing the encoded position information, the encoded attribute information, the encoded additional information, and other additional information.
  • the generated coded stream is output to a processing unit of a system layer (not shown).
  • FIG. 7 is a diagram showing the configuration of the first decoding unit 4640.
  • FIG. 8 is a block diagram of the first decoding unit 4640.
  • the first decoding unit 4640 generates point cloud data by decoding the coded data (coded stream) encoded by the first coding method by the first coding method.
  • the first decoding unit 4640 includes a demultiplexing unit 4461, a position information decoding unit 4642, an attribute information decoding unit 4634, and an additional information decoding unit 4644.
  • a coded stream (Compressed Stream), which is coded data, is input to the first decoding unit 4640 from a processing unit of a system layer (not shown).
  • the demultiplexing unit 4641 separates the coded position information (Compressed Geometry), the coded attribute information (Compressed Attribute), the coded additional information (Compressed Metadata), and other additional information from the coded data.
  • the position information decoding unit 4642 generates position information by decoding the coded position information. For example, the position information decoding unit 4642 restores the position information of the point cloud represented by the three-dimensional coordinates from the coded position information represented by the N-branch structure such as the ocree.
  • the attribute information decoding unit 4643 decodes the coded attribute information based on the configuration information generated by the position information decoding unit 4642. For example, the attribute information decoding unit 4643 determines a reference point (reference node) to be referred to in decoding the target point (target node) to be processed, based on the octave tree structure obtained by the position information decoding unit 4642. For example, the attribute information decoding unit 4643 refers to a node whose parent node in the octree is the same as the target node among the peripheral nodes or adjacent nodes. The method of determining the reference relationship is not limited to this.
  • the attribute information decoding process may include at least one of an inverse quantization process, a prediction process, and an arithmetic decoding process.
  • the reference means that the reference node is used to calculate the predicted value of the attribute information, or the state of the reference node (for example, occupancy information indicating whether or not the reference node includes a point group) is used to determine the decoding parameter. ) Is used.
  • the decoding parameter is a quantization parameter in the inverse quantization process, a context in arithmetic decoding, or the like.
  • the additional information decoding unit 4644 generates additional information by decoding the coded additional information. Further, the first decoding unit 4640 uses the additional information necessary for the decoding process of the position information and the attribute information at the time of decoding, and outputs the additional information necessary for the application to the outside.
  • FIG. 9 is a block diagram of the position information coding unit 2700 according to the present embodiment.
  • the position information coding unit 2700 includes an octane tree generation unit 2701, a geometric information calculation unit 2702, a coding table selection unit 2703, and an entropy coding unit 2704.
  • the ocree generation unit 2701 generates, for example, an ocree from the input position information, and generates an occupancy code for each node of the ocree.
  • the geometric information calculation unit 2702 acquires information indicating whether or not the adjacent node of the target node is an occupied node. For example, the geometric information calculation unit 2702 calculates the occupancy information of the adjacent node (information indicating whether or not the adjacent node is the occupancy node) from the occupancy code of the parent node to which the target node belongs. Further, the geometric information calculation unit 2702 may save the encoded nodes in a list and search for adjacent nodes in the list. The geometric information calculation unit 2702 may switch the adjacent node according to the position in the parent node of the target node.
  • the coding table selection unit 2703 selects a coding table to be used for entropy coding of the target node using the occupancy information of the adjacent node calculated by the geometric information calculation unit 2702. For example, the coded table selection unit 2703 may generate a bit string using the occupancy information of the adjacent node, and select the coded table of the index number generated from the bit string.
  • the entropy coding unit 2704 generates coded position information and metadata by performing entropy coding on the occupancy code of the target node using the coded table of the selected index number.
  • the entropy coding unit 2704 may add information indicating the selected coding table to the coding position information.
  • the position information (position data) is converted into an octree structure (octree tree formation) and then encoded.
  • the ocree tree structure consists of nodes and leaves. Each node has eight nodes or leaves, and each leaf has voxel (VXL) information.
  • FIG. 10 is a diagram showing a structural example of position information including a plurality of voxels.
  • FIG. 11 is a diagram showing an example in which the position information shown in FIG. 10 is converted into an octa-tree structure.
  • the leaves 1, 2 and 3 represent the voxels VXL1, VXL2 and VXL3 shown in FIG. 10, respectively, and represent the VXL including the point cloud (hereinafter, effective VXL).
  • the node 1 corresponds to the entire space including the position information of FIG.
  • the entire space corresponding to node 1 is divided into eight nodes, and among the eight nodes, the node containing the valid VXL is further divided into eight nodes or leaves, and this process is repeated for the hierarchy of the tree structure.
  • each node corresponds to a subspace, and has information (occupancy code) indicating at which position the next node or leaf is held after division as node information.
  • the lowest block is set in the leaf, and the number of point clouds included in the leaf is held as leaf information.
  • FIG. 12 is a block diagram of the position information decoding unit 2710 according to the present embodiment.
  • the position information decoding unit 2710 includes an octane tree generation unit 2711, a geometric information calculation unit 2712, a coding table selection unit 2713, and an entropy decoding unit 2714.
  • the ocree generation unit 2711 generates an ocree in a certain space (node) by using the header information or metadata of the bitstream. For example, the ocree generation unit 2711 generates a large space (root node) using the x-axis, y-axis, and z-axis directions of a certain space added to the header information, and uses that space as the x-axis.
  • An ocree is generated by generating eight small spaces A (nodes A0 to A7) by dividing each into two in the y-axis and z-axis directions. Further, nodes A0 to A7 are set in order as target nodes.
  • the geometric information calculation unit 2712 acquires occupancy information indicating whether or not the node adjacent to the target node is an occupancy node. For example, the geometric information calculation unit 2712 calculates the occupancy information of the adjacent node from the occupancy code of the parent node to which the target node belongs. Further, the geometric information calculation unit 2712 may save the decoded nodes in a list and search for adjacent nodes from the list. The geometric information calculation unit 2712 may switch the adjacent node according to the position of the target node in the parent node.
  • the coding table selection unit 2713 selects a coding table (decoding table) to be used for entropy decoding of the target node using the occupancy information of the adjacent node calculated by the geometric information calculation unit 2712. For example, the coded table selection unit 2713 may generate a bit string using the occupancy information of the adjacent node and select the coded table of the index number generated from the bit string.
  • a coding table decoding table
  • the entropy decoding unit 2714 generates position information by entropy decoding the occupancy code of the target node using the selected coding table.
  • the entropy decoding unit 2714 may decode and acquire the information of the selected coding table from the bit stream, and entropy decode the occupancy code of the target node using the coding table indicated by the information. ..
  • FIG. 13 is a block diagram showing a configuration example of the attribute information coding unit A100.
  • the attribute information coding unit may include a plurality of coding units that execute different coding methods. For example, the attribute information encoding unit may switch between the following two methods according to the use case.
  • the attribute information coding unit A100 includes a LoD attribute information coding unit A101 and a conversion attribute information coding unit A102.
  • the LoD attribute information coding unit A101 classifies each three-dimensional point into a plurality of layers using the position information of the three-dimensional points, predicts the attribute information of the three-dimensional points belonging to each layer, and encodes the predicted residual. To become.
  • each classified layer is referred to as LoD (Level of Detail).
  • the conversion attribute information coding unit A102 encodes the attribute information using RAHT (Region Adaptive Hierarchical Transfer). Specifically, the conversion attribute information coding unit A102 generates high-frequency components and low-frequency components of each layer by applying RAHT or Har conversion to each attribute information based on the position information of the three-dimensional points. Then, those values are encoded by using quantization, entropy coding, or the like.
  • RAHT Registered Adaptive Hierarchical Transfer
  • FIG. 14 is a block diagram showing a configuration example of the attribute information decoding unit A110.
  • the attribute information decoding unit may include a plurality of decoding units that execute different decoding methods. For example, the attribute information decoding unit may switch between the following two methods based on the information included in the header and metadata for decoding.
  • the attribute information decoding unit A110 includes a LoD attribute information decoding unit A111 and a conversion attribute information decoding unit A112.
  • the LoD attribute information decoding unit A111 classifies each three-dimensional point into a plurality of layers using the position information of the three-dimensional points, and decodes the attribute value while predicting the attribute information of the three-dimensional points belonging to each layer.
  • the conversion attribute information decoding unit A112 decodes the attribute information using RAHT (Region Adaptive Hierarchical Transfer). Specifically, the conversion attribute information decoding unit A112 applies the invoke RAHT or invoke Haar conversion to the high-frequency component and the low-frequency component of each attribute value based on the position information of the three-dimensional point to obtain the attribute value. Decrypt.
  • RAHT Restion Adaptive Hierarchical Transfer
  • FIG. 15 is a block diagram showing the configuration of the attribute information coding unit 3140, which is an example of the LoD attribute information coding unit A101.
  • the attribute information coding unit 3140 includes a LoD generation unit 3141, a surrounding search unit 3142, a prediction unit 3143, a prediction residual calculation unit 3144, a quantization unit 3145, an arithmetic coding unit 3146, and an inverse quantization unit. It includes 3147, a decoding value generation unit 3148, and a memory 3149.
  • the LoD generation unit 3141 generates LoD using the position information of the three-dimensional point.
  • the surrounding search unit 3142 searches for neighboring three-dimensional points adjacent to each three-dimensional point by using the LoD generation result by the LoD generation unit 3141 and the distance information indicating the distance between each three-dimensional point.
  • the prediction unit 3143 generates a prediction value of the attribute information of the target three-dimensional point to be encoded.
  • the predicted residual calculation unit 3144 calculates (generates) the predicted residual of the predicted value of the attribute information generated by the prediction unit 3143.
  • the quantization unit 3145 quantizes the predicted residual of the attribute information calculated by the predicted residual calculation unit 3144.
  • the arithmetic coding unit 3146 arithmetically encodes the predicted residual after being quantized by the quantization unit 3145.
  • the arithmetic coding unit 3146 outputs a bit stream including the arithmetically coded predicted residuals to, for example, a three-dimensional data decoding device.
  • predicted residual may be binarized by, for example, the quantization unit 3145 before being arithmetically coded by the arithmetic coding unit 3146.
  • the arithmetic coding unit 3146 may initialize the coding table used for arithmetic coding before arithmetic coding.
  • the arithmetic coding unit 3146 may initialize the coding table used for arithmetic coding for each layer.
  • the arithmetic coding unit 3146 may include information indicating the position of the layer in which the coding table is initialized in the bit stream and output the information.
  • the inverse quantization unit 3147 dequantizes the predicted residual after being quantized by the quantization unit 3145.
  • the decoded value generation unit 3148 generates a decoded value by adding the predicted value of the attribute information generated by the prediction unit 3143 and the predicted residual after dequantization by the inverse quantization unit 3147.
  • the memory 3149 is a memory that stores the decoded value of the attribute information of each three-dimensional point decoded by the decoded value generation unit 3148. For example, when the prediction unit 3143 generates a predicted value of an unencoded three-dimensional point, the prediction unit 3143 generates the predicted value by using the decoded value of the attribute information of each three-dimensional point stored in the memory 3149. ..
  • FIG. 16 is a block diagram of the attribute information coding unit 6600, which is an example of the conversion attribute information coding unit A102.
  • the attribute information coding unit 6600 includes a sorting unit 6601, a Har conversion unit 6602, a quantization unit 6603, an inverse quantization unit 6604, an inverse Haar conversion unit 6605, a memory 6606, and an arithmetic coding unit 6607. Be prepared.
  • the sort unit 6601 generates a Morton code using the position information of the three-dimensional points, and sorts a plurality of three-dimensional points in the order of the Morton code.
  • the Har conversion unit 6602 generates a coding coefficient by applying the Har conversion to the attribute information.
  • the quantization unit 6603 quantizes the coding coefficient of the attribute information.
  • the dequantization unit 6604 dequantizes the coding coefficient after quantization.
  • the inverse Har conversion unit 6605 applies the inverse Har conversion to the coding coefficient.
  • the memory 6606 stores the values of the attribute information of the plurality of decoded three-dimensional points. For example, the attribute information of the decoded three-dimensional point stored in the memory 6606 may be used for predicting an unencoded three-dimensional point.
  • the arithmetic coding unit 6607 calculates ZeroCnt from the coding coefficient after quantization, and arithmetically encodes ZeroCnt. In addition, the arithmetic coding unit 6607 arithmetically encodes the non-zero coding coefficient after quantization. The arithmetic coding unit 6607 may binarize the coding coefficient before arithmetic coding. Further, the arithmetic coding unit 6607 may generate and encode various header information.
  • FIG. 17 is a block diagram showing the configuration of the attribute information decoding unit 3150, which is an example of the LoD attribute information decoding unit A111.
  • the attribute information decoding unit 3150 includes a LoD generation unit 3151, a surrounding search unit 3152, a prediction unit 3153, an arithmetic decoding unit 3154, an inverse quantization unit 3155, a decoding value generation unit 3156, and a memory 3157. ..
  • the LoD generation unit 3151 generates LoD using the position information of the three-dimensional point decoded by the position information decoding unit (not shown in FIG. 17).
  • the surrounding search unit 3152 searches for neighboring three-dimensional points adjacent to each three-dimensional point by using the LoD generation result by the LoD generation unit 3151 and the distance information indicating the distance between each three-dimensional point.
  • the prediction unit 3153 generates a predicted value of attribute information of the target three-dimensional point to be decoded.
  • the arithmetic decoding unit 3154 arithmetically decodes the predicted residual in the bit stream acquired from the attribute information coding unit 3140 shown in FIG.
  • the arithmetic decoding unit 3154 may initialize the decoding table used for arithmetic decoding.
  • the arithmetic decoding unit 3154 initializes the decoding table used for arithmetic decoding for the layer in which the arithmetic coding unit 3146 shown in FIG. 15 has been encoded.
  • the arithmetic decoding unit 3154 may initialize the decoding table used for arithmetic decoding for each layer. Further, the arithmetic decoding unit 3154 may initialize the decoding table based on the information included in the bit stream indicating the position of the layer in which the coding table is initialized.
  • the inverse quantization unit 3155 dequantizes the predicted residuals arithmetically decoded by the arithmetic decoding unit 3154.
  • the decoded value generation unit 3156 generates a decoded value by adding the predicted value generated by the prediction unit 3153 and the predicted residual after dequantization by the inverse quantization unit 3155.
  • the decoded value generation unit 3156 outputs the decoded attribute information data to another device.
  • the memory 3157 is a memory that stores the decoded value of the attribute information of each three-dimensional point decoded by the decoded value generation unit 3156. For example, when the prediction unit 3153 generates a predicted value of a three-dimensional point that has not been decoded yet, the prediction unit 3153 generates the predicted value by using the decoded value of the attribute information of each three-dimensional point stored in the memory 3157. ..
  • FIG. 18 is a block diagram of the attribute information decoding unit 6610, which is an example of the conversion attribute information decoding unit A112.
  • the attribute information decoding unit 6610 includes an arithmetic decoding unit 6611, an inverse quantization unit 6612, an inverse Har conversion unit 6613, and a memory 6614.
  • the arithmetic decoding unit 6611 arithmetically decodes ZeroCnt and the coding coefficient included in the bit stream.
  • the arithmetic decoding unit 6611 may decode various header information.
  • the dequantization unit 6612 dequantizes the arithmetically decoded coding coefficient.
  • the inverse Har conversion unit 6613 applies the inverse Har transformation to the coding coefficient after the inverse quantization.
  • the memory 6614 stores the values of the attribute information of the plurality of decoded three-dimensional points. For example, the attribute information of the decoded three-dimensional point stored in the memory 6614 may be used for predicting the undecoded three-dimensional point.
  • FIG. 19 is a diagram showing the configuration of the second coding unit 4650.
  • FIG. 20 is a block diagram of the second coding unit 4650.
  • the second coding unit 4650 generates coded data (coded stream) by coding the point cloud data by the second coding method.
  • the second coding unit 4650 includes an additional information generation unit 4651, a position image generation unit 4652, an attribute image generation unit 4653, a video coding unit 4654, an additional information coding unit 4655, and a multiplexing unit 4656. And include.
  • the second coding unit 4650 generates a position image and an attribute image by projecting the three-dimensional structure onto the two-dimensional image, and encodes the generated position image and the attribute image by using an existing video coding method. It has the feature.
  • the second coding method is also called VPCC (Video based PCC).
  • the point cloud data is PCC point cloud data such as a PLY file, or PCC point cloud data generated from sensor information, and provides position information (Position), attribute information (Attribute), and other additional information (MetaData). Including.
  • the additional information generation unit 4651 generates map information of a plurality of two-dimensional images by projecting the three-dimensional structure onto the two-dimensional image.
  • the position image generation unit 4652 generates a position image (Geometry Image) based on the position information and the map information generated by the additional information generation unit 4651.
  • This position image is, for example, a distance image in which a distance (Dept) is shown as a pixel value.
  • this distance image may be an image in which a plurality of point clouds are viewed from one viewpoint (an image in which a plurality of point clouds are projected on one two-dimensional plane), or a plurality of point clouds from a plurality of viewpoints. It may be a plurality of images viewed, or it may be a single image in which these plurality of images are integrated.
  • the attribute image generation unit 4653 generates an attribute image based on the attribute information and the map information generated by the additional information generation unit 4651.
  • This attribute image is, for example, an image in which attribute information (for example, color (RGB)) is shown as a pixel value.
  • RGB color
  • this image may be an image in which a plurality of point clouds are viewed from one viewpoint (an image in which a plurality of point clouds are projected on one two-dimensional plane), or a plurality of point clouds may be viewed from a plurality of viewpoints. It may be a plurality of images viewed, or it may be a single image in which these plurality of images are integrated.
  • the video coding unit 4654 encodes the position image and the attribute image by using the video coding method, so that the coded position image (Compressed Geometry Image) and the coded attribute image (Compressed Attribute Image) which are the coded data are encoded. ) Is generated.
  • the video coding method any known coding method may be used.
  • the video coding method is AVC, HEVC, or the like.
  • the additional information coding unit 4655 generates encoded additional information (Compressed Metadata Data) by encoding the additional information included in the point cloud data, the map information, and the like.
  • the multiplexing unit 4656 generates a encoded stream (Compressed Stream) which is encoded data by multiplexing the encoded position image, the encoded attribute image, the encoded additional information, and other additional information.
  • the generated coded stream is output to a processing unit of a system layer (not shown).
  • FIG. 21 is a diagram showing a configuration of a second decoding unit 4660.
  • FIG. 22 is a block diagram of the second decoding unit 4660.
  • the second decoding unit 4660 generates point cloud data by decoding the coded data (coded stream) encoded by the second coding method by the second coding method.
  • the second decoding unit 4660 includes a demultiplexing unit 4661, a video decoding unit 4662, an additional information decoding unit 4663, a position information generation unit 4664, and an attribute information generation unit 4665.
  • a coded stream (Compressed Stream), which is coded data, is input to the second decoding unit 4660 from a processing unit of a system layer (not shown).
  • the demultiplexing unit 4661 separates a coded position image (Compressed Geometry Image), a coded attribute image (Compressed Attribute Image), a coded additional information (Compressed Metadata Image), and other additional information from the coded data. ..
  • the video decoding unit 4662 generates a position image and an attribute image by decoding the coded position image and the coded attribute image using a video coding method.
  • a video coding method any known coding method may be used.
  • the video coding method is AVC, HEVC, or the like.
  • the additional information decoding unit 4663 generates additional information including map information and the like by decoding the coded additional information.
  • the position information generation unit 4664 generates position information using the position image and the map information.
  • the attribute information generation unit 4665 generates attribute information using the attribute image and the map information.
  • the second decoding unit 4660 uses the additional information required for decoding at the time of decoding, and outputs the additional information required for the application to the outside.
  • FIG. 23 is a diagram showing a protocol stack related to PCC coded data.
  • FIG. 23 shows an example in which data of another medium such as video (for example, HEVC) or audio is multiplexed, transmitted or stored in PCC coded data.
  • video for example, HEVC
  • audio is multiplexed, transmitted or stored in PCC coded data.
  • the multiplexing method and file format have a function for multiplexing, transmitting or accumulating various coded data.
  • the coded data In order to transmit or store the coded data, the coded data must be converted to a multiplexing format.
  • HEVC defines a technique for storing coded data in a data structure called a NAL unit and storing the NAL unit in ISOBMFF.
  • a first coding method (Codec1) and a second coding method (Codec2) are being studied as a method for coding point group data, but the configuration of the coded data and the coded data can be used.
  • the method of storing in the system format is not defined, and there is a problem that MUX processing (multiplexing), transmission and storage in the coding unit cannot be performed as it is.
  • the coded data (position information (Geometry), attribute information (Attribute), additional information (Metata)) generated by the first coding unit 4630 or the second coding unit 4650 described above).
  • the type of the data, the method of generating additional information (metadata), and the multiplexing process in the multiplexing unit will be described.
  • the additional information (metadata) may be referred to as a parameter set or control information.
  • the dynamic object (three-dimensional point cloud data that changes with time) described in FIG. 4 will be described as an example, but even in the case of a static object (three-dimensional point cloud data at an arbitrary time). A similar method may be used.
  • FIG. 24 is a diagram showing a configuration of a coding unit 4801 and a multiplexing unit 4802 included in the three-dimensional data coding apparatus according to the present embodiment.
  • the coding unit 4801 corresponds to, for example, the first coding unit 4630 or the second coding unit 4650 described above.
  • the multiplexing unit 4802 corresponds to the multiplexing unit 4634 or 4656 described above.
  • the coding unit 4801 encodes the point cloud data of a plurality of PCC (Point Cloud Compression) frames and generates coded data (Multiple Compressed Data) of a plurality of position information, attribute information, and additional information.
  • PCC Point Cloud Compression
  • the multiplexing unit 4802 converts the data of a plurality of data types (position information, attribute information, and additional information) into a NAL unit, thereby converting the data into a data structure in consideration of data access in the decoding device.
  • FIG. 25 is a diagram showing a configuration example of coded data generated by the coding unit 4801.
  • the arrow in the figure shows the dependency related to the decoding of the coded data, and the source of the arrow depends on the data at the tip of the arrow. That is, the decoding device decodes the data at the tip of the arrow, and uses the decoded data to decode the original data of the arrow.
  • "dependence" means that the dependent data is referenced (used) in the processing (encoding or decoding, etc.) of the dependent data.
  • the coding unit 4801 encodes the position information of each frame to generate coded position data (Compressed Geometry Data) for each frame.
  • the coded position data is represented by G (i). i indicates a frame number, a frame time, or the like.
  • the coding unit 4801 generates a position parameter set (GPS (i)) corresponding to each frame.
  • the position parameter set contains parameters that can be used to decode the coded position data. Also, the coded position data for each frame depends on the corresponding position parameter set.
  • the coded position data composed of a plurality of frames is defined as a position sequence (Geometry Sequence).
  • the coding unit 4801 generates a position sequence parameter set (also referred to as Geometry Sequence PS: position SPS) that stores parameters commonly used in decoding processing for a plurality of frames in the position sequence.
  • the position sequence depends on the position SPS.
  • the coding unit 4801 encodes the attribute information of each frame to generate the coded attribute data (Compressed Attribute Data) for each frame.
  • the coded attribute data is represented by A (i).
  • FIG. 25 shows an example in which the attribute X and the attribute Y exist, the coded attribute data of the attribute X is represented by AX (i), and the coded attribute data of the attribute Y is represented by AY (i). ..
  • the coding unit 4801 generates an attribute parameter set (APS (i)) corresponding to each frame.
  • the attribute parameter set of the attribute X is represented by AXPS (i)
  • the attribute parameter set of the attribute Y is represented by AYPS (i).
  • the attribute parameter set contains parameters that can be used to decode the encoded attribute information.
  • the coded attribute data depends on the corresponding set of attribute parameters.
  • the coded attribute data consisting of a plurality of frames is defined as an attribute sequence (AttributeSequence).
  • the coding unit 4801 generates an attribute sequence parameter set (Attribute Sequence PS: also referred to as attribute SPS) that stores parameters commonly used for decoding processing for a plurality of frames in the attribute sequence.
  • attribute sequence depends on the attribute SPS.
  • the coding attribute data depends on the coding position data.
  • FIG. 25 shows an example in which two types of attribute information (attribute X and attribute Y) exist.
  • attribute information for example, the respective data and metadata are generated by the two encoding units.
  • an attribute sequence is defined for each type of attribute information, and an attribute SPS is generated for each type of attribute information.
  • FIG. 25 shows an example in which the position information is one type and the attribute information is two types, but the present invention is not limited to this, and the attribute information may be one type or three or more types. Good.
  • the encoded data can be generated by the same method.
  • the attribute information may not be present. In that case, the encoding unit 4801 does not have to generate the parameter set related to the attribute information.
  • the coding unit 4801 generates a PCC stream PS (PCC Stream PS: also referred to as a stream PS), which is a parameter set for the entire PCC stream.
  • the coding unit 4801 stores in the stream PS parameters that can be commonly used in the decoding process for one or more position sequences and one or more attribute sequences.
  • the stream PS includes identification information indicating the codec of the point cloud data, information indicating the algorithm used for encoding, and the like.
  • the position sequence and attribute sequence depend on the stream PS.
  • An access unit is a basic unit for accessing data at the time of decryption, and is composed of one or more data and one or more metadata.
  • the access unit is composed of position information at the same time and one or more attribute information.
  • a GOF is a random access unit and is composed of one or more access units.
  • the coding unit 4801 generates an access unit header (AU Header) as identification information indicating the head of the access unit.
  • the coding unit 4801 stores the parameters related to the access unit in the access unit header.
  • the access unit header contains the structure or information of the coded data contained in the access unit.
  • the access unit header includes parameters commonly used for the data included in the access unit, for example, parameters related to decoding of encoded data.
  • the encoding unit 4801 may generate an access unit delimiter that does not include parameters related to the access unit instead of the access unit header.
  • This access unit delimiter is used as identification information indicating the head of the access unit.
  • the decoding device identifies the head of the access unit by detecting the access unit header or the access unit delimiter.
  • the coding unit 4801 generates a GOF header (GOF Header) as identification information indicating the beginning of the GOF.
  • the coding unit 4801 stores the parameters related to the GOF in the GOF header.
  • the GOF header contains the structure or information of the coded data contained in the GOF.
  • the GOF header includes parameters commonly used for the data included in the GOF, for example, parameters related to decoding of encoded data.
  • the coding unit 4801 may generate a GOF delimiter that does not include the parameters related to the GOF instead of the GOF header.
  • This GOF delimiter is used as identification information indicating the beginning of the GOF.
  • the decoding device identifies the head of the GOF by detecting the GOF header or the GOF delimiter.
  • the access unit is defined as a PCC frame unit.
  • the decoding device accesses the PCC frame based on the identification information at the head of the access unit.
  • GOF is defined as one random access unit.
  • the decoding device accesses the random access unit based on the identification information at the head of the GOF. For example, if the PCC frames do not depend on each other and can be decoded independently, the PCC frame may be defined as a random access unit.
  • one access unit may be assigned two or more PCC frames, or one GOF may be assigned a plurality of random access units.
  • the encoding unit 4801 may define and generate a parameter set or metadata other than the above.
  • the encoding unit 4801 may generate SEI (Supplemental Enchanment Information) that stores parameters (optional parameters) that may not necessarily be used at the time of decoding.
  • SEI Supplemental Enchanment Information
  • FIG. 26 is a diagram showing an example of coded data and a NAL unit.
  • the encoded data includes a header and a payload.
  • the coded data may include length information indicating the length (data amount) of the coded data, the header or the payload. Further, the encoded data does not have to include a header.
  • the header contains, for example, identification information for identifying data.
  • This identification information indicates, for example, a data type or a frame number.
  • the header contains, for example, identification information indicating a reference relationship. This identification information is stored in the header when there is a dependency between the data, and is information for referencing the reference destination from the reference source. For example, the referenced header contains identification information for identifying the data.
  • the header of the reference source includes identification information indicating the reference destination.
  • the identification information for specifying the data or the identification information indicating the reference relationship may be omitted.
  • the multiplexing unit 4802 stores the encoded data in the payload of the NAL unit.
  • the NAL unit header includes pcc_nal_unit_type, which is identification information of encoded data.
  • FIG. 27 is a diagram showing an example of the semantics of pcc_nal_unit_type.
  • pcc_codec_type is codec 1 (Codec1: first coding method)
  • the values 0 to 10 of pcc_naal_unit_type are the coded position data (Geometry) and the coding attribute X data in codec 1.
  • HeaderX Codec Attribute Y Data (HeaderY), Position PS (Geom.PS), Attribute XPS (AttrX.PS), Attribute YPS (AttrX.PS), Position SPS (Heometri Sexequence PS), Attribute XSPS (HeaderX) It is assigned to PS), attribute YSPS (AttributeY Position PS), AU header (AU Header), and GOF header (GOF Header). Further, the value 11 or later is assigned to the reserve of the codec 1.
  • pcc_codec_type is codec 2 (Codec2: second coding method)
  • the values 0 to 2 of pcc_nal_unit_type are assigned to codec data A (DataA), metadata A (MetaDataA), and metadata B (MetaDataB). .. Further, the value 3 or later is assigned to the reserve of the codec 2.
  • FIG. 28 is a block diagram showing a configuration of a first coding unit 4910 included in the three-dimensional data coding device according to the present embodiment.
  • the first coding unit 4910 generates coded data (coded stream) by encoding the point cloud data by the first coding method (GPCC (Geometry based PCC)).
  • the first coding unit 4910 includes a dividing unit 4911, a plurality of position information coding units 4912, a plurality of attribute information coding units 4913, an additional information coding unit 4914, and a multiplexing unit 4915. ..
  • the division unit 4911 generates a plurality of division data by dividing the point cloud data. Specifically, the division unit 4911 generates a plurality of division data by dividing the space of the point cloud data into a plurality of subspaces.
  • the subspace is one of tiles and slices, or a combination of tiles and slices.
  • the point cloud data includes position information, attribute information, and additional information.
  • the division unit 4911 divides the position information into a plurality of division position information, and divides the attribute information into a plurality of division attribute information. In addition, the division unit 4911 generates additional information regarding the division.
  • the plurality of position information coding units 4912 generate a plurality of coded position information by encoding the plurality of divided position information. For example, the plurality of position information coding units 4912 process a plurality of divided position information in parallel.
  • the plurality of attribute information coding units 4913 generate a plurality of coded attribute information by encoding the plurality of divided attribute information. For example, the plurality of attribute information encoding units 4913 process a plurality of divided attribute information in parallel.
  • the additional information coding unit 4914 generates the coded additional information by encoding the additional information included in the point cloud data and the additional information related to the data division generated at the time of division by the division unit 4911.
  • the multiplexing unit 4915 generates coded data (coded stream) by multiplexing a plurality of coded position information, a plurality of coded attribute information, and coded additional information, and transmits the generated coded data. ..
  • the coded additional information is used at the time of decoding.
  • the numbers of the position information coding unit 4912 and the attribute information coding unit 4913 show two examples, respectively, but the numbers of the position information coding unit 4912 and the attribute information coding unit 4913 are respectively. It may be one or three or more. Further, the plurality of divided data may be processed in parallel in the same chip like a plurality of cores in the CPU, may be processed in parallel by the cores of a plurality of chips, or may be processed in parallel by a plurality of cores of a plurality of chips. May be done.
  • FIG. 29 is a block diagram showing the configuration of the first decoding unit 4920.
  • the first decoding unit 4920 restores the point cloud data by decoding the coded data (encoded stream) generated by encoding the point cloud data by the first coding method (GPCC). ..
  • the first decoding unit 4920 includes a demultiplexing unit 4921, a plurality of position information decoding units 4922, a plurality of attribute information decoding units 4923, an additional information decoding unit 4924, and a coupling unit 4925.
  • the demultiplexing unit 4921 generates a plurality of coded position information, a plurality of coded attribute information, and coded additional information by demultiplexing the coded data (coded stream).
  • the plurality of position information decoding units 4922 generate a plurality of divided position information by decoding the plurality of coded position information. For example, the plurality of position information decoding units 4922 process a plurality of coded position information in parallel.
  • the plurality of attribute information decoding units 4923 generates a plurality of divided attribute information by decoding the plurality of coded attribute information. For example, the plurality of attribute information decoding units 4923 processes a plurality of coded attribute information in parallel.
  • the plurality of additional information decoding units 4924 generate additional information by decoding the coded additional information.
  • the connecting unit 4925 generates position information by combining a plurality of divided position information using additional information.
  • the coupling unit 4925 generates attribute information by combining a plurality of division attribute information using additional information.
  • the number of the position information decoding unit 4922 and the number of the attribute information decoding unit 4923 are two, respectively, but the number of the position information decoding unit 4922 and the attribute information decoding unit 4923 is one, respectively. It may be three or more. Further, the plurality of divided data may be processed in parallel in the same chip as in the case of the plurality of cores in the CPU, or may be processed in parallel by the cores of the plurality of chips, or may be processed in parallel by the plurality of cores of the plurality of chips. You may.
  • FIG. 30 is a block diagram of the divided portion 4911.
  • the division unit 4911 includes a slice division unit 4931 (Slice Divider), a position information tile division unit 4932 (Geometry Tile Divider), and an attribute information tile division unit 4933 (Attribute Tile Divider).
  • the slice division unit 4931 generates a plurality of slice position information by dividing the position information (Position (Geometry)) into slices. Further, the slice division unit 4931 generates a plurality of slice attribute information by dividing the attribute information (Attribute) into slices. Further, the slice division unit 4931 outputs the slice addition information (SliceMetaData) including the information related to the slice division and the information generated in the slice division.
  • the position information tile division unit 4932 generates a plurality of division position information (a plurality of tile position information) by dividing a plurality of slice position information into tiles. Further, the position information tile division unit 4932 outputs the position tile additional information (Geometry Tile Metadata Data) including the information related to the tile division of the position information and the information generated in the tile division of the position information.
  • a plurality of division position information a plurality of tile position information
  • the position information tile division unit 4932 outputs the position tile additional information (Geometry Tile Metadata Data) including the information related to the tile division of the position information and the information generated in the tile division of the position information.
  • the attribute information tile division unit 4933 generates a plurality of division attribute information (a plurality of tile attribute information) by dividing a plurality of slice attribute information into tiles. Further, the attribute information tile division unit 4933 outputs the attribute tile additional information (Attribute Tile Metadata Data) including the information related to the tile division of the attribute information and the information generated in the tile division of the attribute information.
  • attribute tile additional information Attribute Tile Metadata Data
  • the number of slices or tiles to be divided is 1 or more. That is, it is not necessary to slice or divide the tile.
  • the slice division may be performed after the tile division.
  • a new division type may be defined, and division may be performed with three or more division types.
  • FIG. 31 is a diagram showing an example of slicing and tile division.
  • the division unit 4911 divides the three-dimensional point cloud data into an arbitrary point cloud in slice units.
  • the division unit 4911 does not divide the position information and the attribute information constituting the points, but divides the position information and the attribute information at once. That is, the division unit 4911 performs slice division so that the position information and the attribute information at an arbitrary point belong to the same slice.
  • the number of divisions and the division method may be any method.
  • the smallest unit of division is a point.
  • the number of divisions between the position information and the attribute information is the same.
  • the three-dimensional point corresponding to the position information after the slice division and the three-dimensional point corresponding to the attribute information are included in the same slice.
  • the division unit 4911 generates slice addition information which is additional information related to the number of divisions and the division method at the time of slice division.
  • the slice addition information is the same for the position information and the attribute information.
  • the slice addition information includes information indicating the reference coordinate position, size, or side length of the bounding box after division. Further, the slice addition information includes information indicating the number of divisions, the division type, and the like.
  • the division unit 4911 divides the slice-divided data into slice position information (G slice) and slice attribute information (A slice), and divides the slice position information and slice attribute information into tile units, respectively.
  • FIG. 31 shows an example of dividing by an octa-tree structure
  • the number of divisions and the division method may be any method.
  • the division unit 4911 may divide the position information and the attribute information by different division methods, or may divide by the same division method. Further, the division unit 4911 may divide a plurality of slices into tiles by different division methods, or may divide them into tiles by the same division method.
  • the division unit 4911 generates tile addition information related to the number of divisions and the division method at the time of tile division.
  • the tile addition information (position tile addition information and attribute tile addition information) is independent of the position information and the attribute information.
  • the tile addition information includes information indicating the reference coordinate position, size, or side length of the bounding box after division. Further, the tile addition information includes information indicating the number of divisions and the division type.
  • the division unit 4911 may use a predetermined method as the method of slicing or tile division, or may adaptively switch the method to be used according to the point cloud data.
  • the division unit 4911 collectively divides the three-dimensional space with respect to the position information and the attribute information. For example, the division unit 4911 determines the shape of the object and divides the three-dimensional space into slices according to the shape of the object. For example, the division unit 4911 extracts an object such as a tree or a building and divides the object unit. For example, the division unit 4911 performs slice division so that the entire one or a plurality of objects are included in one slice. Alternatively, the division unit 4911 divides one object into a plurality of slices.
  • the coding apparatus may change the coding method for each slice, for example.
  • the encoding device may use a high quality compression method for a particular object or a particular part of an object.
  • the coding apparatus may store information indicating the coding method for each slice in additional information (metadata).
  • the division unit 4911 may perform slice division so that each slice corresponds to a predetermined coordinate space based on the map information or the position information.
  • the division unit 4911 independently divides the position information and the attribute information. For example, the division unit 4911 divides the slice into tiles according to the amount of data or the amount of processing. For example, the division unit 4911 determines whether the amount of data in the slice (for example, the number of three-dimensional points included in the slice) is larger than a predetermined threshold value. The dividing unit 4911 divides the slice into tiles when the amount of data of the slice is larger than the threshold value. The dividing unit 4911 does not divide the slice into tiles when the amount of data in the slice is less than the threshold value.
  • the dividing unit 4911 divides the slice into tiles so that the processing amount or processing time in the decoding device is within a certain range (less than or equal to a predetermined value). As a result, the processing amount per tile in the decoding device becomes constant, and the distributed processing in the decoding device becomes easy.
  • the division unit 4911 sets the number of divisions of the position information from the number of divisions of the attribute information. Do more.
  • the division unit 4911 determines the number of divisions of the position information. It may be larger than the number of divisions of the attribute information. As a result, the decoding device can increase the number of parallel positions of the position information, so that the processing of the position information can be made faster than the processing of the attribute information.
  • the decoding device does not necessarily have to process the sliced or tiled data in parallel, and may determine whether to process these in parallel according to the number or capacity of the decoding processing units.
  • adaptive coding can be realized according to the content or object.
  • parallel processing in decoding processing can be realized. This increases the flexibility of the point cloud coding system or the point cloud decoding system.
  • FIG. 32 is a diagram showing an example of a pattern of slicing and dividing tiles.
  • the DU in the figure is a data unit (DataUnit) and indicates tile or slice data.
  • each DU includes a slice index (SliceIndex) and a tile index (TileIndex).
  • sliceIndex slice index
  • TileIndex tile index
  • the numerical value on the upper right of the DU in the figure indicates the slice index
  • the numerical value on the lower left of the DU indicates the tile index.
  • the number of divisions and the division method are the same for G slice and A slice.
  • the number of divisions and the division method for the G slice and the division number and the division method for the A slice are different. Further, the same number of divisions and division methods are used between a plurality of G slices. The same number of divisions and division methods are used between a plurality of A slices.
  • the number of divisions and the division method are the same for the G slice and the A slice.
  • the number of divisions and the division method for the G slice and the division number and the division method for the A slice are different.
  • the number of divisions and the division method are different among the plurality of G slices.
  • the number of divisions and the division method are different among a plurality of A slices.
  • the three-dimensional data coding device (first coding unit 4910) encodes each of the divided data.
  • the three-dimensional data coding device When encoding the attribute information, the three-dimensional data coding device generates dependency information as additional information indicating which configuration information (position information, additional information, or other attribute information) was used for coding. .. That is, the dependency information indicates, for example, the configuration information of the reference destination (dependency destination).
  • the three-dimensional data encoding device generates dependency information based on the configuration information corresponding to the divided shape of the attribute information.
  • the three-dimensional data encoding device may generate dependency information based on the configuration information corresponding to the plurality of divided shapes.
  • the dependency information may be generated by the 3D data encoding device, and the generated dependency information may be sent to the 3D data decoding device.
  • the 3D data decoding device does not have to generate the dependency information, and the 3D data coding device does not have to send the dependency information.
  • the dependency relationship used by the three-dimensional data coding device is defined in advance, and the three-dimensional data coding device does not have to send the dependency information.
  • FIG. 33 is a diagram showing an example of the dependency relationship of each data.
  • the tip of the arrow in the figure indicates the dependency destination, and the source of the arrow indicates the dependency source.
  • the three-dimensional data decoding device decodes data in the order of the dependent source from the dependent destination. Further, the data indicated by the solid line in the figure is the data actually transmitted, and the data indicated by the dotted line is the data not transmitted.
  • G indicates position information and A indicates attribute information.
  • G s1 indicates the position information of the slice number 1
  • G s2 indicates the position information of the slice number 2.
  • G s1t1 indicates the position information of slice number 1 and tile number 1
  • G s1t2 indicates the position information of slice number 1 and tile number 2
  • G s2t1 indicates the position information of slice number 2 and tile number 1.
  • G s2t2 indicate the position information of the slice number 2 and the tile number 2.
  • a s1 indicates the attribute information of the slice number 1
  • a s2 indicates the attribute information of the slice number 2.
  • As1t1 indicates the attribute information of slice number 1 and tile number 1
  • As1t2 indicates the attribute information of slice number 1 and tile number 2
  • As2t1 indicates the attribute information of slice number 2 and tile number 1.
  • As2t2 indicate the attribute information of the slice number 2 and the tile number 2.
  • Mslice indicates slice addition information
  • MGtile indicates position tile addition information
  • MAtile indicates attribute tile addition information
  • D s1t1 indicates the dependency information of the attribute information A s1t1
  • D s2t1 indicates the dependency information of the attribute information A s2t1 .
  • the three-dimensional data encoding device may sort the data in the decoding order so that the data does not need to be sorted in the three-dimensional data decoding device.
  • the data may be rearranged in the three-dimensional data decoding device, or the data may be rearranged in both the three-dimensional data coding device and the three-dimensional data decoding device.
  • FIG. 34 is a diagram showing an example of the data decoding order.
  • decoding is performed in order from the left data.
  • the three-dimensional data decoding device decodes the dependent data first among the dependent data.
  • the three-dimensional data encoding device rearranges the data in advance so as to send the data in this order.
  • any order may be used as long as the dependent data comes first.
  • the three-dimensional data encoding device may send additional information and dependency information before the data.
  • FIG. 35 is a flowchart showing the flow of processing by the three-dimensional data coding device.
  • the three-dimensional data encoding device encodes the data of a plurality of slices or tiles as described above (S4901).
  • the three-dimensional data encoding device rearranges the data so that the dependent data comes first (S4902).
  • the three-dimensional data encoding device multiplexes (NAL unitizes) the sorted data (S4903).
  • FIG. 36 is a block diagram showing the configuration of the joint portion 4925.
  • the connecting portion 4925 includes a position information tile connecting portion 4941 (Geometry Tile Comminer), an attribute information tile connecting portion 4942 (Attribute Tile Comminer), and a slice connecting portion (Slice Comminer).
  • the position information tile connecting unit 4941 generates a plurality of slice position information by combining a plurality of divided position information using the position tile addition information.
  • the attribute information tile combination unit 4942 generates a plurality of slice attribute information by combining a plurality of division attribute information using the attribute tile addition information.
  • the slice joining unit 4943 generates position information by joining a plurality of slice position information using the slice addition information. Further, the slice connection unit 4943 generates attribute information by combining a plurality of slice attribute information using the slice addition information.
  • the number of slices or tiles to be divided is 1 or more. That is, the slices or tiles may not be divided.
  • the slice division may be performed after the tile division.
  • a new division type may be defined, and division may be performed with three or more division types.
  • FIG. 37 is a diagram showing a configuration of coded data and a method of storing the coded data in the NAL unit.
  • the coded data (division position information and division attribute information) is stored in the payload of the NAL unit.
  • the coded data includes a header and a payload.
  • the header contains identification information for identifying the data contained in the payload.
  • This identification information includes, for example, the type of slice division or tile division (slice_type, tile_type), index information (slice_idx, tile_idx) for identifying a slice or tile, position information of data (slice or tile), or data address. (Addless) and the like.
  • the index information for identifying the slice is also referred to as a slice index (SliceIndex).
  • the index information for identifying the tile is also referred to as a tile index (TileIndex).
  • the type of division is, for example, a method based on the object shape as described above, a method based on map information or position information, a method based on the amount of data or the amount of processing, and the like.
  • the above information is stored in one of the header of the division position information and the header of the division attribute information, and may not be stored in the other.
  • the division type (slice_type, tile_type) and the index information (slice_idx, tile_idx) are the same for the position information and the attribute information. Therefore, these pieces of information may be included in one of the headers of the position information and the attribute information.
  • the attribute information depends on the position information
  • the position information is processed first. Therefore, it is not necessary that the header of the position information includes such information and the header of the attribute information does not include such information.
  • the three-dimensional data decoding device determines that the attribute information of the dependency source belongs to the same slice or tile as the slice or tile of the position information of the dependency destination, for example.
  • additional information related to slice division or tile division is the existing parameter sets (GPS, APS, position SPS, or It may be stored in the attribute SPS (etc.) and sent out.
  • information indicating the division method may be stored in a parameter set (GPS, APS, etc.) for each frame. If the division method does not change within the sequence, information indicating the division method may be stored in the parameter set (position SPS or attribute SPS) for each sequence. Further, when the same division method is used for the position information and the attribute information, the information indicating the division method may be stored in the parameter set (stream PS) of the PCC stream.
  • the above information may be stored in any one of the above parameter sets, or may be stored in a plurality of parameter sets. Further, a parameter set for tile division or slice division may be defined, and the above information may be stored in the parameter set. Further, these pieces of information may be stored in the header of the encoded data.
  • the header of the encoded data includes identification information indicating the dependency. That is, the header contains identification information for referencing the dependency destination from the dependency source when there is a dependency relationship between the data.
  • the header of the dependent data includes identification information for identifying the data.
  • the header of the dependent data includes identification information indicating the dependent destination. If the identification information for specifying the data, the additional information related to the slice division or the tile division, and the identification information indicating the dependency can be identified or derived from other information, these information are omitted. You may.
  • FIG. 38 is a flowchart of the point cloud data coding process according to the present embodiment.
  • the three-dimensional data encoding device determines the division method to be used (S4911).
  • This division method includes whether or not to perform slice division and whether or not to perform tile division. Further, the division method may include the number of divisions when performing slice division or tile division, the type of division, and the like.
  • the type of division is a method based on the object shape as described above, a method based on map information or position information, a method based on the amount of data or the amount of processing, and the like.
  • the division method may be predetermined.
  • the three-dimensional data encoding device When slice division is performed (Yes in S4912), the three-dimensional data encoding device generates a plurality of slice position information and a plurality of slice attribute information by collectively dividing the position information and the attribute information (S4913). .. Further, the three-dimensional data encoding device generates slice addition information related to slice division. The three-dimensional data encoding device may independently divide the position information and the attribute information.
  • the three-dimensional data encoding device divides a plurality of slice position information and a plurality of slice attribute information (or position information and attribute information) independently to obtain a plurality of division positions. Information and a plurality of division attribute information are generated (S4915). In addition, the three-dimensional data encoding device generates position tile addition information and attribute tile addition information related to tile division. The three-dimensional data encoding device may collectively divide the slice position information and the slice attribute information.
  • the three-dimensional data coding apparatus generates a plurality of coded position information and a plurality of coded attribute information by encoding each of the plurality of divided position information and the plurality of divided attribute information (S4916). ..
  • the three-dimensional data encoding device generates dependency information.
  • the three-dimensional data coding device generates coded data (coded stream) by NAL unitizing (multiplexing) a plurality of coded position information, a plurality of coded attribute information, and additional information (multiplexed). S4917). In addition, the three-dimensional data encoding device sends out the generated encoded data.
  • FIG. 39 is a flowchart of the point cloud data decoding process according to the present embodiment.
  • the three-dimensional data decoding device analyzes the additional information (slice addition information, position tile addition information, and attribute tile addition information) related to the division method included in the coded data (coded stream), thereby performing the division method. Is determined (S4921).
  • This division method includes whether or not to perform slice division and whether or not to perform tile division. Further, the division method may include the number of divisions when performing slice division or tile division, the type of division, and the like.
  • the three-dimensional data decoding device decodes a plurality of coded position information and a plurality of coded attribute information included in the coded data by using the dependency information included in the coded data to obtain the divided position information. And the division attribute information is generated (S4922).
  • the three-dimensional data decoding device When the additional information indicates that the tile division is performed (Yes in S4923), the three-dimensional data decoding device has a plurality of division position information and a plurality of divisions based on the position tile addition information and the attribute tile addition information. By combining the attribute information with each method, a plurality of slice position information and a plurality of slice attribute information are generated (S4924). The three-dimensional data decoding device may combine the plurality of division position information and the plurality of division attribute information by the same method.
  • the three-dimensional data decoding apparatus When the additional information indicates that the slice division is performed (Yes in S4925), the three-dimensional data decoding apparatus has a plurality of slice position information and a plurality of slice attribute information (a plurality of division positions) based on the slice addition information. Information and a plurality of divided attribute information) are combined in the same way to generate position information and attribute information (S4926).
  • the three-dimensional data decoding device may combine the plurality of slice position information and the plurality of slice attribute information by different methods.
  • tile or slice attribute information (identifier, area information, address information, position information, etc.) may be stored not only in SEI but also in other control information.
  • the attribute information may be stored in the control information indicating the configuration of the entire PCC data, or may be stored in the control information for each tile or slice.
  • the three-dimensional data encoding device (three-dimensional data transmitting device) converts control information such as SEI into control information specific to the protocol of the system when transmitting PCC data to another device. May be shown.
  • the three-dimensional data encoding device may store the SEI together with the PCC data in the "mdat box" when converting the PCC data including the attribute information into the ISOBMFF (ISO Base Media File Format), or the stream. It may be stored in a "track box” that describes control information related to the above. That is, the three-dimensional data encoding device may store the control information in a table for random access. Further, the three-dimensional data encoding device may store the SEI in the packet header when the PCC data is packetized and transmitted. By making the attribute information available at the layer of the system in this way, the attribute information and the tile data or slice data can be easily accessed, and the access speed can be improved.
  • ISOBMFF ISO Base Media File Format
  • the memory management unit determines in advance whether or not the information required for the decoding process is in the memory, and if there is no information required for the decoding process, the information is stored in the storage or the network. You may get it from.
  • the memory management unit When the three-dimensional data decoding device acquires PCC data from the storage or network using Pull in a protocol such as MPEG-DASH, the memory management unit performs the data required for the decoding process based on the information from the localization unit or the like. Attribute information may be specified, tiles or slices containing the specified attribute information may be requested, and necessary data (PCC stream) may be acquired. The tile or slice including the attribute information may be specified on the storage or network side, or may be specified by the memory management unit. For example, the memory management unit may acquire the SEI of all PCC data in advance and specify the tile or slice based on the information.
  • the memory management unit uses the data attribute information and tiles required for the decryption process based on the information from the localization unit, etc.
  • the desired data may be acquired by identifying the slice and filtering the desired tile or slice from the transmitted PCC data.
  • the three-dimensional data encoding device determines whether or not there is desired data, whether or not processing in real time is possible based on the data size, or the communication state, etc., when acquiring the data. You may.
  • the three-dimensional data coding apparatus determines that it is difficult to acquire data based on the determination result, another slice or tile having a different priority or data amount may be selected and acquired.
  • the three-dimensional data decoding device may transmit information from the localization unit or the like to the cloud server, and the cloud server may determine necessary information based on the information.
  • the three-dimensional data encoding device generates tile addition information which is metadata about a tile division method, and transmits the generated tile addition information to the three-dimensional data decoding device.
  • FIG. 40 is a diagram showing an example of syntax of tile addition information (TileMetaData).
  • the tile addition information includes division method information (type_of_divide), shape information (topview_shape), duplicate flag (tile_overlap_flag), duplicate information (type_of_overlap), and height information (tie_of_overlap).
  • division method information type_of_divide
  • shape information topview_shape
  • duplicate flag duplicate flag
  • duplicate information type_of_overlap
  • height information tilt_of_overlap
  • the number of tiles (tile_number) and the tile position information (global_position, reactive_position).
  • the division method information indicates a tile division method.
  • the division method information indicates whether the tile division method is division based on map information, that is, division based on top view (top_view) or other (other).
  • the shape information (topview_share) is included in the tile addition information, for example, when the tile division method is division based on the top view.
  • the shape information indicates the shape of the tile viewed from above. For example, this shape includes squares and circles. In addition, this shape may include a polygon other than an ellipse, a rectangle or a quadrangle, and may include other shapes.
  • the shape information is not limited to the shape of the tile viewed from above, and may indicate the three-dimensional shape of the tile (for example, a cube and a cylinder).
  • the duplicate flag indicates whether or not tiles are duplicated.
  • the duplicate flag is included in the tile addition information when the tile division method is division based on top view.
  • the overlap flag indicates whether or not the tiles overlap in the top view.
  • the duplication flag may indicate whether or not tiles overlap in the three-dimensional space.
  • Duplicate information (type_of_overlap) is included in the tile addition information when, for example, tiles are duplicated.
  • Duplicate information indicates how tiles are duplicated.
  • the duplicate information indicates the size of the overlapping area and the like.
  • the height information indicates the height of the tile.
  • the height information may include information indicating the shape of the tile. For example, when the shape of the tile in the top view of the tile is rectangular, the information may indicate the length of the side of the rectangle (vertical length and horizontal length). Further, the information may indicate the diameter or radius of the circle when the shape of the tile in the top view of the tile is a circle.
  • the height information may indicate the height of each tile, or may indicate a common height for a plurality of tiles. Further, a plurality of height types such as a road and a grade separation portion may be set in advance, and the height of each height type and the height type of each tile may be indicated by the height information. Alternatively, the height of each height type may be predefined and the height information may indicate the height type of each tile. That is, the height of each height type does not have to be indicated by the height information.
  • the number of tiles indicates the number of tiles.
  • the tile addition information may include information indicating the tile spacing.
  • the tile position information (global_position, reactive_position) is information for specifying the position of each tile.
  • the tile position information indicates the absolute coordinates or relative coordinates of each tile.
  • each tile may be provided for each of a plurality of tiles (for example, for each frame or for each of a plurality of frames).
  • the three-dimensional data encoding device may send the tile addition information by including it in SEI (Supplemental Enhancement Information).
  • SEI Supplemental Enhancement Information
  • the three-dimensional data encoding device may store the tile addition information in an existing parameter set (PPS, GPS, APS, etc.) and send it out.
  • the tile addition information when the tile addition information changes for each frame, the tile addition information may be stored in the parameter set (GPS, APS, etc.) for each frame. If the tile addition information does not change in the sequence, the tile addition information may be stored in the parameter set (position SPS or attribute SPS) for each sequence. Further, when the same tile division information is used for the position information and the attribute information, the tile addition information may be stored in the parameter set (stream PS) of the PCC stream.
  • the parameter set position SPS or attribute SPS
  • the tile addition information may be stored in any of the above parameter sets, or may be stored in a plurality of parameter sets. Further, the tile addition information may be stored in the header of the coded data. Further, the tile addition information may be stored in the header of the NAL unit.
  • all or part of the tile addition information is stored in one of the header of the division position information and the header of the division attribute information, and may not be stored in the other.
  • the tile addition information may be included in one header of the position information and the attribute information.
  • the attribute information depends on the position information, the position information is processed first. Therefore, it is not necessary that the header of the position information includes these tile addition information and the header of the attribute information does not include the tile addition information.
  • the three-dimensional data decoding device determines, for example, that the attribute information of the dependency source belongs to the same tile as the tile of the position information of the dependency destination.
  • the 3D data decoding device reconstructs the tiled point cloud data based on the tile addition information.
  • the three-dimensional data decoding device identifies a plurality of overlapping point cloud data, selects one of them, or merges the plurality of point cloud data.
  • the three-dimensional data decoding device may perform decoding using the tile addition information. For example, when a plurality of tiles overlap, the three-dimensional data decoding device decodes each tile, performs processing using the decoded plurality of data (for example, smoothing or filtering), and performs point cloud data. May be generated. This may enable highly accurate decoding.
  • FIG. 41 is a diagram showing a configuration example of a system including a three-dimensional data encoding device and a three-dimensional data decoding device.
  • the tile dividing unit 5051 divides the point cloud data including the position information and the attribute information into the first tile and the second tile. Further, the tile division unit 5051 sends the tile addition information related to the tile division to the decoding unit 5053 and the tile connection unit 5054.
  • the coding unit 5052 generates coded data by coding the first tile and the second tile.
  • the decoding unit 5053 restores the first tile and the second tile by decoding the coded data generated by the coding unit 5052.
  • the tile joining portion 5054 restores the point cloud data (position information and attribute information) by joining the first tile and the second tile using the tile addition information.
  • the three-dimensional data encoding device generates slice addition information which is metadata related to the slice division method, and transmits the generated slice addition information to the three-dimensional data decoding device.
  • FIG. 42 is a diagram showing a syntax example of slice addition information (SliceMetaData).
  • the slice addition information includes the division method information (type_of_divide), the overlap flag (slice_overlap_flag), the duplicate information (type_of_overlap), the number of slices (slice_number), and the slice position information (group_fold_fold_fold_ ) And slice size information (slice_bounding_box_size).
  • the division method information indicates the division method of the slice.
  • the division method information indicates whether or not the division method of the slice is an object based on the information of the object as shown in FIG. 60.
  • the slice addition information may include information indicating a method of object division. For example, this information indicates whether an object should be split into multiple slices or assigned to one slice. Further, this information may indicate the number of divisions when one object is divided into a plurality of slices.
  • the duplicate flag indicates whether or not the slices are duplicated.
  • the duplicate information (type_of_overlap) is included in the slice addition information when, for example, the slices are duplicated.
  • the duplication information indicates how slices are duplicated. For example, the duplicate information indicates the size of the overlapping area and the like.
  • the number of slices indicates the number of slices.
  • Slice position information (global_position, reactive_position) and slice size information (slice_bounding_box_size) are information related to the slice area.
  • the slice position information is information for specifying the position of each slice. For example, the slice position information indicates the absolute coordinates or relative coordinates of each slice.
  • the slice size information (slice_bounding_box_size) indicates the size of each slice. For example, the slice size information indicates the size of the bounding box for each slice.
  • the three-dimensional data encoding device may include the slice addition information in the SEI and send it out.
  • the three-dimensional data encoding device may store the slice addition information in an existing parameter set (PPS, GPS, APS, etc.) and send it out.
  • the slice addition information when the slice addition information changes for each frame, the slice addition information may be stored in a parameter set (GPS, APS, etc.) for each frame. If the slice addition information does not change in the sequence, the slice addition information may be stored in the parameter set (position SPS or attribute SPS) for each sequence. Further, when the same slice division information is used for the position information and the attribute information, the slice addition information may be stored in the parameter set (stream PS) of the PCC stream.
  • a parameter set GPS, APS, etc.
  • the slice addition information may be stored in the parameter set (position SPS or attribute SPS) for each sequence.
  • the slice addition information may be stored in the parameter set (stream PS) of the PCC stream.
  • the slice addition information may be stored in any of the above parameter sets, or may be stored in a plurality of parameter sets. Further, the slice addition information may be stored in the header of the encoded data. Further, the slice addition information may be stored in the header of the NAL unit.
  • all or part of the slice addition information is stored in one of the header of the division position information and the header of the division attribute information, and may not be stored in the other.
  • the slice addition information may be included in one header of the position information and the attribute information.
  • the attribute information depends on the position information, the position information is processed first. Therefore, it is not necessary that the header of the position information includes these slice addition information and the header of the attribute information does not include the slice addition information.
  • the three-dimensional data decoding device determines, for example, that the attribute information of the dependency source belongs to the same slice as the slice of the position information of the dependency destination.
  • the three-dimensional data decoding device reconstructs the sliced point cloud data based on the slice addition information.
  • the three-dimensional data decoding device identifies a plurality of overlapping point cloud data, selects one of them, or merges the plurality of point cloud data.
  • the three-dimensional data decoding device may perform decoding using the slice addition information. For example, when a plurality of slices overlap, the three-dimensional data decoding device decodes each slice, performs processing using the decoded plurality of data (for example, smoothing or filtering), and obtains point cloud data. It may be generated. This may enable highly accurate decoding.
  • FIG. 43 is a flowchart of the three-dimensional data coding process including the generation process of the tile additional information by the three-dimensional data coding device according to the present embodiment.
  • the three-dimensional data encoding device determines the tile division method (S5031). Specifically, the three-dimensional data encoding device determines whether to use a division method based on top view (top_view) or other (other) as the tile division method. In addition, the three-dimensional data encoding device determines the shape of the tile when the division method based on the top view is used. The three-dimensional data encoding device also determines whether a tile overlaps with another tile.
  • the three-dimensional data encoding device means that the tile division method is a division method based on top view (top_view). Is described in the tile addition information (S5033).
  • the tile division method determined in step S5031 is other than the division method based on the top view (No in S5032), in the three-dimensional data encoding device, the tile division method is the division method based on the top view (top_view). It is described in the tile addition information that the method is other than the above (S5034).
  • the three-dimensional data encoding device describes in the tile addition information that the shape of the tile viewed from above is square. (S5036).
  • the shape of the tile viewed from above is a circle (circle in S5035) determined in step S5031
  • the three-dimensional data encoding device describes in the tile addition information that the shape of the tile viewed from above is a circle. (S5037).
  • the three-dimensional data encoding device determines whether a tile overlaps with another tile (S5038). When a tile overlaps with another tile (Yes in S5038), the 3D data encoding device describes in the tile addition information that the tile overlaps (S5039). On the other hand, when the tile does not overlap with other tiles (No in S5038), the three-dimensional data encoding device describes in the tile addition information that the tile does not overlap (S5040).
  • the three-dimensional data encoding device divides the tiles based on the tile dividing method determined in step S5031, encodes each tile, and sends out the generated encoded data and tile addition information (S5041).
  • FIG. 44 is a flowchart of the three-dimensional data decoding process using the tile addition information by the three-dimensional data decoding apparatus according to the present embodiment.
  • the three-dimensional data decoding device analyzes the tile addition information included in the bit stream (S5051).
  • the three-dimensional data decoding device When the tile addition information indicates that the tile does not overlap with other tiles (No in S5052), the three-dimensional data decoding device generates point group data of each tile by decoding each tile (S5053). ). Next, the three-dimensional data decoding device reconstructs the point cloud data from the point cloud data of each tile based on the tile division method and the tile shape indicated by the tile addition information (S5054).
  • the three-dimensional data decoding device when the tile addition information indicates that the tile overlaps with other tiles (Yes in S5052), the three-dimensional data decoding device generates point group data of each tile by decoding each tile. .. Further, the three-dimensional data decoding device identifies the overlapping portion of the tiles based on the tile addition information (S5055). The three-dimensional data decoding device may perform decoding processing on the overlapping portion by using a plurality of overlapping information. Next, the three-dimensional data decoding device reconstructs the point group data from the point group data of each tile based on the tile division method, the tile shape, and the overlapping information indicated by the tile addition information (S5056).
  • the three-dimensional data encoding device may transmit information indicating the type (road, building, tree, etc.) or attribute (dynamic information, static information, etc.) of the object as additional information.
  • the coding parameters are predetermined according to the object, and the three-dimensional data coding device may notify the three-dimensional data decoding device of the coding parameters by sending out the type or attribute of the object.
  • the three-dimensional data encoding device may encode slice data in order from data in which object recognition or clustering is easy.
  • the three-dimensional data encoding device may perform coding in order from the slice data for which clustering has been completed earlier.
  • the three-dimensional data encoding device may send out the encoded slice data in order.
  • the three-dimensional data encoding device may send out slice data in the application in descending order of decoding priority. For example, when the priority of decoding the dynamic information is high, the three-dimensional data encoding device may send the slice data in order from the slice grouped by the dynamic information.
  • the three-dimensional data coding apparatus may send the coded data after sorting them. Further, the three-dimensional data coding apparatus may store the coded data after rearranging the coded data when storing the coded data.
  • the application requests the server (three-dimensional data encoding device) to send out a slice containing the desired data.
  • the server sends out slice data required by the application, and does not have to send unnecessary slice data.
  • the application requests the server to send tiles containing the desired data.
  • the server sends out the tile data required by the application, and does not have to send out the unnecessary tile data.
  • the division method can be classified according to whether or not the division unit (for example, tile or slice), which is the divided data unit, always contains one or more point data.
  • a division method that includes one or more point data in all of a plurality of division units is called a first division method.
  • the first division method for example, there is a method of dividing the point cloud data in consideration of the coding processing time or the size of the coded data. In this case, the number of points is approximately equal in each division unit.
  • FIG. 45 is a diagram showing an example of the division method.
  • a method of dividing points belonging to the same space into two identical spaces may be used as the first division method.
  • FIG. 45 (b) the space may be divided into a plurality of subspaces (division units) so that each division unit includes a point.
  • a division method in which one or more division units that do not include point data may be included in a plurality of division units is called a second division method.
  • a second division method as shown in FIG. 45 (c), a method of evenly dividing the space can be used. In this case, points do not always exist in the division unit. That is, there may be no points in the division unit.
  • the three-dimensional data encoding device divides the point group data
  • the three-dimensional data encoding device may indicate the above information as a type of division method. Further, the three-dimensional data encoding device does not have to perform division by a predetermined division method and send out division additional information. In that case, the three-dimensional data coding apparatus clearly indicates in advance whether the partitioning method is the first partitioning method or the second partitioning method.
  • tile division will be described as an example of the division method of the three-dimensional space
  • the following method can be applied to the division method of the division unit different from the tile, not necessarily the tile division.
  • tile division may be read as slice division.
  • FIG. 46 is a diagram showing an example of dividing the point cloud data into 6 tiles.
  • FIG. 46 shows an example in which the smallest unit is a point, and shows an example in which position information (Geometry) and attribute information (Attribute) are divided together. The same applies when the position information and the attribute information are divided by individual division methods or the number of divisions, when there is no attribute information, and when there are a plurality of attribute information.
  • the tiles having dots in the tiles (# 1, # 2, # 4, # 6) and the tiles having no dots in the tiles (# 3, # 5) are separated. Exists.
  • a tile that does not contain dots in the tile is called a null tile.
  • any division method may be used, not limited to the case of dividing into 6 tiles.
  • the division unit may be a cube, or may have a non-cubic shape such as a rectangular parallelepiped or a cylinder.
  • the plurality of division units may have the same shape or may include different shapes.
  • a predetermined method may be used, or a different method may be used for each predetermined unit (for example, PCC frame).
  • the three-dimensional data encoding device may generate, for example, the following information as additional information (metadata) regarding data division, and send out the generated information.
  • FIG. 47 is a diagram showing an example of syntax of tile addition information (TileMetaData).
  • the tile addition information includes division method information (type_of_divide), division method null information (type_of_divide_null), tile division number (number_of_tiles), and tile null flag (tile_null_flag).
  • the division method information (type_of_divide) is information regarding the division method or the division type.
  • the division method information indicates one or more division methods or division types.
  • the division method there are top view (top_view) division, even division, and the like.
  • the tile addition information does not have to include the division method information.
  • the partitioning method null information is information indicating whether the partitioning method used is the following first partitioning method or the second partitioning method.
  • the first partitioning method is a partitioning method in which all of the plurality of partitioning units always include one or more point data.
  • the second division method is a division method in which one or more division units do not include point data in a plurality of division units, or there is a possibility that one or more division units do not include point data in a plurality of division units. There is a division method.
  • the tile addition information includes (1) information indicating the number of tile divisions (number of tile divisions (number_of_tiles)), information for specifying the number of tile divisions, and (2) null tiles as the division information of the entire tile. At least one of information indicating the number or information for specifying the number of null tiles, and (3) information indicating the number of tiles other than null tiles, or information for specifying the number of tiles other than null tiles. May include. Further, the tile addition information may include information indicating the shape of the tile or whether or not the tiles overlap as the division information of the entire tile.
  • the tile addition information indicates the division information for each tile in order.
  • the order of tiles is predetermined for each division method and is known in the three-dimensional data encoding device and the three-dimensional data decoding device. If the order of the tiles is not predetermined, the three-dimensional data encoding device may send information indicating the order to the three-dimensional data decoding device.
  • the division information for each tile includes a tile null flag (tile_null_flag), which is a flag indicating whether or not data (points) exists in the tile.
  • tile null flag When there is no data in the tile, the tile null flag may be included as the tile division information.
  • the tile addition information includes division information for each tile (position information (for example, coordinates of the origin (origin_x, origin_y, origin_z)), tile height information, and the like). Further, when the tile is a null tile, the tile addition information does not include the division information for each tile.
  • the three-dimensional data encoding device when storing the slice division information for each tile in the division information for each tile, the three-dimensional data encoding device does not have to store the slice division information for the null tile in the additional information.
  • the number of tile divisions indicates the number of tiles including null tiles.
  • FIG. 48 is a diagram showing an example of tile index information (idx). In the example shown in FIG. 48, the index information is also assigned to the null tile.
  • 49 to 51 are diagrams showing a data structure when position information and attribute information are divided into six tiles and no data exists in the third and fifth tiles.
  • FIG. 49 is a diagram showing an example of the dependency of each data.
  • the tip of the arrow in the figure indicates the dependency destination, and the source of the arrow indicates the dependency source.
  • G nt (n is 1 to 6) indicates the position information of the tile number n, and Atn indicates the attribute information of the tile number n.
  • M tile indicates tile additional information.
  • FIG. 50 is a diagram showing a configuration example of transmission data, which is coding data transmitted from a three-dimensional data encoding device. Further, FIG. 51 is a diagram showing a configuration of coded data and a method of storing the coded data in the NAL unit.
  • the tile index information (tile_idx) is included in the headers of the position information (division position information) and attribute information (division attribute information) data, respectively.
  • the three-dimensional data encoding device does not have to send out the position information or the attribute information constituting the null tile.
  • the three-dimensional data encoding device may send information indicating that the tile is a null tile as data of the null tile.
  • the three-dimensional data encoding device describes in the header of the NAL unit or the tile_type stored in the header in the payload (nal_unit_payload) of the NAL unit that the type of the data is null tile, and sends out the header. You may. In the following, the description will be given on the premise of structure 1.
  • tile_idx the value of the tile index information included in the header of the position information data or the attribute information data in the transmission data is missing and is not continuous.
  • the three-dimensional data encoding device sends the referenced data so that the referenced data can be decoded before the reference source data.
  • the attribute information tile has a dependency relationship with the position information tile.
  • the index number of the same tile is added to the attribute information and position information that have a dependency.
  • the tile addition information related to the tile division may be stored in both the position information parameter set (GPS) and the attribute information parameter set (APS), or may be stored in either one.
  • the reference information indicating the reference GPS or the APS may be stored in the other of the GPS and the APS.
  • different tile addition information is stored in each of GPS and APS.
  • the tile division method is the same in the sequence (multiple PCC frames)
  • the tile addition information may be stored in GPS, APS or SPS (sequence parameter set).
  • the tile addition information when the tile addition information is stored in both GPS and APS, the tile addition information of the position information is stored in the GPS, and the tile addition information of the attribute information is stored in the APS. Further, when the tile addition information is stored in common information such as SPS, the tile addition information commonly used in the position information and the attribute information may be stored, and the tile addition information and the attribute information of the position information may be stored. The tile additional information of the above may be stored respectively.
  • tile division and slice division The combination of tile division and slice division will be described below. First, the data structure and data transmission in the case of performing tile division after slice division will be described.
  • FIG. 52 is a diagram showing an example of the dependency of each data when tile division is performed after slice division.
  • the tip of the arrow in the figure indicates the dependency destination, and the source of the arrow indicates the dependency source. Further, the data indicated by the solid line in the figure is the data actually transmitted, and the data indicated by the dotted line is the data not transmitted.
  • G indicates position information and A indicates attribute information.
  • G s1 indicates the position information of the slice number 1
  • G s2 indicates the position information of the slice number 2.
  • G s1t1 indicates the position information of the slice number 1 and the tile number 1
  • G s2t2 indicates the position information of the slice number 2 and the tile number 2.
  • a s1 indicates the attribute information of the slice number 1
  • a s2 indicates the attribute information of the slice number 2.
  • As1t1 indicates the attribute information of the slice number 1 and the tile number 1
  • As2t1 indicates the attribute information of the slice number 2 and the tile number 1.
  • Mslice indicates slice addition information
  • MGtile indicates position tile addition information
  • MAtile indicates attribute tile addition information
  • D s1t1 indicates the dependency information of the attribute information A s1t1
  • D s2t1 indicates the dependency information of the attribute information A s2t1 .
  • the three-dimensional data encoding device does not have to generate and send out position information and attribute information related to null tiles.
  • the number of tiles generated and transmitted may differ between slices.
  • a null tile may exist in one of the position information and the attribute information and may not exist in the other.
  • the position information (G s1 ) of the slice 1 is divided into two tiles, G s1t1 and G s1t2 , of which G s1t2 is a null tile.
  • slice 1 of the attribute information (A s1) is present one A S1t1 not divided, Nurutairu is absent.
  • the three-dimensional data encoding device generates and sends out the dependency information of the attribute information at least when the data exists in the tile of the attribute information regardless of whether or not the slice of the position information contains the null tile. .. For example, when the three-dimensional data encoding device stores the slice division information for each tile in the division information for each slice included in the slice addition information related to the slice division, whether or not the tile is a null tile in this information. Store that information.
  • FIG. 53 is a diagram showing an example of the data decoding order.
  • decoding is performed in order from the left data.
  • the three-dimensional data decoding device decodes the dependent data first among the dependent data.
  • the three-dimensional data encoding device rearranges the data in advance so as to send the data in this order.
  • any order may be used as long as the dependent data comes first.
  • the three-dimensional data encoding device may send additional information and dependency information before the data.
  • FIG. 54 is a diagram showing an example of the dependency of each data when slicing is performed after tile division.
  • the tip of the arrow in the figure indicates the dependency destination, and the source of the arrow indicates the dependency source. Further, the data indicated by the solid line in the figure is the data actually transmitted, and the data indicated by the dotted line is the data not transmitted.
  • G indicates position information and A indicates attribute information.
  • G t1 indicates the position information of the tile number 1.
  • G t1s1 indicates the position information of the tile number 1 and the slice number 1, and
  • G t1s2 indicates the position information of the tile number 1 and the slice number 2.
  • a t1 indicates the attribute information of the tile number 1
  • a T1S1 indicates attribute information of the tile number 1 and slice number 1.
  • Mtile indicates tile addition information
  • MGslice indicates position slice addition information
  • MAslice indicates attribute slice addition information.
  • D T1S1 shows the dependency information of the attribute information A t1s1
  • D t2s1 shows the dependency information of the attribute information A T2s1.
  • the 3D data encoding device does not slice the null tile. Further, it is not necessary to generate and send the position information, the attribute information, and the dependency information of the attribute information related to the null tile.
  • FIG. 55 is a diagram showing an example of the data decoding order.
  • decoding is performed in order from the left data.
  • the three-dimensional data decoding device decodes the dependent data first among the dependent data.
  • the three-dimensional data encoding device rearranges the data in advance and sends the data in this order.
  • any order may be used as long as the dependent data comes first.
  • the three-dimensional data encoding device may send additional information and dependency information before the data.
  • FIG. 56 is a flowchart of the three-dimensional data coding process including the data division process by the three-dimensional data encoding device.
  • the three-dimensional data encoding device determines the division method to be used (S5101). Specifically, the three-dimensional data encoding device determines whether to use the first partitioning method or the second partitioning method. For example, the three-dimensional data encoding device may determine the division method based on the designation from the user or an external device (for example, a three-dimensional data decoding device), or determine the division method according to the input point cloud data. You may. Moreover, the division method used may be predetermined.
  • the first partitioning method is a partitioning method in which all of a plurality of partitioning units (tiles or slices) always include one or more point data.
  • the second division method is a division method in which one or more division units do not include point data in a plurality of division units, or there is a possibility that one or more division units do not include point data in a plurality of division units. There is a division method.
  • the three-dimensional data encoding device When the determined division method is the first division method (first division method in S5102), the three-dimensional data encoding device has the division addition information (for example, tile addition information or slice addition information) which is the metadata related to the data division. ) Is the first division method (S5103). Then, the three-dimensional data encoding device encodes all the division units (S5104).
  • the division addition information for example, tile addition information or slice addition information
  • the three-dimensional data encoding device determines that the division method used for the division additional information is the second division method. (S5105). Then, the three-dimensional data coding apparatus encodes the division unit excluding the division unit (for example, null tile) that does not include the point data among the plurality of division units (S5106).
  • FIG. 57 is a flowchart of a three-dimensional data decoding process including a data combination process by a three-dimensional data decoding device.
  • the three-dimensional data decoding device refers to the division addition information included in the bit stream, and determines whether the division method used is the first division method or the second division method (S5111).
  • the three-dimensional data decoding device receives the coded data of all the division units and decodes the received coded data. Then, the decoding data of all the division units is generated (S5113). Next, the three-dimensional data decoding device reconstructs the three-dimensional point cloud using the decoded data of all the division units (S5114). For example, a three-dimensional data decoding device reconstructs a three-dimensional point cloud by combining a plurality of division units.
  • the three-dimensional data decoding apparatus has the coded data of the division unit including the point data and the division unit not including the point data.
  • the encoded data of the above is received, and the encoded data of the received division unit is decoded to generate the decoded data (S5115).
  • the three-dimensional data decoding device does not have to receive and decode the division unit that does not include the point cloud data when the division unit that does not include the point cloud data has not been transmitted.
  • the three-dimensional data decoding device reconstructs the three-dimensional point cloud using the decoded data of the division unit including the point data (S5116). For example, a three-dimensional data decoding device reconstructs a three-dimensional point cloud by combining a plurality of division units.
  • the three-dimensional data encoding device When the space is evenly divided as shown in FIG. 45 (c), there may be no points in the divided space. In this case, the three-dimensional data encoding device combines the space where the points do not exist with the other space where the points exist. As a result, the three-dimensional data encoding device can form a plurality of division units so that all division units include one or more points.
  • FIG. 58 is a flowchart of data division in this case.
  • the three-dimensional data encoding device divides the data by a specific method (S5121).
  • the specific method is the second division method described above.
  • the three-dimensional data encoding device determines whether or not a point is included in the target division unit, which is the division unit of the processing target (S5122).
  • the target division unit includes a point (Yes in S5122)
  • the three-dimensional data encoding device encodes the target division unit (S5123).
  • the target division unit does not include a point (No in S5122)
  • the three-dimensional data encoding device combines the target division unit and another division unit including the point, and codes the division unit after the combination. (S5124). That is, the three-dimensional data encoding device encodes the target division unit together with other division units including points.
  • a three-dimensional data encoding device determines whether or not each of a plurality of division units contains a point, performs a combination so that there are no division units that do not include a point, and a plurality of division units after the combination.
  • Each of may be encoded.
  • FIG. 59 is a flowchart of the data transmission process.
  • the three-dimensional data encoding device determines the tile division method, and divides the point cloud data into tiles using the determined division method (S5131).
  • the three-dimensional data encoding device determines whether or not the target tile is a null tile (S5132). That is, the three-dimensional data encoding device determines whether or not there is data in the target tile.
  • the three-dimensional data encoding device When the target tile is a null tile (Yes in S5132), the three-dimensional data encoding device indicates that the target tile is a null tile in the tile addition information, and indicates the target tile information (tile position and size, etc.). No (S5133). Further, the three-dimensional data encoding device does not send out the target tile (S5134).
  • the three-dimensional data encoding device when the target tile is not a null tile (No in S5132), the three-dimensional data encoding device indicates that the target tile is not a null tile in the tile addition information, and indicates information for each tile (S5135). Further, the three-dimensional data encoding device sends out the target tile (S5136).
  • the amount of information of the tile addition information can be reduced.
  • FIG. 60 is a diagram showing an example of transmission data which is encoded data transmitted from the three-dimensional data encoding device and received data input to the three-dimensional data decoding device.
  • transmission data which is encoded data transmitted from the three-dimensional data encoding device and received data input to the three-dimensional data decoding device.
  • the received data is the same as the transmitted data.
  • the 3D data decoding device receives all of the transmitted data in a system environment where there is no packet loss.
  • FIG. 61 is a flowchart of processing by the three-dimensional data decoding device.
  • the three-dimensional data decoding device refers to the tile addition information (S5141) and determines whether or not each tile is a null tile (S5142).
  • the three-dimensional data decoding device determines that the target tile is not a null tile and decodes the target tile (S5143). Next, the three-dimensional data decoding device acquires tile information (tile position information (origin coordinates, etc.) and size, etc.) from the tile addition information, and combines a plurality of tiles using the acquired information. The three-dimensional data is reconstructed (S5144).
  • the three-dimensional data decoding device determines that the target tile is a null tile and does not decode the target tile (S5145).
  • the three-dimensional data decoding device may determine that the missing data is a null tile by sequentially analyzing the index information shown in the header of the encoded data. Further, the three-dimensional data decoding device may combine a determination method using tile addition information and a determination method using index information.
  • FIG. 62 is a diagram showing an example of transmission data transmitted from the three-dimensional data encoding device and received data input to the three-dimensional data decoding device.
  • the case of a system environment with packet loss is assumed.
  • the 3D data decoder may not be able to receive all of the transmitted data.
  • packets of G t2 and A t2 is lost.
  • FIG. 63 is a flowchart of processing of the three-dimensional data decoding device in this case.
  • the three-dimensional data decoding device analyzes the continuity of the index information shown in the header of the coded data (S5151), and determines whether or not the index number of the target tile exists (S5152).
  • the 3D data decoding device determines that the target tile is not a null tile and executes the decoding process of the target tile (S5153).
  • the three-dimensional data decoding device acquires tile information (tile position information (origin coordinates, etc.) and size, etc.) from the tile addition information, and combines a plurality of tiles using the acquired information.
  • the three-dimensional data is reconstructed (S5154).
  • the three-dimensional data decoding device determines whether or not the target tile is a null tile by referring to the tile addition information (S5155).
  • the 3D data decoding device determines that the target tile has been lost (packet loss) and performs error decoding processing (S5157).
  • the error decoding process is, for example, a process of attempting to decode the original data assuming that there is data.
  • the three-dimensional data decoding device may reproduce the three-dimensional data and reconstruct the three-dimensional data (S5154).
  • the three-dimensional data decoding device assumes that the target tile is a null tile and does not perform the decoding process and the reconstruction of the three-dimensional data (S5158).
  • the three-dimensional data coding apparatus may generate the coded data and additional information by the following method.
  • the 3D data encoding device does not show the null tile information in the tile addition information.
  • the three-dimensional data encoding device assigns the index number of the tile excluding the null tile to the data header.
  • the 3D data encoder does not send null tiles.
  • the number of tile divisions indicates the number of divisions that do not include null tiles.
  • the three-dimensional data encoding device may separately store information indicating the number of null tiles in the bit stream. Further, the three-dimensional data encoding device may show information about null tiles in the additional information, or may show some information about null tiles.
  • FIG. 64 is a flowchart of the three-dimensional data coding process by the three-dimensional data coding device in this case.
  • the three-dimensional data encoding device determines a tile division method, and divides the point cloud data into tiles using the determined division method (S5161).
  • the three-dimensional data encoding device determines whether or not the target tile is a null tile (S5162). That is, the three-dimensional data encoding device determines whether or not there is data in the target tile.
  • the three-dimensional data encoding device When the target tile is not a null tile (No in S5162), the three-dimensional data encoding device adds index information of the tile excluding the null tile to the data header (S5163). Then, the three-dimensional data encoding device sends out the target tile (S5164).
  • the three-dimensional data encoding device adds the index information of the target tile to the data header and does not send the target tile.
  • FIG. 65 is a diagram showing an example of index information (idx) added to the data header. As shown in FIG. 65, the index information of the null tile is not added, and the continuous number is added to the tiles other than the null tile.
  • FIG. 66 is a diagram showing an example of the dependency of each data.
  • the tip of the arrow in the figure indicates the dependency destination, and the source of the arrow indicates the dependency source.
  • G nt (n is 1 to 4) indicates the position information of the tile number n, and Atn indicates the attribute information of the tile number n.
  • M tile indicates tile additional information.
  • FIG. 67 is a diagram showing a configuration example of transmission data, which is coding data transmitted from the three-dimensional data encoding device.
  • FIG. 68 is a diagram showing an example of transmission data transmitted from the three-dimensional data encoding device and received data input to the three-dimensional data decoding device.
  • the case of a system environment with packet loss is assumed.
  • FIG. 69 is a flowchart of processing of the three-dimensional data decoding device in this case.
  • the three-dimensional data decoding device analyzes the index information of the tile shown in the header of the coded data, and determines whether or not the index number of the target tile exists. Further, the three-dimensional data decoding device acquires the number of tile divisions from the tile addition information (S5171).
  • the three-dimensional data decoding device executes the decoding process of the target tile (S5173). Next, the three-dimensional data decoding device acquires tile information (tile position information (origin coordinates, etc.) and size, etc.) from the tile addition information, and combines a plurality of tiles using the acquired information. The three-dimensional data is reconstructed (S5175).
  • the three-dimensional data decoding device determines that the target tile is packet loss and performs error decoding processing (S5174). Further, the three-dimensional data decoding device determines that the space that does not exist in the data is a null tile, and reconstructs the three-dimensional data.
  • the 3D data encoding device can appropriately determine that there are no points in the tile, not data loss due to measurement error or data processing, or packet loss, by explicitly indicating the null tile. it can.
  • the three-dimensional data encoding device may use both a method of explicitly indicating a null packet and a method of not explicitly indicating a null packet. In that case, the three-dimensional data encoding device may provide information indicating whether or not to explicitly indicate the null packet in the tile addition information. Further, it is determined in advance whether or not to explicitly indicate the null packet according to the type of the division method, and the three-dimensional data encoding device explicitly indicates the null packet by indicating the type of the division method. It may indicate whether or not.
  • FIG. 47 and the like an example in which information relating to all tiles is shown in the tile addition information is shown, but information on some tiles among a plurality of tiles may be shown in the tile addition information. However, information on null tiles of some tiles among a plurality of tiles may be shown.
  • nal_unit_type which means information indicating whether or not there is divided data
  • this information may be stored in both additional information and data.
  • FIG. 70 is a diagram schematically showing the quantization process for each tile.
  • the three-dimensional data encoding device divides the point cloud data into a plurality of data units that can be independently encoded and decoded, such as tiles, and quantizes each divided data obtained by the division.
  • the coding efficiency of the quantization data can be improved by performing quantization and merging of overlapping points at the time of tile division.
  • the three-dimensional data encoding device When the three-dimensional data encoding device performs quantization for each divided data, the position information of the points belonging to the tile is quantized for each tile, and the overlapping points are merged into one point. After that, the three-dimensional data coding device converts the position information of the point cloud data into an occupancy code for each tile, and arithmetically encodes the occupancy code.
  • the three-dimensional data encoding device may merge the points A and B into the point C having the same three-dimensional position information.
  • the three-dimensional data coding device may assign the average value of attribute information such as the color or reflectance of points A and B to point C. Further, the three-dimensional data encoding device may merge the point B into the point A or may merge the point A into the point B.
  • the three-dimensional data encoding device sets the MergeAutomatedPointFlag to 1 when performing merging.
  • This MergeAutomatedPointFlag indicates that the overlapping points in the tile have been merged and that there are no overlapping points in the tile.
  • the three-dimensional data encoding device stores the MergeAutomatedPointFlag as metadata (additional information) in the parameter set.
  • each leaf node contains one point in the occupancy code for each tile. Therefore, the three-dimensional data encoding device does not have to encode the information indicating the number of points included in the leaf node as the leaf node information. Further, the three-dimensional data coding device may encode the three-dimensional position information of one point and the attribute information such as color and reflectance.
  • the 3D data encoding device may merge M overlapping points into N (M> N) points. At this time, the three-dimensional data encoding device may add information indicating the value N to the header or the like. Alternatively, the value N may be specified by a standard or the like. As a result, the three-dimensional data coding device does not need to add information indicating the value N for each leaf node, and the amount of generated coding can be suppressed.
  • the 3D data encoding device sets the MergeDuplicatedPointFlag to 0 when the point cloud data divided into tiles is not quantized.
  • the 3D data encoding device encodes the information about the overlapping points included in the leaf nodes in the tile as the leaf node information.
  • each leaf node may contain one or more overlapping points. Therefore, the three-dimensional data encoding device may encode information indicating how many points the leaf node contains. Further, the three-dimensional data encoding device may encode each attribute information of the overlapping point.
  • the three-dimensional data encoding device may change the encoded data structure based on the MergeAutomatedPointFlag.
  • the three-dimensional data encoding device may describe the MergeDuplicatedPointFlag in GPS, which is a parameter set for each frame.
  • a flag is used to indicate whether at least one tile of all tiles except the null tile contains overlapping points.
  • the flag may be added frame by frame, or the same flag may be applied to all or a plurality of frames. If the same flag is applied to all or more frames, the 3D data encoding device may describe the flag in the SPS and not in the GPS. As a result, the amount of transmitted data can be reduced.
  • SPS is a parameter set for each sequence (plural frames).
  • the three-dimensional data encoding device may change the quantization parameter for each tile, or may or may not quantize depending on the tile.
  • the three-dimensional data encoding device stores a flag for each tile (for example, a MergeAutomatedPointFlag) in GPS.
  • the three-dimensional data encoding device stores a MergeAutomatedPointFlag in the header of the data for each tile, and uses the MergeAutomatedPointFlag as a flag indicating whether or not there are overlapping points in the tile.
  • the three-dimensional data encoding device describes in the GPS a flag indicating that the flag is stored in the header of the data. The three-dimensional data encoding device does not have to store the flag when the tile is a null tile.
  • FIG. 71 is a diagram showing an example of GPS syntax, which is a parameter set of position information for each frame.
  • GPS includes at least one of gps_idx indicating a frame number and sps_idx indicating a sequence number.
  • GPS includes an overlap point merge flag (MergeDuplicatePointFlag) and tile information (tile_information).
  • MergeDuplicatedPointFlag 1 indicates that when the tiles are not divided, the overlapping points in the point cloud data are merged and there are no overlapping points.
  • MergeDuplicatedPointFlag 1 indicates that when the tiles are divided, the overlapping points in the tiles are merged in all the tiles except the null tiles constituting the point cloud data, and there are no overlapping points.
  • MergeDuplicatedPointFlag 0 indicates that if the tiles are not divided, the overlapping points in the point cloud data will not be merged and there may be overlapping points.
  • MergeDuplicatedPointFlag 0 indicates that if the tiles are not divided, the overlapping points in the point cloud data will not be merged and there may be overlapping points.
  • MergeDuplicatedPointFlag 0 indicates that if the tiles are not divided, the overlapping points in the point cloud data will not be merged and there may be overlapping points.
  • MergeDuplicatedPointFlag 0 indicates that if the tiles are not divided, the overlapping points in the point cloud data will not be merged and there may be overlapping points.
  • Tile information indicates information related to tile division. Specifically, the tile information indicates the type of tile division, the number of divisions, the coordinates (position) of each tile, the size of each tile, and the like. Further, the tile information may indicate quantization parameters, null tile information, and the like. Further, in the three-dimensional data decoding apparatus, if the coordinates or size of each tile is known or can be derived, the information indicating the coordinates or size of each tile may be omitted. As a result, the amount of code can be reduced.
  • FIG. 72 is a diagram showing a syntax example of tile information (tile_information).
  • the tile information includes a quantization independent flag (independent_quantization_flag).
  • the quantization independent flag (independent_quantization_flag) is a flag indicating whether to unify the quantization parameters for a plurality of tiles or set them individually for each tile.
  • independent_quantization_flag 1 indicates that the quantization parameters are unified across a plurality of tiles.
  • the GPS is indicated by MergeDuplicatedPointFlag and QP_value, and these information are used.
  • QP_value is a quantization parameter used for a plurality of tiles.
  • independent_quantization_flag 2 indicates that the quantization parameter is set for each tile.
  • the tile is not a null tile
  • the TireMergeDuplicatedPointFlag and qp_value are shown in the loop processing for each tile.
  • the TileMergeDuplicatedPointFlag and qp_value are shown in the header of the location information.
  • the TileMergeDuplicatedPointFlag is a flag indicating whether or not to merge overlapping points in the target tile, which is the tile to be processed.
  • qp_value is a quantization parameter used for the target tile.
  • a flag indicating whether to unify the MergeAutomatedPointFlag for all the tiles or to set it individually for each tile and to unify the value of QP (quantization parameter) for all the tiles or set it individually for each tile.
  • a flag indicating whether to do so may be provided separately.
  • a flag may be provided to indicate whether the value of MergeDuplicatedPointFlag or QP is shown in GPS or in the header of location information. From the above, the quantization parameter can be set independently for each tile.
  • FIG. 73 is a diagram showing a syntax example of node information (node (depth, index)) included in the position information data.
  • the corresponding number of attribute information is shown in the leaf node information included in the attribute information data.
  • FIG. 74 is a flowchart of the three-dimensional data coding process according to the present embodiment.
  • the three-dimensional data encoding device determines whether or not to divide the tiles and whether or not to merge the overlapping points (S6201, S6202, S6214). For example, the 3D data encoding device determines whether to divide the tiles and whether to merge the overlapping points based on an external instruction.
  • the three-dimensional data encoding device quantizes the position information of the point group (S6204) and merges the overlapping points based on the quantized position information (S6205).
  • the three-dimensional data encoding device encodes the occupancy code (S6206).
  • the three-dimensional data encoding device encodes the attribute information for the points having no overlapping points (S6208).
  • the three-dimensional data encoding device quantizes the position information of the point cloud (S6210) and encodes the occupancy code (S6211). Further, the three-dimensional data encoding device encodes information indicating the number of three-dimensional points included in each leaf node for all leaf nodes (S6212). Next, the three-dimensional data encoding device encodes the attribute information for the points having overlapping points (S6213).
  • the 3D data encoding device indicates that there are no overlapping points in the tiles in all the output tiles.
  • MergeDuplicatedPointFlag 1 is set, and the MergeDuplicatedPointFlag is stored in the metadata (additional information) (S6215).
  • the three-dimensional data encoding device divides the point cloud into tiles (S6216).
  • the three-dimensional data encoding device quantizes the position information of the point group in the target tile to be processed (S6217), and merges the overlapping points in the target tile based on the quantized position information (S6218). ).
  • the three-dimensional data encoding device encodes the occupancy code (S6219) and encodes the attribute information for the points having no overlapping points (S6220).
  • the 3D data encoding device indicates that the output tile may include overlapping points.
  • MergeDuplicatedPointFlag 0 is set, and the MergeMulticatedPointFlag is stored in the metadata (additional information) (S6222).
  • the three-dimensional data encoding device divides the point cloud into tiles (S6223).
  • the three-dimensional data encoding device quantizes the position information of the point cloud in the target tile (S6224) and encodes the occupancy code (S6225).
  • the three-dimensional data encoding device encodes information indicating the number of three-dimensional points included in each leaf node for all leaf nodes (S6226).
  • the three-dimensional data encoding device encodes the attribute information for the points having overlapping points (S6227).
  • the quantization unit may be arranged in front of the tile division unit. That is, tile division may be performed after all the point cloud data are quantized. The point cloud data is position-shifted by quantization, and then the overlapping points are merged. Overlapping points may not be merged.
  • the flag (independent_quantization_flag) indicating whether the quantization parameter is unified for the entire tile or set individually is specified as a value 1 (unified for the entire tile).
  • FIG. 75 is a flowchart of the three-dimensional data coding process in this case.
  • the order of the tile division process and the quantization process in the case of performing tile division (Yes in S6201) is different from the process shown in FIG. 74. The differences will be mainly described below.
  • FIG. 76 is a flowchart of the three-dimensional data decoding process according to the present embodiment.
  • the three-dimensional data decoding device decodes the MergeAutomatedPointFlag from the metadata contained in the bit stream (S6231).
  • the three-dimensional data decoding device determines whether or not tile division is performed (S6232). For example, the three-dimensional data decoding device determines whether or not tile division is performed based on the information contained in the bit stream.
  • the three-dimensional data decoding device decodes the occupancy code from the bit stream (S6233). Specifically, the three-dimensional data decoding device uses the header information and the like included in the bit stream to generate an octree in a certain space (node). For example, a three-dimensional data decoding device creates a large space (root node) using the x-axis, y-axis, and z-axis directions of a certain space added to the header information, and uses that space as the x-axis and y. Eight small spaces A (nodes A0 to A7) are generated by dividing each into two in the axis and z-axis directions, and an eight-minute tree is generated. Similarly, the three-dimensional data decoding device further divides each of the nodes A0 to A7 into eight small spaces, and through the processing of this flow, decodes the occupancy code of each node and decodes the leaf information in order. ..
  • the three-dimensional data decoding device decodes information indicating the number of three-dimensional points included in each leaf node for all leaf nodes (S6235). For example, when the large space is 8 ⁇ 8 ⁇ 8, the node becomes 1 ⁇ 1 ⁇ 1 when the ocree division is applied three times. When this size is the smallest unit (leaf) that can be divided, the 3D data decoding device determines whether or not each leaf node contains a point from the decoded occupancy code of the parent node of the leaf node, and each leaf. Calculate the three-dimensional position of the node.
  • the 3D data decoding device uses information such as the decoded occupancy code and the number of divisions of the ocree, and the position information of the leaf node (tertiary The original position) is calculated (S6236). Next, the three-dimensional data decoding device dequantizes the position information (S6237).
  • the three-dimensional data decoding device calculates the position information (three-dimensional position) of the point cloud by performing inverse quantization using the quantization parameter decoded from the header. For example, a three-dimensional data decoding device multiplies a three-dimensional position (x, y, z) before dequantization by a quantization parameter (qx, qy, qz) to dequantize the position (xx qx, y). ⁇ qy, z ⁇ qz) is calculated.
  • the inverse quantization process may be skipped during lossless coding.
  • the three-dimensional data decoding device decodes the attribute information related to the three-dimensional point from which the position information has been decoded (S6238).
  • MergeDuplicatedPointFlag 1
  • one attribute information is associated with each point having a different three-dimensional position after decoding.
  • MergeDuplicatedPointFlag 0
  • a plurality of different attribute informations are decoded and associated with a plurality of decoded points having the same three-dimensional position.
  • the three-dimensional data decoding device decodes the occupancy code for each tile (S6239).
  • the MergeAutomatedPointFlag is 0 (Yes in S6240)
  • the 3D data decoding device decodes the information indicating the number of 3D points contained in each leaf node for all the leaf nodes in the tile (S6241).
  • step S6241 the three-dimensional data decoder uses information such as the decoded occupancy code and the number of divisions of the ocree, and the position information of the leaf node (three-dimensional). Position) is calculated (S6242).
  • the three-dimensional data decoding device dequantizes the position information (three-dimensional position) of the point group in the tile (S6243), and decodes the attribute information related to the three-dimensional point from which the position information has been decoded (S6244). ..
  • step S6239 the processing of step S6239 and subsequent steps is performed on the next tile.
  • the processing of all tiles is completed (Yes in S6245)
  • the three-dimensional data encoding device ends the processing.
  • each point is shifted in the quantization of the position information for each tile. This can lead to overlapping points within and between tiles. By the subsequent merge process in the tiles for each tile, the overlapping points in the individual tiles are merged into one point. On the other hand, overlapping points between tiles remain.
  • a new overlapping point may occur near the tile boundary.
  • overlapping points may occur near the tile boundary.
  • the three-dimensional data encoding device stores a MergeMuplicatedPointFlag indicating whether or not there is an overlap point in the tile or a TileMergeDuplicatedPointFlag in the bitstream, and UniqueBetweenTiles, which is a flag indicating whether or not there is an overlap point between the tiles.
  • UniqueBetweenTimesFlag 0
  • the three-dimensional data decoding apparatus can reduce the number of points to be handled and reduce the processing load by deleting or merging the overlapping points.
  • the three-dimensional data encoding device may delete or merge the overlapping points between tiles when the overlapping points between tiles occur in the tile division or quantization.
  • the three-dimensional data decoding device can determine that merging of overlapping points is not necessary based on the UniqueBetweenTimesFlag.
  • the three-dimensional data encoding device sets the UniqueBetweenTilesFlag to 0 when there is a possibility that overlapping points may occur between tiles, such as when the tiles are divided so that the tile areas overlap, or when the tiles are quantized respectively. Set. Even if the tile areas overlap, if there are no points in the overlapping area, no overlapping points will occur. In that case as well, the three-dimensional data encoding device may set the UniqueBetweenTimesFlag to 0. Further, when performing quantization, the three-dimensional data coding apparatus may set UniqueBetweenTimesFlag to 0 when there is a possibility that overlapping points may occur even in a situation where overlapping points do not always occur.
  • FIG. 79 is a flowchart of the three-dimensional data coding process.
  • the three-dimensional data encoding device determines whether the tile areas overlap (S6251). If the tile regions do not overlap (No in S6252), the 3D data encoding device determines whether the tiles are individually quantized and merged (S6252). When the tile areas overlap (Yes in S6251), or when the tiles are individually quantized and merged (Yes in S6252), the 3D data encoder determines whether or not the overlapping points between the divided data are merged. (S6253).
  • the 3D data encoding device When the tiles are individually quantized and not merged (No in S6252), or when the overlapping points between the divided data are merged (Yes in S6253), the 3D data encoding device has overlapping points between the tiles.
  • the UniqueBetweenTilesFlag 1 indicating that there is no data is set (S6254).
  • the three-dimensional data encoding device actually reconstructs the tiles after quantization, determines whether or not there are overlapping points by searching for overlapping points between the tiles, and sets the UniqueBetweenTiles Flag according to the determination result. It may be set.
  • the three-dimensional data encoding device may store metadata regarding overlapping regions or ranges in a bit stream. For example, this metadata may indicate that there may be overlapping points at tile boundaries between tiles. As a result, the three-dimensional data decoding device can search the tile boundary and remove the overlapping points, so that the processing load can be reduced.
  • FIG. 80 is a block diagram showing a configuration of a three-dimensional data encoding device.
  • the three-dimensional data coding apparatus includes a dividing unit 6231, a plurality of quantization units 6232A and 6232B, an overlapping point merging unit 6233 between divided data, and a plurality of coding units 6234A and 6234B. ..
  • the division unit 6231 generates a plurality of division data by dividing the point cloud data into a plurality of tiles.
  • the plurality of quantization units 6232A and 6232B generate a plurality of quantization data by quantizing the plurality of divided data.
  • Each of the plurality of quantization units 6232A and 6232B includes a minimum position shift unit 6241, a position information quantization unit 6242, and an overlap point merging unit 6243 in the divided data.
  • the minimum position shift unit 6241 shifts the point cloud so that the minimum point having the smallest coordinate value in the point cloud shifts to the origin.
  • the position information quantization unit 6242 quantizes the position information.
  • the overlapping point merging unit 6243 in the divided data merges the overlapping points in the tile.
  • the overlapping point merging unit 6233 between the divided data merges the overlapping points between the tiles.
  • the plurality of coding units 6234A and 6234B generate a plurality of coded data by encoding the plurality of quantized data after the overlapping points between the tiles are merged.
  • the quantization unit is arranged in front of the division unit. That is, the three-dimensional data encoding device may perform tile division after quantization is performed on all the point cloud data. In this case, there is no overlap between tiles during quantization.
  • FIG. 81 is a diagram showing an example of GPS syntax. As shown in FIG. 81, GPS includes an inter-tile overlap point flag (UniqueBetweenTilesFlag).
  • the inter-tile overlap point flag is a flag indicating whether or not there is a possibility that overlap points exist between tiles.
  • FIG. 82 is a flowchart of the three-dimensional data decoding process.
  • the three-dimensional data decoding device decodes the UniqueBetweenTimesFlag and the MergeDuplicatedPointFlag from the metadata contained in the bitstream (S6261).
  • the three-dimensional data decoding device decodes the position information and the attribute information for each tile and reconstructs the point cloud (S6262).
  • the three-dimensional data decoding device determines whether or not merging of overlapping points is necessary (S6263). For example, the 3D data decoding device determines whether a merge is necessary, depending on whether the application can handle the overlap points or whether the overlap points should be merged. Alternatively, the three-dimensional data decoding device may determine that the overlapping points are merged for the purpose of smoothing or filtering a plurality of attribute information corresponding to the overlapping points and improving noise removal or estimation accuracy.
  • the 3D data decoding device determines whether or not there is duplication between tiles (overlapping points exist) (S6264). For example, the three-dimensional data decoding device may determine the presence or absence of duplication between tiles based on the decoding results of UniqueBetweenTilesFlag and MergeDuplicatedPointFlag. This eliminates the need to search for overlapping points in the three-dimensional data decoding device, and can reduce the processing load of the three-dimensional data decoding device. The three-dimensional data decoding device may determine whether or not the overlapping points exist by searching for the overlapping points after reconstructing the tiles.
  • the 3D data decoding device merges the overlapping points between tiles (S6265). Next, the three-dimensional data decoding device merges a plurality of duplicate attribute information (S6266).
  • step S6266 the 3D data decoding device executes the application using the point cloud without overlapping points (S6267).
  • the three-dimensional data decoding device does not merge the overlapping points and executes the application using the point cloud in which the overlapping points exist (S6268).
  • FIG. 83 is a diagram showing an example of an application.
  • the example shown in FIG. 83 shows a use case in which a moving body traveling from the area of tile A to the area of tile B downloads a map point cloud from a server in real time.
  • the server stores the coded data of the map point cloud of a plurality of overlapping areas.
  • the moving body has already acquired the map information of the tile A, and requests the server to acquire the map information of the tile B located in the moving direction.
  • the moving body determines that the data of the overlapping portion between the tile A and the tile B is unnecessary, and sends an instruction to delete the overlapping portion between the tile B and the tile A included in the tile B to the server.
  • the server deletes the above-mentioned overlapping portion from the tile B, and distributes the deleted tile B to the moving body. As a result, the amount of transmitted data can be reduced and the load of the decoding process can be reduced.
  • the moving object may be confirmed to have no overlapping points based on the flag. Further, if the tile A has not been acquired, the mobile body requests the server for data that does not delete the duplicated portion. In addition, if the server does not have the function to delete duplicate points, or if it is not known whether or not there are duplicate points, the mobile body checks the delivered data to determine whether or not there are duplicate points, and the duplicate points are found. If there is, you may do the merge.
  • the mobile body uploads the map point cloud data acquired by LiDAR to the server in real time. For example, the mobile body uploads the data acquired for each tile to the server. In this case, there is an area where tile A and tile B overlap, but the moving object on the encoding side does not merge the overlapping points between tiles, and the data is servered with a flag indicating that there is overlap between tiles.
  • the server accumulates the received data as it is without merging the duplicated data contained in the received data.
  • the device when transmitting or accumulating point group data using a system such as ISOBMFF, MPEG-DASH / MMT, or MPEG-TS, the device is included in GPS to see if there are overlapping points in the tiles. Flags indicating whether there are overlapping points between tiles may be replaced with descriptors or metadata in the system layer and stored in SI, MPD, moov, moof boxes, or the like. This allows the application to take advantage of the features of the system.
  • the three-dimensional data encoding device may divide the tile B into a plurality of slices based on the overlapping area with other tiles, for example.
  • slice 1 is an area that does not overlap with any tile
  • slice 2 is an area that overlaps with tile A
  • slice 3 is an area that overlaps with tile C. This facilitates the separation of the desired data from the encoded data.
  • map information may be point cloud data or mesh data.
  • the point cloud data may be tiled for each area and stored in the server.
  • FIG. 85 is a flowchart showing the flow of processing in the above system.
  • the terminal for example, a mobile body
  • the terminal detects the movement of the terminal from the area A to the area B (S6271).
  • the terminal starts acquiring the map information of the area B (S6272).
  • the terminal When the terminal has already downloaded the information of the area A (Yes in S6273), the terminal instructs the server to acquire the data of the area B that does not include the overlap point with the area A (S6274).
  • the server deletes the area A from the area B and transmits the data of the deleted area B to the terminal (S6275). Note that the server may encode and transmit the data in the area B in real time in response to an instruction from the terminal so that overlapping points do not occur.
  • the terminal merges (combines) the map information of the area B with the map information of the area A, and displays the map information after the merge (S6276).
  • the terminal instructs the server to acquire the data of the area B including the overlapping point with the area A (S6277).
  • the server transmits the data of the area B to the terminal (S6278).
  • the terminal displays the map information of the area B including the overlapping point with the area A (S6279).
  • FIG. 86 is a flowchart showing another operation example in the system.
  • the transmission device (three-dimensional data coding device) transmits tile data in order (S6281). Further, the transmitting device adds a flag to the data of the tile to be transmitted to indicate whether or not the tile to be transmitted overlaps with the tile of the previously transmitted data, and transmits the data (S6282).
  • the receiving device determines whether or not the tile of the received data overlaps with the tile of the previously received data based on the flag added to the data (S6283). If the tile of the received data overlaps with the tile of the previously received data (Yes in S6283), the receiving device removes or merges the duplicate points (S6284). On the other hand, when the tile of the received data does not overlap with the tile of the previously received data (No in S6283), the receiving device performs a process of deleting or merging the overlapping points, and ends the process. As a result, it is possible to reduce the processing load of the receiving device and improve the estimation accuracy of the attribute information. The receiving device does not have to perform merging when it is not necessary to merge the overlapping points.
  • a viewing device capable of reproducing this high-quality 3D point cloud is required.
  • a high-quality three-dimensional point cloud point cloud
  • a three-dimensional point cloud viewing device capable of efficiently displaying dense point cloud data by a scalable method using point cloud compression will be described.
  • Point cloud compression is performed by multiple data division methods. For example, using LoD (Levels of Datails), the resolution required to represent the point cloud data is calculated according to the distance between the virtual camera and the point cloud data. As a result, separation or layering is realized.
  • LoD Levels of Datails
  • the 3D point cloud viewing device selects a visible point cloud for rendering. At this time, it is preferable that the three-dimensional data decoding device confirms that all the visible point clouds are actually scanned data rather than approximations.
  • FIG. 87 is a block diagram showing a configuration example of a three-dimensional data encoding device.
  • the three-dimensional data coding apparatus includes a point cloud coding unit 8701 and a file format generation unit 8702.
  • the point cloud coding unit 8701 generates coded data (bit stream) by encoding the point cloud data.
  • the point cloud coding unit 8701 encodes the point cloud data by using a position information-based coding method using an ocree, a video-based coding method, or the like.
  • the file format generation unit 8702 changes the encoded data (bitstream) to the data in a predetermined file format.
  • the file format is ISOBMFF, MP4, or the like.
  • the three-dimensional data encoding device may output the coded data in the file format format (for example, transmit it to the three-dimensional data decoding device), or output the coded data in the bitstream format in the coding method. You may.
  • FIG. 88 is a block diagram showing a configuration example of the three-dimensional data decoding device 8705.
  • the three-dimensional data decoding device 8705 generates point cloud data by decoding the encoded data.
  • the coded data is, for example, coded data in a bit stream format or an MP4 format. Note that unencoded point cloud data may be used.
  • All data groups or some data groups in the point cloud are called bricks.
  • this brick may be called a division data, a tile, or a slice.
  • the divided data may be further divided.
  • the three-dimensional data decoding device 8705 acquires camera viewpoint information indicating the camera viewpoint (angle) from the outside.
  • the three-dimensional data decoding device 8705 acquires a part or all of the coded data based on the camera viewpoint information, and generates point cloud data by decoding the acquired coded data.
  • the camera viewpoint information indicates the position and direction (orientation) of the camera.
  • the three-dimensional data decoding device 8705 displays the decoded point cloud data.
  • the three-dimensional data decoding device 8705 includes a point cloud decoding unit 8706 and a brick decoding control unit 8707.
  • the camera viewpoint information (camera viewing angle) is input to the brick decoding control unit 8707.
  • the brick decoding control unit 8707 selects a brick to be decoded based on the visibility of the brick determined based on the camera viewpoint information.
  • the point cloud decoding unit 8706 decodes the selected brick and outputs the decoded brick.
  • FIG. 89 is a block diagram showing the configuration of the three-dimensional data encoding device 8710 according to the present embodiment.
  • the three-dimensional data encoding device 8710 generates encoded data (encoded stream) by encoding point cloud data (point cloud).
  • the three-dimensional data coding device 8710 includes a division unit 8711, a plurality of position information coding units 8712, a plurality of attribute information coding units 8713, an additional information coding unit 8714, a multiplexing unit 8715, and a method. Includes a line vector generator 8716.
  • the division unit 8711 generates a plurality of division data by dividing the point cloud data. Specifically, the division unit 8711 generates a plurality of division data by dividing the space of the point cloud data into a plurality of subspaces.
  • the subspace is any one of bricks, tiles and slices, or a combination of two or more of bricks, tiles and slices.
  • the point cloud data includes position information, attribute information (color or reflectance, etc.), and additional information.
  • the division unit 8711 generates a plurality of division position information by dividing the position information, and generates a plurality of division attribute information by dividing the attribute information. In addition, the division unit 8711 generates additional information regarding the division.
  • the plurality of position information coding units 8712 generate a plurality of coded position information by encoding the plurality of divided position information.
  • the position information coding unit 8712 encodes the divided position information using an N-branch structure such as an octa-tree. Specifically, in the octave tree, the target space is divided into eight nodes (subspaces), and 8-bit information (occupancy code) indicating whether or not each node contains a point cloud is generated. .. Further, the node including the point cloud is further divided into eight nodes, and 8-bit information indicating whether or not the point cloud is included in each of the eight nodes is generated. This process is repeated until it becomes equal to or less than the threshold value of the number of point clouds included in the predetermined hierarchy or node. For example, the plurality of position information coding units 8712 process the plurality of divided position information in parallel.
  • the attribute information coding unit 8713 generates coded attribute information which is coded data by encoding the attribute information using the configuration information generated by the position information coding unit 8712. For example, the attribute information coding unit 8713 determines a reference point (reference node) to be referred to in the coding of the target point (target node) to be processed based on the ocree tree structure generated by the position information coding unit 8712. To do.
  • the attribute information coding unit 8713 refers to a node whose parent node in the octree is the same as the target node among the peripheral nodes or adjacent nodes. The method of determining the reference relationship is not limited to this.
  • the coding process of the position information or the attribute information may include at least one of the quantization process, the prediction process, and the arithmetic coding process.
  • the reference means that the reference node is used to calculate the predicted value of the attribute information, or the state of the reference node (for example, occupancy indicating whether or not the reference node contains a point group) is used to determine the encoding parameter. Information) is used.
  • the coding parameter is a quantization parameter in the quantization process, a context in arithmetic coding, or the like.
  • the normal vector generation unit 8716 calculates the normal vector for each divided data.
  • the input data does not necessarily have to be divided.
  • the normal vector generation unit 8716 may calculate the normal vector for each point instead of the normal vector for each divided data.
  • the normal vector generation unit 8716 may calculate both the normal vector for each divided data and the normal vector for each point.
  • the additional information coding unit 8714 provides additional information included in the point group data, additional information regarding data division generated at the time of division by the division unit 8711, and a normal vector generated by the normal vector generation unit 8716. Encoding additional information is generated by encoding.
  • the multiplexing unit 8715 generates coded data (coded stream) by multiplexing a plurality of coded position information, a plurality of coded attribute information, and coded additional information, and transmits the generated coded data. ..
  • the coded additional information is used at the time of decoding.
  • FIG. 90 is a block diagram showing the configuration of the three-dimensional data decoding device 8720.
  • the three-dimensional data decoding device 8720 restores the point cloud data by decoding the coded data (encoded stream) generated by encoding the point cloud data.
  • the three-dimensional data decoding device 8720 includes a demultiplexing unit 8721, a plurality of position information decoding units 8722, a plurality of attribute information decoding units 8723, an additional information decoding unit 8724, a coupling unit 8725, and a normal vector extraction.
  • a unit 8726, a random access control unit 8727, and a selection unit 8728 are included.
  • the demultiplexing unit 8721 generates a plurality of coded position information, a plurality of coded attribute information, and coded additional information by demultiplexing the coded data (coded stream).
  • the additional information decoding unit 8724 generates additional information by decoding the coded additional information.
  • the normal vector extraction unit 8726 extracts the normal vector from the additional information.
  • the random access control unit 8727 determines the divided data to be extracted based on, for example, the normal vector for each divided data.
  • the selection unit 8728 is a plurality of division data (plural coded position information and a plurality of codes) determined by the random access control unit 8727 from a plurality of division data (a plurality of coding position information and a plurality of coding attribute information). Attribute information) is extracted.
  • the selection unit 8728 may extract one divided data.
  • the plurality of position information decoding units 8722 generate a plurality of divided position information by decoding the plurality of coded position information extracted by the selection unit 8728. For example, the plurality of position information decoding units 8722 process a plurality of coded position information in parallel.
  • the plurality of attribute information decoding units 8723 generate a plurality of divided attribute information by decoding the plurality of coded attribute information extracted by the selection unit 8728. For example, the plurality of attribute information decoding units 8723 processes a plurality of coded attribute information in parallel.
  • the connecting unit 8725 generates position information by combining a plurality of divided position information using additional information.
  • the connecting unit 8725 generates attribute information by combining a plurality of divided attribute information using additional information.
  • FIG. 91 is a diagram showing an example of point cloud data.
  • FIG. 92 is a diagram showing an example of a normal vector for each point.
  • the normal vector can be encoded independently for each three-dimensional group.
  • 91 and 92 show a three-dimensional point cloud of a book and a normal vector of the three-dimensional point cloud.
  • the surface of the book is flat, and multiple normal vectors of a surface extend in the same direction.
  • the normal vector extends in multiple directions along the surface normal.
  • FIG. 93 is a diagram showing an example of syntax of a normal vector in a bit stream.
  • “i” represents a counter of each three-dimensional point cloud
  • [face] represents the x, y, and z axes representing the three-dimensional point cloud. That is, NormalVector represents the magnitude of the normal vector of each axis.
  • FIG. 94 is a flowchart of the three-dimensional data coding process.
  • the three-dimensional data coding device encodes the position information (geometry) and the attribute information point by point (S8701).
  • a three-dimensional data encoding device encodes position information point by point.
  • the three-dimensional data encoding device may encode the attribute information for each point when the attribute information corresponding to the points exists.
  • the three-dimensional data encoding device encodes the normal vector (x, y, z) point by point (S8702).
  • the three-dimensional data encoding device may encode a point-by-point normal vector. Further, the three-dimensional data encoding device may encode, for example, difference information indicating a difference between the normal vector of the point to be processed and the normal vector of another point. As a result, the amount of data can be reduced. Further, the three-dimensional data encoding device may include the normal vector in the position information and encode it, or may include it in the attribute information and encode it. Further, the three-dimensional data encoding device may encode the normal vector independently of the position information and the attribute information. When a plurality of normal vectors exist for one point, the three-dimensional data encoding device may encode a plurality of normal vectors for each point.
  • FIG. 95 is a flowchart of the three-dimensional data decoding process.
  • the three-dimensional data decoding device decodes the position information and the attribute information from the bit stream point by point (S8706).
  • the three-dimensional data decoding device decodes the normal vector from the bit stream point by point (S8707).
  • the processing order shown in FIGS. 94 and 95 is an example, and the coding order and the decoding order may be interchanged.
  • the three-dimensional data encoding device may reduce the amount of data by encoding the normal vector using the position information or the correlation of the position information. In that case, the three-dimensional data decoding device decodes the normal vector using the position information.
  • the normal vector for each point in the point cloud can be encoded and decoded.
  • the normal vector is encoded as one of the attribute information.
  • the attribute information an example in which encoding is performed using the attribute information coding unit or the attribute information decoding unit will be described.
  • the three-dimensional data encoding device encodes the color information as the first attribute information and the normal vector as the second attribute information.
  • FIG. 96 is a diagram showing a configuration example of a bit stream.
  • Attr (0) shown in FIG. 96 is the encoded data of the first attribute information
  • Attr (1) is the encoded data of the second attribute information.
  • the metadata about encoding is stored in the parameter set (APS).
  • the three-dimensional data decoding device decodes the coded data with reference to the APS corresponding to the coded data.
  • attribute information is a normal vector
  • information indicating that the normal vector is data having three elements for each point may be stored in the SPS or the like.
  • FIG. 97 is a diagram showing an example of point cloud information having position information, color information, and a normal vector.
  • the three-dimensional data encoding device encodes the uncompressed point cloud data shown in FIG. 97.
  • the range of normal vector values is from -1 to 1 in floating point.
  • the 3D data encoder may convert floating point numbers to integers depending on the required precision.
  • a three-dimensional data encoder may convert a floating point number to a value between -127 and 128 using an 8-bit representation. That is, the three-dimensional data encoder may convert a floating point number to an integer or a positive integer value.
  • the normal vector is treated as one attribute information, different quantization processing can be applied.
  • different quantization parameters can be used for each attribute information. This allows different accuracy levels to be achieved.
  • the quantization parameters are stored in APS.
  • FIG. 98 is a flowchart of the three-dimensional data coding process.
  • FIG. 99 is a flowchart of the three-dimensional data decoding process.
  • FIGS. 98 and 99 The processing order shown in FIGS. 98 and 99 is an example, and the coding order and the decoding order may be interchanged.
  • the three-dimensional data encoding device divides the point cloud data into a plurality of objects or a plurality of regions based on the position information and features of the point cloud.
  • the divided data is, for example, tiles or slices, or hierarchical data.
  • the three-dimensional data encoding device generates a normal vector in this divided data unit, that is, a data unit including one or more points.
  • the visibility can be determined by the normal vector representation of the object in the brick.
  • 100 and 101 are diagrams for explaining this process.
  • the three-dimensional data encoding device divides the normal vector direction into angles at intervals of 30 ° with respect to the horizontal axis and the vertical axis.
  • the three-dimensional data encoding device converts the normal vector to (0, 0), (0, 90), (0, -90), (90, 0). , (-90, 0), (180, 180) may be divided into six directions.
  • the 3D data encoder may also calculate a valid normal vector using a median, mean, or other more effective algorithm. Further, the three-dimensional data encoding device may use a representative value as a value of a valid normal vector, or may use another method.
  • the normal vector for each divided data may show the original values of x, y, and z as they are, may be quantized every 30 degrees as described above, or may be quantized to the information every 90 degrees. May be quantized. The amount of information can be reduced by quantization.
  • FIG. 102 is an example of point cloud data, and is a diagram showing an example of a face object.
  • FIG. 103 is a diagram showing an example of a normal vector in this case. As shown in FIG. 103, the normal vector of the face object shown in FIG. 102 points in the (0, 0) and (90, 0) directions.
  • the 3D data encoder can use 1 bit per direction to indicate if there is an object normal vector in that direction.
  • the example of the data including the face object shown in FIGS. 102 and 103 is an example in which the normal vector of the data is shown in units of 90 degrees with 6 normal vectors for each surface.
  • the two normal vectors in the directions (0, 0) and (90, 0) are the normal vectors of this divided data.
  • each of the six normal vectors may be represented by 1-bit information.
  • FIG. 104 is a diagram showing an example of information on this normal vector. If the divided data has the corresponding normal vector, the 1-bit information is set to the value 1, otherwise it is set to 0. As a result, the amount of information can be reduced by quantizing the data as compared with the method of showing the values of x, y, and z as they are.
  • FIG. 105 shows an example of a six-sided cube.
  • 106, 107 and 108 are views showing front and rear surfaces a and b, left and right surfaces c and d, and upper and lower surfaces e and f, respectively.
  • the normal vector faces at least one or three faces, depending on the orientation of the object depending on the viewing angle.
  • Six flags, one bit each, can be used to represent one of the six faces (abcdef) of the cube that represent each system.
  • (100,000) is generated when viewed from the front, (001000) when viewed from the side, and (000001) when viewed from below.
  • size is not important, only direction is represented.
  • the surface a is the opposite surface of the surface b
  • the surface c is the opposite surface of the surface d
  • the surface e is the opposite surface of the surface f. Therefore, it is impossible to see the surface a and the surface b at the same time. That is, the normal vector can be expressed by using three flags (ace).
  • FIG. 110 is a diagram showing a configuration example of a bit stream in this case.
  • the normal vector information is stored in the slice header of the position information in each slice.
  • the normal vector information may be stored in the header of the attribute information, or may be stored in the metadata independent of the position information and the attribute information.
  • FIG. 111 is a diagram showing a syntax example of a slice header (Geometry slice header information) of position information.
  • the location information slice header includes normal_vector_number and normal_vector_x, normal_vector_y and normal_vector_z.
  • Normal_vector_number indicates the number of normal vectors corresponding to the slice data.
  • the normal_vector_x, normal_vector_y, and normal_vector_z indicate the elements (x, y, z) of the normal vector corresponding to the slice data, respectively.
  • the number of normal_vector can be changed.
  • the number of normal_vectors is shown as many as the number of normal_vector_numbers.
  • normal_vector_number may be stored in GPS or SPS that can store common information in a plurality of slices.
  • the values of the normal vectors of x, y, and z may be quantized.
  • a three-dimensional data encoding device quantizes the value of the original normal vector by shifting it by a common bit amount s (bit), and information indicating the bit amount s and the normalized normal vector.
  • Information indicating (normal_vector_x ⁇ s, normal_vector_y ⁇ s, normal_vector_z ⁇ s) may be sent. This can reduce the amount of bits.
  • FIG. 112 is a diagram showing another syntax example of the slice header of the position information. This example is an example in which a normal vector simplified (quantized) into six-sided data is shown for each divided data. For each face, it is indicated whether or not there is a normal vector.
  • the slice header of this position information includes is_normal_vector.
  • is_normal_vector is set to 1 if there is a normal vector corresponding to the slice data, and set to 0 if there is no normal vector. For example, the order of the plurality of faces is predetermined.
  • the accuracy of quantization and the number or order of normal vectors are not limited to this. These may be fixed or variable.
  • FIG. 113 is a flowchart of the three-dimensional data coding process.
  • the three-dimensional data encoding device generates a plurality of divided data by dividing the point cloud data (S8721).
  • the three-dimensional data coding device encodes the position information and the attribute information for each divided data (S8722).
  • the three-dimensional data encoding device stores the normal vector for each divided data in the slice header (S8723).
  • FIG. 114 is a flowchart of the three-dimensional data decoding process.
  • the three-dimensional data decoding device decodes the position information and the attribute information from the bit stream for each divided data (S8726).
  • the three-dimensional data decoding device decodes the normal vector for each divided data from the slice header for each divided data (S8727).
  • the three-dimensional data decoding device combines a plurality of divided data (S8728).
  • FIG. 115 is a flowchart of a three-dimensional data decoding process in the case of partially decoding data.
  • the three-dimensional data decoding device decodes the normal vector for each divided data from the slice header for each divided data (S8731).
  • the three-dimensional data decoding device determines the divided data to be decoded based on the normal vector, and decodes the determined divided data (S8732).
  • the decrypted plurality of divided data are combined (S8733).
  • FIG. 116 is a diagram showing a configuration example of a bit stream. As shown in FIG. 116, the SEI may be included in the bitstream or with the main encoded bitstream, depending on how the SEI is implemented in both the encoder and decoder. May be generated as a separate file.
  • metadata for example, SEI: Supermental Enhancement Information
  • FIG. 117 is a diagram showing an example of syntax of slice information (slice_information) included in SEI.
  • Slice information includes a number_of_slice, bounding_box_origin_x, and bounding_box_origin_y and bounding_box_origin_z, bounding_box_width, and bounding_box_height and Bounding_box_depth, and NormalVector_QP, and number_of_normal_vector, normalVector_x, and normalVector_y and NormalVector_z.
  • Number_of_slice indicates the number of divided data.
  • bounding_box_origin_x, bounding_box_origin_y and bounding_box_origin_z indicate the origin coordinates of the bounding box of the slice data.
  • bounding_box_wise, bounding_box_height and bounding_box_depth indicate the width, height and depth of the bounding box of the slice data, respectively.
  • NormalVector_QP indicates the scale information or bit shift information of the quantization when the normal_vector is quantized.
  • number_of_normal_vector indicates the number of normal vectors included in the slice data.
  • normalVector_x, normalVector_y, and normalVector_z indicate the components of the elements (x, y, z) of the normal vector, respectively.
  • FIG. 118 is a diagram showing another example of slice information included in SEI.
  • the example shown in FIG. 118 is an example in which a normal vector simplified (quantized) into six-plane data is shown for each divided data. For each face, it is indicated whether or not there is a normal vector.
  • This slice information includes is_normal_vector.
  • is_normal_vector is set to 1 if there is a normal vector corresponding to the slice data, and set to 0 if there is no normal vector. For example, the order of the plurality of faces is predetermined.
  • the slice information may include a flag indicating whether or not the slice information includes bounding box information (origin, width, height, depth) for each slice. In this case, when the flag is on (for example, 1), the slice information includes the bounding box information for each slice, and when the flag is off (for example, 0), the slice information is the information for the bounding box for each slice. Does not include. Further, the slice information may include a flag indicating whether or not the slice information includes information on the normal vector for each slice. In this case, when the flag is on (for example, 1), the slice information includes information on the normal vector for each slice, and when the flag is off (for example, 0), the slice information is the normal vector for each slice. Does not contain information about.
  • bounding box information oil, width, height, depth
  • the three-dimensional data decoding device independently decodes the data for each slice by using the information for each slice, for example, one or both of the bounding box information of the slice and the normal vector.
  • FIG. 119 is a flowchart of the three-dimensional data decoding process.
  • the three-dimensional data decoding device determines the slices to be decoded by a predetermined method and the decoding order of the slices (S8741).
  • the three-dimensional data decoding device decodes specific slices in a determined order (S8742).
  • FIG. 120 is a diagram showing an example of this partial decoding process.
  • the three-dimensional data decoding device receives the sliced coded data shown in FIG. 120 (a).
  • the three-dimensional data decoding device decodes the coded data of some slices and does not decode the coded data of other slices.
  • the three-dimensional data decoding device performs decoding by changing the order of the encoded data as shown in FIG. 120 (c).
  • FIG. 121 is a diagram showing a configuration example of a three-dimensional data decoding device.
  • the three-dimensional data decoding device includes an attribute information decoding unit 8731 and a random access control unit 8732.
  • the attribute information decoding unit 8731 extracts the bounding box information and the normal vector for each slice from the encoded data.
  • the random access control unit 8732 determines the number and order of slices to be decoded based on the bounding box information and normal vector for each slice and the sensor information acquired from the outside, for example, the camera angle (camera orientation) and the camera position. decide.
  • the random access control unit 8732 may calculate the bounding box for each slice and the distance information indicating the distance from the camera for each slice from the camera position.
  • the random access control unit 8732 may derive visible information indicating whether or not an object can be seen from the camera for each slice from the normal vector for each slice and the camera angle.
  • the random access control unit 8732 may calculate one of the distance information and the visible information, or may calculate both.
  • FIG. 124 is a diagram showing an example of the relationship between distance and resolution. For example, what is visible from the camera is decoded (frustum culling). Furthermore, the resolution to be decoded depends on the distance between the virtual camera and the point cloud data.
  • the three-dimensional data decoding device determines whether or not the slice can be seen from the camera from the normal vector for each slice and the camera viewpoint (camera angle), and decodes the slice that can be seen from the camera.
  • the three-dimensional data decoder calculates the distance of the slice to be decoded from the camera, decodes the high resolution data if the distance from the camera is short, and the low resolution if the distance from the camera is long.
  • the data may be decrypted.
  • the coded data is layered and coded, and the three-dimensional data decoding device can independently decode the low-resolution data. Further, when decoding high resolution data, the three-dimensional data decoding device further decodes the difference information between the low resolution data and the high resolution data, and adds the difference information to the low resolution data to obtain high resolution. Generate resolution data. If the coded data is layered and not encoded, the three-dimensional data decoding device does not have to perform the process, and whether or not the process is performed depending on whether or not the data is layered. May be determined.
  • FIG. 125 is a diagram showing an example of a brick and a normal vector.
  • the two front bricks (eg slices) facing the camera (view frustum), that is, the bricks whose normal vector points to the camera, are decoded.
  • the three-dimensional data decoding device determines whether or not one or more normal vectors included in the metadata include a normal vector having a normal vector opposite to the camera direction for each slice data.
  • the three-dimensional data decoding device determines that the target slice is visible, and sets the target slice as the decoding target. decide.
  • the three-dimensional data decoding device may determine that the target slice is invisible (invisible) when another slice exists between the camera and the target slice. Further, the three-dimensional data decoding device does not determine whether the normal vector and the camera direction are completely opposite to each other, but determines whether the relationship between the normal vector and the camera direction is within a predetermined angle range. By determining, it may be determined whether or not it is visible.
  • FIG. 126 is a diagram showing an example of a level (LoD).
  • FIG. 127 is a diagram showing an example of an ocree tree structure. Each brick is divided into layers to control the level of resolution to decode. For example, the level is the depth of division when dividing into an ocree. As shown in FIG. 126, the number of voxels contained in each level may be specified by 2 (3 ⁇ level) . In addition, another definition may be used for the division method or the number of voxels according to the level.
  • the 3D data decoding device can realize high-speed visibility determination and distance calculation. Decoding time affects real-time rendering.
  • LoD it is possible to display intermediate bricks, so real-time rendering and smooth correspondence can be realized.
  • FIG. 128 is a flowchart of a three-dimensional data decoding process using LoD.
  • the three-dimensional data decoding device determines the level to be decoded according to the purpose (S8751).
  • the three-dimensional data decoding device decodes the first level (level 0) (S8752).
  • the three-dimensional data decoding device determines whether or not all levels of the decoding target have been decoded (S8753). If all levels have not been decoded (No in S8753), the 3D data decoder decodes the next level (S8754). At this time, the three-dimensional data decoding device may decode the next level using the data of the previous level.
  • the three-dimensional data decoding apparatus displays the decoded data (S8755).
  • the three-dimensional data decoding device decodes the data up to the determined level, and does not decode the data after the determined level. As a result, the amount of processing related to decoding can be reduced, and the processing speed can be improved. Further, the three-dimensional data decoding device displays the data up to the determined level, and does not display the data after the determined level. As a result, the amount of processing related to display can be reduced and the processing speed can be improved.
  • the three-dimensional data decoding device may determine the level of the brick to be decoded based on, for example, the distance of the brick from the camera or whether or not the brick can be seen from the camera.
  • FIG. 129 is a flowchart of the three-dimensional data decoding process.
  • the three-dimensional data decoding device acquires the encoded data (S8761).
  • the coded data is point cloud data encoded and compressed using an arbitrary coding method.
  • the encoded data may be in a bitstream format or a file format.
  • the three-dimensional data decoding device acquires the normal vector of the brick to be processed and the position information from the encoded data (S8762). For example, the three-dimensional data decoding device acquires the normal vector for each brick and the position information of the brick from the metadata (SEI or data header) included in the encoded data. The three-dimensional data decoding device may determine the distance between the brick and the camera from the brick position information and the camera position information. Further, the three-dimensional data decoding device may determine the visibility of the brick (whether or not the brick is facing the direction of the camera) from the normal vector and the direction of the camera.
  • SEI or data header included in the encoded data.
  • the three-dimensional data decoding device may determine the distance between the brick and the camera from the brick position information and the camera position information. Further, the three-dimensional data decoding device may determine the visibility of the brick (whether or not the brick is facing the direction of the camera) from the normal vector and the direction of the camera.
  • FIG. 130 is a diagram showing an example of a brick to be decoded. As shown in FIG. 130, the 3D data decoding device decodes all visible bricks at level 0 resolution.
  • the three-dimensional data decoding device determines whether or not to decode the next level of each brick according to the position information, and decodes the next level of the brick determined to be decoded (S8764). Further, this process is repeated until the decoding process of all levels is completed (S8765). Specifically, the resolution of the brick near the position of the virtual camera is set high. For example, depending on resources such as memory, a level is added that gives priority to bricks closer to the camera and gradually decodes them.
  • FIG. 131 is a diagram showing an example of the level to be decoded of each brick. As shown in FIG. 131, the three-dimensional data decoding device decodes bricks closer to the camera at a higher resolution and bricks farther from the camera at a lower resolution, depending on the distance from the camera. Also, the 3D data decoding device does not decode invisible bricks.
  • the 3D data decoding device When all levels of decoding are completed (Yes in S8765), the 3D data decoding device outputs the obtained 3D point cloud (S8766).
  • FIG. 132 is a diagram showing a syntax example of a slice header (Geometry slice header information) of position information.
  • the slice header of the position information includes number_of_angle, view_angle, and visibility.
  • Number_of_angle indicates the number of camera angles (camera direction).
  • view_angle indicates a camera angle, for example, a vector of camera angles. Visibility indicates whether the slice is visible from the corresponding camera angle.
  • the number of views_angles may be variable or may be a predetermined fixed value. Further, if the number and value of view_angle are predetermined, view_angle may be omitted.
  • the three-dimensional data encoding device calculates and calculates the visibility according to the camera position or the camera parameter in advance. Visibility may be stored in encoded data.
  • FIG. 133 is a flowchart of the three-dimensional data coding process.
  • the three-dimensional data encoding device divides the point cloud data into divided data (for example, slices) (S8771).
  • the three-dimensional data encoding device encodes the position information and the attribute information for each divided data unit (S8772).
  • the three-dimensional data encoding device stores visible information (visibility) according to the camera angle in the metadata for each divided data (S8773).
  • FIG. 134 is a flowchart of the three-dimensional data decoding process.
  • the three-dimensional data decoding device acquires visible information according to the camera angle from the metadata for each divided data (S8776).
  • the three-dimensional data decoding device determines the divided data that is visible from a desired camera angle based on the visible information, and decodes the divided data that is visible (S8777).
  • FIGS. 135 and 136 are diagrams showing examples of point cloud data.
  • a, c, d and e represent a plane. Therefore, the three-dimensional data encoding device can perform slice division by utilizing the fact that the three-dimensional points of each slice have a normal vector in the same direction in the slice division. A similar technique can be applied to tile division.
  • FIGS. 137 to 140 are diagrams showing a configuration example of a system including a three-dimensional data coding device, a three-dimensional data decoding device, and a display device.
  • the three-dimensional data encoding device generates encoded data by encoding slice data, a normal vector for each slice, and bounding box information.
  • the three-dimensional data decoding device identifies the data to be decoded from the encoded data and the sensor information, and generates the decoded slice data by decoding the specified data.
  • the display device displays the decoded slice data. In this configuration, the three-dimensional data decoding device can flexibly determine the visible information and whether or not to decode it.
  • the three-dimensional data encoding device generates encoded data by encoding slice data, a normal vector for each slice, and bounding box information.
  • the three-dimensional data decoding device determines the data to be decoded and the order from the encoded data and the sensor information, and decodes the determined data in the determined order.
  • the three-dimensional data decoding device can decode the data to be displayed first (for example, 3, 4, 5) first, so that the comfort of display can be improved.
  • the three-dimensional data encoding device generates encoded data by encoding slice data and visible information for each camera angle.
  • the three-dimensional data decoding device identifies the data to be decoded from the encoded data information and the sensor information, and decodes the specified data.
  • the three-dimensional data decoding device may further determine the decoding order. In this configuration, it is not necessary for the three-dimensional data decoding device to calculate the visible information, so that the processing amount of the three-dimensional data decoding device can be reduced.
  • the three-dimensional data decoding device notifies the three-dimensional data coding device of the camera angle or camera position of the three-dimensional data decoding device via communication or the like.
  • the three-dimensional data coding device calculates the visible information for each slice, determines the data to be encoded and the order, and generates the encoded data by encoding the determined data in the determined order.
  • the three-dimensional data decoding device decodes the transmitted slice data as it is. In this configuration, the processing amount and communication bandwidth can be reduced by encoding and decoding the necessary portion by using the interactive configuration.
  • the three-dimensional data decoding device may redetermine the slice to be decoded when the amount of change exceeds a predetermined value. In that case, high-speed decoding and display are possible by decoding the difference data other than the already decoded data.
  • FIG. 141 is a diagram showing a configuration example of a bit stream.
  • FIG. 142 is a diagram showing a configuration example of a three-dimensional data encoding device.
  • the three-dimensional data coding apparatus includes a coding unit 8741 and a file conversion unit 8742.
  • the coding unit 8741 encodes the point cloud data to generate a bit stream including the coded data and the control information.
  • the file conversion unit 8742 converts the bitstream into a file format.
  • FIG. 143 is a diagram showing a configuration example of a three-dimensional data decoding device.
  • the three-dimensional data decoding device includes a file inverse conversion unit 8751 and a decoding unit 8752.
  • the file inverse conversion unit 8751 converts the file format into a bit stream including encoded data and control information.
  • the decoding unit 8725 generates point cloud data by decoding the bit stream.
  • FIG. 144 is a diagram showing the basic structure of ISOBMFF.
  • FIG. 145 is a protocol stack diagram when a NAL unit common to PCC codecs is stored in ISOBMFF. Here, what is stored in ISOBMFF is the NAL unit of the PCC codec.
  • the NAL unit includes a NAL unit for data and a NAL unit for metadata.
  • the NAL unit for data includes position information slice data (Geometry Slice Data), attribute information slice data (Attribute Slice Data), and the like.
  • NAL units for metadata include SPS, GPS, APS, SEI and the like.
  • ISOBMFF ISO based media file format
  • the basic unit in ISOBMFF is a box.
  • a box is composed of type, length and data, and a set of various type boxes is a file.
  • the file is mainly composed of boxes such as ftyp which indicates the brand of the file in 4CC, moov which stores metadata such as control information, and mdat which stores data.
  • the storage method for each medium in ISOBMFF is separately specified.
  • the storage method for AVC video and HEVC video is specified in ISO / IEC14496-15. Further, in order to store and transmit PCC coded data, it is conceivable to extend the function of ISOBMFF and use it.
  • the SEI When storing the NAL unit for metadata in ISOBMFF, the SEI may be stored in the "mdat box" together with the PCC data, or may be stored in the "track box” that describes the control information regarding the stream. Further, when the data is packetized and transmitted, the SEI may be stored in the packet header. Showing the SEI on the layer of the system facilitates access to attribute information, tile and slice data and improves the speed of access.
  • FIG. 146 is a diagram showing an example of converting a bit stream into a file format.
  • the three-dimensional data encoding device stores slice data in the file format mdat.
  • the three-dimensional data encoding device calculates the memory position of the slice data as the offset information (offsets 1 to 4 in FIG. 146) at the beginning of the file, and includes the calculated offset information in the random access table (PCC random access table).
  • FIG. 147 is a diagram showing a syntax example of slice information (slice_information).
  • FIGS. 148 to 150 are diagrams showing a syntax example of the PCC random access table.
  • the PCC random access table includes bounding box information (bounding_box_info), normal vector information (normal_vector_info), and offset information (offset) stored in slice information (slice_information).
  • the 3D data decoding device analyzes the PCC random access table and identifies the slice to be decoded.
  • the three-dimensional data decoding device can access desired data by acquiring offset information from the PCC random access table.
  • the three-dimensional data coding apparatus performs the process shown in FIG. 151.
  • the three-dimensional data coding device generates a bit stream by encoding the position information of each of the plurality of three-dimensional points included in the point group data and one or more attribute information (S8781), and encodes (S8781). Then, each normal vector of a plurality of three-dimensional points is encoded as one attribute information included in one or more attribute information.
  • the three-dimensional data encoding device can process the normal vector in the same manner as other attribute information by encoding the normal vector as attribute information. Therefore, the three-dimensional data encoding device can reduce the processing amount. That is, the three-dimensional data encoding device can encode the normal vector as the attribute information without changing the definition of the attribute information or the like.
  • the three-dimensional data coding apparatus converts the normal vector represented by the floating point number into an integer and then encodes it.
  • the three-dimensional data encoding device can process the normal vector in the same manner as the other attribute information, for example, when the other attribute information is represented by an integer.
  • control information for example, SPS
  • control information for example, SPS
  • the three-dimensional data encoding device includes a processor and a memory, and the processor uses the memory to perform the above processing.
  • the three-dimensional data decoding device performs the process shown in FIG. 152.
  • the three-dimensional data decoding device is a bit stream generated by encoding the position information of each of the plurality of three-dimensional points included in the point group data and one or more attribute information, and is a plurality of three-dimensional points.
  • the three-dimensional data decoding device can process the normal vector in the same manner as other attribute information by decoding the normal vector as attribute information. Therefore, the three-dimensional data decoding device can reduce the processing amount.
  • the three-dimensional data decoding device acquires the normal vector represented by an integer in the acquisition of the normal vector (S8787). According to this, the three-dimensional data decoding apparatus can process the normal vector in the same manner as the other attribute information, for example, when the other attribute information is represented by an integer.
  • control information for example, SPS
  • control information for example, SPS
  • the three-dimensional data decoding device includes a processor and a memory, and the processor uses the memory to perform the above processing.
  • the three-dimensional data coding apparatus performs the processing shown in FIG. 153.
  • the three-dimensional data encoding device divides the point cloud data into a plurality of divided data (for example, bricks, slices, or tiles) (S8791), and generates a bit stream by encoding the plurality of divided data (S8792).
  • the bitstream contains information indicating the normal vector of each of the plurality of divided data.
  • the three-dimensional data coding apparatus can reduce the processing amount and the code amount as compared with the case where the normal vector is encoded for each point by encoding the normal vector for each divided data.
  • each of the plurality of divided data is a random access unit.
  • the three-dimensional data encoding device includes a processor and a memory, and the processor uses the memory to perform the above processing.
  • the three-dimensional data decoding device performs the process shown in FIG. 154.
  • the three-dimensional data decoding device acquires a bit stream generated by encoding a plurality of divided data (for example, bricks, slices, or tiles) generated by dividing the point group data (S8796).
  • Information indicating the normal vector of each of the plurality of divided data is acquired from the bit stream (S8797).
  • the three-dimensional data decoding device can reduce the amount of processing by decoding the normal vector for each divided data as compared with the case of decoding the normal vector for each point.
  • each of the plurality of divided data is a random access unit.
  • the three-dimensional data decoding device further determines the divided data to be decoded from a plurality of divided data based on the normal vector, and decodes the divided data to be decoded.
  • the three-dimensional data decoding device further determines the decoding order of the plurality of divided data based on the normal vector, and decodes the plurality of divided data in the determined decoding order.
  • the three-dimensional data decoding device includes a processor and a memory, and the processor uses the memory to perform the above processing.
  • FIG. 155 is a block diagram showing a configuration example of the three-dimensional data creation device 810 according to the present embodiment.
  • the three-dimensional data creation device 810 is mounted on a vehicle, for example.
  • the three-dimensional data creation device 810 transmits and receives three-dimensional data to and from an external traffic monitoring cloud, a vehicle in front or a following vehicle, and creates and stores three-dimensional data.
  • the three-dimensional data creation device 810 includes a data reception unit 811, a communication unit 812, a reception control unit 813, a format conversion unit 814, a plurality of sensors 815, a three-dimensional data creation unit 816, and a three-dimensional data synthesis unit. It includes an 817, a three-dimensional data storage unit 818, a communication unit 819, a transmission control unit 820, a format conversion unit 821, and a data transmission unit 822.
  • the data receiving unit 811 receives the three-dimensional data 831 from the traffic monitoring cloud or the vehicle in front.
  • the three-dimensional data 831 includes information such as point cloud, visible light image, depth information, sensor position information, and speed information, including an area that cannot be detected by the sensor 815 of the own vehicle.
  • the communication unit 812 communicates with the traffic monitoring cloud or the vehicle in front, and transmits a data transmission request or the like to the traffic monitoring cloud or the vehicle in front.
  • the reception control unit 813 exchanges information such as the corresponding format with the communication destination via the communication unit 812, and establishes communication with the communication destination.
  • the format conversion unit 814 generates the three-dimensional data 832 by performing format conversion or the like on the three-dimensional data 831 received by the data receiving unit 811. Further, the format conversion unit 814 performs decompression or decoding processing when the three-dimensional data 831 is compressed or encoded.
  • the plurality of sensors 815 are a group of sensors that acquire information outside the vehicle, such as a LiDAR, a visible light camera, or an infrared camera, and generate sensor information 833.
  • the sensor information 833 is three-dimensional data such as a point cloud (point cloud data) when the sensor 815 is a laser sensor such as LiDAR.
  • the number of sensors 815 may not be plural.
  • the three-dimensional data creation unit 816 generates three-dimensional data 834 from the sensor information 833.
  • the three-dimensional data 834 includes information such as point cloud, visible light image, depth information, sensor position information, and speed information.
  • the three-dimensional data synthesizing unit 817 synthesizes the three-dimensional data 834 created based on the sensor information 833 of the own vehicle with the three-dimensional data 832 created by the traffic monitoring cloud or the vehicle in front of the own vehicle. Three-dimensional data 835 including the space in front of the vehicle in front, which cannot be detected by the sensor 815, is constructed.
  • the three-dimensional data storage unit 818 stores the generated three-dimensional data 835 and the like.
  • the communication unit 819 communicates with the traffic monitoring cloud or the following vehicle, and transmits a data transmission request or the like to the traffic monitoring cloud or the following vehicle.
  • the transmission control unit 820 exchanges information such as supported formats with the communication destination via the communication unit 819, and establishes communication with the communication destination. Further, the transmission control unit 820 is in the space of the three-dimensional data to be transmitted based on the three-dimensional data construction information of the three-dimensional data 832 generated by the three-dimensional data synthesis unit 817 and the data transmission request from the communication destination. Determine a transmission area.
  • the transmission control unit 820 determines a transmission area including the space in front of the own vehicle that cannot be detected by the sensor of the following vehicle in response to a data transmission request from the traffic monitoring cloud or the following vehicle. Further, the transmission control unit 820 determines the transmission area by determining whether or not the space that can be transmitted or the transmitted space has been updated based on the three-dimensional data construction information. For example, the transmission control unit 820 determines the area specified in the data transmission request and the area in which the corresponding three-dimensional data 835 exists as the transmission area. Then, the transmission control unit 820 notifies the format conversion unit 821 of the format and the transmission area supported by the communication destination.
  • the format conversion unit 821 converts the 3D data 836 in the transmission area into a format supported by the receiving side among the 3D data 835 stored in the 3D data storage unit 818, thereby converting the 3D data 837. Generate.
  • the format conversion unit 821 may reduce the amount of data by compressing or encoding the three-dimensional data 837.
  • the data transmission unit 822 transmits the three-dimensional data 837 to the traffic monitoring cloud or the following vehicle.
  • the three-dimensional data 837 includes information such as a point cloud in front of the own vehicle, visible light images, depth information, or sensor position information, including an area that becomes a blind spot of the following vehicle, for example.
  • the format conversion may not be performed.
  • the three-dimensional data creation device 810 acquires the three-dimensional data 831 in the region that cannot be detected by the sensor 815 of the own vehicle from the outside, and the three-dimensional data 831 and the sensor information 833 detected by the sensor 815 of the own vehicle.
  • the three-dimensional data 835 is generated by synthesizing the three-dimensional data 834 based on the above.
  • the three-dimensional data creation device 810 can generate three-dimensional data in a range that cannot be detected by the sensor 815 of the own vehicle.
  • the three-dimensional data creation device 810 obtains three-dimensional data including the space in front of the own vehicle that cannot be detected by the sensor of the following vehicle in response to the data transmission request from the traffic monitoring cloud or the following vehicle, in the traffic monitoring cloud or the following. Can be sent to vehicles, etc.
  • FIG. 156 is a flowchart showing an example of a procedure for transmitting three-dimensional data to the traffic monitoring cloud or the following vehicle by the three-dimensional data creation device 810.
  • the three-dimensional data creation device 810 generates and updates three-dimensional data 835 of the space including the space on the road ahead of the own vehicle (S801). Specifically, the three-dimensional data creation device 810 synthesizes the three-dimensional data 834 created based on the sensor information 833 of the own vehicle with the three-dimensional data 831 created by the traffic monitoring cloud or the vehicle in front. Therefore, the three-dimensional data 835 including the space in front of the preceding vehicle that cannot be detected by the sensor 815 of the own vehicle is constructed.
  • the three-dimensional data creation device 810 determines whether the three-dimensional data 835 included in the transmitted space has changed (S802).
  • the three-dimensional data creation device 810 changes.
  • the three-dimensional data including the three-dimensional data 835 of the generated space is transmitted to the traffic monitoring cloud or the following vehicle (S803).
  • the three-dimensional data creation device 810 may transmit the three-dimensional data in the space where the change has occurred in accordance with the transmission timing of the three-dimensional data to be transmitted at predetermined intervals, but the three-dimensional data is transmitted immediately after detecting the change. You may. That is, the three-dimensional data creation device 810 may transmit the three-dimensional data of the changed space with priority over the three-dimensional data transmitted at predetermined intervals.
  • the three-dimensional data creation device 810 may transmit all the three-dimensional data of the changed space as the three-dimensional data of the changed space, or the difference (for example, appearance or disappearance) of the three-dimensional data. Only the information of the three-dimensional point, the displacement information of the three-dimensional point, etc.) may be transmitted.
  • the three-dimensional data creation device 810 may transmit metadata related to the danger avoidance operation of the own vehicle such as a sudden braking warning to the following vehicle prior to the three-dimensional data of the space where the change has occurred.
  • the following vehicle can recognize the sudden braking of the preceding vehicle at an early stage, and can start the danger avoidance operation such as deceleration at an earlier stage.
  • the three-dimensional data creation device 810 When the three-dimensional data 835 included in the transmitted space has not changed (No in S802), or after step S803, the three-dimensional data creation device 810 has a predetermined shape at a distance L in front of the own vehicle.
  • the three-dimensional data contained in the space of is transmitted to the traffic monitoring cloud or the following vehicle (S804).
  • steps S801 to S804 are repeated at predetermined time intervals.
  • the three-dimensional data creation device 810 does not have to transmit the three-dimensional data 837 of the space if there is no difference between the three-dimensional data 835 of the space to be transmitted at present and the three-dimensional map.
  • the client device transmits the sensor information obtained by the sensor to the server or another client device.
  • FIG. 157 is a diagram showing a configuration of a three-dimensional map and a sensor information transmission / reception system according to the present embodiment.
  • the system includes a server 901 and client devices 902A and 902B.
  • client devices 902A and 902B are not particularly distinguished, they are also referred to as the client devices 902.
  • the client device 902 is, for example, an in-vehicle device mounted on a moving body such as a vehicle.
  • the server 901 is, for example, a traffic monitoring cloud or the like, and can communicate with a plurality of client devices 902.
  • the server 901 transmits a three-dimensional map composed of a point cloud to the client device 902.
  • the configuration of the three-dimensional map is not limited to the point cloud, and may represent other three-dimensional data such as a mesh structure.
  • the client device 902 transmits the sensor information acquired by the client device 902 to the server 901.
  • the sensor information includes, for example, at least one of LiDAR acquisition information, visible light image, infrared image, depth image, sensor position information, and speed information.
  • the data sent and received between the server 901 and the client device 902 may be compressed to reduce the data, or may remain uncompressed to maintain the accuracy of the data.
  • a three-dimensional compression method based on an octa-tree structure can be used for the point cloud.
  • a two-dimensional image compression method can be used for visible light images, infrared images, and depth images.
  • the two-dimensional image compression method is, for example, MPEG-4 AVC or HEVC standardized by MPEG.
  • the server 901 transmits the three-dimensional map managed by the server 901 to the client device 902 in response to the transmission request of the three-dimensional map from the client device 902.
  • the server 901 may transmit the three-dimensional map without waiting for the three-dimensional map transmission request from the client device 902.
  • the server 901 may broadcast a three-dimensional map to one or more client devices 902 in a predetermined space.
  • the server 901 may transmit a three-dimensional map suitable for the position of the client device 902 to the client device 902 that has received the transmission request once at regular intervals.
  • the server 901 may transmit the three-dimensional map to the client device 902 every time the three-dimensional map managed by the server 901 is updated.
  • the client device 902 issues a three-dimensional map transmission request to the server 901. For example, when the client device 902 wants to perform self-position estimation during traveling, the client device 902 transmits a three-dimensional map transmission request to the server 901.
  • the client device 902 may issue a three-dimensional map transmission request to the server 901.
  • the client device 902 may issue a transmission request for the three-dimensional map to the server 901.
  • the client device 902 may issue a three-dimensional map transmission request to the server 901.
  • the client device 902 may issue a three-dimensional map transmission request to the server 901 before a certain time when the client device 902 goes out. For example, when the client device 902 exists within a predetermined distance from the boundary of the space indicated by the three-dimensional map held by the client device 902, the client device 902 issues a three-dimensional map transmission request to the server 901. You may. If the movement route and movement speed of the client device 902 are known, the time when the client device 902 goes out is predicted from the space shown by the three-dimensional map held by the client device 902. You may.
  • the client device 902 may issue a three-dimensional map transmission request to the server 901.
  • the client device 902 transmits the sensor information to the server 901 in response to the sensor information transmission request transmitted from the server 901.
  • the client device 902 may send the sensor information to the server 901 without waiting for the sensor information transmission request from the server 901. For example, once the client device 902 receives a request for transmitting sensor information from the server 901, the client device 902 may periodically transmit the sensor information to the server 901 for a certain period of time. Further, the client device 902 is located in the vicinity of the client device 902 when the alignment error between the three-dimensional data created by the client device 902 based on the sensor information and the three-dimensional map obtained from the server 901 is equal to or more than a certain level. It may be determined that the three-dimensional map may have changed, and that fact and the sensor information may be transmitted to the server 901.
  • the server 901 issues a sensor information transmission request to the client device 902.
  • the server 901 receives the position information of the client device 902 such as GPS from the client device 902.
  • the server 901 determines that the client device 902 is approaching a space with little information in the three-dimensional map managed by the server 901 based on the position information of the client device 902
  • the server 901 determines that the client device 902 is approaching a space with little information, and the client 901 generates a new three-dimensional map.
  • a request for transmitting sensor information is sent to the device 902.
  • the server 901 issues a sensor information transmission request when it wants to update the three-dimensional map, when it wants to check the road condition at the time of snowfall or disaster, when it wants to check the traffic jam situation, or when it wants to check the incident accident situation. May be good.
  • the client device 902 may set the data amount of the sensor information to be transmitted to the server 901 according to the communication state or the band at the time of receiving the transmission request of the sensor information received from the server 901.
  • Setting the amount of sensor information data to be transmitted to the server 901 means, for example, increasing or decreasing the data itself, or appropriately selecting a compression method.
  • FIG. 158 is a block diagram showing a configuration example of the client device 902.
  • the client device 902 receives a three-dimensional map composed of a point cloud or the like from the server 901, and estimates the self-position of the client device 902 from the three-dimensional data created based on the sensor information of the client device 902. Further, the client device 902 transmits the acquired sensor information to the server 901.
  • the client device 902 includes a data reception unit 1011, a communication unit 1012, a reception control unit 1013, a format conversion unit 1014, a plurality of sensors 1015, a three-dimensional data creation unit 1016, and a three-dimensional image processing unit 1017. It includes a three-dimensional data storage unit 1018, a format conversion unit 1019, a communication unit 1020, a transmission control unit 1021, and a data transmission unit 1022.
  • the data receiving unit 1011 receives the three-dimensional map 1031 from the server 901.
  • the three-dimensional map 1031 is data including a point cloud such as WLD or SWLD.
  • the three-dimensional map 1031 may include either compressed data or uncompressed data.
  • the communication unit 1012 communicates with the server 901 and transmits a data transmission request (for example, a three-dimensional map transmission request) or the like to the server 901.
  • a data transmission request for example, a three-dimensional map transmission request
  • the reception control unit 1013 exchanges information such as the corresponding format with the communication destination via the communication unit 1012, and establishes communication with the communication destination.
  • the format conversion unit 1014 generates the three-dimensional map 1032 by performing format conversion or the like on the three-dimensional map 1031 received by the data receiving unit 1011. Further, the format conversion unit 1014 performs decompression or decoding processing when the three-dimensional map 1031 is compressed or encoded. If the three-dimensional map 1031 is uncompressed data, the format conversion unit 1014 does not perform decompression or decoding processing.
  • the plurality of sensors 1015 are a group of sensors that acquire information outside the vehicle on which the client device 902 is mounted, such as a LiDAR, a visible light camera, an infrared camera, or a depth sensor, and generate sensor information 1033.
  • the sensor information 1033 is three-dimensional data such as a point cloud (point cloud data) when the sensor 1015 is a laser sensor such as LiDAR.
  • the number of sensors 1015 does not have to be plural.
  • the three-dimensional data creation unit 1016 creates three-dimensional data 1034 around the own vehicle based on the sensor information 1033. For example, the three-dimensional data creation unit 1016 creates point cloud data with color information around the own vehicle by using the information acquired by LiDAR and the visible light image obtained by the visible light camera.
  • the three-dimensional image processing unit 1017 performs self-position estimation processing of the own vehicle by using the received three-dimensional map 1032 such as a point cloud and the three-dimensional data 1034 around the own vehicle generated from the sensor information 1033. ..
  • the three-dimensional image processing unit 1017 creates three-dimensional data 1035 around the own vehicle by synthesizing the three-dimensional map 1032 and the three-dimensional data 1034, and estimates the self-position using the created three-dimensional data 1035. Processing may be performed.
  • the three-dimensional data storage unit 1018 stores the three-dimensional map 1032, the three-dimensional data 1034, the three-dimensional data 1035, and the like.
  • the format conversion unit 1019 generates the sensor information 1037 by converting the sensor information 1033 into a format supported by the receiving side.
  • the format conversion unit 1019 may reduce the amount of data by compressing or encoding the sensor information 1037. Further, the format conversion unit 1019 may omit the process when it is not necessary to perform the format conversion. Further, the format conversion unit 1019 may control the amount of data to be transmitted according to the designation of the transmission range.
  • the communication unit 1020 communicates with the server 901 and receives a data transmission request (sensor information transmission request) and the like from the server 901.
  • the transmission control unit 1021 exchanges information such as compatible formats with the communication destination via the communication unit 1020 to establish communication.
  • the data transmission unit 1022 transmits the sensor information 1037 to the server 901.
  • the sensor information 1037 includes a plurality of sensors such as information acquired by LiDAR, a brightness image acquired by a visible light camera, an infrared image acquired by an infrared camera, a depth image acquired by a depth sensor, sensor position information, and speed information. Includes information acquired by 1015.
  • FIG. 159 is a block diagram showing a configuration example of the server 901.
  • the server 901 receives the sensor information transmitted from the client device 902, and creates three-dimensional data based on the received sensor information.
  • the server 901 updates the three-dimensional map managed by the server 901 by using the created three-dimensional data. Further, the server 901 transmits the updated three-dimensional map to the client device 902 in response to the transmission request of the three-dimensional map from the client device 902.
  • the server 901 includes a data reception unit 1111, a communication unit 1112, a reception control unit 1113, a format conversion unit 1114, a three-dimensional data creation unit 1116, a three-dimensional data synthesis unit 1117, and a three-dimensional data storage unit 1118. , A format conversion unit 1119, a communication unit 1120, a transmission control unit 1121, and a data transmission unit 1122.
  • the data receiving unit 1111 receives the sensor information 1037 from the client device 902.
  • the sensor information 1037 includes, for example, information acquired by LiDAR, a brightness image acquired by a visible light camera, an infrared image acquired by an infrared camera, a depth image acquired by a depth sensor, sensor position information, speed information, and the like.
  • the communication unit 1112 communicates with the client device 902 and transmits a data transmission request (for example, a sensor information transmission request) or the like to the client device 902.
  • a data transmission request for example, a sensor information transmission request
  • the reception control unit 1113 exchanges information such as the corresponding format with the communication destination via the communication unit 1112 to establish communication.
  • the format conversion unit 1114 When the received sensor information 1037 is compressed or encoded, the format conversion unit 1114 generates the sensor information 1132 by performing decompression or decoding processing. If the sensor information 1037 is uncompressed data, the format conversion unit 1114 does not perform decompression or decoding processing.
  • the three-dimensional data creation unit 1116 creates three-dimensional data 1134 around the client device 902 based on the sensor information 1132. For example, the three-dimensional data creation unit 1116 creates point cloud data with color information around the client device 902 using the information acquired by LiDAR and the visible light image obtained by the visible light camera.
  • the 3D data synthesis unit 1117 updates the 3D map 1135 by synthesizing the 3D data 1134 created based on the sensor information 1132 with the 3D map 1135 managed by the server 901.
  • the three-dimensional data storage unit 1118 stores the three-dimensional map 1135 and the like.
  • the format conversion unit 1119 generates the 3D map 1031 by converting the 3D map 1135 into a format supported by the receiving side.
  • the format conversion unit 1119 may reduce the amount of data by compressing or encoding the three-dimensional map 1135. Further, the format conversion unit 1119 may omit the process when it is not necessary to perform the format conversion. Further, the format conversion unit 1119 may control the amount of data to be transmitted according to the designation of the transmission range.
  • the communication unit 1120 communicates with the client device 902 and receives a data transmission request (three-dimensional map transmission request) or the like from the client device 902.
  • the transmission control unit 1121 exchanges information such as the corresponding format with the communication destination via the communication unit 1120 to establish communication.
  • the data transmission unit 1122 transmits the three-dimensional map 1031 to the client device 902.
  • the three-dimensional map 1031 is data including a point cloud such as WLD or SWLD.
  • the three-dimensional map 1031 may include either compressed data or uncompressed data.
  • FIG. 160 is a flowchart showing an operation when the client device 902 acquires a three-dimensional map.
  • the client device 902 requests the server 901 to transmit a three-dimensional map (point cloud, etc.) (S1001). At this time, the client device 902 may request the server 901 to transmit a three-dimensional map related to the position information by transmitting the position information of the client device 902 obtained by GPS or the like together.
  • a three-dimensional map point cloud, etc.
  • the client device 902 receives the three-dimensional map from the server 901 (S1002). If the received 3D map is compressed data, the client device 902 decodes the received 3D map to generate an uncompressed 3D map (S1003).
  • the client device 902 creates three-dimensional data 1034 around the client device 902 from the sensor information 1033 obtained by the plurality of sensors 1015 (S1004).
  • the client device 902 estimates the self-position of the client device 902 using the three-dimensional map 1032 received from the server 901 and the three-dimensional data 1034 created from the sensor information 1033 (S1005).
  • FIG. 161 is a flowchart showing an operation at the time of transmission of sensor information by the client device 902.
  • the client device 902 receives the sensor information transmission request from the server 901 (S1011).
  • the client device 902 transmits the sensor information 1037 to the server 901 (S1012).
  • the sensor information 1033 includes a plurality of information obtained by the plurality of sensors 1015
  • the client device 902 may generate the sensor information 1037 by compressing each information by a compression method suitable for each information. Good.
  • FIG. 162 is a flowchart showing an operation when the server 901 acquires sensor information.
  • the server 901 requests the client device 902 to transmit the sensor information (S1021).
  • the server 901 receives the sensor information 1037 transmitted from the client device 902 in response to the request (S1022).
  • the server 901 creates three-dimensional data 1134 using the received sensor information 1037 (S1023).
  • the server 901 reflects the created three-dimensional data 1134 on the three-dimensional map 1135 (S1024).
  • FIG. 163 is a flowchart showing the operation when the server 901 transmits the three-dimensional map.
  • the server 901 receives a three-dimensional map transmission request from the client device 902 (S1031).
  • the server 901 that has received the three-dimensional map transmission request transmits the three-dimensional map 1031 to the client device 902 (S1032).
  • the server 901 may extract a three-dimensional map in the vicinity thereof according to the position information of the client device 902 and transmit the extracted three-dimensional map.
  • the server 901 may compress the three-dimensional map composed of the point cloud by using, for example, a compression method based on an octa-tree structure, and transmit the compressed three-dimensional map.
  • the server 901 creates three-dimensional data 1134 near the position of the client device 902 using the sensor information 1037 received from the client device 902. Next, the server 901 calculates the difference between the three-dimensional data 1134 and the three-dimensional map 1135 by matching the created three-dimensional data 1134 with the three-dimensional map 1135 of the same area managed by the server 901. .. When the difference is equal to or greater than a predetermined threshold value, the server 901 determines that some abnormality has occurred in the vicinity of the client device 902. For example, when land subsidence occurs due to a natural disaster such as an earthquake, a large difference occurs between the 3D map 1135 managed by the server 901 and the 3D data 1134 created based on the sensor information 1037. Can be considered.
  • the sensor information 1037 may include information indicating at least one of the sensor type, the sensor performance, and the sensor model number. Further, a class ID or the like corresponding to the performance of the sensor may be added to the sensor information 1037. For example, when the sensor information 1037 is the information acquired by LiDAR, the sensor capable of acquiring information with an accuracy of several mm is class 1, the sensor capable of acquiring information with an accuracy of several cm is class 2, and the sensor is united with several meters. As in class 3, it is conceivable to assign an identifier to the performance of the sensor that can acquire information with accuracy. Further, the server 901 may estimate the performance information of the sensor and the like from the model number of the client device 902.
  • the server 901 may determine the sensor spec information from the vehicle model of the vehicle. In this case, the server 901 may acquire information on the vehicle type of the vehicle in advance, or the sensor information may include the information. Further, the server 901 may switch the degree of correction for the three-dimensional data 1134 created by using the sensor information 1037 by using the acquired sensor information 1037. For example, if the sensor performance is highly accurate (class 1), the server 901 does not make corrections to the 3D data 1134. When the sensor performance is low accuracy (class 3), the server 901 applies a correction to the three-dimensional data 1134 according to the accuracy of the sensor. For example, in the server 901, the lower the accuracy of the sensor, the stronger the degree (strength) of the correction.
  • the server 901 may simultaneously issue a transmission request for sensor information to a plurality of client devices 902 in a certain space.
  • the server 901 receives a plurality of sensor information from the plurality of client devices 902, it is not necessary to use all the sensor information for creating the three-dimensional data 1134.
  • the sensor to be used depends on the performance of the sensor. Information may be selected.
  • the server 901 selects highly accurate sensor information (class 1) from a plurality of received sensor information, and creates 3D data 1134 using the selected sensor information. You may.
  • the server 901 is not limited to a server such as a traffic monitoring cloud, and may be another client device (vehicle-mounted).
  • FIG. 164 is a diagram showing a system configuration in this case.
  • the client device 902C issues a sensor information transmission request to the nearby client device 902A, and acquires the sensor information from the client device 902A. Then, the client device 902C creates three-dimensional data using the acquired sensor information of the client device 902A, and updates the three-dimensional map of the client device 902C. As a result, the client device 902C can generate a three-dimensional map of the space that can be acquired from the client device 902A by utilizing the performance of the client device 902C. For example, it is considered that such a case occurs when the performance of the client device 902C is high.
  • the client device 902A that provided the sensor information is given the right to acquire the highly accurate three-dimensional map generated by the client device 902C.
  • the client device 902A receives a highly accurate 3D map from the client device 902C in accordance with its rights.
  • the client device 902C may issue a request for transmitting sensor information to a plurality of nearby client devices 902 (client device 902A and client device 902B).
  • client device 902A and client device 902B client devices 902
  • the client device 902C can create three-dimensional data using the sensor information obtained by this high-performance sensor.
  • FIG. 165 is a block diagram showing the functional configurations of the server 901 and the client device 902.
  • the server 901 includes, for example, a three-dimensional map compression / decoding processing unit 1201 that compresses and decodes a three-dimensional map, and a sensor information compression / decoding processing unit 1202 that compresses and decodes sensor information.
  • the client device 902 includes a three-dimensional map decoding processing unit 1211 and a sensor information compression processing unit 1212.
  • the three-dimensional map decoding processing unit 1211 receives the encoded data of the compressed three-dimensional map, decodes the encoded data, and acquires the three-dimensional map.
  • the sensor information compression processing unit 1212 compresses the sensor information itself instead of the three-dimensional data created from the acquired sensor information, and transmits the compressed sensor information encoded data to the server 901.
  • the client device 902 may internally hold a processing unit (device or LSI) that performs a process of decoding a three-dimensional map (point cloud, etc.), and the three-dimensional data of the three-dimensional map (point cloud, etc.). It is not necessary to hold a processing unit that performs processing for compressing. As a result, the cost and power consumption of the client device 902 can be suppressed.
  • the client device 902 is mounted on the moving body, and is obtained from the sensor information 1033 indicating the surrounding condition of the moving body, which is obtained by the sensor 1015 mounted on the moving body. Create peripheral three-dimensional data 1034.
  • the client device 902 estimates the self-position of the moving body using the created three-dimensional data 1034.
  • the client device 902 transmits the acquired sensor information 1033 to the server 901 or another client device 902.
  • the client device 902 transmits the sensor information 1033 to the server 901 and the like.
  • the amount of transmitted data can be reduced as compared with the case of transmitting three-dimensional data.
  • the processing amount of the client device 902 can be reduced. Therefore, the client device 902 can reduce the amount of data to be transmitted or simplify the configuration of the device.
  • the client device 902 further transmits a three-dimensional map transmission request to the server 901, and receives the three-dimensional map 1031 from the server 901. In estimating the self-position, the client device 902 estimates the self-position using the three-dimensional data 1034 and the three-dimensional map 1032.
  • the sensor information 1033 includes at least one of the information obtained by the laser sensor, the luminance image, the infrared image, the depth image, the position information of the sensor, and the speed information of the sensor.
  • the sensor information 1033 includes information indicating the performance of the sensor.
  • the client device 902 encodes or compresses the sensor information 1033, and in transmitting the sensor information, the encoded or compressed sensor information 1037 is transmitted to the server 901 or another client device 902. According to this, the client device 902 can reduce the amount of data to be transmitted.
  • the client device 902 includes a processor and a memory, and the processor uses the memory to perform the above processing.
  • the server 901 can communicate with the client device 902 mounted on the mobile body, and the sensor information 1037 indicating the surrounding situation of the mobile body obtained by the sensor 1015 mounted on the mobile body is obtained. Is received from the client device 902. The server 901 creates three-dimensional data 1134 around the moving body from the received sensor information 1037.
  • the server 901 creates the three-dimensional data 1134 using the sensor information 1037 transmitted from the client device 902. As a result, there is a possibility that the amount of data to be transmitted can be reduced as compared with the case where the client device 902 transmits three-dimensional data. Further, since it is not necessary for the client device 902 to perform processing such as compression or coding of three-dimensional data, the processing amount of the client device 902 can be reduced. Therefore, the server 901 can reduce the amount of data to be transmitted or simplify the configuration of the device.
  • the server 901 further transmits a transmission request for sensor information to the client device 902.
  • the server 901 updates the three-dimensional map 1135 using the created three-dimensional data 1134, and sends the three-dimensional map 1135 to the client device 902 in response to the transmission request of the three-dimensional map 1135 from the client device 902. Send.
  • the sensor information 1037 includes at least one of the information obtained by the laser sensor, the luminance image, the infrared image, the depth image, the position information of the sensor, and the speed information of the sensor.
  • the sensor information 1037 includes information indicating the performance of the sensor.
  • the server 901 further corrects the three-dimensional data according to the performance of the sensor. According to this, the three-dimensional data creation method can improve the quality of the three-dimensional data.
  • the server 901 receives a plurality of sensor information 1037 from the plurality of client devices 902, and based on a plurality of information indicating the performance of the sensor included in the plurality of sensor information 1037, the server 901 receives three-dimensional data 1134.
  • the sensor information 1037 used for creating the above is selected. According to this, the server 901 can improve the quality of the three-dimensional data 1134.
  • the server 901 decodes or decompresses the received sensor information 1037, and creates three-dimensional data 1134 from the decoded or decompressed sensor information 1132. According to this, the server 901 can reduce the amount of data to be transmitted.
  • the server 901 includes a processor and a memory, and the processor uses the memory to perform the above processing.
  • FIG. 166 is a diagram showing a configuration of a system according to the present embodiment.
  • the system shown in FIG. 166 includes a server 2001, a client device 2002A, and a client device 2002B.
  • the client device 2002A and the client device 2002B are mounted on a moving body such as a vehicle, and transmit sensor information to the server 2001.
  • the server 2001 transmits a three-dimensional map (point cloud) to the client device 2002A and the client device 2002B.
  • the client device 2002A includes a sensor information acquisition unit 2011, a storage unit 2012, and a data transmission availability determination unit 2013.
  • the configuration of the client device 2002B is also the same. Further, in the following, when the client device 2002A and the client device 2002B are not particularly distinguished, they are also described as the client device 2002.
  • FIG. 167 is a flowchart showing the operation of the client device 2002 according to the present embodiment.
  • the sensor information acquisition unit 2011 acquires various sensor information using a sensor (sensor group) mounted on the moving body. That is, the sensor information acquisition unit 2011 acquires sensor information indicating the surrounding state of the moving body, which is obtained by the sensor (sensor group) mounted on the moving body. Further, the sensor information acquisition unit 2011 stores the acquired sensor information in the storage unit 2012.
  • This sensor information includes at least one of LiDAR acquisition information, visible light image, infrared image and depth image. Further, the sensor information may include at least one of sensor position information, speed information, acquisition time information, and acquisition location information.
  • the sensor position information indicates the position of the sensor from which the sensor information has been acquired.
  • the velocity information indicates the velocity of the moving object when the sensor acquires the sensor information.
  • the acquisition time information indicates the time when the sensor information is acquired by the sensor.
  • the acquisition location information indicates the position of the moving body or the sensor when the sensor information is acquired by the sensor.
  • the data transmission availability determination unit 2013 determines whether the mobile body (client device 2002) exists in an environment in which sensor information can be transmitted to the server 2001 (S2002). For example, the data transmission availability determination unit 2013 may specify the location and time of the client device 2002 by using information such as GPS, and determine whether or not the data can be transmitted. In addition, the data transmission availability determination unit 2013 may determine whether or not data can be transmitted depending on whether or not it can be connected to a specific access point.
  • the client device 2002 determines that the moving body exists in an environment in which the sensor information can be transmitted to the server 2001 (Yes in S2002), the client device 2002 transmits the sensor information to the server 2001 (S2003). That is, when the client device 2002 is in a situation where the sensor information can be transmitted to the server 2001, the client device 2002 transmits the held sensor information to the server 2001.
  • a millimeter-wave access point capable of high-speed communication is installed at an intersection or the like.
  • the sensor information held by the client device 2002 is transmitted to the server 2001 at high speed by using millimeter wave communication.
  • the client device 2002 deletes the sensor information transmitted to the server 2001 from the storage unit 2012 (S2004).
  • the client device 2002 may delete the sensor information when the sensor information not transmitted to the server 2001 satisfies a predetermined condition.
  • the client device 2002 may delete the sensor information from the storage unit 2012 when the acquisition time of the sensor information to be held is older than a certain time before the current time. That is, the client device 2002 may delete the sensor information from the storage unit 2012 when the difference between the time when the sensor information is acquired by the sensor and the current time exceeds a predetermined time. Further, the client device 2002 may delete the sensor information from the storage unit 2012 when the acquisition location of the sensor information to be held is more than a certain distance from the current position.
  • the sensor information May be deleted from the storage unit 2012.
  • the capacity of the storage unit 2012 of the client device 2002 can be suppressed.
  • the client device 2002 performs the processes after step S2001 again. Further, when the acquisition of the sensor information by the client device 2002 is completed (Yes in S2005), the client device 2002 ends the process.
  • the client device 2002 may select the sensor information to be transmitted to the server 2001 according to the communication status. For example, when high-speed communication is possible, the client device 2002 preferentially transmits sensor information (for example, LiDAR acquisition information) having a large size held in the storage unit 2012. Further, when high-speed communication is difficult, the client device 2002 transmits sensor information (for example, a visible light image) having a small size and a high priority held in the storage unit 2012. As a result, the client device 2002 can efficiently transmit the sensor information held in the storage unit 2012 to the server 2001 according to the network conditions.
  • sensor information for example, LiDAR acquisition information
  • sensor information for example, a visible light image
  • the client device 2002 may acquire the time information indicating the current time and the location information indicating the current location from the server 2001. Further, the client device 2002 may determine the acquisition time and acquisition location of the sensor information based on the acquired time information and location information. That is, the client device 2002 may acquire the time information from the server 2001 and generate the acquisition time information using the acquired time information. Further, the client device 2002 may acquire the location information from the server 2001 and generate the acquisition location information using the acquired location information.
  • the server 2001 and the client device 2002 synchronize the time using a mechanism such as NTP (Network Time Protocol) or PTP (Precision Time Protocol).
  • NTP Network Time Protocol
  • PTP Precision Time Protocol
  • the client device 2002 can acquire accurate time information.
  • the server 2001 can handle the sensor information indicating the synchronized time.
  • the time synchronization mechanism may be any method other than NTP or PTP.
  • GPS information may be used as the time information and location information.
  • the server 2001 may acquire sensor information from a plurality of client devices 2002 by designating a time or place. For example, in the event of an accident, the server 2001 broadcasts a sensor information transmission request to a plurality of client devices 2002 by designating the time and place of the accident in order to search for a client in the vicinity thereof. Then, the client device 2002 having the sensor information of the corresponding time and place transmits the sensor information to the server 2001. That is, the client device 2002 receives the sensor information transmission request including the designated information for designating the place and time from the server 2001. The client device 2002 determines that the storage unit 2012 stores the sensor information obtained at the place and time indicated by the designated information, and that the moving body exists in an environment in which the sensor information can be transmitted to the server 2001.
  • the sensor information obtained at the place and time indicated by the designated information is transmitted to the server 2001.
  • the server 2001 can acquire sensor information related to the occurrence of an accident from a plurality of client devices 2002 and use it for accident analysis and the like.
  • the client device 2002 may refuse to transmit the sensor information when it receives the sensor information transmission request from the server 2001. Further, the client device 2002 may set in advance which sensor information among the plurality of sensor information can be transmitted. Alternatively, the server 2001 may inquire the client device 2002 whether or not the sensor information can be transmitted each time.
  • points may be given to the client device 2002 that has transmitted the sensor information to the server 2001. These points can be used to pay, for example, gasoline purchase costs, EV (Electric Vehicle) charging costs, highway tolls, or rental car costs.
  • the server 2001 may delete the information for identifying the client device 2002, which is the source of the sensor information, after acquiring the sensor information. For example, this information is information such as the network address of the client device 2002.
  • the sensor information can be anonymized, so that the user of the client device 2002 can safely transmit the sensor information from the client device 2002 to the server 2001.
  • the server 2001 may be composed of a plurality of servers. For example, by sharing sensor information among a plurality of servers, even if one server fails, another server can communicate with the client device 2002. As a result, it is possible to avoid stopping the service due to a server failure.
  • the designated location specified in the sensor information transmission request indicates the position where the accident occurred, and may differ from the position of the client device 2002 at the designated time specified in the sensor information transmission request. Therefore, the server 2001 can request the client device 2002 existing in the range to acquire information by designating a range such as within XXm around the designated place. Similarly, regarding the designated time, the server 2001 may specify a range such as within N seconds before and after a certain time. As a result, the server 2001 can acquire the sensor information from the client device 2002 that exists at "time: t-N to t + N, location: within XXm from the absolute position S". When transmitting three-dimensional data such as LiDAR, the client device 2002 may transmit the data generated immediately after the time t.
  • three-dimensional data such as LiDAR
  • the server 2001 may separately specify, as the designated location, the information indicating the location of the client device 2002 for which the sensor information is to be acquired and the location where the sensor information is desired. For example, the server 2001 specifies that the sensor information including at least the range from the absolute position S to YYm is acquired from the client device 2002 existing within XXm from the absolute position S.
  • the client device 2002 selects the 3D data of one or more randomly accessible units so as to include at least the sensor information in the specified range.
  • the client device 2002 may transmit a plurality of time-consecutive image data including at least a frame immediately before or after the time t.
  • the client device 2002 uses a network to be used according to the priority notified from the server 2001. You may choose. Alternatively, the client device 2002 itself may select a network that can secure an appropriate bandwidth based on the size of the transmitted data. Alternatively, the client device 2002 may select a network to be used based on the cost for data transmission and the like.
  • the transmission request from the server 2001 may include information indicating a transmission deadline, such as transmission when the client device 2002 can start transmission by time T. The server 2001 may issue a transmission request again if sufficient sensor information cannot be acquired within the deadline.
  • the sensor information may include header information indicating the characteristics of the sensor data together with the compressed or uncompressed sensor data.
  • the client device 2002 may transmit the header information to the server 2001 via a physical network or communication protocol different from the sensor data. For example, the client device 2002 transmits the header information to the server 2001 prior to the transmission of the sensor data.
  • the server 2001 determines whether or not to acquire the sensor data of the client device 2002 based on the analysis result of the header information.
  • the header information may include information indicating the point cloud acquisition density, elevation angle, or frame rate of LiDAR, or the resolution, SN ratio, or frame rate of a visible light image. As a result, the server 2001 can acquire the sensor information from the client device 2002 having the sensor data of the determined quality.
  • the client device 2002 is mounted on the moving body, acquires the sensor information indicating the surrounding situation of the moving body obtained by the sensor mounted on the moving body, and stores the sensor information in the storage unit 2012. ..
  • the client device 2002 determines whether the mobile body exists in an environment capable of transmitting sensor information to the server 2001, and if it determines that the mobile body exists in an environment capable of transmitting sensor information to the server, the client device 2002 transmits the sensor information to the server 2001. Send to.
  • the client device 2002 further creates three-dimensional data around the moving body from the sensor information, and estimates the self-position of the moving body using the created three-dimensional data.
  • the client device 2002 further transmits a three-dimensional map transmission request to the server 2001, and receives the three-dimensional map from the server 2001.
  • the client device 2002 estimates the self-position by using the three-dimensional data and the three-dimensional map in the estimation of the self-position.
  • processing by the client device 2002 may be realized as an information transmission method in the client device 2002.
  • the client device 2002 includes a processor and a memory, and the processor may perform the above processing using the memory.
  • FIG. 168 is a diagram showing a configuration of a sensor information collecting system according to the present embodiment.
  • the sensor information collection system according to the present embodiment includes a terminal 2021A, a terminal 2021B, a communication device 2022A, a communication device 2022B, a network 2023, a data collection server 2024, and a map server 2025.
  • the client device 2026 and the like.
  • the terminal 2021A and the terminal 2021B are not particularly distinguished, they are also described as the terminal 2021.
  • the communication device 2022A and the communication device 2022B are not particularly distinguished, they are also described as the communication device 2022.
  • the data collection server 2024 collects data such as sensor data obtained by the sensor included in the terminal 2021 as position-related data associated with the position in the three-dimensional space.
  • the sensor data is, for example, data acquired by using a sensor included in the terminal 2021 such as a state around the terminal 2021 or an internal state of the terminal 2021.
  • the terminal 2021 transmits sensor data collected from one or more sensor devices at a position capable of directly communicating with the terminal 2021 or relaying one or a plurality of relay devices by the same communication method to the data collection server 2024. Send.
  • the data included in the position-related data may include, for example, information indicating the operation status of the terminal itself or the device included in the terminal, the operation log, the usage status of the service, and the like. Further, the data included in the position-related data may include information in which the identifier of the terminal 2021 is associated with the position or movement route of the terminal 2021.
  • the position-indicating information included in the position-related data is associated with the position-indicating information in three-dimensional data such as three-dimensional map data.
  • the details of the information indicating the position will be described later.
  • the position-related data includes the above-mentioned time information and the attributes of the data included in the position-related data, or information indicating the type of sensor (for example, model number) that generated the data, in addition to the position information which is the information indicating the position. It may contain at least one of.
  • the position information and the time information may be stored in the header area of the position-related data or the header area of the frame for storing the position-related data. Further, the position information and the time information may be transmitted and / or stored separately from the position-related data as metadata associated with the position-related data.
  • the map server 2025 is connected to the network 2023, for example, and transmits three-dimensional data such as three-dimensional map data in response to a request from another device such as the terminal 2021. Further, as described in each of the above-described embodiments, the map server 2025 may have a function of updating the three-dimensional data by using the sensor information transmitted from the terminal 2021.
  • the data collection server 2024 is connected to the network 2023, for example, collects position-related data from another device such as the terminal 2021, and stores the collected position-related data in a storage device inside or in another server. Further, the data collection server 2024 transmits the collected position-related data or the metadata of the three-dimensional map data generated based on the position-related data to the terminal 2021 in response to the request from the terminal 2021.
  • Network 2023 is a communication network such as the Internet.
  • the terminal 2021 is connected to the network 2023 via the communication device 2022.
  • the communication device 2022 communicates with the terminal 2021 while switching between one communication method or a plurality of communication methods.
  • the communication device 2022 is, for example, (1) a base station such as LTE (Long Term Evolution), (2) an access point (AP) such as WiFi or millimeter wave communication, and (3) LPWA such as SIGFOX, LoRaWAN or Wi-SUN. (Low Power Wide Area)
  • a communication satellite that communicates using a network gateway or (4) a satellite communication method such as DVB-S2.
  • the base station may communicate with the terminal 2021 by a method classified into LPWA such as NB-IoT (Narrow Band-IoT) or LTE-M, or may switch between these methods and the terminal 2021. Communication may be performed.
  • LPWA Low Band-IoT
  • LTE-M Long Term Evolution
  • Communication may be performed.
  • the terminal 2021 has a function of communicating with a communication device 2022 that uses two types of communication methods, and a communication device that uses any of these communication methods, or a plurality of these communication methods and a direct communication partner.
  • a communication device 2022 that uses two types of communication methods
  • a communication device that uses any of these communication methods, or a plurality of these communication methods and a direct communication partner.
  • An example is given in which communication is performed with the map server 2025 or the data collection server 2024 while switching 2022, but the configuration of the sensor information collection system and the terminal 2021 is not limited to this.
  • the terminal 2021 may not have a communication function in a plurality of communication methods, but may have a function of communicating in any one communication method.
  • the terminal 2021 may support three or more communication methods. Further, the corresponding communication method may be different for each terminal 2021.
  • the terminal 2021 includes, for example, the configuration of the client device 902 shown in FIG. 158.
  • the terminal 2021 estimates a position such as a self-position using the received three-dimensional data.
  • the terminal 2021 generates position-related data by associating the sensor data acquired from the sensor with the position information obtained by the position estimation process.
  • the position information added to the position-related data indicates, for example, the position in the coordinate system used in the three-dimensional data.
  • the position information is a coordinate value represented by a value of latitude and longitude.
  • the terminal 2021 may include the coordinate value as well as the information indicating the coordinate system that is the reference of the coordinate value and the three-dimensional data used for the position estimation in the position information.
  • the coordinate values may include altitude information.
  • the position information may be associated with a unit of data or a unit of space that can be used for encoding the above-mentioned three-dimensional data.
  • This unit is, for example, WLD, GOS, SPC, VLM, VXL, or the like.
  • the position information is represented by an identifier for specifying a data unit such as an SPC corresponding to the position-related data.
  • the position information is information indicating three-dimensional data in which the three-dimensional space including the data unit such as SPC is encoded, or details in the SPC. It may include information indicating a different position.
  • the information indicating the three-dimensional data is, for example, a file name of the three-dimensional data.
  • the system generates the position-related data associated with the position information based on the position estimation using the three-dimensional data, so that the self-position of the client device (terminal 2021) acquired by GPS can be used. It is possible to add position information to the sensor information with higher accuracy than when the based position information is added to the sensor information. As a result, even when the position-related data is used by another device in another service, the position corresponding to the position-related data can be more accurately specified in the real space by performing the position estimation based on the same three-dimensional data. There is a possibility that it can be done.
  • the data transmitted from the terminal 2021 is position-related data
  • the data transmitted from the terminal 2021 may be data not associated with the position information.
  • the transmission / reception of the three-dimensional data or the sensor data described in the other embodiment may be performed via the network 2023 described in the present embodiment.
  • the position information added to the position-related data may be information indicating a position relative to a feature point in the three-dimensional data.
  • the feature point that serves as a reference for the position information is, for example, a feature point encoded as SWLD and notified to the terminal 2021 as three-dimensional data.
  • the information indicating the relative position with respect to the feature point is represented by, for example, a vector from the feature point to the point indicated by the position information, and may be information indicating the direction and distance from the feature point to the point indicated by the position information.
  • the information indicating the relative position with respect to the feature point may be information indicating the displacement amount of each of the X-axis, the Y-axis, and the Z-axis from the feature point to the point indicated by the position information.
  • the information indicating the relative position with respect to the feature point may be information indicating the distance from each of the three or more feature points to the point indicated by the position information.
  • the relative position may not be the relative position of the point indicated by the position information expressed with respect to each feature point, but may be the relative position of each feature point expressed with reference to the point indicated by the position information.
  • An example of position information based on a position relative to a feature point includes information for identifying a reference feature point and information indicating the relative position of the point indicated by the position information with respect to the feature point.
  • the information indicating the relative position with respect to the feature point includes the coordinate axes used for deriving the relative position and the information indicating the type of the three-dimensional data. Alternatively, it may include information indicating the magnitude (scale, etc.) of the value of the information indicating the relative position per unit amount.
  • the position information may include information indicating a relative position with respect to each feature point for a plurality of feature points.
  • the terminal 2021 that tries to specify the position indicated by the position information in the real space has the position information from the position of the feature point estimated from the sensor data for each feature point.
  • the candidate points of the positions indicated by may be calculated, and the points obtained by averaging the calculated plurality of candidate points may be determined to be the points indicated by the position information. According to this configuration, the influence of an error when estimating the position of a feature point from the sensor data can be reduced, so that the estimation accuracy of the point indicated by the position information in the real space can be improved.
  • the position information includes information indicating a position relative to a plurality of feature points, even if there is a feature point that cannot be detected due to restrictions such as the type or performance of the sensor included in the terminal 2021, any of the plurality of feature points. If even one of them can be detected, the value of the point indicated by the position information can be estimated.
  • a point that can be identified from the sensor data can be used.
  • the points that can be identified from the sensor data are, for example, points within a region or points that satisfy predetermined conditions for feature point detection, such as the above-mentioned three-dimensional feature amount or feature amount of visible light data being equal to or greater than a threshold value.
  • markers installed in the real space may be used as feature points.
  • the marker may be detected and its position can be specified from the data acquired by using a sensor such as LiDER or a camera.
  • the marker is represented by a change in color or brightness value (reflectance), or a three-dimensional shape (unevenness, etc.).
  • a coordinate value indicating the position of the marker, a two-dimensional code or a bar code generated from the identifier of the marker, or the like may be used.
  • a light source that transmits an optical signal may be used as a marker.
  • a light source of an optical signal When a light source of an optical signal is used as a marker, not only information for acquiring a position such as a coordinate value or an identifier but also other data may be transmitted by the optical signal.
  • the optical signal connects to the wireless communication device with the content of the service according to the position of the marker, the address such as ur for acquiring the content, or the identifier of the wireless communication device for receiving the provision of the service. It may include information indicating a wireless communication method for the purpose.
  • the terminal 2021 grasps the correspondence relationship of feature points between different data by using, for example, an identifier commonly used between data or information or a table indicating the correspondence relationship of feature points between data. Further, when there is no information indicating the correspondence between the feature points, the terminal 2021 is the feature at the closest distance when the coordinates of the feature points in one three-dimensional data are converted to the positions in the other three-dimensional data space. A point may be determined to be a corresponding feature point.
  • the position information based on the relative position described above is used, even between terminals 2021 or services that use different 3D data, they are included in each 3D data or associated with each 3D data.
  • the position indicated by the position information can be specified or estimated based on a common feature point. As a result, it becomes possible to identify or estimate the same position with higher accuracy between terminals 2021 or services that use different three-dimensional data.
  • the data collection server 2024 may transfer the received position-related data to another data server.
  • the data collection server 2024 determines to which data server the received position-related data is to be transferred, and transfers the position-related data to the data server determined as the transfer destination.
  • the data collection server 2024 determines the transfer destination based on, for example, the determination rule of the transfer destination server preset in the data collection server 2024.
  • the determination rule of the transfer destination server is set, for example, in a transfer destination table in which the identifier associated with each terminal 2021 and the data server of the transfer destination are associated with each other.
  • the terminal 2021 adds an identifier associated with the terminal 2021 to the position-related data to be transmitted and transmits the data to the data collection server 2024.
  • the data collection server 2024 specifies the data server of the transfer destination corresponding to the identifier added to the position-related data based on the determination rule of the transfer destination server using the transfer destination table or the like, and the position-related data is specified. Send to the data server. Further, the determination rule of the transfer destination server may be specified by the determination condition using the time or place where the position-related data is acquired.
  • the identifier associated with the transmission source terminal 2021 described above is, for example, an identifier unique to each terminal 2021, or an identifier indicating a group to which the terminal 2021 belongs.
  • the transfer destination table does not have to be a direct association between the identifier associated with the source terminal and the transfer destination data server.
  • the data collection server 2024 holds a management table that stores tag information assigned to each identifier unique to the terminal 2021 and a transfer destination table that associates the tag information with the data server of the transfer destination.
  • the data collection server 2024 may determine the data server of the transfer destination based on the tag information by using the management table and the transfer destination table.
  • the tag information is, for example, control information for management or control information for service provision given to the type, model number, owner, group to which the terminal 2021 corresponds to the identifier, or other identifier.
  • an identifier unique to each sensor may be used instead of the identifier associated with the transmission source terminal 2021.
  • the determination rule of the transfer destination server may be set from the client device 2026.
  • the data collection server 2024 may determine a plurality of data servers as transfer destinations and transfer the received position-related data to the plurality of data servers. According to this configuration, for example, when backing up location-related data automatically, or in order to share location-related data with different services, location-related data is sent to a data server for providing each service. If it is necessary to do so, the data can be transferred as intended by changing the setting for the data collection server 2024. As a result, the man-hours required for constructing and changing the system can be reduced as compared with the case where the transmission destination of the position-related data is set in the individual terminals 2021.
  • the data collection server 2024 registers the data server specified by the transfer request signal as a new transfer destination in response to the transfer request signal received from the data server, and transfers the position-related data received thereafter to the data server. You may.
  • the data collection server 2024 stores the position-related data received from the terminal 2021 in the recording device, and requests the position-related data specified in the transmission request signal according to the transmission request signal received from the terminal 2021 or the data server. It may be transmitted to the terminal 2021 or the data server of.
  • the data collection server 2024 determines whether or not the location-related data can be provided to the requesting data server or terminal 2021, and if it is determined that the location-related data can be provided, the data collection server 2024 transfers or transmits the location-related data to the requesting data server or terminal 2021. May be done.
  • the data collection server 2024 When the request for the current position-related data is received from the client device 2026, the data collection server 2024 requests the terminal 2021 to transmit the position-related data even if the terminal 2021 does not send the position-related data. 2021 may transmit position-related data in response to the transmission request.
  • the terminal 2021 transmits the position information data to the data collection server 2024, but the data collection server 2024 collects the position-related data from the terminal 2021, such as the function of managing the terminal 2021. It may be provided with a function necessary for the above or a function used when collecting position-related data from the terminal 2021.
  • the data collection server 2024 may have a function of transmitting a data request signal requesting the transmission of position information data to the terminal 2021 and collecting position-related data.
  • Management information such as an address for communicating with the terminal 2021 to be collected data or an identifier unique to the terminal 2021 is registered in the data collection server 2024 in advance.
  • the data collection server 2024 collects location-related data from the terminal 2021 based on the registered management information.
  • the management information may include information such as the type of sensor included in the terminal 2021, the number of sensors included in the terminal 2021, and the communication method supported by the terminal 2021.
  • the data collection server 2024 may collect information such as the operating status or the current position of the terminal 2021 from the terminal 2021.
  • the registration of the management information may be performed from the client device 2026, or the process for registration may be started by the terminal 2021 transmitting the registration request to the data collection server 2024.
  • the data collection server 2024 may have a function of controlling communication with the terminal 2021.
  • the communication connecting the data collection server 2024 and the terminal 2021 is a dedicated line provided by a service provider such as an MNO (Mobile Network Operator) or a MVNO (Mobile Virtual Network Operator), or a VPN (Virtual Private Network) configured Network. It may be a virtual dedicated line or the like. According to this configuration, communication between the terminal 2021 and the data collection server 2024 can be performed safely.
  • a service provider such as an MNO (Mobile Network Operator) or a MVNO (Mobile Virtual Network Operator), or a VPN (Virtual Private Network) configured Network. It may be a virtual dedicated line or the like. According to this configuration, communication between the terminal 2021 and the data collection server 2024 can be performed safely.
  • the data collection server 2024 may have a function of authenticating the terminal 2021 or a function of encrypting data transmitted to and received from the terminal 2021.
  • the authentication process of the terminal 2021 or the data encryption process is a terminal group including an identifier unique to the terminal 2021 or a plurality of terminals 2021 shared in advance between the data collection server 2024 and the terminal 2021. This is done using a unique identifier or the like.
  • This identifier is, for example, an IMSI (International Mobile Subscribe Subsiver Identity), which is a unique number stored in a SIM (Subscriber Identity Module) card.
  • IMSI International Mobile Subscribe Subsiver Identity
  • SIM Subscriber Identity Module
  • the process of authentication or data encryption between the data collection server 2024 and the terminal 2021 can be provided as long as both the data collection server 2024 and the terminal 2021 have a function to perform the process, and relays the data. It does not depend on the communication method used by the communication device 2022. Therefore, since the common authentication or encryption process can be used without considering whether the terminal 2021 uses the communication method, the convenience of the user's system construction is improved. However, the fact that it does not depend on the communication method used by the communication device 2022 that performs relay means that it is not essential to change the communication method according to the communication method. That is, for the purpose of improving transmission efficiency or ensuring security, the processing of authentication or data encryption between the data collection server 2024 and the terminal 2021 may be switched according to the communication method used by the relay device.
  • the data collection server 2024 may provide the client device 2026 with a UI that manages data collection rules such as the type of location-related data collected from the terminal 2021 and the data collection schedule. As a result, the user can specify the terminal 2021 for collecting data using the client device 2026, the data collection time and frequency, and the like. Further, the data collection server 2024 may specify an area on the map on which data is to be collected and collect position-related data from the terminal 2021 included in the area.
  • the client device 2026 When the data collection rule is managed in units of terminals 2021, the client device 2026 presents, for example, a list of terminals 2021 or sensors to be managed on the screen. The user sets the necessity of data collection or the collection schedule for each item in the list.
  • the client device 2026 When designating an area on a map for which data is to be collected, the client device 2026 presents, for example, a two-dimensional or three-dimensional map of the area to be managed on the screen. The user selects an area on the displayed map to collect data.
  • the area selected on the map may be a circular or rectangular area centered on a point specified on the map, or may be a circular or rectangular area that can be specified by a drag operation.
  • the client device 2026 may also select areas in preset units such as cities, areas within cities, blocks, or major roads. Further, instead of specifying the area using a map, the area may be set by inputting the numerical values of latitude and longitude, or the area is selected from the list of candidate areas derived based on the input text information. May be done. Textual information may be, for example, the name of a region, city, or landmark.
  • an area on the map may be designated based on the position of the client device 2026 in the real space obtained from the sensor data. For example, the client device 2026 estimates its own position using sensor data, and data a region within a predetermined distance from a point on the map corresponding to the estimated position or a distance specified by the user. May be specified as the area to collect. Further, the client device 2026 may designate the sensing area of the sensor, that is, the area corresponding to the acquired sensor data as the area for collecting the data. Alternatively, the client device 2026 may designate an area based on the position corresponding to the sensor data specified by the user as an area for collecting data. The area or position on the map corresponding to the sensor data may be estimated by the client device 2026 or the data collection server 2024.
  • the data collection server 2024 When specifying in the area on the map, the data collection server 2024 identifies the terminal 2021 in the specified area by collecting the current position information of each terminal 2021, and positions the terminal 2021 with respect to the specified terminal 2021. You may request the transmission of relevant data. Further, the data collection server 2024 does not specify the terminal 2021 in the area, but the data collection server 2024 transmits information indicating the designated area to the terminal 2021, and the terminal 2021 itself is in the designated area. Whether or not it is determined, and if it is determined that it is within the specified area, the position-related data may be transmitted.
  • the data collection server 2024 transmits data such as a list or a map for providing the above-mentioned UI (User Interface) in the application executed by the client device 2026 to the client device 2026.
  • the data collection server 2024 may transmit not only data such as a list or a map but also an application program to the client device 2026.
  • the above-mentioned UI may be provided as content created by HTML or the like that can be displayed by a browser. Note that some data such as map data may be provided by a server other than the data collection server 2024 such as the map server 2025.
  • the client device 2026 transmits the input information to the data collection server 2024 as setting information when an input for notifying the completion of the input is performed, such as pressing a setting button by the user.
  • the data collection server 2024 transmits a signal for notifying the position-related data request or the position-related data collection rule to each terminal 2021 based on the setting information received from the client device 2026, and collects the position-related data. Do.
  • object information indicating the position of a power feeding unit such as a wireless power feeding antenna or a power feeding coil embedded in a road or a parking lot is included in the three-dimensional data or associated with the three-dimensional data.
  • a power feeding unit such as a wireless power feeding antenna or a power feeding coil embedded in a road or a parking lot is included in the three-dimensional data or associated with the three-dimensional data.
  • terminal 2021 such as a car or drone.
  • the vehicle or drone that has acquired the object information for charging automatically drives the vehicle itself so that the position of the charging part such as the charging antenna or charging coil of the vehicle faces the area indicated by the object information. Move the position of and start charging.
  • the direction to move or the operation to be performed is presented to the driver or operator using the image or sound displayed on the screen.
  • the operation or maneuvering is stopped.
  • the image or sound presented to is switched, and charging is started.
  • the object information may not be information indicating the position of the power feeding unit, but may be information indicating an area where charging efficiency equal to or higher than a predetermined threshold value can be obtained by arranging the charging unit in the area.
  • the position of the object information may be represented by a point at the center of the region indicated by the object information, a region or line in a two-dimensional plane, or a region, line or plane in a three-dimensional space. Good.
  • the position of the power feeding antenna that cannot be grasped by the sensing data of LiDER or the image taken by the camera can be grasped, so that the antenna for wireless charging provided in the terminal 2021 such as a car and the wireless embedded in the road or the like can be grasped.
  • the alignment with the feeding antenna can be performed with higher accuracy. As a result, the charging speed at the time of wireless charging can be shortened and the charging efficiency can be improved.
  • the object information may be an object other than the feeding antenna.
  • the three-dimensional data includes the position of the AP of millimeter-wave wireless communication as object information.
  • the terminal 2021 can grasp the position of the AP in advance, so that the directivity of the beam can be directed in the direction of the object information and communication can be started.
  • it is possible to improve the communication quality such as improving the transmission speed, shortening the time until the start of communication, and extending the communicable period.
  • the object information may include information indicating the type of the object corresponding to the object information. Further, the object information should be executed by the terminal 2021 when the terminal 2021 is included in the area in the real space corresponding to the position of the object information on the three-dimensional data or within a range of a predetermined distance from the area. Information indicating the process may be included.
  • the object information may be provided by a server different from the server that provides the three-dimensional data.
  • the object group in which the object information used in the same service is stored may be provided as different data depending on the type of the target service or the target device. ..
  • the three-dimensional data used in combination with the object information may be WLD point cloud data or SWLD feature point data.
  • the three-dimensional data decoding device when the attribute information of the target three-dimensional point, which is the three-dimensional point to be encoded, is hierarchically coded using LoD (Level of Datail), the three-dimensional data decoding device is the three-dimensional It is not necessary for the data decoding device to decode the attribute information up to the required LoD layer and not to decode the attribute information of the unnecessary layer. For example, when the total number of LoDs of the attribute information in the bit stream encoded by the three-dimensional data encoding device is N, the three-dimensional data decoding device has Ms from LoD0 to LoD (M-1) of the uppermost layer.
  • the three-dimensional data decoding device can decode the attribute information from LoD0 to LoD (M-1) required by the three-dimensional data decoding device while suppressing the processing load.
  • FIG. 169 is a diagram showing the above use case.
  • the server holds a three-dimensional map obtained by encoding the three-dimensional position information and the attribute information.
  • the server (three-dimensional data coding device) broadcasts a three-dimensional map to a client device (three-dimensional data decoding device: for example, a vehicle or a drone) in an area managed by the server, and the client device receives the data from the server.
  • a process of specifying the self-position of the client device using a three-dimensional map, or a process of displaying map information to a user or the like who operates the client device is performed.
  • the server encodes the position information of the three-dimensional map using an ocree tree configuration or the like. Then, the server hierarchically encodes the attribute information of the three-dimensional map using N LoDs constructed based on the position information. The server stores a bitstream of the 3D map obtained by hierarchical coding.
  • the server transmits a bit stream of the encoded three-dimensional map to the client device in response to a transmission request for map information transmitted from the client device in the area managed by the server.
  • the client device receives the bitstream of the 3D map transmitted from the server, and decodes the position information and attribute information of the 3D map according to the purpose of the client device. For example, when the client device performs highly accurate self-position estimation using the position information and the attribute information of N LoDs, the client device determines that the decoding result up to a dense three-dimensional point is required as the attribute information. And decrypt all the information in the bitstream.
  • the client device determines that the decoding result up to the sparse 3D point is necessary as the attribute information, and the position information and the LoD upper layer are used. Decrypts LoD attribute information from a certain LoD0 to M (M ⁇ N).
  • the three-dimensional point map includes position information and attribute information.
  • the position information is encoded by an ocree.
  • the attribute information is encoded by N LoDs.
  • Client device A performs highly accurate self-position estimation. In this case, the client device A determines that all the position information and the attribute information are necessary, and decodes all the position information in the bit stream and the attribute information composed of N LoDs.
  • the client device B displays a three-dimensional map to the user.
  • the client device B determines that the position information and the attribute information of M LoDs (M ⁇ N) are necessary, and decodes the position information in the bit stream and the attribute information composed of M LoDs. To do.
  • server may broadcast the three-dimensional map to the client device, multicast transmission, or unicast transmission.
  • the three-dimensional data coding device when the attribute information of the target three-dimensional point, which is the target three-dimensional point to be encoded, is hierarchically coded using LoD, the three-dimensional data coding device is the three-dimensional data decoding device. It is not necessary to encode the attribute information up to the required LoD hierarchy and not to encode the attribute information of the unnecessary hierarchy. For example, when the total number of LoDs is N, the three-dimensional data encoding device encodes M (M ⁇ N) LoDs from the top layer LoD0 to LoD (M-1), and the remaining LoDs (N). A bit stream may be generated by not encoding LoD up to -1).
  • the 3D data encoding device encodes the bit stream in which the attribute information from LoD0 to LoD (M-1) required by the 3D data decoding device is encoded in response to the request from the 3D data decoding device. Can be provided.
  • FIG. 170 is a diagram showing the above use case.
  • the server holds a three-dimensional map obtained by encoding the three-dimensional position information and the attribute information.
  • the server (three-dimensional data encoding device) unicasts a three-dimensional map to the client device (three-dimensional data decoding device: for example, a vehicle or a drone) in the area managed by the server at the request of the client device.
  • the client device performs a process of identifying the self-position of the client device using a three-dimensional map received from the server, or a process of displaying map information to a user or the like who operates the client device.
  • the server encodes the position information of the three-dimensional map using an ocree tree configuration or the like. Then, the server generates a bitstream of the three-dimensional map A by hierarchically coding the attribute information of the three-dimensional map using N LoDs constructed based on the position information, and generates the generated bitstream. Save to the server. In addition, the server generates a bitstream of the three-dimensional map B by hierarchically coding the attribute information of the three-dimensional map using M (M ⁇ N) LoDs constructed based on the position information. Save the generated bitstream on the server.
  • the client device requests the server to send a three-dimensional map according to the purpose of the client device. For example, when the client device performs highly accurate self-position estimation using the position information and the attribute information of N LoDs, the client device determines that the decoding result up to a dense three-dimensional point is necessary as the attribute information, and is tertiary. Requests the server to send the bitstream of the original map A. Further, when displaying the 3D map information to the user or the like, the client device determines that the decoding result up to the sparse 3D point is necessary as the attribute information, and M pieces from the position information and the upper layer LoD0 of LoD.
  • the server Requests the server to transmit a bitstream of the three-dimensional map B including LoD attribute information up to (M ⁇ N). Then, the server transmits the encoded bit stream of the three-dimensional map A or the three-dimensional map B to the client device in response to the request for transmitting the map information from the client device.
  • the client device receives the bitstream of the three-dimensional map A or the three-dimensional map B transmitted from the server according to the use of the client device, and decodes the bitstream. In this way, the server switches the bit stream to be transmitted according to the usage of the client device. As a result, the processing load of the client device can be reduced.
  • the server holds the three-dimensional map A and the three-dimensional map B.
  • the server generates the three-dimensional map A by encoding the position information of the three-dimensional map with, for example, an octree, and the attribute information of the three-dimensional map with N LoDs. That is, NumLoD included in the bitstream of the three-dimensional map A indicates N.
  • the server generates the 3D map B by encoding the position information of the 3D map with, for example, an octree, and the attribute information of the 3D map with M LoDs. That is, NumLoD included in the bitstream of the three-dimensional map B indicates M.
  • Client device A performs highly accurate self-position estimation.
  • the client device A determines that all the position information and the attribute information are necessary, and sends a transmission request of the three-dimensional map A including all the position information and the attribute information composed of N LoDs to the server. ..
  • the client device A receives the three-dimensional map A and decodes all the position information and the attribute information composed of N LoDs.
  • the client device B displays a three-dimensional map to the user.
  • the client device B determines that the position information and the attribute information of M LoDs (M ⁇ N) are necessary, and includes all the position information and the attribute information composed of M LoDs in three dimensions.
  • the client device B receives the three-dimensional map B and decodes all the position information and the attribute information composed of M LoDs.
  • the server (three-dimensional data encoding device) encodes the three-dimensional map C in which the remaining NM attribute information of LoD is encoded in addition to the three-dimensional map B, and the request of the client device B.
  • the three-dimensional map C may be transmitted to the client device B according to the above. Further, the client device B may obtain decoding results of N LoDs by using the bitstream of the three-dimensional map B and the three-dimensional map C.
  • FIG. 171 is a flowchart showing an example of application processing.
  • the three-dimensional data demultiplexing device acquires an ISOBMFF file containing the point cloud data and the plurality of encoded data (S7301).
  • the three-dimensional data demultiplexing device may acquire the ISOBMFF file by communication or may read the ISOBMFF file from the accumulated data.
  • the three-dimensional data demultiplexing device analyzes the entire configuration information in the ISOBMFF file and identifies the data to be used for the application (S7302). For example, the three-dimensional data demultiplexing device acquires data used for processing and does not acquire data not used for processing.
  • the three-dimensional data demultiplexing device extracts one or more data to be used in the application and analyzes the configuration information of the data (S7303).
  • the three-dimensional data demultiplexing device converts ISOBMFF into a coded stream and extracts a time stamp (S7305). Further, the three-dimensional data demultiplexing device determines whether or not the data are synchronized with each other by referring to, for example, a flag indicating whether or not the data are synchronized, and if they are not, the synchronization is performed. Processing may be performed.
  • the three-dimensional data demultiplexing device decodes the data by a predetermined method according to the time stamp and other instructions, and processes the decoded data (S7306).
  • the three-dimensional data demultiplexing device extracts the data and the time stamp (S7307). Further, the three-dimensional data demultiplexing device determines whether or not the data are synchronized with each other by referring to, for example, a flag indicating whether or not the data are synchronized, and if they are not, the synchronization is performed. Processing may be performed. The three-dimensional data demultiplexer then processes the data according to the time stamp and other instructions (S7308).
  • FIG. 172 is a diagram showing an example of the sensor range of the beam LiDAR, FLASH LiDAR, and the camera.
  • the beam LiDAR detects all directions around the vehicle (sensor), and the FLASH LiDAR and the camera detect a range in one direction (for example, forward) of the vehicle.
  • the three-dimensional data demultiplexing device extracts and decodes the coded data of the beam LiDAR and FLASH LiDAR with reference to the overall configuration information. Further, the three-dimensional data demultiplexing device does not extract the camera image.
  • the three-dimensional data demultiplexing device simultaneously processes each coded data at the same time stamp according to the time stamps of LiDAR and FLASH LiDAR.
  • the three-dimensional data demultiplexing device may present the processed data with the presenting device, synthesize the point cloud data of the beam LiDAR and FLASH LiDAR, perform processing such as rendering.
  • the three-dimensional data demultiplexing device may extract the sensor position information and use it in the application.
  • the three-dimensional data demultiplexing device may select whether to use beam LiDAR information or FLASH LiDAR in the application, and switch the processing according to the selection result.
  • FIG. 173 is a diagram showing a configuration example of an automatic driving system.
  • This autonomous driving system includes a cloud server 7350 and an edge 7360 such as an in-vehicle device or a mobile device.
  • the cloud server 7350 includes a demultiplexing unit 7351, decoding units 7352A, 7352B and 7355, a point cloud data synthesis unit 7353, a large-scale data storage unit 7354, a comparison unit 7356, and an encoding unit 7357.
  • the edge 7360 includes sensors 7361A and 7361B, point cloud data generation units 7362A and 7362B, synchronization unit 7363, coding units 7364A and 7364B, multiplexing unit 7365, update data storage unit 7366, and demultiplexing unit. It includes a 7637, a decoding unit 7368, a filter 7369, a self-position estimation unit 7370, and an operation control unit 7371.
  • Edge 7360 downloads large-scale data which is large-scale point cloud map data stored in the cloud server 7350.
  • the edge 7360 performs self-position estimation processing of the edge 7360 (vehicle or terminal) by matching the large-scale data with the sensor information obtained by the edge 7360. Further, the edge 7360 uploads the acquired sensor information to the cloud server 7350 and updates the large-scale data with the latest map data.
  • point cloud data with different encoding methods is handled.
  • the cloud server 7350 encodes and multiplexes large-scale data.
  • the coding unit 7357 performs coding by using a third coding method suitable for coding a large-scale point cloud.
  • the coding unit 7357 multiplexes the coded data.
  • the large-scale data storage unit 7354 stores data encoded and multiplexed by the coding unit 7357.
  • Edge 7360 performs sensing.
  • the point cloud data generation unit 7362A generates the first point cloud data (position information (geometry) and attribute information) by using the sensing information acquired by the sensor 7361A.
  • the point cloud data generation unit 7362B generates the second point cloud data (position information and attribute information) by using the sensing information acquired by the sensor 7361B.
  • the generated first point cloud data and the second point cloud data are used for self-position estimation or vehicle control of automatic driving, or map update. In each process, some information of the first point cloud data and the second point cloud data may be used.
  • Edge 7360 performs self-position estimation. Specifically, Edge 7360 downloads large-scale data from the cloud server 7350.
  • the demultiplexing unit 7376 acquires encoded data by demultiplexing large-scale data in a file format.
  • the decoding unit 7368 acquires large-scale data, which is large-scale point cloud map data, by decoding the acquired encoded data.
  • the self-position estimation unit 7370 matches the acquired large-scale data with the first point cloud data and the second point cloud data generated by the point cloud data generation units 7362A and 7362B to map the vehicle. Estimate the self-position in. Further, the operation control unit 7371 uses the matching result or the self-position estimation result for the operation control.
  • the self-position estimation unit 7370 and the operation control unit 7371 may extract specific information such as position information from the large-scale data and perform processing using the extracted information.
  • the filter 7369 performs processing such as correction or thinning on the first point cloud data and the second point cloud data.
  • the self-position estimation unit 7370 and the operation control unit 7371 may use the first point cloud data and the second point cloud data after the processing is performed. Further, the self-position estimation unit 7370 and the operation control unit 7371 may use the sensor signals obtained by the sensors 7361A and 7361B.
  • the synchronization unit 7363 performs time synchronization and position correction between a plurality of sensor signals or a plurality of point cloud data. Further, the synchronization unit 7363 corrects the position information of the sensor signal or the point group data so as to match the large-scale data based on the position correction information of the large-scale data and the sensor data generated by the self-position estimation process. May be good.
  • synchronization and position correction may be performed on the cloud server 7350 instead of the edge 7360.
  • the edge 7360 may multiplex the synchronization information and the location information and transmit them to the cloud server 7350.
  • Edge 7360 is. Encode and multiplex sensor signals or point cloud data.
  • the sensor signal or point cloud data is encoded using a first encoding method or a second encoding method suitable for encoding each signal.
  • the coding unit 7364A generates the first coded data by coding the first point cloud data using the first coding method.
  • the coding unit 7364B generates the second coded data by coding the second point cloud data using the second coding method.
  • the multiplexing unit 7365 generates a multiplexed signal by multiplexing the first encoded data, the second encoded data, the synchronization information, and the like.
  • the update data storage unit 7366 stores the generated multiplexed signal. Further, the update data storage unit 7366 uploads the multiplexing signal to the cloud server 7350.
  • the cloud server 7350 synthesizes the point cloud data. Specifically, the demultiplexing unit 7351 acquires the first coded data and the second coded data by demultiplexing the multiplexing signal uploaded to the cloud server 7350.
  • the decoding unit 7352A acquires the first point cloud data (or sensor signal) by decoding the first encoded data.
  • the decoding unit 7352B acquires the second point cloud data (or sensor signal) by decoding the second encoded data.
  • the point cloud data synthesis unit 7353 synthesizes the first point cloud data and the second point cloud data by a predetermined method.
  • the point cloud data synthesis unit 7353 may perform the synthesis using the information.
  • the decoding unit 7355 demultiplexes and decodes the large-scale data stored in the large-scale data storage unit 7354.
  • the comparison unit 7356 compares the point cloud data generated based on the sensor signal obtained at the edge 7360 with the large-scale data possessed by the cloud server 7350, and determines the point cloud data that needs to be updated.
  • the comparison unit 7356 updates the point cloud data determined to be necessary to be updated among the large-scale data to the point cloud data obtained from the edge 7360.
  • the coding unit 7357 encodes and multiplexes the updated large-scale data, and stores the obtained data in the large-scale data storage unit 7354.
  • the signal to be handled differs depending on the intended use or application, and the signal to be multiplexed or the coding method may differ. Even in such a case, flexible decoding and application processing can be performed by multiplexing data of various encoding methods using the present embodiment. In addition, even if the signal coding method is different, various applications and systems can be constructed by converting a coding method suitable for demultiplexing, decoding, data conversion, coding, and multiplexing processing. , It is possible to provide flexible services.
  • FIG. 174 is a diagram showing a configuration example of a bit stream.
  • the entire information of the divided data indicates a sensor ID (sensor_id) and a data ID (data_id) of the divided data for each divided data.
  • the data ID is also shown in the header of each coded data.
  • the entire information of the divided data shown in FIG. 174 includes the sensor information (Sensor), the sensor version (Version), the sensor manufacturer name (Maker), and the sensor, in addition to the sensor ID. At least one of the installation information (Mount Info.) And the position coordinates of the sensor (World Coordinate) may be included.
  • the three-dimensional data decoding device can acquire information on various sensors from the configuration information.
  • the entire information of the divided data may be stored in the metadata SPS, GPS or APS, or may be stored in the metadata SEI which is not essential for encoding.
  • the three-dimensional data encoding device stores the SEI in the ISOBMFF file at the time of multiplexing.
  • the three-dimensional data decoding device can acquire desired divided data based on the metadata.
  • SPS is the metadata of the entire coded data
  • GPS is the metadata of the position information
  • APS is the metadata of each attribute information
  • G is the coded data of the position information of each divided data. Yes, A1 and the like are coded data of attribute information for each divided data.
  • FIG. 175 is a flowchart of the point group selection process executed by this application.
  • 176 to 178 are diagrams showing screen examples of point group selection processing.
  • the three-dimensional data decoding device that executes the application has, for example, a UI unit that displays an input UI (user interface) 8661 for selecting an arbitrary point cloud.
  • the input UI 8661 has a presentation unit 8662 that presents the selected point cloud, and an operation unit (buttons 8663 and 8664) that accepts the user's operation.
  • the three-dimensional data decoding device acquires desired data from the storage unit 8665 after the point cloud is selected by UI8661.
  • the point cloud information that the user wants to display is selected based on the operation for the user's input UI8661 (S8631). Specifically, when the button 8663 is selected, a point cloud based on the sensor 1 is selected. When the button 8664 is selected, a point cloud based on the sensor 2 is selected. Alternatively, by selecting both the button 8663 and the button 8664, both the point cloud based on the sensor 1 and the point cloud based on the sensor 2 are selected.
  • the point cloud selection method is an example and is not limited to this.
  • the three-dimensional data decoding device analyzes the entire information of the divided data contained in the multiplexed signal (bit stream) or the coded data, and selects a point group from the sensor ID (sensor_id) of the selected sensor.
  • the data ID (data_id) of the divided data constituting the above is specified (S8632).
  • the three-dimensional data decoding device extracts coded data including the specified desired data ID from the multiplexed signal, and decodes the extracted coded data to obtain a point group based on the selected sensor. Is decoded (S8633).
  • the three-dimensional data decoding device does not decode other encoded data.
  • the three-dimensional data decoding device presents (for example, displays) the decoded point cloud (S8634).
  • FIG. 177 shows an example when the button 8663 of the sensor 1 is pressed, and the point cloud of the sensor 1 is presented.
  • FIG. 178 shows an example in which both the button 8663 of the sensor 1 and the button 8664 of the sensor 2 are pressed, and the point cloud of the sensor 1 and the sensor 2 is presented.
  • the three-dimensional data coding device, the three-dimensional data decoding device, and the like according to the embodiment of the present disclosure have been described above, but the present disclosure is not limited to this embodiment.
  • each processing unit included in the three-dimensional data coding device, the three-dimensional data decoding device, and the like according to the above embodiment is typically realized as an LSI which is an integrated circuit. These may be individually integrated into one chip, or may be integrated into one chip so as to include a part or all of them.
  • the integrated circuit is not limited to the LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and settings of the circuit cells inside the LSI may be used.
  • each component may be configured by dedicated hardware or may be realized by executing a software program suitable for each component.
  • Each component may be realized by a program execution unit such as a CPU or a processor reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory.
  • the present disclosure may be realized as a three-dimensional data coding method, a three-dimensional data decoding method, or the like executed by a three-dimensional data coding device, a three-dimensional data decoding device, or the like.
  • the division of the functional block in the block diagram is an example, and a plurality of functional blocks can be realized as one functional block, one functional block can be divided into a plurality of functional blocks, and some functions can be transferred to other functional blocks. You may. Further, the functions of a plurality of functional blocks having similar functions may be processed by a single hardware or software in parallel or in a time division manner.
  • each step in the flowchart is executed is for exemplifying in order to specifically explain the present disclosure, and may be an order other than the above. Further, a part of the above steps may be executed at the same time (parallel) as other steps.
  • the three-dimensional data coding device, the three-dimensional data decoding device, and the like have been described above based on the embodiment, but the present disclosure is not limited to this embodiment. .. As long as the purpose of the present disclosure is not deviated, various modifications that can be conceived by those skilled in the art are applied to the present embodiment, and a form constructed by combining components in different embodiments is also within the scope of one or more embodiments. May be included within.
  • the present disclosure is applicable to a three-dimensional data encoding device and a three-dimensional data decoding device.
  • Three-dimensional data creation device 811 Data reception unit 812, 819 Communication unit 813 Reception control unit 814, 821 Format conversion unit 815

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Security & Cryptography (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

三次元データ符号化方法は、点群データに含まれる複数の三次元点の各々の位置情報及び1以上の属性情報を符号化することでビットストリームを生成し(S8781)、符号化(S8781)では、複数の三次元点の各々の法線ベクトルを1以上の属性情報に含まれる一つの属性情報として符号化する。例えば、三次元データ符号化方法は、符号化(S8781)では、浮動小数点で表現される前記法線ベクトルを、整数に変換したうえで符号化してもよい。

Description

三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
 本開示は、三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置に関する。
 自動車或いはロボットが自律的に動作するためのコンピュータビジョン、マップ情報、監視、インフラ点検、又は、映像配信など、幅広い分野において、今後、三次元データを活用した装置又はサービスの普及が見込まれる。三次元データは、レンジファインダなどの距離センサ、ステレオカメラ、又は複数の単眼カメラの組み合わせなど様々な方法で取得される。
 三次元データの表現方法の1つとして、三次元空間内の点群によって三次元構造の形状を表すポイントクラウドと呼ばれる表現方法がある。ポイントクラウドでは、点群の位置と色とが格納される。ポイントクラウドは三次元データの表現方法として主流になると予想されるが、点群はデータ量が非常に大きい。よって、三次元データの蓄積又は伝送においては二次元の動画像(一例として、MPEGで規格化されたMPEG-4 AVC又はHEVCなどがある)と同様に、符号化によるデータ量の圧縮が必須となる。
 また、ポイントクラウドの圧縮については、ポイントクラウド関連の処理を行う公開のライブラリ(Point Cloud Library)などによって一部サポートされている。
 また、三次元の地図データを用いて、車両周辺に位置する施設を検索し、表示する技術が知られている(例えば、特許文献1参照)。
国際公開第2014/020663号
 三次元データの符号化処理及び三次元データ復号処理では、処理量を低減できることが望まれている。
 本開示は、処理量を低減できる三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、又は三次元データ復号装置を提供することを目的とする。
 本開示の一態様に係る三次元データ符号化方法は、点群データに含まれる複数の三次元点の各々の位置情報及び1以上の属性情報を符号化することでビットストリームを生成し、前記符号化では、前記複数の三次元点の各々の法線ベクトルを前記1以上の属性情報に含まれる一つの属性情報として符号化する。
 本開示の一態様に係る三次元データ符号化方法は、点群データを複数の分割データに分割し、前記複数の分割データを符号化することでビットストリームを生成し、前記ビットストリームは、前記複数の分割データの各々の法線ベクトルを示す情報を含む。
 本開示の一態様に係る三次元データ復号方法は、点群データに含まれる複数の三次元点の各々の位置情報及び1以上の属性情報が符号化されることで生成されたビットストリームであって、前記複数の三次元点の各々の法線ベクトルが前記1以上の属性情報に含まれる一つの属性情報として符号化されたビットストリームを取得し、前記ビットストリームから、前記一つの属性情報を復号することで前記法線ベクトルを取得する。
 本開示の一態様に係る三次元データ復号方法は、点群データが分割されることで生成された複数の分割データが符号化されることで生成されたビットストリームを取得し、前記ビットストリームから、前記複数の分割データの各々の法線ベクトルを示す情報を取得する。
 本開示は、処理量を低減できる三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、又は三次元データ復号装置を提供できる。
図1は、実施の形態1に係る三次元データ符号化復号システムの構成を示す図である。 図2は、実施の形態1に係る点群データの構成例を示す図である。 図3は、実施の形態1に係る点群データ情報が記述されたデータファイルの構成例を示す図である。 図4は、実施の形態1に係る点群データの種類を示す図である。 図5は、実施の形態1に係る第1の符号化部の構成を示す図である。 図6は、実施の形態1に係る第1の符号化部のブロック図である。 図7は、実施の形態1に係る第1の復号部の構成を示す図である。 図8は、実施の形態1に係る第1の復号部のブロック図である。 図9は、実施の形態1に係る三次元データ符号化装置のブロック図である。 図10は、実施の形態1に係る位置情報の例を示す図である。 図11は、実施の形態1に係る位置情報の8分木表現の例を示す図である。 図12は、実施の形態1に係る三次元データ復号装置のブロック図である。 図13は、実施の形態1に係る属性情報符号化部のブロック図である。 図14は、実施の形態1に係る属性情報復号部のブロック図である。 図15は、実施の形態1に係る属性情報符号化部の構成を示すブロック図である。 図16は、実施の形態1に係る属性情報符号化部のブロック図である。 図17は、実施の形態1に係る属性情報復号部の構成を示すブロック図である。 図18は、実施の形態1に係る属性情報復号部のブロック図である。 図19は、実施の形態1に係る第2の符号化部の構成を示す図である。 図20は、実施の形態1に係る第2の符号化部のブロック図である。 図21は、実施の形態1に係る第2の復号部の構成を示す図である。 図22は、実施の形態1に係る第2の復号部のブロック図である。 図23は、実施の形態1に係るPCC符号化データに関わるプロトコルスタックを示す図である。 図24は、実施の形態2に係る符号化部及び多重化部の構成を示す図である。 図25は、実施の形態2に係る符号化データの構成例を示す図である。 図26は、実施の形態2に係る符号化データ及びNALユニットの構成例を示す図である。 図27は、実施の形態2に係るpcc_nal_unit_typeのセマンティクス例を示す図である。 図28は、実施の形態3に係る第1の符号化部のブロック図である。 図29は、実施の形態3に係る第1の復号部のブロック図である。 図30は、実施の形態3に係る分割部のブロック図である。 図31は、実施の形態3に係るスライス及びタイルの分割例を示す図である。 図32は、実施の形態3に係るスライス及びタイルの分割パターンの例を示す図である。 図33は、実施の形態3に係る依存関係の例を示す図である。 図34は、実施の形態3に係るデータの復号順の例を示す図である。 図35は、実施の形態3に係る符号化処理のフローチャートである。 図36は、実施の形態3に係る結合部のブロック図である。 図37は、実施の形態3に係る符号化データ及びNALユニットの構成例を示す図である。 図38は、実施の形態3に係る符号化処理のフローチャートである。 図39は、実施の形態3に係る復号処理のフローチャートである。 図40は、実施の形態4に係るタイル付加情報のシンタックス例を示す図である。 図41は、実施の形態4に係る符号化復号システムのブロック図である。 図42は、実施の形態4に係るスライス付加情報のシンタックス例を示す図である。 図43は、実施の形態4に係る符号化処理のフローチャートである。 図44は、実施の形態4に係る復号処理のフローチャートである。 図45は、実施の形態5に係る分割方法の例を示す図である。 図46は、実施の形態5に係る点群データの分割例を示す図である。 図47は、実施の形態5に係るタイル付加情報のシンタックス例を示す図である。 図48は、実施の形態5に係るインデックス情報の例を示す図である。 図49は、実施の形態5に係る依存関係の例を示す図である。 図50は、実施の形態5に係る送出データの例を示す図である。 図51は、実施の形態5に係るNALユニットの構成例を示す図である。 図52は、実施の形態5に係る依存関係の例を示す図である。 図53は、実施の形態5に係るデータの復号順の例を示す図である。 図54は、実施の形態5に係る依存関係の例を示す図である。 図55は、実施の形態5に係るデータの復号順の例を示す図である。 図56は、実施の形態5に係る符号化処理のフローチャートである。 図57は、実施の形態5に係る復号処理のフローチャートである。 図58は、実施の形態5に係る符号化処理のフローチャートである。 図59は、実施の形態5に係る符号化処理のフローチャートである。 図60は、実施の形態5に係る送出データ及び受信データの例を示す図である。 図61は、実施の形態5に係る復号処理のフローチャートである。 図62は、実施の形態5に係る送出データ及び受信データの例を示す図である。 図63は、実施の形態5に係る復号処理のフローチャートである。 図64は、実施の形態5に係る符号化処理のフローチャートである。 図65は、実施の形態5に係るインデックス情報の例を示す図である。 図66は、実施の形態5に係る依存関係の例を示す図である。 図67は、実施の形態5に係る送出データの例を示す図である。 図68は、実施の形態5に係る送出データ及び受信データの例を示す図である。 図69は、実施の形態5に係る復号処理のフローチャートである。 図70は、実施の形態6に係るタイル毎の量子化処理を模式的に示す図である。 図71は、実施の形態6に係るGPSのシンタックス例を示す図である。 図72は、実施の形態6に係るタイル情報のシンタックス例を示す図である。 図73は、実施の形態6に係るノード情報のシンタックス例を示す図である。 図74は、実施の形態6に係る三次元データ符号化処理のフローチャートである。 図75は、実施の形態6に係る三次元データ符号化処理のフローチャートである。 図76は、実施の形態6に係る三次元データ復号処理のフローチャートである。 図77は、実施の形態6に係るタイル分割の例を示す図である。 図78は、実施の形態6に係るタイル分割の例を示す図である。 図79は、実施の形態6に係る三次元データ符号化処理のフローチャートである。 図80は、実施の形態6に係る三次元データ符号化装置のブロック図である。 図81は、実施の形態6に係るGPSのシンタックス例を示す図である。 図82は、実施の形態6に係る三次元データ復号処理のフローチャートである。 図83は、実施の形態6に係るアプリケーションの例を示す図である。 図84は、実施の形態6に係るタイル分割及びスライス分割の例を示す図である。 図85は、実施の形態6に係るシステムにおける処理のフローチャートである。 図86は、実施の形態6に係るシステムにおける処理のフローチャートである。 図87は、実施の形態7に係る三次元データ符号化装置のブロック図である。 図88は、実施の形態7に係る三次元データ復号装置のブロック図である。 図89は、実施の形態7に係る三次元データ符号化装置のブロック図である。 図90は、実施の形態7に係る三次元データ復号装置の構成を示すブロック図である。 図91は、実施の形態7に係る点群データの例を示す図である。 図92は、実施の形態7に係る点毎の法線ベクトルの例を示す図である。 図93は、実施の形態7に係る法線ベクトルのシンタックス例を示す図である。 図94は、実施の形態7に係る三次元データ符号化処理のフローチャートである。 図95は、実施の形態7に係る三次元データ復号処理のフローチャートである。 図96は、実施の形態7に係るビットストリームの構成例を示す図である。 図97は、実施の形態7に係る点群情報の例を示す図である。 図98は、実施の形態7に係る三次元データ符号化処理のフローチャートである。 図99は、実施の形態7に係る三次元データ復号処理のフローチャートである。 図100は、実施の形態7に係る法線ベクトルの分割の例を示す図である。 図101は、実施の形態7に係る法線ベクトルの分割の例を示す図である。 図102は、実施の形態7に係る点群データの例を示す図である。 図103は、実施の形態7に係る法線ベクトルの例を示す図である。 図104は、実施の形態7に係る法線ベクトルの情報の例を示す図である。 図105は、実施の形態7に係る立方体の例を示す図である。 図106は、実施の形態7に係る立方体の面の例を示す図である。 図107は、実施の形態7に係る立方体の面の例を示す図である。 図108は、実施の形態7に係る立方体の面の例を示す図である。 図109は、実施の形態7に係るスライスの可視性の例を示す図である。 図110は、実施の形態7に係るビットストリームの構成例を示す図である。 図111は、実施の形態7に係る位置情報のスライスヘッダのシンタックス例を示す図である。 図112は、実施の形態7に係る位置情報のスライスヘッダのシンタックス例を示す図である。 図113は、実施の形態7に係る三次元データ符号化処理のフローチャートである。 図114は、実施の形態7に係る三次元データ復号処理のフローチャートである。 図115は、実施の形態7に係る三次元データ復号処理のフローチャートである。 図116は、実施の形態7に係るビットストリームの構成例を示す図である。 図117は、実施の形態7に係るスライス情報のシンタックス例を示す図である。 図118は、実施の形態7に係るスライス情報のシンタックス例を示す図である。 図119は、実施の形態7に係る三次元データ復号処理のフローチャートである。 図120は、実施の形態7に係る部分復号処理の例を示す図である。 図121は、実施の形態7に係る三次元データ復号装置の構成例を示す図である。 図122は、実施の形態7に係るランダムアクセス制御部の処理例を示す図である。 図123は、実施の形態7に係るランダムアクセス制御部の処理例を示す図である。 図124は、実施の形態7に係る距離と解像度との関係の例を示す図である。 図125は、実施の形態7に係るブリックと法線ベクトルの例を示す図である。 図126は、実施の形態7に係るレベルの例を示す図である。 図127は、実施の形態7に係る8分木構造の例を示す図である。 図128は、実施の形態7に係る三次元データ復号処理のフローチャートである。 図129は、実施の形態7に係る三次元データ復号処理のフローチャートである。 図130は、実施の形態7に係る復号するブリックの例を示す図である。 図131は、実施の形態7に係る復号対象のレベルの例を示す図である。 図132は、実施の形態7に係る位置情報のスライスヘッダのシンタックス例を示す図である。 図133は、実施の形態7に係る三次元データ符号化処理のフローチャートである。 図134は、実施の形態7に係る三次元データ復号処理のフローチャートである。 図135は、実施の形態7に係る点群データの例を示す図である。 図136は、実施の形態7に係る点群データの例を示す図である。 図137は、実施の形態7に係るシステムの構成例を示す図である。 図138は、実施の形態7に係るシステムの構成例を示す図である。 図139は、実施の形態7に係るシステムの構成例を示す図である。 図140は、実施の形態7に係るシステムの構成例を示す図である。 図141は、実施の形態7に係るビットストリームの構成例を示す図である。 図142は、実施の形態7に係る三次元データ符号化装置の構成例を示す図である。 図143は、実施の形態7に係る三次元データ復号装置の構成例を示す図である。 図144は、実施の形態7に係るISOBMFFの基本構造を示す図である。 図145は、実施の形態7に係るPCCコーデック共通のNALユニットをISOBMFFに格納する場合のプロトコルスタック図である。 図146は、実施の形態7に係るビットストリームをファイルフォーマットに変換する例を示す図である。 図147は、実施の形態7に係るスライス情報のシンタックス例を示す図である。 図148は、実施の形態7に係るPCCランダムアクセステーブルのシンタックス例を示す図である。 図149は、実施の形態7に係るPCCランダムアクセステーブルのシンタックス例を示す図である。 図150は、実施の形態7に係るPCCランダムアクセステーブルのシンタックス例を示す図である。 図151は、実施の形態7に係る三次元データ符号化処理のフローチャートである。 図152は、実施の形態7に係る三次元データ復号処理のフローチャートである。 図153は、実施の形態7に係る三次元データ符号化処理のフローチャートである。 図154は、実施の形態7に係る三次元データ復号処理のフローチャートである。 図155は、実施の形態5に係る三次元データ作成装置のブロック図である。 図156は、実施の形態5に係る三次元データ作成方法のフローチャートである。 図157は、実施の形態8に係るシステムの構成を示す図である。 図158は、実施の形態8に係るクライアント装置のブロック図である。 図159は、実施の形態8に係るサーバのブロック図である。 図160は、実施の形態8に係るクライアント装置による三次元データ作成処理のフローチャートである。 図161は、実施の形態8に係るクライアント装置によるセンサ情報送信処理のフローチャートである。 図162は、実施の形態8に係るサーバによる三次元データ作成処理のフローチャートである。 図163は、実施の形態8に係るサーバによる三次元マップ送信処理のフローチャートである。 図164は、実施の形態8に係るシステムの変形例の構成を示す図である。 図165は、実施の形態8に係るサーバ及びクライアント装置の構成を示す図である。 図166は、実施の形態8に係るサーバ及びクライアント装置の構成を示す図である。 図167は、実施の形態8に係るクライアント装置による処理のフローチャートである。 図168は、実施の形態8に係るセンサ情報収集システムの構成を示す図である。 図169は、実施の形態8に係るシステムの例を示す図である。 図170は、実施の形態8に係るシステムの変形例を示す図である。 図171は、実施の形態8に係るアプリケーション処理の例を示すフローチャートである。 図172は、実施の形態8に係る各種センサのセンサ範囲を示す図である。 図173は、実施の形態8に係る自動運転システムの構成例を示す図である。 図174は、実施の形態8に係るビットストリームの構成例を示す図である。 図175は、実施の形態8に係る点群選択処理のフローチャートである。 図176は、実施の形態8に係る点群選択処理の画面例を示す図である。 図177は、実施の形態8に係る点群選択処理の画面例を示す図である。 図178は、実施の形態8に係る点群選択処理の画面例を示す図である。
 本開示の一態様に係る三次元データ符号化方法は、点群データに含まれる複数の三次元点の各々の位置情報及び1以上の属性情報を符号化することでビットストリームを生成し、前記符号化では、前記複数の三次元点の各々の法線ベクトルを前記1以上の属性情報に含まれる一つの属性情報として符号化する。
 これによれば、当該三次元データ符号化方法は、法線ベクトルを属性情報として符号化することで、法線ベクトルを他の属性情報と同様に処理できる。よって、当該三次元データ符号化方法は、処理量を低減できる。
 例えば、前記符号化では、浮動小数点で表現される前記法線ベクトルを、整数に変換したうえで符号化してもよい。
 これによれば、当該三次元データ符号化方法は、法線ベクトルを、整数で表現される他の属性情報と同様に処理できる。
 例えば、前記ビットストリームは、前記位置情報及び前記1以上の属性情報に共通の制御情報を含み、前記制御情報は、前記1以上の属性情報に含まれる前記一つの属性情報が前記法線ベクトルを示すことを示す情報、または前記法線ベクトルが1点ごとに3つの要素を持つデータであることを示す情報のうち少なくとも一方の情報を含んでもよい。
 本開示の一態様に係る三次元データ符号化方法は、点群データを複数の分割データに分割し、前記複数の分割データを符号化することでビットストリームを生成し、前記ビットストリームは、前記複数の分割データの各々の法線ベクトルを示す情報を含む。
 これによれば、当該三次元データ符号化方法は、分割データ毎に法線ベクトルを符号化することで点毎に法線ベクトルを符号化する場合に比べて、処理量及び符号量を低減できる。
 例えば、前記複数の分割データの各々はランダムアクセス単位であってもよい。
 本開示の一態様に係る三次元データ復号方法は、点群データに含まれる複数の三次元点の各々の位置情報及び1以上の属性情報が符号化されることで生成されたビットストリームであって、前記複数の三次元点の各々の法線ベクトルが前記1以上の属性情報に含まれる一つの属性情報として符号化されたビットストリームを取得し、前記ビットストリームから、前記一つの属性情報を復号することで前記法線ベクトルを取得する。
 これによれば、当該三次元データ復号方法は、法線ベクトルを属性情報として復号することで、法線ベクトルを他の属性情報と同様に処理できる。よって、当該三次元データ復号方法は、処理量を低減できる。
 例えば、前記法線ベクトルの取得では、整数で示される前記法線ベクトルを取得してもよい。
 これによれば、当該三次元データ復号方法は、法線ベクトルを、整数で表現される他の属性情報と同様に処理できる。
 例えば、前記ビットストリームは、前記位置情報及び前記1以上の属性情報に共通の制御情報を含み、前記制御情報は、前記1以上の属性情報に含まれる第1属性情報が前記法線ベクトルを示すことを示す情報、または前記法線ベクトルが1点ごとに3つの要素を持つデータであることを示す情報のうち少なくとも一方の情報を含んでもよい。
 本開示の一態様に係る三次元データ復号方法は、点群データが分割されることで生成された複数の分割データが符号化されることで生成されたビットストリームを取得し、前記ビットストリームから、前記複数の分割データの各々の法線ベクトルを示す情報を取得する。
 これによれば、当該三次元データ復号方法は、分割データ毎に法線ベクトルを復号することで点毎に法線ベクトルを復号する場合に比べて、処理量を低減できる。
 例えば、前記複数の分割データの各々はランダムアクセス単位であってもよい。
 例えば、前記三次元データ復号方法は、さらに、前記法線ベクトルに基づき、前記複数の分割データから復号対象の分割データを決定し、前記復号対象の分割データを復号してもよい。
 例えば、前記三次元データ復号方法は、さらに、前記法線ベクトルに基づき、前記複数の分割データの復号順を決定し、決定した前記復号順で前記複数の分割データを復号してもよい。
 また、本開示の一態様に係る三次元データ符号化装置は、プロセッサと、メモリとを備え、前記プロセッサは、前記メモリを用いて、点群データに含まれる複数の三次元点の各々の位置情報及び1以上の属性情報を符号化することでビットストリームを生成し、前記符号化では、前記複数の三次元点の各々の法線ベクトルを前記1以上の属性情報に含まれる一つの属性情報として符号化する。
 これによれば、当該三次元データ符号化装置は、法線ベクトルを属性情報として符号化することで、法線ベクトルを他の属性情報と同様に処理できる。よって、当該三次元データ符号化装置は、処理量を低減できる。
 また、本開示の一態様に係る三次元データ符号化装置は、プロセッサと、メモリとを備え、前記プロセッサは、前記メモリを用いて、点群データを複数の分割データに分割し、前記複数の分割データを符号化することでビットストリームを生成し、前記ビットストリームは、前記複数の分割データの各々の法線ベクトルを示す情報を含む。
 これによれば、当該三次元データ符号化装置は、分割データ毎に法線ベクトルを符号化することで点毎に法線ベクトルを符号化する場合に比べて、処理量及び符号量を低減できる。
 また、本開示の一態様に係る三次元データ復号装置は、プロセッサと、メモリとを備え、前記プロセッサは、前記メモリを用いて、点群データに含まれる複数の三次元点の各々の位置情報及び1以上の属性情報が符号化されることで生成されたビットストリームであって、前記複数の三次元点の各々の法線ベクトルが前記1以上の属性情報に含まれる一つの属性情報として符号化されたビットストリームを取得し、前記ビットストリームから、前記一つの属性情報を復号することで前記法線ベクトルを取得する。
 これによれば、当該三次元データ復号装置は、法線ベクトルを属性情報として復号することで、法線ベクトルを他の属性情報と同様に処理できる。よって、当該三次元データ復号装置は、処理量を低減できる。
 また、本開示の一態様に係る三次元データ復号装置は、プロセッサと、メモリとを備え、前記プロセッサは、前記メモリを用いて、点群データが分割されることで生成された複数の分割データが符号化されることで生成されたビットストリームを取得し、前記ビットストリームから、前記複数の分割データの各々の法線ベクトルを示す情報を取得する。
 これによれば、当該三次元データ復号装置は、分割データ毎に法線ベクトルを復号することで点毎に法線ベクトルを復号する場合に比べて、処理量を低減できる。
 なお、これらの包括的または具体的な態様は、システム、方法、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラム及び記録媒体の任意な組み合わせで実現されてもよい。
 以下、実施の形態について、図面を参照しながら具体的に説明する。なお、以下で説明する実施の形態は、いずれも本開示の一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 (実施の形態1)
 ポイントクラウドの符号化データを実際の装置又はサービスにおいて使用する際には、ネットワーク帯域を抑制するために用途に応じて必要な情報を送受信することが望ましい。しかしながら、これまで、三次元データの符号化構造にはそのような機能が存在せず、そのための符号化方法も存在しなかった。
 本実施の形態では、三次元のポイントクラウドの符号化データにおいて用途に応じて必要な情報を送受信する機能を提供するための三次元データ符号化方法及び三次元データ符号化装置、並びに、当該符号化データを復号する三次元データ復号方法及び三次元データ復号装置、並びに、当該符号化データを多重化する三次元データ多重化方法、並びに、当該符号化データを伝送する三次元データ伝送方法について説明する。
 特に、現在、点群データの符号化方法(符号化方式)として第1の符号化方法、及び第2の符号化方法が検討されているが、符号化データの構成、及び符号化データをシステムフォーマットへ格納する方法が定義されておらず、このままでは符号化部におけるMUX処理(多重化)、又は、伝送或いは蓄積ができないという課題がある。
 また、PCC(Point Cloud Compression)のように、第1の符号化方法と第2の符号化方法の2つのコーデックが混在するフォーマットをサポートする方法はこれまで存在しない。
 本実施の形態では、第1の符号化方法と第2の符号化方法の2つのコーデックが混在するPCC符号化データの構成、及び符号化データをシステムフォーマットへ格納する方法について説明する。
 まず、本実施の形態に係る三次元データ(点群データ)符号化復号システムの構成を説明する。図1は、本実施の形態に係る三次元データ符号化復号システムの構成例を示す図である。図1に示すように、三次元データ符号化復号システムは、三次元データ符号化システム4601と、三次元データ復号システム4602と、センサ端末4603と、外部接続部4604とを含む。
 三次元データ符号化システム4601は、三次元データである点群データを符号化することで符号化データ又は多重化データを生成する。なお、三次元データ符号化システム4601は、単一の装置により実現される三次元データ符号化装置であってもよいし、複数の装置により実現されるシステムであってもよい。また、三次元データ符号化装置は、三次元データ符号化システム4601に含まれる複数の処理部のうち一部を含んでもよい。
 三次元データ符号化システム4601は、点群データ生成システム4611と、提示部4612と、符号化部4613と、多重化部4614と、入出力部4615と、制御部4616とを含む。点群データ生成システム4611は、センサ情報取得部4617と、点群データ生成部4618とを含む。
 センサ情報取得部4617は、センサ端末4603からセンサ情報を取得し、センサ情報を点群データ生成部4618に出力する。点群データ生成部4618は、センサ情報から点群データを生成し、点群データを符号化部4613へ出力する。
 提示部4612は、センサ情報又は点群データをユーザに提示する。例えば、提示部4612は、センサ情報又は点群データに基づく情報又は画像を表示する。
 符号化部4613は、点群データを符号化(圧縮)し、得られた符号化データと、符号化過程において得られた制御情報と、その他の付加情報とを多重化部4614へ出力する。付加情報は、例えば、センサ情報を含む。
 多重化部4614は、符号化部4613から入力された符号化データと、制御情報と、付加情報とを多重することで多重化データを生成する。多重化データのフォーマットは、例えば蓄積のためのファイルフォーマット、又は伝送のためのパケットフォーマットである。
 入出力部4615(例えば、通信部又はインタフェース)は、多重化データを外部へ出力する。または、多重化データは、内部メモリ等の蓄積部に蓄積される。制御部4616(またはアプリ実行部)は、各処理部を制御する。つまり、制御部4616は、符号化及び多重化等の制御を行う。
 なお、センサ情報が符号化部4613又は多重化部4614へ入力されてもよい。また、入出力部4615は、点群データ又は符号化データをそのまま外部へ出力してもよい。
 三次元データ符号化システム4601から出力された伝送信号(多重化データ)は、外部接続部4604を介して、三次元データ復号システム4602に入力される。
 三次元データ復号システム4602は、符号化データ又は多重化データを復号することで三次元データである点群データを生成する。なお、三次元データ復号システム4602は、単一の装置により実現される三次元データ復号装置であってもよいし、複数の装置により実現されるシステムであってもよい。また、三次元データ復号装置は、三次元データ復号システム4602に含まれる複数の処理部のうち一部を含んでもよい。
 三次元データ復号システム4602は、センサ情報取得部4621と、入出力部4622と、逆多重化部4623と、復号部4624と、提示部4625と、ユーザインタフェース4626と、制御部4627とを含む。
 センサ情報取得部4621は、センサ端末4603からセンサ情報を取得する。
 入出力部4622は、伝送信号を取得し、伝送信号から多重化データ(ファイルフォーマット又はパケット)を復号し、多重化データを逆多重化部4623へ出力する。
 逆多重化部4623は、多重化データから符号化データ、制御情報及び付加情報を取得し、符号化データ、制御情報及び付加情報を復号部4624へ出力する。
 復号部4624は、符号化データを復号することで点群データを再構成する。
 提示部4625は、点群データをユーザに提示する。例えば、提示部4625は、点群データに基づく情報又は画像を表示する。ユーザインタフェース4626は、ユーザの操作に基づく指示を取得する。制御部4627(またはアプリ実行部)は、各処理部を制御する。つまり、制御部4627は、逆多重化、復号及び提示等の制御を行う。
 なお、入出力部4622は、点群データ又は符号化データをそのまま外部から取得してもよい。また、提示部4625は、センサ情報などの付加情報を取得し、付加情報に基づいた情報を提示してもよい。また、提示部4625は、ユーザインタフェース4626で取得されたユーザの指示に基づき、提示を行ってもよい。
 センサ端末4603は、センサで得られた情報であるセンサ情報を生成する。センサ端末4603は、センサ又はカメラを搭載した端末であり、例えば、自動車などの移動体、飛行機などの飛行物体、携帯端末、又はカメラなどがある。
 センサ端末4603で取得可能なセンサ情報は、例えば、(1)LIDAR、ミリ波レーダ、又は赤外線センサから得られる、センサ端末4603と対象物との距離、又は対象物の反射率、(2)複数の単眼カメラ画像又はステレオカメラ画像から得られるカメラと対象物との距離又は対象物の反射率等である。また、センサ情報は、センサの姿勢、向き、ジャイロ(角速度)、位置(GPS情報又は高度)、速度、又は加速度等を含んでもよい。また、センサ情報は、気温、気圧、湿度、又は磁気等を含んでもよい。
 外部接続部4604は、集積回路(LSI又はIC)、外部蓄積部、インターネットを介したクラウドサーバとの通信、又は、放送等により実現される。
 次に、点群データについて説明する。図2は、点群データの構成を示す図である。図3は、点群データの情報が記述されたデータファイルの構成例を示す図である。
 点群データは、複数の点のデータを含む。各点のデータは、位置情報(三次元座標)、及びその位置情報に対する属性情報とを含む。この点が複数集まったものを点群と呼ぶ。例えば、点群は対象物(オブジェクト)の三次元形状を示す。
 三次元座標等の位置情報(Position)をジオメトリ(geometry)と呼ぶこともある。また、各点のデータは、複数の属性種別の属性情報(attribute)を含んでもよい。属性種別は、例えば色又は反射率などである。
 1つの位置情報に対して1つの属性情報が対応付けられてもよいし、1つの位置情報に対して複数の異なる属性種別を持つ属性情報が対応付けられてもよい。また、1つの位置情報に対して同じ属性種別の属性情報が複数対応付けられてもよい。
 図3に示すデータファイルの構成例は、位置情報と属性情報とが1対1に対応する場合の例であり、点群データを構成するN個の点の位置情報と属性情報とを示している。
 位置情報は、例えば、x、y、zの3軸の情報である。属性情報は、例えば、RGBの色情報である。代表的なデータファイルとしてplyファイルなどがある。
 次に、点群データの種類について説明する。図4は、点群データの種類を示す図である。図4に示すように、点群データには、静的オブジェクトと、動的オブジェクトとがある。
 静的オブジェクトは、任意の時間(ある時刻)の三次元点群データである。動的オブジェクトは、時間的に変化する三次元点群データである。以降、ある時刻の三次元点群データをPCCフレーム、又はフレームと呼ぶ。
 オブジェクトは、通常の映像データのように、ある程度領域が制限されている点群であってもよいし、地図情報のように領域が制限されていない大規模点群であってもよい。
 また、様々な密度の点群データがあり、疎な点群データと、密な点群データとが存在してもよい。
 以下、各処理部の詳細について説明する。センサ情報は、LIDAR或いはレンジファインダなどの距離センサ、ステレオカメラ、又は、複数の単眼カメラの組合せなど様々な方法で取得される。点群データ生成部4618は、センサ情報取得部4617で得られたセンサ情報に基づき点群データを生成する。点群データ生成部4618は、点群データとして、位置情報を生成し、位置情報に、当該位置情報に対する属性情報を付加する。
 点群データ生成部4618は、位置情報の生成又は属性情報の付加の際に、点群データを加工してもよい。例えば、点群データ生成部4618は、位置が重複する点群を削除することでデータ量を減らしてもよい。また、点群データ生成部4618は、位置情報を変換(位置シフト、回転又は正規化など)してもよいし、属性情報をレンダリングしてもよい。
 なお、図1では、点群データ生成システム4611は、三次元データ符号化システム4601に含まれるが、三次元データ符号化システム4601の外部に独立して設けられてもよい。
 符号化部4613は、点群データを予め規定された符号化方法に基づき符号化することで符号化データを生成する。符号化方法には大きく以下の2種類がある。一つ目は、位置情報を用いた符号化方法であり、この符号化方法を、以降、第1の符号化方法と記載する。二つ目は、ビデオコーデックを用いた符号化方法であり、この符号化方法を、以降、第2の符号化方法と記載する。
 復号部4624は、符号化データを予め規定された符号化方法に基づき復号することで点群データを復号する。
 多重化部4614は、符号化データを、既存の多重化方式を用いて多重化することで多重化データを生成する。生成された多重化データは、伝送又は蓄積される。多重化部4614は、PCC符号化データの他に、映像、音声、字幕、アプリケーション、ファイルなどの他のメディア、又は基準時刻情報を多重化する。また、多重化部4614は、さらに、センサ情報又は点群データに関連する属性情報を多重してもよい。
 多重化方式又はファイルフォーマットとしては、ISOBMFF、ISOBMFFベースの伝送方式であるMPEG-DASH、MMT、MPEG-2 TS Systems、RMPなどがある。
 逆多重化部4623は、多重化データからPCC符号化データ、その他のメディア、及び時刻情報などを抽出する。
 入出力部4615は、多重化データを、放送又は通信など、伝送する媒体又は蓄積する媒体にあわせた方法を用いて伝送する。入出力部4615は、インターネット経由で他のデバイスと通信してもよいし、クラウドサーバなどの蓄積部と通信してもよい。
 通信プロトコルとしては、http、ftp、TCP又はUDPなどが用いられる。PULL型の通信方式が用いられてもよいし、PUSH型の通信方式が用いられてもよい。
 有線伝送及び無線伝送のいずれが用いられてもよい。有線伝送としては、Ethernet(登録商標)、USB、RS-232C、HDMI(登録商標)、又は同軸ケーブルなどが用いられる。無線伝送としては、無線LAN、Wi-Fi(登録商標)、Bluetooth(登録商標)又はミリ波などが用いられる。
 また、放送方式としては、例えばDVB-T2、DVB-S2、DVB-C2、ATSC3.0、又はISDB-S3などが用いられる。
 図5は、第1の符号化方法の符号化を行う符号化部4613の例である第1の符号化部4630の構成を示す図である。図6は、第1の符号化部4630のブロック図である。第1の符号化部4630は、点群データを第1の符号化方法で符号化することで符号化データ(符号化ストリーム)を生成する。この第1の符号化部4630は、位置情報符号化部4631と、属性情報符号化部4632と、付加情報符号化部4633と、多重化部4634とを含む。
 第1の符号化部4630は、三次元構造を意識して符号化を行うという特徴を有する。また、第1の符号化部4630は、属性情報符号化部4632が、位置情報符号化部4631から得られる情報を用いて符号を行うという特徴を有する。第1の符号化方法は、GPCC(Geometry based PCC)とも呼ばれる。
 点群データは、PLYファイルのようなPCC点群データ、又は、センサ情報から生成されたPCC点群データであり、位置情報(Position)、属性情報(Attribute)、及びその他の付加情報(MetaData)を含む。位置情報は位置情報符号化部4631に入力され、属性情報は属性情報符号化部4632に入力され、付加情報は付加情報符号化部4633に入力される。
 位置情報符号化部4631は、位置情報を符号化することで符号化データである符号化位置情報(Compressed Geometry)を生成する。例えば、位置情報符号化部4631は、8分木等のN分木構造を用いて位置情報を符号化する。具体的には、8分木では、対象空間が8個のノード(サブ空間)に分割され、各ノードに点群が含まれるか否かを示す8ビットの情報(オキュパンシー符号)が生成される。また、点群が含まれるノードは、さらに、8個のノードに分割され、当該8個のノードの各々に点群が含まれるか否かを示す8ビットの情報が生成される。この処理が、予め定められた階層又はノードに含まれる点群の数の閾値以下になるまで繰り返される。
 属性情報符号化部4632は、位置情報符号化部4631で生成された構成情報を用いて符号化することで符号化データである符号化属性情報(Compressed Attribute)を生成する。例えば、属性情報符号化部4632は、位置情報符号化部4631で生成された8分木構造に基づき、処理対象の対象点(対象ノード)の符号化において参照する参照点(参照ノード)を決定する。例えば、属性情報符号化部4632は、周辺ノード又は隣接ノードのうち、8分木における親ノードが対象ノードと同一のノードを参照する。なお、参照関係の決定方法はこれに限らない。
 また、属性情報の符号化処理は、量子化処理、予測処理、及び算術符号化処理のうち少なくとも一つを含んでもよい。この場合、参照とは、属性情報の予測値の算出に参照ノードを用いること、又は、符号化のパラメータの決定に参照ノードの状態(例えば、参照ノードに点群が含まれる否かを示す占有情報)を用いること、である。例えば、符号化のパラメータとは、量子化処理における量子化パラメータ、又は算術符号化におけるコンテキスト等である。
 付加情報符号化部4633は、付加情報のうち、圧縮可能なデータを符号化することで符号化データである符号化付加情報(Compressed MetaData)を生成する。
 多重化部4634は、符号化位置情報、符号化属性情報、符号化付加情報及びその他の付加情報を多重化することで符号化データである符号化ストリーム(Compressed Stream)を生成する。生成された符号化ストリームは、図示しないシステムレイヤの処理部へ出力される。
 次に、第1の符号化方法の復号を行う復号部4624の例である第1の復号部4640について説明する。図7は、第1の復号部4640の構成を示す図である。図8は、第1の復号部4640のブロック図である。第1の復号部4640は、第1の符号化方法で符号化された符号化データ(符号化ストリーム)を、第1の符号化方法で復号することで点群データを生成する。この第1の復号部4640は、逆多重化部4641と、位置情報復号部4642と、属性情報復号部4643と、付加情報復号部4644とを含む。
 図示しないシステムレイヤの処理部から符号化データである符号化ストリーム(Compressed Stream)が第1の復号部4640に入力される。
 逆多重化部4641は、符号化データから、符号化位置情報(Compressed Geometry)、符号化属性情報(Compressed Attribute)、符号化付加情報(Compressed MetaData)、及び、その他の付加情報を分離する。
 位置情報復号部4642は、符号化位置情報を復号することで位置情報を生成する。例えば、位置情報復号部4642は、8分木等のN分木構造で表される符号化位置情報から三次元座標で表される点群の位置情報を復元する。
 属性情報復号部4643は、位置情報復号部4642で生成された構成情報に基づき、符号化属性情報を復号する。例えば、属性情報復号部4643は、位置情報復号部4642で得られた8分木構造に基づき、処理対象の対象点(対象ノード)の復号において参照する参照点(参照ノード)を決定する。例えば、属性情報復号部4643は、周辺ノード又は隣接ノードのうち、8分木における親ノードが対象ノードと同一のノードを参照する。なお、参照関係の決定方法はこれに限らない。
 また、属性情報の復号処理は、逆量子化処理、予測処理、及び算術復号処理のうち少なくとも一つを含んでもよい。この場合、参照とは、属性情報の予測値の算出に参照ノードを用いること、又は、復号のパラメータの決定に参照ノードの状態(例えば、参照ノードに点群が含まれる否かを示す占有情報)を用いること、である。例えば、復号のパラメータとは、逆量子化処理における量子化パラメータ、又は算術復号におけるコンテキスト等である。
 付加情報復号部4644は、符号化付加情報を復号することで付加情報を生成する。また、第1の復号部4640は、位置情報及び属性情報の復号処理に必要な付加情報を復号時に使用し、アプリケーションに必要な付加情報を外部に出力する。
 次に、位置情報符号化部の構成例を説明する。図9は、本実施の形態に係る位置情報符号化部2700のブロック図である。位置情報符号化部2700は、8分木生成部2701と、幾何情報算出部2702と、符号化テーブル選択部2703と、エントロピー符号化部2704とを備える。
 8分木生成部2701は、入力された位置情報から、例えば8分木を生成し、8分木の各ノードのオキュパンシー符号を生成する。幾何情報算出部2702は、対象ノードの隣接ノードが占有ノードか否かを示す情報を取得する。例えば、幾何情報算出部2702は、対象ノードが所属する親ノードのオキュパンシー符号から隣接ノードの占有情報(隣接ノードが占有ノードであるか否かを示す情報)を算出する。また、幾何情報算出部2702は、符号化済みのノードをリストに保存しておき、そのリスト内から隣接ノードを探索してもよい。なお、幾何情報算出部2702は、対象ノードの親ノード内の位置に応じて隣接ノードを切替えてもよい。
 符号化テーブル選択部2703は、幾何情報算出部2702で算出された隣接ノードの占有情報を用いて対象ノードのエントロピー符号化に用いる符号化テーブルを選択する。例えば、符号化テーブル選択部2703は、隣接ノードの占有情報を用いてビット列を生成し、そのビット列から生成されるインデックス番号の符号化テーブルを選択してもよい。
 エントロピー符号化部2704は、選択されたインデックス番号の符号化テーブルを用いて対象ノードのオキュパンシー符号にエントロピー符号化を行うことで符号化位置情報及びメタデータを生成する。エントロピー符号化部2704は、選択された符号化テーブルを示す情報を符号化位置情報に付加してもよい。
 以下、8分木表現と位置情報のスキャン順について説明する。位置情報(位置データ)は8分木構造に変換(8分木化)された後、符号化される。8分木構造はノードとリーフとで構成される。各ノードは8つのノード又はリーフを持ち、各リーフはボクセル(VXL)情報を持つ。図10は、複数のボクセルを含む位置情報の構造例を示す図である。図11は、図10に示す位置情報を8分木構造に変換した例を示す図である。ここで、図11に示すリーフのうち、リーフ1、2、3はそれぞれ図10に示すボクセルVXL1、VXL2、VXL3を表し、点群を含むVXL(以下、有効VXL)を表現している。
 具体的には、ノード1は、図10の位置情報を包含する全体空間に対応する。ノード1に対応する全体空間は8つのノードに分割され、8つのノードのうち、有効VXLを含むノードが、さらに8つのノードまたはリーフに分割され、この処理が木構造の階層分繰り返される。ここで、各ノードはサブ空間に対応し、ノード情報として分割後のどの位置に次のノードまたはリーフを持つかを示す情報(オキュパンシー符号)を持つ。また、最下層のブロックはリーフに設定され、リーフ情報としてリーフ内に含まれる点群数などが保持される。
 次に、位置情報復号部の構成例を説明する。図12は、本実施の形態に係る位置情報復号部2710のブロック図である。位置情報復号部2710は、8分木生成部2711と、幾何情報算出部2712と、符号化テーブル選択部2713と、エントロピー復号部2714とを備える。
 8分木生成部2711は、ビットストリームのヘッダ情報又はメタデータ等を用いて、ある空間(ノード)の8分木を生成する。例えば、8分木生成部2711は、ヘッダ情報に付加されたある空間のx軸、y軸、z軸方向の大きさを用いて大空間(ルートノード)を生成し、その空間をx軸、y軸、z軸方向にそれぞれ2分割することで8個の小空間A(ノードA0~A7)を生成することで8分木を生成する。また、対象ノードとしてノードA0~A7が順に設定される。
 幾何情報算出部2712は、対象ノードの隣接ノードが占有ノードであるか否かを示す占有情報を取得する。例えば、幾何情報算出部2712は、対象ノードが所属する親ノードのオキュパンシー符号から隣接ノードの占有情報を算出する。また、幾何情報算出部2712は、復号済みのノードをリストに保存しておき、そのリスト内から隣接ノードを探索してもよい。なお、幾何情報算出部2712は、対象ノードの親ノード内の位置に応じて隣接ノードを切替えてもよい。
 符号化テーブル選択部2713は、幾何情報算出部2712で算出された隣接ノードの占有情報を用いて対象ノードのエントロピー復号に用いる符号化テーブル(復号テーブル)を選択する。例えば、符号化テーブル選択部2713は、隣接ノードの占有情報を用いてビット列を生成し、そのビット列から生成されるインデックス番号の符号化テーブルを選択してもよい。
 エントロピー復号部2714は、選択された符号化テーブルを用いて対象ノードのオキュパンシー符号をエントロピー復号することで、位置情報を生成する。なお、エントロピー復号部2714は、選択された符号化テーブルの情報をビットストリームから復号して取得し、当該情報で示される符号化テーブルを用いて、対象ノードのオキュパンシー符号をエントロピー復号してもよい。
 以下、属性情報符号化部及び属性情報復号部の構成を説明する。図13は属性情報符号化部A100の構成例を示すブロック図である。属性情報符号化部は異なる符号化方法を実行する複数の符号化部を含んでもよい。例えば、属性情報符号化部は、下記の2方式をユースケースに応じて切替えて用いてもよい。
 属性情報符号化部A100は、LoD属性情報符号化部A101と、変換属性情報符号化部A102とを含む。LoD属性情報符号化部A101は、三次元点の位置情報を用いて各三次元点を複数階層に分類し、各階層に属する三次元点の属性情報を予測して、その予測残差を符号化する。ここで、分類した各階層をLoD(Level of Detail)と呼ぶ。
 変換属性情報符号化部A102は、RAHT(Region Adaptive Hierarchical Transform)を用いて属性情報を符号化する。具体的には、変換属性情報符号化部A102は、三次元点の位置情報を元に各属性情報に対してRAHTまたはHaar変換を適用することで、各階層の高周波成分および低周波数成分を生成し、それらの値を量子化及びエントロピー符号化等を用いて符号化する。
 図14は属性情報復号部A110の構成例を示すブロック図である。属性情報復号部は異なる復号方法を実行する複数の復号部を含んでもよい。例えば、属性情報復号部は、下記の2方式をヘッダやメタデータに含まれる情報を元に切替えて復号してもよい。
 属性情報復号部A110は、LoD属性情報復号部A111と、変換属性情報復号部A112とを含む。LoD属性情報復号部A111は、三次元点の位置情報を用いて各三次元点を複数階層に分類し、各階層に属する三次元点の属性情報を予測しながら属性値を復号する。
 変換属性情報復号部A112は、RAHT(Region Adaptive Hierarchical Transform)を用いて属性情報を復号する。具体的には、変換属性情報復号部A112は、三次元点の位置情報を元に各属性値の高周波成分および低周波成分に対して、inverse RAHTまたはinverse Haar変換を適用することで属性値を復号する。
 図15は、LoD属性情報符号化部A101の一例である属性情報符号化部3140の構成を示すブロック図である。
 属性情報符号化部3140は、LoD生成部3141と、周囲探索部3142と、予測部3143と、予測残差算出部3144と、量子化部3145と、算術符号化部3146と、逆量子化部3147と、復号値生成部3148と、メモリ3149と、を含む。
 LoD生成部3141は、三次元点の位置情報を用いてLoDを生成する。
 周囲探索部3142は、LoD生成部3141によるLoDの生成結果と各三次元点間の距離を示す距離情報とを用いて、各三次元点に隣接する近隣三次元点を探索する。
 予測部3143は、符号化対象の対象三次元点の属性情報の予測値を生成する。
 予測残差算出部3144は、予測部3143により生成された属性情報の予測値の予測残差を算出(生成)する。
 量子化部3145は、予測残差算出部3144により算出された属性情報の予測残差を量子化する。
 算術符号化部3146は、量子化部3145により量子化された後の予測残差を算術符号化する。算術符号化部3146は、算術符号化した予測残差を含むビットストリームを、例えば、三次元データ復号装置に出力する。
 なお、予測残差は、算術符号化部3146によって算術符号化される前に、例えば量子化部3145によって二値化されてもよい。
 また、例えば、算術符号化部3146は、算術符号化に用いる符号化テーブルを算術符号化前に初期化してもよい。算術符号化部3146は、算術符号化に用いる符号化テーブルを、層毎に初期化してもよい。また、算術符号化部3146は、符号化テーブルを初期化した層の位置を示す情報をビットストリームに含めて出力してもよい。
 逆量子化部3147は、量子化部3145によって量子化された後の予測残差を逆量子化する。
 復号値生成部3148は、予測部3143により生成された属性情報の予測値と、逆量子化部3147により逆量子化された後の予測残差とを加算することで復号値を生成する。
 メモリ3149は、復号値生成部3148により復号された各三次元点の属性情報の復号値を記憶するメモリである。例えば、予測部3143は、まだ符号化していない三次元点の予測値を生成する場合に、メモリ3149に記憶されている各三次元点の属性情報の復号値を利用して予測値を生成する。
 図16は、変換属性情報符号化部A102の一例である属性情報符号化部6600のブロック図である。属性情報符号化部6600は、ソート部6601と、Haar変換部6602と、量子化部6603と、逆量子化部6604と、逆Haar変換部6605と、メモリ6606と、算術符号化部6607とを備える。
 ソート部6601は、三次元点の位置情報を用いてモートン符号を生成し、複数の三次元点をモートン符号順にソートする。Haar変換部6602は、属性情報にHaar変換を適用することで符号化係数を生成する。量子化部6603は、属性情報の符号化係数を量子化する。
 逆量子化部6604は、量子化後の符号化係数を逆量子化する。逆Haar変換部6605は、符号化係数に逆Haar変換を適用する。メモリ6606は、復号済みの複数の三次元点の属性情報の値を記憶する。例えば、メモリ6606に記憶される復号済みの三次元点の属性情報は、符号化されていない三次元点の予測等に利用されてもよい。
 算術符号化部6607は、量子化後の符号化係数からZeroCntを算出し、ZeroCntを算術符号化する。また、算術符号化部6607は、量子化後の非ゼロの符号化係数を算術符号化する。算術符号化部6607は、符号化係数を算術符号化前に二値化してもよい。また、算術符号化部6607は、各種ヘッダ情報を生成及び符号化してもよい。
 図17は、LoD属性情報復号部A111の一例である属性情報復号部3150の構成を示すブロック図である。
 属性情報復号部3150は、LoD生成部3151と、周囲探索部3152と、予測部3153と、算術復号部3154と、逆量子化部3155と、復号値生成部3156と、メモリ3157と、を含む。
 LoD生成部3151は、位置情報復号部(図17には不図示)により復号された三次元点の位置情報を用いてLoDを生成する。
 周囲探索部3152は、LoD生成部3151によるLoDの生成結果と各三次元点間の距離を示す距離情報とを用いて、各三次元点に隣接する近隣三次元点を探索する。
 予測部3153は、復号対象の対象三次元点の属性情報の予測値を生成する。
 算術復号部3154は、図15に示す属性情報符号化部3140より取得したビットストリーム内の予測残差を算術復号する。なお、算術復号部3154は、算術復号に用いる復号テーブルを初期化してもよい。算術復号部3154は、図15に示す算術符号化部3146が符号化処理を行った層について、算術復号に用いる復号テーブルを初期化する。算術復号部3154は、算術復号に用いる復号テーブルを層毎に初期化してもよい。また、算術復号部3154は、ビットストリームに含まれる、符号化テーブルを初期化した層の位置を示す情報に基づいて、復号テーブルを初期化してもよい。
 逆量子化部3155は、算術復号部3154が算術復号した予測残差を逆量子化する。
 復号値生成部3156は、予測部3153により生成された予測値と逆量子化部3155により逆量子化された後の予測残差とを加算して復号値を生成する。復号値生成部3156は、復号された属性情報データを他の装置へ出力する。
 メモリ3157は、復号値生成部3156により復号された各三次元点の属性情報の復号値を記憶するメモリである。例えば、予測部3153は、まだ復号していない三次元点の予測値を生成する場合に、メモリ3157に記憶されている各三次元点の属性情報の復号値を利用して予測値を生成する。
 図18は、変換属性情報復号部A112の一例である属性情報復号部6610のブロック図である。属性情報復号部6610は、算術復号部6611と、逆量子化部6612と、逆Haar変換部6613と、メモリ6614とを備える。
 算術復号部6611は、ビットストリームに含まれるZeroCntと符号化係数を算術復号する。なお、算術復号部6611は、各種ヘッダ情報を復号してもよい。
 逆量子化部6612は、算術復号した符号化係数を逆量子化する。逆Haar変換部6613は、逆量子化後の符号化係数に逆Haar変換を適用する。メモリ6614は、復号済みの複数の三次元点の属性情報の値を記憶する。例えば、メモリ6614に記憶される復号済みの三次元点の属性情報は、復号されていない三次元点の予測に利用されてもよい。
 次に、第2の符号化方法の符号化を行う符号化部4613の例である第2の符号化部4650について説明する。図19は、第2の符号化部4650の構成を示す図である。図20は、第2の符号化部4650のブロック図である。
 第2の符号化部4650は、点群データを第2の符号化方法で符号化することで符号化データ(符号化ストリーム)を生成する。この第2の符号化部4650は、付加情報生成部4651と、位置画像生成部4652と、属性画像生成部4653と、映像符号化部4654と、付加情報符号化部4655と、多重化部4656とを含む。
 第2の符号化部4650は、三次元構造を二次元画像に投影することで位置画像及び属性画像を生成し、生成した位置画像及び属性画像を既存の映像符号化方式を用いて符号化するという特徴を有する。第2の符号化方法は、VPCC(Video based PCC)とも呼ばれる。
 点群データは、PLYファイルのようなPCC点群データ、又は、センサ情報から生成されたPCC点群データであり、位置情報(Position)、属性情報(Attribute)、及びその他の付加情報MetaData)を含む。
 付加情報生成部4651は、三次元構造を二次元画像に投影することで、複数の二次元画像のマップ情報を生成する。
 位置画像生成部4652は、位置情報と、付加情報生成部4651で生成されたマップ情報とに基づき、位置画像(Geometry Image)を生成する。この位置画像は、例えば、画素値として距離(Depth)が示される距離画像である。なお、この距離画像は、一つの視点から複数の点群を見た画像(一つの二次元平面に複数の点群を投影した画像)であってもよいし、複数の視点から複数の点群を見た複数の画像であってもよいし、これらの複数の画像を統合した一つの画像であってもよい。
 属性画像生成部4653は、属性情報と、付加情報生成部4651で生成されたマップ情報とに基づき、属性画像を生成する。この属性画像は、例えば、画素値として属性情報(例えば色(RGB))が示される画像である。なお、この画像は、一つの視点から複数の点群を見た画像(一つの二次元平面に複数の点群を投影した画像)であってもよいし、複数の視点から複数の点群を見た複数の画像であってもよいし、これらの複数の画像を統合した一つの画像であってもよい。
 映像符号化部4654は、位置画像及び属性画像を、映像符号化方式を用いて符号化することで、符号化データである符号化位置画像(Compressed Geometry Image)及び符号化属性画像(Compressed Attribute Image)を生成する。なお、映像符号化方式として、公知の任意の符号化方法が用いられてよい。例えば、映像符号化方式は、AVC又はHEVC等である。
 付加情報符号化部4655は、点群データに含まれる付加情報、及びマップ情報等を符号化することで符号化付加情報(Compressed MetaData)を生成する。
 多重化部4656は、符号化位置画像、符号化属性画像、符号化付加情報、及び、その他の付加情報を多重化することで符号化データである符号化ストリーム(Compressed Stream)を生成する。生成された符号化ストリームは、図示しないシステムレイヤの処理部へ出力される。
 次に、第2の符号化方法の復号を行う復号部4624の例である第2の復号部4660について説明する。図21は、第2の復号部4660の構成を示す図である。図22は、第2の復号部4660のブロック図である。第2の復号部4660は、第2の符号化方法で符号化された符号化データ(符号化ストリーム)を、第2の符号化方法で復号することで点群データを生成する。この第2の復号部4660は、逆多重化部4661と、映像復号部4662と、付加情報復号部4663と、位置情報生成部4664と、属性情報生成部4665とを含む。
 図示しないシステムレイヤの処理部から符号化データである符号化ストリーム(Compressed Stream)が第2の復号部4660に入力される。
 逆多重化部4661は、符号化データから、符号化位置画像(Compressed Geometry Image)、符号化属性画像(Compressed Attribute Image)、符号化付加情報(Compressed MetaData)、及び、その他の付加情報を分離する。
 映像復号部4662は、符号化位置画像及び符号化属性画像を、映像符号化方式を用いて復号することで、位置画像及び属性画像を生成する。なお、映像符号化方式として、公知の任意の符号化方式が用いられてよい。例えば、映像符号化方式は、AVC又はHEVC等である。
 付加情報復号部4663は、符号化付加情報を復号することで、マップ情報等を含む付加情報を生成する。
 位置情報生成部4664は、位置画像とマップ情報とを用いて位置情報を生成する。属性情報生成部4665は、属性画像とマップ情報とを用いて属性情報を生成する。
 第2の復号部4660は、復号に必要な付加情報を復号時に使用し、アプリケーションに必要な付加情報を外部に出力する。
 以下、PCC符号化方式における課題を説明する。図23は、PCC符号化データに関わるプロトコルスタックを示す図である。図23には、PCC符号化データに、映像(例えばHEVC)又は音声などの他のメディアのデータを多重し、伝送又は蓄積する例を示す。
 多重化方式及びファイルフォーマットは、様々な符号化データを多重し、伝送又は蓄積するための機能を有している。符号化データを伝送又は蓄積するためには、符号化データを多重化方式のフォーマットに変換しなければならない。例えば、HEVCでは、NALユニットと呼ばれるデータ構造に符号化データを格納し、NALユニットをISOBMFFに格納する技術が規定されている。
 一方、現在、点群データの符号化方法として第1の符号化方法(Codec1)、及び第2の符号化方法(Codec2)が検討されているが、符号化データの構成、及び符号化データをシステムフォーマットへ格納する方法が定義されておらず、このままでは符号化部におけるMUX処理(多重化)、伝送及び蓄積ができないという課題がある。
 なお、以降において、特定の符号化方法の記載がなければ、第1の符号化方法、及び第2の符号化方法のいずれかを示すものとする。
 (実施の形態2)
 本実施の形態では、上述した第1の符号化部4630、又は第2の符号化部4650で生成される符号化データ(位置情報(Geometry)、属性情報(Attribute)、付加情報(Metadata))の種別、及び付加情報(メタデータ)の生成方法、及び多重化部における多重処理について説明する。なお、付加情報(メタデータ)は、パラメータセット、又は制御情報と表記することもある。
 本実施の形態では、図4で説明した動的オブジェクト(時間的に変化する三次元点群データ)を例に説明するが、静的オブジェクト(任意の時刻の三次元点群データ)の場合でも同様の方法を用いてもよい。
 図24は、本実施の形態に係る三次元データ符号化装置に含まれる符号化部4801及び多重化部4802の構成を示す図である。符号化部4801は、例えば、上述した第1の符号化部4630又は第2の符号化部4650に対応する。多重化部4802は、上述した多重化部4634又は4656に対応する。
 符号化部4801は、複数のPCC(Point Cloud Compression)フレームの点群データを符号化し、複数の位置情報、属性情報及び付加情報の符号化データ(Multiple Compressed Data)を生成する。
 多重化部4802は、複数のデータ種別(位置情報、属性情報及び付加情報)のデータをNALユニット化することで、データを復号装置におけるデータアクセスを考慮したデータ構成に変換する。
 図25は、符号化部4801で生成される符号化データの構成例を示す図である。図中の矢印は符号化データの復号に係る依存関係を示しており、矢印の元は矢印の先のデータに依存している。つまり、復号装置は、矢印の先のデータを復号し、その復号したデータを用いて矢印の元のデータを復号する。言い換えると、依存するとは、依存元のデータの処理(符号化又は復号等)において依存先のデータが参照(使用)されることを意味する。
 まず、位置情報の符号化データの生成処理について説明する。符号化部4801は、各フレームの位置情報を符号化することで、フレーム毎の符号化位置データ(Compressed Geometry Data)を生成する。また、符号化位置データをG(i)で表す。iはフレーム番号、又はフレームの時刻等を示す。
 また、符号化部4801は、各フレームに対応する位置パラメータセット(GPS(i))を生成する。位置パラメータセットは、符号化位置データの復号に使用することが可能なパラメータを含む。また、フレーム毎の符号化位置データは、対応する位置パラメータセットに依存する。
 また、複数フレームから成る符号化位置データを位置シーケンス(Geometry Sequence)と定義する。符号化部4801は、位置シーケンス内の複数のフレームに対する復号処理に共通に使用するパラメータを格納する位置シーケンスパラメータセット(Geometry Sequence PS:位置SPSとも記す)を生成する。位置シーケンスは、位置SPSに依存する。
 次に、属性情報の符号化データの生成処理について説明する。符号化部4801は、各フレームの属性情報を符号化することで、フレーム毎の符号化属性データ(Compressed Attribute Data)を生成する。また、符号化属性データをA(i)で表す。また、図25では、属性Xと属性Yとが存在する例を示しており、属性Xの符号化属性データをAX(i)で表し、属性Yの符号化属性データをAY(i)で表す。
 また、符号化部4801は、各フレームに対応する属性パラメータセット(APS(i))を生成する。また、属性Xの属性パラメータセットをAXPS(i)で表し、属性Yの属性パラメータセットをAYPS(i)で表す。属性パラメータセットは、符号化属性情報の復号に使用することが可能なパラメータを含む。符号化属性データは、対応する属性パラメータセットに依存する。
 また、複数フレームから成る符号化属性データを属性シーケンス(Attribute Sequence)と定義する。符号化部4801は、属性シーケンス内の複数のフレームに対する復号処理に共通に使用するパラメータを格納する属性シーケンスパラメータセット(Attribute Sequence PS:属性SPSとも記す)を生成する。属性シーケンスは、属性SPSに依存する。
 また、第1の符号化方法では、符号化属性データは符号化位置データに依存する。
 また、図25では2種類の属性情報(属性Xと属性Y)が存在する場合の例を示している。2種類の属性情報がある場合は、例えば、2つの符号化部により、それぞれのデータ及びメタデータが生成される。また、例えば、属性情報の種類毎に属性シーケンスが定義され、属性情報の種類毎に属性SPSが生成される。
 なお、図25では、位置情報が1種類、属性情報が2種類である例を示しているが、これに限らず、属性情報は1種類であってもよいし、3種類以上であってもよい。この場合も、同様の方法で符号化データを生成できる。また、属性情報を持たない点群データの場合は、属性情報はなくてもよい。その場合は、符号化部4801は、属性情報に関連するパラメータセットを生成しなくてもよい。
 次に、付加情報(メタデータ)の生成処理について説明する。符号化部4801は、PCCストリーム全体のパラメータセットであるPCCストリームPS(PCC Stream PS:ストリームPSとも記す)を生成する。符号化部4801は、ストリームPSに、1又は複数の位置シーケンス及び1又は複数の属性シーケンスに対する復号処理に共通に使用することができるパラメータを格納する。例えば、ストリームPSには、点群データのコーデックを示す識別情報、及び符号化に使用されたアルゴリズムを示す情報等が含まれる。位置シーケンス及び属性シーケンスはストリームPSに依存する。
 次に、アクセスユニット及びGOFについて説明する。本実施の形態では、新たにアクセスユニット(Access Unit:AU)、及びGOF(Group of Frame)の考え方を導入する。
 アクセスユニットは、復号時にデータにアクセスするため基本単位であり、1つ以上のデータ及び1つ以上のメタデータで構成される。例えば、アクセスユニットは、同一時刻の位置情報と1又は複数の属性情報とで構成される。GOFは、ランダムアクセス単位であり、1つ以上のアクセスユニットで構成される。
 符号化部4801は、アクセスユニットの先頭を示す識別情報として、アクセスユニットヘッダ(AU Header)を生成する。符号化部4801は、アクセスユニットヘッダに、アクセスユニットに係るパラメータを格納する。例えば、アクセスユニットヘッダは、アクセスユニットに含まれる符号化データの構成又は情報を含む。また、アクセスユニットヘッダは、アクセスユニットに含まれるデータに共通に用いられるパラメータ、例えば、符号化データの復号に係るパラメータなどを含む。
 なお、符号化部4801は、アクセスユニットヘッダの代わりに、アクセスユニットに係るパラメータを含まないアクセスユニットデリミタを生成してもよい。このアクセスユニットデリミタは、アクセスユニットの先頭を示す識別情報として用いられる。復号装置は、アクセスユニットヘッダ又はアクセスユニットデリミタを検出することにより、アクセスユニットの先頭を識別する。
 次に、GOF先頭の識別情報の生成について説明する。符号化部4801は、GOFの先頭を示す識別情報として、GOFヘッダ(GOF Header)を生成する。符号化部4801は、GOFヘッダに、GOFに係るパラメータを格納する。例えば、GOFヘッダは、GOFに含まれる符号化データの構成又は情報を含む。また、GOFヘッダは、GOFに含まれるデータに共通に用いられるパラメータ、例えば、符号化データの復号に係るパラメータなどを含む。
 なお、符号化部4801は、GOFヘッダの代わりに、GOFに係るパラメータを含まないGOFデリミタを生成してもよい。このGOFデリミタは、GOFの先頭を示す識別情報として用いられる。復号装置は、GOFヘッダ又はGOFデリミタを検出することにより、GOFの先頭を識別する。
 PCC符号化データにおいて、例えば、アクセスユニットはPCCフレーム単位であると定義される。復号装置は、アクセスユニット先頭の識別情報に基づき、PCCフレームにアクセスする。
 また、例えば、GOFは1つのランダムアクセス単位であると定義される。復号装置は、GOF先頭の識別情報に基づき、ランダムアクセス単位にアクセスする。例えば、PCCフレームが互いに依存関係がなく、単独で復号可能であれば、PCCフレームをランダムアクセス単位と定義してもよい。
 なお、1つのアクセスユニットに2つ以上のPCCフレームが割り当てられてもよいし、1つのGOFに複数のランダムアクセス単位が割り当てられてもよい。
 また、符号化部4801は、上記以外のパラメータセット又はメタデータを定義し、生成してもよい。例えば、符号化部4801は、復号時に必ずしも用いない可能性のあるパラメータ(オプションのパラメータ)を格納するSEI(Supplemental Enhancement Information)を生成してもよい。
 次に、符号化データの構成、及び符号化データのNALユニットへの格納方法を説明する。
 例えば、符号化データの種類毎にデータフォーマットが規定される。図26は、符号化データ及びNALユニットの例を示す図である。
 例えば、図26に示すように符号化データは、ヘッダとペイロードとを含む。なお、符号化データは、符号化データ、ヘッダ又はペイロードの長さ(データ量)を示す長さ情報を含んでもよい。また、符号化データは、ヘッダを含まなくてもよい。
 ヘッダは、例えば、データを特定するための識別情報を含む。この識別情報は、例えば、データ種別又はフレーム番号を示す。
 ヘッダは、例えば、参照関係を示す識別情報を含む。この識別情報は、例えば、データ間に依存関係がある場合にヘッダに格納され、参照元から参照先を参照するための情報である。例えば、参照先のヘッダには、当該データを特定するための識別情報が含まれる。参照元のヘッダには、参照先を示す識別情報が含まれる。
 なお、他の情報から参照先又は参照元を識別可能又は導出可能である場合は、データを特定するための識別情報、又は参照関係を示す識別情報を省略してもよい。
 多重化部4802は、符号化データを、NALユニットのペイロードに格納する。NALユニットヘッダには、符号化データの識別情報であるpcc_nal_unit_typeが含まれる。図27は、pcc_nal_unit_typeのセマンティクスの例を示す図である。
 図27に示すように、pcc_codec_typeがコーデック1(Codec1:第1の符号化方法)である場合、pcc_nal_unit_typeの値0~10は、コーデック1における、符号化位置データ(Geometry)、符号化属性Xデータ(AttributeX)、符号化属性Yデータ(AttributeY)、位置PS(Geom.PS)、属性XPS(AttrX.PS)、属性YPS(AttrX.PS)、位置SPS(Geometry Sequence PS)、属性XSPS(AttributeX Sequence PS)、属性YSPS(AttributeY Sequence PS)、AUヘッダ(AU Header)、GOFヘッダ(GOF Header)に割り当てられる。また、値11以降は、コーデック1の予備に割り当てられる。
 pcc_codec_typeがコーデック2(Codec2:第2の符号化方法)である場合、pcc_nal_unit_typeの値0~2は、コーデックのデータA(DataA)、メタデータA(MetaDataA)、メタデータB(MetaDataB)に割り当てられる。また、値3以降は、コーデック2の予備に割り当てられる。
 (実施の形態3)
 HEVC符号化では復号装置における並列処理を可能とするために、スライス又はタイルといったデータ分割のツールがあるが、PCC(Point Cloud Compression)符号化ではまだない。
 PCCでは、並列処理、圧縮効率、及び圧縮アルゴリズムによって、様々なデータ分割方法が考えられる。ここでは、スライス及びタイルの定義、データ構造及び送受信方法について説明する。
 図28は、本実施の形態に係る三次元データ符号化装置に含まれる第1の符号化部4910の構成を示すブロック図である。第1の符号化部4910は、点群データを第1の符号化方法(GPCC(Geometry based PCC))で符号化することで符号化データ(符号化ストリーム)を生成する。この第1の符号化部4910は、分割部4911と、複数の位置情報符号化部4912と、複数の属性情報符号化部4913と、付加情報符号化部4914と、多重化部4915とを含む。
 分割部4911は、点群データを分割することで複数の分割データを生成する。具体的には、分割部4911は、点群データの空間を複数のサブ空間に分割することで複数の分割データを生成する。ここでサブ空間とは、タイル及びスライスの一方、又はタイル及びスライスの組み合わせである。より具体的には、点群データは、位置情報、属性情報、及び付加情報を含む。分割部4911は、位置情報を複数の分割位置情報に分割し、属性情報を複数の分割属性情報に分割する。また、分割部4911は、分割に関する付加情報を生成する。
 複数の位置情報符号化部4912は、複数の分割位置情報を符号化することで複数の符号化位置情報を生成する。例えば、複数の位置情報符号化部4912は、複数の分割位置情報を並列処理する。
 複数の属性情報符号化部4913は、複数の分割属性情報を符号化することで複数の符号化属性情報を生成する。例えば、複数の属性情報符号化部4913は、複数の分割属性情報を並列処理する。
 付加情報符号化部4914は、点群データに含まれる付加情報と、分割部4911で分割時に生成された、データ分割に関する付加情報とを符号化することで符号化付加情報を生成する。
 多重化部4915は、複数の符号化位置情報、複数の符号化属性情報及び符号化付加情報を多重化することで符号化データ(符号化ストリーム)を生成し、生成した符号化データを送出する。また、符号化付加情報は復号時に使用される。
 なお、図28では、位置情報符号化部4912及び属性情報符号化部4913の数がそれぞれ2つの例を示しているが、位置情報符号化部4912及び属性情報符号化部4913の数は、それぞれ1つであってもよいし、3つ以上であってもよい。また、複数の分割データは、CPU内の複数コアのように同一チップ内で並列処理されてもよいし、複数のチップのコアで並列処理されてもよいし、複数チップの複数コアで並列処理されてもよい。
 図29は、第1の復号部4920の構成を示すブロック図である。第1の復号部4920は、点群データが第1の符号化方法(GPCC)で符号化されることで生成された符号化データ(符号化ストリーム)を復号することで点群データを復元する。この第1の復号部4920は、逆多重化部4921と、複数の位置情報復号部4922と、複数の属性情報復号部4923と、付加情報復号部4924と、結合部4925とを含む。
 逆多重化部4921は、符号化データ(符号化ストリーム)を逆多重化することで複数の符号化位置情報、複数の符号化属性情報及び符号化付加情報を生成する。
 複数の位置情報復号部4922は、複数の符号化位置情報を復号することで複数の分割位置情報を生成する。例えば、複数の位置情報復号部4922は、複数の符号化位置情報を並列処理する。
 複数の属性情報復号部4923は、複数の符号化属性情報を復号することで複数の分割属性情報を生成する。例えば、複数の属性情報復号部4923は、複数の符号化属性情報を並列処理する。
 複数の付加情報復号部4924は、符号化付加情報を復号することで付加情報を生成する。
 結合部4925は、付加情報を用いて複数の分割位置情報を結合することで位置情報を生成する。結合部4925は、付加情報を用いて複数の分割属性情報を結合することで属性情報を生成する。
 なお、図29では、位置情報復号部4922及び属性情報復号部4923の数がそれぞれ2つの例を示しているが、位置情報復号部4922及び属性情報復号部4923の数は、それぞれ1つであってもよし、3つ以上であってもよい。また、複数の分割データは、CPU内の複数コアのように同一チップ内で並列処理されてもよいし、複数のチップのコアで並列処理されてもよい、複数チップの複数コアで並列処理されてもよい。
 次に、分割部4911の構成を説明する。図30は、分割部4911のブロック図である。分割部4911は、スライス分割部4931(Slice Divider)と、位置情報タイル分割部4932(Geometry Tile Divider)と、属性情報タイル分割部4933(Attribute Tile Divider)とを含む。
 スライス分割部4931は、位置情報(Position(Geometry))をスライスに分割することで複数のスライス位置情報を生成する。また、スライス分割部4931は、属性情報(Attribute)をスライスに分割することで複数のスライス属性情報を生成する。また、スライス分割部4931は、スライス分割に係る情報、及びスライス分割において生成された情報を含むスライス付加情報(SliceMetaData)を出力する。
 位置情報タイル分割部4932は、複数のスライス位置情報をタイルに分割することで複数の分割位置情報(複数のタイル位置情報)を生成する。また、位置情報タイル分割部4932は、位置情報のタイル分割に係る情報、及び位置情報のタイル分割において生成された情報を含む位置タイル付加情報(Geometry Tile MetaData)を出力する。
 属性情報タイル分割部4933は、複数のスライス属性情報をタイルに分割することで複数の分割属性情報(複数のタイル属性情報)を生成する。また、属性情報タイル分割部4933は、属性情報のタイル分割に係る情報、及び属性情報のタイル分割において生成された情報を含む属性タイル付加情報(Attribute Tile MetaData)を出力する。
 なお、分割されるスライス又はタイルの数は1以上である。つまり、スライス又はタイルの分割を行わなくてもよい。
 また、ここでは、スライス分割後にタイル分割が行われる例を示したが、タイル分割後にスライス分割が行われてもよい。また、スライス及びタイルに加え新たな分割種別を定義し、3つ以上の分割種別で分割が行われてもよい。
 以下、点群データの分割方法について説明する。図31は、スライス及びタイル分割の例を示す図である。
 まず、スライス分割の方法について説明する。分割部4911は、三次元点群データを、スライス単位で、任意の点群に分割する。分割部4911は、スライス分割において、点を構成する位置情報と属性情報とを分割せず、位置情報と属性情報とを一括で分割する。すなわち、分割部4911は、任意の点における位置情報と属性情報とが同じスライスに属するようにスライス分割を行う。なお、これらに従えば、分割数、及び分割方法はどのような方法でもよい。また、分割の最小単位は点である。例えば、位置情報と属性情報との分割数は同一である。例えば、スライス分割後の位置情報に対応する三次元点と、属性情報に対応する三次元点とは同一のスライスに含まれる。
 また、分割部4911は、スライス分割時に分割数及び分割方法に係る付加情報であるスライス付加情報を生成する。スライス付加情報は、位置情報と属性情報とで同一である。例えば、スライス付加情報は、分割後のバウンディングボックスの基準座標位置、大きさ、又は辺の長さを示す情報を含む。また、スライス付加情報は、分割数、及び分割タイプなどを示す情報を含む。
 次に、タイル分割の方法について説明する。分割部4911は、スライス分割されたデータを、スライス位置情報(Gスライス)とスライス属性情報(Aスライス)とに分割し、スライス位置情報とスライス属性情報をそれぞれタイル単位に分割する。
 なお、図31では8分木構造で分割する例を示しているが、分割数及び分割方法はどのような方法でもよい。
 また、分割部4911は、位置情報と属性情報とを異なる分割方法で分割してもよいし、同一の分割方法で分割してもよい。また、分割部4911は、複数のスライスを異なる分割方法でタイルに分割してもよいし、同一の分割方法でタイルに分割してもよい。
 また、分割部4911は、タイル分割時に分割数及び分割方法に係るタイル付加情報を生成する。タイル付加情報(位置タイル付加情報及び属性タイル付加情報)は、位置情報と属性情報とで独立している。例えば、タイル付加情報は、分割後のバウンディングボックスの基準座標位置、大きさ、又は辺の長さを示す情報を含む。また、タイル付加情報は、分割数、及び分割タイプなど示す情報を含む。
 次に、点群データをスライス又はタイルに分割する方法の例を説明する。分割部4911は、スライス又はタイル分割の方法として、予め定められた方法を用いてもよいし、点群データに応じて使用する方法を適応的に切り替えてもよい。
 スライス分割時には、分割部4911は、位置情報と属性情報とに対して一括で三次元空間を分割する。例えば、分割部4911は、オブジェクトの形状を判定し、オブジェクトの形状に応じて三次元空間をスライスに分割する。例えば、分割部4911は、木又は建物などのオブジェクトを抽出し、オブジェクト単位で分割を行う。例えば、分割部4911は、1又は複数のオブジェクトの全体が1つのスライスに含まれるようにスライス分割を行う。または、分割部4911は、一つのオブジェクトを複数のスライスに分割する。
 この場合、符号化装置は、例えば、スライス毎に符号化方法を変えてもよい。例えば、符号化装置は、特定のオブジェクト、又はオブジェクトの特定の一部に対して、高品質な圧縮方法を用いてもよい。この場合、符号化装置は、スライス毎の符号化方法を示す情報を付加情報(メタデータ)に格納してもよい。
 また、分割部4911は、地図情報又は位置情報に基づき、各スライスが予め定められた座標空間に対応するようにスライス分割を行ってもよい。
 タイル分割時には、分割部4911は、位置情報と属性情報とを独立に分割する。例えば、分割部4911は、データ量又は処理量に応じてスライスをタイルに分割する。例えば、分割部4911は、スライスのデータ量(例えばスライスに含まれる三次元点の数)が予め定められた閾値より多いかを判定する。分割部4911は、スライスのデータ量が閾値より多い場合にはスライスをタイルに分割する。分割部4911は、スライスのデータ量が閾値より少ないときにはスライスをタイルに分割しない。
 例えば、分割部4911は、復号装置での処理量又は処理時間が一定の範囲(予め定められた値以下)となるよう、スライスをタイルに分割する。これにより、復号装置におけるタイル当たりの処理量が一定となり、復号装置における分散処理が容易となる。
 また、分割部4911は、位置情報と属性情報とで処理量が異なる場合、例えば、位置情報の処理量が属性情報の処理量より多い場合、位置情報の分割数を、属性情報の分割数より多くする。
 また、例えば、コンテンツによって、復号装置で、位置情報を早く復号して表示し、属性情報を後でゆっくり復号して表示してもよい場合に、分割部4911は、位置情報の分割数を、属性情報の分割数より多くしてもよい。これにより、復号装置は、位置情報の並列数を多くできるので、位置情報の処理を属性情報の処理より高速化できる。
 なお、復号装置は、スライス化又はタイル化されているデータを必ずしも並列処理する必要はなく、復号処理部の数又は能力に応じて、これらを並列処理するかどうかを判定してもよい。
 以上のような方法で分割することにより、コンテンツ又はオブジェクトに応じた、適応的な符号化を実現できる。また、復号処理における並列処理を実現できる。これにより、点群符号化システム又は点群復号システムの柔軟性が向上する。
 図32は、スライス及びタイルの分割のパターンの例を示す図である。図中のDUはデータ単位(DataUnit)であり、タイル又はスライスのデータを示す。また、各DUは、スライスインデックス(SliceIndex)とタイルインデックス(TileIndex)を含む。図中のDUの右上の数値がスライスインデックスを示し、DUの左下の数値がタイルインデックスを示す。
 パターン1では、スライス分割において、GスライスとAスライスとで分割数及び分割方法は同じである。タイル分割において、Gスライスに対する分割数及び分割方法とAスライスに対する分割数及び分割方法とは異なる。また、複数のGスライス間では同一の分割数及び分割方法が用いられる。複数のAスライス間では同一の分割数及び分割方法が用いられる。
 パターン2では、スライス分割において、GスライスとAスライスとで分割数及び分割方法は同じである。タイル分割において、Gスライスに対する分割数及び分割方法とAスライスに対する分割数及び分割方法とは異なる。また、複数のGスライス間で分割数及び分割方法が異なる。複数のAスライス間で分割数及び分割方法が異なる。
 次に、分割データの符号化方法について説明する。三次元データ符号化装置(第1の符号化部4910)は、分割されたデータを、それぞれ符号化する。三次元データ符号化装置は、属性情報を符号化する際に、どの構成情報(位置情報、付加情報又は他の属性情報)に基づき符号化を行ったかを示す依存関係情報を付加情報として生成する。つまり、依存関係情報は、例えば、参照先(依存先)の構成情報を示す。この場合、三次元データ符号化装置は、属性情報の分割形状に対応する構成情報に基づき依存関係情報を生成する。なお、三次元データ符号化装置は、複数の分割形状に対応する構成情報に基づき依存関係情報を生成してもよい。
 依存関係情報は三次元データ符号化装置で生成され、生成された依存関係情報が三次元データ復号装置に送出されてもよい。または、三次元データ復号装置が依存関係情報を生成し、三次元データ符号化装置は依存関係情報を送出しなくてもよい。また、三次元データ符号化装置が使用する依存関係を、予め定めておき、三次元データ符号化装置は、依存関係情報を送出しなくてもよい。
 図33は、各データの依存関係の一例を示す図である。図中の矢印の先は依存先を示し、矢印の元は依存元を示している。三次元データ復号装置は、依存先から依存元の順でデータを復号する。また、図中に実線で示すデータは実際に送出されるデータであり、点線で示すデータは送出されないデータである。
 また、同図において、Gは位置情報を示し、Aは属性情報を示す。Gs1は、スライス番号1の位置情報を示し、Gs2は、スライス番号2の位置情報を示す。Gs1t1は、スライス番号1かつタイル番号1の位置情報を示し、Gs1t2は、スライス番号1かつタイル番号2の位置情報を示し、Gs2t1は、スライス番号2かつタイル番号1の位置情報を示し、Gs2t2は、スライス番号2かつタイル番号2の位置情報を示す。同様に、As1は、スライス番号1の属性情報を示し、As2は、スライス番号2の属性情報を示す。As1t1は、スライス番号1かつタイル番号1の属性情報を示し、As1t2は、スライス番号1かつタイル番号2の属性情報を示し、As2t1は、スライス番号2かつタイル番号1の属性情報を示し、As2t2は、スライス番号2かつタイル番号2の属性情報を示す。
 Msliceは、スライス付加情報を示し、MGtileは、位置タイル付加情報を示し、MAtileは、属性タイル付加情報を示す。Ds1t1は属性情報As1t1の依存関係情報を示し、Ds2t1は属性情報As2t1の依存関係情報を示す。
 また、三次元データ符号化装置は、三次元データ復号装置においてデータを並び替える必要がないように、データを復号順に並び替えてもよい。なお、三次元データ復号装置においてデータを並び替えてもよいし、三次元データ符号化装置と三次元データ復号装置との両方でデータを並び替えてもよい。
 図34は、データの復号順の例を示す図である。図34の例では、左のデータから順に復号が行われる。三次元データ復号装置は、依存関係にあるデータ間では、依存先のデータから先に復号する。例えば、三次元データ符号化装置は、この順序となるようにデータを予め並び替えて送出する。なお、依存先のデータが先になる順序であれば、どのような順序でもよい。また、三次元データ符号化装置は、付加情報及び依存関係情報をデータより先に送出してもよい。
 図35は、三次元データ符号装置による処理の流れを示すフローチャートである。まず、三次元データ符号化装置は、上記のように複数のスライス又はタイルのデータを符号化する(S4901)。次に、三次元データ符号化装置は、図34に示すように、依存先のデータが先になるようにデータを並び替える(S4902)。次に、三次元データ符号化装置は、並び替え後のデータを多重化(NALユニット化)する(S4903)。
 次に、第1の復号部4920に含まれる結合部4925の構成を説明する。図36は、結合部4925の構成を示すブロック図である。結合部4925は、位置情報タイル結合部4941(Geometry Tile Combiner)と、属性情報タイル結合部4942(Attribute Tile Combiner)と、スライス結合部(Slice Combiner)とを含む。
 位置情報タイル結合部4941は、位置タイル付加情報を用いて複数の分割位置情報を結合することで複数のスライス位置情報を生成する。属性情報タイル結合部4942は、属性タイル付加情報を用いて複数の分割属性情報を結合することで複数のスライス属性情報を生成する。
 スライス結合部4943は、スライス付加情報を用いて複数のスライス位置情報を結合することで位置情報を生成する。また、スライス結合部4943は、スライス付加情報を用いて複数のスライス属性情報を結合することで属性情報を生成する。
 なお、分割されるスライス又はタイルの数は1以上である。つまり、スライス又はタイルの分割が行われていなくてもよい。
 また、ここでは、スライス分割後にタイル分割が行われる例を示したが、タイル分割後にスライス分割が行われてもよい。また、スライス及びタイルに加え新たな分割種別を定義し、3つ以上の分割種別で分割が行われてもよい。
 次に、スライス分割又はタイル分割された符号化データの構成、及び符号化データのNALユニットへの格納方法(多重化方法)を説明する。図37は、符号化データの構成及び符号化データのNALユニットへの格納方法を示す図である。
 符号化データ(分割位置情報及び分割属性情報)は、NALユニットのペイロードに格納される。
 符号化データは、ヘッダとペイロードとを含む。ヘッダは、ペイロードに含まれるデータを特定するための識別情報を含む。この識別情報は、例えば、スライス分割或いはタイル分割の種別(slice_type、tile_type)、スライス或いはタイルを特定するためのインデックス情報(slice_idx、tile_idx)、データ(スライス或いはタイル)の位置情報、又はデータのアドレス(address)などを含む。スライスを特定するためのインデックス情報は、スライスインデックス(SliceIndex)とも記す。タイルを特定するためのインデックス情報は、タイルインデックス(TileIndex)とも記す。また、分割の種別とは、例えば、上述したようなオブジェクト形状に基づく手法、地図情報或いは位置情報に基づく手法、又は、データ量或いは処理量に基づく手法等である。
 なお、上記の情報の全て又は一部は、分割位置情報のヘッダ及び分割属性情報のヘッダの一方に格納され、他方に格納されてなくてもよい。例えば、位置情報と属性情報とで同一の分割方法が用いられる場合には、位置情報と属性情報とで分割の種別(slice_type、tile_type)及びインデックス情報(slice_idx、tile_idx)は同一である。よって、位置情報と属性情報の一方のヘッダにこれらの情報が含まれてもよい。例えば、位置情報に属性情報が依存する場合には、位置情報が先に処理される。よって、位置情報のヘッダにこれらの情報が含まれ、属性情報のヘッダにはこれらの情報が含まれなくてもよい。この場合、三次元データ復号装置は、例えば、依存先の位置情報のスライス又はタイルと同一のスライス又はタイルに依存元の属性情報が属すると判断する。
 また、スライス分割又はタイル分割に係る付加情報(スライス付加情報、位置タイル付加情報又は属性タイル付加情報)、及び依存関係を示す依存関係情報等は、既存のパラメータセット(GPS、APS、位置SPS又は属性SPSなど)に格納されて送出されてもよい。分割方法がフレーム毎に変化する場合は、フレーム毎のパラメータセット(GPS又はAPS等)に分割方法を示す情報が格納されてもよい。シーケンス内で分割方法が変化しない場合は、シーケンス毎のパラメータセット(位置SPS又は属性SPS)に分割方法を示す情報が格納されてもよい。さらに、位置情報と属性情報とで同じ分割方法が用いられる場合は、PCCストリームのパラメータセット(ストリームPS)に分割方法を示す情報が格納されてもよい。
 また、上記の情報は、上記のいずれかのパラメータセットに格納されてもよいし、複数のパラメータセットに格納されてもよい。また、タイル分割又はスライス分割用のパラメータセットを定義し、当該パラメータセットに上記の情報を格納してもよい。また、これらの情報は、符号化データのヘッダに格納されてもよい。
 また、符号化データのヘッダは、依存関係を示す識別情報を含む。つまり、当該ヘッダは、データ間に依存関係がある場合は、依存元から依存先を参照するための識別情報を含む。例えば、依存先のデータのヘッダには、当該データを特定するための識別情報が含まれる。依存元のデータのヘッダには、依存先を示す識別情報が含まれる。なお、データを特定するための識別情報、スライス分割又はタイル分割に係る付加情報、及び依存関係を示す識別情報を、他の情報から識別可能又は導出可能である場合は、これらの情報を省略してもよい。
 次に、本実施の形態に係る点群データの符号化処理及び復号処理の流れについて説明する。図38は、本実施の形態に係る点群データの符号化処理のフローチャートである。
 まず、三次元データ符号化装置は、使用する分割方法を決定する(S4911)。この分割方法は、スライス分割を行うか否か、タイル分割を行うか否かを含む。また、分割方法は、スライス分割又はタイル分割を行う場合の分割数、及び、分割の種別等を含んでもよい。分割の種別とは、上述したようなオブジェクト形状に基づく手法、地図情報或いは位置情報に基づく手法、又は、データ量或いは処理量に基づく手法等である。なお、分割方法は、予め定められていてもよい。
 スライス分割が行われる場合(S4912でYes)、三次元データ符号化装置は、位置情報と属性情報とを一括で分割することで複数のスライス位置情報及び複数のスライス属性情報を生成する(S4913)。また、三次元データ符号化装置は、スライス分割に係るスライス付加情報を生成する。なお、三次元データ符号化装置は、位置情報と属性情報とを独立に分割してもよい。
 タイル分割が行われる場合(S4914でYes)、三次元データ符号化装置は、複数のスライス位置情報及び複数のスライス属性情報(又は位置情報及び属性情報)を独立に分割することで複数の分割位置情報及び複数の分割属性情報を生成する(S4915)。また、三次元データ符号化装置は、タイル分割に係る位置タイル付加情報及び属性タイル付加情報を生成する。なお、三次元データ符号化装置は、スライス位置情報とスライス属性情報とを一括で分割してもよい。
 次に、三次元データ符号化装置は、複数の分割位置情報及び複数の分割属性情報の各々を符号化することで、複数の符号化位置情報及び複数の符号化属性情報を生成する(S4916)。また、三次元データ符号化装置は、依存関係情報を生成する。
 次に、三次元データ符号化装置は、複数の符号化位置情報、複数の符号化属性情報及び付加情報をNALユニット化(多重化)することで符号化データ(符号化ストリーム)を生成する(S4917)。また、三次元データ符号化装置は、生成した符号化データを送出する。
 図39は、本実施の形態に係る点群データの復号処理のフローチャートである。まず、三次元データ復号装置は、符号化データ(符号化ストリーム)に含まれる、分割方法に係る付加情報(スライス付加情報、位置タイル付加情報及び属性タイル付加情報)を解析することで、分割方法を判定する(S4921)。この分割方法は、スライス分割を行うか否か、タイル分割を行うか否かを含む。また、分割方法は、スライス分割又はタイル分割を行う場合の分割数、及び、分割の種別等を含んでもよい。
 次に、三次元データ復号装置は、符号化データに含まれる複数の符号化位置情報及び複数の符号化属性情報を、符号化データに含まれる依存関係情報を用いて復号することで分割位置情報及び分割属性情報を生成する(S4922)。
 付加情報によりタイル分割が行われていることが示される場合(S4923でYes)、三次元データ復号装置は、位置タイル付加情報及び属性タイル付加情報に基づき、複数の分割位置情報と、複数の分割属性情報とを、それぞれの方法で結合することで、複数のスライス位置情報及び複数のスライス属性情報を生成する(S4924)。なお、三次元データ復号装置は、複数の分割位置情報と、複数の分割属性情報とを同一の方法で結合してもよい。
 付加情報によりスライス分割が行われていることが示される場合(S4925でYes)、三次元データ復号装置は、スライス付加情報に基づき、複数のスライス位置情報及び複数のスライス属性情報(複数の分割位置情報及び複数の分割属性情報)を同一の方法で結合することで位置情報及び属性情報を生成する(S4926)。なお、三次元データ復号装置は、複数のスライス位置情報と複数のスライス属性情報とを、それぞれ異なる方法で結合してもよい。
 なお、タイル又はスライスの属性情報(識別子、領域情報、アドレス情報及び位置情報等)は、SEIに限らず、その他の制御情報に格納されてもよい。例えば、属性情報は、PCCデータ全体の構成を示す制御情報に格納されてもよいし、タイル又はスライス毎の制御情報に格納されてもよい。
 また、三次元データ符号化装置(三次元データ送信装置)は、PCCデータを他のデバイスに伝送する際には、SEI等の制御情報を、そのシステムのプロトコルに特有の制御情報に変換して示してもよい。
 例えば、三次元データ符号化装置は、属性情報を含むPCCデータを、ISOBMFF(ISO Base Media File Format)に変換する際に、SEIをPCCデータとともに「mdat box」に格納してもよいし、ストリームに関する制御情報を記載する「track box」に格納してもよい。つまり、三次元データ符号化装置は、制御情報を、ランダムアクセスのためのテーブルに格納してもよい。また、三次元データ符号化装置は、PCCデータをパケット化して伝送する場合には、SEIをパケットヘッダに格納してもよい。このように、属性情報をシステムのレイヤで取得可能にすることにより、属性情報、及びタイルデータ又はスライスデータへのアクセスが容易となり、アクセスの速度を向上できる。
 なお、三次元データ復号装置の構成において、メモリ管理部は、復号処理に必要な情報がメモリにあるか否かを予め判定し、復号処理に必要な情報がなければ、当該情報をストレージ又はネットワークから取得してもよい。
 三次元データ復号装置が、ストレージ又はネットワークからPCCデータをMPEG-DASHなどのプロトコルにおけるPullを用いて取得する場合は、メモリ管理部は、ローカライズ部などからの情報に基づき、復号処理に必要なデータの属性情報を特定し、特定した属性情報を含むタイル又はスライスを要求し、必要なデータ(PCCストリーム)を取得してもよい。属性情報を含むタイル又はスライスの特定は、ストレージ又はネットワーク側で行われてもよいし、メモリ管理部が行ってもよい。例えば、メモリ管理部は、予め全てのPCCデータのSEIを取得しておき、その情報に基づき、タイル又はスライスを特定してもよい。
 ストレージ又はネットワークから全てのPCCデータがUDPプロトコルなどにおいてPushを用いて送信されている場合は、メモリ管理部は、ローカライズ部などからの情報に基づき、復号処理に必要なデータの属性情報、及びタイル又はスライスを特定し、送出されるPCCデータから所望のタイル又はスライスをフィルタリングすることで、所望のデータを取得してもよい。
 また、三次元データ符号化装置は、データの取得の際に、所望のデータがあるか否か、又はデータサイズ等に基づき実時間での処理が可能か否か、又は通信状態等を判定してもよい。三次元データ符号化装置は、この判定結果に基づき、データ取得が困難であると判断した場合は、優先度又はデータ量の異なる別のスライス又はタイルを選択して取得してもよい。
 また、三次元データ復号装置は、ローカライズ部などからの情報をクラウドサーバへ送信し、クラウドサーバが、その情報に基づき必要な情報を判定してもよい。
 (実施の形態4)
 次に、タイル付加情報について説明する。三次元データ符号化装置は、タイルの分割方法に関するメタデータであるタイル付加情報を生成し、生成したタイル付加情報を三次元データ復号装置に送信する。
 図40は、タイル付加情報(TileMetaData)のシンタックス例を示す図である。図40に示すように、例えば、タイル付加情報は、分割方法情報(type_of_divide)と、形状情報(topview_shape)と、重複フラグ(tile_overlap_flag)と、重複情報(type_of_overlap)と、高さ情報(tile_height)と、タイル数(tile_number)と、タイル位置情報(global_position、relative_position)と、を含む。
 分割方法情報(type_of_divide)は、タイルの分割方法を示す。例えば、分割方法情報は、タイルの分割方法が、地図の情報に基づいた分割であるか、つまり上面視に基づく分割(top_view)であるか、それ以外(other)であるかを示す。
 形状情報(topview_shape)は、例えば、タイルの分割方法が上面視に基づく分割である場合に、タイル付加情報に含まれる。形状情報は、タイルを上面視した形状を示す。例えば、この形状は、正方形及び円を含む。なお、この形状は、楕円、矩形又は四角形以外の多角形を含んでもよいし、それ以外の形状を含んでもよい。なお、形状情報は、タイルを上面視した形状に限らず、タイルの三次元形状(例えば、立方体及び円柱等)を示してもよい。
 重複フラグ(tile_overlap_flag)は、タイルが重複するか否かを示す。例えば、重複フラグは、タイルの分割方法が上面視に基づく分割である場合に、タイル付加情報に含まれる。この場合、重複フラグは、上面視において、タイルが重複するか否かを示す。なお、重複フラグは、三次元空間においてタイルが重複するか否かを示してもよい。
 重複情報(type_of_overlap)は、例えば、タイルが重複する場合に、タイル付加情報に含まれる。重複情報は、タイルの重複のしかた等を示す。例えば、重複情報は、重複する領域の大きさ等を示す。
 高さ情報(tile_height)は、タイルの高さを示す。なお、高さ情報は、タイルの形状を示す情報を含んでもよい。例えば、当該情報は、タイルの上面視における形状が矩形の場合には、当該の矩形の辺の長さ(縦の長さ及び横の長さ)を示してもよい。また、当該情報は、タイルの上面視における形状が円の場合には、当該円の直径又は半径を示してもよい。
 また、高さ情報は、各タイルの高さを示してもよし、複数のタイルで共通の高さを示してもよい。また、予め道路及び立体交差部分等の複数の高さタイプが設定され、高さ情報により、各高さタイプの高さと、各タイルの高さタイプとが示されてもよい。または、各高さタイプの高さは予め定義されており、高さ情報により、各タイルの高さタイプが示されてもよい。つまり、各高さタイプの高さは、高さ情報で示されなくてもよい。
 タイル数(tile_number)は、タイルの数を示す。なお、タイル付加情報は、タイルの間隔を示す情報を含んでもよい。
 タイル位置情報(global_position、relative_position)は、各タイルの位置を特定するための情報である。例えば、タイル位置情報は、各タイルの絶対座標又は相対座標を示す。
 なお、上記の情報の一部又は全ては、タイル毎に設けられてもよいし、複数のタイル毎(例えばフレーム毎又は複数フレーム毎)に設けられてもよい。
 三次元データ符号化装置は、タイル付加情報を、SEI(Supplemental Enhancement Information)に含めて送出してもよい。または、三次元データ符号化装置は、タイル付加情報を、既存のパラメータセット(PPS、GPS、又はAPS等)に格納して送出してもよい。
 例えば、タイル付加情報がフレーム毎に変化する場合は、フレーム毎のパラメータセット(GPS又はAPS等)にタイル付加情報が格納されてもよい。シーケンス内でタイル付加情報が変化しない場合は、シーケンス毎のパラメータセット(位置SPS又は属性SPS)にタイル付加情報が格納されてもよい。さらに、位置情報と属性情報とで同じタイル分割情報が用いられる場合は、PCCストリームのパラメータセット(ストリームPS)にタイル付加情報が格納されてもよい。
 また、タイル付加情報は、上記のいずれかのパラメータセットに格納されてもよいし、複数のパラメータセットに格納されてもよい。また、タイル付加情報は、符号化データのヘッダに格納されてもよい。また、タイル付加情報は、NALユニットのヘッダに格納されてもよい。
 また、タイル付加情報の全て又は一部は、分割位置情報のヘッダ及び分割属性情報のヘッダの一方に格納され、他方に格納されてなくてもよい。例えば、位置情報と属性情報とで同一のタイル付加情報が用いられる場合には、位置情報と属性情報の一方のヘッダにタイル付加情報が含まれてもよい。例えば、位置情報に属性情報が依存する場合には、位置情報が先に処理される。よって、位置情報のヘッダにこれらのタイル付加情報が含まれ、属性情報のヘッダにはタイル付加情報が含まれなくてもよい。この場合、三次元データ復号装置は、例えば、依存先の位置情報のタイルと同一のタイルに依存元の属性情報が属すると判断する。
 三次元データ復号装置は、タイル付加情報に基づき、タイル分割された点群データを再構成する。三次元データ復号装置は、重複する点群データがある場合は、重複する複数の点群データを特定し、いずれかを選択、又は複数の点群データをマージする。
 また、三次元データ復号装置は、タイル付加情報を用いて復号を行ってもよい。例えば、三次元データ復号装置は、複数のタイルが重複する場合は、タイル毎に復号を行い、復号された複数のデータを用いた処理(例えば平滑化、又はフィルタリング等)を行い、点群データを生成してもよい。これにより精度の高い復号が可能となる可能性がある。
 図41は、三次元データ符号化装置及び三次元データ復号装置を含むシステムの構成例を示す図である。タイル分割部5051は、位置情報及び属性情報を含む点群データを第1タイルと第2タイルとに分割する。また、タイル分割部5051は、タイル分割に係るタイル付加情報を復号部5053及びタイル結合部5054に送る。
 符号化部5052は、第1タイル及び第2タイルを符号化することで符号化データを生成する。
 復号部5053は、符号化部5052で生成された符号化データを復号することで第1タイル及び第2タイルを復元する。タイル結合部5054は、タイル付加情報を用いて、第1タイル及び第2タイルを結合することで点群データ(位置情報及び属性情報)を復元する。
 次に、スライス付加情報について説明する。三次元データ符号化装置は、スライスの分割方法に関するメタデータであるスライス付加情報を生成し、生成したスライス付加情報を三次元データ復号装置に送信する。
 図42は、スライス付加情報(SliceMetaData)のシンタックス例を示す図である。図42に示すように、例えば、スライス付加情報は、分割方法情報(type_of_divide)と、重複フラグ(slice_overlap_flag)と、重複情報(type_of_overlap)と、スライス数(slice_number)と、スライス位置情報(global_position、relative_position)と、スライスサイズ情報(slice_bounding_box_size)とを含む。
 分割方法情報(type_of_divide)は、スライスの分割方法を示す。例えば、分割方法情報は、スライスの分割方法が、図60で示すようなオブジェクトの情報に基づいた分割である(object)か否かを示す。なお、スライス付加情報は、オブジェクト分割の方法を示す情報を含んでもよい。例えば、この情報は、1つのオブジェクトを複数のスライスに分割するか、1つのスライスに割り当てるかを示す。また、この情報は、1つのオブジェクトを複数のスライスに分割する場合の分割数等を示してもよい。
 重複フラグ(slice_overlap_flag)は、スライスが重複するか否かを示す。重複情報(type_of_overlap)は、例えば、スライスが重複する場合に、スライス付加情報に含まれる。重複情報は、スライスの重複のしかた等を示す。例えば、重複情報は、重複する領域の大きさ等を示す。
 スライス数(slice_number)は、スライスの数を示す。
 スライス位置情報(global_position、relative_position)、及びスライスサイズ情報(slice_bounding_box_size)は、スライスの領域に関する情報である。スライス位置情報は、各スライスの位置を特定するための情報である。例えば、スライス位置情報は、各スライスの絶対座標又は相対座標を示す。スライスサイズ情報(slice_bounding_box_size)は、各スライスのサイズを示す。例えば、スライスサイズ情報は、各スライスのバウンディングボックスのサイズを示す。
 三次元データ符号化装置は、スライス付加情報をSEIに含めて送出してもよい。または、三次元データ符号化装置は、スライス付加情報を、既存のパラメータセット(PPS、GPS、又はAPS等)に格納して送出してもよい。
 例えば、スライス付加情報がフレーム毎に変化する場合は、フレーム毎のパラメータセット(GPS又はAPS等)にスライス付加情報が格納されてもよい。シーケンス内でスライス付加情報が変化しない場合は、シーケンス毎のパラメータセット(位置SPS又は属性SPS)にスライス付加情報が格納されてもよい。さらに、位置情報と属性情報とで同じスライス分割情報が用いられる場合は、PCCストリームのパラメータセット(ストリームPS)にスライス付加情報が格納されてもよい。
 また、スライス付加情報は、上記のいずれかのパラメータセットに格納されてもよいし、複数のパラメータセットに格納されてもよい。また、スライス付加情報は、符号化データのヘッダに格納されてもよい。また、スライス付加情報は、NALユニットのヘッダに格納されてもよい。
 また、スライス付加情報の全て又は一部は、分割位置情報のヘッダ及び分割属性情報のヘッダの一方に格納され、他方に格納されてなくてもよい。例えば、位置情報と属性情報とで同一のスライス付加情報が用いられる場合には、位置情報と属性情報の一方のヘッダにスライス付加情報が含まれてもよい。例えば、位置情報に属性情報が依存する場合には、位置情報が先に処理される。よって、位置情報のヘッダにこれらのスライス付加情報が含まれ、属性情報のヘッダにはスライス付加情報が含まれなくてもよい。この場合、三次元データ復号装置は、例えば、依存先の位置情報のスライスと同一のスライスに依存元の属性情報が属すると判断する。
 三次元データ復号装置は、スライス付加情報に基づき、スライス分割された点群データを再構成する。三次元データ復号装置は、重複する点群データがある場合は、重複する複数の点群データを特定し、いずれかを選択、又は複数の点群データをマージする。
 また、三次元データ復号装置は、スライス付加情報を用いて復号を行ってもよい。例えば、三次元データ復号装置は、複数のスライスが重複する場合は、スライス毎に復号を行い、復号された複数のデータを用いた処理(例えば平滑化、又はフィルタリング)を行い、点群データを生成してもよい。これにより精度の高い復号が可能となる可能性がある。
 図43は、本実施の形態に係る三次元データ符号化装置による、タイル付加情報の生成処理を含む三次元データ符号化処理のフローチャートである。
 まず、三次元データ符号化装置は、タイルの分割方法を決定する(S5031)。具体的には、三次元データ符号化装置は、タイルの分割方法として、上面視に基づく分割方法(top_view)を用いるか、それ以外(other)を用いるかを決定する。また、三次元データ符号化装置は、上面視に基づく分割方法を用いる場合のタイルの形状を決定する。また、三次元データ符号化装置は、タイルが他のタイルと重複するか否かを決定する。
 ステップS5031で決定したタイルの分割方法が上面視に基づく分割方法である場合(S5032でYes)、三次元データ符号化装置は、タイルの分割方法が上面視に基づく分割方法(top_view)であることをタイル付加情報に記載する(S5033)。
 一方、ステップS5031で決定したタイルの分割方法が上面視に基づく分割方法以外である場合(S5032でNo)、三次元データ符号化装置は、タイルの分割方法が上面視に基づく分割方法(top_view)以外の方法であることをタイル付加情報に記載する(S5034)。
 また、ステップS5031で決定した、タイルを上面視した形状が正方形である場合(S5035で正方形)、三次元データ符号化装置は、タイルを上面視した形状が正方形であることをタイル付加情報に記載する(S5036)。一方、ステップS5031で決定した、タイルを上面視した形状が円である場合(S5035で円)、三次元データ符号化装置は、タイルを上面視した形状が円であることをタイル付加情報に記載する(S5037)。
 次に、三次元データ符号化装置は、タイルが他のタイルと重複するかを判定する(S5038)。タイルが他のタイルと重複している場合(S5038でYes)、三次元データ符号化装置は、タイルが重複していることをタイル付加情報に記載する(S5039)。一方、タイルが他のタイルと重複していない場合(S5038でNo)、三次元データ符号化装置は、タイルが重複していないことをタイル付加情報に記載する(S5040)。
 次に、三次元データ符号化装置は、ステップS5031で決定したタイルの分割方法に基づきタイルを分割し、各タイルを符号化し、生成された符号化データ及びタイル付加情報を送出する(S5041)。
 図44は、本実施の形態に係る三次元データ復号装置による、タイル付加情報を用いた三次元データ復号処理のフローチャートである。
 まず、三次元データ復号装置は、ビットストリームに含まれるタイル付加情報を解析する(S5051)。
 タイル付加情報によりタイルが他のタイルと重複していないことが示される場合(S5052でNo)、三次元データ復号装置は、各タイルを復号することで各タイルの点群データを生成する(S5053)。次に、三次元データ復号装置は、タイル付加情報で示されるタイルの分割方法及びタイルの形状に基づき、各タイルの点群データから点群データを再構成する(S5054)。
 一方、タイル付加情報によりタイルが他のタイルと重複していることが示される場合(S5052でYes)、三次元データ復号装置は、各タイルを復号することで各タイルの点群データを生成する。また、三次元データ復号装置は、タイル付加情報に基づき、タイルの重複部分を特定する(S5055)。なお、三次元データ復号装置は、重複部分については重複する複数の情報を用いて復号処理を行ってもよい。次に、三次元データ復号装置は、タイル付加情報で示されるタイルの分割方法、タイルの形状、及び重複情報に基づき、各タイルの点群データから点群データを再構成する(S5056)。
 以下、スライスに関する変形例等を説明する。三次元データ符号化装置は、オブジェクトの種類(道、建物、木等)又は属性(動的情報、静的情報等)を示す情報を付加情報として送信してもよい。または、オブジェクトに応じて符号化のパラメータが予め規定され、三次元データ符号化装置は、オブジェクトの種類又は属性を送出することにより符号化パラメータを三次元データ復号装置へ通知してもよい。
 スライスデータの符号化順及び送出順について以下の方法を用いてもよい。例えば、三次元データ符号化装置は、オブジェクトの認識又はクラスタリングが容易なデータから順にスライスデータを符号化してもよい。または、三次元データ符号化装置は、早くクラスタリングが終わったスライスデータから順に符号化を行ってもよい。また、三次元データ符号化装置は、符号化されたスライスデータから順に送出してもよい。または、三次元データ符号化装置は、アプリケーションにおいて復号の優先度の高い順にスライスデータを送出してもよい。例えば、動的情報の復号の優先度が高い場合には、三次元データ符号化装置は、動的情報でグループ化されたスライスから順にスライスデータを送出してもよい。
 また、三次元データ符号化装置は、符号化データの順番と、復号の優先度の順番とが異なる場合には、符号化データを並び替えた後に送出してもよい。また、三次元データ符号化装置は、符号化データを蓄積する際には、符号化データを並び替えた後に蓄積してもよい。
 アプリケーション(三次元データ復号装置)は、所望のデータを含むスライスの送出をサーバ(三次元データ符号化装置)に要求する。サーバはアプリケーションが必要とするスライスデータを送出し、不要なスライスデータは送出しなくてもよい。
 アプリケーションは、所望のデータを含むタイルの送出をサーバに要求する。サーバはアプリケーションが必要とするタイルデータを送出し、不要なタイルデータは送出しなくてもよい。
 (実施の形態5)
 本実施の形態では、点を含まない分割単位(例えばタイル又はスライス)の処理について説明する。まず、点群データの分割方法について説明する。
 HEVCなどの動画像符号化規格では、二次元画像の全ての画素に対してデータが存在するため、二次元空間を複数のデータ領域に分割した場合であっても、全てのデータ領域にデータが存在する。一方、三次元点群データの符号化では、点群データの要素である点自体がデータであり、一部の領域にデータが存在しない可能性がある。
 点群データを空間的に分割する方法は様々あるが、分割したデータ単位である分割単位(例えばタイル又はスライス)が常に1以上の点データを含むかどうかで分割方法を分類できる。
 複数の分割単位の全てに、1以上の点データを含む分割方法を第1分割方法と呼ぶ。第1分割方法として、例えば、点群データを、符号化の処理時間、又は符号化データのサイズを意識して分割する方法がある。この場合、各分割単位で点の数がおおよそ均等となる。
 図45は、分割方法の例を示す図である。例えば、第1分割方法として、図45の(a)に示すように、同一の空間に属する点を2つの同一の空間に分割する方法を用いてもよい。また、図45の(b)に示すように、各分割単位が点を含むように、空間を複数のサブ空間(分割単位)に分割してもよい。
 これらの方法は、点を意識した分割であるため、常に全ての分割単位に1以上の点が含まれる。
 複数の分割単位に、点データを含まない分割単位が1以上含まれる可能性のある分割方法を第2分割方法と呼ぶ。例えば、第2分割方法として、図45の(c)に示すように、空間を均等に分割する方法を用いることができる。この場合、分割単位に点が存在するとは限らない。つまり、分割単位に点が存在しない場合がある。
 三次元データ符号化装置は、点群データを分割する場合、(1)複数の分割単位の全てに1以上の点データを含む分割方法が用いられたか、(2)複数の分割単位に、点データを含まない分割単位が1以上ある分割方法が用いられたか、(3)複数の分割単位に、点データを含まない分割単位が1以上ある可能性のある分割方法が用いられたかを、分割に係る付加情報(メタデータ)である分割付加情報(例えばタイル付加情報又はスライス付加情報)に示し、当該分割付加情報を送出してもよい。
 なお、三次元データ符号化装置は、上記の情報を、分割方法のタイプとして示してもよい。また、三次元データ符号化装置は、予め定められた分割方法で分割を行い、分割付加情報を送出しなくてもよい。その場合は、三次元データ符号化装置は、分割方法が、第1分割方法であるか、第2分割方法であるかを予め明示する。
 以下、第2分割方法、及び符号化データの生成並びに送出の例を説明する。なお、以降、三次元空間の分割方法として、タイル分割を例に説明するが、タイル分割でなくてもよく、タイルとは別の分割単位の分割方法にも以下の手法を適用できる。例えば、タイル分割をスライス分割と読み替えてもよい。
 図46は、点群データを6個のタイルに分割する例を示す図である。図46は、最小単位が点である例を示しており、位置情報(Geometry)と属性情報(Attribute)とを一緒に分割する例を示している。なお、位置情報と属性情報とを個別の分割方法又は分割数で分割する場合、属性情報がない場合、及び、属性情報が複数ある場合も同様である。
 図46に示す例では、タイル分割後に、タイル内に点を含むタイル(#1、#2、#4、#6)と、タイル内に点を含まないタイル(#3、#5)とが存在する。タイル内に点を含まないタイルをヌルタイルと呼ぶ。
 なお、6個のタイルに分割する場合に限らず、いかなる分割の方法が用いられてもよい。例えば、分割単位は、立方体であってもよいし、直方体又は円柱など立方体でない形状であってもよい。複数の分割単位は同一形状であってもよいし、異なる形状が含まれてもよい。また、分割の方法として、予め定められた方法が用いられてもよいし、所定の単位(例えばPCCフレーム)毎に異なる方法が用いられてもよい。
 本分割方法において、点群データをタイルに分割した場合に、タイル内にデータがない場合、当該タイルがヌルタイルであることを示す情報を含むビットストリームが生成される。
 以降、ヌルタイルの送出方法、及びヌルタイルのシグナリング方法について説明する。三次元データ符号化装置は、データ分割に関する付加情報(メタデータ)として、例えば、以下の情報を生成し、生成された情報を送出してもよい。図47は、タイル付加情報(TileMetaData)のシンタックス例を示す図である。タイル付加情報は、分割方法情報(type_of_divide)と、分割方法ヌル情報(type_of_divide_null)と、タイル分割数(number_of_tiles)と、タイルヌルフラグ(tile_null_flag)とを含む。
 分割方法情報(type_of_divide)は、分割方法又は分割種別に関する情報である。例えば、分割方法情報は、1又は複数の分割方法又は分割種別を示す。例えば、分割方法としては、上面視(top_view)分割、及び均等分割などがある。なお、分割方法の定義が1個の場合は、タイル付加情報に分割方法情報が含まれなくてもよい。
 分割方法ヌル情報(type_of_divide_null)は、使用される分割方法が、下記第1分割方法であるか第2分割方法であるかを示す情報である。ここで、第1分割方法とは、複数の分割単位の全てに、常にそれぞれ1以上の点データが含まれる分割方法である。第2分割方法とは、複数の分割単位に、点データを含まない分割単位が1以上存在する分割方法、又は、複数の分割単位に、点データを含まない分割単位が1以上ある可能性のある分割方法である。
 また、タイル付加情報は、タイル全体の分割情報として、(1)タイルの分割数を示す情報(タイル分割数(number_of_tiles))、又はタイルの分割数を特定するための情報、(2)ヌルタイルの数を示す情報、又はヌルタイルの数を特定するための情報、及び、(3)ヌルタイル以外のタイルの数を示す情報、又はヌルタイル以外のタイルの数を特定するための情報、のうち少なくとも一つを含んでもよい。また、タイル付加情報は、タイル全体の分割情報として、タイルの形を示す、又はタイルが重複するか否かを示す情報を含んでもよい。
 また、タイル付加情報は、タイル毎の分割情報を順に示す。例えば、タイルの順序は、分割方法毎に予め定められており、三次元データ符号化装置及び三次元データ復号装置において既知である。なお、タイルの順序を予め定めない場合には、三次元データ符号化装置は、順序を示す情報を三次元データ復号装置に送出してもよい。
 タイル毎の分割情報は、タイル内にデータ(点)が存在するか否かを示すフラグであるタイルヌルフラグ(tile_null_flag)を含む。なお、タイル内にデータがない場合に、タイル分割情報として、タイルヌルフラグが含まれてもよい。
 また、タイルがヌルタイルでない場合には、タイル付加情報は、タイル毎の分割情報(位置情報(例えば原点の座標(origin_x、origin_y、origin_z))、及びタイルの高さ情報など)を含む。また、タイルがヌルタイルである場合には、タイル付加情報は、タイル毎の分割情報を含まない。
 例えば、タイル毎の分割情報に、タイル毎のスライス分割の情報を格納する場合、三次元データ符号化装置は、付加情報に、ヌルタイルのスライス分割の情報を格納しなくてもよい。
 なお、この例では、タイル分割数(number_of_tiles)は、ヌルタイルを含めたタイルの数を示す。図48は、タイルのインデックス情報(idx)の例を示す図である。図48に示す例では、インデックス情報は、ヌルタイルにも割り当てられる。
 次に、ヌルタイルを含む符号化データのデータ構成及び送出方法について説明する。図49~図51は、6個のタイルに位置情報及び属性情報を分割する場合において、3番目及び5番目のタイルにデータが存在しない場合のデータ構造を示す図である。
 図49は、各データの依存関係の一例を示す図である。図中の矢印の先は依存先を示し、矢印の元は依存元を示している。また、同図において、Gtn(nは1~6)は、タイル番号nの位置情報を示し、Atnは、タイル番号nの属性情報を示す。Mtileは、タイル付加情報を示す。
 図50は、三次元データ符号化装置から送出される符号化データである送出データの構成例を示す図である。また、図51は、符号化データの構成及び符号化データのNALユニットへの格納方法を示す図である。
 図51に示すように、位置情報(分割位置情報)及び属性情報(分割属性情報)のデータのヘッダ内には、それぞれタイルのインデックス情報(tile_idx)が含まれる。
 また、図50の構造1に示すように、三次元データ符号化装置は、ヌルタイルを構成する位置情報又は属性情報は送出しなくてもよい。または、図50の構造2に示すように、三次元データ符号化装置は、ヌルタイルのデータとして当該タイルがヌルタイルであることを示す情報を送出してもよい。例えば、三次元データ符号化装置は、NALユニットのヘッダ、又は、NALユニットのペイロード(nal_unit_payload)内のヘッダに格納されるtile_typeに当該データのタイプがヌルタイルであることを記載し、当該ヘッダを送出してもよい。なお、以降では構造1を前提に説明を行う。
 構造1では、ヌルタイルが存在する場合、送出データにおいて、位置情報データ又は属性情報データのヘッダに含まれるタイルのインデックス情報(tile_idx)の値は、歯抜けとなり連続しない。
 また、三次元データ符号化装置は、データ間に依存関係がある場合、参照先のデータが参照元のデータより先に復号できるように送出する。なお、属性情報のタイルは位置情報のタイルに対して依存関係がある。依存関係がある属性情報と位置情報には同一のタイルのインデックス番号が付加される。
 なお、タイル分割に係るタイル付加情報は、位置情報のパラメータセット(GPS)、及び属性情報のパラメータセット(APS)の両方に格納されてもよいし、いずれか一方に格納されてもよい。GPS及びAPSの一方にタイル付加情報が格納される場合、GPS及びAPSの他方には、参照先のGPS又はAPSを示す参照情報が格納されてもよい。また、位置情報と属性情報とでタイル分割方法が異なる場合は、GPSとAPSとのそれぞれに異なるタイル付加情報が格納される。また、タイル分割の方法がシーケンス(複数PCCフレーム)で同一の場合は、GPS、APS又はSPS(シーケンスパラメータセット)にタイル付加情報が格納されてもよい。
 例えば、GPSとAPSとの両方にタイル付加情報が格納される場合、GPS内には位置情報のタイル付加情報が格納され、APS内には属性情報のタイル付加情報が格納される。また、SPSなどの共通の情報にタイル付加情報が格納される場合には、位置情報と属性情報で共通に用いられるタイル付加情報が格納されてもよいし、位置情報のタイル付加情報と属性情報のタイル付加情報とがそれぞれ格納されてもよい。
 以下、タイル分割とスライス分割との組み合わせについて説明する。まず、スライス分割後にタイル分割を行う場合のデータ構成及びデータ送出について説明する。
 図52は、スライス分割後にタイル分割を行う場合の各データの依存関係の一例を示す図である。図中の矢印の先は依存先を示し、矢印の元は依存元を示している。また、図中に実線で示すデータは実際に送出されるデータであり、点線で示すデータは送出されないデータである。
 また、同図において、Gは位置情報を示し、Aは属性情報を示す。Gs1は、スライス番号1の位置情報を示し、Gs2は、スライス番号2の位置情報を示す。Gs1t1は、スライス番号1かつタイル番号1の位置情報を示し、Gs2t2は、スライス番号2かつタイル番号2の位置情報を示す。同様に、As1は、スライス番号1の属性情報を示し、As2は、スライス番号2の属性情報を示す。As1t1は、スライス番号1かつタイル番号1の属性情報を示し、As2t1は、スライス番号2かつタイル番号1の属性情報を示す。
 Msliceは、スライス付加情報を示し、MGtileは、位置タイル付加情報を示し、MAtileは、属性タイル付加情報を示す。Ds1t1は属性情報As1t1の依存関係情報を示し、Ds2t1は属性情報As2t1の依存関係情報を示す。
 三次元データ符号化装置は、ヌルタイルに係る位置情報及び属性情報の生成及び送出を行わなくてもよい。
 また、全てのスライスにおいて、タイル分割数が同一である場合でも、スライス間で生成及び送出されるタイルの数は異なる可能性がある。例えば、位置情報と属性情報とのタイル分割数が異なる場合、位置情報と属性情報とのいずれか一方にヌルタイルが存在し、他方に存在しない場合がある。図52に示す例では、スライス1の位置情報(Gs1)は、Gs1t1とGs1t2との2つのタイルに分割され、このうちGs1t2がヌルタイルである。一方、スライス1の属性情報(As1)は分割されず一つのAs1t1が存在し、ヌルタイルは存在しない。
 また、三次元データ符号化装置は、位置情報のスライスにヌルタイルが含まれているか否かに係らず、少なくとも属性情報のタイルにデータが存在する場合、属性情報の依存関係情報を生成及び送出する。例えば、三次元データ符号化装置は、スライス分割に係るスライス付加情報に含まれるスライス毎の分割情報に、タイル毎のスライス分割の情報を格納する場合、この情報に当該タイルがヌルタイルであるか否かの情報を格納する。
 図53は、データの復号順の例を示す図である。図53の例では、左のデータから順に復号が行われる。三次元データ復号装置は、依存関係にあるデータ間では、依存先のデータから先に復号する。例えば、三次元データ符号化装置は、この順序となるようにデータを予め並び替えて送出する。なお、依存先のデータが先になる順序であれば、どのような順序でもよい。また、三次元データ符号化装置は、付加情報及び依存関係情報をデータより先に送出してもよい。
 次に、タイル分割後にスライス分割を行う場合のデータ構成及びデータ送出について説明する。
 図54は、タイル分割後にスライス分割を行う場合の各データの依存関係の一例を示す図である。図中の矢印の先は依存先を示し、矢印の元は依存元を示している。また、図中に実線で示すデータは実際に送出されるデータであり、点線で示すデータは送出されないデータである。
 また、同図において、Gは位置情報を示し、Aは属性情報を示す。Gt1は、タイル番号1の位置情報を示す。Gt1s1は、タイル番号1かつスライス番号1の位置情報を示し、Gt1s2は、タイル番号1かつスライス番号2の位置情報を示す。同様に、At1は、タイル番号1の属性情報を示し、At1s1は、タイル番号1かつスライス番号1の属性情報を示す。
 Mtileは、タイル付加情報を示し、MGsliceは、位置スライス付加情報を示し、MAsliceは、属性スライス付加情報を示す。Dt1s1は属性情報At1s1の依存関係情報を示し、Dt2s1は属性情報At2s1の依存関係情報を示す。
 三次元データ符号化装置は、ヌルタイルをスライス分割しない。また、ヌルタイルに係る位置情報、属性情報、及び属性情報の依存関係情報の生成、及び送出を行わなくてもよい。
 図55は、データの復号順の例を示す図である。図55の例では、左のデータから順に復号が行われる。三次元データ復号装置は、依存関係にあるデータ間では、依存先のデータから先に復号する。例えば、三次元データ符号化装置は、この順序となるようにデータを予め並び替えて送出する。なお、依存先のデータが先になる順序であれば、どのような順序でもよい。また、三次元データ符号化装置は、付加情報及び依存関係情報をデータより先に送出してもよい。
 次に、点群データの分割処理、及び結合処理の流れについて説明する。なお、ここでは、タイル分割及びスライス分割の例を説明するが、その他の空間の分割に対しても同様の手法を適用できる。
 図56は、三次元データ符号化装置によるデータ分割処理を含む三次元データ符号化処理のフローチャートである。まず、三次元データ符号化装置は、使用する分割方法を決定する(S5101)。具体的には、三次元データ符号化装置は、第1分割方法と第2分割方法とのいずれを用いるかを決定する。例えば、三次元データ符号化装置は、ユーザ又は外部装置(例えば三次元データ復号装置)からの指定に基づき分割方法を決定してもよいし、入力された点群データに応じて分割方法を決定してもよい。また、使用される分割方法は予め定められていてもよい。
 ここで、第1分割方法とは、複数の分割単位(タイル又はスライス)の全てに、常にそれぞれ1以上の点データが含まれる分割方法である。第2分割方法とは、複数の分割単位に、点データを含まない分割単位が1以上存在する分割方法、又は、複数の分割単位に、点データを含まない分割単位が1以上ある可能性のある分割方法である。
 決定された分割方法が第1分割方法である場合(S5102で第1分割方法)、三次元データ符号化装置は、データ分割に係るメタデータである分割付加情報(例えばタイル付加情報又はスライス付加情報)に使用された分割方法が第1分割方法であることを記載する(S5103)。そして、三次元データ符号化装置は、全ての分割単位を符号化する(S5104)。
 一方、決定された分割方法が第2分割方法である場合(S5102で第2分割方法)、三次元データ符号化装置は、分割付加情報に使用された分割方法が第2分割方法であることを記載する(S5105)。そして、三次元データ符号化装置は、複数の分割単位のうち、点データを含まない分割単位(例えばヌルタイル)を除く分割単位を符号化する(S5106)。
 図57は、三次元データ復号装置によるデータ結合処理を含む三次元データ復号処理のフローチャートである。まず、三次元データ復号装置は、ビットストリームに含まれる分割付加情報を参照し、使用された分割方法が第1分割方法であるか第2分割方法であるかを判定する(S5111)。
 使用された分割方法が第1分割方法である場合(S5112で第1分割方法)、三次元データ復号装置は、全ての分割単位の符号化データを受信し、受信した符号化データを復号することで、全ての分割単位の復号データを生成する(S5113)。次に、三次元データ復号装置は、全ての分割単位の復号データを用いて三次元点群を再構成する(S5114)。例えば、三次元データ復号装置は、複数の分割単位を結合することで三次元点群を再構成する。
 一方、使用された分割方法が第2分割方法である場合(S5112で第2分割方法)、三次元データ復号装置は、点データを含む分割単位の符号化データ、及び点データを含まない分割単位の符号化データを受信し、受信した分割単位の符号化データを復号することで復号データを生成する(S5115)。なお、三次元データ復号装置は、点データを含まない分割単位が送出されていない場合は、点群データを含まない分割単位を受信及び復号しなくてもよい。次に、三次元データ復号装置は、点データを含む分割単位の復号データを用いて三次元点群を再構成する(S5116)。例えば、三次元データ復号装置は、複数の分割単位を結合することで三次元点群を再構成する。
 以下、その他の点群データの分割方法について説明する。図45の(c)に示すように空間を均等に分割する場合、分割された空間に点が存在しない場合がある。この場合において、三次元データ符号化装置は、点が存在しない空間を点が存在する他の空間と結合する。これにより、三次元データ符号化装置は、全ての分割単位が1以上の点を含むように複数の分割単位を形成できる。
 図58は、この場合のデータ分割のフローチャートである。まず、三次元データ符号化装置は、データを特定の方法で分割する(S5121)。例えば、特定の方法とは、上述した第2分割方法である。
 次に、三次元データ符号化装置は、処理対象の分割単位である対象分割単位に点が含まれるか否かを判定する(S5122)。対象分割単位に点が含まれる場合(S5122でYes)、三次元データ符号化装置は、対象分割単位を符号化する(S5123)。一方、対象分割単位に点が含まれない場合(S5122でNo)、三次元データ符号化装置は、対象分割単位と、点を含む他の分割単位とを結合し、結合後の分割単位を符号化する(S5124)。つまり、三次元データ符号化装置は、対象分割単位を、点を含む他の分割単位と一緒に符号化する。
 なお、ここでは、分割単位毎に判定及び結合を行う例を述べたが、処理方法はこれに限らない。例えば、三次元データ符号化装置は、複数の分割単位の各々に点が含まれるか否かを判定し、点が含まれない分割単位がなくなるように結合を行い、結合後の複数の分割単位の各々を符号化してもよい。
 次に、ヌルタイルを含むデータの送出方法について説明する。三次元データ符号化装置は、処理対象のタイルである対象タイルがヌルタイルである場合には、対象タイルのデータを送出しない。図59は、データ送出処理のフローチャートである。
 まず、三次元データ符号化装置は、タイルの分割方法を決定し、決定した分割方法を用いて点群データをタイルに分割する(S5131)。
 次に、三次元データ符号化装置は、対象タイルがヌルタイルであるか否かを判定する(S5132)。つまり、三次元データ符号化装置は、対象タイル内にデータがないか否かを判定する。
 対象タイルがヌルタイルである場合(S5132でYes)、三次元データ符号化装置は、タイル付加情報に、対象タイルがヌルタイルであることを示し、対象タイルの情報(タイルの位置及びサイズ等)を示さない(S5133)。また、三次元データ符号化装置は、対象タイルを送出しない(S5134)。
 一方、対象タイルがヌルタイルでない場合(S5132でNo)、三次元データ符号化装置は、タイル付加情報に対象タイルがヌルタイルでないことを示し、タイル毎の情報を示す(S5135)。また、三次元データ符号化装置は、対象タイルを送出する(S5136)。
 このように、ヌルタイルの情報をタイル付加情報に含めないことにより、タイル付加情報の情報量を削減できる。
 以下、ヌルタイルを含む符号化データの復号方法について説明する。まず、パケットロスがない場合の処理について説明する。
 図60は、三次元データ符号化装置から送出される符号化データである送出データと、三次元データ復号装置に入力される受信データの例を示す図である。なお、ここでは、パケットロスがないシステム環境の場合を想定しており、受信データは送出データと同じである。
 三次元データ復号装置は、パケットロスがないシステム環境の場合には、送出データの全てを受信する。図61は、三次元データ復号装置による処理のフローチャートである。
 まず、三次元データ復号装置は、タイル付加情報を参照し(S5141)、それぞれのタイルがヌルタイルであるか否かを判定する(S5142)。
 タイル付加情報に対象タイルがヌルタイルでないことが示される場合(S5142でNo)、三次元データ復号装置は、対象タイルはヌルタイルではないと判断し、対象タイルを復号する(S5143)。次に、三次元データ復号装置は、タイル付加情報からタイルの情報(タイルの位置情報(原点座標等)及びサイズ等)を取得し、取得した情報を用いて複数のタイルを結合することでの三次元データを再構成する(S5144)。
 一方、タイル付加情報に対象タイルがヌルタイルでないことが示される場合(S5142でYes)、三次元データ復号装置は、対象タイルはヌルタイルであると判断し、対象タイルを復号しない(S5145)。
 なお、三次元データ復号装置は、符号化データのヘッダに示されるインデックス情報を順番に解析することにより、歯抜けとなっているデータがヌルタイルであると判定してもよい。また、三次元データ復号装置は、タイル付加情報を用いた判定方法とインデックス情報を用いた判定方法とを組み合わせてもよい。
 次に、パケットロスがある場合の処理について説明する。図62は、三次元データ符号化装置から送出される送出データ、及び、三次元データ復号装置に入力される受信データの例を示す図である。ここでは、パケットロスがあるシステム環境の場合を想定している。
 パケットロスがあるシステム環境の場合、三次元データ復号装置は、送出データの全てを受信できない可能性がある。この例では、Gt2とAt2のパケットが損失している。
 図63は、この場合の三次元データ復号装置の処理のフローチャートである。まず、三次元データ復号装置は、符号化データのヘッダに示されるインデックス情報の連続性を解析し(S5151)、対象タイルのインデックス番号が存在するか否かを判定する(S5152)。
 対象タイルのインデックス番号が存在する場合(S5152でYes)、三次元データ復号装置は、対象タイルはヌルタイルでないと判断し、対象タイルの復号処理を実施する(S5153)。次に、三次元データ復号装置は、タイル付加情報からタイルの情報(タイルの位置情報(原点座標等)及びサイズ等)を取得し、取得した情報を用いて複数のタイルを結合することでの三次元データを再構成する(S5154)。
 一方、対象タイルのインデックス情報が存在しない場合(S5152でNo)、三次元データ復号装置は、タイル付加情報を参照することで、対象タイルがヌルタイルであるか否かを判定する(S5155)。
 対象タイルがヌルタイルでない場合(S5156でNo)、三次元データ復号装置は、対象タイルは損失した(パケットロス)と判断し、エラー復号処理を実施する(S5157)。エラー復号処理とは、例えば、データがあったものとして、元データの復号を試みる処理である。この場合、三次元データ復号装置は、三次元データを再生し、三次元データの再構成を実施してもよい(S5154)。
 一方、対象タイルがヌルタイルである場合(S5156でYes)、三次元データ復号装置は、対象タイルはヌルタイルであるものとして、復号処理及び三次元データの再構成を実施しない(S5158)。
 次に、ヌルタイルを明示しない場合の符号化方法について説明する。三次元データ符号化装置は、以下の方法で符号化データ及び付加情報を生成してもよい。
 三次元データ符号化装置は、タイル付加情報に、ヌルタイルの情報を示さない。三次元データ符号化装置は、ヌルタイルを除くタイルのインデックス番号をデータヘッダに付与する。三次元データ符号化装置は、ヌルタイルを送出しない。
 この場合、タイル分割数(number_of_tiles)は、ヌルタイルを含めない分割数を示す。なお、三次元データ符号化装置は、別途ヌルタイルの数を示す情報をビットストリームに格納してもよい。また、三次元データ符号化装置は、付加情報にヌルタイルに関する情報を示してもよし、ヌルタイルに関する一部の情報を示してもよい。
 図64は、この場合の三次元データ符号化装置による三次元データ符号化処理のフローチャートである。まず、三次元データ符号化装置は、タイルの分割方法を決定し、決定した分割方法を用いて点群データをタイルに分割する(S5161)。
 次に、三次元データ符号化装置は、対象タイルがヌルタイルであるか否かを判定する(S5162)。つまり、三次元データ符号化装置は、対象タイル内にデータがないか否かを判定する。
 対象タイルがヌルタイルでない場合(S5162でNo)、三次元データ符号化装置は、データヘッダに、ヌルタイルを除くタイルのインデックス情報を付与する(S5163)。そして、三次元データ符号化装置は、対象タイルを送出する(S5164)。
 一方、対象タイルがヌルタイルである場合(S5162でYes)、三次元データ符号化装置は、データヘッダへの対象タイルのインデックス情報を付与、及び対象タイルの送出を行わない。
 図65は、データヘッダに付加されるインデックス情報(idx)の例を示す図である。図65に示すようにヌルタイルのインデックス情報は付加されず、ヌルタイル以外のタイルに対して連続番号が付加される。
 図66は、各データの依存関係の一例を示す図である。図中の矢印の先は依存先を示し、矢印の元は依存元を示している。また、同図において、Gtn(nは1~4)は、タイル番号nの位置情報を示し、Atnは、タイル番号nの属性情報を示す。Mtileは、タイル付加情報を示す。
 図67は、三次元データ符号化装置から送出される符号化データである送出データの構成例を示す図である。
 以下、ヌルタイルを明示しない場合の復号方法について説明する。図68は、三次元データ符号化装置から送出される送出データ、及び、三次元データ復号装置に入力される受信データの例を示す図である。ここでは、パケットロスがあるシステム環境の場合を想定している。
 図69は、この場合の三次元データ復号装置の処理のフローチャートである。まず、三次元データ復号装置は、符号化データのヘッダに示されるタイルのインデックス情報を解析し、対象タイルのインデックス番号が存在するか否かを判定する。また、三次元データ復号装置は、タイル付加情報からタイルの分割数を取得する(S5171)。
 対象タイルのインデックス番号が存在する場合(S5172でYes)、三次元データ復号装置は、対象タイルの復号処理を実施する(S5173)。次に、三次元データ復号装置は、タイル付加情報からタイルの情報(タイルの位置情報(原点座標等)及びサイズ等)を取得し、取得した情報を用いて複数のタイルを結合することでの三次元データを再構成する(S5175)。
 一方、対象タイルのインデックス番号が存在しない場合(S5172でNo)、三次元データ復号装置は、対象タイルはパケットロスと判断し、エラー復号処理を実施する(S5174)。また、三次元データ復号装置は、データに存在しない空間は、ヌルタイルであると判断し、三次元データ再構成する。
 また、三次元データ符号化装置は、ヌルタイルを明示的に示すことで、測定ミス或いはデータ処理等によるデータ欠損、またはパケットロスではなく、タイル内に点が存在しないことを適切に判断することができる。
 なお、三次元データ符号化装置は、ヌルパケットを明示的に示す方法と、ヌルパケットを明示的に示さない方法とを併用してもよい。その場合、三次元データ符号化装置は、ヌルパケットを明示的に示すか否かを示す情報をタイル付加情報に示してもよい。また、分割方法のタイプに応じて、予めヌルパケットを明示的に示すか否かを決定しておき、三次元データ符号化装置は、分割方法のタイプを示すことによりヌルパケットを明示的に示すか否かを示してもよい。
 また、図47等において、タイル付加情報に、全てのタイルに係る情報が示される例を示したが、タイル付加情報に、複数のタイルのうちの一部のタイルの情報が示されてもよいし、複数のタイルのうちの一部のタイルのヌルタイルの情報が示されてもよい。
 また、分割データ(タイル)があるか否かの情報等の分割データに関する情報が、タイル付加情報に格納される例を説明したが、これらの情報の一部又は全ては、パラメータセットに格納されてもいし、データとして格納されてもよい。これらの情報がデータとして格納される場合には、例えば分割データがあるか否かを示す情報を意味するnal_unit_typeを定義し、これらの情報をNALユニットに格納してもよい。また、これらの情報は、付加情報とデータとの両方に格納されてもよい。
 (実施の形態6)
 以下、タイル毎に量子化を行う処理について説明する。図70は、タイル毎の量子化処理を模式的に示す図である。
 三次元データ符号化装置は、点群データを、タイルなどの、独立に符号化及び復号可能な複数のデータ単位に分割し、分割により得られた分割データ毎に量子化を行う。
 以下の方法を用いることにより、タイル分割時に量子化及び重複点のマージを行うことで、量子化データの符号化効率を向上できる。
 三次元データ符号化装置は、分割データ毎に量子化を行う場合、タイル毎に、タイル内に属する点の位置情報を量子化し、重複点を1つの点にマージする。その後、三次元データ符号化装置は、タイル毎に、点群データの位置情報をオキュパンシー符号に変換し、オキュパンシー符号を算術符号化する。
 例えば、三次元データ符号化装置は、点Aと点Bとを同じ三次元位置情報を持つ点Cにマージしてもよい。なお、三次元データ符号化装置は、点Aと点Bの色又は反射率等の属性情報の平均値を点Cに割り当ててもよい。また、三次元データ符号化装置は、点Bを点Aにマージしてもよいし、点Aを点Bにマージしてもよい。
 三次元データ符号化装置は、マージを行う場合、MergeDuplicatedPointFlagを1に設定する。このMergeDuplicatedPointFlagにより、タイル内の重複点がマージされており、タイル内において重複点がないことが示される。三次元データ符号化装置は、MergeDuplicatedPointFlagをメタデータ(付加情報)としてパラメータセットに格納する。
 MergeDuplicatedPointFlagが1の場合は、タイル毎のオキュパンシー符号において各リーフノードは1個の点を含む。よって、三次元データ符号化装置は、リーフノードの情報として、リーフノードに含まれる点の数を示す情報を符号化しなくてもよい。また、三次元データ符号化装置は、1個の点の三次元位置情報と、色及び反射率などの属性情報とを符号化してもよい。
 MergeDuplicatedPointFlagが1の場合に、三次元データ符号化装置は、M個の重複点をN(M>N)個の点にマージしてもよい。この際、三次元データ符号化装置は、値Nを示す情報をヘッダ等に付加してもよい。または、値Nが規格等で規定されてもよい。これにより、三次元データ符号化装置は、リーフノード毎に値Nを示す情報を付加する必要がなくなり、発生符号化量を抑制できる。
 三次元データ符号化装置は、タイルに分割された点群データを量子化しない場合、MergeDuplicatedPointFlagを0にセットする。MergeDuplicatedPointFlagが0の場合、三次元データ符号化装置は、タイル内のリーフノードに含まれる重複点に関する情報をリーフノードの情報として符号化する。例えば、各リーフノードは1個以上の重複点を含む可能性がある。よって、三次元データ符号化装置は、リーフノードが何個の点を含むかを示す情報を符号化してもよい。また、三次元データ符号化装置は、重複点の各属性情報をそれぞれ符号化してもよい。
 以上のように、三次元データ符号化装置は、MergeDuplicatedPointFlagに基づき符号化データ構造を変えてもよい。
 三次元データ符号化装置は、MergeDuplicatedPointFlagをフレーム毎のパラメータセットであるGPSに記載してもよい。この場合、例えば、ヌルタイルを除く全てのタイルの少なくとも一つのタイルに重複ポイントが含まれるか否かを示すフラグが用いられる。当該フラグはフレーム毎に付加されてもよいし、全て又は複数のフレームに対して同一のフラグが適用されてもよい。全て又は複数のフレームに対して同一のフラグが適用される場合、三次元データ符号化装置は、当該フラグをSPSに記載し、GPSに記載しなくてもよい。これにより、伝送データ量を削減できる。ここで、SPSは、シーケンス(複数フレーム)単位のパラメータセットである。
 なお、三次元データ符号化装置は、タイル毎に量子化パラメータを変えてもよいし、タイルに応じて、量子化するか、しないかを変えてもよい。
 また、三次元データ符号化装置は、タイル毎に量子化又はマージするか否かを決定する場合、GPSにタイル毎のフラグ(例えばMergeDuplicatedPointFlag)を格納する。あるいは、三次元データ符号化装置は、タイル毎のデータのヘッダにMergeDuplicatedPointFlagを格納し、MergeDuplicatedPointFlagを当該タイル内に重複ポイントがあるか否かを示すフラグとして用いる。この場合、三次元データ符号化装置は、データのヘッダに当該フラグが格納されていることを示すフラグをGPSに記載する。なお、三次元データ符号化装置は、タイルがヌルタイルである場合はフラグを格納しなくてもよい。
 次に、データ構造について説明する。図71は、フレーム単位の位置情報のパラメータセットであるGPSのシンタックス例を示す図である。GPSは、は、フレーム番号を示すgps_idx及びシーケンス番号を示すsps_idxの少なくとも一方を含む。
 また、GPSは、重複点マージフラグ(MergeDuplicatedPointFlag)と、タイル情報(tile_information)とを含む。
 MergeDuplicatedPointFlag=1は、タイルを分割しない場合には、点群データ内の重複点がマージされ、重複点がないことを示す。MergeDuplicatedPointFlag=1は、タイルを分割する場合には、点群データを構成するヌルタイルを除く全てのタイルにおいて、タイル内の重複点がマージされ、重複点がないことを示す。
 MergeDuplicatedPointFlag=0は、タイル分割しない場合には、点群データ内の重複点がマージされず、重複点がある可能性があることを示す。MergeDuplicatedPointFlag=0は、タイル分割する場合には、点群データを構成するヌルタイルを除く全てのタイルにおいて、タイル内の重複点がマージされず、いずれかにタイルにおいてタイル内に重複点がある可能性があることを示す。
 タイル情報(tile_information)は、タイル分割に係る情報を示す。具体的には、タイル情報は、タイル分割のタイプ、分割数、各タイルの座標(位置)及び各タイルの大きさ等を示す。また、タイル情報は、量子化パラメータ、又はヌルタイルの情報などを示してもよい。また、三次元データ復号装置において、各タイルの座標又は大きさが既知である場合、又は導出可能な場合は、各タイルの座標又は大きさを示す情報は省略されてもよい。これにより、符号量を削減できる。
 図72は、タイル情報(tile_information)のシンタックス例を示す図である。タイル情報は、量子化独立フラグ(independent_quantization_flag)を含む。量子化独立フラグ(independent_quantization_flag)は、量子化パラメータを複数のタイル全体で統一するか、タイル毎に個別に設定するかを示すフラグである。
 例えば、independent_quantization_flag=1は、複数のタイル全体で量子化パラメータを統一することを示す。この場合、GPSにMergeDuplicatedPointFlag、及びQP_valueが示され、これらの情報が用いられる。ここで、QP_valueは、複数のタイルに用いる量子化パラメータである。
 例えば、independent_quantization_flag=2は、タイル毎に量子化パラメータが設定されることを示す。この場合において、タイルがヌルタイルでない場合は、タイル毎のループ処理内において、TileMergeDuplicatedPointFlag、及びqp_valueが示される。あるいは、位置情報のヘッダ内にTileMergeDuplicatedPointFlag、及びqp_valueが示される。ここで、TileMergeDuplicatedPointFlagは、処理対象のタイルである対象タイルにおいて、重複点をマージするか否かを示すフラグである。qp_valueは、対象タイルに用いる量子化パラメータである。
 なお、MergeDuplicatedPointFlagを複数のタイル全体で統一するか、タイル毎に個別に設定するかを示すフラグと、QP(量子化パラメータ)の値を複数のタイル全体で統一するか、タイル毎に個別に設定するかを示すフラグとを個別に設けてもよい。または、MergeDuplicatedPointFlag又はQPの値を、GPSに示すか、位置情報のヘッダ内に示すかを示すフラグを設けてもよい。以上により、タイル毎に独立に量子化パラメータを設定できる。
 図73は、位置情報のデータに含まれるノード情報(node(depth、index))のシンタックス例を示す図である。ノード情報は、MergeDuplicatedPointFlag=0の場合は、リーフノードの重複点の数を示す情報(num_point_per_leaf)を含む。また、対応する数の属性情報が、属性情報のデータに含まれるリーフノード情報に示される。
 以下、本実施の形態に係る三次元データ符号化処理について説明する。図74は、本実施の形態に係る三次元データ符号化処理のフローチャートである。
 まず、三次元データ符号化装置は、タイルを分割するか否か、及び重複点をマージするか否かを決定する(S6201、S6202、S6214)。例えば、三次元データ符号化装置は、外部からの指示に基づき、タイルを分割するか否か、及び重複点をマージするか否かを決定する。
 タイル分割を行わず、重複点をマージする場合(S6201でNo、かつS6202でYes)、三次元データ符号化装置は、出力される点群は重複点を含まないことを示すMergeDuplicatedPointFlag=1を設定し、MergeDuplicatedPointFlagをメタデータ(付加情報)に格納する(S6203)。
 次に、三次元データ符号化装置は、点群の位置情報を量子化し(S6204)、量子化後の位置情報に基づき、重複点をマージする(S6205)。次に、三次元データ符号化装置は、オキュパンシー符号を符号化する(S6206)。次に、三次元データ符号化装置は、重複点を持たない点に対する属性情報を符号化する(S6208)。
 一方、タイル分割を行わず、重複点をマージしない場合(S6201でNo、かつS6202でNo)、三次元データ符号化装置は、出力する点群は重複点を含む可能性があることを示すMergeDuplicatedPointFlag=0を設定し、MergeDuplicatedPointFlagをメタデータ(付加情報)に格納する(S6209)。
 次に、三次元データ符号化装置は、点群の位置情報を量子化し(S6210)、オキュパンシー符号を符号化する(S6211)。また、三次元データ符号化装置は、全リーフノードに対して、各リーフノードに含まれる三次元点の数を示す情報を符号化する(S6212)。次に、三次元データ符号化装置は、重複点を持つ点に対する属性情報を符号化する(S6213)。
 一方、タイル分割を行い、重複点をマージする場合(S6201でYes、かつS6214でYes)、三次元データ符号化装置は、出力される全タイルにおいてタイル内に重複点がないことを示すMergeDuplicatedPointFlag=1を設定し、MergeDuplicatedPointFlagをメタデータ(付加情報)に格納する(S6215)。次に、三次元データ符号化装置は、点群をタイルに分割し(S6216)。
 次に、三次元データ符号化装置は、処理対象の対象タイル内の点群の位置情報を量子化し(S6217)、量子化後の位置情報に基づき、対象タイル内の重複点をマージする(S6218)。次に、三次元データ符号化装置は、オキュパンシー符号を符号化(S6219)、重複点を持たない点に対する属性情報を符号化する(S6220)。
 全タイルの処理が完了していない場合(S6221でNo)、次のタイルに対してステップS6217以降の処理が行われる。全タイルの処理が完了した場合(S6221でYes)、三次元データ符号化装置は、処理を終了する。
 一方、タイル分割を行い、重複点をマージしない場合(S6201でYes、かつS6214でNo)、三次元データ符号化装置は、出力されるタイルが重複点を含む可能性があることを示すMergeDuplicatedPointFlag=0を設定し、MergeDuplicatedPointFlagをメタデータ(付加情報)に格納する(S6222)。次に、三次元データ符号化装置は、点群をタイルに分割する(S6223)。
 次に、三次元データ符号化装置は、対象タイル内の点群の位置情報を量子化し(S6224)、オキュパンシー符号を符号化する(S6225)。次に、三次元データ符号化装置は、全リーフノードに対して各リーフノードに含まれる三次元点の数を示す情報を符号化する(S6226)。次に、三次元データ符号化装置は、重複点を持つ点に対する属性情報を符号化する(S6227)。
 全タイルの処理が完了していない場合(S6228でNo)、次のタイルに対してステップS6224以降の処理が行われる。全タイルの処理が完了した場合(S6228でYes)、三次元データ符号化装置は、処理を終了する。
 なお、符号化部の構成において、タイル分割部の前に量子化部が配置されてもよい。つまり、全ての点群データを量子化した後にタイル分割が行われてもよい。点群データは量子化により位置シフトされ、その後、重複点がマージされる。重複点がマージされない場合もある。
 この構成の場合、量子化パラメータをタイル全体で統一するか個別に設定するかを示すフラグ(independent_quantization_flag)は、値1(全体で統一する)に指定される。
 図75は、この場合の三次元データ符号化処理のフローチャートである。なお、図75に示す処理は、図74に示す処理に対して、タイル分割を行う場合(S6201でYes)における、タイル分割処理と量子化処理との順序が異なる。以下では、相違点を主に説明する。
 タイル分割を行い、重複点をマージする場合(S6201でYes、かつS6214でYes)、三次元データ符号化装置は、MergeDuplicatedPointFlag=1を設定し(S6215)、点群の位置情報を量子化する(S6217A)。次に、三次元データ符号化装置は、量子化後の位置情報に基づき重複点をマージする(S6218A)。次に、三次元データ符号化装置は、マージ後の点群をタイルに分割する(S6216A)。
 一方、タイル分割を行い、重複点をマージしない場合(S6201でYes、かつS6214でNo)、三次元データ符号化装置は、MergeDuplicatedPointFlag=0を設定し(S6222)、点群の位置情報を量子化する(S6224A)。次に、三次元データ符号化装置は、量子化後の点群をタイルに分割する(S6223A)。
 次に、本実施の形態に係る三次元データ復号処理について説明する。図76は、本実施の形態に係る三次元データ復号処理のフローチャートである。
 まず、三次元データ復号装置は、ビットストリームに含まれるメタデータからMergeDuplicatedPointFlagを復号する(S6231)。次に、三次元データ復号装置は、タイル分割が行われているか否かを判定する(S6232)。例えば、三次元データ復号装置は、ビットストリームに含まれる情報に基づきタイル分割が行われているか否かを判定する。
 タイル分割が行われてない場合(S6232でNo)、三次元データ復号装置は、ビットストリームからオキュパンシー符号を復号する(S6233)。具体的には、三次元データ復号装置は、ビットストリームに含まれるヘッダ情報等を用いて、ある空間(ノード)の8分木を生成する。例えば、三次元データ復号装置は、ヘッダ情報に付加されたある空間のx軸、y軸、z軸方向の大きさを用いて大空間(ルートノード)を生成し、その空間をx軸、y軸、z軸方向にそれぞれ2分割することで8個の小空間A(ノードA0~A7)を生成して8分木を生成する。同様に、三次元データ復号装置は、ノードA0~A7のそれぞれを更に8個の小空間に分割し、本フローの処理を通して、各ノードのオキュパンシー符号の復号と、リーフ情報の復号とを順に行う。
 MergeDuplicatedPointFlagが0である場合(S6234でYes)、三次元データ復号装置は、全リーフノードに対して各リーフノードに含まれる三次元点の数を示す情報を復号する(S6235)。例えば、大空間が8×8×8の場合、8分木分割を3回適用するとノードが1×1×1となる。このサイズが分割できる最小単位(リーフ)である場合、三次元データ復号装置は、各リーフノードに点が含まれるか否かを、リーフノードの親ノードの復号したオキュパンシー符号から判定し、各リーフノードの三次元位置を算出する。
 ステップS6235の後、又は、MergeDuplicatedPointFlagが1である場合(S6234でNo)、三次元データ復号装置は、復号したオキュパンシー符号、8分木の分割数等の情報を用いてリーフノードの位置情報(三次元位置)を算出する(S6236)。次に、三次元データ復号装置は、位置情報を逆量子化する(S6237)。
 具体的には、三次元データ復号装置は、ヘッダから復号した量子化パラメータを用いて逆量子化を行うことで、点群の位置情報(三次元位置)を算出する。例えば、三次元データ復号装置は、逆量子化前の三次元位置(x、y、z)に量子化パラメータ(qx、qy、qz)を乗算することで逆量子化位置(x×qx、y×qy、z×qz)を算出する。なお、ロスレス(lossless)符号化時には逆量子化処理がスキップされてもよい。
 次に、三次元データ復号装置は、位置情報が復号された三次元点に関わる属性情報を復号する(S6238)。MergeDuplicatedPointFlag=1の場合は、復号された異なる三次元位置を持つ各点に1個の属性情報が復号後に紐づけされる。また、MergeDuplicatedPointFlag=0の場合は、復号された同じ三次元位置を持つ複数の点に、複数の異なる属性情報が復号され紐づけされる。
 一方、タイル分割が行われている場合(S6232でYes)、三次元データ復号装置は、タイル毎にオキュパンシー符号を復号する(S6239)。MergeDuplicatedPointFlagが0の場合(S6240でYes)、三次元データ復号装置は、タイル内の全リーフノードに対して各リーフノードに含まれる三次元点の数を示す情報を復号する(S6241)。
 ステップS6241の後、又は、MergeDuplicatedPointFlagが1の場合(S6240でNo)、三次元データ復号装置は、復号したオキュパンシー符号、8分木の分割数等の情報を用いてリーフノードの位置情報(三次元位置)を算出する(S6242)。
 次に、三次元データ復号装置は、タイル内の点群の位置情報(三次元位置)を逆量子化し(S6243)、位置情報が復号された三次元点に関わる属性情報を復号する(S6244)。
 全タイルの処理が完了していない場合(S6245でNo)、次のタイルに対してステップS6239以降の処理が行われる。全タイルの処理が完了した場合(S6245でYes)、三次元データ符号化装置は、処理を終了する。
 以下、タイル間で三次元点が重複する例と、その符号化方法について説明する。タイル間で重複点が発生するケースとして、以下のケースがある。図77及び図78はタイル分割の例を示す図である。
 図77に示すように、分割部において点群をタイル分割する場合において、実線で示すタイル領域が重なるように分割する場合、分割後、破線で示す領域内に、タイル間で重複する点が存在する。また、図78に示すように、タイル領域が重ならないように分割する場合、分割後のタイル間で重複する点は存在しない。
 また、タイル毎の位置情報の量子化においてそれぞれの点の位置がシフトされる。これにより、タイル内及びタイル間に重複点が発生する可能性がある。その後のタイル毎のタイル内のマージ処理により、個々のタイル内の重複点は1つの点にマージされる。一方、タイル間の重複点は残存する。
 図77の例では、タイル領域が重なっているエリアに加え、タイル境界付近に新たに重複点が発生する可能性がある。図78の例では、タイル境界付近に重複点が発生する可能性がある。
 タイル間に重複点がある場合、三次元データ復号装置においてタイルを再構成する際に、点群データに重複点が発生する。これにより、三次元データ復号装置は重複点が不要な場合に、余分な処理が必要となってしまう。
 そこで、三次元データ符号化装置は、タイル内に重複点があるか否かを示すMergeDuplicatedPointFlag、又はTileMergeDuplicatedPointFlagをビットストリームに格納するとともに、タイル間に重複点があるか否かを示すフラグであるUniqueBetweenTilesFlagをビットストリームに格納する。これにより、三次元データ復号装置は、UniqueBetweenTilesFlag=0の場合、重複点の削除又はマージを行うことにより、扱うポイント数を削減し、処理負荷を軽減できる。
 また、三次元データ符号化装置は、タイル分割又は量子化において、タイル間の重複点が発生した場合、その後にタイル間の重複点を削除又はマージしてもよい。この場合、三次元データ符号化装置は、タイル間に重複点が発生しないことを示すUniqueBetweenTilesFlag=1をビットストリームに格納する。三次元データ復号装置は、UniqueBetweenTilesFlagに基づき、重複点のマージが必要ないと判断できる。
 三次元データ符号化装置は、タイル領域が重複するようにタイル分割を行う場合、又はタイルをそれぞれ量子化する場合など、タイル間に重複点が発生する可能性がある場合に、UniqueBetweenTilesFlagを0に設定する。なお、タイル領域が重複している場合であっても、重複領域内にもともと点がない場合は、重複点は発生しない。その場合も、三次元データ符号化装置は、UniqueBetweenTilesFlagを0に設定してもよい。また、三次元データ符号化装置は、量子化を行う場合、必ずしも重複点が発生しない状況であっても、重複点が発生する可能性がある場合に、UniqueBetweenTilesFlagを0に設定してもよい。
 図79は、三次元データ符号化処理のフローチャートである。まず、三次元データ符号化装置は、タイル領域が重複するかを判定する(S6251)。タイル領域が重複しない場合(S6252でNo)、三次元データ符号化装置は、タイルを個別に量子化してマージを行うかを判定する(S6252)。タイル領域が重複する場合(S6251でYes)、又は、タイルを個別に量子化してマージを行う場合(S6252でYes)、三次元データ符号化装置は、分割データ間の重複点をマージするか否かを判定する(S6253)。
 タイルを個別に量子化してマージを行わない場合(S6252でNo)、又は、分割データ間の重複点をマージする場合(S6253でYes)、三次元データ符号化装置は、タイル間に重複点がないことを示すUniqueBetweenTilesFlag=1を設定する(S6254)。
 分割データ間の重複点をマージしない場合(S6253でNo)、三次元データ符号化装置は、タイル間に重複点があることを示すUniqueBetweenTilesFlag=0を設定する(S6255)。
 なお、図79に示す処理以外の処理が用いられてもよい。例えば、三次元データ符号化装置は、実際に量子化後にタイルを再構成し、タイル間の重複点をサーチすることにより、重複点があるか否かを判定し、判定結果に応じてUniqueBetweenTilesFlagを設定してもよい。
 また、三次元データ符号化装置は、重複する領域又は範囲に関するメタデータをビットストリームに格納してもよい。例えば、このメタデータは、タイル間で、タイル境界に重複点が存在する可能性があることを示してもよい。これにより、三次元データ復号装置は、タイル境界をサーチして重複点を削除することができるので、処理負荷を軽減できる。
 図80は、三次元データ符号化装置の構成を示すブロック図である。図80に示すように三次元データ符号化装置は、分割部6231と、複数の量子化部6232A及び6232Bと、分割データ間重複点マージ部6233と、複数の符号化部6234A及び6234Bとを備える。
 分割部6231は、点群データを複数のタイルに分割することで複数の分割データを生成する。複数の量子化部6232A及び6232Bは、複数の分割データを量子化することで複数の量子化データを生成する。
 複数の量子化部6232A及び6232Bの各々は、最小位置シフト部6241と、位置情報量子化部6242と、分割データ内重複点マージ部6243とを備える。
 最小位置シフト部6241は、点群の中で最も座標の値が小さい最小点が原点にシフトするように点群をシフトする。位置情報量子化部6242は、位置情報を量子化する。分割データ内重複点マージ部6243は、タイル内の重複点をマージする。
 分割データ間重複点マージ部6233は、タイル間の重複点をマージする。複数の符号化部6234A及び6234Bは、タイル間の重複点がマージされた後の複数の量子化データを符号化することで複数の符号化データを生成する。
 また、分割部の前に量子化部を配置する構成が用いられてもよい。つまり、三次元データ符号化装置は、全ての点群データに対して量子化を行った後にタイル分割を行ってもよい。この場合、量子化の際にタイル間の重複は発生しない。
 図81は、GPSのシンタックス例を示す図である。図81に示すように、GPSは、タイル間重複点フラグ(UniqueBetweenTilesFlag)を含む。タイル間重複点フラグは、タイル間で重複点が存在する可能性があるか否かを示すフラグである。
 図82は、三次元データ復号処理のフローチャートである。まず、三次元データ復号装置は、ビットストリームに含まれるメタデータからUniqueBetweenTilesFlag及びMergeDuplicatedPointFlagを復号する(S6261)。次に、三次元データ復号装置は、タイル毎に位置情報及び属性情報を復号し、点群を再構成する(S6262)。
 次に、三次元データ復号装置は、重複点のマージが必要であるか否かを判定する(S6263)。例えば、三次元データ復号装置は、アプリケーションが重複点に対応できるか否か、又は重複点をマージしたほうがよいか否かに応じて、マージが必要であるか否かを判定する。または、三次元データ復号装置は、重複点に対応する複数の属性情報を平滑化又はフィルタリング処理し、雑音除去又は推定精度を向上することを目的として、重複点をマージすると判定してもよい。
 重複点のマージが必要である場合(S6263でYes)、三次元データ復号装置は、タイル間の重複がある(重複点が存在する)か否かを判定する(S6264)。例えば、三次元データ復号装置は、UniqueBetweenTilesFlag及びMergeDuplicatedPointFlagの復号結果に基づき、タイル間の重複の有無を判定してもよい。これにより、三次元データ復号装置における重複点のサーチが不要となり、三次元データ復号装置の処理負荷を軽減できる。なお、三次元データ復号装置は、タイルを再構成後に重複点をサーチすることにより、重複点が存在するか否かを判定してもよい。
 タイル間の重複がある場合(S6264でYes)、三次元データ復号装置は、タイル間の重複点をマージする(S6265)。次に、三次元データ復号装置は、重複する複数の属性情報をマージする(S6266)。
 ステップS6266の後、又は、タイル間の重複がない場合(S6264でNo)、三次元データ復号装置は、重複点のない点群を用いてアプリケーションを実行する(S6267)。
 一方、重複点のマージが必要でない場合(S6263でNo)、三次元データ復号装置は、重複点のマージは行わず、重複点が存在する点群を用いてアプリケーションを実行する(S6268)。
 以下、アプリケーションの例を説明する。まず、重複点のない点群を用いるアプリケーションの例を説明する。
 図83は、アプリケーションの例を示す図である。図83に示す例は、タイルAの領域からタイルBの領域へ走行中の移動体が、サーバから地図点群をリアルタイムにダウンロードするユースケースを示す。サーバは複数の重複するエリアの地図点群の符号化データを格納している。移動体は、タイルAの地図情報を取得済みであり、移動方向に位置するタイルBの地図情報の取得をサーバに要求する。
 その際、移動体は、タイルAとタイルBとの重複部分のデータは不要であると判断し、タイルBに含まれるタイルBとタイルAとの重複部分を削除する指示をサーバに送信する。サーバは、タイルBから上記重複部分を削除し、削除後のタイルBを移動体に配信する。これにより、伝送データ量の削減、及び復号処理の負荷の低減を実現できる。
 なお、移動体はフラグに基づき重複点がないことを確認してもよい。また、移動体は、タイルAを取得済みでない場合は、重複部分を削除しないデータをサーバに要求する。また、移動体は、サーバに重複点の削除機能がない場合、又は重複点があるか否かわからない場合、配信されたデータを確認して重複点があるか否かを判定し、重複点がある場合はマージを行ってもよい。
 次に、重複点のある点群を用いるアプリケーションの例を説明する。移動体は、LiDARで取得した地図点群データをリアルタイムにサーバにアップロードする。例えば、移動体は、タイル毎に取得したデータをサーバにアップロードする。この場合、タイルAとタイルBとが重複する領域は存在するが、符号化側の移動体は、タイル間の重複点をマージせず、タイル間の重複があることを示すフラグとともにデータをサーバに送出する。サーバは、受信したデータに含まれる重複データをマージせずに、受信したデータをそのまま蓄積する。
 また、点群データをISOBMFF、MPEG-DASH/MMT、又はMPEG-TSなどのシステムを用いて伝送あるいは蓄積する場合、装置は、GPSに含まれる、タイル内に重複点があるか否か、又はタイル間に重複点があるか否かを示すフラグを、システムレイヤにおける記述子又はメタデータに置き換え、SI、MPD、moov、又はmoofボックスなどに格納してもよい。これにより、アプリケーションがシステムの機能を活用することができる。
 また、三次元データ符号化装置は、図84に示すように、例えば、タイルBを、他のタイルとの重複領域に基づき、複数のスライスに分割してもよい。図84に示す例では、スライス1はどのタイルとも重複しない領域であり、スライス2はタイルAと重複する領域であり、スライス3はタイルCと重複する領域である。これにより、符号化データからの所望データの分離が容易となる。
 また、地図情報は、点群データであってもよいし、メッシュデータであってもよい。点群データは、領域ごとにタイル化され、サーバに保存されてもよい。
 図85は、上記システムにおける処理の流れを示すフローチャートである。まず、端末(例えば移動体)は、端末の領域Aから領域Bへの移動を検知する(S6271)。次に、端末は、領域Bの地図情報の取得を開始する(S6272)。
 端末が領域Aの情報をダウンロード済である場合(S6273でYes)、端末は、領域Aとの重複点を含まない領域Bのデータの取得をサーバに指示する(S6274)。サーバは領域Bから領域Aを削除し、削除後の領域Bのデータを端末へ送信する(S6275)。なお、サーバは、端末からの指示に応じて、重複点が生じないようにリアルタイムに領域Bのデータを符号化して送信してもよい。
 次に、端末は、領域Aの地図情報に領域Bの地図情報をマージ(結合)し、マージ後の地図情報を表示する(S6276)。
 一方、端末が領域Aの情報をダウンロード済でない場合(S6273でNo)、端末は、領域Aとの重複点を含む領域Bのデータの取得をサーバに指示する(S6277)。サーバは、領域Bのデータを端末に送信する(S6278)。次に、端末は、領域Aとの重複点を含む領域Bの地図情報を表示する(S6279)。
 図86は、システムにおける別の動作例を示すフローチャートである。送信装置(三次元データ符号化装置)は、タイルのデータを順番に送信する(S6281)。また、送信装置は、送信対象のタイルのデータに、送信対象のタイルが一つ前に送信したデータのタイルと重複するか否かを示すフラグを付加し、当該データを送出する(S6282)。
 受信装置(三次元データ復号装置)は、データに付加されたフラグに基づき、受信したデータのタイルが前に受信したデータのタイルと重複するか否かを判定する(S6283)。受信したデータのタイルが前に受信したデータのタイルと重複する場合(S6283でYes)、受信装置は、重複点を削除又はマージする(S6284)。一方、受信したデータのタイルが前に受信したデータのタイルと重複しない場合(S6283でNo)、受信装置は、重複点を削除又はマージする処理を行ず、処理を終了する。これにより、受信装置の処理負荷の軽減、及び属性情報の推定精度向上を実現できる。なお、受信装置は、重複点のマージが必要ない場合は、マージを行わなくてもよい。
 (実施の形態7)
 本実施の形態では、点群を用いたアプリケーションにおける、視点に基づく表示方法、符号化データのランダムアクセス方法、点群データの符号化方法、及び復号方法について説明する。
 センサの性能の向上に伴い、高品質の三次元点群を得ることができるようになってきた。しかしながら、高品質の三次元点を視聴するためには、この高品質の三次元点群を再生できる視聴装置(ビュアー)が必要である。具体的には、高品質でデータ量の多い三次元点群(ポイントクラウド)を、遅延なく表示できることが望まれる。本実施形態では、点群圧縮を用いたスケーラブルな方法により、密度の高い点群データを効率的に表示できる三次元点群の視聴装置(第1アプリケーション)について説明する。
 複数のデータ分割方式により点群圧縮が行われる。例えば、LoD(Levels of Details)を用いて、仮想カメラと点群データとの距離に応じて、点群データを表すために必要な解像度が算出される。これにより、分離又は階層化が実現される。
 三次元点群視聴装置(三次元データ復号装置とも呼ぶ)は、レンダリング用に可視(visible)の点群を選択する。このとき、三次元データ復号装置は、全ての可視の点群が、近似ではなく実際にスキャンされたデータであることを確認することが好ましい。
 図87は、三次元データ符号化装置の構成例を示すブロック図である。三次元データ符号化装置は、点群符号化部8701と、ファイルフォーマット生成部8702とを備える。点群符号化部8701は、点群データを符号化することで符号化データ(ビットストリーム)を生成する。例えば、点群符号化部8701は、8分木を用いた位置情報ベースの符号化方法、又は、ビデオベースの符号化方法などを用いて、点群データを符号化する。
 ファイルフォーマット生成部8702は、符号化データ(ビットストリーム)を所定のファイルフォーマットのデータに変更する。例えば、ファイルフォーマットは、ISOBMFF又はMP4などである。なお、三次元データ符号化装置は、ファイルフォーマット形式の符号化データを出力(例えば、三次元データ復号装置に送信)してもよいし、符号化方式におけるビットストリーム形式の符号化データを出力してもよい。
 図88は、三次元データ復号装置8705の構成例を示すブロック図である。三次元データ復号装置8705は、符号化データを復号することで点群データを生成する。ここで、符号化データは、例えば、ビットストリーム形式又はMP4形式の符号化データである。なお、符号化されない点群データが用いられてもよい。
 点群における全部のデータ群、又は一部のデータ群をブリック(brick)と呼ぶ。なお、このブリックを、分割データ、タイル(tile)又はスライス(slice)と呼ぶこともある。分割データがさらに分割される場合もある。
 三次元データ復号装置8705は、カメラの視点(アングル)を示すカメラ視点情報を外部から取得する。三次元データ復号装置8705は、カメラ視点情報に基づき、符号化データの一部或いは全部を取得し、取得した符号化データを復号することで点群データを生成する。例えば、カメラ視点情報は、カメラの位置及び方向(向き)を示す。その後、三次元データ復号装置8705は、復号した点群データを表示する。
 三次元データ復号装置8705は、点群復号部8706と、ブリック復号制御部8707とを備える。カメラ視点情報(カメラ視野角)がブリック復号制御部8707に入力される。ブリック復号制御部8707は、カメラ視点情報に基づき決定されるブリックの可視性に基づいて、復号するブリックを選択する。点群復号部8706は、選択されたブリックを復号し、復号されたブリックを出力する。
 以下、本実施の形態に係る三次元データ符号化装置の構成を説明する。図89は、本実施の形態に係る三次元データ符号化装置8710の構成を示すブロック図である。三次元データ符号化装置8710は、点群データ(ポイントクラウド)を符号化することで符号化データ(符号化ストリーム)を生成する。この三次元データ符号化装置8710は、分割部8711と、複数の位置情報符号化部8712と、複数の属性情報符号化部8713と、付加情報符号化部8714と、多重化部8715と、法線ベクトル生成部8716とを含む。
 分割部8711は、点群データを分割することで複数の分割データを生成する。具体的には、分割部8711は、点群データの空間を複数のサブ空間に分割することで複数の分割データを生成する。ここでサブ空間とは、ブリック、タイル及びスライスのいずれか、又はブリック、タイル及びスライスのうちの2以上の組み合わせである。より具体的には、点群データは、位置情報、属性情報(色又は反射率等)、及び付加情報を含む。分割部8711は、位置情報を分割することで複数の分割位置情報を生成し、属性情報を分割することで複数の分割属性情報を生成する。また、分割部8711は、分割に関する付加情報を生成する。
 複数の位置情報符号化部8712は、複数の分割位置情報を符号化することで複数の符号化位置情報を生成する。例えば、位置情報符号化部8712は、8分木等のN分木構造を用いて分割位置情報を符号化する。具体的には、8分木では、対象空間が8個のノード(サブ空間)に分割され、各ノードに点群が含まれるか否かを示す8ビットの情報(オキュパンシー符号)が生成される。また、点群が含まれるノードは、さらに、8個のノードに分割され、当該8個のノードの各々に点群が含まれるか否かを示す8ビットの情報が生成される。この処理が、予め定められた階層又はノードに含まれる点群の数の閾値以下になるまで繰り返される。例えば、複数の位置情報符号化部8712は、複数の分割位置情報を並列処理する。
 属性情報符号化部8713は、位置情報符号化部8712で生成された構成情報を用いて属性情報を符号化することで符号化データである符号化属性情報を生成する。例えば、属性情報符号化部8713は、位置情報符号化部8712で生成された8分木構造に基づき、処理対象の対象点(対象ノード)の符号化において参照する参照点(参照ノード)を決定する。例えば、属性情報符号化部8713は、周辺ノード又は隣接ノードのうち、8分木における親ノードが対象ノードと同一のノードを参照する。なお、参照関係の決定方法はこれに限らない。
 また、位置情報又は属性情報の符号化処理は、量子化処理、予測処理、及び算術符号化処理のうち少なくとも一つを含んでもよい。この場合、参照とは、属性情報の予測値の算出に参照ノードを用いること、又は、符号化のパラメータの決定に参照ノードの状態(例えば、参照ノードに点群が含まれる否かを示す占有情報)を用いること、である。例えば、符号化のパラメータとは、量子化処理における量子化パラメータ、又は算術符号化におけるコンテキスト等である。
 法線ベクトル生成部8716は、分割データ毎の法線ベクトルを算出する。なお、入力データは必ずしも分割されなくてもよい。この場合、法線ベクトル生成部8716は、分割データ毎の法線ベクトルではなく点毎の法線ベクトルを算出してもよい。または、法線ベクトル生成部8716は、分割データ毎の法線ベクトルと点毎の法線ベクトルとの両方を算出してもよい。
 付加情報符号化部8714は、点群データに含まれる付加情報と、分割部8711で分割時に生成された、データ分割に関する付加情報と、法線ベクトル生成部8716で生成された法線ベクトルとを符号化することで符号化付加情報を生成する。
 多重化部8715は、複数の符号化位置情報、複数の符号化属性情報及び符号化付加情報を多重化することで符号化データ(符号化ストリーム)を生成し、生成した符号化データを送出する。また、符号化付加情報は復号時に使用される。
 以下、本実施の形態に係る三次元データ復号装置の構成を説明する。図90は、三次元データ復号装置8720の構成を示すブロック図である。三次元データ復号装置8720は、点群データが符号化されることで生成された符号化データ(符号化ストリーム)を復号することで点群データを復元する。この三次元データ復号装置8720は、逆多重化部8721と、複数の位置情報復号部8722と、複数の属性情報復号部8723と、付加情報復号部8724と、結合部8725と、法線ベクトル抽出部8726と、ランダムアクセス制御部8727と、選択部8728とを含む。
 逆多重化部8721は、符号化データ(符号化ストリーム)を逆多重化することで複数の符号化位置情報、複数の符号化属性情報及び符号化付加情報を生成する。付加情報復号部8724は、符号化付加情報を復号することで付加情報を生成する。
 法線ベクトル抽出部8726は、付加情報から法線ベクトルを抽出する。ランダムアクセス制御部8727は、例えば、分割データ毎の法線ベクトルに基づき、抽出する分割データを決定する。選択部8728は、複数の分割データ(複数の符号化位置情報及び複数の符号化属性情報)から、ランダムアクセス制御部8727で決定された複数の分割データ(複数の符号化位置情報及び複数の符号化属性情報)を抽出する。なお、選択部8728は、1つの分割データを抽出してもよい。
 複数の位置情報復号部8722は、選択部8728で抽出された複数の符号化位置情報を復号することで複数の分割位置情報を生成する。例えば、複数の位置情報復号部8722は、複数の符号化位置情報を並列処理する。
 複数の属性情報復号部8723は、選択部8728で抽出された複数の符号化属性情報を復号することで複数の分割属性情報を生成する。例えば、複数の属性情報復号部8723は、複数の符号化属性情報を並列処理する。
 結合部8725は、付加情報を用いて複数の分割位置情報を結合することで位置情報を生成する。結合部8725は、付加情報を用いて複数の分割属性情報を結合することで属性情報を生成する。
 次に、点毎の法線ベクトルを生成し、符号化する第1の例について説明する。図91は、点群データの例を示す図である。図92は、点毎の法線ベクトルの例を示す図である。法線ベクトルの符号化は、各三次元群に対して独立して行うことができる。図91及び図92は、本の三次元点群と、当該三次元点群の法線ベクトルとを示す。図92に示すように、上、右、前方向に延びる複数の法線ベクトルが存在する。ここで、本の表面は平面であり、ある表面の複数の法線ベクトルは同じ方向に延びる。一方、表面が丸い場合には、法線ベクトルは表面の法線に従って複数の方向に延びる。
 図93は、ビットストリームにおける法線ベクトルのシンタックス例を示す図である。図93に示す法線ベクトルNormalVector[i][face]において、「i」は各三次元点群のカウンタを表し、[face]は、三次元点群を表すx、y、z軸を表す。つまり、NormalVectorは、各軸の法線ベクトルの大きさを表す。
 図94は、三次元データ符号化処理のフローチャートである。まず、三次元データ符号化装置は、位置情報(ジオメトリ)及び属性情報を点毎に符号化する(S8701)。例えば、三次元データ符号化装置は、位置情報を点毎に符号化する。また、三次元データ符号化装置は、点に対応する属性情報が存在する場合は、点毎の属性情報を符号化してもよい。
 次に、三次元データ符号化装置は、法線ベクトル(x、y、z)を点毎に符号化する(S8702)。三次元データ符号化装置は、点毎の法線ベクトルを符号化してもよい。また、三次元データ符号化装置は、例えば、処理対象の点の法線ベクトルと他の点の法線ベクトルとの差分を示す差分情報を符号化してもよい。これにより、データ量を削減できる。また、三次元データ符号化装置は、法線ベクトルを、位置情報に含めて符号化してもよいし、属性情報に含めて符号化してもよい。また、三次元データ符号化装置は、法線ベクトルを、位置情報及び属性情報から独立に符号化してもよい。なお、1つの点に対して複数の法線ベクトルが存在する場合は、三次元データ符号化装置は、点毎に複数の法線ベクトルを符号化してもよい。
 図95は、三次元データ復号処理のフローチャートである。まず、三次元データ復号装置は、ビットストリームから位置情報及び属性情報を点毎に復号する(S8706)。次に、三次元データ復号装置は、ビットストリームから法線ベクトルを点毎に復号する(S8707)。
 なお、図94及び図95に示す処理順は一例であり、符号化順序、及び復号順序は入れ替わってもよい。
 また、三次元データ符号化装置は、位置情報又は位置情報の相関性を用いて法線ベクトルを符号化することでデータ量を削減してもよい。その場合、三次元データ復号装置は、位置情報を用いて法線ベクトルを復号する。以上の方法により、点群における点毎の法線ベクトルを符号化及び復号できる。
 次に、点毎の法線ベクトルを生成し、符号化する第2の例について説明する。各点の法線ベクトルを符号化する別の方法として、法線ベクトルを属性情報の1つとして符号化する。以下、属性情報の一つとして、属性情報符号化部又は属性情報復号部を用いて符号化を行う例を説明する。
 例えば、三次元データ符号化装置は、色情報を第1の属性情報、法線ベクトルを第2の属性情報として符号化する。図96は、ビットストリームの構成例を示す図である。例えば、図96に示すAttr(0)は第1の属性情報の符号化データであり、Attr(1)は、第2の属性情報の符号化データである。また、符号化に関するメタデータは、パラメータセット(APS)に格納される。三次元データ復号装置は、符号化データに対応するAPSを参照して符号化データを復号する。
 なお、SPSには、第2の属性情報が法線ベクトルであることを示す識別情報(attribute_type=Normal Vector)が格納される。また属性情報が法線ベクトルである場合は、法線ベクトルが1点ごとに3つの要素を持つデータであることを示す情報がSPS等に格納されてもよい。また、SPSには、第1の属性情報が色情報であることを示す識別情報(attribute_type=Color)が格納される。
 図97は、位置情報、色情報及び法線ベクトルを持つ点群情報の例を示す図である。三次元データ符号化装置は、図97に示す非圧縮点群データを符号化する。
 法線ベクトルの値の範囲は、浮動小数点における値-1から1までである。表現を容易にするために、三次元データ符号化装置は、必要な精度に応じて浮動小数点を整数に変換してもよい。例えば、三次元データ符号化装置は、浮動小数点を、8ビット表現を使用して-127から128までの値に変換してもよい。つまり、三次元データ符号化装置は、浮動小数点を、整数、又は正の整数の値に変換してもよい。法線ベクトルは1つの属性情報として扱われるため、異なる量子化処理を適用できる。例えば、属性情報毎に異なる量子化パラメータを用いることができる。これにより、異なる精度レベルを実現できる。例えば、量子化パラメータはAPSに格納される。
 図98は、三次元データ符号化処理のフローチャートである。まず、三次元データ符号化装置は、位置情報及び属性情報(色情報等)を点毎に符号化する(S8711)。また、三次元データ符号化装置は、点毎の法線ベクトルを、attribute_type=“normal vector”の属性情報として所定の方法を用いて符号化する(S8712)。
 図99は、三次元データ復号処理のフローチャートである。三次元データ復号装置は、ビットストリームから位置情報及び属性情報を点毎に復号する(S8716)。また、三次元データ復号装置は、ビットストリームから点毎の法線ベクトルを、attribute_type=“normal vector”の属性情報として所定の方法を用いて復号する(S8717)。
 なお、図98及び図99に示す処理順は一例であり、符号化順序、及び復号順序は入れ替わってもよい。
 次に、複数の点を含むデータ単位毎に法線ベクトルを生成する例を説明する。三次元データ符号化装置は、点群データを、点群の位置情報及び特徴に基づき、複数のオブジェクト又は複数の領域に分割する。分割データは、例えばタイル或いはスライス、又は階層化されたデータなどである。三次元データ符号化装置は、この分割データ単位、つまり1以上の点を含むデータ単位で法線ベクトルを生成する。
 ここで、可視性(visibility)は、ブリック内のオブジェクトの法線ベクトル表現によって決定できる。図100及び図101は、この処理を説明するための図である。例えば、図100に示すように、三次元データ符号化装置は、横軸と垂直軸とに対して30°の間隔の角度に法線ベクトル方向を分割する。より簡単な方法として、図101に示すように、三次元データ符号化装置は、法線ベクトルを、(0、0)、(0、90)、(0、-90)、(90、0)、(-90、0)、(180、180)の6つの方向に分割してもよい。
 また、三次元データ符号化装置は、有効な法線ベクトルを、中央値、平均値、又はその他のより効果的なアルゴリズムを用いて算出してもよい。また、三次元データ符号化装置は、有効な法線ベクトルの値として代表値を用いてもよいし、その他の方法を用いてもよい。
 また、分割データ毎の法線ベクトルは、元のx、y、zの値をそのまま示してもよいし、上記のように30度ごとに量子化されてもよいし90度毎の情報に量子化されてもよい。量子化により情報量を削減できる。
 図102は、点群データの例であり、顔オブジェクトの例を示す図である。図103は、この場合の法線ベクトルの例を示す図である。図103に示すように、図102に示す顔オブジェクトの法線ベクトルは、(0、0)及び(90、0)方向に向く。三次元データ符号化装置は、方向ごとに1ビットを使用して、その方向にオブジェクトの法線ベクトルがあるか否かを示すことができる。
 このように、1つの分割データに対する法線ベクトルが2以上あってもよい。その場合、1つの分割データ単位に対し、複数の法線ベクトルが示されてもよい。
 例えば、図102及び図103に示す顔オブジェクトを含むデータの例は、データの法線ベクトルを90度の単位で、面ごとに6通りの法線ベクトルで示す例である。この例の場合、(0、0)及び(90、0)の方向の2つの法線ベクトルが、この分割データの法線ベクトルである。
 また、法線ベクトルを示す方法としては、6つの法線ベクトルの各々を1ビットの情報で表してもよい。図104は、この法線ベクトルの情報の例を示す図である。分割データが、該当する法線ベクトルを持つ場合は1ビットの情報は値1に設定され、持たない場合は0に設定される。これにより、x、y、zの値をそのまま示す方法と比較して、データが量子化されることにより情報量を削減できる。
 以下、法線ベクトルのより単純な表現方法について説明する。6面の立方体を使用して、特定のカメラ視点から法線ベクトルとその実現可能性(可視性)を表現する。図105~図108は、この処理を説明するための図である。図105は、6面の立方体の例を示す。図106、図107及び図108は、それぞれ、前後の面a及び面b、左右の面c及び面d、及び上下の面e及び面fを示す図である。視野角に応じたオブジェクトの方向に応じて、法線ベクトルは少なくとも1つ又は3つの面に面する。各1ビットの6個のフラグを使用して、各システムを表す立方体の6つの面(abcdef)の1つを表すことができる。例えば、正面から見ると(100000)、側面から見ると(001000)、下から見ると(000001)が生成される。この表現では、大きさは重要ではなく、方向のみが表される。3つの面が指定されるオブジェクトが発生する可能性もある。面aは面bの反対の面であり、面cは面dの反対の面であり、面eは面fの反対の面である。よって、同時に面aと面bを見ることは不可能である。つまり、法線ベクトルは3つのフラグ(ace)を利用して表現できる。
 このように、予めカメラ視点(カメラアングル)が既知の場合は、法線ベクトルの情報は3ビットで表現できる。図109は、面cの方向からスライスA又はスライスBのオブジェクトを見たときの可視性を示す図である。スライスAは、面cの方向から可視(visible)であるため、ace=(010)と表現される。一方、スライスBは、面cの方向から見た場合、スライスAに隠れているためace=(000)と表現される。
 次に、ブリック毎に法線ベクトルを符号化及び復号する第1の方法について説明する。図110は、この場合のビットストリームの構成例を示す図である。図110に示す例では、それぞれのスライスにおける位置情報のスライスヘッダに法線ベクトルの情報が格納される。なお、法線ベクトルの情報は、属性情報のヘッダに格納されてもよいし、位置情報及び属性情報とは独立したメタデータに格納されてもよい。
 図111は、位置情報のスライスヘッダ(Geometry slice header information)のシンタックス例を示す図である。位置情報のスライスヘッダは、normal_vector_numberと、normal_vector_x、normal_vector_y及びnormal_vector_zとを含む。
 normal_vector_numberは、スライスデータに対応する法線ベクトルの数を示す。normal_vector_x、normal_vector_y、normal_vector_zは、それぞれスライスデータに対応する法線ベクトルの要素(x、y、z)を示す。
 この例では、normal_vectorの数を変更できる。normal_vector_numberの数だけnormal_vectorが示される。
 なお、全てのスライスで法線ベクトルの情報が共通の場合は、normal_vector_numberは複数のスライスで共通の情報を格納できるGPS又はSPSに格納されてもよい。
 また、x、y、zの法線ベクトルの値は量子化されてもよい。例えば、三次元データ符号化装置は、元の法線ベクトルの値を、共通のビット量s(bit)だけシフトすることにより量子化し、ビット量sを示す情報と、量子化後の法線ベクトル(normal_vector_x<<s、normal_vector_y<<s、normal_vector_z<<s)を示す情報とを送出してもよい。これによりビット量を削減できる。
 図112は、位置情報のスライスヘッダの別のシンタックス例を示す図である。この例は、6面のデータに簡素化(量子化)された法線ベクトルを、分割データ毎に示す例である。面毎に、法線ベクトルがあるか否かが示される。
 この位置情報のスライスヘッダは、is_normal_vectorを含む。is_normal_vectorは、スライスデータに対応する法線ベクトルがある場合は1に設定され、法線ベクトルがない場合は0に設定される。例えば、複数の面の順番は予め定められている。
 なお、量子化の精度及び法線ベクトルの数又は順序はこれに限らない。これらは固定であってもよいし可変であってもよい。
 図113は、三次元データ符号化処理のフローチャートである。まず、三次元データ符号化装置は、点群データを分割することで複数の分割データを生成する(S8721)。次に、三次元データ符号化装置は、分割データ毎に、位置情報及び属性情報を符号化する(S8722)。次に、三次元データ符号化装置は、分割データ毎の法線ベクトルを、スライスヘッダに格納する(S8723)。
 図114は、三次元データ復号処理のフローチャートである。まず、三次元データ復号装置は、ビットストリームから、位置情報及び属性情報を分割データ毎に復号する(S8726)。次に、三次元データ復号装置は、分割データ毎のスライスヘッダから分割データ毎の法線ベクトルを復号する(S8727)。次に、三次元データ復号装置は、複数の分割データを結合する(S8728)。
 図115は、部分的にデータを復号する場合の三次元データ復号処理のフローチャートである。まず、三次元データ復号装置は、分割データ毎のスライスヘッダから分割データ毎の法線ベクトルを復号する(S8731)。次に、三次元データ復号装置は、法線ベクトルに基づき復号対象の分割データを決定し、決定した分割データを復号する(S8732)。次に、復号された複数の分割データを結合する(S8733)。
 次に、ブリック毎に法線ベクトルを符号化及び復号する第2の方法について説明する。法線ベクトルの情報を符号化するもう1つの方法は、メタデータ(例えばSEI:Supplemental Enhancement Information)を使用する方法である。図116は、ビットストリームの構成例を示す図である。図116に示すように、SEIは、ビットストリームに含まれてもよいし、符号化装置と復号装置との両方でSEIがどのように実装されているかに応じて、メインの符号化ビットストリームとは別に別のファイルとして生成されてもよい。
 図117は、SEIに含まれるスライス情報(slice_information)のシンタックス例を示す図である。スライス情報は、number_of_sliceと、bounding_box_origin_x、bounding_box_origin_y及びbounding_box_origin_zと、bounding_box_width、bounding_box_height及びbounding_box_depthと、normalVector_QPと、number_of_normal_vectorと、normalVector_x、normalVector_y及びnormalVector_zとを含む。
 number_of_sliceは、分割データの数を示す。bounding_box_origin_x、bounding_box_origin_y及びbounding_box_origin_zは、スライスデータのバウンディングボックスの原点座標を示す。bounding_box_width、bounding_box_height及びbounding_box_depthは、それぞれスライスデータのバウンディングボックスの幅、高さ及び奥行きを示す。
 normalVector_QPは、normal_vectorが量子化されている場合、その量子化のスケール情報又はビットシフト情報を示す。number_of_normal_vectorは、スライスデータに含まれる法線ベクトルの数を示す。normalVector_x、normalVector_y、normalVector_zは、それぞれ法線ベクトルの要素(x、y、z)の成分を示す。
 図118は、SEIに含まれるスライス情報の別の例を示す図である。図118に示す例は、6面のデータに簡素化(量子化)された法線ベクトルを、分割データ毎に示す例である。面毎に、法線ベクトルがあるか否かが示される。
 このスライス情報は、is_normal_vectorを含む。is_normal_vectorは、スライスデータに対応する法線ベクトルがある場合は1に設定され、法線ベクトルがない場合は0に設定される。例えば、複数の面の順番は予め定められている。
 なお、スライス情報は、当該スライス情報がスライス毎のバウンディングボックスの情報(原点及び幅高さ奥行)を含むか否かを示すフラグを含んでもよい。この場合、フラグがオン(例えば1)の場合に、スライス情報は、スライス毎のバウンディングボックスの情報を含み、フラグがオフ(例えば0)の場合に、スライス情報は、スライス毎のバウンディングボックスの情報を含まない。また、スライス情報は、当該スライス情報がスライス毎の法線ベクトルの情報を含むか否かを示すフラグを含んでもよい。この場合、フラグがオン(例えば1)の場合に、スライス情報は、スライス毎の法線ベクトルの情報を含み、フラグがオフ(例えば0)の場合に、スライス情報は、スライス毎の法線ベクトルの情報を含まない。
 次に、ランダムアクセス及び部分復号について説明する。三次元データ復号装置は、スライス毎の情報、例えば、スライスのバウンディングボックス情報及び法線ベクトルのいずれか一方又は両方を用いて、スライス毎にデータを独立して復号する。
 図119は、三次元データ復号処理のフローチャートである。まず、三次元データ復号装置は、所定の方法で復号するスライス、及びスライスの復号順を決定する(S8741)。次に、三次元データ復号装置は、決定された順番で特定のスライスを復号する(S8742)。
 図120は、この部分復号処理の例を示す図である。例えば、三次元データ復号装置は、図120の(a)に示すスライス分割された符号化データを受信する。図120の(b)に示すように、三次元データ復号装置は、一部のスライスの符号化データを復号し、その他のスライスの符号化データを復号しない。または、三次元データ復号装置は、図120の(c)に示すように、符号化データの順番を入れ替えて復号を行う。
 図121は、三次元データ復号装置の構成例を示す図である。図121に示すように三次元データ復号装置は、属性情報復号部8731と、ランダムアクセス制御部8732とを備える。属性情報復号部8731は、符号化データから、スライス毎のバウンディングボックスの情報及び法線ベクトルを抽出する。ランダムアクセス制御部8732は、スライス毎のバウンディングボックスの情報及び法線ベクトルと、外部から取得したセンサ情報、例えば、カメラアングル(カメラ向き)及びカメラ位置とに基づき、復号するスライスの番号及び順番を決定する。
 図122及び図123は、ランダムアクセス制御部8732の処理例を示す図である。図122に示すように、例えば、ランダムアクセス制御部8732は、スライス毎のバウンディングボックス、及びカメラ位置からスライス毎のカメラからの距離を示す距離情報を算出してもよい。または、図123に示すように、ランダムアクセス制御部8732は、スライス毎の法線ベクトルとカメラアングルから、カメラから物体が見えるか否かを示す可視情報をスライス毎に導出してもよい。なお、ランダムアクセス制御部8732は、距離情報及び可視情報の一方を算出してもよいし、両方を算出してもよい。
 以下、可視情報と距離情報とについて説明する。図124は、距離と解像度との関係の例を示す図である。例えば、カメラから見えるものが復号される(frustum culling(視錐台カリング))。さらに復号される解像度は、仮想カメラと点群データの間の距離に依存する。
 つまり、三次元データ復号装置は、スライス毎の法線ベクトルとカメラ視点(カメラアングル)から、スライスがカメラから見えるか否かを判定し、カメラから見えるスライスを復号する。さらに、三次元データ復号装置は、復号するスライスのカメラからの距離を計算し、カメラからの距離が近い場合は、高解像度のデータを復号し、カメラからの距離が遠い場合は、低解像度のデータを復号してもよい。
 なお、この場合は、符号化データは、階層化されて符号化されており、三次元データ復号装置は、低解像度のデータを独立に復号できる。また、三次元データ復号装置は、高解像度のデータを復号する場合は、さらに低解像度のデータと高解像度のデータとの差分情報を復号し、差分情報を低解像度のデータに加算することで高解像度のデータを生成する。なお、符号化データが階層化されて符号化されていない場合は、三次元データ復号装置は、当該処理は行わなくてもよいし、階層化されているかどうかに応じて当該処理を行うか否かを判定してもよい。
 次に、法線ベクトルを用いた可視性の判断について説明する。図125は、ブリックと法線ベクトルの例を示す図である。図125に示す例では、カメラ(視錐台)に面した前面の2つのブリック(例えばスライス)、つまり、法線ベクトルがカメラに向いているブリックが復号される。
 まず、三次元データ復号装置は、スライスデータ毎に、メタデータに含まれる1以上の法線ベクトルに、カメラ方向と反対の法線ベクトルを持つ法線ベクトルがあるか否かを判定する。三次元データ復号装置は、対象スライスのスライスデータにカメラ方向と反対の法線ベクトルを持つ法線ベクトルがある場合は、対象スライスが可視(visible)であると判定し、対象スライスを復号対象と決定する。
 なお、三次元データ復号装置は、カメラと対象スライスとの間に他のスライスが存在する場合は、対象スライスは不可視(見えない)と判定してもよい。また、三次元データ復号装置は、法線ベクトルとカメラ方向とが完全に正反対であるかを判定するのではなく、法線ベクトルとカメラ方向との関係が所定の角度の範囲内か否かを判定することで、可視であるか否かを判定してもよい。
 次に、LoD(Level of Detail)を用いた処理について説明する。以下では、解像度の異なるレイヤに応じた復号処理の例を説明する。
 図126は、レベル(LoD)の例を示す図である。図127は、8分木構造の例を示す図である。各ブリックは、復号する解像度のレベルを制御するために、レイヤに分割される。例えば、レベルは8分木に分割する際の分割の深さ(深度)である。図126に示すように、各レベルに含まれるボクセル(Voxel)の数は2(3×レベル)で規定されてもよい。なお、レベルに応じた分割方法又はボクセルの数に別の定義が用いられてもよい。
 LoDを用いることで、三次元データ復号装置は、高速な可視性の判定と距離の演算とを実現できる。復号時間はリアルタイムレンダリングに影響を与える。LoDを用いることで、中間的なブリックの表示が可能となるので、リアルタイムレンダリングとスムーズな対応を実現できる。
 図128は、LoDを用いた三次元データ復号処理のフローチャートである。まず、三次元データ復号装置は、目的に応じて、復号対象のレベルを決定する(S8751)。次に、三次元データ復号装置は、最初のレベル(レベル0)を復号する(S8752)。次に、三次元データ復号装置は、復号対象の全てのレベルの復号が完了したか否かを判定する(S8753)。全てのレベルの復号が完了していない場合(S8753でNo)、三次元データ復号装置は、次のレベルを復号する(S8754)。このとき、三次元データ復号装置は、前のレベルのデータを用いて次のレベルを復号してもよい。復号対象の全てのレベルの復号が完了した場合(S8753でYes)、三次元データ復号装置は、復号したデータを表示する(S8755)。
 このように、三次元データ復号装置は、決定したレベルまでデータを復号し、決定したレベル以降はデータを復号しない。これにより、復号に関わる処理量を軽減でき、処理スピードを向上できる。また、三次元データ復号装置は、決定したレベルまでのデータを表示し、決定したレベル以降のデータは表示しない。これにより、表示に関わる処理量を低減でき、処理スピードを向上できる。なお、三次元データ復号装置は、ブリックの復号対象のレベルを、例えば、ブリックのカメラからの距離、又はブリックがカメラから見えるか否かに基づき決定してもよい。
 次に、LoDを用いた処理の実装例を説明する。図129は、三次元データ復号処理のフローチャートである。まず、三次元データ復号装置は、符号化データを取得する(S8761)。例えば、符号化データは、任意の符号化方式を用いて符号化されて圧縮された点群データである。符号化データは、ビットストリーム形式であってもよいし、ファイルフォーマット形式であってもよい。
 次に、三次元データ復号装置は、符号化データから、処理対象のブリックの法線ベクトルと位置情報とを取得する(S8762)。例えば、三次元データ復号装置は、ブリック毎の法線ベクトル及びブリックの位置情報を、符号化データに含まれるメタデータ(SEI又はデータヘッダ)から取得する。なお、三次元データ復号装置は、ブリックの位置情報とカメラ位置の情報とから、ブリックとカメラとの距離を判定してもよい。また、三次元データ復号装置は、法線ベクトルとカメラ方向からブリックの可視性(ブリックがカメラの方向を向いているか否か)を判定してもよい。
 次に、三次元データ復号装置は、どのブリックを復号するかを決定し、決定したブリックの最初のレベル(レベル0)を復号する(S8763)。図130は、復号するブリックの例を示す図である。図130に示すように、三次元データ復号装置は、全ての可視のブリックをレベル0の解像度で復号する。
 次に、三次元データ復号装置は、位置情報に応じて、各ブリックの次のレベルを復号するか否かを判定し、復号すると判定したブリックの次のレベルを復号する(S8764)。また、この処理が全てのレベルの復号処理が完了するまで繰り返される(S8765)。具体的には、仮想カメラの位置に近いブリックの解像度が高く設定される。例えば、メモリなどのリソースに応じて、カメラに近いブリックを優先して徐々に復号するレベルが追加される。
 図131は、各ブリックの復号対象のレベルの例を示す図である。図131に示すように、三次元データ復号装置は、カメラからの距離に応じて、カメラから近いブリックはより高い解像度で復号し、カメラから遠いブリックは低い解像度で復号する。また、三次元データ復号装置は、見えないブリックを復号しない。
 全てのレベルの復号が完了した場合(S8765でYes)、三次元データ復号装置は、得られた三次元点群を出力する(S8766)。
 これまでは、スライスデータ毎の法線ベクトル及びバウンディング情報を三次元データ符号化装置において算出及び符号化し、三次元データ復号装置において当該情報及びセンサ入力情報に基づき、可視性及び距離情報を算出し、復号するスライスを決定する方法を説明した。以下では、スライス毎のデータに、カメラ方向に応じた可視性及び距離情報を三次元データ符号化装置で予め算出及び符号化する例を説明する。
 図132は、位置情報のスライスヘッダ(Geometry slice header information)のシンタックス例を示す図である。位置情報のスライスヘッダは、number_of_angleと、view_angleと、visibilityとを含む。
 number_of_angleは、カメラアングル(カメラ方向)の数を示す。view_angleは、カメラアングルを示し、例えば、カメラアングルのベクトルを示す。visibilityは、対応するカメラアングルからスライスが見えるか否かを示す。なお、view_angleの数は可変であってもよいし、予め定められた固定値であってもよい。また、view_angleの数及び値が予め定められている場合は、view_angleが省略されてもよい。
 また、ここでは、カメラアングルに応じた可視性を示す例を示したが、その他の例として、三次元データ符号化装置は、カメラ位置又はカメラパラメータに応じた可視性を予め算出し、算出した可視性を符号化データに格納してもよい。
 図133は、三次元データ符号化処理のフローチャートである。まず、三次元データ符号化装置は、点群データを分割データ(例えばスライス)に分割する(S8771)。次に、三次元データ符号化装置は、分割データ単位毎に、位置情報及び属性情報を符号化する(S8772)。また、三次元データ符号化装置は、分割データ毎に、カメラアングルに応じた可視情報(visibility)をメタデータに格納する(S8773)。
 図134は、三次元データ復号処理のフローチャートである。まず、三次元データ復号装置は、分割データ毎のメタデータからカメラアングルに応じた可視情報を取得する(S8776)。次に、三次元データ復号装置は、可視情報に基づき、所望のカメラアングルから可視である分割データを判定し、可視である分割データを復号する(S8777)。
 図135及び図136は、点群データの例を示す図である。同図において、a、c、d及びeは平面を表している。よって、三次元データ符号化装置は、スライス分割において、各スライスの三次元点が同じ方向の法線ベクトルを有することを利用してスライス分割を行うことができる。同様の手法はタイル分割にも適用できる。
 図137~図140は、三次元データ符号化装置、三次元データ復号装置及び表示装置を含むシステムの構成例を示す図である。
 図137に示す例では、三次元データ符号化装置は、スライスデータ、スライス毎の法線ベクトル及びバウンディングボックス情報を符号化することで符号化データを生成する。三次元データ復号装置は、符号化データ及びセンサ情報から、復号するデータを特定し、特定したデータを復号することで復号スライスデータを生成する。表示装置は、復号スライスデータを表示する。この構成では、三次元データ復号装置で可視情報及び復号するかどうかを柔軟に決定できる。
 図138に示す例では、三次元データ符号化装置は、スライスデータ、スライス毎の法線ベクトル及びバウンディングボックス情報を符号化することで符号化データを生成する。三次元データ復号装置は、符号化データ及びセンサ情報から、復号するデータ及び順番を決定し、決定したデータを決定した順番で復号する。この構成では、三次元データ復号装置は、初めに表示したいデータ(例えば3、4、5)を先に復号できるので、表示の快適性を向上できる。
 図139に示す例では、三次元データ符号化装置は、スライスデータ及びカメラアングル毎の可視情報を符号化することで符号化データを生成する。三次元データ復号装置は、符号化データ情報及びセンサ情報から、復号するデータを特定し、特定したデータを復号する。なお、三次元データ復号装置は、さらに復号順を決定してもよい。この構成では、三次元データ復号装置で可視情報を算出しなくてもよいため、三次元データ復号装置の処理量を低減できる。
 図140に示す例では、三次元データ復号装置は、通信などを経由し、三次元データ復号装置のカメラアングル又はカメラ位置などを三次元データ符号化装置に通知する。三次元データ符号化装置は、スライス毎の可視情報を算出し、符号化するデータ、及び順番を決定し、決定したデータを決定した順番で符号化することで符号化データを生成する。三次元データ復号装置は、送出されたスライスデータをそのまま復号する。この構成では、インタラクティブな構成を用いることで必要な部分を符号化して復号することで処理量及び通信帯域を削減できる。
 なお、カメラ位置又はカメラアングルが変化する場合、三次元データ復号装置は、その変化量が所定の値を超えた場合に、復号する対象のスライスを再度決定してもよい。その場合、既に復号済のデータ以外の差分のデータを復号することで高速な復号及び表示が可能となる。
 以下、符号化データを、例えばISOBMFFなどのファイルフォーマットに格納する方法について説明する。図141は、ビットストリームの構成例を示す図である。図142は、三次元データ符号化装置の構成例を示す図である。三次元データ符号化装置は、符号化部8741と、ファイル変換部8742とを含む。符号化部8741は、点群データを符号化することで符号化データと制御情報とを含むビットストリームを生成する。ファイル変換部8742は、ビットストリームをファイルフォーマットに変換する。
 図143は、三次元データ復号装置の構成例を示す図である。三次元データ復号装置は、ファイル逆変換部8751と、復号部8752とを含む。ファイル逆変換部8751は、ファイルフォーマットを、符号化データ及び制御情報を含むビットストリームに変換する。復号部8752は、ビットストリームを復号することで点群データを生成する。
 図144は、ISOBMFFの基本構造を示す図である。図145はPCCコーデック共通のNALユニットをISOBMFFに格納する場合のプロトコルスタック図である。ここで、ISOBMFFに格納されるのは、PCCコーデックのNALユニットである。
 NALユニットには、データ用のNALユニット、メタデータ用のNALユニットがある。データ用のNALユニットには、位置情報スライスデータ(Geometry Slice Data)、及び属性情報スライスデータ(Attribute Slice Data)などがある。メタデータ用のNALユニットには、SPS、GPS、APS、及びSEIなどがある。
 ISOBMFF(ISO based media file format)は、ISO/IEC14496-12に規定されるファイルフォーマット規格であり、ビデオ、オーディオ、及びテキストなど様々なメディアを多重して格納できるフォーマットを規定しており、メディアに依存しない規格である。
 ISOBMFFにおける基本単位はボックスである。ボックスはtype、length及びdataで構成され、様々なtypeのボックスを組み合わせた集合がファイルである。主に、ファイルは、ファイルのブランドを4CCで示すftyp、制御情報などのメタデータを格納するmoov、及びデータを格納するmdatなどのボックスで構成される。
 ISOBMFFへのメディア毎の格納方法は別途規定されており、例えば、AVCビデオ及びHEVCビデオの格納方法は、ISO/IEC14496-15に規定される。また、PCC符号化データを、蓄積及び伝送するために、ISOBMFFの機能を拡張して使用することが考えられる。
 メタデータ用のNALユニットをISOBMFFに格納する際には、SEIをPCCデータとともに「mdat box」に格納してもよいし、ストリームに関する制御情報を記載する「track box」に格納してもよい。また、データをパケット化して伝送する場合には、パケットヘッダにSEIを格納してもよい。SEIをシステムのレイヤに示すことにより、属性情報、タイル及びスライスデータへのアクセスが容易となり、アクセスの速度が向上する。
 次に、PCCランダムアクセステーブルの生成方法について説明する。三次元データ符号化装置は、スライス毎のバウンディングボックス情報及び法線ベクトル情報を含むメタデータを用いてランダムアクセステーブルを生成する。図146は、ビットストリームをファイルフォーマットに変換する例を示す図である。
 三次元データ符号化装置は、スライスデータを、それぞれファイルフォーマットのmdatに格納する。三次元データ符号化装置は、スライスデータのメモリ位置をファイル先頭のオフセット情報(図146のオフセット1~4)として算出し、算出したオフセット情報をランダムアクセステーブル(PCCランダムアクセステーブル)に含める。
 図147は、スライス情報(slice_information)のシンタックス例を示す図である。図148~図150は、PCCランダムアクセステーブルのシンタックス例を示す図である。
 PCCランダムアクセステーブルは、スライス情報(slice_information)に格納される、バウンディングボックス情報(bounding_box_info)、法線ベクトル情報(normal_vector_info)、及びオフセット情報(offset)を含む。
 三次元データ復号装置は、PCCランダムアクセステーブルを解析し、復号したいスライスを特定する。三次元データ復号装置は、PCCランダムアクセステーブルからオフセット情報を取得することにより、所望のデータにアクセスできる。
 以上のように、本実施の形態に係る三次元データ符号化装置は、図151に示す処理を行う。三次元データ符号化装置は、点群データに含まれる複数の三次元点の各々の位置情報及び1以上の属性情報を符号化することでビットストリームを生成し(S8781)、符号化(S8781)では、複数の三次元点の各々の法線ベクトルを1以上の属性情報に含まれる一つの属性情報として符号化する。
 これによれば、三次元データ符号化装置は、法線ベクトルを属性情報として符号化することで、法線ベクトルを他の属性情報と同様に処理できる。よって、三次元データ符号化装置は、処理量を低減できる。つまり、三次元データ符号化装置は、属性情報の定義等を変更することなく、法線ベクトルを属性情報として符号化できる。
 例えば、三次元データ符号化装置は、符号化(S8781)では、浮動小数点で表現される法線ベクトルを、整数に変換したうえで符号化する。これによれば、三次元データ符号化装置は、例えば、他の属性情報が整数で表現されている場合において、法線ベクトルを他の属性情報と同様に処理できる。
 例えば、ビットストリームは、位置情報及び1以上の属性情報に共通の制御情報(例えばSPS)を含み、制御情報(例えばSPS)は、1以上の属性情報に含まれる一つの属性情報が法線ベクトルを示すことを示す情報(例えばattribute_type=Normal Vector)、または法線ベクトルが1点ごとに3つの要素を持つデータであることを示す情報のうち少なくとも一方の情報を含む。
 例えば、三次元データ符号化装置は、プロセッサと、メモリとを備え、プロセッサは、メモリを用いて、上記の処理を行う。
 また、本実施の形態に係る三次元データ復号装置は、図152に示す処理を行う。三次元データ復号装置は、点群データに含まれる複数の三次元点の各々の位置情報及び1以上の属性情報が符号化されることで生成されたビットストリームであって、複数の三次元点の各々の法線ベクトルが1以上の属性情報に含まれる一つの属性情報として符号化されたビットストリームを取得し(S8786)、ビットストリームから、一つの属性情報を復号することで法線ベクトルを取得する(S8787)。
 これによれば、三次元データ復号装置は、法線ベクトルを属性情報として復号することで、法線ベクトルを他の属性情報と同様に処理できる。よって、三次元データ復号装置は、処理量を低減できる。
 例えば、三次元データ復号装置は、法線ベクトルの取得(S8787)では、整数で示される法線ベクトルを取得する。これによれば、三次元データ復号装置は、例えば、他の属性情報が整数で表現されている場合において、法線ベクトルを他の属性情報と同様に処理できる。
 例えば、ビットストリームは、位置情報及び1以上の属性情報に共通の制御情報(例えばSPS)を含み、制御情報(例えばSPS)は、1以上の属性情報に含まれる一つの属性情報が法線ベクトルを示すことを示す情報(例えばattribute_type=Normal Vector)、または法線ベクトルが1点ごとに3つの要素を持つデータであることを示す情報のうち少なくとも一方の情報を含む。
 例えば、三次元データ復号装置は、プロセッサと、メモリとを備え、プロセッサは、メモリを用いて、上記の処理を行う。
 また、本実施の形態に係る三次元データ符号化装置は、図153に示す処理を行う。三次元データ符号化装置は、点群データを複数の分割データ(例えばブリック、スライス又はタイル)に分割し(S8791)、複数の分割データを符号化することでビットストリームを生成する(S8792)。ビットストリームは、複数の分割データの各々の法線ベクトルを示す情報を含む。
 これによれば、三次元データ符号化装置は、分割データ毎に法線ベクトルを符号化することで点毎に法線ベクトルを符号化する場合に比べて、処理量及び符号量を低減できる。例えば、複数の分割データの各々はランダムアクセス単位である。
 例えば、三次元データ符号化装置は、プロセッサと、メモリとを備え、プロセッサは、メモリを用いて、上記の処理を行う。
 また、本実施の形態に係る三次元データ復号装置は、図154に示す処理を行う。三次元データ復号装置は、点群データが分割されることで生成された複数の分割データ(例えばブリック、スライス又はタイル)が符号化されることで生成されたビットストリームを取得し(S8796)、ビットストリームから、複数の分割データの各々の法線ベクトルを示す情報を取得する(S8797)。
 これによれば、三次元データ復号装置は、分割データ毎に法線ベクトルを復号することで点毎に法線ベクトルを復号する場合に比べて、処理量を低減できる。例えば、複数の分割データの各々はランダムアクセス単位である。
 例えば、三次元データ復号装置は、さらに、法線ベクトルに基づき、複数の分割データから復号対象の分割データを決定し、復号対象の分割データを復号する。
 例えば、三次元データ復号装置は、さらに、法線ベクトルに基づき、複数の分割データの復号順を決定し、決定した復号順で複数の分割データを復号する。
 例えば、三次元データ復号装置は、プロセッサと、メモリとを備え、プロセッサは、メモリを用いて、上記の処理を行う。
 (実施の形態8)
 次に、本実施の形態に係る三次元データ作成装置810の構成を説明する。図155は、本実施の形態に係る三次元データ作成装置810の構成例を示すブロック図である。この三次元データ作成装置810は、例えば、車両に搭載される。三次元データ作成装置810は、外部の交通監視クラウド、前走車両又は後続車両と三次元データの送受信を行うとともに、三次元データを作成及び蓄積する。
 三次元データ作成装置810は、データ受信部811と、通信部812と、受信制御部813と、フォーマット変換部814と、複数のセンサ815と、三次元データ作成部816と、三次元データ合成部817と、三次元データ蓄積部818と、通信部819と、送信制御部820と、フォーマット変換部821と、データ送信部822とを備える。
 データ受信部811は、交通監視クラウド又は前走車両から三次元データ831を受信する。三次元データ831は、例えば、自車両のセンサ815で検知不能な領域を含む、ポイントクラウド、可視光映像、奥行き情報、センサ位置情報、又は速度情報などの情報を含む。
 通信部812は、交通監視クラウド又は前走車両と通信し、データ送信要求などを交通監視クラウド又は前走車両に送信する。
 受信制御部813は、通信部812を介して、対応フォーマット等の情報を通信先と交換し、通信先との通信を確立する。
 フォーマット変換部814は、データ受信部811が受信した三次元データ831にフォーマット変換等を行うことで三次元データ832を生成する。また、フォーマット変換部814は、三次元データ831が圧縮又は符号化されている場合には、伸張又は復号処理を行う。
 複数のセンサ815は、LiDAR、可視光カメラ又は赤外線カメラなどの、車両の外部の情報を取得するセンサ群であり、センサ情報833を生成する。例えば、センサ情報833は、センサ815がLiDARなどのレーザセンサである場合、ポイントクラウド(点群データ)等の三次元データである。なお、センサ815は複数でなくてもよい。
 三次元データ作成部816は、センサ情報833から三次元データ834を生成する。三次元データ834は、例えば、ポイントクラウド、可視光映像、奥行き情報、センサ位置情報、又は速度情報などの情報を含む。
 三次元データ合成部817は、自車両のセンサ情報833に基づいて作成された三次元データ834に、交通監視クラウド又は前走車両等が作成した三次元データ832を合成することで、自車両のセンサ815では検知できない前走車両の前方の空間も含む三次元データ835を構築する。
 三次元データ蓄積部818は、生成された三次元データ835等を蓄積する。
 通信部819は、交通監視クラウド又は後続車両と通信し、データ送信要求などを交通監視クラウド又は後続車両に送信する。
 送信制御部820は、通信部819を介して、対応フォーマット等の情報を通信先と交換し、通信先と通信を確立する。また、送信制御部820は、三次元データ合成部817で生成された三次元データ832の三次元データ構築情報と、通信先からのデータ送信要求とに基づき、送信対象の三次元データの空間である送信領域を決定する。
 具体的には、送信制御部820は、交通監視クラウド又は後続車両からのデータ送信要求に応じて、後続車両のセンサでは検知できない自車両の前方の空間を含む送信領域を決定する。また、送信制御部820は、三次元データ構築情報に基づいて送信可能な空間又は送信済み空間の更新有無等を判断することで送信領域を決定する。例えば、送信制御部820は、データ送信要求で指定された領域であり、かつ、対応する三次元データ835が存在する領域を送信領域に決定する。そして、送信制御部820は、通信先が対応するフォーマット、及び送信領域をフォーマット変換部821に通知する。
 フォーマット変換部821は、三次元データ蓄積部818に蓄積されている三次元データ835のうち、送信領域の三次元データ836を、受信側が対応しているフォーマットへ変換することで三次元データ837を生成する。なお、フォーマット変換部821は、三次元データ837を圧縮又は符号化することでデータ量を削減してもよい。
 データ送信部822は、三次元データ837を交通監視クラウド又は後続車両に送信する。この三次元データ837は、例えば、後続車両の死角になる領域を含む、自車両の前方のポイントクラウド、可視光映像、奥行き情報、又はセンサ位置情報などの情報を含む。
 なお、ここでは、フォーマット変換部814及び821にてフォーマット変換等が行われる例を述べたが、フォーマット変換は行われなくてもよい。
 このような構成により、三次元データ作成装置810は、自車両のセンサ815では検知できない領域の三次元データ831を外部から取得し、三次元データ831と自車両のセンサ815で検知したセンサ情報833に基づく三次元データ834とを合成することで三次元データ835を生成する。これにより、三次元データ作成装置810は、自車両のセンサ815で検知できない範囲の三次元データを生成できる。
 また、三次元データ作成装置810は、交通監視クラウド又は後続車両からのデータ送信要求に応じて、後続車両のセンサでは検知できない自車両の前方の空間を含む三次元データを、交通監視クラウド又は後続車両等へ送信できる。
 次に、三次元データ作成装置810における後続車両への三次元データの送信手順について説明する。図156は、三次元データ作成装置810による交通監視クラウド又は後続車両へ三次元データを送信する手順の一例を示すフローチャートである。
 まず、三次元データ作成装置810は、自車両の前方道路上の空間を含む空間の三次元データ835を生成及び更新する(S801)。具体的には、三次元データ作成装置810は、自車両のセンサ情報833に基づいて作成した三次元データ834に、交通監視クラウド又は前走車両等が作成した三次元データ831を合成するなどして、自車両のセンサ815では検知できない前走車両の前方の空間も含む三次元データ835を構築する。
 次に、三次元データ作成装置810は、送信済みの空間に含まれる三次元データ835が変化したかを判定する(S802)。
 送信済みの空間に外部から車両又は人が進入するなどして、当該空間に含まれる三次元データ835に変化が生じた場合には(S802でYes)、三次元データ作成装置810は、変化が生じた空間の三次元データ835を含む三次元データを交通監視クラウド又は後続車両に送信する(S803)。
 なお、三次元データ作成装置810は、変化が生じた空間の三次元データを、所定間隔で送信する三次元データの送信タイミングに合わせて送信してもよいが、変化を検知した後すぐに送信してもよい。つまり、三次元データ作成装置810は、変化が生じた空間の三次元データを、所定間隔で送信する三次元データよりも優先して送信してもよい。
 また、三次元データ作成装置810は、変化が生じた空間の三次元データとして、変化が生じた空間の三次元データの全てを送信してもよいし、三次元データの差分(例えば出現又は消失した三次元点の情報、又は三次元点の変位情報など)のみを送信してもよい。
 また、三次元データ作成装置810は、変化が生じた空間の三次元データに先行して、急制動警報など自車両の危険回避動作に関するメタデータを後続車両へ送信してもよい。これによれば、後続車両は前走車両の急制動などを早期に認知でき、より早期に減速などの危険回避動作を開始できる。
 送信済みの空間に含まれる三次元データ835に変化が生じていない場合(S802でNo)、又は、ステップS803の後、三次元データ作成装置810は、自車両の前方距離Lにある所定の形状の空間に含まれる三次元データを、交通監視クラウド又は後続車両へ送信する(S804)。
 また、例えば、ステップS801~S804の処理は、所定の時間間隔で繰り返し行われる。
 また、三次元データ作成装置810は、現在の送信対象の空間の三次元データ835と、三次元地図とに差がない場合には、空間の三次元データ837を送信しなくてもよい。
 本実施の形態では、クライアント装置は、サーバ又は他のクライアント装置にセンサで得られたセンサ情報を送信する。
 まず、本実施の形態に係るシステムの構成を説明する。図157は、本実施の形態に係る三次元マップ及びセンサ情報の送受信システムの構成を示す図である。このシステムは、サーバ901と、クライアント装置902A及び902Bを含む。なお、クライアント装置902A及び902Bを特に区別しない場合には、クライアント装置902とも記す。
 クライアント装置902は、例えば、車両等の移動体に搭載される車載機器である。サーバ901は、例えば、交通監視クラウド等であり、複数のクライアント装置902と通信可能である。
 サーバ901は、クライアント装置902に、ポイントクラウドから構成される三次元マップを送信する。なお、三次元マップの構成はポイントクラウドに限定されず、メッシュ構造等、他の三次元データを表すものであってもよい。
 クライアント装置902は、サーバ901に、クライアント装置902が取得したセンサ情報を送信する。センサ情報は、例えば、LiDAR取得情報、可視光画像、赤外画像、デプス画像、センサ位置情報及び速度情報のうち少なくとも一つを含む。
 サーバ901とクライアント装置902との間で送受信されるデータは、データ削減のために圧縮されてもよいし、データの精度を維持するために非圧縮のままでも構わない。データを圧縮する場合、ポイントクラウドには例えば8分木構造に基づく三次元圧縮方式を用いることができる。また、可視光画像、赤外画像、及びデプス画像には二次元の画像圧縮方式を用いることできる。二次元の画像圧縮方式とは、例えば、MPEGで規格化されたMPEG-4 AVC又はHEVC等である。
 また、サーバ901は、クライアント装置902からの三次元マップの送信要求に応じてサーバ901で管理する三次元マップをクライアント装置902に送信する。なお、サーバ901はクライアント装置902からの三次元マップの送信要求を待たずに三次元マップを送信してもよい。例えば、サーバ901は、予め定められた空間にいる1つ以上のクライアント装置902に三次元マップをブロードキャストしても構わない。また、サーバ901は、一度送信要求を受けたクライアント装置902に、一定時間毎にクライアント装置902の位置に適した三次元マップを送信してもよい。また、サーバ901は、サーバ901が管理する三次元マップが更新される度にクライアント装置902に三次元マップを送信してもよい。
 クライアント装置902は、サーバ901に三次元マップの送信要求を出す。例えば、クライアント装置902が、走行時に自己位置推定を行いたい場合に、クライアント装置902は、三次元マップの送信要求をサーバ901に送信する。
 なお、次のような場合に、クライアント装置902はサーバ901に三次元マップの送信要求を出してもよい。クライアント装置902の保持する三次元マップが古い場合に、クライアント装置902はサーバ901に三次元マップの送信要求を出してもよい。例えば、クライアント装置902が三次元マップを取得してから一定期間が経過した場合に、クライアント装置902はサーバ901に三次元マップの送信要求を出してもよい。
 クライアント装置902が保持する三次元マップで示される空間から、クライアント装置902が外に出る一定時刻前に、クライアント装置902はサーバ901に三次元マップの送信要求を出してもよい。例えば、クライアント装置902が、クライアント装置902が保持する三次元マップで示される空間の境界から予め定められた距離以内に存在する場合に、クライアント装置902はサーバ901に三次元マップの送信要求を出してもよい。また、クライアント装置902の移動経路及び移動速度が把握できている場合には、これらに基づき、クライアント装置902が保持する三次元マップで示される空間から、クライアント装置902が外に出る時刻を予測してもよい。
 クライアント装置902がセンサ情報から作成した三次元データと三次元マップとの位置合せ時の誤差が一定以上の場合に、クライアント装置902はサーバ901に三次元マップの送信要求を出してもよい。
 クライアント装置902は、サーバ901から送信されたセンサ情報の送信要求に応じて、サーバ901にセンサ情報を送信する。なお、クライアント装置902はサーバ901からのセンサ情報の送信要求を待たずにセンサ情報をサーバ901に送ってもよい。例えば、クライアント装置902は、一度サーバ901からセンサ情報の送信要求を得た場合、一定期間の間、定期的にセンサ情報をサーバ901に送信してもよい。また、クライアント装置902は、クライアント装置902がセンサ情報を元に作成した三次元データと、サーバ901から得た三次元マップとの位置合せ時の誤差が一定以上の場合、クライアント装置902の周辺の三次元マップに変化が生じた可能性があると判断し、その旨とセンサ情報とをサーバ901に送信してもよい。
 サーバ901は、クライアント装置902にセンサ情報の送信要求を出す。例えば、サーバ901は、クライアント装置902から、GPS等のクライアント装置902の位置情報を受信する。サーバ901は、クライアント装置902の位置情報に基づき、サーバ901が管理する三次元マップにおいて情報が少ない空間にクライアント装置902が近づいていると判断した場合、新たな三次元マップを生成するためにクライアント装置902にセンサ情報の送信要求を出す。また、サーバ901は、三次元マップを更新したい場合、積雪時或いは災害時などの道路状況を確認したい場合、渋滞状況、或いは事件事故状況等を確認したい場合に、センサ情報の送信要求を出してもよい。
 また、クライアント装置902は、サーバ901から受け取るセンサ情報の送信要求の受信時における通信状態又は帯域に応じて、サーバ901に送信するセンサ情報のデータ量を設定してもよい。サーバ901に送信するセンサ情報のデータ量を設定するというのは、例えば、当該データそのものを増減させること、又は圧縮方式を適宜選択することである。
 図158は、クライアント装置902の構成例を示すブロック図である。クライアント装置902は、サーバ901からポイントクラウド等で構成される三次元マップを受信し、クライアント装置902のセンサ情報に基づいて作成した三次元データからクライアント装置902の自己位置を推定する。また、クライアント装置902は、取得したセンサ情報をサーバ901に送信する。
 クライアント装置902は、データ受信部1011と、通信部1012と、受信制御部1013と、フォーマット変換部1014と、複数のセンサ1015と、三次元データ作成部1016と、三次元画像処理部1017と、三次元データ蓄積部1018と、フォーマット変換部1019と、通信部1020と、送信制御部1021と、データ送信部1022とを備える。
 データ受信部1011は、サーバ901から三次元マップ1031を受信する。三次元マップ1031は、WLD又はSWLD等のポイントクラウドを含むデータである。三次元マップ1031には、圧縮データ、及び非圧縮データのどちらが含まれていてもよい。
 通信部1012は、サーバ901と通信し、データ送信要求(例えば、三次元マップの送信要求)などをサーバ901に送信する。
 受信制御部1013は、通信部1012を介して、対応フォーマット等の情報を通信先と交換し、通信先との通信を確立する。
 フォーマット変換部1014は、データ受信部1011が受信した三次元マップ1031にフォーマット変換等を行うことで三次元マップ1032を生成する。また、フォーマット変換部1014は、三次元マップ1031が圧縮又は符号化されている場合には、伸張又は復号処理を行う。なお、フォーマット変換部1014は、三次元マップ1031が非圧縮データであれば、伸張又は復号処理を行わない。
 複数のセンサ1015は、LiDAR、可視光カメラ、赤外線カメラ、又はデプスセンサなど、クライアント装置902が搭載されている車両の外部の情報を取得するセンサ群であり、センサ情報1033を生成する。例えば、センサ情報1033は、センサ1015がLiDARなどのレーザセンサである場合、ポイントクラウド(点群データ)等の三次元データである。なお、センサ1015は複数でなくてもよい。
 三次元データ作成部1016は、センサ情報1033に基づいて自車両の周辺の三次元データ1034を作成する。例えば、三次元データ作成部1016は、LiDARで取得した情報と、可視光カメラで得られた可視光映像とを用いて自車両の周辺の色情報付きのポイントクラウドデータを作成する。
 三次元画像処理部1017は、受信したポイントクラウド等の三次元マップ1032と、センサ情報1033から生成した自車両の周辺の三次元データ1034とを用いて、自車両の自己位置推定処理等を行う。なお、三次元画像処理部1017は、三次元マップ1032と三次元データ1034とを合成することで自車両の周辺の三次元データ1035を作成し、作成した三次元データ1035を用いて自己位置推定処理を行ってもよい。
 三次元データ蓄積部1018は、三次元マップ1032、三次元データ1034及び三次元データ1035等を蓄積する。
 フォーマット変換部1019は、センサ情報1033を、受信側が対応しているフォーマットへ変換することでセンサ情報1037を生成する。なお、フォーマット変換部1019は、センサ情報1037を圧縮又は符号化することでデータ量を削減してもよい。また、フォーマット変換部1019は、フォーマット変換をする必要がない場合は処理を省略してもよい。また、フォーマット変換部1019は、送信範囲の指定に応じて送信するデータ量を制御してもよい。
 通信部1020は、サーバ901と通信し、データ送信要求(センサ情報の送信要求)などをサーバ901から受信する。
 送信制御部1021は、通信部1020を介して、対応フォーマット等の情報を通信先と交換し、通信を確立する。
 データ送信部1022は、センサ情報1037をサーバ901に送信する。センサ情報1037は、例えば、LiDARで取得した情報、可視光カメラで取得した輝度画像、赤外線カメラで取得した赤外画像、デプスセンサで取得したデプス画像、センサ位置情報、及び速度情報など、複数のセンサ1015によって取得した情報を含む。
 次に、サーバ901の構成を説明する。図159は、サーバ901の構成例を示すブロック図である。サーバ901は、クライアント装置902から送信されたセンサ情報を受信し、受信したセンサ情報に基づいて三次元データを作成する。サーバ901は、作成した三次元データを用いて、サーバ901が管理する三次元マップを更新する。また、サーバ901は、クライアント装置902からの三次元マップの送信要求に応じて、更新した三次元マップをクライアント装置902に送信する。
 サーバ901は、データ受信部1111と、通信部1112と、受信制御部1113と、フォーマット変換部1114と、三次元データ作成部1116と、三次元データ合成部1117と、三次元データ蓄積部1118と、フォーマット変換部1119と、通信部1120と、送信制御部1121と、データ送信部1122とを備える。
 データ受信部1111は、クライアント装置902からセンサ情報1037を受信する。センサ情報1037は、例えば、LiDARで取得した情報、可視光カメラで取得した輝度画像、赤外線カメラで取得した赤外画像、デプスセンサで取得したデプス画像、センサ位置情報、及び速度情報などを含む。
 通信部1112は、クライアント装置902と通信し、データ送信要求(例えば、センサ情報の送信要求)などをクライアント装置902に送信する。
 受信制御部1113は、通信部1112を介して、対応フォーマット等の情報を通信先と交換し、通信を確立する。
 フォーマット変換部1114は、受信したセンサ情報1037が圧縮又は符号化されている場合には、伸張又は復号処理を行うことでセンサ情報1132を生成する。なお、フォーマット変換部1114は、センサ情報1037が非圧縮データであれば、伸張又は復号処理を行わない。
 三次元データ作成部1116は、センサ情報1132に基づいてクライアント装置902の周辺の三次元データ1134を作成する。例えば、三次元データ作成部1116は、LiDARで取得した情報と、可視光カメラで得られた可視光映像とを用いてクライアント装置902の周辺の色情報付ポイントクラウドデータを作成する。
 三次元データ合成部1117は、センサ情報1132を元に作成した三次元データ1134を、サーバ901が管理する三次元マップ1135に合成することで三次元マップ1135を更新する。
 三次元データ蓄積部1118は、三次元マップ1135等を蓄積する。
 フォーマット変換部1119は、三次元マップ1135を、受信側が対応しているフォーマットへ変換することで三次元マップ1031を生成する。なお、フォーマット変換部1119は、三次元マップ1135を圧縮又は符号化することでデータ量を削減してもよい。また、フォーマット変換部1119は、フォーマット変換をする必要がない場合は処理を省略してもよい。また、フォーマット変換部1119は、送信範囲の指定に応じて送信するデータ量を制御してもよい。
 通信部1120は、クライアント装置902と通信し、データ送信要求(三次元マップの送信要求)などをクライアント装置902から受信する。
 送信制御部1121は、通信部1120を介して、対応フォーマット等の情報を通信先と交換し、通信を確立する。
 データ送信部1122は、三次元マップ1031をクライアント装置902に送信する。三次元マップ1031は、WLD又はSWLD等のポイントクラウドを含むデータである。三次元マップ1031には、圧縮データ、及び非圧縮データのどちらが含まれていてもよい。
 次に、クライアント装置902の動作フローについて説明する。図160は、クライアント装置902による三次元マップ取得時の動作を示すフローチャートである。
 まず、クライアント装置902は、サーバ901へ三次元マップ(ポイントクラウド等)の送信を要求する(S1001)。このとき、クライアント装置902は、GPS等で得られたクライアント装置902の位置情報を合わせて送信することで、その位置情報に関連する三次元マップの送信をサーバ901に要求してもよい。
 次に、クライアント装置902は、サーバ901から三次元マップを受信する(S1002)。受信した三次元マップが圧縮データであれば、クライアント装置902は、受信した三次元マップを復号して非圧縮の三次元マップを生成する(S1003)。
 次に、クライアント装置902は、複数のセンサ1015で得られたセンサ情報1033からクライアント装置902の周辺の三次元データ1034を作成する(S1004)。次に、クライアント装置902は、サーバ901から受信した三次元マップ1032と、センサ情報1033から作成した三次元データ1034とを用いてクライアント装置902の自己位置を推定する(S1005)。
 図161は、クライアント装置902によるセンサ情報の送信時の動作を示すフローチャートである。まず、クライアント装置902は、サーバ901からセンサ情報の送信要求を受信する(S1011)。送信要求を受信したクライアント装置902は、センサ情報1037をサーバ901に送信する(S1012)。なお、クライアント装置902は、センサ情報1033が複数のセンサ1015で得られた複数の情報を含む場合、各情報を、各情報に適した圧縮方式で圧縮することでセンサ情報1037を生成してもよい。
 次に、サーバ901の動作フローについて説明する。図162は、サーバ901によるセンサ情報の取得時の動作を示すフローチャートである。まず、サーバ901は、クライアント装置902へセンサ情報の送信を要求する(S1021)。次に、サーバ901は、当該要求に応じてクライアント装置902から送信されたセンサ情報1037を受信する(S1022)。次に、サーバ901は、受信したセンサ情報1037を用いて三次元データ1134を作成する(S1023)。次に、サーバ901は、作成した三次元データ1134を三次元マップ1135に反映する(S1024)。
 図163は、サーバ901による三次元マップの送信時の動作を示すフローチャートである。まず、サーバ901は、クライアント装置902から三次元マップの送信要求を受信する(S1031)。三次元マップの送信要求を受信したサーバ901は、クライアント装置902へ三次元マップ1031を送信する(S1032)。このとき、サーバ901は、クライアント装置902の位置情報に合わせてその付近の三次元マップを抽出し、抽出した三次元マップを送信してもよい。また、サーバ901は、ポイントクラウドで構成される三次元マップを、例えば8分木構造による圧縮方式等を用いて圧縮し、圧縮後の三次元マップを送信してもよい。
 以下、本実施の形態の変形例について説明する。
 サーバ901は、クライアント装置902から受信したセンサ情報1037を用いてクライアント装置902の位置付近の三次元データ1134を作成する。次に、サーバ901は、作成した三次元データ1134と、サーバ901が管理する同エリアの三次元マップ1135とのマッチングを行うことによって、三次元データ1134と三次元マップ1135との差分を算出する。サーバ901は、差分が予め定められた閾値以上の場合は、クライアント装置902の周辺で何らかの異常が発生したと判断する。例えば、地震等の自然災害によって地盤沈下等が発生した際などに、サーバ901が管理する三次元マップ1135と、センサ情報1037を基に作成した三次元データ1134との間に大きな差が発生することが考えられる。
 センサ情報1037は、センサの種類、センサの性能、及びセンサの型番のうち少なくとも一つを示す情報を含んでもよい。また、センサ情報1037に、センサの性能に応じたクラスID等が付加されてもよい。例えば、センサ情報1037がLiDARで取得された情報である場合、数mm単位の精度で情報を取得できるセンサをクラス1、数cm単位の精度で情報を取得できるセンサをクラス2、数m単位の精度で情報を取得できるセンサをクラス3のように、センサの性能に識別子を割り当てることが考えられる。また、サーバ901は、センサの性能情報等を、クライアント装置902の型番から推定してもよい。例えば、クライアント装置902が車両に搭載されている場合、サーバ901は、当該車両の車種からセンサのスペック情報を判断してもよい。この場合、サーバ901は、車両の車種の情報を事前に取得していてもよいし、センサ情報に、当該情報が含まれてもよい。また、サーバ901は取得したセンサ情報1037を用いて、センサ情報1037を用いて作成した三次元データ1134に対する補正の度合いを切り替えてもよい。例えば、センサ性能が高精度(クラス1)である場合、サーバ901は、三次元データ1134に対する補正を行わない。センサ性能が低精度(クラス3)である場合、サーバ901は、三次元データ1134に、センサの精度に応じた補正を適用する。例えば、サーバ901は、センサの精度が低いほど補正の度合い(強度)を強くする。
 サーバ901は、ある空間にいる複数のクライアント装置902に同時にセンサ情報の送信要求を出してもよい。サーバ901は、複数のクライアント装置902から複数のセンサ情報を受信した場合に、全てのセンサ情報を三次元データ1134の作成に利用する必要はなく、例えば、センサの性能に応じて、利用するセンサ情報を選択してもよい。例えば、サーバ901は、三次元マップ1135を更新する場合、受信した複数のセンサ情報の中から高精度なセンサ情報(クラス1)を選別し、選別したセンサ情報を用いて三次元データ1134を作成してもよい。
 サーバ901は、交通監視クラウド等のサーバのみに限定されず、他のクライアント装置(車載)であってもよい。図164は、この場合のシステム構成を示す図である。
 例えば、クライアント装置902Cが近くにいるクライアント装置902Aにセンサ情報の送信要求を出し、クライアント装置902Aからセンサ情報を取得する。そして、クライアント装置902Cは、取得したクライアント装置902Aのセンサ情報を用いて三次元データを作成し、クライアント装置902Cの三次元マップを更新する。これにより、クライアント装置902Cは、クライアント装置902Aから取得可能な空間の三次元マップを、クライアント装置902Cの性能を活かして生成できる。例えば、クライアント装置902Cの性能が高い場合に、このようなケースが発生すると考えられる。
 また、この場合、センサ情報を提供したクライアント装置902Aは、クライアント装置902Cが生成した高精度な三次元マップを取得する権利が与えられる。クライアント装置902Aは、その権利に従ってクライアント装置902Cから高精度な三次元マップを受信する。
 また、クライアント装置902Cは近くにいる複数のクライアント装置902(クライアント装置902A及びクライアント装置902B)にセンサ情報の送信要求を出してもよい。クライアント装置902A又はクライアント装置902Bのセンサが高性能である場合には、クライアント装置902Cは、この高性能なセンサで得られたセンサ情報を用いて三次元データを作成できる。
 図165は、サーバ901及びクライアント装置902の機能構成を示すブロック図である。サーバ901は、例えば、三次元マップを圧縮及び復号する三次元マップ圧縮/復号処理部1201と、センサ情報を圧縮及び復号するセンサ情報圧縮/復号処理部1202とを備える。
 クライアント装置902は、三次元マップ復号処理部1211と、センサ情報圧縮処理部1212とを備える。三次元マップ復号処理部1211は、圧縮された三次元マップの符号化データを受信し、符号化データを復号して三次元マップを取得する。センサ情報圧縮処理部1212は、取得したセンサ情報から作成した三次元データの代わりに、センサ情報そのものを圧縮し、圧縮したセンサ情報の符号化データをサーバ901へ送信する。この構成により、クライアント装置902は、三次元マップ(ポイントクラウド等)を復号する処理を行う処理部(装置又はLSI)を内部に保持すればよく、三次元マップ(ポイントクラウド等)の三次元データを圧縮する処理を行う処理部を内部に保持する必要がない。これにより、クライアント装置902のコスト及び消費電力等を抑えることができる。
 以上のように、本実施の形態に係るクライアント装置902は、移動体に搭載され、移動体に搭載されたセンサ1015により得られた、移動体の周辺状況を示すセンサ情報1033から、移動体の周辺の三次元データ1034を作成する。クライアント装置902は、作成された三次元データ1034を用いて移動体の自己位置を推定する。クライアント装置902は、取得したセンサ情報1033をサーバ901又は他のクライアント装置902に送信する。
 これによれば、クライアント装置902は、センサ情報1033をサーバ901等に送信する。これにより、三次元データを送信する場合に比べて、送信データのデータ量を削減できる可能性がある。また、三次元データの圧縮又は符号化等の処理をクライアント装置902で行う必要がないので、クライアント装置902の処理量を削減できる。よって、クライアント装置902は、伝送されるデータ量の削減、又は、装置の構成の簡略化を実現できる。
 また、クライアント装置902は、さらに、サーバ901に三次元マップの送信要求を送信し、サーバ901から三次元マップ1031を受信する。クライアント装置902は、自己位置の推定では、三次元データ1034と三次元マップ1032とを用いて、自己位置を推定する。
 また、センサ情報1033は、レーザセンサで得られた情報、輝度画像、赤外画像、デプス画像、センサの位置情報、及びセンサの速度情報のうち少なくとも一つを含む。
 また、センサ情報1033は、センサの性能を示す情報を含む。
 また、クライアント装置902は、センサ情報1033を符号化又は圧縮し、センサ情報の送信では、符号化又は圧縮後のセンサ情報1037を、サーバ901又は他のクライアント装置902に送信する。これによれば、クライアント装置902は、伝送されるデータ量を削減できる。
 例えば、クライアント装置902は、プロセッサと、メモリとを備え、プロセッサは、メモリを用いて、上記の処理を行う。
 また、本実施の形態に係るサーバ901は、移動体に搭載されるクライアント装置902と通信可能であり、移動体に搭載されたセンサ1015により得られた、移動体の周辺状況を示すセンサ情報1037をクライアント装置902から受信する。サーバ901は、受信したセンサ情報1037から、移動体の周辺の三次元データ1134を作成する。
 これによれば、サーバ901は、クライアント装置902から送信されたセンサ情報1037を用いて三次元データ1134を作成する。これにより、クライアント装置902が三次元データを送信する場合に比べて、送信データのデータ量を削減できる可能性がある。また、三次元データの圧縮又は符号化等の処理をクライアント装置902で行う必要がないので、クライアント装置902の処理量を削減できる。よって、サーバ901は、伝送されるデータ量の削減、又は、装置の構成の簡略化を実現できる。
 また、サーバ901は、さらに、クライアント装置902にセンサ情報の送信要求を送信する。
 また、サーバ901は、さらに、作成された三次元データ1134を用いて三次元マップ1135を更新し、クライアント装置902からの三次元マップ1135の送信要求に応じて三次元マップ1135をクライアント装置902に送信する。
 また、センサ情報1037は、レーザセンサで得られた情報、輝度画像、赤外画像、デプス画像、センサの位置情報、及びセンサの速度情報のうち少なくとも一つを含む。
 また、センサ情報1037は、センサの性能を示す情報を含む。
 また、サーバ901は、さらに、センサの性能に応じて、三次元データを補正する。これによれば、当該三次元データ作成方法は、三次元データの品質を向上できる。
 また、サーバ901は、センサ情報の受信では、複数のクライアント装置902から複数のセンサ情報1037を受信し、複数のセンサ情報1037に含まれるセンサの性能を示す複数の情報に基づき、三次元データ1134の作成に用いるセンサ情報1037を選択する。これによれば、サーバ901は、三次元データ1134の品質を向上できる。
 また、サーバ901は、受信したセンサ情報1037を復号又は伸張し、復号又は伸張後のセンサ情報1132から、三次元データ1134を作成する。これによれば、サーバ901は、伝送されるデータ量を削減できる。
 例えば、サーバ901は、プロセッサと、メモリとを備え、プロセッサは、メモリを用いて、上記の処理を行う。
 以下、変形例について説明する。図166は、本実施の形態に係るシステムの構成を示す図である。図166に示すシステムは、サーバ2001と、クライアント装置2002Aと、クライアント装置2002Bとを含む。
 クライアント装置2002A及びクライアント装置2002Bは、車両等の移動体に搭載され、センサ情報をサーバ2001に送信する。サーバ2001は、三次元マップ(ポイントクラウド)をクライアント装置2002A及びクライアント装置2002Bに送信する。
 クライアント装置2002Aは、センサ情報取得部2011と、記憶部2012と、データ送信可否判定部2013とを備える。なお、クライアント装置2002Bの構成も同様である。また、以下ではクライアント装置2002Aとクライアント装置2002Bとを特に区別しない場合には、クライアント装置2002とも記載する。
 図167は、本実施の形態に係るクライアント装置2002の動作を示すフローチャートである。
 センサ情報取得部2011は、移動体に搭載されたセンサ(センサ群)を用いて各種センサ情報を取得する。つまり、センサ情報取得部2011は、移動体に搭載されたセンサ(センサ群)により得られた、移動体の周辺状況を示すセンサ情報を取得する。また、センサ情報取得部2011は、取得したセンサ情報を記憶部2012に記憶する。このセンサ情報は、LiDAR取得情報、可視光画像、赤外画像及びデプス画像の少なくとも一つを含む。また、センサ情報は、センサ位置情報、速度情報、取得時刻情報、及び取得場所情報の少なくとも一つを含んでもよい。センサ位置情報は、センサ情報を取得したセンサの位置を示す。速度情報は、センサがセンサ情報を取得した際の移動体の速度を示す。取得時刻情報は、センサ情報がセンサにより取得された時刻を示す。取得場所情報は、センサ情報がセンサにより取得された際の移動体又はセンサの位置を示す。
 次に、データ送信可否判定部2013は、移動体(クライアント装置2002)がサーバ2001へセンサ情報を送信可能な環境に存在するかを判定する(S2002)。例えば、データ送信可否判定部2013は、GPS等の情報を用いて、クライアント装置2002がいる場所及び時刻を特定し、データを送信可能かどうかを判定してもよい。また、データ送信可否判定部2013は、特定のアクセスポイントに接続できるかどうかで、データを送信可能かどうかを判定してもよい。
 クライアント装置2002は、移動体がサーバ2001へセンサ情報を送信可能な環境に存在すると判定した場合(S2002でYes)、センサ情報をサーバ2001に送信する(S2003)。つまり、クライアント装置2002がセンサ情報をサーバ2001に送信できるような状況になった時点で、クライアント装置2002は、保持しているセンサ情報をサーバ2001に送信する。例えば、交差点等に高速通信が可能なミリ波のアクセスポイントが設置される。クライアント装置2002は、交差点内に入った時点で、ミリ波通信を用いてクライアント装置2002が保持するセンサ情報を高速にサーバ2001に送信する。
 次に、クライアント装置2002は、サーバ2001に送信済みのセンサ情報を記憶部2012から削除する(S2004)。なお、クライアント装置2002は、サーバ2001に送信していないセンサ情報が所定の条件を満たした場合に、当該センサ情報を削除してもよい。例えば、クライアント装置2002は、保持するセンサ情報の取得時刻が現在時刻から一定時刻前より古くなった時点でそのセンサ情報を記憶部2012から削除してもよい。つまり、クライアント装置2002は、センサ情報がセンサにより取得された時刻と、現在の時刻との差が、予め定められた時間を超えた場合にセンサ情報を記憶部2012から削除してもよい。また、クライアント装置2002は、保持するセンサ情報の取得場所が現在地点から一定距離より離れた時点でそのセンサ情報を記憶部2012から削除してもよい。つまり、クライアント装置2002は、センサ情報がセンサにより取得された際の移動体又はセンサの位置と、現在の移動体又はセンサの位置との差が、予め定められた距離を超えた場合にセンサ情報を記憶部2012から削除してもよい。これにより、クライアント装置2002の記憶部2012の容量を抑制することができる。
 クライアント装置2002によるセンサ情報の取得が終了していない場合(S2005でNo)、クライアント装置2002は、ステップS2001以降の処理を再度行う。また、クライアント装置2002によるセンサ情報の取得が終了した場合(S2005でYes)、クライアント装置2002は処理を終了する。
 また、クライアント装置2002はサーバ2001に送信するセンサ情報を通信状況に合わせて選択してもよい。例えば、クライアント装置2002は、高速通信が可能な場合は、記憶部2012に保持されるサイズが大きいセンサ情報(例えばLiDAR取得情報等)を優先して送信する。また、クライアント装置2002は、高速通信が難しい場合は、記憶部2012に保持されるサイズが小さく優先度の高いセンサ情報(例えば可視光画像)を送信する。これにより、クライアント装置2002は記憶部2012に保持したセンサ情報をネットワークの状況に応じて効率的にサーバ2001に送信できる。
 また、クライアント装置2002は、上記現在時刻を示す時刻情報、及び、現在地点を示す場所情報をサーバ2001から取得してもよい。また、クライアント装置2002は、取得した時刻情報及び場所情報に基づきセンサ情報の取得時刻及び取得場所を決定してもよい。つまり、クライアント装置2002は、サーバ2001から時刻情報を取得し、取得した時刻情報を用いて取得時刻情報を生成してもよい。また、クライアント装置2002は、サーバ2001から場所情報を取得し、取得した場所情報を用いて取得場所情報を生成してもよい。
 例えば時刻情報については、サーバ2001とクライアント装置2002とはNTP(Network Time Protocol)、又はPTP(Precision Time Protocol)等の仕組みを用いて時刻同期を行う。これにより、クライアント装置2002は正確な時刻情報を取得できる。また、サーバ2001と複数のクライアント装置との間で時刻を同期できるので、別々のクライアント装置2002が取得したセンサ情報内の時刻を同期できる。よって、サーバ2001は、同期された時刻を示すセンサ情報を取り扱える。なお、時刻同期の仕組みはNTP又はPTP以外のどのような方法でも構わない。また、上記時刻情報及び場所情報としてGPSの情報が用いられてもよい。
 サーバ2001は、時刻又は場所を指定して複数のクライアント装置2002からセンサ情報を取得しても構わない。例えば何らかの事故が発生した場合に、その付近にいたクライアントを探すため、サーバ2001は、事故発生時刻と場所を指定して複数のクライアント装置2002にセンサ情報送信要求をブロードキャスト送信する。そして、該当する時刻と場所のセンサ情報を持つクライアント装置2002は、サーバ2001にセンサ情報を送信する。つまり、クライアント装置2002は、サーバ2001から場所及び時刻を指定する指定情報を含むセンサ情報送信要求を受信する。クライアント装置2002は、記憶部2012に、指定情報で示される場所及び時刻において得られたセンサ情報が記憶されており、かつ、移動体がサーバ2001へセンサ情報を送信可能な環境に存在すると判定した場合、指定情報で示される場所及び時刻において得られたセンサ情報をサーバ2001に送信する。これにより、サーバ2001は、事故の発生に関連するセンサ情報を複数のクライアント装置2002から取得し、事故解析等に利用できる。
 なお、クライアント装置2002は、サーバ2001からのセンサ情報送信要求を受信した場合に、センサ情報の送信を拒否してもよい。また、複数のセンサ情報のうち、どのセンサ情報を送信可能かどうかを事前にクライアント装置2002が設定してもよい。または、サーバ2001は、センサ情報の送信の可否を都度クライアント装置2002に問い合わせてもよい。
 また、サーバ2001にセンサ情報を送信したクライアント装置2002にはポイントが付与されてもよい。このポイントは、例えば、ガソリン購入費、EV(Electric Vehicle)の充電費、高速道路の通行料、又はレンタカー費用などの支払いに使用できる。また、サーバ2001は、センサ情報を取得した後、センサ情報の送信元のクライアント装置2002を特定するための情報を削除してもよい。例えば、この情報は、クライアント装置2002のネットワークアドレスなどの情報である。これによりセンサ情報を匿名化することができるので、クライアント装置2002のユーザは安心して、クライアント装置2002からセンサ情報をサーバ2001に送信できる。また、サーバ2001は、複数のサーバから構成されてもよい。例えば複数のサーバでセンサ情報が共有化されることで、あるサーバが故障しても他のサーバがクライアント装置2002と通信できる。これにより、サーバ故障によるサービスの停止を回避できる。
 また、センサ情報送信要求で指定される指定場所は事故の発生位置などを示すものであり、センサ情報送信要求で指定される指定時刻におけるクライアント装置2002の位置とは異なることがある。よって、サーバ2001は、例えば、指定場所として周辺XXm以内などの範囲を指定することで、当該範囲内に存在するクライアント装置2002に対して情報取得を要求できる。指定時刻についても同様に、サーバ2001は、ある時刻から前後N秒以内など範囲を指定してもよい。これにより、サーバ2001は、「時刻:t-Nからt+Nにおいて、場所:絶対位置SからXXm以内」に存在していたクライアント装置2002からセンサ情報が取得できる。クライアント装置2002は、LiDARなどの三次元データを送信する際に、時刻tの直後に生成したデータを送信してもよい。
 また、サーバ2001は、指定場所として、センサ情報取得対象となるクライアント装置2002の場所を示す情報と、センサ情報が欲しい場所とをそれぞれ別に指定してもよい。例えば、サーバ2001は、絶対位置SからYYmの範囲を少なくとも含むセンサ情報を、絶対位置SからXXm以内に存在したクライアント装置2002から取得することを指定する。クライアント装置2002は、送信する三次元データを選択する際には、指定された範囲のセンサ情報を少なくとも含むように、1つ以上のランダムアクセス可能な単位の三次元データを選択する。また、クライアント装置2002は、可視光画像を送信する際は、少なくとも時刻tの直前又は直後のフレームを含む、時間的に連続した複数の画像データを送信してもよい。
 クライアント装置2002が5G或いはWiFi、又は、5Gにおける複数モードなど、複数の物理ネットワークをセンサ情報の送信に利用できる場合には、クライアント装置2002は、サーバ2001から通知された優先順位に従って利用するネットワークを選択してもよい。または、クライアント装置2002自身が送信データのサイズに基づいて適切な帯域を確保できるネットワークを選択してもよい。または、クライアント装置2002は、データ送信にかかる費用等に基づいて利用するネットワークを選択してもよい。また、サーバ2001からの送信要求には、クライアント装置2002が時刻Tまでに送信を開始可能な場合に送信を行う、など、送信期限を示す情報が含まれてもよい。サーバ2001は、期限内に十分なセンサ情報が取得できなければ再度送信要求を発行してもよい。
 センサ情報は、圧縮又は非圧縮のセンサデータと共に、センサデータの特性を示すヘッダ情報を含んでもよい。クライアント装置2002は、ヘッダ情報を、センサデータとは異なる物理ネットワーク又は通信プロトコルを介してサーバ2001に送信してもよい。例えば、クライアント装置2002は、センサデータの送信に先立ってヘッダ情報をサーバ2001に送信する。サーバ2001は、ヘッダ情報の解析結果に基づいてクライアント装置2002のセンサデータを取得するかどうかを判断する。例えば、ヘッダ情報は、LiDARの点群取得密度、仰角、或いはフレームレート、又は、可視光画像の解像度、SN比、或いはフレームレートなどを示す情報を含んでもよい。これにより、サーバ2001は、決定した品質のセンサデータを有するクライアント装置2002からセンサ情報を取得できる。
 以上のように、クライアント装置2002は、移動体に搭載され、移動体に搭載されたセンサにより得られた、移動体の周辺状況を示すセンサ情報を取得し、センサ情報を記憶部2012に記憶する。クライアント装置2002は、移動体がサーバ2001へセンサ情報を送信可能な環境に存在するかを判定し、移動体がサーバへセンサ情報を送信可能な環境に存在すると判定した場合、センサ情報をサーバ2001に送信する。
 また、クライアント装置2002は、さらに、センサ情報から、移動体の周辺の三次元データを作成し、作成された三次元データを用いて移動体の自己位置を推定する。
 また、クライアント装置2002は、さらに、サーバ2001に三次元マップの送信要求を送信し、サーバ2001から三次元マップを受信する。クライアント装置2002は、自己位置の推定では、三次元データと三次元マップとを用いて、自己位置を推定する。
 なお、上記クライアント装置2002による処理は、クライアント装置2002における情報送信方法として実現されてもよい。
 また、クライアント装置2002は、プロセッサと、メモリとを備え、プロセッサは、メモリを用いて、上記の処理を行ってもよい。
 次に、本実施の形態に係るセンサ情報収集システムについて説明する。図168は、本実施の形態に係るセンサ情報収集システムの構成を示す図である。図168に示すように本実施の形態に係るセンサ情報収集システムは、端末2021Aと、端末2021Bと、通信装置2022Aと、通信装置2022Bと、ネットワーク2023と、データ収集サーバ2024と、地図サーバ2025と、クライアント装置2026とを含む。なお、端末2021A及び端末2021Bを特に区別しない場合には端末2021とも記載する。通信装置2022A及び通信装置2022Bを特に区別しない場合には通信装置2022とも記載する。
 データ収集サーバ2024は、端末2021が備えるセンサで得られたセンサデータなどのデータを三次元空間中の位置と対応付けられた位置関連データとして収集する。
 センサデータとは、例えば、端末2021の周囲の状態または端末2021の内部の状態などを、端末2021が備えるセンサを用いて取得したデータである。端末2021は、端末2021と直接通信可能、又は同一の通信方式で一或いは複数の中継装置を中継して通信可能な位置にある一又は複数のセンサ機器から収集したセンサデータをデータ収集サーバ2024に送信する。
 位置関連データに含まれるデータは、例えば、端末自身又は端末が備える機器の動作状態、動作ログ、サービスの利用状況などを示す情報を含んでいてもよい。また、位置関連データに含まれるデータは、端末2021の識別子と端末2021の位置又は移動経路などとを対応付けた情報などを含んでもよい。
 位置関連データに含まれる、位置を示す情報は、例えば三次元地図データなどの三次元データにおける位置を示す情報と対応付けられている。位置を示す情報の詳細については後述する。
 位置関連データは、位置を示す情報である位置情報に加えて、前述した時刻情報と、位置関連データに含まれるデータの属性、又は当該データを生成したセンサの種類(例えば型番など)を示す情報とのうち少なくとも一つを含んでいてもよい。位置情報及び時刻情報は、位置関連データのヘッダ領域又は位置関連データを格納するフレームのヘッダ領域に格納されていてもよい。また、位置情報及び時刻情報は、位置関連データと対応付けられたメタデータとして位置関連データとは別に送信及び/又は格納されてもよい。
 地図サーバ2025は、例えば、ネットワーク2023に接続されており、端末2021などの他の装置からの要求に応じて三次元地図データなどの三次元データを送信する。また、前述した各実施の形態で説明したように、地図サーバ2025は、端末2021から送信されたセンサ情報を用いて、三次元データを更新する機能などを備えていてもよい。
 データ収集サーバ2024は、例えば、ネットワーク2023に接続されており、端末2021などの他の装置から位置関連データを収集し、収集した位置関連データを内部又は他のサーバ内の記憶装置に格納する。また、データ収集サーバ2024は、収集した位置関連データ又は位置関連データに基づいて生成した三次元地図データのメタデータなどを、端末2021からの要求に応じて端末2021に対して送信する。
 ネットワーク2023は、例えばインターネットなどの通信ネットワークである。端末2021は、通信装置2022を介してネットワーク2023に接続されている。通信装置2022は、一つの通信方式、又は複数の通信方式を切り替えながら端末2021と通信を行う。通信装置2022は、例えば、(1)LTE(Long Term Evolution)などの基地局、(2)WiFi或いはミリ波通信などのアクセスポイント(AP)、(3)SIGFOX、LoRaWAN或いはWi-SUNなどのLPWA(Low Power Wide Area) Networkのゲートウェイ、又は、(4)DVB-S2などの衛星通信方式を用いて通信を行う通信衛星である。
 なお、基地局は、NB-IoT(Narrow Band-IoT)又はLTE-MなどのLPWAに分類される方式で端末2021との通信を行っていてもよいし、これらの方式を切り替えながら端末2021との通信を行っていてもよい。
 ここでは、端末2021が2種類の通信方式を用いる通信装置2022と通信する機能を備え、これらの通信方式のいずれかを用いて、またはこれらの複数の通信方式及び直接の通信相手となる通信装置2022を切り替えながら地図サーバ2025又はデータ収集サーバ2024と通信を行う場合を例に挙げるが、センサ情報収集システム及び端末2021の構成はこれに限らない。例えば、端末2021は、複数の通信方式での通信機能を有さず、いずれか一つの通信方式で通信を行う機能を備えてもよい。また、端末2021は、3つ以上の通信方式に対応していてもよい。また、端末2021ごとに対応する通信方式が異なっていてもよい。
 端末2021は、例えば図158に示したクライアント装置902の構成を備える。端末2021は、受信した三次元データを用いて自己位置などの位置推定を行う。また、端末2021は、センサから取得したセンサデータと位置推定の処理により得られた位置情報とを対応付けて位置関連データを生成する。
 位置関連データに付加される位置情報は、例えば、三次元データで用いられている座標系における位置を示す。例えば、位置情報は、緯度及び経度の値で表される座標値である。このとき、端末2021は、座標値と共に当該座標値の基準となる座標系、及び位置推定に用いた三次元データを示す情報を位置情報に含めてもよい。また、座標値は高度の情報を含んでいてもよい。
 また、位置情報は、前述した三次元データの符号化に用いることができるデータの単位又は空間の単位に対応付けられていてもよい。この単位とは、例えば、WLD、GOS、SPC、VLM、又はVXLなどである。このとき、位置情報は、例えば位置関連データに対応するSPCなどのデータ単位を特定するための識別子で表現される。なお、位置情報は、SPCなどのデータ単位を特定するための識別子に加えて、当該SPCなどのデータ単位を含む三次元空間を符号化した三次元データを示す情報、又は当該SPC内での詳細な位置を示す情報などを含んでいてもよい。三次元データを示す情報とは、例えば、当該三次元データのファイル名である。
 このように、当該システムは、三次元データを用いた位置推定に基づく位置情報と対応付けた位置関連データを生成することにより、GPSを用いて取得されたクライアント装置(端末2021)の自己位置に基づく位置情報をセンサ情報に付加する場合よりも精度の高い位置情報をセンサ情報に付与することができる。その結果、位置関連データを他の装置が他のサービスにおいて利用する場合においても、同じ三次元データに基づいて位置推定を行うことで、位置関連データに対応する位置を実空間でより正確に特定できる可能性がある。
 なお、本実施の形態では、端末2021から送信されるデータが位置関連データの場合を例に挙げて説明したが、端末2021から送信されるデータは位置情報と関連付けられていないデータであってもよい。すなわち、他の実施の形態で説明した三次元データ又はセンサデータの送受信が本実施の形態で説明したネットワーク2023を介して行われてもよい。
 次に、三次元又は二次元の実空間又は地図空間における位置を示す位置情報の異なる例について説明する。位置関連データに付加される位置情報は、三次元データ中の特徴点に対する相対位置を示す情報であってもよい。ここで、位置情報の基準となる特徴点は、例えばSWLDとして符号化され、三次元データとして端末2021に通知された特徴点である。
 特徴点に対する相対位置を示す情報は、例えば、特徴点から位置情報が示す点までのベクトルで表され、特徴点から位置情報が示す点までの方向と距離を示す情報であってもよい。または、特徴点に対する相対位置を示す情報は、特徴点から位置情報が示す点までのX軸、Y軸、Z軸のそれぞれの変位量を示す情報であってもよい。また、特徴点に対する相対位置を示す情報は、3以上の特徴点のそれぞれから位置情報が示す点までの距離を示す情報であってもよい。なお、相対位置は、各特徴点を基準として表現された位置情報が示す点の相対位置ではなく、位置情報が示す点を基準として表現された各特徴点の相対位置であってもよい。特徴点に対する相対位置に基づく位置情報の一例は、基準となる特徴点を特定するための情報と、当該特徴点に対する位置情報が示す点の相対位置を示す情報とを含む。また、特徴点に対する相対位置を示す情報が三次元データとは別に提供される場合、特徴点に対する相対位置を示す情報は、相対位置の導出に用いた座標軸、三次元データの種類を示す情報、又は/及び相対位置を示す情報の値の単位量あたりの大きさ(縮尺など)を示す情報などを含んでいてもよい。
 また、位置情報は、複数の特徴点について、各特徴点に対する相対位置を示す情報を含んでいてもよい。位置情報を複数の特徴点に対する相対位置で表した場合、実空間において当該位置情報が示す位置を特定しようとする端末2021は、特徴点ごとにセンサデータから推定した当該特徴点の位置から位置情報が示す位置の候補点を算出し、算出された複数の候補点を平均して求めた点を位置情報が示す点であると判定してもよい。この構成によると、センサデータから特徴点の位置を推定する際の誤差の影響を軽減できるため、実空間における位置情報が示す点の推定精度を向上できる。また、位置情報が複数の特徴点に対する相対位置を示す情報を含む場合、端末2021が備えるセンサの種類又は性能などの制約で検出できない特徴点がある場合であっても、複数の特徴点のいずれか一つでも検出することができれば位置情報が示す点の値を推定することが可能となる。
 特徴点として、センサデータから特定可能な点を用いことができる。センサデータから特定可能な点とは、例えば、前述した三次元特徴量又は可視光データの特徴量が閾値以上であるなど特徴点検出用の所定の条件を満たす点又は領域内の点である。
 また、実空間に設置されたマーカなどを特徴点として用いてもよい。この場合、マーカは、LiDER又はカメラなどのセンサを用いて取得されたデータから検出及び位置の特定が可能であればよい。例えば、マーカは、色或いは輝度値(反射率)の変化、又は、三次元形状(凹凸など)で表現される。また、当該マーカの位置を示す座標値、又は当該マーカの識別子から生成された二次元コード又はバーコードなどが用いられてもよい。
 また、光信号を送信する光源をマーカとして用いてもよい。光信号の光源をマーカとして用いる場合、座標値又は識別子などの位置を取得するための情報だけでなく、その他のデータが光信号により送信されてもよい。例えば、光信号は、当該マーカの位置に応じたサービスのコンテンツ、コンテンツを取得するためのurlなどのアドレス、又はサービスの提供を受けるための無線通信装置の識別子と、当該無線通信装置と接続するための無線通信方式などを示す情報を含んでもよい。光通信装置(光源)をマーカとして用いることで、位置を示す情報以外のデータの送信が容易になると共に、当該データを動的に切り替えることが可能となる。
 端末2021は、互いに異なるデータ間での特徴点の対応関係を、例えば、データ間で共通に用いられる識別子、又は、データ間の特徴点の対応関係を示す情報或いはテーブルを用いて把握する。また、特徴点間の対応関係を示す情報がない場合、端末2021は、一方の三次元データにおける特徴点の座標を他方の三次元データ空間上の位置に変換した場合に最も近い距離にある特徴点を対応する特徴点であると判定してもよい。
 以上で説明した相対位置に基づく位置情報を用いた場合、互いに異なる三次元データを用いる端末2021又はサービス間であっても、各三次元データに含まれる、又は各三次元データと対応付けられた共通の特徴点を基準に位置情報が示す位置を特定、又は推定することができる。その結果、互いに異なる三次元データを用いる端末2021又はサービス間で、同じ位置をより高い精度で特定又は推定することが可能となる。
 また、互いに異なる座標系を用いて表現された地図データ又は三次元データを用いる場合であっても、座標系の変換に伴う誤差の影響を低減できるため、より高精度な位置情報に基づくサービスの連携が可能となる。
 以下、データ収集サーバ2024が提供する機能の例について説明する。データ収集サーバ2024は、受信した位置関連データを他のデータサーバに転送してもよい。データサーバが複数ある場合、データ収集サーバ2024は、受信した位置関連データをどのデータサーバに転送するかを判定して、転送先として判定されたデータサーバ宛に位置関連データを転送する。
 データ収集サーバ2024は、転送先の判定を、例えば、データ収集サーバ2024に事前に設定された転送先サーバの判定ルールに基づいて行う。転送先サーバの判定ルールとは、例えば、各端末2021に対応付けられた識別子と転送先のデータサーバとを対応付けた転送先テーブルなどで設定される。
 端末2021は、送信する位置関連データに対して当該端末2021に対応付けられた識別子を付加してデータ収集サーバ2024に送信する。データ収集サーバ2024は、位置関連データに付加された識別子に対応する転送先のデータサーバを転送先テーブルなどを用いた転送先サーバの判定ルールに基づいて特定し、当該位置関連データを特定されたデータサーバに送信する。また、転送先サーバの判定ルールは、位置関連データが取得された時間又は場所などを用いた判定条件で指定されてもよい。ここで、上述した送信元の端末2021に対応付けられた識別子とは、例えば各端末2021に固有の識別子、又は端末2021が属するグループを示す識別子などである。
 また、転送先テーブルは、送信元の端末に対応付けられた識別子と転送先のデータサーバとを直接対応付けたものでなくてもよい。例えば、データ収集サーバ2024は、端末2021に固有の識別子毎に付与されたタグ情報を格納した管理テーブルと、当該タグ情報と転送先のデータサーバを対応付けた転送先テーブルとを保持する。データ収集サーバ2024は、管理テーブルと転送先テーブルとを用いてタグ情報に基づく転送先のデータサーバを判定してもよい。ここで、タグ情報は、例えば当該識別子に対応する端末2021の種類、型番、所有者、所属するグループ又はその他の識別子に付与された管理用の制御情報又はサービス提供用の制御情報である。また、転送先テーブルに、送信元の端末2021に対応付けられた識別子の代わりに、センサ毎に固有の識別子が用いられてもよい。また、転送先サーバの判定ルールは、クライアント装置2026から設定できてもよい。
 データ収集サーバ2024は、複数のデータサーバを転送先として判定し、受信した位置関連データを当該複数のデータサーバに転送してもよい。この構成によると、例えば、位置関連データを自動的にバックアップする場合、又は位置関連データを異なるサービスで共通に利用するために、各サービスを提供するためのデータサーバに対して位置関連データを送信する必要がある場合に、データ収集サーバ2024に対する設定を変更ことで意図通りのデータの転送を実現できる。その結果、個別の端末2021に位置関連データの送信先を設定する場合と比較して、システムの構築及び変更に要する工数を削減することができる。
 データ収集サーバ2024は、データサーバから受信した転送要求信号に応じて、転送要求信号で指定されたデータサーバを新たな転送先として登録し、以降に受信した位置関連データを当該データサーバに転送してもよい。
 データ収集サーバ2024は、端末2021から受信した位置関連データを記録装置に保存し、端末2021又はデータサーバから受信した送信要求信号に応じて、送信要求信号で指定された位置関連データを、要求元の端末2021又はデータサーバに送信してもよい。
 データ収集サーバ2024は、要求元のデータサーバ又は端末2021に対する位置関連データの提供の可否を判断し、提供可能と判断された場合に要求元のデータサーバ又は端末2021に位置関連データの転送又は送信を行ってもよい。
 クライアント装置2026から現在の位置関連データの要求を受け付けた場合、端末2021による位置関連データの送信タイミングでなくても、データ収集サーバ2024が端末2021に対して位置関連データの送信要求を行い、端末2021が当該送信要求に応じて位置関連データを送信してもよい。
 上記の説明では、端末2021がデータ収集サーバ2024に対して位置情報データを送信するとしたが、データ収集サーバ2024は、例えば、端末2021を管理する機能など、端末2021から位置関連データを収集するために必要な機能又は端末2021から位置関連データを収集する際に用いられる機能などを備えてもよい。
 データ収集サーバ2024は、端末2021に対して位置情報データの送信を要求するデータ要求信号を送信し、位置関連データを収集する機能を備えてもよい。
 データ収集サーバ2024には、データ収集の対象となる端末2021と通信を行うためのアドレス又は端末2021固有の識別子などの管理情報が事前に登録されている。データ収集サーバ2024は、登録されている管理情報に基づいて端末2021から位置関連データを収集する。管理情報は、端末2021が備えるセンサの種類、端末2021が備えるセンサの数、及び端末2021が対応する通信方式などの情報を含んでいてもよい。
 データ収集サーバ2024は、端末2021の稼働状態又は現在位置などの情報を端末2021から収集してもよい。
 管理情報の登録は、クライアント装置2026から行われてもよいし、端末2021が登録要求をデータ収集サーバ2024に送信することで、登録のための処理が開始されてもよい。データ収集サーバ2024は、端末2021との間の通信を制御する機能を備えてもよい。
 データ収集サーバ2024と端末2021とを結ぶ通信は、MNO(Mobile Network Operator)、或いはMVNO(Mobile Virtual Network Operator)などのサービス事業者が提供する専用回線、又は、VPN(Virtual Private Network)で構成された仮想の専用回線などであってもよい。この構成によると、端末2021とデータ収集サーバ2024との間の通信を安全に行うことができる。
 データ収集サーバ2024は、端末2021を認証する機能、又は端末2021との間で送受信されるデータを暗号化する機能を備えてもよい。ここで、端末2021の認証の処理又はデータの暗号化の処理は、データ収集サーバ2024と端末2021との間で事前に共有された、端末2021に固有の識別子又は複数の端末2021を含む端末グループに固有の識別子などを用いて行われる。この識別子とは、例えば、SIM(Subscriber Identity Module)カードに格納された固有の番号であるIMSI(International Mobile Subscriber Identity)などである。認証処理に用いられる識別子とデータの暗号化処理に用いる識別子とは、同じであってもよいし、異なっていてもよい。
 データ収集サーバ2024と端末2021との間の認証又はデータの暗号化の処理は、データ収集サーバ2024と端末2021との両方が当該処理を実施する機能を備えていれば提供可能であり、中継を行う通信装置2022が用いる通信方式に依存しない。よって、端末2021が通信方式を用いるかを考慮することなく、共通の認証又は暗号化の処理を用いることができるので、ユーザのシステム構築の利便性が向上する。ただし、中継を行う通信装置2022が用いる通信方式に依存しないとは、通信方式に応じて変更することが必須ではないことを意味している。つまり、伝送効率の向上又は安全性の確保の目的で、中継装置が用いる通信方式に応じてデータ収集サーバ2024と端末2021との間の認証又はデータの暗号化の処理が切り替えられてもよい。
 データ収集サーバ2024は、端末2021から収集する位置関連データの種類及びデータ収集のスケジュールなどのデータ収集ルールを管理するUIをクライアント装置2026に提供してもよい。これにより、ユーザはクライアント装置2026を用いてデータを収集する端末2021、並びに、データの収集時間及び頻度などを指定できる。また、データ収集サーバ2024は、データを収集したい地図上の領域などを指定し、当該領域に含まれる端末2021から位置関連データを収集してもよい。
 データ収集ルールを端末2021単位で管理する場合、クライアント装置2026は、例えば、管理対象となる端末2021又はセンサのリストを画面に提示する。ユーザはリストの項目毎にデータの収集の要否又は収集スケジュールなどを設定する。
 データを収集したい地図上の領域などを指定する場合、クライアント装置2026は、例えば、管理対象となる地域の二次元又は三次元の地図を画面に提示する。ユーザは、表示された地図上でデータを収集する領域を選択する。地図上で選択される領域は、地図上で指定された点を中心とする円形又は矩形の領域であってもよいし、ドラッグ動作で特定可能な円形又は矩形の領域であってもよい。また、クライアント装置2026は、都市、都市内のエリア、ブロック、又は主要な道路など予め設定された単位で領域を選択してもよい。また、地図を用いて領域を指定するのではなく、緯度及び経度の数値を入力して領域が設定されてもよいし、入力されたテキスト情報に基づいて導出した候補領域のリストから領域が選択されてもよい。テキスト情報は、例えば、地域、都市、又はランドマークの名前などである。
 また、ユーザが一又は複数の端末2021を指定して、当該端末2021の周囲100メートルの範囲内などの条件を設定することで、指定領域を動的に変更しながらデータの収集が行われてもよい。
 また、クライアント装置2026がカメラなどのセンサを備える場合、センサデータから得られたクライアント装置2026の実空間での位置に基づいて地図上の領域が指定されてもよい。例えば、クライアント装置2026は、センサデータを用いて自己位置を推定し、推定された位置に対応する地図上の点から予め定められた距離、又はユーザが指定した距離の範囲内の領域を、データを収集する領域として指定してもよい。また、クライアント装置2026は、センサのセンシング領域、すなわち取得されたセンサデータに対応する領域を、データを収集する領域として指定してもよい。または、クライアント装置2026は、ユーザの指定したセンサデータに対応する位置に基づく領域を、データを収集する領域として指定してもよい。センサデータに対応する地図上の領域、又は位置の推定は、クライアント装置2026が行ってもよいし、データ収集サーバ2024が行ってもよい。
 地図上の領域で指定を行う場合、データ収集サーバ2024は、各端末2021の現在位置情報を収集することで、指定された領域内の端末2021を特定し、特定された端末2021に対して位置関連データの送信を要求してもよい。また、データ収集サーバ2024が領域内の端末2021を特定するのではなく、データ収集サーバ2024が指定された領域を示す情報を端末2021に送信し、端末2021が自身が指定された領域内にあるか否かを判定して、指定された領域内にあると判断された場合に位置関連データを送信してもよい。
 データ収集サーバ2024は、クライアント装置2026が実行するアプリケーションにおいて上述したUI(User Interface)を提供するためのリスト又は地図などのデータをクライアント装置2026に送信する。データ収集サーバ2024は、リスト又は地図などのデータだけでなく、アプリケーションのプログラムをクライアント装置2026に送信してもよい。また、上述したUIは、ブラウザで表示可能なHTMLなどで作成されたコンテンツとして提供されてもよい。なお、地図データなど一部のデータは地図サーバ2025などのデータ収集サーバ2024以外のサーバから提供されてもよい。
 クライアント装置2026は、ユーザによる設定ボタンの押下など、入力が完了したことを通知する入力が行われると、入力された情報を設定情報としてデータ収集サーバ2024に送信する。データ収集サーバ2024は、クライアント装置2026から受信した設定情報に基づいて各端末2021に対して、位置関連データの要求又は位置関連データの収集ルールを通知する信号を送信し、位置関連データの収集を行う。
 次に、三次元又は二次元の地図データに付加された付加情報に基づいて端末2021の動作を制御する例について説明する。
 本構成では、道路又は駐車場に埋設された無線給電の給電アンテナ又は給電コイルなどの給電部の位置を示すオブジェクト情報が、三次元データに含まれて、又は三次元データに対応付けられて、車又はドローンなどである端末2021に提供される。
 充電を行うために当該オブジェクト情報を取得した車両又はドローンは、車両が備える充電アンテナ又は充電コイルなどの充電部の位置が、当該オブジェクト情報が示す領域と対向する位置になるよう自動運転で車両自身の位置を移動させ、充電を開始する。なお、自動運転機能を備えていない車両又はドローンの場合は、画面上に表示された画像又は音声などを利用して、移動すべき方向又は行うべき操作を運転手又は操縦者に対して提示される。そして、推定された自己位置に基づいて算出した充電部の位置が、オブジェクト情報で示された領域又は当該領域から所定の距離の範囲内に入った判断されると、運転又は操縦を中止させる内容へと提示する画像又は音声が切り替えられ、充電が開始される。
 また、オブジェクト情報は給電部の位置を示す情報ではなく、当該領域内に充電部を配置すると所定の閾値以上の充電効率が得られる領域を示す情報であってもよい。オブジェクト情報の位置は、オブジェクト情報が示す領域の中心の点で表されてもよいし、二次元平面内の領域或いは線、又は、三次元空間内の領域、線或いは平面などで表されてもよい。
 この構成によると、LiDERのセンシングデータ又はカメラで撮影した映像では把握できない給電アンテナの位置を把握することができるので、車などの端末2021が備える無線充電用のアンテナと道路などに埋設された無線給電アンテナとの位置合わせをより高精度に行うことができる。その結果、無線充電時の充電速度を短くしたり、充電効率を向上させることができる。
 オブジェクト情報は、給電アンテナの以外の対象物であってもよい。例えば、三次元データは、ミリ波無線通信のAPの位置などをオブジェクト情報として含む。これにより、端末2021は、APの位置を事前に把握することができるので、当該オブジェクト情報の方向にビームの指向性を向けて通信を開始することができる。その結果、伝送速度の向上、通信開始までの時間の短縮、及び通信可能な期間を延ばすなどの通信品質の向上を実現できる。
 オブジェクト情報は、当該オブジェクト情報に対応する対象物のタイプを示す情報を含んでもよい。また、オブジェクト情報は、当該オブジェクト情報の三次元データ上の位置に対応する実空間上の領域内、又は領域から所定の距離の範囲内に端末2021が含まれる場合に、端末2021が実施すべき処理を示す情報を含んでもよい。
 オブジェクト情報は、三次元データを提供するサーバとは異なるサーバから提供されてもよい。オブジェクト情報を三次元データとは別に提供する場合、同一のサービスで使用されるオブジェクト情報が格納されたオブジェクトグループが、対象サービス又は対象機器の種類に応じてそれぞれ別のデータとして提供されてもよい。
 オブジェクト情報と組み合わせて用いられる三次元データは、WLDの点群データであってもよいし、SWLDの特徴点データであってもよい。
 三次元データ符号化装置において、符号化対象の三次元点である対象三次元点の属性情報をLoD(Level of Detail)を用いて階層符号化した場合、三次元データ復号装置は、当該三次元データ復号装置で必要なLoDの階層まで属性情報を復号し、必要でない階層の属性情報を復号しなくてもよい。例えば、三次元データ符号化装置が符号化したビットストリーム内の属性情報のLoDの総数がN個の場合、三次元データ復号装置は、最上位層のLoD0からLoD(M-1)までのM個(M<N)のLoDを復号し、残りのLoD(N-1)までのLoDを復号しなくてもよい。これにより、三次元データ復号装置は、処理負荷を抑制しつつ、三次元データ復号装置で必要なLoD0からLoD(M-1)までの属性情報を復号できる。
 図169は、上記のユースケースを示す図である。図169に例では、サーバは、三次元位置情報と属性情報とを符号化することで得られた三次元地図を保持する。サーバ(三次元データ符号化装置)は、サーバが管理する領域のクライアント装置(三次元データ復号装置:例えば車両又はドローン等)に対し、三次元地図をブロードキャスト送信し、クライアント装置はサーバから受信した三次元地図を用いてクライアント装置の自己位置を特定する処理、又は、クライアント装置を操作するユーザ等に地図情報を表示する処理を行う。
 以下、この例における動作例を説明する。まず、サーバは、三次元地図の位置情報を8分木構成などを用いて符号化する。そして、サーバは、位置情報をベースに構築されたN個のLoDを用いて三次元地図の属性情報を階層符号化する。サーバは、階層符号化により得られた三次元地図のビットストリームを保存する。
 次にサーバは、サーバが管理する領域のクライアント装置から送信された地図情報の送信要求に応じて、符号化された三次元地図のビットストリームをクライアント装置に送信する。
 クライアント装置は、サーバから送信された三次元地図のビットストリームを受信し、クライアント装置の用途に応じて三次元地図の位置情報と属性情報とを復号する。例えば、クライアント装置が位置情報とN個のLoDの属性情報とを用いて高精度な自己位置推定を行う場合は、クライアント装置は、属性情報として密な三次元点までの復号結果が必要と判断し、ビットストリーム内の全ての情報を復号する。
 また、クライアント装置が三次元地図の情報をユーザ等に表示する場合は、クライアント装置は、属性情報として疎な三次元点までの復号結果までが必要と判断し、位置情報とLoDの上位層であるLoD0からM個(M<N)までのLoDの属性情報とを復号する。
 このようにクライアント装置の用途に応じて復号する属性情報のLoDを切替えることによって、クライアント装置の処理負荷を削減できる。
 図169に示す例では、例えば、三次元点地図は、位置情報と属性情報とを含む。位置情報は、8分木で符号化される。属性情報は、N個のLoDで符号化される。
 クライアント装置Aは、高精度な自己位置推定を行う。この場合、クライアント装置Aは、全ての位置情報と属性情報とが必要と判断し、ビットストリーム内の位置情報とN個のLoDで構成される属性情報とを全て復号する。
 クライアント装置Bは、三次元地図をユーザへ表示する。この場合、クライアント装置Bは、位置情報とM個(M<N)のLoDの属性情報とが必要と判断し、ビットストリーム内の位置情報とM個のLoDで構成される属性情報とを復号する。
 なお、サーバは、三次元地図をクライアント装置にブロードキャスト送信してもよいし、マルチキャスト送信、又はユニキャスト送信してもよい。
 以下、本実施の形態に係るシステムの変形例について説明する。三次元データ符号化装置において、符号化対象の三次元点である対象三次元点の属性情報をLoDを用いて階層符号化する場合、三次元データ符号化装置は、当該三次元データ復号装置で必要なLoDの階層まで属性情報を符号化し、必要でない階層の属性情報を符号化しなくてもよい。例えば、LoDの総数がN個の場合に、三次元データ符号化装置は、最上位層LoD0からLoD(M-1)までのM個(M<N)のLoDを符号化し、残りLoD(N-1)までのLoDを符号化しないことによりビットストリームを生成してもよい。これにより、三次元データ符号化装置は、三次元データ復号装置からの要望に応じて、三次元データ復号装置で必要なLoD0からLoD(M-1)までの属性情報を符号化したビットストリームを提供できる。
 図170は、上記ユースケースを示す図である。図170に示す例では、サーバは、三次元位置情報と属性情報とを符号化することで得られた三次元地図を保持する。サーバ(三次元データ符号化装置)は、サーバが管理する領域のクライアント装置(三次元データ復号装置:例えば車両又はドローン等)に対し、クライアント装置の要望に応じて三次元地図をユニキャスト送信し、クライアント装置はサーバから受信した三次元地図を用いてクライアント装置の自己位置を特定する処理、又は地図情報をクライアント装置を操作するユーザ等に表示する処理を行う。
 以下、この例における動作例を説明する。まず、サーバは、三次元地図の位置情報を8分木構成などを用いて符号化する。そして、サーバは、三次元地図の属性情報を、位置情報をベースに構築されたN個のLoDを用いて階層符号化することで三次元地図Aのビットストリームを生成し、生成したビットストリームを当該サーバに保存する。また、サーバは、三次元地図の属性情報を、位置情報をベースに構築されたM個(M<N)のLoDを用いて階層符号化することで三次元地図Bのビットストリームを生成し、生成したビットストリームを当該サーバに保存する。
 次にクライアント装置は、クライアント装置の用途に応じて三次元地図の送信をサーバに要求する。例えば、クライアント装置は、位置情報とN個のLoDの属性情報とを用いて高精度な自己位置推定を行う場合は、属性情報として密な三次元点までの復号結果が必要と判断し、三次元地図Aのビットストリームの送信をサーバへ要求する。また、クライアント装置は、三次元地図の情報をユーザ等に表示する場合は、属性情報として疎な三次元点までの復号結果までが必要と判断し、位置情報とLoDの上位層LoD0からM個(M<N)までのLoDの属性情報とを含む三次元地図Bのビットストリームの送信をサーバへ要求する。そしてサーバは、クライアント装置からの地図情報の送信要求に応じて、符号化された三次元地図A又は三次元地図Bのビットストリームをクライアント装置に送信する。
 クライアント装置は、クライアント装置の用途に応じてサーバから送信された三次元地図A又は三次元地図Bのビットストリームを受信し、当該ビットストリームを復号する。このようにサーバは、クライアント装置の用途に応じて送信するビットストリームを切替える。これにより、クライアント装置の処理負荷を削減できる。
 図170に示す例では、サーバは、三次元地図A及び三次元地図Bを保持する。サーバは、三次元地図の位置情報を、例えば8分木で符号化し、三次元地図の属性情報をN個のLoDで符号化することで三次元地図Aを生成する。つまり、三次元地図Aのビットストリームに含まれるNumLoDはNを示す。
 また、サーバは、三次元地図の位置情報を、例えば8分木で符号化し、三次元地図の属性情報をM個のLoDで符号化することで三次元地図Bを生成する。つまり、三次元地図Bのビットストリームに含まれるNumLoDはMを示す。
 クライアント装置Aは、高精度な自己位置推定を行う。この場合クライアント装置Aは、全ての位置情報と属性情報とが必要と判断し、全ての位置情報とN個のLoDで構成される属性情報とを含む三次元地図Aの送信要求をサーバに送る。クライアント装置Aは、三次元地図Aを受信し、全ての位置情報とN個のLoDで構成される属性情報とを復号する。
 クライアント装置Bは、三次元地図をユーザへ表示する。この場合、クライアント装置Bは、位置情報とM個(M<N)のLoDの属性情報とが必要と判断し、全ての位置情報とM個のLoDで構成される属性情報とを含む三次元地図Bの送信要求をサーバに送る。クライアント装置Bは、三次元地図Bを受信して、全ての位置情報とM個のLoDで構成される属性情報とを復号する。
 なお、サーバ(三次元データ符号化装置)は、三次元地図Bに加え、残りのN-M個のLoDの属性情報を符号化した三次元地図Cを符号化しておき、クライアント装置Bの要望に応じて三次元地図Cをクライアント装置Bに送信してもよい。また、クライアント装置Bは、三次元地図Bと三次元地図Cとのビットストリームを用いて、N個のLoDの復号結果を得てもよい。
 以下、アプリケーション処理の例を説明する。図171は、アプリケーション処理の例を示すフローチャートである。アプリ操作が開始されると、三次元データ逆多重化装置は、点群データ及び複数の符号化データを含むISOBMFFファイルを取得する(S7301)。例えば、三次元データ逆多重化装置は、ISOBMFFファイルを、通信により取得してもよいし、蓄積しているデータから読み込んでもよい。
 次に、三次元データ逆多重化装置は、ISOBMFFファイルにおける全体構成情報を解析し、アプリケーションに使用するデータを特定する(S7302)。例えば、三次元データ逆多重化装置は、処理に用いるデータを取得し、処理に用いないデータは取得しない。
 次に、三次元データ逆多重化装置は、アプリケーションに使用する1以上のデータを抽出し、当該データの構成情報を解析する(S7303)。
 データの種別が符号化データである場合(S7304で符号化データ)、三次元データ逆多重化装置は、ISOBMFFを符号化ストリームに変換し、タイムスタンプを抽出する(S7305)。また、三次元データ逆多重化装置は、データ間の同期がそろっているか否かを、例えば、データ間の同期がそろっているか否かを示すフラグを参照して判定し、揃っていなければ同期処理を行ってもよい。
 次に、三次元データ逆多重化装置は、タイムスタンプ及びその他の指示に従い、所定の方法でデータを復号し、復号したデータを処理する(S7306)。
 一方、データの種別が符号化データである場合(S7304でRAWデータ)、三次元データ逆多重化装置は、データ及びタイムスタンプを抽出する(S7307)。また、三次元データ逆多重化装置は、データ間の同期がそろっているか否かを、例えば、データ間の同期がそろっているか否かを示すフラグを参照して判定し、揃っていなければ同期処理を行ってもよい。次に、三次元データ逆多重化装置は、タイムスタンプ及びその他の指示に従い、データを処理する(S7308)。
 例えば、ビームLiDAR、FLASH LiDAR、及びカメラで取得されたセンサ信号が、それぞれ異なる符号化方式で符号化及び多重化されている場合の例を説明する。図172は、ビームLiDAR、FLASH LiDAR及びカメラのセンサ範囲の例を示す図である。例えば、ビームLiDARは、車両(センサ)の周囲の全方向を検知し、FLASH LiDAR及びカメラは、車両の一方向(例えば前方)の範囲を検知する。
 LiDAR点群を統合的に扱うアプリケーションの場合、三次元データ逆多重化装置は、全体構成情報を参照して、ビームLiDARとFLASH LiDARの符号化データを抽出して復号する。また、三次元データ逆多重化装置は、カメラ映像は抽出しない。
 三次元データ逆多重化装置は、LiDARとFLASH LiDARのタイムスタンプに従い、同一のタイムスタンプの時刻のそれぞれの符号化データを同時に処理する。
 例えば、三次元データ逆多重化装置は、処理したデータを提示装置で提示したり、ビームLiDARとFLASH LiDARの点群データを合成したり、レンダリングなどの処理を行ってもよい。
 また、データ間でキャリブレーションをするアプリケーションの場合には、三次元データ逆多重化装置は、センサ位置情報を抽出してアプリケーションで用いてもよい。
 例えば、三次元データ逆多重化装置は、アプリケーションにおいて、ビームLiDAR情報を使用するか、FLASH LiDARを使用するかを選択し、選択結果に応じて処理を切り替えてもよい。
 このように、アプリケーションの処理に応じて適応的にデータの取得及び符号処理を変えることができるので、処理量及び消費電力を削減できる。
 以下、自動運転におけるユースケースについて説明する。図173は、自動運転システムの構成例を示す図である。この自動運転システムは、クラウドサーバ7350と、車載装置又はモバイル装置等のエッジ7360とを含む。クラウドサーバ7350は、逆多重化部7351と、復号部7352A、7352B及び7355と、点群データ合成部7353と、大規模データ蓄積部7354と、比較部7356と、符号化部7357とを備える。エッジ7360は、センサ7361A及び7361Bと、点群データ生成部7362A及び7362Bと、同期部7363と、符号化部7364A及び7364Bと、多重化部7365と、更新データ蓄積部7366と、逆多重化部7367と、復号部7368と、フィルタ7369と、自己位置推定部7370と、運転制御部7371とを備える。
 このシステムでは、エッジ7360は、クラウドサーバ7350に蓄積されている大規模点群地図データである大規模データをダウンロードする。エッジ7360は、大規模データとエッジ7360で得られたセンサ情報とをマッチングすることで、エッジ7360(車両又は端末)の自己位置推定処理を行う。また、エッジ7360は、取得したセンサ情報をクラウドサーバ7350へアップロードし、大規模データを最新の地図データに更新する。
 また、システム内における点群データを扱う様々なアプリケーションにおいて、符号化方法の異なる点群データが扱われる。
 クラウドサーバ7350は、大規模データを符号化及び多重化する。具体的には、符号化部7357は、大規模点群を符号化するために適した第3の符号化方法を用いて符号化を行う。また、符号化部7357は、符号化データを多重化する。大規模データ蓄積部7354は、符号化部7357で符号化及び多重化されたデータを蓄積する。
 エッジ7360は、センシングを行う。具体的には、点群データ生成部7362Aは、センサ7361Aで取得されるセンシング情報を用いて、第1の点群データ(位置情報(ジオメトリ)及び属性情報)を生成する。点群データ生成部7362Bは、センサ7361Bで取得されるセンシング情報を用いて、第2の点群データ(位置情報及び属性情報)を生成する。生成された第1の点群データ及び第2の点群データは、自動運転の自己位置推定或いは車両制御、又は地図更新に用いられる。それぞれの処理において、第1の点群データ及び第2の点群データのうちの一部の情報が用いられてもよい。
 エッジ7360は、自己位置推定を行う。具体的には、エッジ7360は、大規模データをクラウドサーバ7350からダウンロードする。逆多重化部7367は、ファイルフォーマットの大規模データを逆多重化することで符号化データを取得する。復号部7368は、取得された符号化データを復号することで大規模点群地図データである大規模データを取得する。
 自己位置推定部7370は、取得された大規模データと、点群データ生成部7362A及び7362Bで生成された第1の点群データ及び第2の点群データとをマッチングすることで、車両の地図における自己位置を推定する。また、運転制御部7371は、当該マッチング結果又は自己位置推定結果を運転制御に用いる。
 なお、自己位置推定部7370及び運転制御部7371は、大規模データのうち、位置情報などの特定の情報を抽出し、抽出した情報を用いて処理を行ってもよい。また、フィルタ7369は、第1の点群データ及び第2の点群データに補正又は間引き等の処理を行う。自己位置推定部7370及び運転制御部7371は、当該処理が行われた後の第1の点群データ及び第2の点群データを用いてもよい。また、自己位置推定部7370及び運転制御部7371は、センサ7361A及び7361Bで得られたセンサ信号を用いてもよい。
 同期部7363は、複数のセンサ信号又は複数の点群データのデータ間の時間同期及び位置補正を行う。また、同期部7363は、自己位置推定処理によって生成された、大規模データとセンサデータとの位置補正情報に基づき、センサ信号又は点群データの位置情報を大規模データに合わせるように補正してもよい。
 なお、同期及び位置補正はエッジ7360でなく、クラウドサーバ7350で行われてもよい。この場合、エッジ7360は、同期情報及び位置情報を多重化してクラウドサーバ7350へ送信してもよい。
 エッジ7360は.センサ信号又は点群データを符号化及び多重化する。具体的には、センサ信号又は点群データは、それぞれの信号を符号化するために適した第1の符号化方法又は第2の符号化方法を用いて符号化される。例えば、符号化部7364Aは、第1の符号化方法を用いて第1の点群データを符号化することで第1の符号化データを生成する。符号化部7364Bは、第2の符号化方法を用いて第2の点群データを符号化することで第2の符号化データを生成する。
 多重化部7365は、第1の符号化データ、第2の符号化データ、及び同期情報などを多重化することで多重化信号を生成する。更新データ蓄積部7366は、生成された多重化信号を蓄積する。また、更新データ蓄積部7366は、多重化信号をクラウドサーバ7350へアップロードする。
 クラウドサーバ7350は、点群データを合成する。具体的には、逆多重化部7351は、クラウドサーバ7350にアップロードされた多重化信号を逆多重化することで第1の符号化データ及び第2の符号化データを取得する。復号部7352Aは、第1の符号化データを復号することで第1の点群データ(又はセンサ信号)を取得する。復号部7352Bは、第2の符号化データを復号することで第2の点群データ(又はセンサ信号)を取得する。
 点群データ合成部7353は、第1の点群データと第2の点群データとを所定の方法で合成する。多重化信号に同期情報及び位置補正情報が多重化されている場合には、点群データ合成部7353は、それらの情報を用いて合成を行ってもよい。
 復号部7355は、大規模データ蓄積部7354に蓄積されている大規模データを逆多重化及び復号する。比較部7356は、エッジ7360で得られたセンサ信号に基づき生成された点群データとクラウドサーバ7350が有する大規模データとを比較し、更新が必要な点群データを判断する。比較部7356は、大規模データのうち、更新が必要と判断された点群データを、エッジ7360から得られた点群データに更新する。
 符号化部7357は、更新された大規模データを符号化及び多重化し、得られたデータを大規模データ蓄積部7354に蓄積する。
 以上のように、使用する用途又はアプリケーションに応じて、取り扱う信号が異なり、多重化する信号又は符号化方法が異なる場合がある。このような場合であっても、本実施の形態を用いて様々な符号化方式のデータを多重化することで、柔軟な復号及びアプリケーション処理が可能となる。また、信号の符号化方式が異なる場合であっても、逆多重化、復号、データ変換、符号化、多重の処理により適した符号化方式を変換することで、様々なアプリケーションやシステムを構築し、柔軟なサービスの提供が可能となる。
 以下、分割データの復号及びアプリケーションの例を説明する。まず、分割データの情報について説明する。図174は、ビットストリームの構成例を示す図である。分割データの全体情報は、分割データ毎に、当該分割データのセンサID(sensor_id)とデータID(data_id)とを示す。なお、データIDは各符号化データのヘッダにも示される。
 なお、図174に示す分割データの全体情報は、図40と同様に、センサIDに加え、センサ情報(Sensor)と、センサのバージョン(Version)と、センサのメーカー名(Maker)と、センサの設置情報(Mount Info.)と、センサの位置座標(World Coordinate)とのうち少なく一つを含んでもよい。これにより、三次元データ復号装置は、構成情報から各種センサの情報を取得できる。
 分割データの全体情報は、メタデータであるSPS、GPS又はAPSに格納されてもよいし、符号化に必須でないメタデータであるSEIに格納されてもよい。また、三次元データ符号化装置は、多重化の際に、当該SEIをISOBMFFのファイルに格納する。三次元データ復号装置は、当該メタデータに基づき、所望の分割データを取得できる。
 図174において、SPSは符号化データ全体のメタデータであり、GPSは位置情報のメタデータであり、APSは属性情報毎のメタデータであり、Gは分割データ毎の位置情報の符号化データであり、A1等は分割データ毎の属性情報の符号化データである。
 次に、分割データのアプリケーション例を説明する。点群データから、任意の点群を選択し、選択した点群を提示するアプリケーションの例を説明する。図175は、このアプリケーションにより実行される点群選択処理のフローチャートである。図176~図178は、点群選択処理の画面例を示す図である。
 図176に示すように、アプリケーションを実行する三次元データ復号装置は、例えば、任意の点群を選択するための入力UI(ユーザインタフェース)8661を表示するUI部を有する。入力UI8661は、選択された点群を提示する提示部8662と、ユーザの操作を受け付ける操作部(ボタン8663及び8664)を有する。三次元データ復号装置は、UI8661で点群が選択された後、蓄積部8665から所望のデータを取得する。
 まず、ユーザの入力UI8661に対する操作に基づき、ユーザが表示したい点群情報が選択される(S8631)。具体的には、ボタン8663が選択されることで、センサ1に基づく点群が選択される。ボタン8664が選択されることで、センサ2に基づく点群が選択される。または、ボタン8663及びボタン8664の両方が選択されることで、センサ1に基づく点群とセンサ2に基づく点群の両方が選択される。なお、点群の選択方法は一例であり、これに限らない。
 次に、三次元データ復号装置は、多重化信号(ビットストリーム)又は符号化データに含まれる分割データの全体情報を解析し、選択されたセンサのセンサID(sensor_id)から、選択された点群を構成する分割データのデータID(data_id)を特定する(S8632)。次に、三次元データ復号装置は、多重化信号から、特定された所望のデータIDを含む符号化データを抽出し、抽出した符号化データを復号することで、選択されたセンサに基づく点群を復号する(S8633)。なお、三次元データ復号装置は、その他の符号化データは復号しない。
 最後に、三次元データ復号装置は、復号された点群を提示(例えば表示)する(S8634)。図177は、センサ1のボタン8663が押下された場合の例を示し、センサ1の点群が提示される。図178は、センサ1のボタン8663とセンサ2のボタン8664の両方が押下された場合の例を示し、センサ1及びセンサ2の点群が提示される。
 以上、本開示の実施の形態に係る三次元データ符号化装置及び三次元データ復号装置等について説明したが、本開示は、この実施の形態に限定されるものではない。
 また、上記実施の形態に係る三次元データ符号化装置及び三次元データ復号装置等に含まれる各処理部は典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部又は全てを含むように1チップ化されてもよい。
 また、集積回路化はLSIに限るものではなく、専用回路又は汎用プロセッサで実現してもよい。LSI製造後にプログラムすることが可能なFPGA(Field Programmable Gate Array)、又はLSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。
 また、上記各実施の形態において、各構成要素は、専用のハードウェアで構成されるか、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPUまたはプロセッサなどのプログラム実行部が、ハードディスクまたは半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。
 また、本開示は、三次元データ符号化装置及び三次元データ復号装置等により実行される三次元データ符号化方法又は三次元データ復号方法等として実現されてもよい。
 また、ブロック図における機能ブロックの分割は一例であり、複数の機能ブロックを一つの機能ブロックとして実現したり、一つの機能ブロックを複数に分割したり、一部の機能を他の機能ブロックに移してもよい。また、類似する機能を有する複数の機能ブロックの機能を単一のハードウェア又はソフトウェアが並列又は時分割に処理してもよい。
 また、フローチャートにおける各ステップが実行される順序は、本開示を具体的に説明するために例示するためのものであり、上記以外の順序であってもよい。また、上記ステップの一部が、他のステップと同時(並列)に実行されてもよい。
 以上、一つまたは複数の態様に係る三次元データ符号化装置及び三次元データ復号装置等について、実施の形態に基づいて説明したが、本開示は、この実施の形態に限定されるものではない。本開示の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、一つまたは複数の態様の範囲内に含まれてもよい。
 本開示は、三次元データ符号化装置及び三次元データ復号装置に適用できる。
 810 三次元データ作成装置
 811 データ受信部
 812、819 通信部
 813 受信制御部
 814、821 フォーマット変換部
 815 センサ
 816 三次元データ作成部
 817 三次元データ合成部
 818 三次元データ蓄積部
 820 送信制御部
 822 データ送信部
 831、832、834、835、836、837 三次元データ
 833 センサ情報
 901 サーバ
 902、902A、902B、902C クライアント装置
 1011、1111 データ受信部
 1012、1020、1112、1120 通信部
 1013、1113 受信制御部
 1014、1019、1114、1119 フォーマット変換部
 1015 センサ
 1016、1116 三次元データ作成部
 1017 三次元画像処理部
 1018、1118 三次元データ蓄積部
 1021、1121 送信制御部
 1022、1122 データ送信部
 1031、1032、1135 三次元マップ
 1033、1037、1132 センサ情報
 1034、1035、1134 三次元データ
 1117 三次元データ合成部
 1201 三次元マップ圧縮/復号処理部
 1202 センサ情報圧縮/復号処理部
 1211 三次元マップ復号処理部
 1212 センサ情報圧縮処理部
 2001 サーバ
 2002、2002A、2002B クライアント装置
 2011 センサ情報取得部
 2012 記憶部
 2013 データ送信可否判定部
 2021、2021A、2021B 端末
 2022、2022A、2022B 通信装置
 2023 ネットワーク
 2024 データ収集サーバ
 2025 地図サーバ
 2026 クライアント装置
 2700 位置情報符号化部
 2701、2711 8分木生成部
 2702、2712 幾何情報算出部
 2703、2713 符号化テーブル選択部
 2704 エントロピー符号化部
 2710 位置情報復号部
 2714 エントロピー復号部
 3140 属性情報符号化部
 3141、3151 LoD生成部
 3142、3152 周囲探索部
 3143、3153 予測部
 3144 予測残差算出部
 3145 量子化部
 3146 算術符号化部
 3147、3155 逆量子化部
 3148、3156 復号値生成部
 3149、3157 メモリ
 3150 属性情報復号部
 3154 算術復号部
 4601 三次元データ符号化システム
 4602 三次元データ復号システム
 4603 センサ端末
 4604 外部接続部
 4611 点群データ生成システム
 4612 提示部
 4613 符号化部
 4614 多重化部
 4615 入出力部
 4616 制御部
 4617 センサ情報取得部
 4618 点群データ生成部
 4621 センサ情報取得部
 4622 入出力部
 4623 逆多重化部
 4624 復号部
 4625 提示部
 4626 ユーザインタフェース
 4627 制御部
 4630 第1の符号化部
 4631 位置情報符号化部
 4632 属性情報符号化部
 4633 付加情報符号化部
 4634 多重化部
 4640 第1の復号部
 4641 逆多重化部
 4642 位置情報復号部
 4643 属性情報復号部
 4644 付加情報復号部
 4650 第2の符号化部
 4651 付加情報生成部
 4652 位置画像生成部
 4653 属性画像生成部
 4654 映像符号化部
 4655 付加情報符号化部
 4656 多重化部
 4660 第2の復号部
 4661 逆多重化部
 4662 映像復号部
 4663 付加情報復号部
 4664 位置情報生成部
 4665 属性情報生成部
 4801 符号化部
 4802 多重化部
 4910 第1の符号化部
 4911 分割部
 4912 位置情報符号化部
 4913 属性情報符号化部
 4914 付加情報符号化部
 4915 多重化部
 4920 第1の復号部
 4921 逆多重化部
 4922 位置情報復号部
 4923 属性情報復号部
 4924 付加情報復号部
 4925 結合部
 4931 スライス分割部
 4932 位置情報タイル分割部
 4933 属性情報タイル分割部
 4941 位置情報タイル結合部
 4942 属性情報タイル結合部
 4943 スライス結合部
 5051 タイル分割部
 5052 符号化部
 5053 復号部
 5054 タイル結合部
 6231 分割部
 6232A、6232B 量子化部
 6233 分割データ間重複点マージ部
 6234A、6234B 符号化部
 6241 最小位置シフト部
 6242 位置情報量子化部
 6243 分割データ内重複点マージ部
 6600 属性情報符号化部
 6601 ソート部
 6602 Haar変換部
 6603 量子化部
 6604、6612 逆量子化部
 6605、6613 逆Haar変換部
 6606、6614 メモリ
 6607 算術符号化部
 6610 属性情報復号部
 6611 算術復号部
 7350 クラウドサーバ
 7351 逆多重化部
 7352A、7352B 復号部
 7353 点群データ合成部
 7354 大規模データ蓄積部
 7355 復号部
 7356 比較部
 7357 符号化部
 7360 エッジ
 7361A、7361B センサ
 7362A、7362B 点群データ生成部
 7363 同期部
 7364A、7364B 符号化部
 7365 多重化部
 7366 更新データ蓄積部
 7367 逆多重化部
 7368 復号部
 7369 フィルタ
 7370 自己位置推定部
 7371 運転制御部
 8661 入力UI
 8662 提示部
 8663、8664 ボタン
 8665 蓄積部
 8701 点群符号化部
 8702 ファイルフォーマット生成部
 8705 三次元データ復号装置
 8706 点群復号部
 8707 ブリック復号制御部
 8710 三次元データ符号化装置
 8711 分割部
 8712 位置情報符号化部
 8713 属性情報符号化部
 8714 付加情報符号化部
 8715 多重化部
 8716 法線ベクトル生成部
 8720 三次元データ復号装置
 8721 逆多重化部
 8722 位置情報復号部
 8723 属性情報復号部
 8724 付加情報復号部
 8725 結合部
 8726 法線ベクトル抽出部
 8727 ランダムアクセス制御部
 8728 選択部
 8731 属性情報復号部
 8732 ランダムアクセス制御部
 8741 符号化部
 8742 ファイル変換部
 8751 ファイル逆変換部
 8752 復号部
 A100 属性情報符号化部
 A101 LoD属性情報符号化部
 A102 変換属性情報符号化部
 A110 属性情報復号部
 A111 LoD属性情報復号部
 A112 変換属性情報復号部

Claims (16)

  1.  点群データに含まれる複数の三次元点の各々の位置情報及び1以上の属性情報を符号化することでビットストリームを生成し、
     前記符号化では、前記複数の三次元点の各々の法線ベクトルを前記1以上の属性情報に含まれる一つの属性情報として符号化する
     三次元データ符号化方法。
  2.  前記符号化では、
     浮動小数点で表現される前記法線ベクトルを、整数に変換したうえで符号化する
     請求項1記載の三次元データ符号化方法。
  3.  前記ビットストリームは、前記位置情報及び前記1以上の属性情報に共通の制御情報を含み、
     前記制御情報は、前記1以上の属性情報に含まれる前記一つの属性情報が前記法線ベクトルを示すことを示す情報、または前記法線ベクトルが1点ごとに3つの要素を持つデータであることを示す情報のうち少なくとも一方の情報を含む
     請求項1又は2記載の三次元データ符号化方法。
  4.  点群データを複数の分割データに分割し、
     前記複数の分割データを符号化することでビットストリームを生成し、
     前記ビットストリームは、前記複数の分割データの各々の法線ベクトルを示す情報を含む
     三次元データ符号化方法。
  5.  前記複数の分割データの各々はランダムアクセス単位である
     請求項4記載の三次元データ符号化方法。
  6.  点群データに含まれる複数の三次元点の各々の位置情報及び1以上の属性情報が符号化されることで生成されたビットストリームであって、前記複数の三次元点の各々の法線ベクトルが前記1以上の属性情報に含まれる一つの属性情報として符号化されたビットストリームを取得し、
     前記ビットストリームから、前記一つの属性情報を復号することで前記法線ベクトルを取得する
     三次元データ復号方法。
  7.  前記法線ベクトルの取得では、
     整数で示される前記法線ベクトルを取得する
     請求項6記載の三次元データ復号方法。
  8.  前記ビットストリームは、前記位置情報及び前記1以上の属性情報に共通の制御情報を含み、
     前記制御情報は、前記1以上の属性情報に含まれる第1属性情報が前記法線ベクトルを示すことを示す情報、または前記法線ベクトルが1点ごとに3つの要素を持つデータであることを示す情報のうち少なくとも一方の情報を含む
     請求項6又は7記載の三次元データ復号方法。
  9.  点群データが分割されることで生成された複数の分割データが符号化されることで生成されたビットストリームを取得し、
     前記ビットストリームから、前記複数の分割データの各々の法線ベクトルを示す情報を取得する
     三次元データ復号方法。
  10.  前記複数の分割データの各々はランダムアクセス単位である
     請求項9記載の三次元データ復号方法。
  11.  前記三次元データ復号方法は、さらに、
     前記法線ベクトルに基づき、前記複数の分割データから復号対象の分割データを決定し、
     前記復号対象の分割データを復号する
     請求項9又は10記載の三次元データ復号方法。
  12.  前記三次元データ復号方法は、さらに、
     前記法線ベクトルに基づき、前記複数の分割データの復号順を決定し、
     決定した前記復号順で前記複数の分割データを復号する
     請求項9又は10記載の三次元データ復号方法。
  13.  プロセッサと、
     メモリとを備え、
     前記プロセッサは、前記メモリを用いて、
     点群データに含まれる複数の三次元点の各々の位置情報及び1以上の属性情報を符号化することでビットストリームを生成し、
     前記符号化では、前記複数の三次元点の各々の法線ベクトルを前記1以上の属性情報に含まれる一つの属性情報として符号化する
     三次元データ符号化装置。
  14.  プロセッサと、
     メモリとを備え、
     前記プロセッサは、前記メモリを用いて、
     点群データを複数の分割データに分割し、
     前記複数の分割データを符号化することでビットストリームを生成し、
     前記ビットストリームは、前記複数の分割データの各々の法線ベクトルを示す情報を含む
     三次元データ符号化装置。
  15.  プロセッサと、
     メモリとを備え、
     前記プロセッサは、前記メモリを用いて、
     点群データに含まれる複数の三次元点の各々の位置情報及び1以上の属性情報が符号化されることで生成されたビットストリームであって、前記複数の三次元点の各々の法線ベクトルが前記1以上の属性情報に含まれる一つの属性情報として符号化されたビットストリームを取得し、
     前記ビットストリームから、前記一つの属性情報を復号することで前記法線ベクトルを取得する
     三次元データ復号装置。
  16.  プロセッサと、
     メモリとを備え、
     前記プロセッサは、前記メモリを用いて、
     点群データが分割されることで生成された複数の分割データが符号化されることで生成されたビットストリームを取得し、
     前記ビットストリームから、前記複数の分割データの各々の法線ベクトルを示す情報を取得する
     三次元データ復号装置。
PCT/JP2020/021018 2019-05-28 2020-05-27 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置 WO2020241723A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021522839A JPWO2020241723A1 (ja) 2019-05-28 2020-05-27
CN202080038119.1A CN113853635A (zh) 2019-05-28 2020-05-27 三维数据编码方法、三维数据解码方法、三维数据编码装置及三维数据解码装置
US17/521,309 US20220058834A1 (en) 2019-05-28 2021-11-08 Three-dimensional data encoding method, three-dimensional data decoding method, three-dimensional data encoding device, and three-dimensional data decoding device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962853441P 2019-05-28 2019-05-28
US62/853441 2019-05-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/521,309 Continuation US20220058834A1 (en) 2019-05-28 2021-11-08 Three-dimensional data encoding method, three-dimensional data decoding method, three-dimensional data encoding device, and three-dimensional data decoding device

Publications (1)

Publication Number Publication Date
WO2020241723A1 true WO2020241723A1 (ja) 2020-12-03

Family

ID=73553821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/021018 WO2020241723A1 (ja) 2019-05-28 2020-05-27 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置

Country Status (4)

Country Link
US (1) US20220058834A1 (ja)
JP (1) JPWO2020241723A1 (ja)
CN (1) CN113853635A (ja)
WO (1) WO2020241723A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113240786A (zh) * 2021-05-10 2021-08-10 北京奇艺世纪科技有限公司 一种视频点云渲染方法、装置、电子设备及存储介质
WO2022054744A1 (ja) * 2020-09-08 2022-03-17 ソニーグループ株式会社 情報処理装置および方法
WO2023176419A1 (ja) * 2022-03-17 2023-09-21 ソニーグループ株式会社 情報処理装置および方法
WO2024029348A1 (ja) * 2022-08-01 2024-02-08 ソニーグループ株式会社 情報処理装置および方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11403784B2 (en) * 2019-03-19 2022-08-02 Tencent America LLC Method and apparatus for tree-based point cloud compression (PCC) media stream using moving picture experts group (MPEG)-dynamic adaptive streaming over HTTP (DASH)
WO2021002558A1 (ko) * 2019-07-03 2021-01-07 엘지전자 주식회사 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법.
US11706450B2 (en) * 2020-09-18 2023-07-18 Samsung Electronics Co., Ltd. Partial decoding and reconstruction of a video-based point cloud compression bitstream

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018101404A (ja) * 2016-09-13 2018-06-28 ダッソー システムズDassault Systemes 物理的属性を表す信号の圧縮

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018101404A (ja) * 2016-09-13 2018-06-28 ダッソー システムズDassault Systemes 物理的属性を表す信号の圧縮

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AARON BASS ET AL.: "Progressive Compression of Normal Vectors", THIRD INTERNATIONAL SYMPOSIUM ON 3D DATA PROCESSING, VISUALIZATION, AND TRANSMISSION (3DPVT'06), 14 June 2006 (2006-06-14), pages 1010 - 1017, XP031079046 *
LI CUI ET AL.: "HYBRID COLOR ATTRIBUTE COMPRESSION FOR POINT CLOUD DATA", 2017 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 10 July 2017 (2017-07-10), pages 1273 - 1278, XP033146600, DOI: 10.1109/ICME.2017.8019426 *
NAGASAWA, MIKIO,NISHIOKA, DAISUKE: "Highly efficient three dimensional data communication using ATM network", MULTIMEDIA, DISTRIBUTED, COOPERATIVE, AND MOBILE WORKSHOP, PROCEEDINGS OF WORKSHOP OF INFORMATION PROCESSING SOCIETY OF JAPAN, 2 July 1997 (1997-07-02), pages 287 - 287$$92 *
YAN HUANG ET AL.: "A Generic Scheme for Progressive Point Cloud Coding", IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, vol. 14, no. 2, 1 March 2008 (2008-03-01), pages 440 - 453, XP011196616, DOI: 10.1109/TVCG.2008.28 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022054744A1 (ja) * 2020-09-08 2022-03-17 ソニーグループ株式会社 情報処理装置および方法
CN113240786A (zh) * 2021-05-10 2021-08-10 北京奇艺世纪科技有限公司 一种视频点云渲染方法、装置、电子设备及存储介质
CN113240786B (zh) * 2021-05-10 2023-06-13 北京奇艺世纪科技有限公司 一种视频点云渲染方法、装置、电子设备及存储介质
WO2023176419A1 (ja) * 2022-03-17 2023-09-21 ソニーグループ株式会社 情報処理装置および方法
WO2024029348A1 (ja) * 2022-08-01 2024-02-08 ソニーグループ株式会社 情報処理装置および方法

Also Published As

Publication number Publication date
CN113853635A (zh) 2021-12-28
US20220058834A1 (en) 2022-02-24
JPWO2020241723A1 (ja) 2020-12-03

Similar Documents

Publication Publication Date Title
WO2020241723A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2021261516A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2020251019A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2021141090A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2021066163A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2021261514A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2022075428A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2021210550A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2021210549A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2021187561A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
US20230030392A1 (en) Three-dimensional data encoding method, three-dimensional data decoding method, three-dimensional data encoding device, and three-dimensional data decoding device
WO2020050343A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
US20220198719A1 (en) Three-dimensional data encoding method, three-dimensional data decoding method, three-dimensional data encoding device, and three-dimensional data decoding device
WO2022025278A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2022004682A1 (ja) 三次元データ符号化方法及び三次元データ符号化装置
WO2022080283A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2021193899A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2021210548A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2021095879A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2021075537A1 (ja) 三次元データ復号方法、及び三次元データ復号装置
WO2021200919A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2022059697A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2021261458A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2022019301A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2021261555A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20815079

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021522839

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20815079

Country of ref document: EP

Kind code of ref document: A1