WO2020241660A1 - Preventive or therapeutic agent for diabetic retinopathy - Google Patents

Preventive or therapeutic agent for diabetic retinopathy Download PDF

Info

Publication number
WO2020241660A1
WO2020241660A1 PCT/JP2020/020835 JP2020020835W WO2020241660A1 WO 2020241660 A1 WO2020241660 A1 WO 2020241660A1 JP 2020020835 W JP2020020835 W JP 2020020835W WO 2020241660 A1 WO2020241660 A1 WO 2020241660A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
seq
acid sequence
neutralizing antibody
eif5a
Prior art date
Application number
PCT/JP2020/020835
Other languages
French (fr)
Japanese (ja)
Inventor
義規 世古
季美枝 村山
務 藤村
貴子 森
明嘉 植村
Original Assignee
学校法人順天堂
公立大学法人名古屋市立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人順天堂, 公立大学法人名古屋市立大学 filed Critical 学校法人順天堂
Priority to JP2021522798A priority Critical patent/JPWO2020241660A1/ja
Publication of WO2020241660A1 publication Critical patent/WO2020241660A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans

Definitions

  • the present invention relates to a prophylactic or therapeutic agent for diabetic retinopathy.
  • Diabetic retinopathy is a microangiopathy that occurs in the retina due to diabetes, and in addition to causing vision loss due to macular edema, when it worsens, it may lead to blindness with fundus hemorrhage and retinal detachment.
  • To prevent diabetic retinopathy it is necessary to control the blood glucose level, but when it develops, laser photocoagulation, vitrectomy, and intravitreal steroid or anti-VEGF drug injection therapy are performed.
  • the effects of these drug therapies are temporary, and more effective drug therapies are desired.
  • the present inventor investigated the components secreted extracellularly under hypoxic-reoxygen conditions, that is, under oxidative stress conditions, and discovered a secretory eIF5A (named ORAIP). It was found that the secretory eIF5A is a protein in which the tyrosine residue of eIF5A is sulfated and induces apoptosis of cells subjected to oxidative stress. Furthermore, it has been found that a neutralizing antibody against the secretory eIF5A suppresses apoptosis due to oxidative stress and suppresses myocardial ischemia-reperfusion injury (Patent Document 1, Non-Patent Document 1).
  • An object of the present invention is to provide a new preventive or therapeutic agent for diabetic retinopathy for which the development of an effective therapeutic agent is desired.
  • the present invention provides the following [1] to [12].
  • a prophylactic or therapeutic agent for diabetic retinopathy which comprises a neutralizing antibody against secretory eIF5A as an active ingredient.
  • the neutralizing antibody against the secretory eIF5A contains a heavy chain CDR1 containing the amino acid sequence shown in SEQ ID NO: 1, a heavy chain CDR2 containing the amino acid sequence shown in SEQ ID NO: 2, and an amino acid sequence shown in SEQ ID NO: 3.
  • the neutralizing antibody against the secretory eIF5A contains a heavy chain CDR1 containing the amino acid sequence shown in SEQ ID NO: 1, a heavy chain CDR2 containing the amino acid sequence shown in SEQ ID NO: 2, and an amino acid sequence shown in SEQ ID NO: 3.
  • [4] or [5] which is an antibody.
  • the neutralizing antibody against the secretory eIF5A contains a heavy chain CDR1 containing the amino acid sequence shown in SEQ ID NO: 1, a heavy chain CDR2 containing the amino acid sequence shown in SEQ ID NO: 2, and an amino acid sequence shown in SEQ ID NO: 3. Neutralization with heavy chain CDR3, light chain CDR1 containing the amino acid sequence set forth in SEQ ID NO: 4, light chain CDR2 containing the amino acid sequence set forth in SEQ ID NO: 5, and light chain CDR3 containing the amino acid sequence set forth in SEQ ID NO: 6.
  • a method for preventing or treating diabetic retinopathy which comprises administering an effective amount of a neutralizing antibody against secretory eIF5A.
  • the neutralizing antibody against the secretory eIF5A contains a heavy chain CDR1 containing the amino acid sequence shown in SEQ ID NO: 1, a heavy chain CDR2 containing the amino acid sequence shown in SEQ ID NO: 2, and an amino acid sequence shown in SEQ ID NO: 3.
  • the drug or pharmaceutical composition of the present invention When the drug or pharmaceutical composition of the present invention is used, an excellent therapeutic effect on diabetic retinopathy can be obtained as compared with conventionally used drugs such as anti-VEGF drugs.
  • This disease is a disease for which there is no excellent therapeutic agent, and the medicament of the present invention is extremely useful.
  • anti-VEGF drug and the neutralizing antibody of the present invention (anti-ORAIP antibody) on a pericyte-disappearing diabetic retinopathy model mouse are shown.
  • the amino acid sequence of the heavy chain variable region is shown.
  • the amino acid sequence of the light chain variable region is shown.
  • the active ingredient of the medicament of the present invention is a neutralizing antibody against the secretory eIF5A.
  • Eukaryotic translation initiation factor (eIF) 5A is, as the name implies, a substance identified as a translation initiation factor.
  • eIF5A is expressed in the cytoplasm, deoxyhypsinized by deoxyhypsin synthase (DHS) (deoxyhypsin eIF5A), then hypsinized by deoxyhypsin hydroxylase (DOHH) (hypsinized eIF5A), and this hypsin Chemical eIF5A is known to exhibit a cell proliferation effect.
  • DHS deoxyhypsin synthase
  • DOHH deoxyhypsin hydroxylase
  • eIF5A is secreted extracellularly and changes to a secretory eIF5A in which tyrosine residues are sulfated.
  • the secretory eIF5A induces apoptosis in oxidatively stressed cells.
  • the neutralizing antibody against this secretory eIF5A strongly suppresses apoptosis due to oxidative stress and suppresses myocardial / cerebral ischemia-reperfusion injury (Patent Document 1, Non-Patent Document 1).
  • Patent Document 1 Non-Patent Document 1
  • the neutralizing antibody used in the present invention may bind to the secretory eIF5A protein, regardless of its origin, type (monoclonal, polyclonal) and shape. Specifically, known antibodies such as mouse antibody, rat antibody, tri-antibody, human antibody, chimeric antibody, and humanized antibody can be used.
  • the antibody may be a polyclonal antibody, but is preferably a monoclonal antibody.
  • a monoclonal antibody produced by a hybridoma deposited as NITE P-02955 at the National Institute of Technology and Evaluation Patent Microorganisms Depositary is preferable.
  • Preferred examples of the neutralizing antibody used in the present invention include a heavy chain CDR1 containing the amino acid sequence shown in SEQ ID NO: 1, a heavy chain CDR2 containing the amino acid sequence shown in SEQ ID NO: 2, and an amino acid sequence shown in SEQ ID NO: 3.
  • a heavy chain CDR3 containing a light chain CDR1 containing the amino acid sequence set forth in SEQ ID NO: 4, a light chain CDR2 containing the amino acid sequence set forth in SEQ ID NO: 5, and a light chain CDR3 containing the amino acid sequence set forth in SEQ ID NO: 6. It is a Japanese antibody.
  • a more preferred example of a neutralizing antibody is a neutralizing antibody having a heavy chain variable region containing the amino acid sequence set forth in SEQ ID NO: 7 and a light chain variable region containing the amino acid sequence set forth in SEQ ID NO: 8.
  • the above-mentioned "including an amino acid sequence” includes a case where one to several amino acids are deleted, substituted or added in the amino acid sequence.
  • the neutralizing antibody used in the present invention can be obtained as a polyclonal or monoclonal antibody by using known means.
  • a mammalian-derived or avian-derived monoclonal antibody is preferable.
  • mammalian-derived monoclonal antibodies are preferred.
  • Monoclonal antibodies derived from mammals include those produced by hybridomas and those produced by hosts transformed with an expression vector containing an antibody gene by genetic engineering techniques.
  • the monoclonal antibody-producing hybridoma can be produced basically by using a known technique as follows. That is, an eIF5A protein in which a tyrosine residue is sulfated, an eIF5A protein, a hypecinated eIF5A protein in which a tyrosine residue is sulfated, a hypecinated eIF5A protein, and a partial peptide of these proteins are used as sensitizing antigens. , This can be produced by immunizing this according to a normal immunization method, fusing the obtained immune cells with a known parent cell by a normal cell fusion method, and screening monoclonal antibody-producing cells by a normal screening method. Specifically, the following may be used to prepare a monoclonal antibody.
  • Purified secretory eIF5A protein, eIFA protein, partial peptide of eIF5A protein containing tyrosine residue that can be sulfated, and the like can be used as a sensitizing antigen.
  • the partial peptide can be obtained by chemical synthesis from the amino acid sequence of the human eIF5A protein, a part of the eIF5A gene can be incorporated into an expression vector, and a natural human eIF5A protein can be obtained by a proteolytic enzyme. It can also be obtained by disassembling.
  • the portion and size of the human eIF5A protein used as a partial peptide is not limited.
  • the mammal immunized with the sensitizing antigen is not particularly limited, but is preferably selected in consideration of compatibility with the parent cell used for cell fusion, and is generally of rodents. Animals such as mice, rats, hamsters, or birds, rabbits, monkeys and the like are used.
  • the sensitizing antigen is injected intraperitoneally or subcutaneously into a mammal.
  • the sensitizing antigen is diluted to an appropriate amount with PBS (Phosphate-Buffered Saline), physiological saline, or the like, suspended in an appropriate amount, and if desired, a normal adjuvant, for example, Freund complete adjuvant, is mixed in an appropriate amount, and after emulsification, Administer to mammals several times every 4 to 21 days.
  • a suitable carrier can be used during immunization with a sensitizing antigen.
  • a carrier protein such as albumin or keyhole limpet hemocyanin.
  • immune cells are collected from the mammal and subjected to cell fusion, and the preferred immune cells are particularly splenic. Examples include cells.
  • Mammalian myeloma cells are used as the other parent cell fused with the immune cells.
  • the myeloma cells are derived from various known cell lines such as P3 (P3x63Ag8.653) (J. Immunol. (1979) 123, 1548-1550), P3x63Ag8U. 1 (Curent Topics in Microbiology and Immunology (1978) 81, 1-7), NS-1 (Kohler. G. and Milstein, C. Eur. J. Immunol. (1976) 6,511-518), MPC-11 (Margulies. DH et al., Cell (1976) 8,405-415), SP2 / 0 (Shumman, M.
  • the cell fusion of the immune cell and the myeloma cell is basically a known method, for example, the method of Kohler. G. and Milstein, C., Methods Enzymol. (1981) 73,3- 46) and the like can be performed.
  • the cell fusion is carried out in a normal nutrient culture solution, for example, in the presence of a cell fusion promoter.
  • a cell fusion promoter for example, polyethylene glycol (PEG), Sendai virus (HVJ) and the like are used, and if desired, an auxiliary agent such as dimethyl sulfoxide can be added and used in order to increase the fusion efficiency.
  • the usage ratio of immune cells and myeloma cells can be set arbitrarily. For example, it is preferable to increase the number of immune cells to 1 to 10 times that of myeloma cells.
  • the culture medium used for the cell fusion for example, RPMI1640 culture medium suitable for the growth of the myeloma cell line, MEM culture medium, and other ordinary culture mediums used for this type of cell culture can be used, and further.
  • a serum supplement such as cow fetal serum (FCS) can also be used in combination.
  • a predetermined amount of the immune cells and myeloma cells are well mixed in the culture medium, and a PEG solution (for example, an average molecular weight of about 1000 to 6000) preheated to about 37 ° C. is usually 30 to 60% (for example).
  • a PEG solution for example, an average molecular weight of about 1000 to 6000
  • the desired fusion cells honeybridoma
  • an appropriate culture solution is sequentially added, and the operation of centrifuging to remove the supernatant is repeated to remove cell fusion agents and the like that are unfavorable for the growth of hybridomas.
  • the hybridoma thus obtained is selected by culturing in a normal selective culture medium, for example, a HAT culture medium (a culture medium containing hypoxanthine, aminopterin and thymidine).
  • a HAT culture medium a culture medium containing hypoxanthine, aminopterin and thymidine.
  • the culture in the above HAT culture medium is continued for a sufficient time (usually several days to several weeks) for cells other than the target hybridoma (non-fusion cells) to die.
  • the usual limiting dilution method is then performed to screen and single clone hybridomas that produce the antibody of interest.
  • Screening and single cloning of the target antibody may be performed by a screening method based on a known antigen-antibody reaction.
  • the antigen is bound to a carrier such as beads made of polystyrene or the like or a commercially available 96-well microtiter plate, reacted with the culture supernatant of a hybridoma, the carrier is washed, and then an enzyme-labeled secondary antibody or the like is reacted. Therefore, it can be determined whether or not the culture supernatant contains the antibody of interest that reacts with the sensitizing antigen.
  • a hybridoma that produces the desired antibody can be cloned by a limiting dilution method or the like. At this time, the antigen used for immunization may be used.
  • the hybridoma that produces the monoclonal antibody thus produced can be subcultured in a normal culture medium, and can be stored for a long time in liquid nitrogen.
  • the hybridoma is cultured according to a usual method and obtained as a culture supernatant thereof, or the hybridoma is administered to a mammal compatible with the hybridoma to proliferate and used as ascites.
  • the method of obtaining is adopted.
  • the former method is suitable for obtaining high-purity antibody, while the latter method is suitable for mass production of antibody.
  • the neutralizing antibody used in the present invention is not limited to the whole molecule of the antibody, and may be a fragment of the antibody or a modified product thereof as long as it binds to and neutralizes the secretory eIF5A protein, and a divalent antibody is also used. Valuable antibodies are also included. For example, as an antibody fragment, Fab, F (ab') 2, Fv, Fab / c having one Fab and a complete Fc, or a single in which H chain or L chain Fv is linked with an appropriate linker. Chain Fv (scFv) can be mentioned.
  • the antibody is treated with an enzyme such as papain or pepsin to generate an antibody fragment, or a gene encoding these antibody fragments is constructed and introduced into an expression vector, and then in an appropriate host cell.
  • an enzyme such as papain or pepsin
  • the antibody is treated with an enzyme such as papain or pepsin to generate an antibody fragment, or a gene encoding these antibody fragments is constructed and introduced into an expression vector, and then in an appropriate host cell.
  • ScFv is obtained by linking the H chain V region and the L chain V region of an antibody.
  • the H chain V region and the L chain V region are linked via a linker, preferably a peptide linker (Huston, JS et al., Proc. Natl. Acad. Sci. US. A. (1988) 85,5879-5883).
  • the H chain V region and the L chain V region in scFv may be derived from any of those described as antibodies herein.
  • As the peptide linker linking the V region for example, any single-strand peptide consisting of 12 to 19 amino acid residues is used.
  • the DNA encoding scFv is a DNA encoding the H chain or the H chain V region of the antibody, and a DNA encoding the L chain or the L chain V region, all of those sequences or a desired amino acid sequence.
  • the encoding DNA portion is used as a template, and amplification is performed by the PCR method using a primer pair that defines both ends thereof, and then the DNA encoding the peptide linker portion and both ends thereof are linked to the H chain and the L chain, respectively. It is obtained by combining and amplifying a primer pair specified in 1.
  • an expression vector containing them and a host transformed by the expression vector can be obtained according to a conventional method, and by using the host, it is usual.
  • ScFv can be obtained according to the method.
  • fragments of these antibodies can be produced by the host by acquiring and expressing the gene in the same manner as described above.
  • the "antibody” in the present invention also includes fragments of these antibodies.
  • the neutralizing antibody used in the present invention may be a bispecific antibody (bispecific antibody).
  • the bispecific antibody may be a bispecific antibody having an antigen binding site that recognizes different epitopes on the molecule, or one antigen binding site recognizes a secretory IF5A protein and the other antigen binding site. May recognize a labeling substance or the like.
  • Bispecific antibodies can be prepared by binding HL pairs of two types of antibodies, or by fusing hybridomas that produce different monoclonal antibodies to prepare bispecific antibody-producing fused cells. it can. Furthermore, it is also possible to prepare a bispecific antibody by a genetic engineering method.
  • a neutralizing antibody against secretory eIF5A has an excellent preventive and therapeutic effect on diabetic retinopathy.
  • the effect is superior to that of anti-VEGF drugs.
  • the neutralizing antibody of the present invention specifically exhibits an action of suppressing edema of the retina and suppressing bleeding in the capillaries of the retina.
  • the neutralizing antibody of the present invention is used in combination with an anti-VEGF drug, the edema inhibitory effect and the bleeding inhibitory effect on diabetic retinopathy are synergistically enhanced. Therefore, the combination therapy of the neutralizing antibody of the present invention and the anti-VEGF drug is useful for the treatment of diabetic retinopathy.
  • Anti-VEGF agents include aflibercept, bevacizumab, ranibizumab, sodium pegaptanib and the like.
  • the medicament of the present invention is prepared by mixing, dissolving, granulating, tableting, emulsifying, encapsulating, freeze-drying, etc. the neutralizing antibody together with a pharmaceutically acceptable carrier well known in the art. It can be used as a form of composition.
  • the neutralizing antibody is used in tablets, pills, sugar coatings, soft capsules, hard capsules, solutions, etc., together with pharmaceutically acceptable solvents, excipients, binders, stabilizers, dispersants and the like.
  • Suspensions, emulsions, gels, syrups, slurries and the like can be formulated.
  • the neutralizing antibody is used in injection solutions, suspensions, emulsions, creams, etc., together with pharmaceutically acceptable solvents, excipients, binders, stabilizers, dispersants and the like. It can be formulated into dosage forms such as ointments, inhalants, and suppositories.
  • the neutralizing antibody can be dissolved in an aqueous solution, preferably in a physiologically compatible buffer such as Hanks solution, Ringer solution, or physiological saline buffer.
  • the composition can take the form of suspensions, solutions, emulsions, etc. in oily or aqueous vehicles.
  • the pharmaceutical composition may be produced in the form of a powder, and an aqueous solution or suspension may be prepared using sterile water or the like before use.
  • the neutralizing antibody can be powdered into a powder mixture with a suitable base such as lactose or starch.
  • Suppository formulations can be made by mixing neutralizing antibodies with conventional suppository bases such as cocoa butter.
  • the medicament of the present invention can be encapsulated in a polymer matrix or the like and formulated as a continuous release preparation.
  • the dosage and frequency of administration will vary depending on the dosage form and route of administration, as well as the patient's symptoms, age and body weight, but in general, neutralizing antibodies range from about 0.001 mg to 1000 mg per kg body weight per day, preferably in the range of about 0.001 mg to 1000 mg. It can be administered once to several times daily in the range of about 0.01 mg to 10 mg.
  • Example 1 preparation of neutralizing antibody against secretory eIF5A
  • the anti-ORAIP antibody (clone YSP5-45-36) contains amino acid residues (positions 44-72) of the human eIF5A protein (the 50th lysine residue to be hypinated and the 69th tyrosine residue to be sulfated).
  • a peptide consisting of (including) bound to keyhole lysine hemocyanin (KLH) was used as an antigen.
  • KLH keyhole lysine hemocyanin
  • a hybridoma was created by fusing mouse splenocytes and mouse myeloma cells immunized with this antigen.
  • an antibody that specifically reacts with the amino acid residue (44-72th) of the human eIF5A protein described above was selected by the ELISA method, and a monoclonal antibody (clone YSP5-45-36) was established. ..
  • the obtained hybridoma was deposited as NITE P-02955 at the Patent Microorganisms Depositary Center of the National Institute of Technology and Evaluation.
  • Example 2 (Dissolution of CDR regions of monoclonal antibody) Total cytoplasmic RNA was recovered from the hybridoma produced by clone YSP5-45-36. CDNA was synthesized by RT reaction using primers specific for mouse IgG (H chain, L chain) sequences. Using the synthesized cDNA as a template, 5'RACE cleavage was performed using SMARTer TM RACE5'/3'Kit (TaKaRa Code Z4859N). The consensus sequence obtained was analyzed by IMGT TM , the international ImmunoGeneTechs information system TM http: // www. imgt. The CDR regions were dissected using org.
  • Heavy chain CDR1, heavy chain CDR2, heavy chain CDR3, light chain CDR1, light chain CDR2, and CDR3 are shown in SEQ ID NOs: 1, 2, 3, 4, 5 and 6, respectively.
  • the heavy chain variable region is shown in SEQ ID NO: 7 and FIG. 7, and the light chain variable region is shown in SEQ ID NO: 8 and FIG.
  • Example 3 (Effect on diabetic retinopathy) In diabetic retinopathy, the disappearance of pericytes that line the walls of capillaries is thought to cause a series of vascular abnormalities. In fact, when an inhibitory antibody against platelet-derived growth factor receptor ⁇ (platelet-developed growth factor receptor ⁇ , PDGFR ⁇ ) was administered once intraperitoneally in 1-day-old mice to eliminate pericytes on the retinal vessel wall, postnatal After 8 days, edema and bleeding similar to diabetic retinopathy can be reproduced (Fig. 1, Non-Patent Document 2). By using this diabetic retinopathy model mouse, it is possible to verify the retinal edema / bleeding suppressing effect of various drugs including an anti-VEGF drug (Fig. 2).
  • a single dose of anti-PDGFR ⁇ monoclonal antibody was administered intraperitoneally to 1-day-old mice, and then the neutralizing antibody (anti-ORAIP antibody) of the present invention was intraperitoneally administered daily from 7 days after birth. It was confirmed that retinal edema and bleeding in the above were significantly suppressed (Figs. 3 and 4).
  • FIG. 1 shows a diabetic retinopathy model mouse used in the present invention.
  • a single administration of an anti-PDGFR ⁇ monoclonal antibody into the abdominal cavity of 1-day-old wild-type C57BL / 6 mice causes retinal edema and bleeding after 8 days of age due to the disappearance of pericytes on the retinal blood vessel wall.
  • 10-day-old retinal edema / bleeding is evaluated on a 4-point scale.
  • Grade 1 No retinal hemorrhage / edema
  • Grade 2 Local retinal hemorrhage or edema
  • Grade 3 Retinal edema less than half a circumference
  • Grade 4 Collapse of retinal tissue
  • a single dose of anti-PDGFR ⁇ antibody (40 ⁇ g) was administered intraperitoneally to 1-day-old wild-type C57BL / 6 mice (5 individuals), and human immunoglobulin G (immunoglobulin G, IgG) Fc was administered to one eye on the 8th day after birth, and the opposite eye.
  • FIGS. 3 and 4 show the edema / bleeding suppressing effect in diabetic retinopathy model mice.
  • a single dose of anti-PDGFR ⁇ antibody (40 ⁇ g) was administered intraperitoneally to 1-day-old C57BL / 6 wild-type mice (11 individuals), and from 7 days after birth, 5 individuals were given mouse IgG and 6 individuals were given the neutralizing antibody of the present invention (anti-ORAIP).
  • Antibodies 100 ⁇ g were intraperitoneally administered daily, and both eyes of each individual were analyzed on the 11th day after birth.
  • Example 4 Figure 5 shows the effect of anti-VEGF drug (Aflibercept) monotherapy and anti-VEGF drug (Aflibercept) and anti-ORAIP antibody combination therapy on retinal edema / bleeding using diabetic retinopathy model mice in which pericite has disappeared. Is shown.
  • the experimental method is as follows. (Experimental method using diabetic retinopathy model mice in which pericytes have disappeared) (1) Intraperitoneal administration of 50 ⁇ g of anti-PDGFR ⁇ antibody (clone APB5) on the 1st day after birth (2) Intraperitoneal administration of the following solution (1 ⁇ L) to each group on the 8th day after birth 1) PBS 2) Anti-VEGF drug (Aflibercept) 2 mg / mL in PBS 3) Anti-VEGF drug (Aflibercept) 2 mg / mL + Anti-ORAIP antibody (clone YSP5-45-36) 9.614mg / mL in PBS (3) Determining the grade of retinal edema / bleeding on the 13th day after birth
  • FIG. 5A shows a photograph of the retina of each eyeball in the three groups.
  • FIG. 5B shows the grade of retinal hemorrhage / edema in each group.
  • the anti-VEGF drug (Aflibercept) alone group has an increased proportion of retinas showing a lower grade.
  • the proportion of retinas showing a low grade was further increased as compared with the anti-VEGF drug (Aflibercept) alone administration group. From the above, it was strongly suggested that the combined use of anti-ORAIP antibody with anti-VEGF drug has an additive effect on edema / bleeding suppression.
  • Grades 1 to 4 was scored from 0 to 3 for convenience (Grading score), and the results of comparing the effects of monotherapy and combination therapy on PBS are shown in FIG.
  • the severity of the combination therapy tended to improve compared to the monotherapy.
  • the drug or pharmaceutical composition of the present invention By using the drug or pharmaceutical composition of the present invention, the therapeutic effect on diabetic macular edema of conventionally used drugs such as anti-VEGF drugs can be enhanced. In this disease, there is a problem that recurrence occurs frequently even when the therapeutic effect is obtained by the anti-VEGF drug, and many patients are refractory to the anti-VEGF drug. Therefore, the drug of the present invention is extremely useful. high.

Abstract

Provided is a novel preventive or therapeutic agent for diabetic retinopathy against which the development of effective therapeutic agents has been desired. This preventive or therapeutic agent for diabetic retinopathy contains a neutralizing antibody against secreted eIF5A as an active ingredient.

Description

糖尿病網膜症の予防又は治療薬Preventive or therapeutic agents for diabetic retinopathy
 本発明は、糖尿病網膜症の予防又は治療薬に関する。 The present invention relates to a prophylactic or therapeutic agent for diabetic retinopathy.
 糖尿病網膜症は、糖尿病が原因で網膜で生じる細小血管症であり、黄斑浮腫により視力低下をきたすことに加え、悪化すると眼底出血や網膜剥離を伴って失明に至る場合もある。糖尿病網膜症の予防には、血糖値のコントロールが必要であるが発症した場合には、レーザー光凝固術、硝子体手術の他、硝子体内にステロイドや抗VEGF薬注入療法が行なわれる。しかし、これらの薬物療法の効果は一時的であり、より効果の高い薬物療法が望まれている。 Diabetic retinopathy is a microangiopathy that occurs in the retina due to diabetes, and in addition to causing vision loss due to macular edema, when it worsens, it may lead to blindness with fundus hemorrhage and retinal detachment. To prevent diabetic retinopathy, it is necessary to control the blood glucose level, but when it develops, laser photocoagulation, vitrectomy, and intravitreal steroid or anti-VEGF drug injection therapy are performed. However, the effects of these drug therapies are temporary, and more effective drug therapies are desired.
 一方、本発明者は、低酸素-再酸素条件下、すなわち、酸化ストレス条件下で細胞外に分泌される成分について検討し、分泌型のeIF5A(ORAIPと命名)を発見した。当該分泌型eIF5Aは、eIF5Aのチロシン残基が硫酸化されたタンパク質であり、酸化ストレスを受けた細胞のアポトーシスを誘導していることを見出した。さらに、当該分泌型eIF5Aに対する中和抗体が酸化ストレスによるアポトーシスを抑制し、心筋虚血再灌流障害を抑制することを見出している(特許文献1、非特許文献1)。 On the other hand, the present inventor investigated the components secreted extracellularly under hypoxic-reoxygen conditions, that is, under oxidative stress conditions, and discovered a secretory eIF5A (named ORAIP). It was found that the secretory eIF5A is a protein in which the tyrosine residue of eIF5A is sulfated and induces apoptosis of cells subjected to oxidative stress. Furthermore, it has been found that a neutralizing antibody against the secretory eIF5A suppresses apoptosis due to oxidative stress and suppresses myocardial ischemia-reperfusion injury (Patent Document 1, Non-Patent Document 1).
国際公開第2009/144933号パンフレットInternational Publication No. 2009/144933 Pamphlet
 本発明の課題は、有効な治療薬の開発が望まれている糖尿病網膜症の新たな予防又は治療薬を提供することにある。 An object of the present invention is to provide a new preventive or therapeutic agent for diabetic retinopathy for which the development of an effective therapeutic agent is desired.
 本発明者は、前記治療が困難な疾患の治療薬を開発すべく検討した結果、分泌型eIF5Aに対する中和抗体が糖尿病網膜症に対して優れた予防治療効果を示すことを見出し、本発明を完成した。 As a result of studies for developing a therapeutic agent for the above-mentioned difficult-to-treat diseases, the present inventor has found that a neutralizing antibody against secretory eIF5A exhibits an excellent prophylactic therapeutic effect on diabetic retinopathy. completed.
 すなわち、本発明は、以下の〔1〕~〔12〕を提供するものである。 That is, the present invention provides the following [1] to [12].
〔1〕分泌型eIF5Aに対する中和抗体を有効成分とする、糖尿病網膜症の予防又は治療薬。
〔2〕分泌型eIF5Aに対する中和抗体が、モノクローナル抗体である〔1〕記載の予防又は治療薬。
〔3〕分泌型eIF5Aに対する中和抗体が、配列番号1で示されるアミノ酸配列を含む重鎖CDR1、配列番号2で示されるアミノ酸配列を含む重鎖CDR2、配列番号3で示されるアミノ酸配列を含む重鎖CDR3、配列番号4で示されるアミノ酸配列を含む軽鎖CDR1、配列番号5で示されるアミノ酸配列を含む軽鎖CDR2、及び配列番号6で示されるアミノ酸配列を含む軽鎖CDR3を有する中和抗体である〔1〕又は〔2〕記載の予防又は治療薬。
〔4〕糖尿病網膜症の予防又は治療薬製造のための、分泌型eIF5Aに対する中和抗体の使用。
〔5〕分泌型eIF5Aに対する中和抗体が、モノクローナル抗体である〔4〕記載の使用。
〔6〕分泌型eIF5Aに対する中和抗体が、配列番号1で示されるアミノ酸配列を含む重鎖CDR1、配列番号2で示されるアミノ酸配列を含む重鎖CDR2、配列番号3で示されるアミノ酸配列を含む重鎖CDR3、配列番号4で示されるアミノ酸配列を含む軽鎖CDR1、配列番号5で示されるアミノ酸配列を含む軽鎖CDR2、及び配列番号6で示されるアミノ酸配列を含む軽鎖CDR3を有する中和抗体である〔4〕又は〔5〕記載の使用。
〔7〕糖尿病網膜症の予防又は治療に使用するための、分泌型eIF5Aに対する中和抗体。
〔8〕分泌型eIF5Aに対する中和抗体が、モノクローナル抗体である〔7〕記載の中和抗体。
〔9〕分泌型eIF5Aに対する中和抗体が、配列番号1で示されるアミノ酸配列を含む重鎖CDR1、配列番号2で示されるアミノ酸配列を含む重鎖CDR2、配列番号3で示されるアミノ酸配列を含む重鎖CDR3、配列番号4で示されるアミノ酸配列を含む軽鎖CDR1、配列番号5で示されるアミノ酸配列を含む軽鎖CDR2、及び配列番号6で示されるアミノ酸配列を含む軽鎖CDR3を有する中和抗体である〔7〕又は〔8〕記載の中和抗体。
〔10〕分泌型eIF5Aに対する中和抗体の有効量を投与することを特徴とする糖尿病網膜症の予防又は治療方法。
〔11〕分泌型eIF5Aに対する中和抗体が、モノクローナル抗体である〔10〕記載の方法。
〔12〕分泌型eIF5Aに対する中和抗体が、配列番号1で示されるアミノ酸配列を含む重鎖CDR1、配列番号2で示されるアミノ酸配列を含む重鎖CDR2、配列番号3で示されるアミノ酸配列を含む重鎖CDR3、配列番号4で示されるアミノ酸配列を含む軽鎖CDR1、配列番号5で示されるアミノ酸配列を含む軽鎖CDR2、及び配列番号6で示されるアミノ酸配列を含む軽鎖CDR3を有する中和抗体である〔10〕又は〔11〕記載の方法。
[1] A prophylactic or therapeutic agent for diabetic retinopathy, which comprises a neutralizing antibody against secretory eIF5A as an active ingredient.
[2] The prophylactic or therapeutic agent according to [1], wherein the neutralizing antibody against the secretory eIF5A is a monoclonal antibody.
[3] The neutralizing antibody against the secretory eIF5A contains a heavy chain CDR1 containing the amino acid sequence shown in SEQ ID NO: 1, a heavy chain CDR2 containing the amino acid sequence shown in SEQ ID NO: 2, and an amino acid sequence shown in SEQ ID NO: 3. Neutralization with heavy chain CDR3, light chain CDR1 containing the amino acid sequence set forth in SEQ ID NO: 4, light chain CDR2 containing the amino acid sequence set forth in SEQ ID NO: 5, and light chain CDR3 containing the amino acid sequence set forth in SEQ ID NO: 6. The prophylactic or therapeutic agent according to [1] or [2], which is an antibody.
[4] Use of a neutralizing antibody against secretory eIF5A for the production of a prophylactic or therapeutic drug for diabetic retinopathy.
[5] The use according to [4], wherein the neutralizing antibody against the secretory eIF5A is a monoclonal antibody.
[6] The neutralizing antibody against the secretory eIF5A contains a heavy chain CDR1 containing the amino acid sequence shown in SEQ ID NO: 1, a heavy chain CDR2 containing the amino acid sequence shown in SEQ ID NO: 2, and an amino acid sequence shown in SEQ ID NO: 3. Neutralization with heavy chain CDR3, light chain CDR1 containing the amino acid sequence set forth in SEQ ID NO: 4, light chain CDR2 containing the amino acid sequence set forth in SEQ ID NO: 5, and light chain CDR3 containing the amino acid sequence set forth in SEQ ID NO: 6. Use according to [4] or [5], which is an antibody.
[7] A neutralizing antibody against secretory eIF5A for use in the prevention or treatment of diabetic retinopathy.
[8] The neutralizing antibody according to [7], wherein the neutralizing antibody against the secretory eIF5A is a monoclonal antibody.
[9] The neutralizing antibody against the secretory eIF5A contains a heavy chain CDR1 containing the amino acid sequence shown in SEQ ID NO: 1, a heavy chain CDR2 containing the amino acid sequence shown in SEQ ID NO: 2, and an amino acid sequence shown in SEQ ID NO: 3. Neutralization with heavy chain CDR3, light chain CDR1 containing the amino acid sequence set forth in SEQ ID NO: 4, light chain CDR2 containing the amino acid sequence set forth in SEQ ID NO: 5, and light chain CDR3 containing the amino acid sequence set forth in SEQ ID NO: 6. The neutralizing antibody according to [7] or [8], which is an antibody.
[10] A method for preventing or treating diabetic retinopathy, which comprises administering an effective amount of a neutralizing antibody against secretory eIF5A.
[11] The method according to [10], wherein the neutralizing antibody against the secretory eIF5A is a monoclonal antibody.
[12] The neutralizing antibody against the secretory eIF5A contains a heavy chain CDR1 containing the amino acid sequence shown in SEQ ID NO: 1, a heavy chain CDR2 containing the amino acid sequence shown in SEQ ID NO: 2, and an amino acid sequence shown in SEQ ID NO: 3. Neutralization with heavy chain CDR3, light chain CDR1 containing the amino acid sequence set forth in SEQ ID NO: 4, light chain CDR2 containing the amino acid sequence set forth in SEQ ID NO: 5, and light chain CDR3 containing the amino acid sequence set forth in SEQ ID NO: 6. The method according to [10] or [11], which is an antibody.
 本発明の医薬又は医薬組成物を用いれば、従来用いられている薬物、例えば抗VEGF薬等に比べて優れた糖尿病網膜症治療効果が得られる。この疾患は、優れた治療薬がなかった疾患であり、本発明の医薬は極めて有用性が高い。 When the drug or pharmaceutical composition of the present invention is used, an excellent therapeutic effect on diabetic retinopathy can be obtained as compared with conventionally used drugs such as anti-VEGF drugs. This disease is a disease for which there is no excellent therapeutic agent, and the medicament of the present invention is extremely useful.
ペリサイトを消失させた糖尿病網膜症モデルマウスにおける浮腫・出血を示す。It shows edema and bleeding in a diabetic retinopathy model mouse in which pericytes have disappeared. 糖尿病網膜症モデルマウスに対するVEGF受容体デコイの浮腫・出血抑制効果を示す。It shows the edema / bleeding inhibitory effect of VEGF receptor decoy on diabetic retinopathy model mice. 糖尿病網膜症モデルマウスに対する本発明中和抗体(抗ORAIP抗体)の浮腫・出血抑制効果を示す。The edema / bleeding inhibitory effect of the neutralizing antibody (anti-ORAIP antibody) of the present invention on a diabetic retinopathy model mouse is shown. 糖尿病網膜症モデルマウスに対する本発明中和抗体(抗ORAIP抗体)の浮腫・出血抑制効果を示す。The edema / bleeding inhibitory effect of the neutralizing antibody (anti-ORAIP antibody) of the present invention on a diabetic retinopathy model mouse is shown. ペリサイト消失糖尿病網膜症モデルマウスに対する抗VEGF薬及び本発明中和抗体(抗ORAIP抗体)の効果を示す。The effects of the anti-VEGF drug and the neutralizing antibody of the present invention (anti-ORAIP antibody) on a pericyte-disappearing diabetic retinopathy model mouse are shown. ペリサイト消失糖尿病網膜症モデルマウスに対する抗VEGF薬及び本発明中和抗体(抗ORAIP抗体)の効果を示す。The effects of the anti-VEGF drug and the neutralizing antibody of the present invention (anti-ORAIP antibody) on a pericyte-disappearing diabetic retinopathy model mouse are shown. 重鎖可変領域のアミノ酸配列を示す。The amino acid sequence of the heavy chain variable region is shown. 軽鎖可変領域のアミノ酸配列を示す。The amino acid sequence of the light chain variable region is shown.
 本発明の医薬の有効成分は、分泌型eIF5Aに対する中和抗体である。 The active ingredient of the medicament of the present invention is a neutralizing antibody against the secretory eIF5A.
 真核生物翻訳開始因子(eIF)5Aは、その名のとおり翻訳開始因子として同定された物質である。eIF5Aは、細胞質内において発現し、デオキシハイプシンシンターゼ(DHS)によりデオキシハイプシン化され(デオキシハイプシンeIF5A)、次いでデオキシハイプシンハイドロキシラーゼ(DOHH)によりハイプシン化され(ハイプシン化eIF5A)、このハイプシン化eIF5Aが細胞増殖作用を示すことが知られている。また、eIF5Aは、細胞外に分泌され、チロシン残基が硫酸化された分泌型eIF5Aに変化する。当該分泌型eIF5Aは、酸化ストレスを受けた細胞のアポトーシスを誘導する。そして、この分泌型eIF5Aに対する中和抗体は、酸化ストレスによるアポトーシスを強く抑制し、心筋・脳虚血再灌流障害を抑制する(特許文献1、非特許文献1)。しかし、この中和抗体が、糖尿病網膜症に対してどのような作用をするのかについては知られていない。 Eukaryotic translation initiation factor (eIF) 5A is, as the name implies, a substance identified as a translation initiation factor. eIF5A is expressed in the cytoplasm, deoxyhypsinized by deoxyhypsin synthase (DHS) (deoxyhypsin eIF5A), then hypsinized by deoxyhypsin hydroxylase (DOHH) (hypsinized eIF5A), and this hypsin Chemical eIF5A is known to exhibit a cell proliferation effect. In addition, eIF5A is secreted extracellularly and changes to a secretory eIF5A in which tyrosine residues are sulfated. The secretory eIF5A induces apoptosis in oxidatively stressed cells. The neutralizing antibody against this secretory eIF5A strongly suppresses apoptosis due to oxidative stress and suppresses myocardial / cerebral ischemia-reperfusion injury (Patent Document 1, Non-Patent Document 1). However, it is not known how this neutralizing antibody acts on diabetic retinopathy.
 本発明に用いられる中和抗体は、分泌型eIF5Aタンパク質に結合すればよく、その由来、種類(モノクローナル、ポリクローナル)および形状を問わない。具体的には、マウス抗体、ラット抗体、トリ抗体、ヒト抗体、キメラ抗体、ヒト化抗体などの公知の抗体を用いることができる。抗体はポリクローナル抗体でもよいが、モノクローナル抗体であることが好ましい。モノクローナル抗体は、独立行政法人製品評価技術基盤機構特許微生物寄託センターにNITE P-02955として寄託されたハイブリドーマが産生するモノクローナル抗体が好ましい。 The neutralizing antibody used in the present invention may bind to the secretory eIF5A protein, regardless of its origin, type (monoclonal, polyclonal) and shape. Specifically, known antibodies such as mouse antibody, rat antibody, tri-antibody, human antibody, chimeric antibody, and humanized antibody can be used. The antibody may be a polyclonal antibody, but is preferably a monoclonal antibody. As the monoclonal antibody, a monoclonal antibody produced by a hybridoma deposited as NITE P-02955 at the National Institute of Technology and Evaluation Patent Microorganisms Depositary is preferable.
 本発明に用いられる中和抗体の好ましい例は、配列番号1で示されるアミノ酸配列を含む重鎖CDR1、配列番号2で示されるアミノ酸配列を含む重鎖CDR2、配列番号3で示されるアミノ酸配列を含む重鎖CDR3、配列番号4で示されるアミノ酸配列を含む軽鎖CDR1、配列番号5で示されるアミノ酸配列を含む軽鎖CDR2、及び配列番号6で示されるアミノ酸配列を含む軽鎖CDR3を有する中和抗体である。
 さらに好ましい中和抗体の例は、配列番号7で示されるアミノ酸配列を含む重鎖可変領域及び配列番号8で示されるアミノ酸配列を含む軽鎖可変領域を有する中和抗体である。ここで、前記の「アミノ酸配列を含む」には、当該アミノ酸配列において、1から数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列である場合が含まれる。
Preferred examples of the neutralizing antibody used in the present invention include a heavy chain CDR1 containing the amino acid sequence shown in SEQ ID NO: 1, a heavy chain CDR2 containing the amino acid sequence shown in SEQ ID NO: 2, and an amino acid sequence shown in SEQ ID NO: 3. Among having a heavy chain CDR3 containing, a light chain CDR1 containing the amino acid sequence set forth in SEQ ID NO: 4, a light chain CDR2 containing the amino acid sequence set forth in SEQ ID NO: 5, and a light chain CDR3 containing the amino acid sequence set forth in SEQ ID NO: 6. It is a Japanese antibody.
A more preferred example of a neutralizing antibody is a neutralizing antibody having a heavy chain variable region containing the amino acid sequence set forth in SEQ ID NO: 7 and a light chain variable region containing the amino acid sequence set forth in SEQ ID NO: 8. Here, the above-mentioned "including an amino acid sequence" includes a case where one to several amino acids are deleted, substituted or added in the amino acid sequence.
 本発明で使用される中和抗体は、公知の手段を用いてポリクローナルまたはモノクローナル抗体として得ることができる。本発明で使用される中和抗体として、哺乳動物由来あるいはトリ由来モノクローナル抗体が好ましい。特に、哺乳動物由来のモノクローナル抗体が好ましい。哺乳動物由来のモノクローナル抗体は、ハイブリドーマにより産生されるもの、および遺伝子工学的手法により抗体遺伝子を含む発現ベクターで形質転換した宿主に産生されるものを含む。 The neutralizing antibody used in the present invention can be obtained as a polyclonal or monoclonal antibody by using known means. As the neutralizing antibody used in the present invention, a mammalian-derived or avian-derived monoclonal antibody is preferable. In particular, mammalian-derived monoclonal antibodies are preferred. Monoclonal antibodies derived from mammals include those produced by hybridomas and those produced by hosts transformed with an expression vector containing an antibody gene by genetic engineering techniques.
 モノクローナル抗体産生ハイブリドーマは、基本的には公知技術を使用し、以下のようにして作製できる。すなわち、チロシン残基が硫酸化されたeIF5Aタンパク質、eIF5Aタンパク質、チロシン残基が硫酸化されたハイプシン化eIF5Aタンパク質、ハイプシン化eIF5Aタンパク質、及びこれらのタンパク質の部分ペプチド等を感作抗原として使用して、これを通常の免疫方法に従って免疫し、得られる免疫細胞を通常の細胞融合法によって公知の親細胞と融合させ、通常のスクリーニング法により、モノクローナルな抗体産生細胞をスクリーニングすることによって作製できる。
 具体的には、モノクローナル抗体を作製するには次のようにすればよい。
The monoclonal antibody-producing hybridoma can be produced basically by using a known technique as follows. That is, an eIF5A protein in which a tyrosine residue is sulfated, an eIF5A protein, a hypecinated eIF5A protein in which a tyrosine residue is sulfated, a hypecinated eIF5A protein, and a partial peptide of these proteins are used as sensitizing antigens. , This can be produced by immunizing this according to a normal immunization method, fusing the obtained immune cells with a known parent cell by a normal cell fusion method, and screening monoclonal antibody-producing cells by a normal screening method.
Specifically, the following may be used to prepare a monoclonal antibody.
 精製分泌型eIF5Aタンパク質、eIFAタンパク質、硫酸化され得るチロシン残基を含むeIF5Aタンパク質の部分ペプチド等を感作抗原として用いることができる。この際、部分ペプチドはヒトeIF5Aタンパク質のアミノ酸配列より化学合成により得ることもできるし、eIF5A遺伝子の一部を発現ベクターに組込んで得ることもでき、さらに天然のヒトeIF5Aタンパク質をタンパク質分解酵素により分解することによっても得ることができる。部分ペプチドとして用いるヒトeIF5Aタンパク質の部分および大きさは限られない。 Purified secretory eIF5A protein, eIFA protein, partial peptide of eIF5A protein containing tyrosine residue that can be sulfated, and the like can be used as a sensitizing antigen. At this time, the partial peptide can be obtained by chemical synthesis from the amino acid sequence of the human eIF5A protein, a part of the eIF5A gene can be incorporated into an expression vector, and a natural human eIF5A protein can be obtained by a proteolytic enzyme. It can also be obtained by disassembling. The portion and size of the human eIF5A protein used as a partial peptide is not limited.
 感作抗原で免疫される哺乳動物としては、特に限定されるものではないが、細胞融合に使用する親細胞との適合性を考慮して選択するのが好ましく、一般的にはげっ歯類の動物、例えば、マウス、ラット、ハムスター、あるいはトリ、ウサギ、サル等が使用される。 The mammal immunized with the sensitizing antigen is not particularly limited, but is preferably selected in consideration of compatibility with the parent cell used for cell fusion, and is generally of rodents. Animals such as mice, rats, hamsters, or birds, rabbits, monkeys and the like are used.
 感作抗原を動物に免疫するには、公知の方法に従って行われる。例えば、一般的方法として、感作抗原を哺乳動物の腹腔内または皮下に注射することにより行われる。具体的には、感作抗原をPBS(Phosphate-Buffered Saline)や生理食塩水等で適当量に希釈、懸濁したものに所望により通常のアジュバント、例えばフロイント完全アジュバントを適量混合し、乳化後、哺乳動物に4~21日毎に数回投与する。また、感作抗原免疫時に適当な担体を使用することもできる。特に分子量の小さい部分ペプチドを感作抗原として用いる場合には、アルブミン、キーホールリンペットヘモシアニン等の担体タンパク質と結合させて免疫することが望ましい。 To immunize an animal with a sensitizing antigen, a known method is used. For example, as a general method, the sensitizing antigen is injected intraperitoneally or subcutaneously into a mammal. Specifically, the sensitizing antigen is diluted to an appropriate amount with PBS (Phosphate-Buffered Saline), physiological saline, or the like, suspended in an appropriate amount, and if desired, a normal adjuvant, for example, Freund complete adjuvant, is mixed in an appropriate amount, and after emulsification, Administer to mammals several times every 4 to 21 days. In addition, a suitable carrier can be used during immunization with a sensitizing antigen. In particular, when a partial peptide having a small molecular weight is used as a sensitizing antigen, it is desirable to immunize by binding to a carrier protein such as albumin or keyhole limpet hemocyanin.
 このように哺乳動物を免疫し、血清中に所望の抗体レベルが上昇するのを確認した後に、哺乳動物から免疫細胞を採取し、細胞融合に付されるが、好ましい免疫細胞としては、特に脾細胞が挙げられる。 After immunizing the mammal in this way and confirming that the desired antibody level rises in the serum, immune cells are collected from the mammal and subjected to cell fusion, and the preferred immune cells are particularly splenic. Examples include cells.
 前記免疫細胞と融合される他方の親細胞として、哺乳動物のミエローマ細胞を用いる。このミエローマ細胞は、公知の種々の細胞株、例えば、P3(P3x63Ag8.653)(J.Immnol.(1979)123,1548-1550)、P3x63Ag8U.1(Current Topics in Microbiology and Immunology(1978)81,1-7)、NS-1(Kohler.G.and Milstein,C.Eur.J.Immunol.(1976)6,511-519)、MPC-11(Margulies.D.H.et al.,Cell(1976)8,405-415)、SP2/0(Shulman,M.et al.,Nature(1978)276,269-270)、FO(de St.Groth,S.F.et al.,J.Immunol.Methods(1980)35,1-21)、S194(Trowbridge,I.S.J.Exp.Med.(1978)148,313-323)、R210(Galfre,G.et al.,Nature(1979)277,131-133)等が好適に使用される。 Mammalian myeloma cells are used as the other parent cell fused with the immune cells. The myeloma cells are derived from various known cell lines such as P3 (P3x63Ag8.653) (J. Immunol. (1979) 123, 1548-1550), P3x63Ag8U. 1 (Curent Topics in Microbiology and Immunology (1978) 81, 1-7), NS-1 (Kohler. G. and Milstein, C. Eur. J. Immunol. (1976) 6,511-518), MPC-11 (Margulies. DH et al., Cell (1976) 8,405-415), SP2 / 0 (Shumman, M. et al., Nature (1978) 276,269-270), FO (de St. Groth, SF et al., J. Immunol. Methods (1980) 35, 1-21), S194 (Trovebridge, ISJ Exp. Med. (1978) 148, 313-323), R210 (Galfle, G. et al., Nature (1979) 277, 131-133) and the like are preferably used.
 前記免疫細胞とミエローマ細胞との細胞融合は、基本的には公知の方法、たとえば、ケーラーとミルステインらの方法(Kohler.G.and Milstein,C.、Methods Enzymol.(1981)73,3-46)等に準じて行うことができる。 The cell fusion of the immune cell and the myeloma cell is basically a known method, for example, the method of Kohler. G. and Milstein, C., Methods Enzymol. (1981) 73,3- 46) and the like can be performed.
 より具体的には、前記細胞融合は、例えば細胞融合促進剤の存在下に通常の栄養培養液中で実施される。融合促進剤としては、例えばポリエチレングリコール(PEG)、センダイウイルス(HVJ)等が使用され、さらに所望により融合効率を高めるためにジメチルスルホキシド等の補助剤を添加使用することもできる。 More specifically, the cell fusion is carried out in a normal nutrient culture solution, for example, in the presence of a cell fusion promoter. As the fusion accelerator, for example, polyethylene glycol (PEG), Sendai virus (HVJ) and the like are used, and if desired, an auxiliary agent such as dimethyl sulfoxide can be added and used in order to increase the fusion efficiency.
 免疫細胞とミエローマ細胞との使用割合は任意に設定することができる。例えば、ミエローマ細胞に対して免疫細胞を1~10倍とするのが好ましい。前記細胞融合に用いる培養液としては、例えば、前記ミエローマ細胞株の増殖に好適なRPMI1640培養液、MEM培養液、その他、この種の細胞培養に用いられる通常の培養液が使用可能であり、さらに、牛胎児血清(FCS)等の血清補液を併用することもできる。 The usage ratio of immune cells and myeloma cells can be set arbitrarily. For example, it is preferable to increase the number of immune cells to 1 to 10 times that of myeloma cells. As the culture medium used for the cell fusion, for example, RPMI1640 culture medium suitable for the growth of the myeloma cell line, MEM culture medium, and other ordinary culture mediums used for this type of cell culture can be used, and further. , A serum supplement such as cow fetal serum (FCS) can also be used in combination.
 細胞融合は、前記免疫細胞とミエローマ細胞との所定量を前記培養液中でよく混合し、予め37℃程度に加温したPEG溶液(例えば平均分子量1000~6000程度)を通常30~60%(w/v)の濃度で添加し、混合することによって目的とする融合細胞(ハイブリドーマ)を形成する。続いて、適当な培養液を逐次添加し、遠心して上清を除去する操作を繰り返すことによりハイブリドーマの生育に好ましくない細胞融合剤等を除去する。 For cell fusion, a predetermined amount of the immune cells and myeloma cells are well mixed in the culture medium, and a PEG solution (for example, an average molecular weight of about 1000 to 6000) preheated to about 37 ° C. is usually 30 to 60% (for example). By adding at a concentration of w / v) and mixing, the desired fusion cells (hybridoma) are formed. Subsequently, an appropriate culture solution is sequentially added, and the operation of centrifuging to remove the supernatant is repeated to remove cell fusion agents and the like that are unfavorable for the growth of hybridomas.
 このようにして得られたハイブリドーマは、通常の選択培養液、例えばHAT培養液(ヒポキサンチン、アミノプテリンおよびチミジンを含む培養液)で培養することにより選択される。上記HAT培養液での培養は、目的とするハイブリドーマ以外の細胞(非融合細胞)が死滅するのに十分な時間(通常、数日~数週間)継続する。ついで、通常の限界希釈法を実施し、目的とする抗体を産生するハイブリドーマのスクリーニングおよび単一クローニングを行う。 The hybridoma thus obtained is selected by culturing in a normal selective culture medium, for example, a HAT culture medium (a culture medium containing hypoxanthine, aminopterin and thymidine). The culture in the above HAT culture medium is continued for a sufficient time (usually several days to several weeks) for cells other than the target hybridoma (non-fusion cells) to die. The usual limiting dilution method is then performed to screen and single clone hybridomas that produce the antibody of interest.
 目的とする抗体のスクリーニングおよび単一クローニングは、公知の抗原抗体反応に基づくスクリーニング方法で行えばよい。例えば、ポリスチレン等でできたビーズや市販の96ウェルのマイクロタイタープレート等の担体に抗原を結合させ、ハイブリドーマの培養上清と反応させ、担体を洗浄した後に酵素標識二次抗体等を反応させることにより、培養上清中に感作抗原と反応する目的とする抗体が含まれるかどうか決定できる。目的とする抗体を産生するハイブリドーマを限界希釈法等によりクローニングすることができる。この際、抗原としては免疫に用いたものを用いればよい。 Screening and single cloning of the target antibody may be performed by a screening method based on a known antigen-antibody reaction. For example, the antigen is bound to a carrier such as beads made of polystyrene or the like or a commercially available 96-well microtiter plate, reacted with the culture supernatant of a hybridoma, the carrier is washed, and then an enzyme-labeled secondary antibody or the like is reacted. Therefore, it can be determined whether or not the culture supernatant contains the antibody of interest that reacts with the sensitizing antigen. A hybridoma that produces the desired antibody can be cloned by a limiting dilution method or the like. At this time, the antigen used for immunization may be used.
 このようにして作製されるモノクローナル抗体を産生するハイブリドーマは、通常の培養液中で継代培養することが可能であり、また、液体窒素中で長期保存することが可能である。 The hybridoma that produces the monoclonal antibody thus produced can be subcultured in a normal culture medium, and can be stored for a long time in liquid nitrogen.
 当該ハイブリドーマからモノクローナル抗体を取得するには、当該ハイブリドーマを通常の方法に従い培養し、その培養上清として得る方法、あるいはハイブリドーマをこれと適合性がある哺乳動物に投与して増殖させ、その腹水として得る方法などが採用される。前者の方法は、高純度の抗体を得るのに適しており、一方、後者の方法は、抗体の大量生産に適している。 To obtain a monoclonal antibody from the hybridoma, the hybridoma is cultured according to a usual method and obtained as a culture supernatant thereof, or the hybridoma is administered to a mammal compatible with the hybridoma to proliferate and used as ascites. The method of obtaining is adopted. The former method is suitable for obtaining high-purity antibody, while the latter method is suitable for mass production of antibody.
 本発明で使用される中和抗体は、抗体の全体分子に限られず、分泌型eIF5Aタンパク質に結合して中和する限り、抗体の断片またはその修飾物であってもよく、二価抗体も一価抗体も含まれる。例えば、抗体の断片としては、Fab、F(ab’)2、Fv、1個のFabと完全なFcを有するFab/c、またはH鎖若しくはL鎖のFvを適当なリンカーで連結させたシングルチェインFv(scFv)が挙げられる。具体的には、抗体を酵素、例えばパパイン、ペプシンで処理し抗体断片を生成させるか、または、これら抗体断片をコードする遺伝子を構築し、これを発現ベクターに導入した後、適当な宿主細胞で発現させる(例えば、Co,M.S.et al.,J.Immunol.(1994)152,2968-2976、Better,M.& Horwitz,A.H.Methods in Enzymology(1989)178,476-496,Academic Press,Inc.,Plueckthun,A.& Skerra,A.Methods in Enzymology(1989)178,476-496,Academic Press,Inc.,Lamoyi,E.,Methods in Enzymology(1989)121,652-663、Rousseaux,J.et al.,Methods in Enzymology(1989)121,663-669、Bird,R.E.et al.,TIBTECH(1991)9,132-137参照)。 The neutralizing antibody used in the present invention is not limited to the whole molecule of the antibody, and may be a fragment of the antibody or a modified product thereof as long as it binds to and neutralizes the secretory eIF5A protein, and a divalent antibody is also used. Valuable antibodies are also included. For example, as an antibody fragment, Fab, F (ab') 2, Fv, Fab / c having one Fab and a complete Fc, or a single in which H chain or L chain Fv is linked with an appropriate linker. Chain Fv (scFv) can be mentioned. Specifically, the antibody is treated with an enzyme such as papain or pepsin to generate an antibody fragment, or a gene encoding these antibody fragments is constructed and introduced into an expression vector, and then in an appropriate host cell. Express (eg, Co, M.S. et al., J. Immunol. (1994) 152, 2966-2976, Better, M. & Horwitz, A. H. Methods in Enzymeology (1989) 178, 476-496. , Academic Press, Inc., Pepsin, A. & Skera, A. Methods in Enzymeology (1989) 178,476-496, Academic Press, Inc., Lamoyi, E., Metan662, , Rousseaux, J. et al., Methods in Enzymeology (1989) 121, 663-669, Bird, R. E. et al., TIBTECH (1991) 9, 132-137).
 scFvは、抗体のH鎖V領域とL鎖V領域とを連結することにより得られる。このscFvにおいて、H鎖V領域とL鎖V領域は、リンカー、好ましくはペプチドリンカーを介して連結される(Huston,J.S.et al.,Proc.Natl.Acad.Sci.U.S.A.(1988)85,5879-5883)。scFvにおけるH鎖V領域およびL鎖V領域は、本明細書に抗体として記載されたもののいずれの由来であってもよい。V領域を連結するペプチドリンカーとしては、例えばアミノ酸12~19残基からなる任意の一本鎖ペプチドが用いられる。 ScFv is obtained by linking the H chain V region and the L chain V region of an antibody. In this scFv, the H chain V region and the L chain V region are linked via a linker, preferably a peptide linker (Huston, JS et al., Proc. Natl. Acad. Sci. US. A. (1988) 85,5879-5883). The H chain V region and the L chain V region in scFv may be derived from any of those described as antibodies herein. As the peptide linker linking the V region, for example, any single-strand peptide consisting of 12 to 19 amino acid residues is used.
 scFvをコードするDNAは、前記抗体のH鎖またはH鎖V領域をコードするDNA、およびL鎖またはL鎖V領域をコードするDNAのうち、それらの配列のうちの全部または所望のアミノ酸配列をコードするDNA部分を鋳型とし、その両端を規定するプライマー対を用いてPCR法により増幅し、次いで、さらにペプチドリンカー部分をコードするDNA、およびその両端が各々H鎖、L鎖と連結されるように規定するプライマー対を組み合せて増幅することにより得られる。 The DNA encoding scFv is a DNA encoding the H chain or the H chain V region of the antibody, and a DNA encoding the L chain or the L chain V region, all of those sequences or a desired amino acid sequence. The encoding DNA portion is used as a template, and amplification is performed by the PCR method using a primer pair that defines both ends thereof, and then the DNA encoding the peptide linker portion and both ends thereof are linked to the H chain and the L chain, respectively. It is obtained by combining and amplifying a primer pair specified in 1.
 また、一旦scFvをコードするDNAが作製されると、それらを含有する発現ベクター、および該発現ベクターにより形質転換された宿主を常法に従って得ることができ、また、その宿主を用いることにより、常法に従ってscFvを得ることができる。 Further, once the DNA encoding scFv is prepared, an expression vector containing them and a host transformed by the expression vector can be obtained according to a conventional method, and by using the host, it is usual. ScFv can be obtained according to the method.
 これら抗体の断片は、前記と同様にしてその遺伝子を取得し発現させ、宿主により産生させることができる。本発明における「抗体」にはこれらの抗体の断片も包含される。 Fragments of these antibodies can be produced by the host by acquiring and expressing the gene in the same manner as described above. The "antibody" in the present invention also includes fragments of these antibodies.
 さらに、本発明で使用される中和抗体は、二重特異性抗体(bispecific antibody)であってもよい。二重特異性抗体は分子上の異なるエピトープを認識する抗原結合部位を有する二重特異性抗体であってもよいし、一方の抗原結合部位が分泌型IF5Aタンパク質を認識し、他方の抗原結合部位が標識物質等を認識してもよい。二重特異性抗体は2種類の抗体のHL対を結合させて作製することもできるし、異なるモノクローナル抗体を産生するハイブリドーマを融合させて二重特異性抗体産生融合細胞を作製し、得ることもできる。さらに、遺伝子工学的手法により二重特異性抗体を作製することも可能である。 Furthermore, the neutralizing antibody used in the present invention may be a bispecific antibody (bispecific antibody). The bispecific antibody may be a bispecific antibody having an antigen binding site that recognizes different epitopes on the molecule, or one antigen binding site recognizes a secretory IF5A protein and the other antigen binding site. May recognize a labeling substance or the like. Bispecific antibodies can be prepared by binding HL pairs of two types of antibodies, or by fusing hybridomas that produce different monoclonal antibodies to prepare bispecific antibody-producing fused cells. it can. Furthermore, it is also possible to prepare a bispecific antibody by a genetic engineering method.
 後記実施例に示すように、分泌型eIF5Aに対する中和抗体は、優れた糖尿病網膜症予防治療作用を有する。その効果は、抗VEGF薬に比べて優れている。
 ここで、糖尿病網膜症については、本発明の中和抗体は、具体的には、網膜の浮腫を抑制し、また網膜の毛細血管における出血を抑制する作用を示す。
 また、本発明の中和抗体と抗VEGF薬を併用すると、糖尿病網膜症に対する浮腫抑制作用、出血抑制作用が相乗的に増強される。従って、本発明の中和抗体と抗VEGF薬の併用療法は、糖尿病網膜症に治療に有用である。
 抗VEGF薬としては、アフリベルセプト、ベバシズマブ、ラニビズマブ、ぺガプタニブナトリウムなどが挙げられる。
As shown in Examples below, a neutralizing antibody against secretory eIF5A has an excellent preventive and therapeutic effect on diabetic retinopathy. The effect is superior to that of anti-VEGF drugs.
Here, with respect to diabetic retinopathy, the neutralizing antibody of the present invention specifically exhibits an action of suppressing edema of the retina and suppressing bleeding in the capillaries of the retina.
Further, when the neutralizing antibody of the present invention is used in combination with an anti-VEGF drug, the edema inhibitory effect and the bleeding inhibitory effect on diabetic retinopathy are synergistically enhanced. Therefore, the combination therapy of the neutralizing antibody of the present invention and the anti-VEGF drug is useful for the treatment of diabetic retinopathy.
Anti-VEGF agents include aflibercept, bevacizumab, ranibizumab, sodium pegaptanib and the like.
 本発明の医薬は、前記中和抗体を当該技術分野においてよく知られる薬学的に許容しうる担体とともに、混合、溶解、顆粒化、錠剤化、乳化、カプセル封入、凍結乾燥等により、製剤化し医薬組成物の形態として用いることができる。 The medicament of the present invention is prepared by mixing, dissolving, granulating, tableting, emulsifying, encapsulating, freeze-drying, etc. the neutralizing antibody together with a pharmaceutically acceptable carrier well known in the art. It can be used as a form of composition.
 経口投与用には、前記中和抗体を、薬学的に許容しうる溶媒、賦形剤、結合剤、安定化剤、分散剤等とともに、錠剤、丸薬、糖衣剤、軟カプセル、硬カプセル、溶液、懸濁液、乳剤、ゲル、シロップ、スラリー等の剤形に製剤化することができる。 For oral administration, the neutralizing antibody is used in tablets, pills, sugar coatings, soft capsules, hard capsules, solutions, etc., together with pharmaceutically acceptable solvents, excipients, binders, stabilizers, dispersants and the like. , Suspensions, emulsions, gels, syrups, slurries and the like can be formulated.
 非経口投与用には、前記中和抗体を、薬学的に許容しうる溶媒、賦形剤、結合剤、安定化剤、分散剤等とともに、注射用溶液、懸濁液、乳剤、クリーム剤、軟膏剤、吸入剤、座剤等の剤形に製剤化することができる。注射用の処方においては、中和抗体を水性溶液、好ましくはハンクス溶液、リンゲル溶液、または生理的食塩緩衝液等の生理学的に適合性の緩衝液中に溶解することができる。さらに、組成物は、油性または水性のベヒクル中で、懸濁液、溶液、または乳濁液等の形状をとることができる。あるいは、医薬組成物を粉体の形態で製造し、使用前に滅菌水等を用いて水溶液または懸濁液を調製してもよい。吸入による投与用には、中和抗体を粉末化し、ラクトースまたはデンプン等の適当な基剤とともに粉末混合物とすることができる。坐剤処方は、中和抗体をカカオバター等の慣用の坐剤基剤と混合することにより製造することができる。さらに、本発明の医薬は、ポリマーマトリクス等に封入して、持続放出用製剤として処方することもできる。 For parenteral administration, the neutralizing antibody is used in injection solutions, suspensions, emulsions, creams, etc., together with pharmaceutically acceptable solvents, excipients, binders, stabilizers, dispersants and the like. It can be formulated into dosage forms such as ointments, inhalants, and suppositories. In injectable formulations, the neutralizing antibody can be dissolved in an aqueous solution, preferably in a physiologically compatible buffer such as Hanks solution, Ringer solution, or physiological saline buffer. In addition, the composition can take the form of suspensions, solutions, emulsions, etc. in oily or aqueous vehicles. Alternatively, the pharmaceutical composition may be produced in the form of a powder, and an aqueous solution or suspension may be prepared using sterile water or the like before use. For administration by inhalation, the neutralizing antibody can be powdered into a powder mixture with a suitable base such as lactose or starch. Suppository formulations can be made by mixing neutralizing antibodies with conventional suppository bases such as cocoa butter. Further, the medicament of the present invention can be encapsulated in a polymer matrix or the like and formulated as a continuous release preparation.
 投与量および投与回数は、剤形および投与経路、ならびに患者の症状、年齢、体重によって異なるが、一般に、中和抗体は、1日あたり体重1kgあたり、約0.001mgから1000mgの範囲、好ましくは約0.01mgから10mgの範囲となるよう、1日に1回から数回投与することができる。 The dosage and frequency of administration will vary depending on the dosage form and route of administration, as well as the patient's symptoms, age and body weight, but in general, neutralizing antibodies range from about 0.001 mg to 1000 mg per kg body weight per day, preferably in the range of about 0.001 mg to 1000 mg. It can be administered once to several times daily in the range of about 0.01 mg to 10 mg.
 次に実施例を挙げて本発明を詳細に説明するが、本発明はこれに何ら限定されるものではない。 Next, the present invention will be described in detail with reference to examples, but the present invention is not limited thereto.
実施例1
(分泌型eIF5Aに対する中和抗体の作成)
 抗ORAIP抗体(クローン YSP5-45-36)は、ヒトeIF5Aタンパクの(44-72番目)のアミノ酸残基(ハイプシン化する50番目のリジン残基、および硫酸化される69番目のチロシン残基を含む)から成るペプチドをkeyhole limpet hemocyanin(KLH)に結合したものを抗原とした。この抗原で免疫したマウスの脾細胞とマウス・ミエローマ細胞を細胞融合することによりハイブリドーマを作成した。ハイブリドーマの産生するモノクローナル抗体から前述のヒトeIF5Aタンパクの(44-72番目)のアミノ酸残基に特異的に反応する抗体をELISA法により選択し、モノクローナル抗体(クローン YSP5-45-36)を樹立した。得られたハイブリドーマは独立行政法人製品評価技術基盤機構特許微生物寄託センターにNITE P-02955として寄託された。
Example 1
(Preparation of neutralizing antibody against secretory eIF5A)
The anti-ORAIP antibody (clone YSP5-45-36) contains amino acid residues (positions 44-72) of the human eIF5A protein (the 50th lysine residue to be hypinated and the 69th tyrosine residue to be sulfated). A peptide consisting of (including) bound to keyhole lysine hemocyanin (KLH) was used as an antigen. A hybridoma was created by fusing mouse splenocytes and mouse myeloma cells immunized with this antigen. From the monoclonal antibody produced by the hybridoma, an antibody that specifically reacts with the amino acid residue (44-72th) of the human eIF5A protein described above was selected by the ELISA method, and a monoclonal antibody (clone YSP5-45-36) was established. .. The obtained hybridoma was deposited as NITE P-02955 at the Patent Microorganisms Depositary Center of the National Institute of Technology and Evaluation.
実施例2
(モノクローナル抗体のCDR領域の解折)
 clone YSP5-45-36産生ハイブリドーマよりtotal cytoplasmic RNAを回収した。
 マウスIgG(H鎖、L鎖)配列に特異的なプライマーを用いてRT反応によりcDNAを合成した。
 合成したcDNAを鋳型として、SMARTerTM RACE5’/3’Kit(TaKaRa Code Z4859N)を用いて5’RACE解折を行った。
 得られたコンセンサス配列を解析ツールのIMGTTM、the international ImMunoGeneTics information systemTM http://www.imgt.org,を用いてCDR領域の解折を行った。
 重鎖CDR1、重鎖CDR2、重鎖CDR3、軽鎖CDR1、軽鎖CDR2、及びCDR3をそれぞれ配列番号1、2、3、4、5及び6に示す。重鎖可変領域を配列番号7及び図7に、軽鎖可変領域を配列番号8及び図8に示す。
Example 2
(Dissolution of CDR regions of monoclonal antibody)
Total cytoplasmic RNA was recovered from the hybridoma produced by clone YSP5-45-36.
CDNA was synthesized by RT reaction using primers specific for mouse IgG (H chain, L chain) sequences.
Using the synthesized cDNA as a template, 5'RACE cleavage was performed using SMARTer TM RACE5'/3'Kit (TaKaRa Code Z4859N).
The consensus sequence obtained was analyzed by IMGT TM , the international ImmunoGeneTechs information system TM http: // www. imgt. The CDR regions were dissected using org.
Heavy chain CDR1, heavy chain CDR2, heavy chain CDR3, light chain CDR1, light chain CDR2, and CDR3 are shown in SEQ ID NOs: 1, 2, 3, 4, 5 and 6, respectively. The heavy chain variable region is shown in SEQ ID NO: 7 and FIG. 7, and the light chain variable region is shown in SEQ ID NO: 8 and FIG.
実施例3
(糖尿病網膜症に対する効果)
 糖尿病網膜症では毛細血管壁を被覆するペリサイトの消失が、一連の血管異常を惹起すると考えられている。実際に、血小板由来増殖因子受容体β(platelet-derived growth factor receptor β, PDGFRβ)に対する阻害抗体を生後1日マウスの腹腔内に単回投与して網膜血管壁のペリサイトを消失させると、生後8日以降に糖尿病網膜症と同様の浮腫や出血を再現できる(図1、非特許文献2)。この糖尿病網膜症モデルマウスを用いることにより、抗VEGF薬を含む様々な薬剤の網膜浮腫・出血抑制効果を検証することができる(図2)。本発明では、生後1日マウスの腹腔内に抗PDGFRβモノクローナル抗体を単回投与した上で、本発明中和抗体(抗ORAIP抗体)を生後7日より腹腔内に連日投与したところ、生後11日における網膜浮腫・出血が有意に抑制されることを確認した(図3、4)。
Example 3
(Effect on diabetic retinopathy)
In diabetic retinopathy, the disappearance of pericytes that line the walls of capillaries is thought to cause a series of vascular abnormalities. In fact, when an inhibitory antibody against platelet-derived growth factor receptor β (platelet-developed growth factor receptor β, PDGFRβ) was administered once intraperitoneally in 1-day-old mice to eliminate pericytes on the retinal vessel wall, postnatal After 8 days, edema and bleeding similar to diabetic retinopathy can be reproduced (Fig. 1, Non-Patent Document 2). By using this diabetic retinopathy model mouse, it is possible to verify the retinal edema / bleeding suppressing effect of various drugs including an anti-VEGF drug (Fig. 2). In the present invention, a single dose of anti-PDGFRβ monoclonal antibody was administered intraperitoneally to 1-day-old mice, and then the neutralizing antibody (anti-ORAIP antibody) of the present invention was intraperitoneally administered daily from 7 days after birth. It was confirmed that retinal edema and bleeding in the above were significantly suppressed (Figs. 3 and 4).
 図1に、本発明で用いた糖尿病網膜症モデルマウスを示す。生後1日野性型C57BL/6マウスの腹腔内に抗PDGFRβモノクローナル抗体を単回投与すると、網膜血管壁のペリサイトが消失することにより、生後8日以降に網膜浮腫・出血を発症する。図1では、生後10日の網膜浮腫・出血を4段階評価している。
Grade 1:網膜出血・浮腫なし
Grade 2:網膜局所の出血または浮腫
Grade 3:半周以下の網膜浮腫
Grade 4:網膜組織の破綻
 図2に、糖尿病網膜症モデルマウスにおけるVEGF受容体デコイの浮腫・出血抑制効果を示す。生後1日野性型C57BL/6マウス(5個体)の腹腔内に抗PDGFRβ抗体(40μg)を単回投与し、生後8日に片眼にヒト免疫グロブリンG(immunoglobulin G,IgG)Fc、反対眼にVEGF受容体デコイ(aflibercept,5μg)を投与し、生後11日に解析した。
 図3及び4に、糖尿病網膜症モデルマウスにおける浮腫・出血抑制効果を示す。生後1日C57BL/6野性型マウス(11個体)の腹腔内に抗PDGFRβ抗体(40μg)を単回投与し、生後7日より5個体にマウスIgG、6個体に本発明中和抗体(抗ORAIP抗体)(100μg)を腹腔内に連日投与し、生後11日に各個体の両眼を解析した。
FIG. 1 shows a diabetic retinopathy model mouse used in the present invention. A single administration of an anti-PDGFRβ monoclonal antibody into the abdominal cavity of 1-day-old wild-type C57BL / 6 mice causes retinal edema and bleeding after 8 days of age due to the disappearance of pericytes on the retinal blood vessel wall. In FIG. 1, 10-day-old retinal edema / bleeding is evaluated on a 4-point scale.
Grade 1: No retinal hemorrhage / edema Grade 2: Local retinal hemorrhage or edema Grade 3: Retinal edema less than half a circumference Grade 4: Collapse of retinal tissue Figure 2 shows edema / edema of VEGF receptor decoy in diabetic retinopathy model mice. Shows inhibitory effect. A single dose of anti-PDGFRβ antibody (40 μg) was administered intraperitoneally to 1-day-old wild-type C57BL / 6 mice (5 individuals), and human immunoglobulin G (immunoglobulin G, IgG) Fc was administered to one eye on the 8th day after birth, and the opposite eye. Was administered with VEGF receptor decoy (aflibercept, 5 μg) and analyzed on the 11th day after birth.
FIGS. 3 and 4 show the edema / bleeding suppressing effect in diabetic retinopathy model mice. A single dose of anti-PDGFRβ antibody (40 μg) was administered intraperitoneally to 1-day-old C57BL / 6 wild-type mice (11 individuals), and from 7 days after birth, 5 individuals were given mouse IgG and 6 individuals were given the neutralizing antibody of the present invention (anti-ORAIP). Antibodies) (100 μg) were intraperitoneally administered daily, and both eyes of each individual were analyzed on the 11th day after birth.
実施例4
 図5にペリサイトを消失させた糖尿病網膜症モデル・マウスを用いて、抗VEGF薬(Aflibercept)の単独療法と、抗VEGF薬(Aflibercept)および抗ORAIP抗体の併用療法の網膜浮腫・出血に対する効果を示す。
Example 4
Figure 5 shows the effect of anti-VEGF drug (Aflibercept) monotherapy and anti-VEGF drug (Aflibercept) and anti-ORAIP antibody combination therapy on retinal edema / bleeding using diabetic retinopathy model mice in which pericite has disappeared. Is shown.
 実験方法は以下の通りである。
(ペリサイトを消失させた糖尿病網膜症モデルマウスを用いた実験方法)
 (1)生後1日に抗PDGFRβ抗体(clone APB5)50μgを腹腔内投与
 (2)生後8日に3群に分けて各群にそれぞれ下記の溶液(1μL)を眼内投与
   1) PBS
   2) 抗VEGF薬(Aflibercept) 2mg/mL in PBS
   3) 抗VEGF薬(Aflibercept) 2mg/mL
+抗ORAIP抗体(clone YSP5-45-36) 9.614mg/mL in PBS
 (3)生後13日に網膜の浮腫・出血のGradeを判定
The experimental method is as follows.
(Experimental method using diabetic retinopathy model mice in which pericytes have disappeared)
(1) Intraperitoneal administration of 50 μg of anti-PDGFRβ antibody (clone APB5) on the 1st day after birth (2) Intraperitoneal administration of the following solution (1 μL) to each group on the 8th day after birth 1) PBS
2) Anti-VEGF drug (Aflibercept) 2 mg / mL in PBS
3) Anti-VEGF drug (Aflibercept) 2 mg / mL
+ Anti-ORAIP antibody (clone YSP5-45-36) 9.614mg / mL in PBS
(3) Determining the grade of retinal edema / bleeding on the 13th day after birth
 図5Aに3群における各眼球の網膜の写真を示す。図5Bに各群の網膜の出血・浮腫のGradeを示す。PBS投与群に比べて、抗VEGF薬(Aflibercept)単独投与群では、より低いGradeを示す網膜の割合が増加している。抗VEGF薬(Aflibercept)と抗ORAIP抗体(YSP5-45-36)の併用投与群では、抗VEGF薬(Aflibercept)単独投与群に比べて、低いGradeを示す網膜の割合がさらに増加している。
 以上より、抗ORAIP抗体を抗VEGF薬に併用することにより浮腫・出血抑制に対して相加効果が得られることが強く示唆された。
FIG. 5A shows a photograph of the retina of each eyeball in the three groups. FIG. 5B shows the grade of retinal hemorrhage / edema in each group. Compared to the PBS group, the anti-VEGF drug (Aflibercept) alone group has an increased proportion of retinas showing a lower grade. In the combined administration group of the anti-VEGF drug (Aflibercept) and the anti-ORAIP antibody (YSP5-45-36), the proportion of retinas showing a low grade was further increased as compared with the anti-VEGF drug (Aflibercept) alone administration group.
From the above, it was strongly suggested that the combined use of anti-ORAIP antibody with anti-VEGF drug has an additive effect on edema / bleeding suppression.
 そこで、Grade 1から4の重症度を便宜的に0から3に点数化して(Grading score)、PBSに対する単独療法と併用療法の効果を比較した結果を図7に示す。PBS、単独療法、併用療法の各群のGrading scoreは、それぞれ(2.86 ± 0.38 [mean ± SE], n=7)、(2.33 ± 0.33, n=9)、(1.89 ± 0.31, n=9) となり、単独療法に比べて併用療法による重症度の改善傾向が見られた。
 さらにGrading scoreを統計的に比較すると、PBS投与群と単独療法群の間にはGrading scoreの有意の低下が認められなかった(*P=0.1864,not significant [NS])のに対し、PBS投与群と併用療法群の間では有意の低下が認められた(**p=0.0296; Dunnett's multiple comparison test)(図7)。
 以上より、抗ORAIP抗体を抗VEGF薬に併用することにより網膜浮腫・出血抑制に対して相加効果が得られることが明らかとなった。
Therefore, the severity of Grades 1 to 4 was scored from 0 to 3 for convenience (Grading score), and the results of comparing the effects of monotherapy and combination therapy on PBS are shown in FIG. Grading scores for each group of PBS, monotherapy, and combination therapy are (2.86 ± 0.38 [mean ± SE], n = 7), (2.33 ± 0.33, n = 9), (1.89 ± 0.31, n = 9), respectively. The severity of the combination therapy tended to improve compared to the monotherapy.
Furthermore, when the Grading score was statistically compared, there was no significant decrease in the Grading score between the PBS-administered group and the monotherapy group (* P = 0.1864, not significant [NS]), whereas PBS-administered. A significant decrease was observed between the group and the combination therapy group (** p = 0.0296; Dunnett's multiple comparison test) (Fig. 7).
From the above, it was clarified that the combined use of the anti-ORAIP antibody with the anti-VEGF drug has an additive effect on the suppression of retinal edema and bleeding.
 本発明の医薬又は医薬組成物を用いれば、従来用いられている薬物、例えば抗VEGF薬等の糖尿病黄斑浮腫治療効果を増強できる。この疾患では、抗VEGF薬によって治療効果が得られる場合でも高頻度に再発することが問題となっており、さらに抗VEGF薬に不応性の患者も多いため、本発明の医薬は極めて有用性が高い。 By using the drug or pharmaceutical composition of the present invention, the therapeutic effect on diabetic macular edema of conventionally used drugs such as anti-VEGF drugs can be enhanced. In this disease, there is a problem that recurrence occurs frequently even when the therapeutic effect is obtained by the anti-VEGF drug, and many patients are refractory to the anti-VEGF drug. Therefore, the drug of the present invention is extremely useful. high.

Claims (12)

  1.  分泌型eIF5Aに対する中和抗体を有効成分とする、糖尿病網膜症の予防又は治療薬。 A prophylactic or therapeutic drug for diabetic retinopathy containing a neutralizing antibody against secretory eIF5A as an active ingredient.
  2.  分泌型eIF5Aに対する中和抗体が、モノクローナル抗体である請求項1記載の予防又は治療薬。 The prophylactic or therapeutic agent according to claim 1, wherein the neutralizing antibody against the secretory eIF5A is a monoclonal antibody.
  3.  分泌型eIF5Aに対する中和抗体が、配列番号1で示されるアミノ酸配列を含む重鎖CDR1、配列番号2で示されるアミノ酸配列を含む重鎖CDR2、配列番号3で示されるアミノ酸配列を含む重鎖CDR3、配列番号4で示されるアミノ酸配列を含む軽鎖CDR1、配列番号5で示されるアミノ酸配列を含む軽鎖CDR2、及び配列番号6で示されるアミノ酸配列を含む軽鎖CDR3を有する中和抗体である請求項1又は2記載の予防又は治療薬。 The neutralizing antibody against the secretory eIF5A is heavy chain CDR1 containing the amino acid sequence shown by SEQ ID NO: 1, heavy chain CDR2 containing the amino acid sequence shown by SEQ ID NO: 2, and heavy chain CDR3 containing the amino acid sequence shown by SEQ ID NO: 3. , A neutralizing antibody having a light chain CDR1 containing the amino acid sequence set forth in SEQ ID NO: 4, a light chain CDR2 comprising the amino acid sequence set forth in SEQ ID NO: 5, and a light chain CDR3 comprising the amino acid sequence set forth in SEQ ID NO: 6. The prophylactic or therapeutic agent according to claim 1 or 2.
  4.  糖尿病網膜症の予防又は治療薬製造のための、分泌型eIF5Aに対する中和抗体の使用。 Use of neutralizing antibody against secretory eIF5A for the prevention or manufacture of therapeutic agents for diabetic retinopathy.
  5.  分泌型eIF5Aに対する中和抗体が、モノクローナル抗体である請求項4記載の使用。 The use according to claim 4, wherein the neutralizing antibody against the secretory eIF5A is a monoclonal antibody.
  6.  分泌型されたeIF5Aに対する中和抗体が、配列番号1で示されるアミノ酸配列を含む重鎖CDR1、配列番号2で示されるアミノ酸配列を含む重鎖CDR2、配列番号3で示されるアミノ酸配列を含む重鎖CDR3、配列番号4で示されるアミノ酸配列を含む軽鎖CDR1、配列番号5で示されるアミノ酸配列を含む軽鎖CDR2、及び配列番号6で示されるアミノ酸配列を含む軽鎖CDR3を有する中和抗体である請求項4又は5記載の使用。 The neutralizing antibody against the secreted eIF5A is a heavy chain CDR1 containing the amino acid sequence shown in SEQ ID NO: 1, a heavy chain CDR2 containing the amino acid sequence shown in SEQ ID NO: 2, and a weight containing the amino acid sequence shown in SEQ ID NO: 3. Neutralizing antibody with chain CDR3, light chain CDR1 containing the amino acid sequence set forth in SEQ ID NO: 4, light chain CDR2 containing the amino acid sequence set forth in SEQ ID NO: 5, and light chain CDR3 containing the amino acid sequence set forth in SEQ ID NO: 6. The use according to claim 4 or 5.
  7.  糖尿病網膜症の予防又は治療に使用するための、分泌型eIF5Aに対する中和抗体。 Neutralizing antibody against secretory eIF5A for use in the prevention or treatment of diabetic retinopathy.
  8.  分泌型eIF5Aに対する中和抗体が、モノクローナル抗体である請求項7記載の中和抗体。 The neutralizing antibody according to claim 7, wherein the neutralizing antibody against the secretory eIF5A is a monoclonal antibody.
  9.  分泌型eIF5Aに対する中和抗体が、配列番号1で示されるアミノ酸配列を含む重鎖CDR1、配列番号2で示されるアミノ酸配列を含む重鎖CDR2、配列番号3で示されるアミノ酸配列を含む重鎖CDR3、配列番号4で示されるアミノ酸配列を含む軽鎖CDR1、配列番号5で示されるアミノ酸配列を含む軽鎖CDR2、及び配列番号6で示されるアミノ酸配列を含む軽鎖CDR3を有する中和抗体である請求項7又は8記載の中和抗体。 The neutralizing antibody against the secretory eIF5A is heavy chain CDR1 containing the amino acid sequence shown in SEQ ID NO: 1, heavy chain CDR2 containing the amino acid sequence shown in SEQ ID NO: 2, and heavy chain CDR3 containing the amino acid sequence shown in SEQ ID NO: 3. , A neutralizing antibody having a light chain CDR1 containing the amino acid sequence set forth in SEQ ID NO: 4, a light chain CDR2 comprising the amino acid sequence set forth in SEQ ID NO: 5, and a light chain CDR3 comprising the amino acid sequence set forth in SEQ ID NO: 6. The neutralizing antibody according to claim 7 or 8.
  10.  分泌型eIF5Aに対する中和抗体の有効量を投与することを特徴とする糖尿病網膜症の予防又は治療方法。 A method for preventing or treating diabetic retinopathy, which comprises administering an effective amount of a neutralizing antibody against secretory eIF5A.
  11.  分泌型eIF5Aに対する中和抗体が、モノクローナル抗体である請求項10記載の方法。 The method according to claim 10, wherein the neutralizing antibody against the secretory eIF5A is a monoclonal antibody.
  12.  分泌型eIF5Aに対する中和抗体が、配列番号1で示されるアミノ酸配列を含む重鎖CDR1、配列番号2で示されるアミノ酸配列を含む重鎖CDR2、配列番号3で示されるアミノ酸配列を含む重鎖CDR3、配列番号4で示されるアミノ酸配列を含む軽鎖CDR1、配列番号5で示されるアミノ酸配列を含む軽鎖CDR2、及び配列番号6で示されるアミノ酸配列を含む軽鎖CDR3を有する中和抗体である請求項10又は11記載の方法。 The neutralizing antibody against the secretory eIF5A is heavy chain CDR1 containing the amino acid sequence shown in SEQ ID NO: 1, heavy chain CDR2 containing the amino acid sequence shown in SEQ ID NO: 2, and heavy chain CDR3 containing the amino acid sequence shown in SEQ ID NO: 3. , A neutralizing antibody having a light chain CDR1 containing the amino acid sequence set forth in SEQ ID NO: 4, a light chain CDR2 comprising the amino acid sequence set forth in SEQ ID NO: 5, and a light chain CDR3 comprising the amino acid sequence set forth in SEQ ID NO: 6. The method according to claim 10 or 11.
PCT/JP2020/020835 2019-05-28 2020-05-27 Preventive or therapeutic agent for diabetic retinopathy WO2020241660A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021522798A JPWO2020241660A1 (en) 2019-05-28 2020-05-27

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019099425 2019-05-28
JP2019-099425 2019-05-28

Publications (1)

Publication Number Publication Date
WO2020241660A1 true WO2020241660A1 (en) 2020-12-03

Family

ID=73553760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/020835 WO2020241660A1 (en) 2019-05-28 2020-05-27 Preventive or therapeutic agent for diabetic retinopathy

Country Status (2)

Country Link
JP (1) JPWO2020241660A1 (en)
WO (1) WO2020241660A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009144933A1 (en) * 2008-05-27 2009-12-03 国立大学法人東京大学 Apoptosis inducer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009144933A1 (en) * 2008-05-27 2009-12-03 国立大学法人東京大学 Apoptosis inducer

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SEKO, Y. ET AL.: "Secreted tyrosine sulfated-eIF5A mediates oxidative stress- induced apoptosis", SCIENTIFIC REPORTS, vol. 5, no. 13737, 2015, XP055767226 *
SUZUKI, Y. ET AL.: "Elevation of the vitreous body concentrations of oxidative stress-responsive apoptosis-inducing protein (ORAIP) in proliferative diabetic retinopathy", GRAEFE'S ARCHIVE FOR CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY, vol. 257, 6 May 2019 (2019-05-06), pages 1519 - 1525, XP036802962, DOI: 10.1007/s00417-019-04343-w *

Also Published As

Publication number Publication date
JPWO2020241660A1 (en) 2020-12-03

Similar Documents

Publication Publication Date Title
JP7143452B2 (en) ANTIBODY THAT CAN BLOCK THE INTERACTION BETWEEN CD47 AND SIRPa, AND ITS APPLICATION
TWI728250B (en) Multispecific antibodies that target hiv gp120 and cd3
US9085617B2 (en) Anti-angiogenic therapy
US11440954B2 (en) Optimized anti-TL1A antibodies
MX2010011955A (en) Dual variable domain immunoglobulins and uses thereof.
SG192496A1 (en) Prostaglandin e2 binding proteins and uses thereof
Roque-Navarro et al. Humanization of predicted T-cell epitopes reduces the immunogenicity of chimeric antibodies: new evidence supporting a simple method
JP2020517241A (en) Binding molecule specific to Lrig-1 protein and use thereof
TWI671316B (en) Anti-orai1 antibody and producing method thereof
TW202031687A (en) A fusion protein and uses thereof
WO2020241660A1 (en) Preventive or therapeutic agent for diabetic retinopathy
JP2023534779A (en) anti-ceramide antibody
JP2021155343A (en) Agent for preventing and/or treating pulmonary hypertension
CN110563848A (en) bispecific antibody and application thereof
WO2023186113A1 (en) Antigen-binding protein targeting pd-l1 and cd40, preparation therefor, and use thereof
JP2022177481A (en) Prophylactic or therapeutic agent for inflammatory bowel disease
US20220185911A1 (en) Therapeutic antibodies for treating lung cancer
CN113087796B (en) anti-PD-L1 antibody and application thereof
WO2024051802A1 (en) Gipr antibody, fusion protein thereof with fgf21, pharmaceutical composition thereof, and use thereof
EP4059963A1 (en) Molecule capable of binding to human 4-1bb, and application of molecule
WO2023071953A1 (en) Anti-cd26 antibody and use thereof
CN115703832A (en) anti-CRR 9 monoclonal antibody with high blocking activity and application thereof
JP2024517985A (en) Anti-CD300c monoclonal antibody and its biomarker for preventing or treating cancer
CN115703835A (en) Anti-human CRR9 monoclonal antibody and preparation method and application thereof
BR112020006860A2 (en) composition for depleting cytotoxic t cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20813136

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021522798

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20813136

Country of ref document: EP

Kind code of ref document: A1